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Abstract 

This dissertation analyzes a series of issues that surround both the theoretical modeling and the 

empirical estimation of the forward-futures differential, commonly known as the convexity 

adjustment. Opposite to theoretical implication, I find that the magnitude of the forward-futures 

rate differential is much smaller than what was expected, and that its sign is negative on many 

occasions. Neither asynchronicity bias, nor the unconventional feature of the Eurodollar futures 

pricing can explain the observed phenomena. The term structure interpolation error and the two 

business day lag between the fixing (settlement) date and the transaction (value) date to which 

the implied forward rates and prices are applied cannot be attributed to the observed abnormality 

either. I further show that the difference between the implied forward price obtained from the 

spot rate term structure and the original Eurodollar futures price at any point of time before 

maturity is composed of two parts: the element due to marking-to-market and the element arisen 

from the unconventional settlement of the Eurocurrency futures. It is also demonstrated that the 

discrepancy between the forward price and the futures price arisen from the unconventional 

settlement of the Eurocurrency futures can be hedged using a specific basket of caplets. This 

paper also performs the analysis for the three most traded interest rate futures contracts in 

Europe: EURIBOR futures, short sterling futures and Euroswiss franc futures. I show that the 

futures premium is barely detectible for the contracts with maturities below one year. The futures 

premium for maturities above twelve months varies across the models and is a subject to model 

assumptions regarding the volatility input and its evolution. Finally, I show that in the presence 

of the limits to arbitrage the rate on a forward rate agreement (FRA) contract and the respective 

implied forward rate derived from the spot yield curve would differ and their difference increases 

with the maturity. This finding allows to challenge the results in recently published works that 

argue that the convexity adjustment is not priced in by the FRA market makers. 
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Chapter 1 Introduction 

 
Since the seminal work of Cox, Ingersoll and Ross (1981) it has been known that forward 

contracts and closely related futures contracts must be priced differently as long as the future 

interest rates are not known. This assertion is equally well applied to the contracts with different 

underlying assets and/or financial benchmarks. The published research suggests that the 

difference between the futures price and that of a respective forward, frequently referred as a 

convexity adjustment, would be more pronounced if the underlying instrument of the two 

contracts is an interest rate or a Treasure bond. A number of works has investigated the matter 

and so far, the evidence has been mixed and subject to the underlying assumptions and model 

construction. 

This dissertation intends to tackle a number of issues that surround both the theoretical 

modeling of the convexity adjustment and its empirical estimation and that have not been fully 

addressed in the existing research on this topic. Among the subjects that are considered and 

incorporated in (or eliminated from, depending on the context) the analysis are the 

asynchronicity error, the unusual pricing feature of the interest rate futures, the extended range of 

maturities, the volatility input computation and its evolution specification, the frequency of 

marking to market, the implied nature of the forward contracts and the use of actually traded 

instruments instead, the affect of the limits to arbitrage and the use of international data among 

others. Each element has its unique implications on the results and thus must be treated with 

considerable care. 

My dissertation consists of three essays. The first one is the empirical work, the second 

one is the theoretical piece and the third one is a synthesis of both theory and empirical analysis. 

Such construction of the study allows to legitimately tackle a series of related issues one at a 

time and subsequently combine the early findings into an independent yet related work that is 

based on solid theoretical background and demonstrated empirical evidence.   

In the first essay I investigate the magnitude of the forward-futures differential, also 

known as the convexity adjustment, for Eurodollar interest rate instruments and attempt to 

identify factors affecting its size using an extensive sample for the 1988-2007 period. The 

innovative feature of the employed analysis is that the construction of the differential is extended 

from using rates for maturities up to twelve months as in previous published research to rates for 
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maturities up to three years through the use of highly liquid swap rates. To our knowledge, this is 

the first empirical study that attempts to evaluate the interest rate forward-futures differential for 

maturities longer than a year. I also check for potential data skews and other imperfections that 

may be behind the obtained results. 

The second essay takes a closer look at the relationship between Eurocurrency interest 

rate futures prices and forward prices by focusing on the way the Eurocurrency futures 

settlement procedure affects the forward-futures differential analysis. The phenomenon that 

Eurocurrency interest rate futures are settled in the way different from that of forward contracts 

has not been formally incorporated into early empirical works. Sundaresan (1991) argues that the 

implied forward price from the spot LIBOR term structure is inappropriate for the purposes of 

comparison with the Eurodollar futures price due to the differences in settlement procedures and 

introduces a hypothetical forward contract in order to eliminate the presence of the settlement 

factor. The essay investigates whether a more straightforward approach can be applied for the 

comparison of futures and respective forwards. The essay further looks at how changing 

frequency of the marking-to-market may affect the size of its component within the HJM term 

structure framework. Four popular volatility specifications are utilized to check for the 

robustness of the obtained results.  

Until recently, the literature on the convexity adjustment in interest rate futures 

concentrated almost exclusively on the Eurodollar contracts. The third essay performs the 

analysis for the three most traded interest rate futures contracts in Europe: EURIBOR futures, 

short sterling futures and Euroswiss franc futures. The innovative feature of this work is the 

usage of the approach that allows to construct matched pairs of the empirical as well as the 

predicted convexity adjustment. I also extend the statement that can be met in a number of 

textbooks on derivatives and fixed income that the rate on a forward rate agreement (FRA) 

contract is a function of the current term structure and is equal to the implied forward rate. The 

essay investigates whether the presence of the limits to arbitrage can make the FRA rate diverge 

from the implied forward rate. 

The rest of the dissertation is organized as follows. Chapter two presents the first essay, 

chapter three contains the second essay and chapter four is the third essay. Chapter five gives the 

summary and conclusions. 
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Chapter 2 Empirical Investigation of the Size and the Nature of the Eurodollar        

Futures-Forward Differential 

 

2.1 Introduction 

In this paper we intend to take a closer look at the difference arising from the pricing of 

interest rate forwards and futures known as the convexity adjustment. Futures contracts are 

marked-to-market daily while forward contracts are fully settled at expiration. Theoretical 

literature starting with Cox et al. (1981) argues that under certain conditions different cash flow 

patterns of the two contracts must result in different prices and rates implied by those contracts. 

In the stochastic interest rate environment, futures rates will exceed their forward counterparts. If 

futures prices are positively correlated with interest rates, then futures prices will exceed forward 

prices as well. Previous empirical literature concentrated on the relationship between forward 

and futures rates and prices and considered data limited to LIBOR rates where the latter have 

maturity up to 12 months1. This paper extends the maturity horizon up to three years by using 

swap rates reported by Bloomberg to construct a LIBOR/swap yield curve using an exponential 

interpolation technique. To our knowledge, this is the first empirical study that attempts to 

evaluate the interest rate forward-futures differential for maturities longer than a year. The use of 

reported swap rates in order to extend the spot yield curve is fully justified since they are for a 

highly liquid market and the bid-ask spread rarely exceeds one basis point.  

Using derivatives rather than bonds for hedging purposes is generally considered more 

efficient since the interest rate futures market is highly liquid and short positions may be easily 

taken. The enormous volume of trading in interest rate futures is a reflection of the magnitude of 

the widespread use of such techniques. The three-month Eurodollar futures are contracts with a 

three-month US LIBOR as the underlying. Such contracts are traded on the Chicago Mercantile 

Exchange. Each contract has a face value of $1,000,000 and represents the offer interest rate on 

an interbank three-month deposit. The major difference between futures and over-the-counter 

traded forward contracts is that futures are subject to margining. Margining is a process of 

closing an existing contract at a closing (settled) price at the end of the trading day and writing a 

new but identical contract at a new (closing) price. The difference between the closing price of 

the contract on the previous trading day and its closing price today is paid or received at the 

closing time today using a margin account. The difference in the pattern of the stream of cash 

                                                 
1 There do not exist LIBOR rates for longer maturities. 
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flows between forward and futures contracts arising from margining is believed to add extra 

value to a futures contract since profits obtained from margining can be reinvested daily at a 

higher rate, while the losses from it can be financed at a lower rate. The difference between the 

futures and forward prices or rates is often referred as the convexity adjustment.  

Empirical investigation of the convexity adjustment may be prone to a series of 

measurement imperfections making the results subject to a bit of skepticism. Indeed, when the 

value of the differential is often expressed in single digit basis points2, even a seemingly small 

skew in a data sample used or a measurement methodology applied can substantially affect the 

results and alter the ultimate conclusions. Interpolation error, asynchronicity bias and the way 

maturity length is measured are only few of such examples. Another issue that has taken a 

central stage recently but has not been addressed in early empirical studies is the fact that interest 

rate futures are priced and settled in an unusual manner resulting in the existence of the 

difference between a forward price and a respective futures price even on the day of expiration. 

This observation would lead one to suggest that the results of the convexity adjustment analysis 

and its conclusions may very well depend on whether such analysis is conducted rate-wise or 

price-wise. The purpose of this paper is to demonstrate how different such results would be 

provided that we account for most significant measurement imperfections in order to eliminate 

their influence on our conclusions. 

We find that for the extended range of maturities, the magnitude of the futures-forward 

rate differential remains small and on many occasions it is negative, opposite to theoretical 

implications. Changes in average differential across maturities are negligible. Asynchronicity 

error cannot explain the observed phenomena, nor can the unusual pricing feature of Eurodollar 

futures or the two business day lag between the settlement date and the value date of the forward 

contract. If measured as the forward-futures price differential, the average convexity adjustment 

is still of tiny value but the number of negative occurrences in the sample drops significantly 

suggesting that the unconventional pricing characteristic of the Eurodollar futures is positively 

related to the value of the price differential. Regression analysis performed for the rate 

differential provides dubious results but if the latter is conducted for the price differential, it 

results in much better goodness-of-fit. Although time to maturity, level of rates and its volatility 

                                                 
2 This is very much true for short maturities while the outcome for longer maturities is expected to be somewhat 
larger but it has not been thoroughly investigated in the existing literature. 
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are positively related to the value of the price differential, the default factor expressed by the 

TED spread is unable to capture the negative nature of the convexity adjustment which remains 

largely unexplained. 

The rest of the paper is structured as following. Section 2.2 contains the literature review, 

section 2.3 describes how the convexity adjustment is derived from the obtained zero coupon 

rates and futures quotes. Section 2.4 is devoted to the description of the yield curve interpolation 

methods utilized in the paper while section 2.5 addresses several important issues that arise when 

interpolation techniques are to be implemented. Section 2.6 provides data description and 

analysis, section 2.7 contains estimation results and section 2.8 concludes. 

2.2 Literature Review 

Black (1976) was first to show that in a world of constant interest rates, forward prices 

are equal to futures prices. Cox et al. (1981) and Jarrow and Oldfield (1981) discover 

independently that due to the difference in the form of payments between forward and futures 

contracts, forward and futures prices may be quite different if interest rates are stochastic. The 

same is true about forward rates and futures rates. These papers introduce the layout of the 

theoretical background for pricing futures and forward contracts under the default-free 

conditions. In reality, forward contracts are subject to a higher degree of default risk by a second 

party than the futures. Empirical literature finds some evidence of the significant presence of the 

default factor in the difference between futures and forward pricing. Meulbroek (1992) focuses 

on contractual distinctions as an explanation for the price divergence between interest rate 

futures and forward contracts. She argues that market inefficiencies and imperfections are not the 

only explanation for the differences in futures and forward prices. According to her paper, if the 

covariance between fluctuations in futures prices and riskless bond prices is large, marking-to-

market may be an important contributor to the futures-forward price spread. 

The presence of the default risk is not the only distinctive feature between interest rate 

forwards and futures though. The other major distinction lies in the way the futures are prices 

and settled. The Eurodollar futures contract settles to the 90-day London Interbank Offered Rate 

(LIBOR), the yield implied by the underlying asset in the form of the 90-day Eurodollar time 

deposit. Sundaresan (1991) argues that since Eurodollar futures contract settles to yield as 

opposed to prices, interest rate forward prices should differ from the futures prices even in the 

absence of marking-to-market. He modifies principles developed by Cox et al. (1981) for futures 
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contracts on yields and shows that differences between implied forward prices and futures prices 

arising from the unique settlement feature of Eurodollar futures contracts are much larger than 

differences caused by the marking-to-market effect. Using the term structure of Cox et al. (1985) 

to derive forward and futures prices, Sundaresan finds that, first, in all cases, futures prices are 

lower than forward prices and futures rates are lower than implied forward rates, and second, the 

differences between futures rates and implied forward rates are much greater than the differences 

between futures prices and forward prices. To examine the extent to which his results are 

supported by data, Sundaresan uses daily quotes on Eurodollar futures prices and LIBOR rates 

for the period 1985-1988. By choosing to work with three- and six-month LIBOR only, his 

sample contains only 13 matched 90-day forward and futures prices producing the mean 

difference between futures and implied forward prices of 50 basis points. 

Such conclusions would make one think that results of the convexity adjustment analysis 

in interest rate futures and forwards would depend on whether the analysis is conducted rate-wise 

or price-wise. Grinblatt and Jegadeesh (1996) derive a closed form solutions for the futures-

forward yield differential and show that, theoretically, the difference should be small. Using data 

on Eurodollar futures prices and LIBOR over the 1982-1992 period, they observe significant 

differences between futures and forward prices and argue that these differences are likely to have 

been caused by mispricing of futures contracts and lack of arbitrage activity, and that this 

mispricing was gradually eliminated over time. Neither default and liquidity risk, nor differential 

taxation can explain the differences between the futures and forward Eurodollar rates, while 

mark-to-market effect on the theoretical differences is small. Two interpolation methods are used 

in the paper: a cubic spline fit to the futures rates and another cubic spline applied to the spot 

LIBOR curve. The first approach produced larger mean values of the rate differential although a 

notable proportion of occurrences of the rate differential for maturities of three and six months in 

the second part of the sample was negative. Their assertion about market inefficiency is 

supported by the results of the analysis of the timeliness of information flow across the markets: 

while there is no delay in the flow of information from the forward market to the futures market, 

there exists a delay of information flow from the futures to the forward market. 

Gupta and Subrahmanyam (2000) examine whether a convexity correction, arising from 

the negative convexity exhibited by interest rate swaps, has been incorporated efficiently into 

interest rate swap pricing over time in four major currencies. They consider swaps with 
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maturities up to five years for US dollar currency and swaps with maturities of only two years 

for three other currencies3. Their evidence is based on small (on average, less than one basis 

point) values of the introduced swap-futures rate differential and it suggests that during 1987-

1990, swaps were priced ignoring the convexity correction but after that market swap rates 

drifted below the rates implied by futures prices. Such results are interpreted as the evidence of 

mispricing of swap contracts during the early years which was subsequently eliminated over 

time. 

Combining the results of Gupta and Subrahmanyan with those of Grinblatt and 

Jegadeesh, one gets an interesting picture. First, futures contracts were mispriced off the spot 

LIBOR curve, and after that swap contracts were mispriced off the futures curve. Although the 

two results do not necessarily contradict each other, it is somewhat surprising to see that during 

1982-1987 futures were overpriced relative to forward contracts with shorter maturities while 

during 1987-1990 swap contracts were overpriced relative to futures with longer maturities. 

Using the term structure model developed by Heath et al. (1992), Chance (2003) 

conducts an alternative test that estimates the evolution of the term structure that yields arbitrage-

free futures prices. The differences between Eurodollar futures and forward prices over the 

period 1987-2000 are found to be much smaller than in earlier works, essentially, they are not 

different from zero but are consistently negative, as predicted by the theory. The model 

considered, however, assumes default-free environment. Nevertheless, even without the default 

risk present, such results allow us to infer that the forward-futures price differences attributable 

to marking-to-market would be even closer to zero. 

Empirical research shows that differences between forward prices and futures prices are 

small for contracts with short maturities but there is no conventionally accepted evidence about 

what happens to the spread when longer maturities are considered. The aforementioned Gupta 

and Subrahmanyam’s paper mentions that the spread between futures and forward yields due to 

the marking-to-market feature is expected to be more pronounced in longer-term (over a year 

maturity) contracts, something that is not supported by the evidence of our results. In our paper 

we want to make a unique attempt to conduct an investigation of the convexity adjustment within 

a combined market consisting of LIBOR rates for short maturities and swap rates for longer 

maturities on one side, and Eurodollar futures market on the other side.    

                                                 
3 Due to poor liquidity of respective Eurocurrency futures contracts for longer maturities 
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According to several papers that employ various stochastic interest models, the difference 

between the Eurodollar futures rate and the respective forward rate should increase as a function 

of interest rate volatility, contract maturity and correlation between forward rates and spot rates 

(see Gupta and Subrahmanyam [2000], Hull [2006] and Meulbroek [1992]). Ho and Lee (1986) 

develop a model where the continuously compounded forward rate is normally distributed with a 

constant variance. Based on their model, the convexity adjustment can be expressed as4 

Eurodollar forward rate – Eurodollar futures rate = mn
25.0 σ , 

where σ is a standard deviation of the change in the continuously compounded forward rate in 

one year, m is the time until the maturity of the futures contract (in years) and n is the number of 

years (from the current date) until the maturity of the Eurodollar deposit that serves as the 

underlying for the respective Eurodollar futures. If we consider the three-month Eurodollar 

futures then n = m + 0.25. 

Not every paper agrees on such conclusions though. Based on the sample period of 1982-

1992, Grinblatt and Jegadeesh (1996) use the Cox-Ingersoll-Ross and the Vasicek term structure 

models to compute closed-form solutions for the Eurodollar futures-forward rate differences and 

their results say that rate differences do not appear to be monotonic functions of interest rate 

volatility. Recent research discovers new factors that may affect the magnitude of convexity 

adjustment. Piterbarg and Renedo (2004) investigate how the volatility smile can effect the 

convexity adjustment and how the smile can be incorporated in a model to value Eurodollar 

futures. They employ the reduced-form stochastic volatility model of LIBOR rates to derive a 

closed-form solution for the forward-futures rate differential. Their results show a pronounced 

impact on the convexity adjustment made by the volatility smile parameters such as the blending 

parameter and the volatility of variance for futures with long maturities. In their work the 

forward-futures rate differential is a monotonically increasing function of each of the two 

parameters but their effects are not significant when futures expiring in less than two years are 

considered. In the empirical results section we explore whether the magnitude of the forward-

futures differential is related to the level of interest rates, time to maturity, interest rate volatility 

and volatility of its volatility. 

 

 

                                                 
4 For derivation see Hull (2006) and Technical Note #1 on www.rotman.utoronto.ca/~hull 



 9 

2.3 How Swap Rates, Forward and Futures Rates and Prices Are Measured 

A swap rate for a fixed side of the swap with semi-annual payments is defined as its 

coupon rate (expressed as a fraction): 

),),(exp()5.0)5.0,(exp(
2
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m
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where P(t, M) is the price of a newly issued swap at time t that matures at M, r(t, m) is a spot rate 

for maturity m observed at time t and F is the swap face value. Note that swap rates in (2.1) are 

for swaps where fixed payments are made semi-annually5. Since the price of a newly issued 

swap, if we also consider the face value paid at maturity, is assumed to be equal to its face value, 

then assuming without loss of generality a unit face value, we can express the swap rate as a 

function of discount factors: 
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where S(t, 0.5m) is the discount factor at time t applied for maturity 0.5m and it is equal to     

exp(-r(t, 0.5m)0.5m). 

We, however, want to extract spot rates or discount factors given the swap rates. The 

problem is that if, for example, we consider a five years horizon then normally we know swap 

rates for maturities of 1, 2, 3, 4 and 5 years only. What’s missing are the swap rates for 

maturities 0.5, 1.5, 2.5, 3.5 and 4.5 years. Swap rate for maturity 0.5 years can be constructed 

using a hypothetical swap with maturity of six months by employing a six-month LIBOR to 

compute the six-month discount factor. In such case we get 

],1)5.0)5.0,([exp(2
)5.0,(

)5.0,(1
2)5.0,( −=

−
= tr

tS

tS
tc  

where r(t, 0.5) is the continuously compounded six-month LIBOR. To get the swap rates for 

other four maturities we need to utilize one of the aforementioned interpolation techniques. Once 

we obtain estimates of c(t, 1.5), c(t, 2.5), c(t, 3.5) and c(t, 4.5), we can extract the respective 

discount functions iteratively. By rearranging terms in the equation (2.2) where a swap rate is a 

function of the discount factors, we get 

                                                 
5 We use example with two semi-annual coupon payments but the general idea of swap pricing is not affected by the 
chosen number of payments. 
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(2.3) 
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Now we can compute spot rates for maturities ranging from 1.5 to five years with six-

month intervals. By adding reported LIBOR rates with maturities up to twelve months to the 

derived spot rates for longer maturities, we obtain our sample of spot rates that will be used to 

estimate the spot rate term structure using the exponential interpolation method. The reported 

LIBOR rates must be converted into continuously compounded rates first. Forward rates are 

obtained using estimated spot rates from the applied model as following: 

,
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where FR
(t, m1, m2) is an implied continuously compounded forward rate from m1 to m2 observed 

at time t.  

An investigation of the convexity adjustment can be performed using either forward and 

futures rates, or their respective prices. In order to calculate the difference between the derived 

three-month Eurodollar futures rate and the implied forward rate for the same period, we need to 

convert futures rates, which are computed as 100 minus the quoted futures prices, into the rates 

with continuous compounding. We also must take into account the actual/360 day count 

convention used for Eurodollar futures. This yields 
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where f 
R
(t, m, m+90) is a continuously compounded three-month Eurodollar futures rate and 

fq
R
(t, m, m+90) is the quoted futures rate based on annual compounding and actual/360 day count 

(= [100 – quoted futures price] / 100). 

The inverse relationship between bond prices and interest rates implies that Eurodollar 

futures prices are expected to exceed respective forward prices. Computation of the difference 

between forward and futures prices requires calculation of the implied forward price. The three-

month Eurodollar futures price is obtained from the quoted futures price adjusted by the day 

count factor: 
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(2.4) 

(2.5) 

(2.6) 

(2.7) 
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where fq
P
(t, m, m+90) is the quoted futures price. The respective forward price is computed from 

the formula below:  

))90)(90,(exp(
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Chance (2003) shows that due to the unusual settlement feature of the Eurodollar futures, 

the futures price at expiration is not equal to the respective forward price. The critical 

characteristic of the futures market is that the futures contract is priced as if the underlying were 

a discount instrument and it causes non-convergence of the futures price and the spot price at the 

expiration. The forward contract, however, is priced with its underlying as an add-on instrument 

and convergence is achieved in this case. The difference of forward minus futures price at the 

futures expiration date is always positive given a positive LIBOR and is a monotonically 

increasing function of LIBOR at expiration. These two relationships arise from the fact that, at 

expiration, 
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where r is the annual three-month LIBOR at expiration and k is the adjustment factor that is 

equal to 90 / 360. 

By comparing results of the analysis made using prices versus those when rates are used 

will show us whether the two methods provide consistent results and lead to similar conclusion. 

It will also be seen whether the non-conventional Eurodollar futures pricing approach contributes 

in some fashion to the value of convexity adjustment.  

2.4 Description of Employed Interpolation Methods  

Given the set of par yields, we can extract discount factors and respective spot rates. The 

respective procedure is known as bootstrapping. The problem, however, is that our system is 

under-determined since it involves off-the-run payments: we have par yields in annual 

increments while fixed payments are made every six months, therefore, it is not possible to 

calculate all discount factors unless we know par yields for swaps with maturities of 1.5, 2.5, 3.5, 

etc. years which is not the case. In such cases the term structure literature suggests the use of 

interpolation. There have been numerous methods offered to tackle the interpolation issue but 

(2.8) 

(2.9) 

(2.10) 
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there is no ideal, widely accepted technique to rely on. The traditional measures of statistical fit 

include the root mean squared error and mean absolute error. The former measure is used in 

Mansi and Phillips (2001) who compare three different yield curve smoothing models, and the 

latter one is employed by Bliss (1997) who compares five distinct methods for estimating the 

term structure. The root mean squared error (RMSE) is defined as 

∑
=

=
n

j

j
n
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21
ε , 

and the mean absolute error (MAE) is expressed as 
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Jordan and Mansi (2003) compare five different methods of estimation of the par yield 

curve using US Treasury bond data. They demonstrate that in terms of interpolation properties 

and robustness in the face of pricing errors, continuous time bootstrapping better approximates 

the term structure than discrete-time bootstrapping methods with particular advantage belonging 

to continuous time methods based on exponential functional forms such as the Nelson and Siegel 

and the Mansi and Phillips methods. The latter was developed by Mansi and Phillips (2001) and 

it was originally proposed as a model to estimate the par yield curve. The former technique was 

introduced by Nelson and Siegel (1987) and has become very popular among term structure 

practitioners due to its good fit properties, intuitive appeal and parsimony. It however was also 

suggested for estimation of the forward and spot term structure, while Mansi and Phillips (2001) 

and later Jordan and Mansi (2003) used it as an alternative model to estimate the par yield curve 

and the model turned out to be relatively accurate when compared to other considered 

counterparts. In both aforementioned papers original Nelson-Siegel model is used and it is 

claimed by the authors that the Mansi-Phillips model dominates the Nelson-Siegel model since 

for the considered sample of on-the-run Treasuries the errors produced by the Mansi and Phillips 

technique are typically lower than those arising from the application of the Nelson and Siegel 

model in all maturity ranges, although the difference is statistically significant only for a few 

maturities. Svensson (1994) extends the Nelson-Siegel model by including two more parameters, 

which allows for a better fit especially if the term structure experiences more than a single hump. 

It is not clear how the extended Nelson-Siegel model would do against the Mansi and Phillips 

(2.11) 

(2.12) 
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one although the former method requires two more parameters to be estimated than the latter 

model. 

