Document Type

Article

Publication Date

7-1-2018

Abstract

© 2018 American Society for Microbiology. Burkholderia pseudomallei, the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis. The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei. We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans. In B. thailandensis, antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR. We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections.

Publication Source (Journal or Book title)

Journal of Bacteriology

COinS