Methylene: A study of the X̃3B1 and ã1A1 states by photoelectron spectroscopy of CH 2- and CD2-

Document Type


Publication Date



Photoelectron spectra are reported for the CH2(X̃ 3B1) + e-←CH2- (X̃2B1) and CH2(ã1A 1) + e-←CH2-(X̃2B1) transitions of the methylene and perdeuterated methylene anions, using a new flowing afterglow photoelectron spectrometer with improved energy resolution (11 meV). Rotational relaxation of the ions to ∼300 K and partial vibrational relaxation to < 1000 K in the flowing afterglow negative ion source reveal richly structured photoelectron spectra. Detailed rotational band contour analyses yield an electron affinity of 0.652±0.006 eV and a singlet-triplet splitting of 9.00±0.09 kcal/mol for CH2. (See also the following paper by Bunker and Sears.) For CD2, results give an electron affinity of 0.645±0.006 eV and a singlet-triplet splitting of 8.98±0.09 kcal/mol. Deuterium shifts suggest a zero point vibrational contribution of 0.27±0.40 kcal/mol to the observed singlet-triplet splitting, implying a Te value of 8.7±0.5 kcal/mol. Vibrational and partially resolved rotational structure is observed up to ∼9000 cm-1 above the zero point vibrational level of the 3B1 states, revealing a previously unexplored region of the quasilinear potential surface of triplet methylene. Approximately 20 new vibration-rotation energy levels for CH2 and CD2 are measured to a precision of ∼30 cm-1 in the v2 = 2-7 region (bent molecule numbering). Bending vibrational frequencies in the methylene anions are determined to be 1230±30 cm-1 for CH 2- and 940±30 cm-1 for CD 2-, and the ion equilibrium geometries are bracketed. The measured electron affinity also provides values for the bond strength and heat of formation of CH2-, and the gas phase acidity of CH 3. A detailed description of the new flowing afterglow photoelectron spectrometer is given. © 1985 American Institute of Physics.

Publication Source (Journal or Book title)

The Journal of Chemical Physics

First Page


Last Page


This document is currently not available here.