After we construct the par yield term structure, we use it to estimate par yields on 

hypothetical swaps with off-the-run maturities (1.5 years, 2.5 years, etc.). Given these estimated 

par yields, we shall have the fully determined system and discount factors as well as respective 

spot rates can be bootstrapped in a simple fashion. Now, after we get the set of spot rates, we can 

estimate the spot rate term structure by applying one of the suggested techniques. According to 

Bank of International Settlements paper No. 25 (2005), many European central banks use either 

the originally proposed Nelson-Siegel method of estimating the zero-coupon yield curve, or its 

extended modification by Svensson6. This paper follows the pack and employs the extended 

version of Nelson-Siegel model to interpolate the spot yield curve. Below we provide a 

description of the two interpolation techniques employed in the paper. 

The exponential functional form of the term structure can accommodate all yield curve 

shapes, whether it is upward, downward, or humped. Mansi and Phillips (2001) introduce a 

functional form to estimate the par yield curve using the observed on-the-run Treasuries. Their 

model is of the exponential class which is fit by non-linear least squares and it has an easy 

interpretation. This model is similar to those of Diament (1993) and Nelson and Siegel (1987) 

although it is argued by the authors that their model outperforms the other two in terms of 

pricing accuracy and convergence properties. The Mansi-Phillips model represents the yield, 

y(m), by the following continuously differentiable function: 

).2exp()exp()( 43421 mmmy ααααα ++=  

Apart from better goodness-of-fit characteristics, this model is less restrictive when compared to 

the Diament model which requires two different regressions, depending on the observed yield 

curve shape while the Mansi-Phillips model determines the term structure using a single 

functional expression that accommodates any shape.  

The equation (2.13) consists of a constant term and a sum of two exponential functions. 

The sign of the coefficient (α2 and α3) determines whether the respective exponential term is 

convex (positive sign), or concave (negative sign). The last exponential term has a higher rate of 

decay. For instance, the humped yield curve will require α3 < 0 and α2 > 0, since it is concave to 

the left of its maximum and convex to the right of its maximum. 

                                                 
6 Both models belong to the class of exponential techniques. 

(2.13) 
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The extended Nelson-Siegel model gives the following functional form to the 

instantaneous forward rate: 

)],/exp()/[()]/exp()/[()/exp()(
223112110

ττβττβτββ mmmmmmf −+−+−+=  

where β0, β1, β2, β3, τ1 and τ2 are the parameters to be determined from the optimization 

procedure. The original Nelson-Siegel forward rate curve that excludes the last term of the 

expression above can be viewed as a constant plus a Laguerre function, a polynomial times an 

exponential decay term. The generating function T(t,x) of the Laguerre polynomials is defined 

as7  
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Given the relationship between the spot rates and the instantaneous forward rates, 
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where f(t,u) is the instantaneous forward rate at time u as observed at time t, by integrating the 

equation for the instantaneous forward rate over m and dividing both sides of it by m, we can get 

the functional form for the spot rate: 
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This functional form has a relatively simple interpretation: β0 is the level to which this 

function converges when time approaches infinity, β1 determines the general slope of the 

function, β2 and β3 determine two humps in the term structure. By restricting β3 = 0, we get the 

original Nelson-Siegel model which considers only one hump. The sum of β0 and β1 determines 

the spot rate at maturity zero; hence, this sum must be positive. Normally, β0 + β1 is restricted to 

equal to the observed overnight LIBOR or the official repo rate. The value of β0, the spot rate 

with infinite maturity, must be positive as well. 

The τ parameters govern the exponential decay rate: a small (large) τi produces a fast 

(slow) decay. Also τ1 and τ2 determine the maturities at which the loadings on β2 and β3 

respectively achieve their maxima. For their original model and sample, Nelson and Siegel 

                                                 
7 See Bayin (2006) for details 
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(1989) suggest that the best-fitting value of τ would be in the range of 50-100 days. They 

however use different values of τ in the optimization routine and the best-fitting τ-parameter for 

different dates in the sample ranges from 10 to 365 which are their boundaries of the range of 

search. At the same time they demonstrate that little precision of fit would be lost if the median 

value of 50 for τ is imposed for all data sets in their sample. Fabozzi et al. (2005) fix τ at the level 

of three (measured in years) while fitting the Nelson-Siegel model to the swap curve for a range 

of maturities from three months to 30 years. Diebold and Li (2003) use the original Nelson-

Siegel model to estimate the yield curve and they also fix τ1 at a prespecified level and then use 

ordinary least squares to estimate the betas. Diebold and Li choose τ1 = 0.0609 which in their 

setup corresponds to the medium-term factor of 30 months. 

If applied to spot rates data, the vector of parameters β = (β0, β1, β2, β3, τ1, τ2) is estimated 

in the following way. The continuously compounded spot rate is assumed to follow the equation 

above. The estimated price of a zero-coupon bond Pe
(m, β) is defined as 

).
100

),(
exp(),( m

mr
mP e β

β −=  

The vector of parameters is then estimated by minimizing the sum of squared zero-coupon bond 

price errors: 
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The alternative to the price error minimization problem above is to minimize the sum of 

squared yield errors. In fact, Svensson (1995) points out that minimizing yield errors provides a 

substantially better fit for short maturities while the two procedures (minimization of squared 

price errors versus squared yield errors) tend to perform equally well for long maturities. This is 

because yields for short maturity bonds are much more sensitive to changes in prices of those 

bonds than yields for bonds with longer maturities. In some empirical works squared yield or 

price errors are weighted by a value which is a function of inverse duration (see Jordan and 

Mansi [2003], Coleman et al. [1995] and Waggoner [1997] among others). In the case of a zero-

coupon bond where duration is equal to the bond’s maturity, the weights mj
*
’s are expressed as 
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The choice of weights related to the reciprocal of the modified duration places less 

weight on instruments (rates) with longer maturities (higher durations). It allows to achieve a 

better fit for instruments with shorter maturities by giving up a portion of the approximation for 

those with longer maturities. However, when the number of considered maturities in the sample 

rises, this weighting approach may lead to significant errors for the components with high 

duration. 

The entire optimization algorithm can be described as following. Initialize the vector of 

parameters β. Calculate the estimated (theoretical) spot rates for each maturity in the sample. 

Compute the (un-)weighted sum of squared yield errors and examine the convergence condition. 

If the condition does not hold, choose a new vector of initial parameters8. Repeat the steps above 

until the convergence is achieved.  

In both models described above, the term structure is estimated using nonlinear least 

squares and, therefore, the convergence of coefficients to final values will depend on their initial 

estimates. Therefore, it is important to choose appropriate initial guesses for the parameters in 

question in order to have a better chance for the estimation procedure to achieve a true minimum 

of the function. In the Nelson-Siegel model, the long-term factor β0 governs the yield curve level 

and it is easy to notice that 0 lim β=
∞→

r(t,m)
m

. The short-term factor β1 is related to the yield curve 

slope. It can be checked that 
1

)0,( lim β−=−
∞→

trr(t,m)
m

. This is exactly how Frankel and Lown 

(1994) define the slope. Diebold and Li (2003) define the yield curve slope as the ten-year rate 

minus the three-month rate. The latter constraint can be replaced by 
10

)0,( ββ +=tr . The 

medium-term factor β2 is related to the yield curve curvature which is defined by Diebold and Li 

as twice the two-year yield minus the sum of the ten-year and three-month yields. 

As for the initial conditions of the Mansi-Phillips model, note first that 

321)0,( ααα ++=tr  and 1 lim α=
∞→

r(t,m)
m

 assuming negative α4. Therefore, initial estimate of α1 

should be close to the par yield on a swap with the longest available maturity (e. g. 30 years). 

Mansi and Phillips suggest to set the initial condition for α2 + α3 to equal to the difference 

between the observed three-month yield and the thirty-year yield. Also given the available 

observations, find out the maturity, m*, for which swap rate is the highest in the sample. Use the 

                                                 
8 This new vector will be a function of the initially chosen β. 
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proposed equation for the par yield to plug r(t, m
*
) and m* to get the third initial condition. The 

last initial condition is to set 0/),( * =dmmtdr  at m*. 

Ideally, the minimization of the sum of weighted errors is subject to several additional 

constraints: 
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The last constraint assures that forward rates are non-negative. 

Since the term structure is estimated for each day in the sample independently of other 

dates, there should not be a place for interaction between successive observations as a result of 

errors in estimated coefficients. If errors are autocorrelated, it may be due to either 

misspecification of the functional form, or to the estimation method, or it may suggest market 

inefficiency. It was first noticed by Nelson and Siegel (1987) that yield errors (regression 

residuals) are not random but rather seem to exhibit some dependence along the maturity levels. 

They contribute sharp rises in the average residual yield as a function of maturity to the 

maturities of the bills auctioned by the US Treasury. In Diebold and Li (2003), the residual 

autocorrelations also indicate that pricing errors are persistent. The Mansi-Phillips model that we 

use to estimate the swap par yield curve also suffers from non-randomness of pricing errors. 

Bliss (1997) shows that regardless of the estimation method of the term structure used, there is a 

persistency in errors and conclude that there are method-independent persistent factors that affect 

note and bond prices that cannot be captured by the pricing configuration. Hence, it is unlikely 

that the fitted-price errors are purely random. 

2.5 Some Specific and Subtle Features of the Yield Curve Building 

While constructing the term structure of interest rates, several issues must be addressed 

regarding the choice of appropriate building blocks. First, one should choose mostly non-

overlapping instruments since even small differences in implied spot rates or discount factors 

may result in erratic forward rates. Second, preference should always be given to more liquid 

instruments with a tighter bid-ask spread since relative illiquidity may cause a problem of 

synchronization for the times of observation in the sample. Use of Eurodollar futures to construct 

the term structure is prone to overlapping maturities even if only those contracts that are parts of 

the regular maturity cycle are considered. The problem may arise if there is a slight degree of 

overlap in or a gap between the three-month Eurodollar deposit periods associated with adjacent 
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Eurodollar futures. Rendleman (2004) provides a few such examples. For example, the three-

month Eurodollar deposit period for the June 2005 futures contract end on 9/15/05, while the 

three-month deposit associated with the September 2005 futures contract starts on 9/21/05, six 

days later. 

LIBOR is the baseline for pricing interest rate derivatives such as forward rate 

agreements, swaps and swaptions, Eurodollar futures and futures options, and many others. The 

LIBOR for the US dollar is quoted as a simple annual interest rate using the actual/360 day 

count. The original Nelson-Siegel model and its extended version by Svensson assume that 

continuously compounded annualized interest rates are used for estimation. Therefore, the 

quoted LIBOR rates and the implied spot rates for longer maturities that are obtained by 

bootstrapping from the interpolated swap rates must be converted into rates with continuous 

compounding. The day count applied to the rates must also be changed so that it becomes the 

actual/365 day count. The formula used for that purpose is identical to that in (2.6) which is used 

to convert Eurodollar futures rates: 
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where rq
(t, m) is the quoted LIBOR for maturity m at time t. 

The issue of the choice of the appropriate time grid (the number of yield/price and 

maturity observations in the sample) have not been fully addressed in the existing literature and 

there are reasons to believe that the choice of grid may impact the resulting estimated term 

structure although it is not clear whether the differences in produced yields or prices given 

different grids will be statistically significant. Moreover, the choice of the time grid is usually 

constrained by the available data. In the case of LIBOR, it is straightforward to pick all available 

LIBOR rates as the components of the time grid: those are LIBOR with maturities from one 

month up to 12 months (although Grinblatt and Jegadeesh [1996] use 1-, 3-, 6-, 9- and 12-month 

LIBOR quotations only in their analysis). 

The Eurodollar deposit and the swap transaction have the same timing: the rate applied to 

the transaction is determined on the fixing date while the actual transaction takes place on the 

value date which is two London business days later. In other words, there is a two-business-day 

lag between the date when the rate is fixed and the starting date of the LIBOR deposit. If we 

estimate spot rate and par yield curves that way, the forward rates derived from such term 

(2.21) 
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structure will be the rates applied to time intervals starting two business days later than the 

current date. This leads to a caveat: since changes in mark-to-market futures values result in 

immediate cash flows and outflows, futures rates are compared to respective forward rates that 

are applied for time intervals that start two business days later. Therefore, the forward model 

based on LIBOR value dates and maturity dates happens to be two business days apart from the 

one based on Eurodollar futures quotes.   

In general, swap payment dates and LIBOR deposit maturity dates are determined 

according to the modified following business day convention. The British Bankers’ Association 

website says that “the modified following business day convention states that the maturity date is 

the first following day that is a business day in London and the principal financial centre of the 

currency concerned, unless that day falls in the next calendar month. In this case only, the 

maturity date will be the first preceding day in which both London and the principal financial 

centre of the currency concerned are open for business.” This is why one may observe 33 days 

until maturity for a one-month LIBOR deposit and 367 days for a one-year LIBOR among 

others. Apart from the modified following business day convention, one more rule must be 

mentioned. It regards the maturity days applied to LIBOR rates fixed at the end of the month and 

is referred as the end-end dealing. In cases when a deposit is made on the final business day of a 

particular calendar month, the maturity of the deposit shall be on the final business day of the 

month in which it matures, not the corresponding date of the month of maturity. For instance, a 

one-month deposit for value date of February, 28 of a non-leaped year would mature on March, 

31, not March, 28. Choosing incorrect maturity dates for the interpolation procedure may result 

in magnified interpolation errors making this issue of a particular importance. 

Another concern is related to the potential errors arising from the non-synchronous data 

in the sample. Few authors augment swap rate data with short-term LIBOR. Dai and Singleton 

(2000), for example, use a data set of swap rates for maturities from two to ten years and 

augment it with the six-month LIBOR rate. The source of their swap data is Datastream and the 

non-synchronicity of quotes arises immediately since LIBOR are quotes as of 11 am London 

time, while swap rates are recorded at the end of trading day in London which is 5:30 pm 

London time.  It was brought to attention by Rendleman (2004) that the Bloomberg system 

allows historical data on swap rates to be collected as of 6 am, 1 pm and 5:30 pm Eastern time of 

each trading day which corresponds to Tokyo, London and New York “closing” time 
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respectively. There is, in fact, no market closing in any of those places since swaps can be traded 

over-the-counter 24 hours a day, but Bloomberg created these virtual time stamps for a matter of 

convenience. 

The limitation of the available swap data is that the one-year contract represents the 

contract with shortest maturity. Prior to 1997, the shortest maturity swap had a tenor of two 

years. The problem with bootstrapping of the swap curve using swaps with semi-annual 

payments necessary to produce the yield curve of zero-coupon rates is the unavailability of par 

yields on swaps with six-month maturity intervals starting with the six-month yield for the entire 

range of maturity under consideration. In order to overcome this restriction, for the sample 

period covering time before January 6, 1997, we convert the quoted six-month and one-year 

LIBOR rates into par yields of hypothetical swaps carrying semi-annual payments and maturing 

six months and one year from a current date. For the period from January 6, 1997, we have the 

data for one-year swap rate available. Therefore, we need just the six-month implied swap rate 

which is obtained using the six-month LIBOR. Collins-Dufresne and Solnik (2001) show that 

LIBOR and swap curves need not agree, especially for longer maturities. Jones (2004) examines 

changes in yields and finds out that one-year swap rate levels are well-predicted by synchronized 

LIBOR rates which suggests that the maturity of one year is sufficiently short to allow one to 

ignore the swap/LIBOR spread. 

Above all, it remains a question whether different interpolation models used for 

estimation of the term structure of spot and forward rates produce significantly different results. 

Jordan and Mansi (2003) introduce random errors into the bond prices that are used to estimate 

the term structure and they show that interpolation error is the major source of error in term 

structure estimation while the random error contributed only 7-8% of the total error. This 

suggests that the choice of the functional form is relevant in term structure estimation. 

2.6 Data Description and Analysis 

The spot rate yield curve is constructed using US dollar LIBOR rates for maturities 

ranging from one to twelve months and swap rates for annual maturities ranging from two years 

up to five years. The US dollar LIBOR data for the period from 1/04/1988 to 5/31/2007 is taken 

from the British Bankers’ Association official website while the swap rates are downloaded from 

Bloomberg electronic service. By definition, the swap rate is a par yield, i. e. it is a coupon rate 

on the fixed side of the swap. We use swap rate data from Bloomberg for plain vanilla swaps 
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where the fixed rate is paid semi-annually and accrues at 30/360 and the floating rate is linked to 

the three-month LIBOR and is paid quarterly using actual/360 day count. Mid-market swap rates 

(the average of bid and ask quotes) as of Tokyo “closing” time are used. The reported swap rates 

on Bloomberg are for highly liquid instruments and the bid-ask spread rarely exceeds a couple of 

basis points. The choice of Tokyo “closing” time allows us to avoid the asynchronicity problem 

while combining LIBOR and swap rates to build the spot yield curve. The swap rate data covers 

the period from 11/1/1988 to 5/31/2007. Swap quotes before 11/1/1988 were not available.  

Table 2.1 provides the descriptive statistics for the sample of LIBOR and swap mid-market rates. 

Note that LIBOR rates with longer maturities demonstrate lower daily volatility. Interestingly, 

the ratio of the Friday-to-Monday LIBOR change standard deviation to the calendar day rate 

change standard deviation ranges from 1.07 to 1.62 across the twelve maturities with an average 

of 1.43 (not shown in the table), which is below the square root of three (≈ 1.73) implied by the 

constant daily volatility hypothesis9 suggesting that weekends do not bring extra volatility into 

the quoted interest rates. The volatility of mid-market swap rates is lower than that of LIBOR 

rates and it decreases with maturity except for the upward jump for the two-year maturity. This 

phenomenon can be explained by the fact that the one-year swap rates were reported less 

frequently than the swap rates for longer maturities in the sample (the number of observations of 

the one-year swap rate represents only about 60 percent of the sample of the two-year swap rate), 

while samples of swap rates for longer maturities are approximately equal among each other. 

Interestingly, the Thursday-to-Friday volatility in swap rates with expiration of two or more 

years is very close to and in some cases even higher than the three-calendar-day Friday-to-

Monday volatility in rates (not shown in the table) which may suggest that swap market 

participants account a portion of risk related to weekend volatility into the Fridays’ rate quotes. 

Previous literature relies on conventional wisdom to use 30 for the number of days in 

each month although US LIBOR rates are calculated on the actual/360 basis. The actual number 

of days in the deposit period that LIBOR covers is not necessarily a multiplier of 30 although the 

difference in spot rates for short maturities computed based on the actual/360 count versus those 

based on the 30/360 day count is negligible but the discrepancy increases monotonically with the 

maturity. The impact of such discrepancy on forward rates has not been reported previously. 

Since our interpolation technique requires the use of continuously compounded rates, we convert 

                                                 
9 See French and Roll (1986) for details 
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Table 2.1 Descriptive statistics of US LIBOR and mid-market swap rates for the period from 
1/04/1988 to 5/31/2007 
 

       Obs      Mean     St. Dev.        Min        Max 

      

LIBOR for maturities     

1 month 4905 0.0494 0.02183 0.0102 0.1031 

2 months 4905 0.0499 0.02186 0.0101 0.1044 

3 months 4905 0.0503 0.02185 0.0100 0.1063 

4 months 4905 0.0506 0.02182 0.0099 0.1075 

5 months 4905 0.0509 0.02181 0.0098 0.1088 

6 months 4905 0.0512 0.02178 0.0098 0.1100 

7 months 4905 0.0515 0.02175 0.0098 0.1106 

8 months 4905 0.0518 0.02171 0.0098 0.1113 

9 months 4905 0.0522 0.02169 0.0098 0.1119 

10 months 4905 0.0525 0.02165 0.0098 0.1125 

11 months 4905 0.0529 0.02159 0.0099 0.1131 

12 months 4905 0.0532 0.02156 0.0099 0.1138 

      

Swap mid-market rates for maturities   

1 year 2590 0.0443 0.01803 0.0097 0.0756 

2 years 4620 0.0548 0.01918 0.0126 0.1079 

3 years 4600 0.0573 0.01783 0.0163 0.1062 

4 years 4596 0.0593 0.01699 0.0199 0.1052 

5 years 4600 0.0609 0.01639 0.0233 0.1042 

 

the reported LIBOR rates into continuously compounded rates with the actual/365 day count that 

are subsequently used to build the spot yield curve and perform the analysis of the discrepancy 

effect that the 30/360 day count convention would produce for the continuously compounded 

forward rates. We find that for our sample the average absolute differences in implied 

continuously compounded forward rates for monthly maturities from one to nine months are 

relatively low, exceeding a basis point only on one occasion, for the shortest maturity, but 

decline monotonically afterwards. We are most interested in absolute difference for the three-

month forward rate since our derivation of the convexity adjustment is based on the comparison 

of the observed three-month Eurodollar futures rates/prices and the respective forward 

rates/prices. The difference is less than a half of a basis point (0.42 of a basis point, to be exact) 

and we may conclude that little bias in results reported in previous literature may be accounted to 

the usage of approximate maturity dates when building the yield curve. 

Our original sample contains one-year swap rates starting from 6/21/1996. Before that 

date swap rates with maturity of one year are unavailable and for that part of the sample we 
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generate swap rates using 6-month and 12-month LIBOR rates. This surrogate swap rate is 

subsequently used with quoted swap rates of longer maturities to estimate the swap rate curve. 

For that matter it is interesting to see how the original one-year swap rate in the subsample 

starting from 6/21/1996 would differ from the surrogate one-year swap rate derived from the 

observed six- and 12-month LIBOR rates. If the difference is too large meaning that swap market 

assigns a sizable premium to the one-year swap rates associated with default risk and other 

factors, that would reveal a presence of inconsistency in our model. The average difference 

between the reported one-year spot rate and the rate derived from the observed 6- and 12-month 

LIBOR is -5.09 basis points. The standard deviation of such difference is 5.32 basis points. The 

minimum value of the difference is -45.11 basis points, the maximum is 46.41 basis points and 

the percentage of negative differences is 84.13 percent. The t-statistics for the test of the 

difference being equal to zero is 48.68. The 95% confidence interval of this difference is from     

-5.30 to -4.89. Hence, by the conventional criteria, this difference is considered to be statistically 

significant from zero. Overall, we can conclude that for the most of the subsample (73.4 percent 

of it) the difference is a negative single-digit value but there exists a statistically significant 

premium assigned by the market to the one-year swap rates if compared to the LIBOR data.  

The Eurodollar futures price quotes for the period from 1/04/1988 to 10/01/2002 are 

obtained from Turtle Trader (www.turtletrader.com), while the futures quotes for the period from 

10/02/2002 to 5/31/2007 are obtained from Econstats (www.econstats.com). For the first 

subsample of the futures data both opening and closing daily price quotes are available while 

second subsample contains only closing daily futures quotes. When using the futures data, the 

issue of liquidity must be taken into account. Rendleman (2004) mentions that even though 

Eurodollar futures are available for maturities up to 10 years, contracts with maturities beyond 

five years are comparatively illiquid. Piterbarg and Renedo (2004) consider Eurodollar futures 

with expiration up to four years as liquid. Brooks and Cline (2006) use futures contracts with 

maturity up to three years citing the drop in volume and open interest for contracts with longer 

maturities as reasons to ignore such contracts. Meulbroek (1992), Grinblatt and Jegadeesh (1996) 

and Chance (2003) use in their analysis contracts with expiration up to nine months. In all three 

aforementioned papers the time horizon is limited to nine months due to the fact that those 

papers use LIBOR rates exclusively to construct the term structure of spot rates which is used 

further to estimate forward rates or prices and time span of LIBOR maturities is limited by 
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twelve months. Futures contracts that are not parts of the quarterly expiration cycle (March-June-

September-December) are also deemed relatively illiquid. We choose to use futures contracts 

that expire not later than three years from the current date and only those futures that belong to 

the quarterly expiration cycle are considered. 

Table 2.2 contains information related to the asynchronicity bias that arises from the fact 

that forward rates are derived using LIBOR and swap rates that are reported at 6:30 am Eastern 

time while futures rates are based on futures daily settlement prices that are reported at 2:30 pm 

Eastern time. This results in the time difference between the reported rates and prices that are 

used to compute the forward-futures differential of eight hours. The Eurodollar futures market 

opens at 8:20 am Eastern time. Therefore, the futures rates and prices calculated using the open 

market futures quotes are only two hours apart from the reported spot and swap rates that are 

employed to compute implied forward rates and prices. The use of open market futures quotes 

may substantially reduce the problem of the quotation asynchronicity. Therefore, we want to see 

how volatile the obtained futures rates are during a trading day. Table 2.2 presents data about 

daily absolute changes in continuously compounded futures rates. Note that such rates are of 

derived nature as described in the previous part of the paper: reported futures quotes are used to 

calculate the rates and necessary conversions for compounding and day count are also 

performed. The average daily absolute difference in futures rates ranges from 3.07 basis points in 

1997 to 5.45 basis points in 1992. There are several months in the sample when the average daily 

volatility is relatively low (less than 2.50 basis points) and a few periods when the volatility was 

relatively high (above 7 basis points). The latter includes September and November of 2001 

among others. The highest daily absolute change was observed in April of 1994 (9.19 basis 

points). Obviously, when computing the forward-futures rate or price differentials based on the 

futures closing prices and taking averages, the errors stemming from relying on asynchronous 

quotes may at least partially cancel each other. It is however imperative to admit that different 

timing of quotes may potentially lead to blurred results with asynchronicity error accounting on 

average for 3-5 basis points of the forward-futures rate differential on a particular trading day. 

