Title

Frontal Polymerization of a Thin Film on a Wood Substrate

Document Type

Article

Publication Date

1-1-2020

Abstract

© 2020 American Chemical Society. Frontal polymerization has been explored as a technique to form two-dimensional thin films (<0.5 mm) on wood. We used trimethylolpropane triacrylate with a thermal free-radical initiator. The viscosity of the resin was adjusted by incorporating fumed silica within the formulation. As filler materials, either calcium carbonate or graphene nanoplatelets was used to evaluate the effect of filler type and content on front propagation. We observed that resin viscosity and film thickness critically affected the qualitative and quantitative propagation of the thermal front resulting in the formation of the coating. A workable coating was formed at a viscosity of 0.6 Pa·s, which was obtained when 3 phr (parts per hundred resin) of fumed silica was used in the resin formulation. Wet film thickness for this resin system was also found to have a limiting value, and full propagation of the front to result in a conformal coating required at least 15 mil (1 mil = 25 μm) of wet film thickness. Filler materials affected film propagation as a function of particle size and thermal properties. While 15 phr calcium carbonate could be incorporated with the resin, only 5 phr graphene nanoplatelets could be loaded within the matrix to ensure complete propagation of the front. Interestingly, for graphene fronts, velocity and temperature reduced systematically as a function of filler content. Filler type and content affected porosity and roughness of the coating, which was quantified by computerized tomography to understand the relationship between porosity and adhesion of the coated film with the wood substrate.

Publication Source (Journal or Book title)

ACS Macro Letters

First Page

169

Last Page

173

This document is currently not available here.

Share

COinS