2.7 Estimation Results 

In order to construct the swap term structure we employ swap rates with annual 

maturities ranging from one to five years. The Mansi-Phillips interpolation technique is used for 
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Table 2.2 Average daily absolute difference in basis points in continuously compounded 
Eurodollar futures rates between open and close of the market, 1/1988-9/2002* 

 
 Jan Feb Mar Apr May Jun Jul 

1988 5.95 5.94 4.00 3.38 4.22 5.78 3.18 

1989 3.89 4.95 5.40 7.42 6.60 6.40 5.00 

1990 4.16 4.43 3.63 3.80 4.09 3.69 3.84 

1991 4.21 3.60 4.51 3.83 2.61 3.77 3.63 

1992 6.36 5.67 6.04 5.16 5.08 3.55 6.04 

1993 5.24 4.83 6.06 3.40 4.03 4.42 3.76 

1994 3.73 4.28 4.91 9.19 7.11 5.65 6.28 

1995 5.38 7.06 4.60 3.49 5.81 8.61 4.88 

1996 3.43 5.31 7.64 4.47 4.59 4.49 5.24 

1997 4.15 2.97 3.34 3.73 2.97 2.50 2.49 

1998 4.69 2.40 2.39 3.27 2.18 2.13 1.31 

1999 3.27 3.83 3.62 3.79 3.82 4.70 3.76 

2000 3.83 3.79 2.53 4.64 4.32 3.77 3.55 

2001 7.68 3.89 4.18 7.31 5.11 3.55 3.71 

2002 6.29 3.88 4.41 4.56 4.27 2.86 3.49 

 
 Aug Sep Oct Nov Dec Average 

1988 3.72 4.75 3.41 4.92 4.79 4.50 

1989 6.84 3.94 4.78 5.20 3.90 5.38 

1990 5.38 3.22 2.78 3.00 4.11 3.85 

1991 5.86 3.04 3.81 3.41 3.57 3.83 

1992 4.46 5.18 7.52 5.54 4.61 5.45 

1993 3.09 4.70 2.97 3.73 2.07 4.02 

1994 3.67 3.54 3.98 4.61 6.11 5.23 

1995 4.30 4.19 2.55 3.19 3.04 4.77 

1996 5.05 4.68 4.12 1.80 3.95 4.57 

1997 3.68 2.69 3.85 1.92 2.38 3.07 

1998 2.24 5.25 5.75 4.26 4.22 3.34 

1999 5.17 4.60 3.59 2.90 2.80 3.84 

2000 2.67 2.46 2.68 2.31 4.08 3.40 

2001 3.24 7.61 3.83 7.85 5.03 5.19 

2002 2.46 2.49    4.13 
* contracts with expiration up to 1140 days were considered only 
 

that purpose and the loss function is defined as the sum of equally weighted swap rate errors. To 

construct the spot term structure, we use all twelve monthly LIBOR rates and 1.5-, 2-, 2.5-, 3-, 

3.5-, 4-, 4.5- and 5-year implied spot rates derived from the estimated swap curve, which sums 

up to 20 knot points. The extended Nelson-Siegel method is employed and the loss function used 

is also the sum of equally weighted squared errors of rates. The assignment of weights tied to the 

inverse of duration as in (2.20) would tend to produce smaller errors for rates for shorter 

maturities and larger errors for rates applied for longer maturities which is especially unwelcome 

when a large number of knot points is employed since this would result in much larger 
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interpolation errors on the right end of the curve. In the context of the convexity adjustment 

analysis, this would make the results for the forward-futures differentials calculated for longer 

maturities prone to interpolation error and, thus, less reliable. 

To mitigate the influence of interpolation error in the analysis of the forward-futures 

differential we introduce criteria for an interpolated yield curve that would allow it to be 

included in the final sample. For the swap rate curve, a yield curve on a particular business day is 

considered to satisfy the interpolation criteria if the sum of all five absolute fitted errors is below 

15 basis points and each absolute error does not exceed five basis points. That leaves us with 

fitted daily swap rate curves for 4,249 business days. For the spot rate term structure, there are 

two types of interpolation condition depending on the number of knots employed. For that part of 

the sample when swap rates are unavailable and only all twelve LIBOR rates are used to build 

the curve, the interpolation condition to be satisfied is the sum of all twelve absolute fitted errors 

must be below 25 basis points and each absolute error must not exceed five basis points. For the 

part of the sample when implied spot rates for maturities beyond one year are added, the 

condition is the sum of all twenty absolute fitted errors must be below 40 basis points and each 

absolute error must not exceed five basis points. That leaves us with fitted daily spot rate curves 

for 3,991 business days. This is the final refined sample that will be used to compute forward 

rates and forward prices that will be subsequently matched with respective actual futures rates 

and futures prices.  

We construct the futures-forward rate differentials in the following manner. We consider 

maturities (time to expiration) of futures and respective forward rates starting with that of one 

month (31 days). Thereafter the futures-forward differentials with maturities within 30 days are 

bundled into clusters. For instance, all futures-forward rate differentials where futures and 

respective forwards have times to expiration between 31 and 60 days are grouped together. All 

futures-forward rate differentials where futures and respective forwards have times to expiration 

between 61 and 90 days are grouped together and so on. The last group contains differentials for 

maturities between 1,111 and 1,140 days. There are 37 such groups in total.  

Table 2.3 reports statistics for the futures-forward rate differential when closing daily 

futures price quotes are used to derive the futures rates. There is no clear pattern in the average 

differential as a function of maturity: the differential varies across maturities rising initially and 

making a peak for the maturity range of 601-630 days but falling afterwards. Both mean and 
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median of the differential are below zero for maturities below 180 days. Although the median 

value turns and stays positive for the rest of the sample, a significant percentage of negative 

values of the differential is reported for longer maturities. Its dynamics across maturities is 

similar to that of the average value of the differential. The percentage is always above 25 percent 

and is between 30 and 50 percent for most of the maturities in the sample. 

The results are not safe from the errors in reported data. For example, the maximum 

value of the differential for the shortest maturity range in the sample reported in Table 2.3 is 

abnormally high if compared to the rest of the results. The reason for such abnormality lies in a 

probable misreporting of LIBOR quotes. On May, 29, 1999, the reported five-month LIBOR is 

5.0338 percent, the six-month LIBOR is 5.525 percent, and the seven-month LIBOR is 5.075 

percent. Clearly, the six-month LIBOR of 5.525 must be a typo. For comparison, on the previous 

business day, May, 26, 1999, the reported five-month LIBOR was 5.0375 percent, the six-month 

LIBOR was 5.0613 percent, and the seven-month LIBOR was 5.0912 percent. On the following 

business day, May, 30, 1999, the respective rates were 5.0389, 5.0616 and 5.0917 percent. 

Another such abnormality is observed on March, 22, 1999, when reported monthly LIBOR rates 

for maturities from nine to 12 months went down by about 20-30 basis points compared to the 

respective rates reported one business day before and the following business day all rates jumped 

up by about the same magnitude reaching the levels similar to those reported one business day 

before March, 22, 1999.  

Figure 2.1 depicts the dynamics of the median value of the futures-forward rate 

differential as a function of maturity across the four period subsamples: 1988-1991, 1992-1995, 

1996-1999, 2000-2003, and 2004-2007. During 1988-1991 the value of the forward-futures rate 

differential was a negative function of maturity, the result that was interpreted as mispricing in 

early empirical studies. The pattern for the 1992-1995 period is similar to that of the entire 

sample: an inverse U-shape with a peak around the maturity of 600 days. The differential is a 

positive function of time to maturity during 1996-1999 and 2000-2003 but the relationship 

becomes flat during 2004-2007. 

Marking-to-market is not the only distinctive feature of the Eurodollar futures when 

compared to the forward interest rate contracts. The other difference is embedded in how the 

marking-to-market is actually performed: the Eurodollar futures are priced as if the underlying 

were a discount instrument. The futures price is computed according to equation (2.7), while the  
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Table 2.3 Futures-forward rate differential in basis points when closing daily futures quotes are 
used to derive continuously compounded futures rates 
 

Maturity, 
days Obs. Mean Median St. Dev. Min Max <0, % 

31-60 1335 -1.65 -1.78 8.75 -37.66 198.07 68.0 

61-90 1260 -2.60 -2.21 6.56 -37.88 26.30 68.7 

91-120 1265 -1.18 -1.33 7.13 -33.16 51.08 62.1 

121-150 1291 -0.75 -0.69 7.70 -42.31 35.43 54.1 

151-180 1267 -0.92 -0.97 8.03 -37.80 41.50 56.6 

181-210 1313 0.83 0.54 8.54 -28.15 54.14 46.3 

211-240 1249 0.99 0.36 8.67 -39.08 36.23 48.2 

241-270 1284 1.15 0.55 9.27 -38.46 49.36 47.4 

271-300 1265 1.19 0.94 8.32 -29.07 40.71 43.4 

301-330 1205 1.46 0.63 8.61 -29.24 44.91 45.6 

331-360 1148 1.77 1.47 9.31 -46.98 44.77 42.4 

361-390 1267 2.77 2.43 8.44 -30.42 46.03 36.5 

391-420 1226 2.12 1.96 7.59 -30.13 39.43 38.0 

421-450 1106 2.96 2.62 8.81 -62.89 46.03 34.2 

451-480 1280 3.28 2.61 8.26 -33.49 46.49 34.4 

481-510 1210 3.92 3.60 8.00 -27.29 43.59 31.2 

511-540 1148 4.33 3.68 8.27 -38.05 38.37 28.4 

541-570 1252 3.92 3.46 8.16 -35.54 36.53 30.7 

571-600 1211 4.51 3.78 8.24 -25.54 45.42 28.2 

601-630 1180 4.53 4.08 8.46 -35.37 47.94 26.9 

631-660 1220 3.35 3.00 8.19 -26.39 37.69 33.5 

661-690 1217 3.64 3.27 8.84 -25.99 50.68 31.7 

691-720 1174 3.43 3.05 9.37 -38.56 70.94 33.7 

721-750 1250 2.27 1.95 8.94 -31.53 54.58 39.1 

751-780 1143 1.72 1.94 9.25 -30.91 37.28 39.0 

781-810 1159 1.46 1.72 9.54 -40.04 53.10 41.2 

811-840 921 0.42 0.53 8.83 -35.33 31.23 47.3 

841-870 647 0.27 1.28 8.94 -32.43 34.62 44.2 

871-900 699 -0.09 0.87 9.76 -40.74 51.98 46.5 

901-930 726 -0.11 0.57 8.87 -38.58 29.43 47.8 

931-960 635 0.52 1.65 9.24 -35.46 31.90 41.1 

961-990 663 0.57 1.05 9.43 -41.64 47.61 45.2 

991-1020 722 0.62 1.05 8.10 -25.96 26.83 43.2 

1021-1050 619 0.93 1.79 9.53 -30.25 44.91 40.5 

1051-1080 636 1.64 1.69 10.41 -40.60 60.52 39.9 

1081-1110 686 1.61 2.43 9.03 -42.86 38.61 36.3 

1111-1140 133 2.54 3.19 8.27 -35.10 26.95 30.1 
 

forward price is found from (2.8). The forward-futures price differential is always positive on the 

day of expiration of the two contracts. Given our findings about the nature of the futures-forward 

rate differential, i. e. its small magnitude and large number of negative occurrences, it remains a 

question though whether the unique feature of the Eurodollar futures pricing may influence the  
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Figure 2.1 Dynamics of the futures-forward rate differential as a function of maturity over the five subsample periods, basis points 
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results when analysis is performed for the rate differential and whether similar analysis of the 

forward-futures price differential would lead to similar conclusions. 

Table 2.4 provides information about the forward-futures price differential for the 1988-

2007 period when closing market futures quotes are used to compute futures prices. Since futures 

and forward rates and prices are negatively related, we expect to observe the same signs for 

forward-futures price differentials as they were for respective futures-forward rate differentials 

unless the pricing feature of the Eurodollar futures makes its contribution to the results for the 

forward-futures price differentials. Table 2.4 has a similar format to that of Table 2.3.  

The first result that attracts attention is a more pronounced positive relationship between 

the size of the price differential and the time to maturity: although the intermediate peak is also 

reached for the 601-630 maturity range, the fall for subsequent maturities is not significant and a 

new rise in the average value of the differential takes place starting at the 781-810 range. The 

maximum value of the mean is reached at the 1051-1080 range while the maximum value of the 

median is reached at the longest range of maturities in the sample. Both mean and median stay 

positive for all maturity ranges in the sample and the percentage of negative occurrences of the 

price differential is substantially lower if compared to results in Table 2.3. The latter is always 

below 31 percent and is in single digits for more than a half of the sample, predominantly, for 

longer maturities. These observations allow to conclude that the unique feature of the Eurodollar 

futures settlement attributes positively to the relationship between the size of the differential and 

the time to maturity. The standard deviations of the price differentials are much lower than those 

for the respective rate differentials suggesting that the unconventional feature of Eurodollar 

futures pricing attributes to the reduction of volatility in the reported results. The latter finding 

provides support in favor of performing the convexity adjustment analysis price-wise rather than 

rate-wise since the latter would be more prone to possible data imperfections and interpolation 

error resulting in higher deviations among the reported results. Yet, there is no support for the 

assertion that the unusual nature of the Eurodollar futures pricing could serve as the explanation 

for the observed anomalies in the behavior of the futures-forward rate differential. 

So far, the results obtained for the futures-forward rate differential and the forward-

futures price differential are somewhat unexpected in the wake of theoretical predictions and 

early empirical findings: the average values of the two differentials are much smaller than those 

reported in previous studies, the rate differential turns negative on many occasions and time to 
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Table 2.4 Forward-futures price differential in basis points when closing daily futures quotes are 
used to compute futures rates 
 

Maturity, 
days Obs. Mean Median St. Dev. Min Max <0, % 

31-60 1335 1.30 1.02 2.60 -8.08 49.86 25.5 

61-90 1260 1.09 0.93 2.25 -8.44 11.40 30.9 

91-120 1265 1.43 1.22 2.44 -6.16 19.65 26.5 

121-150 1291 1.58 1.38 2.67 -9.23 13.43 27.7 

151-180 1267 1.57 1.40 2.80 -8.09 16.39 29.4 

181-210 1313 2.03 1.80 2.87 -5.33 20.45 22.4 

211-240 1249 2.09 1.79 2.95 -8.34 13.62 22.3 

241-270 1284 2.18 1.76 3.20 -9.03 17.38 22.4 

271-300 1265 2.10 1.95 2.64 -6.97 17.23 18.7 

301-330 1205 2.17 1.97 2.67 -6.69 16.97 19.0 

331-360 1148 2.26 2.07 2.82 -9.77 12.75 18.9 

361-390 1267 2.58 2.41 2.55 -7.21 12.84 13.3 

391-420 1226 2.41 2.30 2.32 -6.79 15.44 12.4 

421-450 1106 2.65 2.43 2.52 -14.79 12.67 10.0 

451-480 1280 2.81 2.52 2.39 -6.47 13.21 8.8 

481-510 1210 2.95 2.69 2.31 -5.98 16.39 7.6 

511-540 1148 3.09 2.89 2.22 -6.83 11.60 6.1 

541-570 1252 3.06 2.91 2.24 -6.03 11.84 6.2 

571-600 1211 3.18 2.94 2.30 -5.45 16.06 6.4 

601-630 1180 3.22 3.08 2.20 -6.50 14.19 5.3 

631-660 1220 3.00 2.94 2.13 -5.17 11.63 6.3 

661-690 1217 3.05 2.90 2.29 -5.45 16.08 6.3 

691-720 1174 3.03 2.86 2.27 -6.40 20.17 5.6 

721-750 1250 2.80 2.75 2.18 -4.99 16.10 7.8 

751-780 1143 2.67 2.63 2.26 -5.19 12.44 9.9 

781-810 1159 2.65 2.61 2.27 -6.47 15.90 10.4 

811-840 921 2.74 2.66 2.08 -4.76 10.49 8.7 

841-870 647 2.99 3.05 2.13 -3.63 11.95 7.9 

871-900 699 3.03 3.07 2.31 -6.43 15.83 7.6 

901-930 726 3.04 3.11 2.08 -5.30 10.27 6.7 

931-960 635 3.15 3.32 2.24 -5.31 11.46 7.6 

961-990 663 3.26 3.20 2.30 -7.58 14.96 7.1 

991-1020 722 3.26 3.30 1.99 -3.17 9.75 6.1 

1021-1050 619 3.33 3.37 2.24 -4.62 14.90 6.0 

1051-1080 636 3.56 3.37 2.50 -7.11 18.42 4.9 

1081-1110 686 3.47 3.56 2.18 -6.44 12.96 5.1 

1111-1140 133 3.42 3.57 2.00 -4.48 10.33 5.3 
 

expiration does not seem to contribute much to the size of the differential even if maturity is 

extended to three years while previous literature had it limited up to 12 months. We further 

employ several robustness check techniques to verify our findings. 

It was mentioned earlier in the paper that asynchronicity error arising because of the 

difference of 10 hours in reported rates used to construct the term structure of spot rates and the 
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closing futures quotes used to compute futures rates and prices may reach three-to-five basis 

points on average. It remains a question how much such difference could contribute to the 

futures-forward differential. Even if the asynchronicity error does take place, its size relative to 

the reported results in Table 2.3 would not be able to explain such a miniscule difference in the 

differential across maturities or such a large number of negative occurrences of the differential.  

To mitigate the asynchronicity error we turn to opening daily futures quotes instead of 

their closing prices. The Eurodollar futures market opens at 8:30 Eastern time which is only two 

and a half hours apart from the point of time when LIBOR rates are reported in London and swap 

rates market is “closed” in Tokyo. Our data set includes opening prices for Eurodollar futures 

contracts up to the end of 2002 only10. Futures opening quotes are converted into continuously 

compounded futures rates in the same fashion as were the futures closing prices and the futures-

forward rate and forward-futures price differentials are calculated again. Table 2.5 shows the 

mean values of the asynchronicity bias contribution toward the values of the differentials across 

all 37 maturity ranges. The results allow to see what difference, if any, the adjustment for the 

asynchronicity makes in the averages of the rate and price differentials within the subsample 

where both opening and closing futures quotes are available. The results show that the 

asynchronicity error is insignificant on many occasions. However, on those few occasions when 

it is statistically significant, it is always positive meaning that the use of closing daily futures 

quotes may result in the underestimation of the value of the differential but not the 

overestimation of it. The size of such underestimation may reach up to 0.60 basis points for the 

futures-forward rate differential but only 0.15 basis points for the forward-futures price 

differential. This is yet another finding in favor of conducting the analysis price-wise in order to 

mitigate the influence of possible data imperfections. 

As expected though, asynchronicity is not able to explain the small size of the average 

differential reported in Table 2.3 and Table 2.4, the substantial number of negative occurrences 

in the rate differential or the visible lack of a stable relationship between the magnitude of the 

differential and the time to expiration. To exclude the presence of the asynchronicity error any 

further, for the rest of the analysis in the paper we use opening futures quotes. 

 

                                                 
10 Rate differential computations for 2003-2007 reported in Table 2.3 and Table 2.4 are excluded from this part, 
therefore. 
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Table 2.5 The asynchronicity error in the futures-forward rate differential and the forward-
futures price differential in basis points when opening daily futures quotes are used to derive 
continuously compounded futures rates and respective futures prices for the period from 1988 to 
2002 
 

Futures-Forward Rate Differential Forward-Futures Price Differential Maturity 
 

Obs. 
 Mean St. Dev. T-stat. Mean St. Dev. T-stat. 

31-60 938   -0.25* 4.17 -1.87  -0.06* 1.04 -1.87 

61-90 891    -0.38** 4.70 -2.39    -0.09** 1.18 -2.30 

91-120 901 -0.06 5.44 -0.32 -0.01 1.36 -0.31 

121-150 912   -0.33* 5.70 -1.77   -0.08* 1.43 -1.76 

151-180 889    -0.46** 5.92 -2.30     -0.11** 1.48 -2.29 

181-210 911  0.06 6.78  0.26  0.02 1.70  0.27 

211-240 866 -0.12 6.49 -0.52 -0.03 1.63 -0.52 

241-270 888    -0.45** 6.50 -2.09     -0.11** 1.63 -2.08 

271-300 843  0.01 7.13  0.06 -0.00 1.78  0.06 

301-330 789  0.18 6.60  0.77  0.04 1.65  0.77 

331-360 751    -0.59** 6.88 -2.36     -0.15** 1.72 -2.36 

361-390 826  0.04 6.72  0.19  0.01 1.68  0.19 

391-420 771  0.13 6.51  0.55  0.03 1.63  0.54 

421-450 710    -0.50** 6.67 -2.01     -0.13** 1.67 -2.01 

451-480 820  0.09 6.47  0.40  0.02 1.62  0.40 

481-510 731  0.29 6.45  1.20  0.07 1.62  1.19 

511-540 716    -0.51** 6.65 -2.07     -0.13** 1.67 -2.07 

541-570 798  0.07 6.19  0.34  0.02 1.55  0.34 

571-600 716  0.36 6.24  1.55  0.09 1.56  1.55 

601-630 705   -0.43* 6.15 -1.86   -0.11* 1.54 -1.86 

631-660 768  0.18 6.01  0.85  0.05 1.51  0.85 

661-690 704  0.20 6.09  0.87  0.05 1.53  0.87 

691-720 674 -0.35 5.90 -1.55 -0.09 1.48 -1.55 

721-750 761  0.08 5.95  0.35  0.02 1.49  0.35 

751-780 662  0.29 5.81  1.26  0.07 1.46  1.26 

781-810 670 -0.27 5.64 -1.24 -0.07 1.42 -1.25 

811-840 737  0.21 5.74  0.99  0.05 1.44  0.98 

841-870 632  0.32 5.72  1.41  0.08 1.43  1.40 

871-900 698 -0.28 5.61 -1.31 -0.07 1.41 -1.32 

901-930 726  0.14 5.64  0.66  0.03 1.42  0.66 

931-960 635  0.16 5.53  0.74  0.04 1.39  0.74 

961-990 663 -0.08 5.70 -0.36 -0.02 1.43 -0.37 

991-1020 722  0.24 5.53  1.17  0.06 1.39  1.17 

1021-1050 619  0.15 5.40  0.70  0.04 1.36  0.70 

1051-1080 636 -0.07 5.55 -0.31 -0.02 1.39 -0.31 

1081-1110 686  0.29 5.49  1.41  0.07 1.38  1.41 

1111-1140 133 -0.06 4.71 -0.14 -0.02 1.18 -0.15 
** – significant at 5 percent level 
* – significant at 10 percent level 

 

It is reasonable to suggest that short-term volatility in interest rates may cause the 

differential to observe erratic variations and lead to a number of its negative values on many 
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occasions. We already saw that asynchronicity which itself can serve as a proxy for short-term 

volatility did not alter the results significantly. To explore the impact of short-term volatility of 

interest rates further we check the correlation between the absolute values of the rate and price 

differentials on one side and the short-term variance of interest rates on the other. The latter is 

defined as the standard deviation of the three-month LIBOR calculated for five business days 

preceding the day when the differential is observed. The correlation coefficients are small across 

all maturities. For the futures-forward rate differential, the coefficient ranges from a minimum of 

0.10 to a maximum of 0.33 across all 37 maturity ranges and on 21 occasions the coefficient is 

below 0.20.  For the forward-futures price differential, the correlation goes from a mere 0.004 to 

a maximum of 0.32 and on 28 occasions the coefficient is below 0.20. Trimming the sample by 

excluding the first and the ninety ninth percentiles from the original samples of the computed 

differentials across each maturity range in order to eliminate possible outliers does not change 

the results significantly. To summarize these findings, there is no evidence that short-term 

volatility of interest rates could be the factor behind the high frequency of negative values of the 

futures-forward rate differential. 

The difference in pricing and marking-to-market are not the only distinct features 

between Eurodollar futures and implied forwards. The timing is also different. The Eurodollar 

futures are marked to market daily based on closing futures quotes on that day, i. e. there is no 

lag present there. As for the forwards, recall that we compute implied forward rates and prices 

from LIBOR deposit rates and zero-coupon rates bootstrapped from the interpolated swap rate 

curve. Eurodollar deposit rates and swap rates are fixed on the settlement date, while the actual 

transaction takes place on the value date. The settlement date and the value date are two business 

days apart. For example, if we observe LIBOR and swap rates on June, 7, 2007 (Thursday), the 

deposit the rate is applied to will take place on June, 11, 2007 (Monday), two business days later. 

It is the same for swaps: the rate is fixed on the settlement date but the transaction is originated 

two business days after the settlement date. Therefore, if we compare futures rates or prices with 

their implied forward counterparts aligned by the dates when the rates or prices are observed, we 

effectively compare futures rates (prices) on that date with implied forward rates (prices) 

determined for the date two business days later which creates a bias for the observed differential. 

The higher is the volatility, the larger the bias is expected to be.     
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Table 2.6 shows statistics for the original sample when futures rates and prices are 

aligned with implied forwards by the value date of the latter. Compared to results in Table 2.3 

and Table 2.4, we observe the same mixed picture: low averages and high percentage of negative 

occurrences of the rate differential. On many occasions average values of the futures-forward 

rate and forward-futures price differentials are even lower than those recorded previously with 

the frequency of negative observations staying roughly unchanged across all maturities. The two-

sample t-test for equal means when the value dates are used versus when the settlement dates are 

taken for the alignment purposes shows that the hypothesis of equal means cannot be rejected at 

10 percent level of significance across all maturity groups. We conclude that the two business 

day lag between the fixing (settlement) date of the implied forward rate and price and its 

transaction (value) date cannot be attributed to the observed abnormally high frequency of 

negative values of the rate differential or the low average magnitudes of both rate and price 

differential across the maturities. 

As was mentioned in earlier sections, the theoretical literature provides some factors that 

are expected to explain the variation in the differentials. Such factors include time to expiration 

(maturity), the level of interest rates and its volatility, and volatility of the volatility. All 

aforementioned factors are believed to positively influence both the futures-forward rate 

differential and the forward-futures price differential. Regression analysis is to be performed to 

verify theoretical postulates. All respective differentials that were computed using opening 

futures daily quotes are bundled in the sample and independent variables are calculated for those 

dates that differentials in the sample are present. The futures-forward rate differential is 

measured in basis points, maturity is measured in years. Level is taken to be the quoted 

annualized three-month LIBOR, the underlying of the futures contracts, expressed as a 

percentage. Volatility is the standard deviation of the quoted three-month LIBOR and the 

volatility of the volatility is the standard deviation of the standard deviation of the three-month 

LIBOR. The period that volatilities are calculated for must be determined and we choose to 

pursue with three different models depending on the length of time the volatilities are taken for. 

Model 1 takes monthly volatilities by which we mean the volatility taken for 21 previous 

business days. Model 2 uses volatilities calculated for three months, or 63 previous business 

days. Model 3 utilizes the six-month volatilities, or volatilities computed using 126 previous  
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Table 2.6 Futures-forward rate differential and forward-futures price differential in basis points 
when forward and futures rates and prices are aligned by forward value dates, 1988-2002 
 

Futures-Forward Rate Differential Futures-Forward Price Differential Maturity 
 

Obs. 
 Mean St. Dev. <0, % t-stat Mean St. Dev. <0, % t-stat 

31-60 940 -2.45 8.38 66.8 -1.08 1.51 2.7 26.8 -0.64 

61-90 903 -3.11 10.13 65.2 -0.46 1.36 3.1 32.2 -0.24 

91-120 887 -0.86 10.58 55.5 0.51 1.87 3.1 25.5 0.33 

121-150 916 -0.80 11.59 51.9 -1.12 1.97 3.5 27.3 -0.77 

151-180 896 -0.71 12.10 53.1 -0.68 2.05 3.7 28.0 -0.45 

181-210 899 2.11 12.88 43.6 0.69 2.78 3.7 20.1 0.47 

211-240 869 1.96 12.43 45.7 -0.06 2.80 3.7 20.9 0.09 

241-270 895 2.45 13.35 45.5 -0.68 2.98 4.0 20.8 -0.55 

271-300 830 2.42 13.59 42.4 0.20 2.89 3.7 19.0 0.14 

301-330 794 2.85 12.26 42.9 0.86 3.04 3.4 16.5 0.92 

331-360 747 2.90 13.65 43.1 -0.90 3.04 3.7 17.5 -0.88 

361-390 814 3.49 12.47 37.5 -0.48 3.29 3.3 15.1 -0.50 

391-420 779 2.95 11.11 39.8 0.56 3.22 3.0 12.8 0.66 

421-450 707 3.60 12.46 39.9 -0.82 3.36 3.3 11.5 -0.79 

451-480 808 3.13 12.05 40.7 -0.40 3.34 3.2 12.9 -0.44 

481-510 742 4.56 10.82 33.0 0.95 3.78 2.9 7.7 1.05 

511-540 711 4.21 12.31 35.7 -0.99 3.66 3.1 10.0 -1.05 

541-570 788 3.78 11.68 36.9 0.20 3.62 3.0 11.0 0.16 

571-600 729 4.55 11.32 34.7 0.36 3.88 2.9 7.1 0.46 

601-630 695 4.17 12.34 34.5 -0.71 3.78 3.1 8.5 -0.79 

631-660 760 2.77 11.51 40.9 0.05 3.47 2.9 10.5 0.03 

661-690 714 3.02 12.08 38.7 -0.13 3.60 3.0 8.5 -0.03 

691-720 664 2.45 12.79 40.8 -0.78 3.49 3.1 9.9 -0.92 

721-750 755 1.36 12.01 45.0 -0.21 3.22 2.9 12.5 -0.20 

751-780 669 0.29 12.15 48.0 0.03 3.01 2.9 12.4 0.13 

781-810 666 0.03 12.38 50.6 -0.45 2.99 3.0 11.6 -0.59 

811-840 731 -0.35 11.78 50.9 0.31 2.89 2.8 14.0 0.31 

841-870 638 -0.11 11.74 48.4 -0.09 2.96 2.8 12.9 0.07 

871-900 696 -0.17 12.26 50.1 -0.61 3.00 2.9 12.6 -0.78 

901-930 721 0.01 11.34 49.7 0.47 3.06 2.7 11.4 0.44 

931-960 643 0.29 11.80 46.3 -0.11 3.12 2.9 12.4 0.06 

961-990 655 0.39 12.08 48.1 -0.46 3.19 3.0 13.0 -0.60 
991-
1020 724 0.65 10.99 47.1 0.52 3.27 2.7 10.5 0.51 
1021-
1050 619 0.66 12.00 43.9 -0.18 3.29 2.9 11.1 -0.04 
1051-
1080 630 1.32 12.90 43.8 -0.62 3.46 3.1 9.4 -0.76 
1081-
1110 689 1.73 11.16 41.2 0.74 3.50 2.7 9.1 0.75 
1111-
1140 123 1.90 10.09 39.0 -0.61 3.21 2.4 6.5 -0.79 

*opening daily futures quotes are used to calculate futures rates and prices 
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business days. We also add the TED spread11 to the set of independent regressors as a proxy for 

the default factor. The default variable is expected to be negatively related to the size of the 

futures-forward rate and the forward-futures price differential. 

Panel A of Table 2.7 shows regression results for the futures-forward rate differential. As 

expected, the maturity factor has a positive coefficient and it is statistically significant for all 

three models. However, opposite to expectations, both the level and the volatility have negative  

Table 2.7 Results of ordinary least squares regressions of futures-forward rate and forward-
futures price differentials on a set of independent variables 
 
Panel A 
Dependent variable: futures-forward rate differential 

Model 1 Model 2 Model 3 

 coef t-stat coef t-stat coef t-stat 

cons -0.15 -0.72  0.01  0.06  0.04  0.16 

mat   0.20*  3.19   0.33*  5.35   0.38*  6.24 

ted   5.18* 17.08   3.93* 12.86   3.24* 10.21 

level  -0.25* -5.02  -0.18* -3.69  -0.14* -2.88 

vol  -6.15* -5.44 -0.92 -1.60  -0.99* -2.65 

vol/vol  1.52  0.44  -6.49* -3.41 -1.84 -1.40 

R2 / se  0.02  8.64  0.01  8.56  0.01  8.52 

obs 26821  27003  26819  

 
Panel B 
Dependent variable: forward-futures price differential 

Model 1 Model 2 Model 3 

 coef t-stat coef t-stat coef t-stat 

cons -1.48 -27.81 -1.61 -29.69 -1.57 -28.75 

mat   0.40*  25.84   0.44*  29.25   0.46*  30.70 

ted   0.56*  7.45  0.13  1.71 -0.11 -1.35 

level   0.61*  49.77   0.65*  53.22   0.66*  54.25 

vol   0.95*  3.39   1.09*  7.66   1.37*  14.94 

vol/vol  1.61  1.88  0.69  1.46  -1.99* -6.10 

R2 / se  0.24  2.16  0.24  2.13  0.24  2.10 

obs 26821  27003  26819  

“cons” stands for constant 
“mat” stands for maturity 
“ted” stands for TED spread 
“vol” stands for volatility 
“vol/vol” stands for volatility of volatility 
“R2 / se” stands for R-squared and residuals standard error 
R-squared and residuals standard error are adjusted for degrees of freedom 
“obs” stands for observations 
* – significant at 5 percent level 

                                                 
11 Difference between the three-month LIBOR and the rate on a three-month T-bill 
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coefficients which are statistically significant for all three models with the exception of the 

volatility coefficient in Model 2. Also opposite to expectations, the default factor is positive and 

statistically significant across all three models. The finding that both the level and the volatility 

may stand behind the negative nature of the rate differential is puzzling as is the positive 

relationship between the value of the differential and the TED spread. The power of such results, 

however, is not significant enough due to the low values of the adjusted R-squared.  

Panel B provides regression results for the forward-futures price differential. Since rates 

and prices are negatively related in the context of our analysis, we expect that signs of the 

coefficient do not change. As the table shows, however, there are quite a few changes to that. 

Now all three factors that are supposed to be positively related to the differential, maturity, level 

and volatility, have positive and statistically significant coefficients. The default factor is both 

positive and statistically significant for Model 1 only while large negative and statistically 

significant constant term points to the largely unexplained negative nature of the price 

differential by the employed factors. Another improved feature of the regression results in Panel 

B is the much higher adjusted R-squared. Apparently, the unique pricing feature of the 

Eurodollar futures finds more reflection if the regression analysis is performed price-wise 

although the negative nature of the forward-futures differential is largely unexplained or the TED 

factor is not a reliable proxy for the default factor in the context of the forward-futures rate 

differential analysis. 

2.8 Conclusions   

This paper constructs the spot rate term structure using the extended Nelson-Siegel 

exponential model and performs the analysis of the convexity adjustment for Eurodollar futures 

for the period from 1988 to 2007 in the form of the futures-forward rate differential and the 

forward-futures price differential while extending the maturity of the respective contracts under 

consideration to up to three years. The extension was made possible due to the employment of 

swap rates that allowed us to construct a LIBOR/swap curve and derive forward rates with 

longer maturities. To our knowledge, this is the first empirical study that attempts to evaluate the 

interest rate forward-futures differential for maturities longer than a year. Our findings provide 

unconventional results: average differentials are too small compared to the theoretical 

predictions and do not increase significantly with longer time to expiration while also on too 

many occasions the rate differential has a negative sign. Neither asynchronicity error, nor the 
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interpolation error could explain the observed phenomena. The unusual feature of the Eurodollar 

pricing and the two business day lag between the settlement date and the value date of implied 

forward rates and prices cannot explain the observed results either.  

The outcome of the regression analysis of the convexity adjustment on a set of 

conventional factors depends on whether the differential is measured as a rate difference or a 

price difference. If the latter is expressed as the rate differential, the regression coefficients have 

unexpected signs. If the price differential is chosen as an independent variable, all three major 

factors, the time to expiration, the level and the volatility, are positively related to the size of the 

forward-futures price differential and are statistically significant. Another finding from the 

regression analysis is that conducting it using the forward-futures price differential as the 

independent variable is beneficial to the one when the futures-forward rate is used instead since 

the former method results in much better goodness-of-fit. This allows to suggest that the 

unconventional feature of the way the Eurodollar futures are priced and settled is an important 

factor to consider and should be incorporated into the convexity adjustment analysis.  

The forward contracts, unlike their futures counterparts, are subject to default risk. The 

presence of the default premium in forward prices can affect the size of the forward-futures 

differential. The default factor proxied by the TED spread, however, is not able to capture the 

negative nature of the differential which remains largely unexplained. The influence of the 

default factor on the size of the convexity adjustment could be studied separately. In particular, 

the comparison of the observed spread between the forward and futures prices with its theoretical 

value obtained via the utilization of a no-arbitrage term structure model would provide a 

quantitative estimate of the default premium in futures prices. 
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Chapter 3 Decomposition of the Interest Rate Forward-Futures Price Differential 

 

3.1 Introduction to the Problem 

The differences between forward contracts and futures contracts as well as their prices 

were initially studied by Magrabe (1976), Cox, Ingersoll and Ross (1981), Jarrow and Oldfield 

(1981), and Richard and Sundaresan (1981). The major result of early studies is that in stochastic 

interest rate environment forward prices will not be equal to respective futures prices. The 

discrepancy between futures and forward prices is the product of the marking-to-market, the 

procedure employed by exchanges where futures settle gains and losses daily which aims to 

reduce the possibility of a trader’s default. 

Early empirical studies on the forward-futures differential, also known as the convexity 

adjustment, concentrated on contracts with the underlying being a commodity (French [1983]), a 

foreign exchange rate (Cornell and Reinganum [1981]), a stock index (Cornell and French 

[1983]) and a Treasury bill (Elton, Gruber and Rentzler [1984]). The first empirical study on the 

Eurocurrency interest rate forward-futures differential was conducted by Meulbroek (1992). She 

argues that the marking-to-market effect is a larger component of the interest rate forward-

futures price differential than it is in the currency and commodity futures because Eurodollar 

deposit prices have a higher covariance with the riskless bond price. Grinblatt and Jegadeesh 

(1996) investigate spreads between Eurodollar futures and forward yields over the 1982-1992 

period and find a vast presence of large spreads in the first half of the sample period. Their study 

concludes that such abnormal spreads are likely to be attributable to the mispricing of futures 

contracts relative to forwards. Recently Poskitt (2008) examines the pricing of Eurodollar futures 

contracts versus US dollar forward rate agreements (FRAs) using a high frequency data set. He 

finds that the median of the futures-FRA rate differential is close to zero and argues that the 

convexity adjustment is not priced into FRA rates for short-term contracts. 

The limitation common to all of the above aforementioned studies on the Eurocurrency 

interest rate forward-futures differential is that their analysis is confined to short-term contracts 

with maturities up to nine months, whereas the spread due to the marking-to-market feature is 

expected to be more if not much more pronounced in longer-term contracts. Gupta and 

Subrahmanyam (2000) examine the convexity adjustment in the pricing of interest rate swaps 

versus Eurocurrency futures. The use of the swap rates allows them to extend the maturity range 
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of contracts under consideration up to five years. They interpret their results as evidence of the 

underpricing of swap contracts during the late 1980s and the early 1990s which was eliminated 

over time. Caution must be applied, however, while considering the robustness of their results. 

They build the futures curve instead of the conventional spot yield curve and check whether 

swaps are priced off it. The use of Eurocurrency futures to construct the term structure is prone 

to overlapping maturities even if only those contracts that are parts of the regular maturity cycle 

(March-June-September-December) are considered. The problem may arise if there is a slight 

degree of overlap in or a gap between the three-month Eurocurrency deposit periods associated 

with adjacent Eurocurrency futures. Rendleman (2004) provides a few such examples. For 

example, the three-month Eurodollar deposit period for the June 2005 futures contract ends on 

9/15/05, while the three-month deposit associated with the September 2005 futures contract 

starts on 9/21/05, six days later. As insignificant as this issue may look, when it comes to the 

computation of the forward-futures differential which is often measured in single-digit basis 

points, every small detail counts. 

This paper utilizes a data set and methodology that allow us to avoid the two 

aforementioned limitations of previous studies: generalizing conclusions based on results for 

short maturity contracts only and error-prone yield curve building. We are able to extend the 

analysis for maturities up to 21 months by utilizing swap rates to build the conventional zero-

coupon spot yield curve via a single interpolation procedure. 

Beyond the issues of careful curve building and extending the maturity range, there are 

yet more important matters in the context of the interest rate forward-futures differential analysis. 

Sundaresan (1991) was the first to point out that since Eurodollar futures contracts settle to 

yields as opposed to prices12, the implied forward prices from the LIBOR term structure should 

differ from the futures prices even in the absence of marking-to-market. The phenomenon that 

interest rate futures are settled in the way different from that of forward contracts has not been 

formally incorporated into early empirical works. The reason behind it is that the convexity 

adjustment in those studies is defined as the difference in rates. Chance (2006b) argues that it is 

not certain how the rates in those studies are calculated. There are several alternatives available 

regarding the way a “futures rate” can be calculated and, on top of that, different compounding 

                                                 
12 Another way to say it is that LIBOR rates are quoted as “add-on” rates whereas the Eurodollar futures is priced as 
though the underlying rate were a discount instrument. 



 45 

frequencies may be applied. The resulting variation in the futures-forward rate differentials 

computed using the same set of quotes but different approaches may be substantial and its 

presence would make results from different studies incompatible without knowledge of the 

technical details about the ways rates were calculated there. If the differential is measured as a 

difference in rates, the futures settlement feature is not part of it, and marking-to-market accounts 

for the entire difference. However, the way the “futures rate” is computed in the presence of the 

futures settlement feature has a few alternative applications and that is what may cause 

ambiguity13. Studying the differential measured as a price difference does not pose such 

problems since the price is unique no matter how rates are calculated. Recall that the convexity 

adjustment in its original form derived by Cox, Ingersoll and Ross (1981) was stated in terms of 

the price difference. 

It is true that marking-to-market would still exist if both spot and futures instruments 

were settled in a different manner. It is also true that even if there were no marking-to-market, 

the convexity bias would still be present if the instruments were settled and priced differently. 

Therefore, it is important to understand that when one makes comparisons between 

Eurocurrency14 interest rate futures and forward prices, there are two separate types of effects 

present which are largely independent and, hence, must not be confounded. 

Sundaresan (1991) argues that due to the unique settlement feature of the Eurodollar 

futures contract, the implied forward price from the spot LIBOR term structure is inappropriate 

for the purposes of comparison with the Eurodollar futures price. In order to exclude the 

influence of this feature on the results of the analysis, he introduces the “Eurodollar forward 

price” and compares it to a given Eurodollar futures price. Chance (2006b) controls for the 

expiration settlement feature of Eurodollar futures by introducing the “adjusted forward price” 

which is the forward price whose underlying LIBOR time deposit is expressed as a discount 

instrument and, alternatively, by constructing a hypothetical futures contract that settles by the 

add-on method. In this paper we show that there is no need to come up with hypothetical 

contracts in order to eliminate the influence of the Eurocurrency interest rate futures 

unconventional settlement feature. Moreover, the latter factor can be easily incorporated into 

analysis. We derive the formula that shows that the Eurodollar convexity adjustment, the 

                                                 
13 See Chance (2006b) for examples 
14 From here and further on terms “Eurocurrency” and “Eurodollar” are used interchangeably in general context.  
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difference between the implied forward price obtained from the spot rate term structure and the 

respective Eurodollar futures price at any point of time before maturity, is composed of two 

parts: the element due to marking-to-market and the element arisen from the unconventional 

settlement of Eurodollar futures. 

The analysis of the forward-futures differential can be performed in two dimensions: 

empirically as well as theoretically. The latter implies the derivation of the differential in the 

context of the term structure modeling. By focusing on the one-factor, constant volatility version 

of the HJM model, Flesaker (1993a) was the first to utilize no-arbitrage term structure model in 

order to derive close-form solutions for both the Eurodollar futures price and the forward price. 

Gupta and Subrahmanyam (2000) employ the Hull and White (1990), the Black-Karasinski 

(1991) and the two-factor HJM model with constant volatility to compute the convexity 

adjustment measured as the difference in yields. The estimation of all three models was carried 

out by the construction of a trinomial tree of interest rates. It is not clear however what size of 

the tree step was chosen in those models. Chance (2006b) uses one-factor HJM model to 

estimate the Eurodollar forward-futures price differential15. His model is constructed with the 

size of the step of the binomial tree equal to one month. For the volatility input he uses the 

specification where volatility is a function of maturity time only, i. e. volatility of the forward 

rate N months ahead is the volatility of that same rate N-1 months ahead, N-2 months ahead, etc. 

Two issues normally arise when it comes to modeling the forward-futures differential or 

anything else for that matter via the utilization of discrete versions of no-arbitrage term structure 

models. The first one is the size of the step of the binomial or the trinomial tree used. Peterson, 

Stapleton and Subrahmanyam (2003) caution that the value of the marking-to-market effect may 

be underestimated if the size of the tree step is longer than one business day, the actual interval 

between the two subsequent markings. They suggest that this bias is likely to be very small, 

probably less than a basis point, for the futures marked-to-market quarterly for maturities of a 

year or less, but can be far more significant for futures marked-to-market less frequently and of 

longer maturities. We investigate how changing frequency of the marking-to-market may affect 

the size of its effect on Eurocurrency futures prices. Two most common frequencies utilized in 

                                                 
15 Other studies rely on equilibrium term structure models: Sundaresan (1991) utilizes the Cox-Ingersoll-Ross 
(1985) term structure model, while Grinblatt and Jegadeesh (1996) employ both Cox-Ingersoll-Ross and Vasicek 
(1977) term structure models. 
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previous research are used (quarterly and monthly marking-to-market) as well as the weekly size 

of the step is employed to determine what impact is made on the forward-futures differential and 

its marking-to-market component by the increasing number of the tree steps in the discrete 

version of the HJM model. 

The second issue is the volatility specification chosen for the analysis. Flesaker (1993b) 

documents various biases in the fitted Eurodollar futures option prices relative to the market 

prices if the constant volatility version of the HJM model is used. Cakici and Zhu (2001) find 

that relatively high volatility can lead to a significant difference between the forward price and 

the Eurodollar futures price. Chance’s choice of volatility specification mentioned above allows 

the binomial tree to recombine which avoids computational complexity but practical application 

of such specification may be questioned since volatility of forward rates has been shown to 

fluctuate over time. In order to check for the robustness of results with regard to the choice of the 

volatility structure, our paper utilizes four most popular volatility specifications (excluding the 

constant volatility case) to subsequently derive the Eurocurrency interest rate forward-futures 

price differential. The obtained results must answer the questions of whether and how significant 

the discrepancy in the value of the differential may become given the choice of the volatility 

specification. 

Finally, the issue of major importance to the practitioners, the hedging applications of the 

Eurocurrency futures and its specifics, must be considered. Hedging of the market-to-market 

element has been addressed in the literature and is referred as tailing of the hedge (see Figlewski 

et al. [1991] and Kawaller [1997] among other references). Chance (2006a) brings attention to 

the fact that because of the way the Eurodollar futures contract is structured, the standard cash-

and-carry arbitrage in which the underlying asset is purchased and the futures is sold is not risk-

free since the futures price cannot converge to the value of the underlying Eurodollar time 

deposit. Chance shows that the perfect hedge is not possible to obtain when the borrower wants 

to get a fixed amount of the loan and hedge its forward interest rate exposure with Eurodollar 

futures. This paper demonstrates that the perfect hedge is feasible via the use of a predetermined 

basket of caplets. Such hedge is costly though since the caplets must be paid for at the time of the 

purchase. 

The rest of the paper is structured as following. Section 3.2 shows a well-known 

derivation of the conventional Cox-Ingersoll-Ross differential and provides a new result for the 
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Eurocurrency forward-futures differential with an appended numerical example. Section 3.3 

introduces the Heath-Jarrow-Morton (1992) term structure model and reviews previous research 

applications of the model to interest rate derivative pricing. Section 3.4 contains the data and 

methodology description. Section 3.5 provides results of the forward-futures modeling for three 

different marking-to-market frequencies and their extrapolation for longer out-of-sample 

maturities. Section 3.6 considers hedging implications and demonstrates that the nearly perfect 

hedge can in fact be obtained. Section 3.7 concludes. 

3.2 Derivation of the Forward-Futures Differential 

Cox, Ingersoll and Ross (1981) derive the closed-form solutions for forward and futures 

prices under a single factor square root process for the instantaneous interest rate with the 

additional assumption of logarithmic utility. According to their findings, the forward price is 

higher than the futures price given stochastic interest rate environment and both prices are 

decreasing convex functions of the interest rate as well as increasing functions of the time to 

maturity for sufficiently high interest rates. Cox, Ingersoll and Ross also show that application of 

the Capital Asset Pricing Model to a series of forward prices will be misdirected since forward 

prices do not satisfy the continuous time CAPM in consumption form as derived by Breeden 

(1979) unless interest rates are non-stochastic. Futures rates, however, will satisfy the 

consumption based CAPM. 

A new series of studies reinterprets the forward price using the forward measure. Under 

the forward measure, the forward price is the expectation of the terminal payoff of the underlying 

asset price, like the futures price under the risk-neutral probability measure, but the probability 

measure under which this expectation is taken is different from the risk-neutral measure by an 

adjustment term. The adjustment term takes care of the effect of the covariance between the 

interest rate and the underlying asset, where the covariance term reflects the marking-to-market 

effect. 

3.2.1 Derivation of the Cox-Ingersoll-Ross Forward-Futures Differential 

Below, a formal way of derivation of the Cox-Ingersoll-Ross forward-futures differential 

that relies on a traditional risk-neutral probability measure is provided. These derivations can be 

found in many textbooks about derivatives. This section follows Jarrow (1996). Later on in the 

section the convexity adjustment for Eurocurrency interest rate futures is derived and this 
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measure will differ from the Cox-Ingersoll-Ross forward-futures price differential due to the fact 

that interest rate futures possess a unique pricing characteristic. 

Since a forward contract on a zero-coupon bond has value of zero at the time when it is 

initiated, it must be that 
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where P(m1, m2) is the price of a zero-coupon bond with maturity date m2 at time m1, m2 > m1, 

           F(t, m1, m2) is the price of a forward contract on m2-maturity zero-coupon bond with 

delivery date m1 at time t, where t is the forward initiation date, t < m1, 

           B(m1) is the money market account value at time m1, 

           B(t) is the money market account value at time t, 
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is the expectation under risk-neutral probability measure taken at time t. 

Since interest rate cannot be negative it must be that B(t2) ≥ B(t1) for t2 > t1 ≥ 0. In 

continuous time, money market value is written as 
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where r(.) is the instantaneous interest rate. 

The expression for the risk-neutral expectation (3.1) can be rewritten as 
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Since the arbitrage-free price of the m2-maturity zero-coupon bond at time t is given by 
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Pricing of the futures is a little bit different. Because of the mark-to-market feature, the 

futures price process can be interpreted as the sum of the underlying asset price process and the 

dividend process where the dividend process reflects marking to market. Although in practice 

marking to market takes place at discrete intervals, it also can be easily expressed in continuous 
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time framework similar to the way a continuous dividend process is modeled. The financial 

literature provides the result that for any price process S (underlying or derivative) with dividend 

process D, the normalized gains process G(t) in the form 
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is a martingale under the risk-neutral measure. Applying this result to the futures contract, one 

has that  
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where h(t) is some adapted process and W(t) is a Wiener distribution under the risk-neutral 

measure. Π(t) is the futures value process and df(u, m1, m2) = f(u+s, m1, m2) –  f(u, m1, m2) for a 

small positive s. Essentially, f(u, m1, m2) is the futures price (but not its value) at time u. 

It turns out that Π(t) = 0 for any t ≤ m1, since the futures contract is continuously marked 

to market. In other words, the value (but not the price) of the futures contract is always zero in 

the continuous time set up because any increase/decrease in the futures value is instantaneously 

captured by marking to market. Taking the derivative of both sides of (3.7) and substituting (3.8) 

in the resulting expression one obtains 
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Multiply both sides by B(t) to get 
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which implies that f(t, m1, m2) is a martingale under the risk-neutral measure. Since at expiration 

after the final marking to market, the futures price is equal to the underlying, P(m1, m2), one 

finally obtains expression for the futures price at any time t, where 0 ≤ t ≤ m1: 
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From the comparison of (3.5) and (3.11) it is evident that the forward price and the 

futures price are not equal if interest rates are stochastic. To find the difference between the 
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forward and the respective futures price, note from (3.4) that the forward price can be rewritten 

as 
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As Jarrow (1996) shows, one can utilize the property of the product of two random 

variables, E(xy) = E(x)E(y) + cov(x,y) to rewrite the forward price further:  
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that can be rewritten as 
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Cox, Ingersoll and Ross (1981) use no-arbitrage arguments to show that the forward-

futures price differential increases with the covariance of the futures price changes with the 

riskless bond price changes. From (3.15) it can be seen that the forward price and the futures 

price will be identical only if the two random variables, P(m1, m2) and ∫−
1
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uncorrelated under the risk-neutral probability measure. This is true if the short rate r(t) is 

constant or deterministic, as was shown by Cox, Ingersoll and Ross. The forward price is larger 

(smaller) than the futures price if the variables P(m1, m2) and ∫−
1

))(exp(
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duur  are positively 

(negatively) correlated under the risk-neutral probability measure. A simple intuitive argument 

helps to explain the aforementioned relationship. If the forward price and the futures price are 
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equal to each other, then the total undiscounted payments from the futures contract will be equal 

to the terminal payment of the forward contract. Suppose that P(m1, m2) and ∫−
1
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positively correlated. It implies that the interest rate and the spot price of the underlying asset are 

negatively correlated. Then the marking-to-market of the futures tends to be negative when the 

interest rate is high and positive when the interest rate is low. In such case negative payments 

must be refinanced at a high interest rate while positive payments can be reinvested at a low 

interest rate. This makes the futures contract less attractive compared to its forward counterpart if 

both have the same price. Hence, the futures price ought to be below the respective forward price 

in equilibrium. Similar logic applies to the converse case when P(m1, m2) and ∫−
1
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are negatively correlated, which implies positive correlation between the interest rate and the 

spot price of the underlying asset. To maintain equilibrium the futures price has to be larger than 

the forward price. 

3.2.2 Derivation of the Eurocurrency Forward-Futures Differential 

The previous section showed how forward and futures prices are obtained when the 

contracts are settled to the price of an underlying asset. However, this is not the case for the 

Eurodollar and other Eurocurrency interest rate futures. Munk (2005) mentions that the rate 

implied by the quoted Eurodollar futures price, equal to 1–quoted price/100, is sometimes 

referred among traders and analysts as the LIBOR futures rate. As the maturity of the futures 

contract approaches, the LIBOR futures rate converges to the three-month spot LIBOR but the 

actual Eurodollar futures price (which is different from the quoted price) does not converge to 

the spot price of the three-month Eurodollar deposit. The reason for that lies in the method used 

for the pricing of Eurodollar futures. 

These contracts are settled to the yield, not the price, and the Eurodollar futures price is 

obtained from the quoted futures price adjusted by the day count factor: 
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where n is the number of actual days in the three-month LIBOR deposit that the Eurodollar 

futures is on and fq(t, m, m+n) is the quoted futures price. 

(3.17) 
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By its design, at maturity the futures price converges to 100×(1–LIBORn×n/360), where 

LIBORn is the n-period LIBOR in decimal form on the expiration date16 and n/360 is the 

adjustment factor. For a generalization purpose, the above expression can be divided by 100, so 

that the obtained futures price is in the range between zero and one which makes it comparable 

to the respective forward price. In continuous time, the equilibrium Eurodollar futures price then 

becomes 
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Equation (3.19) represents the expectation of the amount earned at time m2 by rolling one 

dollar in a sequence of instantaneous rates from time m1 until time m2. In discrete time, the 

equivalent term under the risk neutral expectation will be LIBORn×n/360, where n = m2 – m1 and 

LIBORn is the n-period rate established at time m1. The term n/360 represent the adjustment 

factor for the interest rate applied to the holding period of length n which is less than a year. The 

adjustment factor is used in a discrete time set-up only, while in continuous time the integral sign 

implicitly takes it into account. Since expectation of a constant is the constant itself, the 

Eurodollar futures price can be rewritten as 
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By the virtue of (3.4) and the law of iterated expectations17, the actual three-month 

Eurodollar futures price at any point of time t before the futures maturity date can also be written 

in discrete time in the following way18: 
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where  

                                                 
16 This date is usually referred as the settlement date. 
17 Strictly speaking, this condition should rather be referred as the fact that the futures is a martingale and the 
martingale is stronger than the law of iterated expectations. We defer to the former in order to avoid possible 
confusion since in the previous section we show that futures on a bond is a martingale. Nevertheless, the 
Eurocurrency interest rate futures is also a martingale for all the same premises. 
18 The adjustment factor for the three-month Eurodollar futures is 90/360, or 0.25. 
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and LIBOR0.25(m) is the three-month LIBOR at expiration of the Eurodollar futures contract (the 

settlement LIBOR futures rate). Since the actual Eurodollar futures price is obtained from the 

quoted Eurodollar futures price through (3.17): 
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the quoted Eurodollar futures price at any point of time t before maturity, therefore, can be 

written as 
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From the expression above we see that the quoted Eurodollar futures price is also a martingale. 

Using the previously obtained formula (3.13) for the forward price and new expression 

(3.20) for the actual Eurodollar futures price, their difference, ∆, can be shown to be equal to 
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Now it can be seen that the Eurodollar forward-futures price differential has three new terms in it 

if compared to (3.15). It can be shown further that ∆ always exceeds the covariance term on the 

right side since ex is a strictly convex function.  

After switching to the discretely compounded rates, it is easy to see that the unique 

component of the Eurodollar forward-futures price differential is nothing else but the product of 

the Eurodollar futures settlement design feature. The forward price in (3.13), if expressed with 

the use of discrete rates, can be written as  
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where x is the three-month LIBOR at expiration times the adjustment factor 90/360.  
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The futures price in (3.20) becomes ( )xE t

~
1 − . Therefore, the Eurodollar forward-futures 

price differential at time t, given the discretely compounded rates, is  
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Recalling that with the discretely compounded rates, the interest rate forward-futures 

differential at expiration is equal to  
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one observes that the new component of the convexity adjustment in (3.27) is similar to the 

expression (3.28), except for the expectation terms. This observation allows to conclude that the 

new component of the convexity adjustment in the interest rate futures is a product of the pricing 

construction method used for Eurodollar and other Eurocurrency interest rate futures contracts. 

Hence, the convexity adjustment expressed as the difference between the price of the forward 

and the price of the respective futures contract on an interest rate consists of two parts: the 

element associated with the unique pricing (and settlement) feature of interest rate futures and 

the covariance term that reflects the marking-to-market effect. From now on the paper shall refer 

to them as the “settlement component” and the “marking-to-market (covariance) component” 

respectively19. The settlement component is always positive, so is the covariance component in 

general since interest rates for different maturities have been found to be positively correlated. 

3.2.3 Numerical Example 

Below, a numerical example of how the Eurocurrency convexity adjustment is calculated 

is provided. The input information is that from Jarrow (1996) on pages 106-107. The purpose is 

to calculate the convexity adjustment for the interest rate futures on a one-period spot rate. The 

futures matures in period 2. So, one needs to calculate the current forward price, F(0,2,3), and 

the futures price, f(0,2,3), first. The inputs consist of current bond prices and the money market 

account (gross short rate) process. The bond prices are: P(0,1) = 0.980392, P(0,2) = 0.961169, 

P(0,3) = 0.942322. The gross short rate process is as following: r(0) = 1.02, r(1;u) = 1.017606, 

                                                 
19 Since the ultimate existence of the marking-to-market effect is due to the fact that futures are settled on a daily 
basis, some literature may use the marking-to-market and the settlement effect terms interchangeably, e. g. marking-
to-market is occasionally referred as the “daily resettlement feature” of futures contracts. We distinguish the 
settlement component from the marking-to-market component by emphasizing that the former is an artifact of the 
way Eurocurrency interest rate futures are designed whereas the latter is the sole product of the expected covariance 
between future rates. 
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(3.27) 
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r(1;d) = 1.022406, r(2;uu) = 1.016031, r(2;ud) = 1.020393; r(2;du) = 1.019192, r(2;dd) = 

1.024436, where u stands for an up move and d stands for a down move in the discount factor. 

The forward price is calculated using (3.5): 

980392.0
961169.0

942322.0

)2,0(

)3,0(
)3,2,0( ===

P

P
F . 

The futures price is calculated as the risk-neutral expectation of the one-period spot rate 

at the expiration of the contract. Jarrow derives the risk-neutral probability of an up movement in 

the binomial tree, q, for this example and it is equal to one half. Therefore, 
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Hence, the forward-futures price differential, F(0,2,3) – f(0,2,3), is equal to 0.000405, or 

4.05 basis points. From (3.27) one knows that the value of the differential is composed of the 

settlement component and the covariance component. The settlement component, 
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The covariance element, 
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First, one needs to find the two expectation terms: 
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which is exactly what one would expect since it must be equal to the difference between the 

obtained forward-futures price differential and the settlement component in (3.31). In summary, 

this example produces the convexity adjustment of 4.05 basis points, where 4.01 basis points are 

due to the settlement component and 0.04 basis points are due to the covariance (marking-to-

market) component. Jarrow (1996) calculates the futures price as if it is settled to a zero-coupon 

bond price and his answer is 0.980388 (page 136). The difference between the forward price in 

(3.33) and 0.980388 is 0.000004, or 0.04 basis points, as expected, since such difference is 

represented by the last term on the right side of (3.14), namely, the covariance component, which 

is computed in (3.35).  

It remains to be seen yet whether the settlement component indeed has much more weight 

in the forward-futures differential than the marking-to-market component and under what 

conditions. For that purpose in next section the convexity adjustment for interest rate 

Eurocurrency futures is derived by employing the Heath-Jarrow-Morton no-arbitrage term 

structure model. 

3.3 The Heath-Jarrow-Morton (HJM) Term Structure Model 

The model proposed by Heath, Jarrow and Morton (1992) represents a substantial 

contribution to how the term structure of interest rates is perceived and modeled. Their model is 

commonly referred as HJM. One of the main differences between HJM and earlier no-arbitrage 

term structure models such as the Ho-Lee model and the Black-Derman-Toy (BDT) model is that 

while the latter models concentrate on modeling of the short spot rate, the HJM model is built 

around the evolution of the instantaneous forward rate. Also, while early no-arbitrage models 

(3.33) 

(3.34) 

(3.35) 
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concentrate exclusively on modeling of the short rate, HJM models the evolution of the entire 

forward rate curve by developing a framework where the instantaneous forward rate curve is 

modeled directly. 

The development of the HJM model is often referred as the most important achievement 

in the history of term structure modeling. Interestingly, the ideas of the paper were accepted 

more quickly by the practitioners than by the academic community. Hughston (2003) recalls that 

the very first draft of the paper and its practical implications were appreciated almost 

immediately by the community of interest rate modelers and traders20. 

The HJM model has several advantages over the pioneer of the no-arbitrage interest rate 

modeling, the Ho-Lee (1986) model. While the Ho-Lee model is a one-factor model, the HJM 

model can accommodate any finite number of factors although it results in a considerable 

increase in the complexity and computational burden associated with each added factor21. In 

addition, HJM is able to admit an extremely flexible structure of the volatility of interest rates. 

3.3.1 Continuous Version of HJM 

Recall that given the differentiability of the discount bond at its maturity date, the 

instantaneous forward rate (or forward short rate) is defined as following: 
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which comes from the fact that the continuously compounded forward rate for the time period 

from S to T, S < T, contracted at time t, t < S, can be written as  
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The bond price can be recovered by integrating (3.36). Note also that the shortest forward rate, 

f(t, t), is nothing but the short spot rate. 

The one-factor HJM model is characterized by the following set of equations: 
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20 While published in 1992, draft of the paper was already available in 1988 in the form of a technical memorandum 
at Cornell University. 
21 It is impractical to use more than three factors in interest rate modeling in the wake of findings of Litterman and 
Scheinkman (1991) and related research. 
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where f(t, T) is the instantaneous forward rate at time T as seen at time t,  

           µf(t, T) and σf(t, T) are the drift and the volatility of the stochastic process for the 

instantaneous forward rate respectively. 

Equation (3.39) represents the no-arbitrage condition. It shows that the drift parameter 

must be a function of the rate’s volatility. The volatility function σf(t, T) is an input and can be 

selected arbitrarily. The exogenous specification of the instantaneous forward rate volatilities, 

together with the risk premium and the initial discount or yield curve, is sufficient to determine 

the evolution of f(t, T). And by invoking the risk-neutrality assumption, all it takes to obtain the 

results within the HJM framework is to model the instantaneous forward rate volatilities. The 

essence that the volatility structure of the instantaneous forward rates can be freely specified is a 

blessing that comes with a curse since by the specification of volatility parameters one 

effectively determines the no-arbitrage conditions and the evolution of the forward rates. 

Developing the volatility function is central to the model building to assure an accurate pricing 

of various interest rate derivatives under the HJM framework. Most common volatility structures 

identify one or more state variables that manage to capture the entire term structure of volatility. 

The form restrictions are imposed on the volatility structure of the forward rate, not the spot rate. 

Despite the advantages of HJM over the short rate no-arbitrage models, it was found to 

have several drawbacks. First, the continuous time HJM model is applicable only to a small set 

of volatility functions that satisfy regularity conditions such as integrability. A number of 

volatility term structures results in non-Markovian dynamics of the instantaneous forward rate 

which implies path dependence that results in impossibility to use the PDE-based computational 

approach for pricing derivatives and increased computational complexity. After expressing the 

stochastic process for the instantaneous forward rate as the equation for the short rate and 

differentiating it with respect to time t, the stochastic process for the short rate is obtained: 
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As can be seen from the expression above, the risk-neutral drift for the short rate depends on 

stochastic variables for times earlier than t. Hence, the stochastic dynamics of the system is non-

Markovian22.  

Second, with the exception of a few restrictive volatility structures, the HJM model does 

not produce a closed-form solutions. As there is generally no simple solution or method to price 

such derivatives as caps and swaptions, Monte Carlo methods are often called upon and the 

computational burden associated with them can be substantial. Third, since the distribution of 

modeled interest rates is normal, the HJM model permits negative interest rates. The problem of 

negative rates can be mitigated by the choice of an appropriate volatility specification that 

dampens volatility once rates move closer to zero. Examples of such volatility specifications 

include the exponentially dampened volatility, σ(t, T) = σexp[-λ(T-t)], and the proportional 

exponentially dampened volatility, σ(t, T) = σr(t)
γ
exp[-λ(T-t)]. Finally, if forward rates are 

modeled as the log-normal processes, then the HJM model can “explode”23 (Sandmann and 

Sondermann [1997]). This last problem can be avoided by modeling LIBOR or swap rates as 

log-normal instead of the instantaneous forward rate. Models that utilize such approach are 

referred as LIBOR market models and swap market models respectively. 

3.3.2 Discrete Version of HJM 

The requirement of the existence of the continuum of instantaneous forward rates that the 

HJM model relies upon is incompatible with real-world markets. In practice, one or both of the 

two most popular approaches are used to discretize the HJM model24. The first method does it 

via the use of a binomial tree; the second one relies on Monte Carlo simulation. A major 

challenge has been to obtain a discretized version of the drift restriction. The first attempt was 

                                                 
22 Ritchken and Sankarasubramanian (1995) put the following restriction on the volatility function that permits the 
term structure to be represented by a two-state Markovian model but sacrifices some part of the generality of the 
HJM model: 
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where σf(t, t) is the volatility of the spot rate and k(x) is the exogenous deterministic function.  
Bhar, Chiarella, El-Hassan and Zheng (2000) demonstrate that the specification of the forward rate volatility 
function within the HJM framework that depends upon time to maturity, the instantaneous spot rate of interest and a 
forward rate of a fixed maturity allows a two-factor Markovian representation of the stochastic dynamics of the 
forward rate to obtain a closed form expression for bond prices. 
23 In particular, the solution explodes if the volatility function is specified as σ(t, s) = σf(t, s), where σ is a positive 
constant. 
24 A good source on the pricing of Eurodollar futures and options in the continuous one-factor HJM framework with 
deterministic volatility is Henrard (2005). 
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made by Heath, Jarrow and Morton (1991) and subsequently repeated by Ritchken (1996). Their 

approach was to obtain the result by using a binomial model, letting the time step approach zero 

and demonstrating that the obtained result will be correct in the continuous time limit. Grant and 

Vora (1999) show however that the discrete time version of Heath, Jarrow and Morton is not 

correct and proceed to derive the correct discrete time formula and, eventually, the correct 

expression for the drift term in the discrete version of the HJM model25: 
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The value of α(t, T) can be easily computed from the covariance matrix of forward rate 

volatilities. Grant and Vora refer to the drift term above as the drift adjustment term (DAT). 

Numerical examples of the construction of the discrete version of the forward rate evolution via 

the binomial tree are demonstrated in Grant and Vora (1999), Chance (2004) and Grant and Vora 

(2006). Grant and Vora’s implementation of the HJM model in discrete time yields more 

accurate results than those by Heath, Jarrow and Morton (1991) for time intervals of moderate 

size since it does not violate the local expectations condition, while the latter method does. See 

Grant and Vora (1999) for numerical illustrations. 

Although HJM is flexible in accommodating the specified volatility structure, there is an 

important restriction: although the volatility is allowed to change over time it cannot change 

stochastically and independently of the level of rates. In other words, although the volatility of 

the period two forward rate at time one, σ(1, 2), can be different from its volatility today, σ(0, 2), 

the volatility σ(1, 2) is deterministic and must be a function of the forward rate. The changing 

time series of the volatility parameter poses a computational difficulty in the context of the 

lattice analysis since it results in non-recombining trees. For a tree to recombine it must be that 

σ(s1, t) = σ(s2, t) for 0 ≤ s1 < s2 < t and for every t, which is equivalent to the assumption of 

constant time series volatility. The cross section of the volatilities does not have to be constant 

though26. See de Munnik (1994) for more on recombining trees within the HJM model. Li, 

Ritchken and Sankarasubramanian (1995) employ the changing probability technique of Nelson 

                                                 
25 Equation (3.42) of the drift term can be confusing for the case when t = 0 and T = 1. Chance (2004) provides the 

alternative equivalent formula:  .2/),(),(),(),( 2
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26 By assuming constant volatility, σ(t, T) = σ for any t and T, and a sole factor, the HJM model is essentially 
reduced to the Ho-Lee model. 

(3.42) 
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and Ramaswamy (1990) to develop a lattice approach for pricing European and American 

interest rate claims using the HJM paradigm that focuses on a class of volatilities that permits a 

Markovian representation of the term structure which allows to avoid the path dependence. 

The discretized version of the HJM model presented above is the one-factor model27 but 

it can be easily extended to a multi-factor model although the computational intensity of such 

models can be substantial. Ağca and Chance (2004) generalize the Grant-Vora result by 

extending the single-factor discrete time Heath-Jarrow-Morton model to a multi-factor world and 

provide numerical examples for a two-factor HJM model. The problem of negative rates can be 

mitigated upon the introduction of exponential dampening to the volatility. The volatility in such 

case, however, becomes time-dependent which makes it impossible to construct a recombining 

lattice of the forward rate evolution. A large number of steps will produce an exponential number 

of nodes (e. g. for T steps the number of nodes at time T is 2T) which makes it impractical to use 

binomial trees. Monte Carlo simulations are generally used in such circumstances instead of the 

binomial lattice. The trade-off between the complexity of the model and the associated 

computational burden is more than often faced by researchers and applies far beyond term 

structure modeling.  

3.3.3 Previous Research on the Application of HJM to Price Eurocurrency Derivatives 

Several studies investigate the pricing of interest rate futures and options on futures by 

utilizing the HJM framework. With one exception, those studies assume constant volatility 

structure. Also with one exception, the single-factor model is employed. 

Using the data for Eurodollar futures and futures options from March 1985 through July 

1988, Flesaker (1993b) studies the empirical performance of the one-factor, constant volatility 

version of the HJM model and documents the tendency for the fitted models to overvalue short-

term options relative to long-term options. Using the dataset from 1985 to 1988, a range of 

volatilities from 1% to 2.5% and maturities of up to three years, Flesaker (1993a) employs the 

same version of HJM to document that the futures-forward yield difference, given the daily 

marking-to-market, is fairly trivial for futures contracts with maturities below a year while for 

longer maturities, the difference may be quite significant and it increases with the maturity and 

                                                 
27 Note that in a linear one-factor model like this all rates are perfectly correlated, corr(f(s, t1), f(s, t2)) = 1 for 0 ≤ s < 

t1 < t2. 
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the level of interest rate volatility28. The study also investigates the effect of varying the 

frequency of marking-to-market and finds that if marking-to-market within the model takes place 

only twice during the life of the contract (including the final settlement), it captures a full half of 

the maximum effect which is reached when prices are marked-to-market continuously; if a one-

year Eurodollar futures contract is marked-to-market once a month, more than 90% of the 

continuously evaluated marking-to-market effect is captured. 

Cakici and Zhu (2001) use the algorithm developed by Ritchken and 

Sankarasubramanian (1995) to make comparisons among the HJM models with different 

volatility structures29 in pricing the Eurodollar futures option. They demonstrate that the 

differences among the HJM models as well as the difference between the HJM models and 

Black’s model are insignificant when the volatility of the forward rate is relatively small while 

higher volatility can lead to a significant difference between the forward price and the Eurodollar 

futures price. However, in the latter case, the impact on the options price remains trivial. 

Using data on US LIBOR rates for the period from 1987 through 2000, Chance (2006b) 

shows that if the one-factor HJM model is used where volatility is constant over time but is 

allowed to vary cross-sectionally, the expiration settlement feature of the Eurodollar futures 

contract accounts for virtually all of the forward-futures price differential and, if removed from 

consideration, the difference between futures and forward prices is less than one basis point, 

which is smaller than the cost of the margin and the bid-ask spread. Using data for multiple 

currencies for the 1987-2000 period, Gupta and Subrahmanyam (2000) employ a two-factor 

HJM with constant volatility to show that the convexity adjustment, measured as a difference in 

yields, can be very large for long-dated contracts (up to 80-100 basis points for a ten-year futures 

contract).  

3.4 Data Description and Methodology 

This paper uses data for GBP (British pound) LIBOR that was obtained from the British 

Bankers' Association website. The data was acquired for the sample period from 1/23/1997 until 

2/28/2007. Swap rates for the same sample period are acquired from the Bloomberg electronic 

service station (mid-quotes of swap rates were used). Using the GBP LIBOR quotes together 

                                                 
28 From two basis points for a two-year maturity with σ = 1% to 28.1 basis points for a three-year maturity with σ = 
2.5%. 
29 Ritchken (1996) provides examples of the most popular forms of the volatility specifications. 
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with the data for British pound plain vanilla swaps of 18 month and two year maturities allows to 

extend the maturity range in the analysis of the forward-futures differential up to 21 months.   

The choice of the use of interest rates for the British currency over its major counterparts, 

the US dollar and the euro currency, in this paper’s analysis is based on two observations. First, a 

rate quote on a plain vanilla fixed-for-floating interest rate swap contract with a maturity of 18 

months is available for the British pound but not for the US dollar on Bloomberg. The 

availability of the 18-month swap rate altogether with those for 12 and 24 months makes it 

possible to extend the maturity range in a spot yield curve up to 24 months as can be seen from 

equation (3.44) later in the section. That will allow to extend the maturity range for the 

Eurocurrency forward-futures differential up to 21 months whereas the often-cited earlier papers 

on the convexity adjustment limit their analysis to maturities of just nine months. Second, the 

euro currency has a relatively short history and the first quotes for interest rate swaps appear on 

1/01/1999. Also the Bloomberg electronic service frequently reports missing swap quotes for 

euro rates, especially for the maturity of 18 months, up until July of 2000, while British pound 

swap rates for the three aforementioned maturities date back to 1/23/1997 and have a complete 

history of quotes since then. These two factors combined make the choice of pound data 

preferable to those of the dollar or the euro. 

One more issue to be addressed before moving on to the description of the methodology 

is the potential for the presence of the asynchronicity bias that may arise when the two data 

subsets (LIBOR quotes and swap rates) are combined. The British Bankers’ Association’s 

LIBOR rates are established and published at 11 am London time. As for the swap rates, 

Rendleman (2004) mentions that the Bloomberg electronic system allows historical data on the 

latter to be collected as of 6 am, 1 pm and 5:30 pm Eastern time of each trading day which 

corresponds to Tokyo, London and New York “closing” times respectively. There is, in fact, no 

market closing in any of those places since swaps can be traded over-the-counter 24 hours a day, 

but Bloomberg created these virtual time stamps as a matter of convenience. If one chooses swap 

rate quotes corresponding to the Tokyo “closing” time, as this paper does, that would perfectly 

match the timing of the LIBOR publication (6 am in New York corresponds to 11 am in 

London). Hence, the results and conclusions will be clean from the errors arising from the use of 

non-synchronous data. 
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The yield curve was interpolated by employing the extended Nelson-Siegel method of 

Svensson (1995) and Nelson and Siegel (1988). According to Bank of International Settlements 

paper No. 25 (2005), this technique has been the most popular numerical optimization approach 

to construct the yield curve. For the interpolation of the zero-coupon yield curve, GBP LIBOR 

rates for all twelve monthly maturities (from one month to twelve months) and implied yields for 

18 months and two years derived from the quoted swap rates were used. Respective maturity 

lengths were computed using the modified following business day convention and the end-end-

dealing rule30. Interpolation is performed for rates instead of implied zero-coupon prices since 

the former approach provides a substantially better fit for shorter maturities (see Svensson 

[1995]). Since the Nelson-Siegel model implies the use of continuously compounded rates, all 

quoted LIBOR rates were converted into rates with actual/365 day count and continuous 

compounding according to the following equation: 
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where rq
(t, m) is the quoted LIBOR for maturity m at time t. Note that quoted LIBORs, as well as 

the swap rates, for the British pound are initially based on the actual/365 day count. 

To calculate implied spot rates for maturities of 18 months and two years, swap rates 

must have first been used to obtain discount factors. The British pound interest rate swap rates 

are quoted similarly to those on US dollar interest rate swaps and both swaps have similar 

structure, notably, the fixed-leg payments are made semi-annually. Therefore, one needs to apply 

the following equation to calculate discount factors for 18 months and two years 
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where S(t, 0.5n) is the discount factor at time t applied for maturity 0.5n and it is equal to exp(-

r(t, 0.5n)0.5n), 

           c(t, 0.5m) is the swap rate for maturity 0.5m at time t, 

                                                 
30 The British Bankers’ Association’s modified following business day convention defines the maturity date as the 
first following day that is a business day in London and the principal financial centre of the currency concerned, 
unless that day falls in the next calendar month. In this case only, the maturity date will be the first preceding day in 
which both London and the principal financial centre of the currency concerned are open for business. The end-end 
dealing rule states that in cases when a deposit is made on the final business day of a particular calendar month, the 
maturity of the deposit shall be on the final business day of the month in which it matures, not the corresponding 
date of the month of maturity. 

(3.44) 

(3.43) 
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           and m of three and four correspond to maturities of 18 and 24 months respectively. 

Afterwards one can compute implied spot rates for those maturities using  

mmtSmtr /)],([ln),( −= . 

To mitigate the influence of interpolation error in the analysis of the forward-futures 

differential the appropriate criteria for an interpolated yield curve allowing it to be included in 

the final sample must be introduced first. A yield curve on a particular business day is considered 

to satisfy the interpolation criteria if the sum of all fourteen absolute fitted errors is below 25 

basis points and each absolute error does not exceed five basis points. Descriptive statistics for 

the obtained interpolated spot rates and implied forward rates for a range of maturities is 

provided in Table 3.1. The annual spot rates across the defined maturities in the sample range 

from 3.34 to 7.83 percent with the rates for longer maturities being less volatile than the rates for 

shorter maturities. A similar pattern is observed for quarterly forward rates as well. After yield 

curves have been constructed, implied forward prices for 90-day contracts are obtained using 
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Table 3.1 Descriptive statistics of the interpolated spot and forward rates 
 
Panel A: Annual continuously compounded spot rates 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 24m 

mean 0.0527 0.0529 0.0532 0.0534 0.0537 0.0540 0.0543 0.0546 

median 0.0495 0.0502 0.0509 0.0511 0.0513 0.0515 0.0518 0.0521 

stdev 0.0116 0.0114 0.0113 0.0111 0.0109 0.0106 0.0104 0.0102 

min 0.0338 0.0336 0.0335 0.0334 0.0336 0.0335 0.0334 0.0335 

max 0.0779 0.0778 0.0774 0.0778 0.0783 0.0773 0.0758 0.0752 

 
Panel B: Quarterly continuously compounded forward rates 

 Maturity 

 spot 3m 6m 9m 12m 15m 18m 21m 

mean 0.0132 0.0133 0.0134 0.0136 0.0137 0.0139 0.0140 0.0142 

median 0.0124 0.0128 0.0128 0.0130 0.0132 0.0134 0.0137 0.0139 

stdev 0.0029 0.0029 0.0028 0.0027 0.0026 0.0025 0.0024 0.0024 

min 0.0084 0.0084 0.0082 0.0081 0.0082 0.0082 0.0083 0.0084 

max 0.0195 0.0195 0.0208 0.0212 0.0201 0.0192 0.0201 0.0210 
 

This paper follows the usual practice of setting the risk-neutral probabilities of up and 

down movements at one half to fit the discrete version of the HJM tree. Once the tree is 

(3.45) 

(3.46) 
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established, the interest rate contingent claims can be priced using backward recursion. Futures 

prices are computed using (3.21)31. 

Four popular volatility specifications are considered in order to construct the lattice of 

interest rate evolution within the HJM framework: 

a) Volatility is a function of maturity time only, i. e. σ(t1,T) = σ(t2,T) for 0 ≤ t1 < t2 < T and 

for every T. This is the least computationally burdensome case since it results in a recombining 

tree. 

b) Volatility is a function of time to maturity only, i. e. σ(t1,T1) = σ(t2,T2) for T1 – t1 = T2 – t2. 

This is a more realistic case compared to the one above since empirical observations demonstrate 

that volatility indeed varies with time to maturity. The resulting tree, however, is a non-

recombining one. 

c) Exponentially dampened volatility, σ(t,T) = σexp[-λ(T-t)]. This volatility specification is 

similar to that in b) since it is also a function of time to maturity. The resulting tree does not 

recombine as well. 

d) Proportional exponentially dampened volatility, σ(t,T) = σf(t,T)
γ
exp[-λ(T-t)]. The volatility 

is a function of both time to maturity and the forward rate of that maturity at the point of time. 

This kind of volatility specification is the most demanding out of all four presented in terms of 

required computational time and effort since future volatilities for the whole term structure of 

forward rates are not known at the original point of time zero but instead must be updated at each 

subsequent node since they depend on the resulting forward rates. The choice of the parameter γ 

is tricky. First, it must be positive since a negative value of γ may result in exploding forward 

rates. Second, the parameter is recommended to be equal to or above one since for the case when 

0 < γ < 1, there exists a positive probability that volatilities and subsequent forward rates will 

switch to complex numbers as soon as a forward rate along the tree turns negative, a common 

drawback of the HJM model. However, even if γ is taken to be a unit or above, the problems still 

may arise, as will be explained later. 

 

 

 

                                                 
31 Note from (3.22) and (3.27), that in order to compute the futures price and the two components of the forward-
futures differential, the modeled continuously compounded short rate r must be converted into the rate with periodic 
compounding as required by the futures pricing model. Hence, the required rate is obtained as exp(r) – 1. 
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3.5 Results for the Forward-Futures Differential and Its Two Components 

3.5.1 Results for a Step Size of Three Months 

It would be standard to build a tree that describes the evolution of three-month forward 

rates with a step length of three months. All forward rates are converted to quarterly 

continuously compounded rates. This paper relies on historical standard deviations to specify 

volatility functions. Forward rate volatilities for the first two specifications described above are 

computed as the daily standard deviations measured over the previous 62 business days 

multiplied by the square root of 62. For the exponentially dampened volatility, parameters σ and 

λ must be identified. Linear regression analysis is used for that purpose. Once historical quarterly 

volatilities of seven forward rates32 are computed as described above, their natural logarithms are 

regressed on respective time to maturity intervals. The resulting slope is the negative λ, while the 

exponential of the intercept is equal to σ. For the proportional exponentially dampened volatility, 

this paper follows a number of previous studies and chooses the value of the parameter γ equal to 

one. Subsequently, the natural logarithms of the ratio of historical volatilities over the respective 

forward rates are regressed on time to maturity ranges which yields parameters λ and σ as 

negative of the slope and exponential of the intercept respectively. In total, the number of 

business day observations for each volatility specification in the sample is equal to 2,477. 

The resulting statistics for the forward-futures price differential and its two components 

for four different volatility specifications are presented in Table 3.2. The average value of the 

differential increases with maturity across all volatility specifications, however, it does not 

exceed 3.6 basis points for the maturity of twelve months and 9.5 basis points for the maturity of 

21 months. The settlement component has a dominant presence but its average percentage of the 

differential declines with maturity although its share still exceeds one half for the longest 

maturity in the sample. The average values of the marking-to-market component increase sharply 

with maturity but its size is miniscule: across all four panels of the table it does not exceed a 

mere basis point for the twelve months maturity and is below four basis points when the maturity 

is 21 months for three volatility specifications. Results in panel B and panel C are very close to 

each other since the volatility expressed as a function of time to maturity only may be treated as 

a special case of the exponentially dampened specification: if R-squared for the regression of the 

log of volatility on time to maturity is high (and in most cases in the sample it is so), the obtained 

                                                 
32 Excluding the spot rate 
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Table 3.2 Forward-futures differential and its two components when the length of step is equal to 
three months, in basis points 
 
Panel A: Volatility is a function of maturity time 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.93 2.23 2.80 3.58 4.52 5.68 7.25 

median 1.67 1.89 2.52 3.16 3.85 4.84 5.93 

stdev 0.82 0.91 1.25 1.80 2.46 3.22 4.38 

min 0.71 0.73 0.84 1.12 1.52 1.73 1.81 

max 3.98 5.05 7.61 11.82 16.23 19.68 24.78 

Settlement element     

mean 1.93 2.12 2.39 2.67 2.92 3.20 3.59 

av.  %* 100.00 95.58 87.59 78.44 69.70 61.91 54.97 

median 1.67 1.81 2.18 2.52 2.70 2.93 3.20 

stdev 0.82 0.85 0.93 1.01 1.09 1.24 1.63 

min 0.71 0.72 0.78 0.94 1.19 1.37 1.43 

max 3.98 4.71 5.69 6.32 7.03 7.89 11.01 

Marking-to-market element     

mean 0.00 0.11 0.40 0.91 1.60 2.48 3.65 

av. %* 0.00 4.42 12.41 21.56 30.30 38.09 45.03 

median 0.00 0.06 0.20 0.49 1.00 1.73 2.69 

stdev 0.00 0.13 0.44 0.94 1.53 2.16 2.96 

min 0.00 0.00 0.03 0.07 0.14 0.23 0.31 

max 0.00 0.69 2.47 5.49 9.19 12.62 15.00 

 
Panel B: Volatility is a function of time to maturity 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.93 2.19 2.66 3.32 4.16 5.18 6.42 

median 1.67 1.86 2.39 2.94 3.49 4.16 5.18 

stdev 0.82 0.90 1.16 1.65 2.30 3.08 3.97 

min 0.71 0.72 0.80 0.98 1.30 1.62 1.79 

max 3.98 4.74 6.79 10.33 14.82 19.76 24.70 

Settlement element     

mean 1.93 2.09 2.29 2.52 2.76 3.01 3.28 

av.  %* 100.00 95.45 88.07 79.79 71.69 64.21 57.40 

median 1.67 1.79 2.04 2.39 2.61 2.80 2.99 

stdev 0.82 0.84 0.89 0.96 1.06 1.17 1.33 

min 0.71 0.71 0.75 0.85 1.01 1.20 1.39 

max 3.98 4.58 5.05 5.60 6.51 7.45 8.32 

Marking-to-market element     

mean 0.00 0.11 0.37 0.80 1.40 2.17 3.14 

av. %* 0.00 4.55 11.93 20.21 28.31 35.79 42.60 

median 0.00 0.06 0.19 0.43 0.80 1.35 2.14 

stdev 0.00 0.13 0.41 0.85 1.41 2.05 2.78 

min 0.00 0.00 0.02 0.05 0.11 0.18 0.28 

max 0.00 0.69 2.26 4.84 8.30 12.31 16.46 
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(Table 3.2 continued) 
 
Panel C: Exponentially dampened volatility 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.93 2.19 2.64 3.29 4.13 5.17 6.41 

median 1.67 1.87 2.35 2.92 3.48 4.16 5.15 

stdev 0.82 0.89 1.14 1.62 2.28 3.08 3.96 

min 0.71 0.72 0.80 0.98 1.29 1.62 1.79 

max 4.13 4.92 6.92 10.36 14.83 19.79 24.70 

Settlement element     

mean 1.93 2.08 2.28 2.50 2.75 3.01 3.28 

av.  %* 100.00 95.42 88.18 79.97 71.81 64.23 57.46 

median 1.67 1.79 2.02 2.38 2.61 2.80 2.99 

stdev 0.82 0.83 0.87 0.95 1.05 1.18 1.32 

min 0.71 0.71 0.75 0.85 1.00 1.19 1.39 

max 4.13 4.59 5.01 5.54 6.52 7.47 8.31 

Marking-to-market element     

mean 0.00 0.11 0.36 0.78 1.38 2.16 3.13 

av. %* 0.00 4.58 11.82 20.03 28.19 35.77 42.55 

median 0.00 0.06 0.19 0.42 0.79 1.32 2.12 

stdev 0.00 0.13 0.41 0.84 1.39 2.05 2.78 
min 0.00 0.00 0.02 0.05 0.11 0.18 0.28 

max 0.00 0.68 2.31 4.84 8.31 12.34 16.46 

 
Panel D: Proportional exponentially dampened volatility (γ = 1) 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.95 2.24 2.74 3.51 4.68 6.50 9.48 

median 1.70 1.89 2.47 2.95 3.55 4.38 5.71 

stdev 0.83 0.92 1.27 2.01 3.33 5.58 9.93 

min 0.71 0.73 0.80 0.97 1.30 1.60 1.77 

max 4.16 5.03 7.80 12.55 20.70 35.65 66.37 

Settlement element     

mean 1.95 2.12 2.35 2.66 3.10 3.77 4.95 

av.  %* 100.00 95.17 88.18 80.40 72.50 65.01 58.43 

median 1.70 1.81 2.11 2.46 2.77 2.97 3.43 

stdev 0.83 0.85 0.93 1.15 1.61 2.54 4.71 

min 0.71 0.71 0.75 0.84 1.01 1.27 1.40 

max 4.16 4.58 5.30 7.18 11.29 19.20 34.02 

Marking-to-market element     

mean 0.00 0.12 0.38 0.85 1.58 2.73 4.53 

av. %* 0.00 4.83 11.82 19.60 27.50 34.99 41.57 

median 0.00 0.06 0.19 0.43 0.82 1.44 2.46 

stdev 0.00 0.15 0.45 0.97 1.79 3.10 5.30 

min 0.00 0.01 0.02 0.05 0.10 0.18 0.27 

max 0.00 0.84 2.51 5.41 10.20 18.35 32.45 
*av. % denotes an average share of the respective element in the forward-futures differential (percentage) 
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results with these two volatility specification do not differ significantly. Both values and standard 

deviations of the differential and its components are visibly higher for longer maturities when the 

volatility is specified as the proportional exponentially dampened one. This is an expected result 

since given this volatility specification interest rates are more prone to the explosiveness 

problem. Given the small number of steps (seven) in the model, the explosion of forward rates 

does not quite show up yet but the magnitude of variation in the produced results in panel D of 

the table is relatively high. If one compares minimum values of the differential and its 

components in panel D with those in other panels, they barely differ, while maximum values in 

panel D are significantly higher and the difference rises sharply with the maturity. Except for the 

explosiveness problem, the use of proportional exponentially dampened volatility may result in 

negative volatilities. This drawback can be eliminated by choosing γ equal to two. That would 

accelerate the explosion process of interest rates: the problem becomes more severe with a higher 

γ
33. 

The notable feature of all four panels of Table 3.2 is that on all occasions the value of the 

differential and its two components is non-negative, as predicted by the theory. The value of the 

marking-to-market component of the three-month differential is always a zero. This is the result 

of the choice of the step length: since no marking-to-market takes place between now and three 

months from now, its value is zero. A legitimate concern about the presented results regards the 

possibility that the values of the differential in general and those of marking-to-market element 

in particular are underestimated due to the chosen length of the step of the binomial tree. The 

implication of such specification is that marking-to-market takes place every three months while 

in practice it is done daily. Theoretically, one needs to use futures prices from contracts that are 

marked-to-market at the same periodicity as the time interval of the model. However, only daily 

marked-to-market price quotes are normally available. Therefore, an appropriate form of 

marking-to-market adjustment must be introduced. 

3.5.2 Results for a Monthly Step 

To verify how length of the tree step may affect the results, one may construct a tree with 

a step of a smaller size; it, however, would result in an exponentially increasing number of nodes 

after each extra step. For instance, in the context of this paper’s analysis, a tree with a monthly 

                                                 
33 For a subsample of the original sample employed in this paper, γ of two results in rates above 100 percent after the 
third step in the tree has been reached. 
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step would result in 2,097,152 nodes after the last step is made. The alternative solution is to 

conduct Monte Carlo simulations. Note however that if a monthly step (∆t) is chosen, one no 

longer models the term structure of three-month forward rates, since the modeled forward rates 

are the rates that apply for the time period of ∆t, i. e. one month. Hence, the term structure of 

one-month forward rates is constructed34, while the three-month forward rates are calculated 

using the following no-arbitrage requirement: 

F(t,s,s+3∆t) = F(t,s,s+∆t) + F(t,s+∆t,s+2∆t) + F(t,s+2∆t,s+3∆t)  for  s ≥ t. 

Eventually, the expected future three-month spot rates are computed that allows to calculate 

futures prices and compare them to observed forward prices. The settlement component is 

computed as the sum of the first three terms on the right side of (3.27), while the marking-to-

market component is taken as the difference between the obtained forward-futures price 

differential and its settlement element.  

The author employs 1,000 draws of the vector of standard normally distributed variables 

for each business day observation in the sample. Also the antithetic variate technique is 

employed by changing signs of the values of each drawn vector of random elements and building 

the evolution of forward rates anew. Therefore, the total number of the forward rate paths built 

for each observation in the sample is 2,000. Then averages of the differential and its two 

elements across 2,000 different paths are taken and recorded as the forward-futures differential, 

the settlement element and the marking-to-market element for that particular business day in the 

sample for the case when marking-to-market is conducted monthly. The resulting statistics for 

the whole sample for four employed volatility specifications are presented in Table 3.3. 

Comparing results in Table 3.3 with those in Table 3.2 panel by panel it becomes evident 

that reduction of the step length from three months to one month does not result in any 

significant differences. As expected, the marking-to-market components of the three-month 

differential is not zero anymore but its average value across all panels is just 0.03 basis points. 

For other maturities the average marking-to-market component increases slightly relative to its 

values in Table 3.2 for panels A, B and D and decreases slightly for longer maturities in panel C. 

                                                 
34 One-month forward rates are taken as monthly continuously compounded rates. Volatilities for the first two 
specifications are taken as the daily standard deviation of the respective monthly forward rate computed using data 
for 62 previous business days multiplied by the square root of 62/3. Parameters for exponentially and proportional 
exponentially dampened volatilities are found in the same manner as described above for the general case when the 
three-month step is used. 

(3.47) 



 73 

Table 3.3 Forward-futures differential and its two components when the length of step is equal to 
one month, in basis points 
 
Panel A: Volatility is a function of maturity time 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.96 2.30 2.92 3.77 4.78 5.99 7.65 

median 1.71 1.95 2.60 3.27 4.01 5.06 6.23 

stdev 0.84 0.96 1.36 1.98 2.68 3.48 4.68 

min 0.72 0.74 0.86 1.17 1.55 1.78 1.84 

max 4.05 5.30 8.38 12.93 17.68 21.30 26.19 

Settlement element     

mean 1.93 2.13 2.40 2.67 2.93 3.21 3.61 

av.  %* 98.65 93.16 84.66 75.47 66.93 59.40 52.73 

median 1.67 1.81 2.19 2.52 2.70 2.95 3.21 

stdev 0.82 0.85 0.94 1.02 1.10 1.25 1.64 

min 0.71 0.72 0.79 0.94 1.19 1.38 1.44 

max 3.99 4.78 5.79 6.57 7.38 8.04 11.60 

Marking-to-market element     

mean 0.03 0.18 0.53 1.09 1.84 2.78 4.04 

av. %* 1.35 6.84 15.34 24.53 33.07 40.60 47.27 

median 0.01 0.10 0.27 0.60 1.15 1.94 3.00 

stdev 0.04 0.21 0.58 1.12 1.75 2.41 3.26 

min 0.00 0.01 0.03 0.08 0.17 0.26 0.34 

max 0.28 1.17 3.26 6.56 10.52 14.13 16.55 

 
Panel B: Volatility is a function of time to maturity 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.95 2.22 2.68 3.35 4.19 5.22 6.46 

median 1.70 1.89 2.36 2.93 3.47 4.19 5.03 

stdev 0.84 0.94 1.22 1.71 2.38 3.17 4.07 

min 0.71 0.72 0.80 0.97 1.26 1.59 1.77 

max 3.99 4.87 6.74 10.32 14.94 20.04 25.26 

Settlement element     

mean 1.92 2.07 2.26 2.49 2.73 2.98 3.25 

av.  %* 98.70 93.92 86.79 78.76 70.83 63.48 56.83 

median 1.68 1.78 1.98 2.35 2.59 2.76 2.96 

stdev 0.83 0.84 0.88 0.95 1.05 1.17 1.31 

min 0.71 0.70 0.74 0.83 0.97 1.16 1.36 

max 3.93 4.62 4.92 5.51 6.59 7.86 8.94 

Marking-to-market element     

mean 0.03 0.15 0.42 0.86 1.46 2.24 3.21 

av. %* 1.30 6.08 13.21 21.25 29.17 36.52 43.17 

median 0.01 0.08 0.23 0.47 0.86 1.39 2.20 

stdev 0.04 0.20 0.49 0.93 1.49 2.15 2.89 

min 0.00 0.01 0.02 0.05 0.10 0.17 0.27 

max 0.30 1.30 2.75 5.14 8.68 12.85 17.31 
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(Table 3.3 continued) 
 
Panel C: Exponentially dampened volatility 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.96 2.22 2.61 3.16 3.90 4.90 6.25 

median 1.72 1.89 2.27 2.79 3.31 3.98 4.99 

stdev 0.84 0.93 1.17 1.57 2.14 2.88 3.85 

min 0.72 0.72 0.79 0.96 1.24 1.51 1.72 

max 4.16 4.86 6.57 9.26 12.93 17.72 23.84 

Settlement element     

mean 1.93 2.06 2.21 2.39 2.60 2.85 3.18 

av.  %* 98.42 93.48 86.99 79.74 72.17 64.60 57.40 

median 1.68 1.78 1.93 2.20 2.47 2.68 2.93 

stdev 0.82 0.83 0.86 0.90 0.97 1.08 1.24 

min 0.71 0.70 0.74 0.81 0.93 1.12 1.37 

max 4.06 4.64 4.96 5.00 5.67 6.44 7.80 

Marking-to-market element     

mean 0.03 0.16 0.40 0.77 1.30 2.05 3.07 

av. %* 1.59 6.52 13.01 20.26 27.83 35.40 42.60 

median 0.02 0.08 0.22 0.43 0.78 1.28 2.12 

stdev 0.04 0.21 0.48 0.86 1.35 1.96 2.76 
min 0.00 0.01 0.02 0.04 0.08 0.15 0.25 

max 0.26 1.19 2.59 4.60 7.56 11.37 16.20 

 
Panel D: Proportional exponentially dampened volatility (γ = 1) 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.97 2.27 2.73 3.48 4.65 6.51 10.48 

median 1.71 1.93 2.32 2.84 3.33 4.15 5.48 

stdev 0.88 1.12 1.59 2.48 3.94 6.47 14.42 

min -0.16 -2.10 -0.58 -1.57 -0.28 0.18 -0.88 

max 4.85 11.82 15.84 22.47 34.56 58.64 186.98 

Settlement element     

mean 1.94 2.09 2.30 2.59 3.02 3.75 5.78 

av.  %* 99.45 95.69 91.61 84.01 76.31 69.89 62.83 

median 1.69 1.79 2.02 2.35 2.65 2.90 3.34 

stdev 0.83 0.84 0.93 1.15 1.69 2.89 9.00 

min 0.71 0.70 0.73 0.81 0.94 1.20 1.37 

max 4.11 4.67 5.84 9.98 16.55 33.14 159.09 

Marking-to-market element     

mean 0.03 0.18 0.44 0.89 1.63 2.76 4.70 

av. %* 0.55 4.31 8.39 15.99 23.69 30.11 37.17 

median 0.01 0.05 0.16 0.37 0.76 1.33 2.25 

stdev 0.21 0.56 0.95 1.57 2.44 3.80 6.23 

min -1.64 -3.99 -3.43 -3.89 -2.32 -2.07 -4.12 

max 2.17 7.71 10.00 14.71 19.55 26.77 40.64 
*av. % denotes an average share of the respective element in the forward-futures differential (percentage) 
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The difference in the respective average values of the marking-to-market component increases 

with maturity but never exceeds 0.4 basis points. It is the same for the average values of the 

forward-futures differential, except for the longest maturity in panel D where the value of the 

differential is above that in Table 3.2 by a full basis point. The variability of results in panel D of 

Table 3.3 is significant and on a number of occasions negative values of the forward-futures 

differential and its marking-to-market component are produced which is the result of the 

combination of negative rates and negative volatilities. On the opposite side, maximum values of 

the differential and its settlement components are well above 100 basis points, the result of rate 

explosiveness35. Overall, the results in Panel D are less reliable compared to those in other panels 

due to the aforementioned drawbacks of the proportional exponentially dampened volatility.  

3.5.3 Results for a Weekly Step 

The analysis goes further and investigates how the picture would look like if marking-to-

market is conducted weekly. For that purpose weekly forward rates must be modeled36 and thee-

month forward and spot rates can be derived through the no-arbitrage condition similar to that in 

(3.47). Computational time rises significantly for the weekly step, hence, we limit the number of 

draws to 100. Along with the antithetic variate, the number of total paths for each observation is 

the sample totals to 200. Table 3.4 presents the results for the first 100 business day observations 

in the sample when simulations of weekly forward rates are conducted with 100 versus 1,000 

random draws. It is evident that a sharp increase in the number of draws results in small 

insignificant improvements for three out of four volatility specifications. For the proportional 

exponentially dampened volatility the difference is significant and rises sharply with maturity 

which is the result of the explosive nature of forward rates and negative volatilities arising in this 

volatility specification. It lets one conclude that the problem of rate explosion under the 

proportional exponentially dampened volatility specification becomes more severe with a smaller 

size of the step. Also the sufficient evidence is obtained that conducting Monte Carlo simulations 

using a weekly step with only 100 draws along with the antithetic variate for the sake of avoiding 

the substantial computational burden, with the exception of the case of the proportional 

                                                 
35 See footnote 23 on page 60 that mentions a general version of the volatility specification prone to this problem. 
The proportional exponentially dampened volatility specification is just an another variation of it. 
36 Weekly forward rates are taken as weekly continuously compounded rates. Volatilities for the first two 
specifications are taken as the daily standard deviation of the respective weekly forward rate computed using data 
for 62 previous business days multiplied by the square root of 62/13. Parameters for exponentially and proportional 
exponentially dampened volatilities are found in the same manner as described above for the general case when the 
three-month step is used. 
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exponentially dampened volatility, does not result in sharply skewed results in the context of the 

paper’s analysis. The resulting statistics for the forward-futures differential and its two 

components with a weekly step are presented in Table 3.5. 

Table 3.4 Absolute differences in the forward-futures differential using Monte Carlo simulations 
with 100 draws versus 1,000 draws when the length of step is equal to one week, in basis points 
 
Panel A: Volatility is a function of maturity time 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

mean 0.01 0.01 0.01 0.02 0.04 0.07 0.11 

median 0.00 0.01 0.01 0.02 0.03 0.04 0.09 

stdev 0.01 0.01 0.01 0.02 0.04 0.06 0.09 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

max 0.03 0.04 0.07 0.12 0.23 0.32 0.44 

 
Panel B: Volatility is a function of time to maturity 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

mean 0.01 0.01 0.02 0.02 0.03 0.04 0.05 

median 0.00 0.01 0.02 0.02 0.02 0.03 0.05 

stdev 0.01 0.01 0.02 0.02 0.03 0.03 0.04 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

max 0.05 0.07 0.12 0.11 0.13 0.18 0.26 

 
Panel C: Exponentially dampened volatility 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

mean 0.01 0.01 0.02 0.03 0.03 0.04 0.06 

median 0.00 0.01 0.01 0.02 0.02 0.03 0.04 

stdev 0.00 0.01 0.02 0.02 0.03 0.04 0.05 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

max 0.02 0.04 0.07 0.10 0.13 0.15 0.20 

 
Panel D: Proportional exponentially dampened volatility (γ = 1) 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

mean 0.33 0.64 1.11 1.44 1.90 2.59 3.22 

median 0.28 0.48 0.86 1.12 1.52 2.19 2.54 

stdev 0.31 0.55 0.98 1.32 1.71 2.16 2.73 

min 0.00 0.02 0.01 0.03 0.01 0.00 0.04 

max 1.68 2.46 5.36 6.67 7.25 11.66 16.62 
 

By comparing results for the volatility specification when it is a function of maturity with 

those in Table 3.3, no major changes are noticed. The average values of the forward-futures 

differential are higher than their respective values when a monthly step is employed but the 

maximum difference is 0.17 basis points for the longest maturity in the sample. This miniscule  
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Table 3.5 Forward-futures differential and its two components when the length of step is equal to 
one week, in basis points 
 
Panel A: Volatility is a function of maturity time 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.98 2.34 2.99 3.85 4.89 6.13 7.82 

median 1.72 1.96 2.63 3.37 4.07 5.15 6.37 

stdev 0.86 1.01 1.43 2.06 2.77 3.58 4.81 

min 0.72 0.74 0.86 1.16 1.56 1.78 1.87 

max 4.26 5.52 8.84 13.80 18.99 22.69 27.10 

Settlement element     

mean 1.93 2.13 2.40 2.68 2.94 3.22 3.62 

av.  %* 97.81 91.88 83.25 74.12 65.69 58.26 51.74 

median 1.67 1.81 2.16 2.50 2.70 2.96 3.19 

stdev 0.83 0.86 0.95 1.04 1.12 1.28 1.68 

min 0.71 0.71 0.77 0.91 1.14 1.36 1.41 

max 4.02 4.87 6.05 7.40 8.81 8.90 12.09 

Marking-to-market element     

mean 0.05 0.22 0.59 1.18 1.95 2.91 4.20 

av. %* 2.19 8.12 16.75 25.88 34.31 41.74 48.26 

median 0.02 0.12 0.32 0.65 1.22 2.04 3.11 

stdev 0.07 0.26 0.64 1.20 1.83 2.51 3.36 

min 0.00 0.01 0.03 0.08 0.17 0.26 0.34 

max 0.46 1.37 3.67 7.19 11.24 15.20 17.43 

 
Panel B: Volatility is a function of time to maturity – full sample 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 2.78 3.21 3.86 4.73 5.77 6.98 8.42 

median 1.71 1.89 2.35 2.91 3.54 4.30 5.21 

stdev 4.36 4.85 5.49 6.37 7.24 8.02 9.01 

min 0.71 0.72 0.80 0.97 1.25 1.59 1.76 

max 34.08 36.38 38.70 42.36 50.13 59.06 66.21 

Settlement element     

mean 2.55 2.71 2.89 3.14 3.39 3.63 3.91 

av.  %* 96.74 91.24 83.82 75.91 68.16 61.02 54.68 

median 1.68 1.78 1.97 2.32 2.57 2.78 3.01 

stdev 3.66 3.70 3.59 3.69 3.74 3.64 3.66 

min 0.71 0.70 0.73 0.82 0.94 1.12 1.32 

max 33.74 32.90 33.08 32.17 32.93 31.48 30.58 

Marking-to-market element     

mean 0.23 0.50 0.97 1.59 2.38 3.35 4.52 

av. %* 3.26 8.76 16.18 24.09 31.84 38.98 45.32 

median 0.02 0.10 0.26 0.53 0.94 1.50 2.26 

stdev 0.80 1.33 2.19 3.04 3.90 4.81 5.77 

min 0.00 0.00 0.02 0.05 0.09 0.16 0.26 

max 8.06 9.37 17.57 26.64 34.87 40.40 47.70 
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(Table 3.5 continued) 
 
Panel C: Volatility is a function of time to maturity – subsample excluding 10 percent of data points with the highest 
volatility of the forward rate with maturity of one week  

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.81 2.07 2.50 3.14 3.96 4.97 6.18 

median 1.61 1.82 2.21 2.70 3.32 3.97 4.83 

stdev 0.76 0.85 1.10 1.58 2.24 3.05 3.95 

min 0.71 0.72 0.80 0.97 1.25 1.59 1.76 

max 3.99 4.98 6.69 10.40 14.91 20.29 25.72 

Settlement element     

mean 1.78 1.92 2.11 2.33 2.58 2.84 3.11 

av.  %* 98.41 93.63 86.60 78.61 70.66 63.30 56.70 

median 1.57 1.71 1.90 2.12 2.39 2.62 2.84 

stdev 0.74 0.75 0.79 0.86 0.98 1.12 1.29 

min 0.71 0.70 0.73 0.82 0.94 1.12 1.32 

max 3.92 4.62 4.99 6.00 7.13 8.45 9.53 

Marking-to-market element     

mean 0.03 0.15 0.39 0.80 1.38 2.14 3.07 

av. %* 1.59 6.37 13.40 21.39 29.34 36.70 43.30 

median 0.01 0.08 0.22 0.44 0.78 1.24 2.01 

stdev 0.04 0.19 0.46 0.88 1.43 2.08 2.81 
min 0.00 0.00 0.02 0.05 0.09 0.16 0.26 

max 0.45 1.55 2.92 5.12 8.59 12.91 17.41 

 
Panel D: Exponentially dampened volatility 

 Maturity 

 3m 6m 9m 12m 15m 18m 21m 

Forward-futures price differential     

mean 1.97 2.25 2.66 3.22 3.97 4.96 6.29 

median 1.73 1.89 2.27 2.78 3.35 3.92 4.88 

stdev 0.86 0.99 1.26 1.68 2.24 2.96 3.90 

min 0.72 0.73 0.79 0.94 1.25 1.50 1.72 

max 4.47 5.41 6.96 8.97 12.40 17.30 23.64 

Settlement element     

mean 1.93 2.06 2.21 2.39 2.60 2.85 3.16 

av.  %* 97.86 92.69 86.14 78.92 71.44 64.01 56.94 

median 1.68 1.79 1.92 2.16 2.44 2.66 2.89 

stdev 0.84 0.86 0.89 0.94 1.01 1.11 1.25 

min 0.71 0.71 0.73 0.79 0.90 1.10 1.37 

max 4.34 4.67 5.19 5.67 6.23 7.22 8.98 

Marking-to-market element     

mean 0.04 0.19 0.44 0.83 1.37 2.11 3.13 

av. %* 2.14 7.31 13.87 21.08 28.56 35.99 43.06 

median 0.02 0.09 0.23 0.45 0.78 1.27 2.08 

stdev 0.06 0.24 0.53 0.91 1.40 2.02 2.80 

min 0.00 0.01 0.02 0.04 0.07 0.13 0.22 

max 0.43 1.53 3.06 4.89 7.15 10.68 15.68 

*av. % denotes an 
average share of the 
respective element 
in the forward-
futures differential 
(percentage) 
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increase is completely due to the rise in the values of the market-to-market component as the 

mean and median values of the settlement component stay virtually unchanged. As a result, the 

share of the marking-to-market component increases across all maturities, however, it remains 

below 50 percent for the sample’s longest maturity. By comparing results of panel A with those 

from Table 3.2, the evidence is unchanged: reduction of the step size from three months to one 

week improves average values of the marking-to-market component marginally but does not 

affect those of the settlement component. This, nevertheless, results in a higher share of the latter 

component across all maturities in the sample. However, the settlement component remains the 

dominant one, while for the longest maturity in the sample (21 months), the two components are 

almost equally important. 

Moving on to panel B of Table 3.5 that lists statistics for volatility defined as a function 

of time to maturity, and comparing the results with those in Table 3.3, quite a few discrepancies 

can be noticed. Average values of the differential increase by more than a basis point for six out 

of eight maturities, standard deviations of the differential and its settlement component are 

visibly higher, especially for shorter maturities. Finally, maximum values are much higher in 

general while in particular, striking maximum values are displayed in the section about the 

settlement component, being in excess of 30 basis points for all eight maturities. These results 

are model driven, however, and they arise due to a combination of two methods used: volatility 

specification and interpolation technique. Recall that LIBOR rates with maturities from one to 

twelve months as well as swap rates for maturities of 18 and 24 months were used to build the 

yield curve. With a weekly step, however, the input set of the discrete HJM model includes spot 

rates for maturities less than a month. Since such rates lie beyond the interval of maturities used 

for interpolation37, they are less reliable and prone to considerable variation. The magnitudes of 

those rates are not of concern, however, since their evolution does not affect the computation of 

the differential with a maturity of three months or beyond, but their volatilities do enter the 

model and are used at every step according to the volatility specification employed. This is not 

an issue when the volatility is a function of maturity time but it is a problem when the volatility 

is a function of time to maturity. Abnormally high volatility values may enter the computations 

                                                 
37 This situation could be avoided if the one-week LIBOR was included in the sample of data used for interpolation. 
The one-week GBP LIBOR quote, however, is available only for the period starting 12/1/1997. It is unlikely to 
expect that changing the interpolation interval for the subsample of data would affect the paper’s findings and 
conclusions. Meanwhile, careful illustration of the problem deserves some attention as it represents a warning 
aiming to help to avoid pitfalls when modeling the term structure of interest rates.  
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of the futures rates with all maturities in the sample resulting in abnormally high future spot rates 

leading to extreme values of the differential and its two components. The good news is that just 

about 10-15 percent of the sample experience abnormally high volatilities for the weekly forward 

rates with maturities of less than a month. Figure 3.1 illustrates a scatterplot of weekly rates for 

the sample of shortest maturities and Table 3.6 shows values of standard deviations for ten 

quintiles for those weekly rates. As can be seen from the scatterplot, weekly rates for out-of-

sample maturities (maturities of up to four weeks) are subject to the presence of outliers. The 

presence of outliers results in abnormally high volatilities for a subsample of rates. Table 3.6 

presents evidence of the latter: the ninth quintiles of standard deviations of weekly rates with 

maturity of four weeks or below as well as their respective maximum values are substantially 

higher than those for rates with the nearest maturities above four weeks. 

 

Figure 3.1 Scatterplot of weekly forward rates in the sample for maturities ranging from one 
week to eight weeks 

 

The results would be more reliable if the percentage of data points with highest 

volatilities for rates with shortest maturities is excluded from the original sample. For that 

purpose all of 2,477 day-observations are sorted by the volatility of the weekly forward rate with 
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the shortest available maturity (one week, if the spot rate is ignored) and the tenth highest 

quintile of the sorted data is subsequently cut out. The statistics for the resulting subsample are 

presented in panel C of Table 3.5. By comparing them with those in panel B of Table 3.3, a small 

change can be identified. The mean and the median values of the differential and its two 

components have become slightly lower (the artifact of excluding data points with highest 

volatilities) but the differences across maturities do not exceed 0.30 basis points. The shares of 

the two components remain virtually unchanged and they stay higher than the respective values 

in panel A of Table 3.5 when volatility is specified as a function of maturity only. The 

differences of reported statistics from those in panel B of Table 3.1 when a three-month step is 

used are barely noticeable either. 

Table 3.6 Quintiles of standard deviation values of the forward rates with eight shortest 
maturities (excluding the spot rate) in the sample when the HJM is constructed with a weekly 
size of the step 
 

Quintile  Maturity, 
weeks 1st 2nd 3rd 4th 5th 6th 7th 8th 9th max 

 105 ×          

One 0.96 1.70 2.67 3.46 4.43 5.10 6.95 9.70 15.98 3990 

 105 ×          

Two 0.85 1.49 2.32 3.31 4.37 5.13 6.64 9.62 15.79 563.5 

 105 ×          

Three 0.99 1.45 2.23 3.27 4.10 4.67 5.98 8.42 14.93 84.82 

 105 ×          

Four 0.96 1.45 2.01 2.89 3.74 4.40 5.57 7.07 12.13 32.53 

 105 ×          

Five 0.91 1.39 1.91 2.56 3.38 4.15 4.87 6.36 9.79 21.19 

 105 ×          

Six 0.90 1.39 2.01 2.57 3.53 4.22 4.95 6.39 9.55 21.34 

 105 ×          

Seven 0.91 1.43 2.09 2.63 3.51 4.39 5.28 6.55 9.61 21.34 

 105 ×          

Eight 0.99 1.47 2.10 2.67 3.45 4.59 5.57 6.79 9.67 21.21 
 

Panel D of Table 3.5 reports statistics when volatility is defined as the exponentially 

dampened one. The reported results do not differ significantly from those in Table 3.3 and the 

pattern is similar to that observed for volatility as a function of maturity time, i. e. the average 

values of the marking-to-market component increase slightly (by 0.01-0.07 basis points) while 

the average values of the settlement component stay unchanged. These results do not differ 

significantly from those reported in Table 3.1 where the three-month step is used either. Since 

the exponentially dampened volatility specification is also defined as a function of time to 
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maturity, the question of why it manages to avoid the drawback of using high volatilities for 

rates with short maturities observed in panel B of Table 3.5 arises. The answer is that the 

resulting shape of the volatility structure as a function of time to maturity for the regarded 

subsample looks more like a smile which results in a poor goodness-of-fit of the linear regression 

employed to identify the parameters σ and λ. This alleviates the problem of the presence of 

abnormally high volatilities of the shortest forward rates since the abnormal parts are consumed 

by the regression error terms.  

Finally, note that results for the proportional exponentially dampened volatility are not 

reported due to the fact that the presence of negative volatilities and explosively high rates under 

this volatility specification increases sharply when a weekly step is used. For comparison 

purposes, average values of the settlement component and the marking-to-market element for the 

three volatility specifications excluding the proportional exponentially dampened one and for the 

three step sizes used are compiled in Table 3.7. The results say that changing the step size of the 

model has little effect on the values of the differential’s components and, hence, the size of the 

forward-futures differential itself. The reduction of the step size 13-fold (from three months to 

one week) does not lead to significant changes in the marking-to-market component values. The 

largest increase in the latter due to such step size reduction is 0.55 basis points for the longest 

maturity in the sample when volatility is specified as a function of maturity time only. It will not 

be unreasonable to suggest that the further 5-fold reduction of the step size from one week to one 

business day would result in even smaller changes. It is fair to conclude that the approximation 

error of the tree building procedure stemming from the choice of the step size is not as large as 

the phenomenon studied in the paper. Moreover, the results of this section may serve as a 

justification for implementing simulation models employed for interest rate derivative pricing 

when the step size chosen is larger than one business day. 

3.5.4 Extrapolation of Results for Longer Maturities 

The original sample is limited to maturities of up to 21 months since the yield curve has 

been built using spot rates for maturities up to two years. The obtained results suggest that the 

marking-to-market components would have the dominant share of the forward-futures 

differential for maturities beyond 24 months since its in-sample rate of growth exceeds that of 

the settlement component when longer maturities are considered. The separate regressions of the 

logarithm of the average values of each component on the maturity result in remarkably high  
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Table 3.7 Comparison of average values of the two components of the forward-futures 
differential when different step sizes are used, in basis points 
 

                  Maturity 

 3m 6m 9m 12m 15m 18m 21m 

 

Volatility is a function of maturity time  

 

Settlement Component 

3-month 1.93 2.12 2.39 2.67 2.92 3.20 3.59 

1-month 1.93 2.13 2.40 2.67 2.93 3.21 3.61 

1-week 1.93 2.13 2.40 2.68 2.94 3.22 3.62 

 

Marking-to-market Component 

3-month 0.00 0.11 0.40 0.91 1.60 2.48 3.65 

1-month 0.03 0.18 0.53 1.09 1.84 2.78 4.04 

1-week 0.05 0.22 0.59 1.18 1.95 2.91 4.20 

 

Volatility is a function of time to maturity* 

 

Settlement Component 

3-month 1.79 1.95 2.15 2.38 2.63 2.89 3.16 

1-month 1.79 1.93 2.12 2.35 2.59 2.85 3.12 

1-week 1.78 1.92 2.11 2.33 2.58 2.84 3.11 

 

Marking-to-market Component 

3-month 0.00 0.10 0.34 0.75 1.32 2.08 3.01 

1-month 0.02 0.13 0.38 0.79 1.37 2.12 3.05 

1-week 0.03 0.15 0.39 0.80 1.38 2.14 3.07 

 

Exponentially dampened volatility 

 

Settlement Component 

3-month 1.93 2.08 2.28 2.50 2.75 3.01 3.28 

1-month 1.93 2.06 2.21 2.39 2.60 2.85 3.18 

1-week 1.93 2.06 2.21 2.39 2.60 2.85 3.16 

 

Marking-to-market Component 

3-month 0.00 0.11 0.36 0.78 1.38 2.16 3.13 

1-month 0.03 0.16 0.40 0.77 1.30 2.05 3.07 

1-week 0.04 0.19 0.44 0.83 1.37 2.11 3.13 

        
* For this volatility specification results are shown for the subsample of data that excludes observations with 
abnormally high volatilities of weekly rates. The subsample selection is performed in the following way. All of 
2,477 day-observations are sorted by the volatility of the weekly forward rate with the shortest available maturity 
(one week, if the spot rate is ignored) and the tenth highest quintile of the sorted data is subsequently cut out. This 
makes results for different step sizes comparable to each other. 
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values of R-squared. The obtained intercept and the slope coefficients can be used further to 

extrapolate average values of the two components for maturities beyond 21 months. The results 

for all four volatility specifications when the average values from Table 3.3 are used to obtain 

regression coefficients are presented in Table 3.8.  

Table 3.8 Extrapolation of average values of the two components of the forward-futures 
differential for maturities of 2 to 10 years, in basis points 

 

Maturity, years 

Component 2 3 4 5 6 7 8 9 10 

 

Volatility is a function of maturity time 

Settlement 
component 4.00 6.06 9.17 13.89 21.04 31.87 48.27 73.12 110.74 
Marking-
to-market 
component 6.07 17.20 36.01 63.85 101.97 151.47 213.41 288.76 378.45 

 

Volatility is a function of time to maturity 

Settlement 
component 3.55 5.07 7.24 10.33 14.75 21.06 30.07 42.93 61.28 
Marking-
to-market 
component 4.62 12.57 25.58 44.38 69.62 101.87 141.66 189.49 245.79 

 

Exponentially dampened volatility 

Settlement 
component 3.38 4.70 6.55 9.12 12.69 17.67 24.60 34.25 47.69 
Marking-
to-market 
component 4.01 10.34 20.26 34.11 52.23 74.86 102.27 134.66 172.24 

 

Proportional exponentially dampened volatility (γ = 1) 

Settlement 
component 5.63 11.07 21.75 42.77 84.08 165.30 324.97 638.88 1256.00 
Marking-
to-market 
component 5.56 15.24 31.17 54.29 85.44 125.35 174.73 234.19 304.35 

 

Two different regression specifications were considered for each component: log 

(component) = α1 + β1 × maturity + error1 and log (component) = α2 + β2 × log (maturity) + 

error2. Across all four volatility specification considered in the paper, the first regression 

specification resulted in higher R-squared for the settlement component, while the second 

regression specification yielded higher R-squared for the marking-to-market component. Results 

presented in Table 3.8 are based on the usage of regression specifications where the logarithm of 

the settlement component is regressed on the maturity, whereas the logarithm of the marking-to-
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market component is regressed on the logarithm of maturity. The resulting R-squared values 

exceed 0.993 in seven cases out of eight38. 

For three out of four volatility specifications with the exception of the proportional 

exponentially dampened volatility, extrapolated average values of the marking-to-market 

component exceed those of the settlement component and this difference reaches fourfold for 

maturities of four years and beyond suggesting that the marking-to-market component should 

become an increasingly dominant part of the forward-futures differential when longer maturities 

are considered. The proportional exponentially dampened volatility yields opposite results which 

is the product of the rate explosiveness problem and, hence, such results lack reliance. Average 

values of the settlement component for maturities beyond four years may even seem 

overestimated since they imply large expected values of the future three-month LIBOR rates. If 

that is the case, the marking-to-marking component would become an even more powerful 

element of the differential for maturities beyond 24 months. Some confirmation of this assertion 

can be found in Table 3.9. This table presents results for the average, minimum and maximum 

values of the two components of the differential for maturities ranging from two to ten years for 

the case of a flat forward rate term structure combined with constant volatility when a one-month 

binomial tree step is used. The constant continuously compounded monthly forward rate was 

chosen in the interval from 0.4 percent to 0.5 percent with an increment of 0.01 percent which 

Table 3.9 Selected statistics for the two components of the forward-futures differential for 
maturities of 2 to 10 years when HJM is run for a range of flat term structures of forward rates 
and constant volatilities, in basis points 

 

 Maturity 

        2      3     4     5    6    7    8    9   10 

       

Settlement Component       

mean 2.74 3.27 3.84 4.48 5.19 5.97 6.84 7.82 8.92 

min 1.82 2.04 2.27 2.53 2.80 3.10 3.42 3.76 4.14 

max 3.82 4.74 5.76 6.91 8.19 9.65 11.31 13.20 15.36 

       

Marking-to-market Component       

mean 3.07 7.01 12.54 19.68 28.40 38.71 50.60 64.06 79.09 

min 1.31 2.98 5.33 8.37 12.08 16.47 21.54 27.28 33.70 

max 5.23 11.94 21.38 33.52 48.37 65.91 86.13 109.01 134.53 

          
 

                                                 
38 R-squared for the settlement component regression for the proportional exponentially dampened volatility is 
0.907. 
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roughly corresponds to the observed average values of the forward rates in the data sample used. 

The chosen values of the constant volatility of the monthly forward rate range from 0.04 to 0.08 

percent with an increment of 0.004 percent, also in line with the data sample statistics. All 

possible combinations of the forward rate and the volatility are considered (121 in total) and the 

evolution of the forward rate is run using the HJM setup via the construction of the binomial tree. 

The obtained results for the average values of the two components are lower than those in    

Table 3.8, especially for the settlement component, resulting in a much higher share of the 

marking-to-market component in the forward-futures differential, reaching 90 percent for the 10-

year maturity. Overall, the results of this subsection provide evidence that for the out-of-sample 

range of maturities the marking-to-market component would have a significant presence in the 

forward-futures differential and it must be taken into account while pricing respective interest 

rate derivatives. 

3.6 Hedging Implications 

The hedging of the marking-to-market component has been addressed in the literature 

and is known as the tailing of the hedge (see Figlewski et al. [1991] and Kawaller [1997] among 

other references). In order to fully hedge the existing or future exposure to interest rate risk with 

Eurocurrency futures, hedging of the settlement component must also be addressed. Chance 

(2006a) demonstrates that since the futures price does not converge to the value of the 

underlying time deposit, the standard cash and carry arbitrage is not risk free and the interest rate 

hedges constructed using the Eurocurrency futures contracts are subject to errors. These errors 

arise from the way the futures are designed, namely, the existence of the settlement component 

in the convexity adjustment. It should be noted that there are other factors related to the basis risk 

that may cause hedge discrepancies. For instance, when the forward contract and the respective 

futures contract do not expire on the same day or when their underlying rates differ. Such factors 

are not considered in the analysis and are not addressed in the proposed solution. 

Chance (2006a) shows the perfect hedge is not possible to obtain when the borrower 

wants to get a fixed amount of the loan. This section argues that there is a way to hedge the 

settlement component of the convexity adjustment but this hedge comes at a cost. The hedge is 

perfect in a binomial or a trinomial tree model. Since any such model is an approximation, in 

reality, the proposed hedge, albeit approximate, is highly efficient and substantially reduces the 

hedging error. 
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According to (3.28), the settlement component of the convexity adjustment at expiration 

is equal to 

,
1

22

r

r

α

α

+
 

where α = ti+1 – ti is the tenor, i. e. length of the time interval that the underlying rate is for, and r 

is the underlying rate at the expiration. Suppose, at the future date when the forward and the 

respective futures expire, the underlying spot rate can take a value from the following set of 

rates: r1 < r2 < r3 < … < rN. The caplet is defined as a call option on the interest rate whose 

payoff at expiration is 

],0,max[ Kr −α  

where K is the predetermined strike rate. The caplet’s value is determined at time ti, when the 

rate is revealed, and if the value is positive it is paid at time ti+1, when the underlying time 

deposit will mature. Although the caplet’s payoff takes place at ti+1, it can be sold or settled at 

time ti for its present value which is equal to 

.
1

]0,max[

r

Kr

α

α

+

−
 

Without the loss of generality, for the rest of the section it can be assumed that α = 1. 

Suppose that the realized underlying rate at the contracts’ expiration is the lowest possible one in 

the set, i. e. r1. In order to have the settlement component hedged given the realization of this 

state, one would have to have an amount of r1 caplets with the strike of zero. The value of such 

hedge in state 1 (r = r1) at time ti will be equal to 

,
1 1

2

1

r

r

+
 

which is equivalent to the value of the settlement component of the convexity adjustment in state 

1.  

Suppose now that the realized state at time ti is 2, i. e. r = r2. In order to have the 

settlement component fully hedged, the party must hold another caplet, the one with the strike 

rate equal to r1. The number of such caplets is found recursively given the holdings of the caplet 

with the strike rate of zero that has been determined above.  

Let the holding of the caplet with strike rate r1 be equal to x1. Then in order to have the 

settlement component fully hedged in both state 1 and state 2, it must be that 

(3.48) 

(3.49) 

(3.50) 

(3.51) 
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By solving the above equation for x1, one obtains that it must be equal to r2. Hence, in order to 

have the settlement components fully hedged given either state 1, or state 2, the investor must 

hold r2 caplets with strike rate of r1 and r1 caplets with strike rate of zero. 

Moving on to state 3 when the realized rate is equal to r3, in order to have the full hedge, 

the party must also possess a certain amount of caplets with the strike rate of r2. Ignoring the 

common denominator, the number of such caplets denoted by x2 is determined by the following 

equation: 

.)()( 2

331132232 rrrrrrrrx =+−+−  

The answer for x2 is r3 – r1. Hence, the basket of caplets must include r3 – r1 caplets with the 

strike rate of r2. 

Continuing in the same manner, the complete basket of caplets necessary to fully hedge 

the settlement component of the convexity adjustment can be determined. Given the fact that 
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the solution that allows to fully hedge the settlement component of the convexity adjustment 

consists of the following: given the set of the possible realized rates at the expiration of the 

futures contract r1 < r2 < r3 < … < rN and denoting r0 = r-1 = 0, the investor must hold the basket 

of caplets on the underlying rate with the set of strike rates r0, r1, r2, …, rN-1, where the number of 

caplets with the strike ri is equal to ri+1 – ri-1. 

Such basket of caplets shall produce a perfect hedge of the settlement component of the 

convexity adjustment if the realized underlying rate is one of those in the original set. If the 

realized rate does not belong to that set, the hedge will result in a minor error. The proposed 

hedge comes at a cost since the basket of caplets must be paid for at the time of the purchase. 

3.7 Conclusions 

This paper contributes to the existing derivatives literature in several ways. It derives the 

convexity adjustment for Eurocurrency interest rate futures and shows that the latter will differ 

from the forward-futures price differential of Cox, Ingersoll and Ross (1981). The paper shows 

that interest rate forward-futures price differential at any point of time until maturity can be 

expressed as a sum of two components: the settlement component and the marking-to-market 

(3.52) 

(3.53) 

(3.54) 
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component. The settlement component arises from the unconventional way interest rate futures 

are priced and settled, notably, the fact that they are settled to yield opposite to that of price as 

some textbooks may suggest. A numerical example that demonstrates how the two components 

are computed is presented. The discrete time version of the one-factor HJM model is further 

utilized and the values of the differential and its two components for the sample of British pound 

interest rate forwards and futures for the 1997-2007 period are estimated by using four most 

popular volatility specifications. The settlement component dominates its marking-to-market 

counterpart in terms of the share of the forward-futures differential for all seven maturities in the 

sample but its share declines with maturity. If the results are extrapolated for longer maturities  

(> 21 months), the size of the forward-futures differential would grow exponentially, mainly due 

to the sharply increasing magnitude of its marking-to-market component. It is also shown that 

the three-month step in the discrete HJM model is quite appropriate since the results with 

monthly and weekly steps do not lead to significant improvements. Of particular note, the small 

values of the marking-to-market component for maturities in the sample (3-21 months) cannot be 

attributed to the chosen length of the step in the term structure model. Finally, hedging 

implications of the settlement component of the interest rate convexity adjustment are considered 

and it is demonstrated that the perfect hedge is feasible via the use of the predetermined basket of 

caplets. Such hedge comes at a cost however since the caplets must be paid for at the time of the 

purchase. 

It is imperative to note that the results presented in this paper are clear of any market 

frictions like tax considerations, transaction cost differences or the possibility of default by the 

counter-party. The latter would be of special interest since forward contracts, unlike their futures 

counterparts, are subject to default risk. The presence of the default premium in forward prices 

can affect the size of the forward-futures differential. A possible line of future work would be to 

investigate how large the default premium can be. The existing literature defines the presence of 

the default premium in interest rate forward prices by regressing them or the empirical 

differential values on the default proxy variables and judges upon the statistical significance of 

the regression coefficients whether the premium is robust. Such an approach provides qualitative 

evidence of the existence or lack of thereof of the default premium, but the quantitative 

estimation of the size of the premium has not been attempted. The first logical step in that 

direction would be to compare the theoretical findings of the forward-futures differential, similar 
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to those shown in this paper, with empirical results and see how much of the difference is there 

and what factors, if any, could explain it. This objective is left for future research. 

Another line of related work may be built around the implementation of the multi-factor 

term structure model in order to investigate what factors contribute the most to the value of the 

forward-futures differential. Principal component analysis may be used to define the level, the 

slope, and the curvature factors of the term structure. The computational burden of using multi-

factor term structure models, however, may be substantial and the introduction of appropriate 

simplifications and/or model adjustments may be necessary. 
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Chapter 4 How Much Premium Is There for Interest Rate Futures? 

 

4.1 Introduction 

The difference in cash flows of the forward contract and the futures contract was initially 

explained by Black (1976). His discussion, however, is based on the assumption of a constant 

interest rate. Margrabe (1976) was the first to show that in the stochastic interest rate 

environment equality of forward and futures prices would result in arbitrage opportunities. 

Jarrow and Oldfield (1981) point out that even though forward contracts and futures contracts are 

very similar in nature, since the two contracts’ cash flows differ, it is not generally true that their 

prices must be the same if default-free rates are stochastic. Cox, Ingersoll and Ross (1981) 

consolidate results of the early works on the relation between forward prices and futures prices 

and develop a number of propositions characterizing this relationship. One of their findings has 

received a broad application in subsequent empirical and theoretical literature and it is referred as 

the convexity adjustment. The convexity adjustment is the difference between the forward price 

and the futures price on the same underlying that is attributed to the daily settlement feature of 

the futures market also known as marking-to-market. In a stochastic interest rate environment, if 

futures prices are positively correlated with interest rates, then the futures prices will exceed the 

respective forward prices. 

Until recently, the literature on the convexity adjustment in interest rate futures 

concentrated almost exclusively on the Eurodollar contracts (Sundaresan [1991], Meulbroek 

[1992], Grinblatt and Jegadeesh [1996]). Gupta and Subrahmanyam (2000) examine whether 

interest rate swaps are priced off the Eurocurrency futures curve. For that purpose they calculate 

the observed swap-futures rate differential for four major currencies – US dollar, Japanese yen, 

Deutsche Mark (relegated) and British pound. The swap-futures rate differential is defined in 

their paper as the difference between the observed swap rate and a swap rate implied by zero-

coupon rates calculated from the observed Eurocurrency futures quotations. This is an interesting 

innovation but obviously a deviation from the classic convexity adjustment defined by Cox, 

Ingersoll and Ross. The findings of the early empirical works are that the futures were mispriced 

relative to swaps/forwards suggesting the presence of a futures discount in 1982-1987 (Grinblatt 

and Jegadeesh [1996]) and a futures premium in 1987-1990 (Gupta and Subrahmanyam [2000]). 
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While having come up with the empirical estimates of the convexity adjustment, the 

previous literature has not been able to say what the theoretically predicted value of the 

convexity adjustment should be on a particular day for a particular pair of a futures contract and 

a respective forward and, hence, there has not been a clear answer available on whether the 

futures is deemed to be underpriced today unless the sign of the observed futures-forward 

differential is opposite to the expected. This paper utilizes a straightforward technique that 

allows one to identify with a certain level of confidence not only whether the futures is 

underpriced but whether it happens to be traded at a premium as well. The paper relies on an 

approach that constructs matched pairs of an observed and a predicted convexity adjustment. 

This method creates the theoretically predicted estimate of the convexity adjustment for each 

observation in the sample where estimates are obtained for a futures and a forward contract with 

identical characteristics, such as time to maturity and the implied maturity of the contract’s 

underlying. This technique helps to identify whether the observed futures prices tend to be 

overestimated which would suggest the presence of a robust futures premium. The futures 

premium is defined in this paper as the difference between the observed convexity adjustment in 

the forward and futures prices and its theoretically predicted estimate. The analysis is performed 

for the three most traded interest rate futures contracts in Europe: EURIBOR futures, short 

sterling futures and Euroswiss futures. 

The early empirical literature on the convexity adjustment in Eurodollar interest rate 

futures relies on the implied forward rates derived from the interpolated term structure of spot 

rates and compared those to the observed futures rates. The problem with this approach is that 

such forward rates are not the rates on actual traded forward contracts. Therefore, the mispricing 

of the futures, if there is any, does not necessarily imply the existence of profitable opportunities 

in which futures are traded against forwards. The statement about mispricing per se rather 

becomes the acknowledgement that the futures are not priced off the implied forward curve. 

Recently, the search for the convexity adjustment in the interest rate futures market has been 

extended by replacing the synthetic forward by a forward rate agreement (FRA), which is an 

over-the-counter tradable financial instrument that has all features of a forward contract. By 

comparing two actually traded contracts, the interest rate futures and the FRA, one can obtain a 

better test for the presence of a convexity adjustment or the existence of mispricing that would 

allow an arbitrageur to exploit profitable opportunities. 
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FRA contracts are typically traded with standardized times to maturity whereas futures 

contracts usually have standardized maturity dates. In such circumstances corresponding forward 

and futures contracts exist simultaneously only when the standardized time to maturity in the 

FRA market implies the maturity date that coincides with that in the futures markets. Such 

occasions are rare and provide only a small and insufficient sample for an extensive study. 

Poskitt (2008c) collects data on futures and FRA quotes over a stretch of one year on days when 

the time to expiration of a futures contract matches that of a respective FRA contract. There are 

only four days during a one-year period that satisfy such condition creating a substantial 

limitation for the sample size. His study examines the pricing of the Eurodollar futures and the 

US dollar FRA contracts using a high frequency data set and finds that the average futures/FRA 

rate differential for contracts with maturity of less than one year is negligible. Such evidence, 

Poskitt claims, should imply the availability of arbitrage opportunities since the convexity 

adjustment is not priced in. Poskitt (2008b) is a similar work as that of Poskitt (2008c) with an 

identical approach but based on data for sterling futures and FRA markets that produces similar 

results and conclusions. 

It is imperative to note, however, that the arbitrage is not available per se since an open 

futures position (whether long or short) requires a trader to post a margin. Therefore, the classic 

definition of arbitrage cannot be applied in this case. Given that, a more appropriate argument 

could be posed. As long as the convexity adjustment is not priced into the futures, the latter is 

overpriced39. Hence, a trader must short the futures. In order to hedge the interest rate exposure, 

a short position in the respective FRA is also required40. The new argument would be that the 

position consisting of short futures and short respective FRA will consistently yield an excess 

positive return. This alternative argument, however, is also false since the historical backtesting 

of the profitability of the position consisting of short futures and short FRA assuming the futures 

rate has been equal to the rate on the respective FRA (meaning that the convexity adjustment is 

not present, i. e. it is not priced into the quotes) shows that on many occasions when the interest 

rates have consistently gone down this position would have produced a loss since the short 

futures alone would have resulted in a string of losses which must have been financed over the 

                                                 
39 Interest rate futures price is a negative function of the implied futures rate. See Table 4.1 for details. 
40 Opposite to the interest rate futures, a short position in FRA is a bet on the rise in the underlying interest rate. This 
is a somewhat unique case that stems from the design of the interest rate futures when one has to take two long or 
two short positions in order to hedge the underlying risk exposure.    
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period of time left till maturity and such cumulative loss would have exceeded the one-time gain 

realized by shorting the respective FRA. Therefore, if the convexity adjustment is not priced by 

the market, this mispricing does not imply the availability of arbitrage, nor the abnormal 

profitability. 

The search for the convexity adjustment can be extended using a sample of so called 

IMM FRA rates. The expiration dates of the Eurocurrency interest rate futures on the quarterly 

expiration cycle (March – June – September – December) are referred as IMM dates, where 

“IMM” stands for International Monetary Market, division of the Chicago Mercantile Exchange 

(CME). The FRA contracts with the IMM settlement dates are referred as IMM FRAs. The 

advantage of using the IMM FRA contracts for the analysis of convexity adjustment is that such 

contracts have settlement dates that match those of the respective Eurocurrency futures. Use of 

such data allows to avoid possible pitfalls of previous studies in the area: presence of the 

interpolation error and/or limited sample size. Poskitt (2008a) examines daily and intraday data 

on sterling interest rate futures and IMM FRA contracts and finds that the sterling futures/FRA 

rate differential is marginally negative, contrary to the theoretical predictions. After the 

regression analysis fails to find any support for the predicted positive relationship between the 

differential and the time to maturity and volatility of interest rates, he concludes that the 

convexity adjustment has not been priced into quotes in the sterling FRA market. Similarly, 

Poskitt (2008c) also suggests that the convexity adjustment is not priced into the US dollar FRA 

quotes. 

The issue that has been overlooked in Poskitt’s works is that the futures/FRA rate 

differential is supposed to differ from the futures/implied forward rate one if there are limits to 

arbitrage. In that case, the former is always smaller than the latter and this difference increases 

with time to maturity of the futures contract. A large number of textbooks on derivatives and 

fixed income use a no-arbitrage argument to show that the rate on a forward rate agreement has 

to be a function of the current term structure and it is equal to the implied forward rate. This 

paper demonstrates that in the presence of the limits to arbitrage the two rates would differ and 

the difference will increase with the maturity. If the standard arbitrage set of transactions is not 

possible to execute, the IMM FRA rate has to be a function of the evolution of the current term 

structure and its quote is supposed to be much closer to the respective Eurocurrency futures rate 

than to the implied forward rate. The latter observation allows to explain why the recent research 



 98 

on the convexity adjustment in the IMM FRA market has not been able to detect the presence of 

it in the futures quotes relative to IMM FRA rates. The whole idea of detecting the empirical 

presence of the convexity adjustment in the IMM FRA market or lack of thereof is questionable 

to implement due to the illusory nature of the subject under consideration whose size in this 

paper is shown to be within the limits of the bid-ask spread. Therefore, the claims that the 

convexity adjustment has not been priced into IMM FRA quotes lack substance and are subject 

to revision. 

The rest of the paper consists of the following. Section 4.2 discusses the role that the 

interest rate futures play in the European market. Section 4.3 lays down the methodology of the 

utilized approach employed to detect the presence of the futures premium or lack of thereof. 

Section 4.4 describes the data used for the analysis and section 4.5 provides results of the futures 

premium search. Section 4.6 introduces the forward rate agreement and reviews its pricing while 

section 4.7 explains why the use of the IMM FRA quotes instead of the implied forward rates 

would not make the search for the convexity adjustment any easier. Section 4.8 concludes. 

4.2 The Exchange Traded Interest Rate Derivatives Market in Europe 

Interest rate derivatives are traded with a very high volume at several international 

exchanges, e. g. Chicago Mercantile Exchange (CME), London International Financial Futures 

and Options Exchange (LIFFE), Marché à Terme International de France (MATIF), OM 

Stockholm AB and Tokyo Financial Exchange (TFX, former TIFFE) among others. London 

International Financial Futures and Options Exchange is one market in the world that provides 

opportunity to trade three-month interest rate futures and options on futures for a number of 

major world currencies. LIFFE is the oldest European derivatives exchange. It was founded in 

1982 and started trading financial futures in the same year. In 2001 LIFFE became a part of the 

Euronext Group and now it is referred as Euronext.Liffe. Euronext41 was born in 2000 through 

the merger of Amsterdam Exchanges (AEX), Brussels Exchanges (BXS), and ParisBourse. 

Euronext.Liffe has quickly become one of only two major players in the bond and short term 

interest rate futures and options market in Europe. The other major player is EUREX, the 

derivatives market set up through a joint venture between the DTB Deutsche Terminbörse, the 

German Options and Futures Exchange, and SOFFEX, the Swiss Options and Financial Futures 

                                                 
41 In April 2007 Euronext merged with New York Stock Exchange (NYSE) forming NYSE Euronext. MATIF, 
mentioned earlier, was absorbed in the merger of the Paris Bourse with Euronext to form Euronext Paris. 
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Exchange. It is fair to say that Euronext.Liffe dominates the short term interest rate market in 

Europe while EUREX dominates the medium and long term interest rate market, although 

Euronext.Liffe has made some impact with the introduction of the Swapnote42 product range. A 

good source that provides a historical review and a glance at the statistics of the European 

derivative markets is Young (2004). 

Euronext.Liffe’s interest rate portfolio of products offers a wide range of liquid short 

term interest rate (STIR) derivative contracts, providing exposure to US, European, UK, Swiss 

and Japanese short term interest rates. Table 4.1 contains a summary of the description of the 

three-month interest rate futures contracts for four currencies other than the US dollar that are 

traded on the exchange. The information for the table is taken from the Euronext.Liffe 

documents listed in the reference section and the Euronext website. Since their respective 

introductions, the exchange’s three-month interest rate futures contracts have developed into 

highly liquid hedging and trading instruments. Average daily volume for the exchange’s STIR 

portfolio was over 1.7 million contracts in May 2007. Its flagship contract suite – the three-

month EURIBOR43 interest rate futures and options on futures contracts – had an average daily 

volume close to 1.1 million contracts in May 200744.  

Table 4.2 provides statistics about futures and options trading volume and open interest 

on Euronext.Liffe during 2000-2007. The volume of trading of all futures traded on the exchange 

more than doubled during the period whereas the volume of short term interest rate futures 

quadrupled. A different situation is observed if one looks at the trading volume of options. The 

growth of trading volume in all options traded on the exchange was flat or even negative during 

2003-2006, whereas the volume of trading of short term interest rate options went up tenfold 

since 2000 and exceeded annual volume of 100 million contracts in September of 2007. Open 

interest for options in the first quarter of 2008 doubled compared to that in 2004 demonstrating a 

non-satiated interest in interest rate option trading among the European market participants. 

Despite lagging futures in the volume of trading, open interest on STIR options has been above 

that on STIR futures since 2001 with the former being more than twice as much as the latter in 

2003, 2007 and the first quarter of 2008. 

                                                 
42 See more on Swapnote at http://www.euronext.com/landing/landingInfo-2114-EN.html 
43 Euro Interbank Offered Rate 
44 Source: http://www.euronext.com/trader/trader-2099-EN.html 
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Table 4.1 Description of three month interest rate contracts traded on Euronext.Liffe for 
currencies other than US dollar 

 
 Three Month Euro (EURIBOR) Interest 

Rate Futures 
Three Month Sterling (Short Sterling) 
Interest Rate Futures 

Unit of trading €1,000,000 £500,000 
Delivery months March, June, September, December, and 

four serial months, such that 25 delivery 
months are available for trading, with the 
nearest six delivery months being 
consecutive calendar months 

March, June, September, December, and two 
serial months, such that 23 delivery months 
are available for trading, with the nearest 
three delivery months being consecutive 
calendar months. 

Quotation 100.00 minus rate of interest 100.00 minus rate of interest 
Minimum price 
movement 
(tick size and 
value) 

0.005 (€12.50) 0.01 (£12.50) 

Last Trading Day 10.00 - Two business days prior to the third 
Wednesday of the delivery month 

11:00 - Third Wednesday of the delivery 
month. 

Delivery Day First business day after the Last Trading 
Day 

First business day after the Last Trading Day. 

Trading Hours 01:00 – 21:00 London time 07:30 - 18:00 London time 
Exchange Delivery 
Settlement Price 

Based on the European Bankers 
Federations’ Euribor Offered Rate (EBF 
Euribor) for three month Euro deposits at 
11.00 Brussels time (10:00 London time) on 
the Last Trading Day. 

Based on the British Bankers’ Association 
London Interbank Offered Rate (BBA 
LIBOR) for three month sterling deposits at 
11:00 on the Last Trading Day.  

 
 Three Month Swiss Franc (Euroswiss) 

Interest Rate Futures 
Three Month Euroyen (TIBOR) Interest Rate 
Futures 

Unit of trading SFr 1,000,000 ¥100,000,000 
Delivery months March, June, September, December, such 

that eight quarterly delivery months are 
always available for trading 

March, June, September, December, such that 
12 delivery months are available for trading 

Quotation 100.000 minus rate of interest 100.000 minus rate of interest 
Minimum price 
movement 
(tick size and 
value) 

0.01(SFr25) 0.005(¥1,250) 

Last Trading Day 11:00 - Two business days prior to the third 
Wednesday of the delivery month 

16:00 - Two LIFFE business days prior to the 
Tokyo Financial Exchange (TFX) Last 
Trading Day for the equivalent TFX Euroyen 
contract month 

Delivery Day First business day after the Last Trading 
Day 

N/A* 

Trading Hours 07:30 - 18:00 London time 07:00 - 16:00 GMT / 08:00 - 16:00 British 
Summer Time** 

Exchange Delivery 
Settlement Price 

Based on the British Bankers’ Association 
London Interbank Offered Rate (BBA 
LIBOR) for three month Euroswiss Franc 
deposits at 11:00 on the Last Trading Day. 

Subject to TFX Rules, TFX will calculate 
their Final Settlement Price using the 
Zenginkyo TIBOR for three month Yen 
deposits at 11.00 (Tokyo time) on the TFX 
Last Trading Day. 

* – The delivery day for the TFX contract is the next business day following the Last Trading Day. The TFX Last 
Trading Day is the second business day immediately preceding the third Wednesday of the delivery month. 
** – Euronext.liffe will trade the Euroyen contract from 16:00 (Tokyo time). During British Summer Time, the 
Euronext.liffe Euroyen contract will start trading at 08:00 but will continue to close at 16:00. 
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Table 4.2 Volume, open interest and value of volume of trading on Euronext.Liffe in 2000-2007 
 

Volume of Trading by Product Group, contracts (in millions)     

 Exchange All short term interest rate products 

 Futures Options Total Futures % Options % Total % 

2000 206.18 256.05 462.24 85.46 41.4 12.70 5.0 98.16 21.2 

2001 214.86 404.29 619.15 130.73 60.8 30.81 7.6 161.54 26.1 

2002 221.94 475.06 697.01 145.05 65.4 42.69 9.0 187.74 26.9 

2003 267.88 427.17 695.05 185.08 69.1 77.84 18.2 262.92 37.8 

2004 310.70 477.09 787.79 221.07 71.2 76.33 16.0 297.40 37.8 

2005 344.05 415.27 759.33 248.66 72.3 79.48 19.1 328.14 43.2 

2006 430.04 300.28 730.32 296.01 68.8 92.99 31.0 388.99 53.3 

2007 562.44 386.58 949.03 353.59 62.9 135.54 35.1 489.14 51.5 

 
 

Open Interest by Product Group, contracts (in millions)      

 Exchange All short term interest rate products 

 Futures Options Total Futures % Options % Total % 

2000 4.56 42.61 47.17 2.36 51.7 1.71 4.0 4.07 8.6 

2001 5.74 77.19 82.93 2.60 45.2 3.67 4.8 6.27 7.6 

2002 4.87 82.36 87.24 3.00 61.6 4.97 6.0 7.97 9.1 

2003 5.43 73.80 79.22 3.36 62.0 8.65 11.7 12.02 15.2 

2004 6.36 82.08 88.44 4.34 68.3 7.63 9.3 11.98 13.5 

2005 7.45 71.50 78.95 5.24 70.4 9.59 13.4 14.83 18.8 

2006 9.56 62.02 71.58 6.09 63.7 10.37 16.7 16.46 23.0 

2007 13.83 58.25 72.08 6.23 45.0 14.33 24.6 20.56 28.5 

 
 

Value of Volume by Product Group, euros (in trillions)      

 Exchange All short term interest rate products 

 Futures Options Total Futures % Options % Total % 

2000 80.24 12.36 92.60 78.06 97.3 11.64 94.2 89.70 96.9 

2001 128.43 31.50 159.93 122.32 95.2 29.19 92.7 151.51 94.7 

2002 140.87 43.08 183.95 136.48 96.9 41.06 95.3 177.54 96.5 

2003 176.06 75.46 251.52 171.76 97.6 73.66 97.6 245.43 97.6 

2004 209.27 74.05 283.32 204.13 97.5 71.68 96.8 275.80 97.3 

2005 232.51 74.62 307.13 226.24 97.3 71.86 96.3 298.10 97.1 

2006 278.58 86.46 365.04 269.91 96.9 82.95 95.9 352.86 96.7 

2007 328.42 125.66 454.08 316.63 96.4 120.62 96.0 437.25 96.3 
 

Short term interest rate derivatives have been the dominant instrument in trading on 

Euronext.Liffe since the beginning of the century. STIR futures account for 65-70 percent of the 

futures trading volume on the exchange while STIR options now compose more than a third of 

the option trading volume after having accounted for just five percent of it in 2000. It is due to 

the explosive growth in STIR option trading that now short term interest rate derivatives 

compose more than a half of the entire trading volume on the exchange. If measured by the 

notional value of contracts traded, the annual count goes into trillions of euros and, due to high 



 102 

nominal values of STIR derivative contracts, they alone account for an incredible 96-97 percent 

of the value of the entire volume traded on the exchange and this percentage has not changed 

since 2000.  

Table 4.3 shows volume of trading measured in contracts as well as in euros, open 

interest numbers and average size of the transaction for five different contracts within the group 

of STIR futures45. The EURIBOR three-month interest rate futures account for 65-70 percent of 

the contact volume and 70-80 percent of euro value of the volume. The second most traded 

contract is the three-month short sterling interest rate futures46. Numbers for 2007 demonstrate 

an increased interest in trading of sterling futures that amounted to roughly five percent of the 

market volume share gained by sterling futures from its EURIBOR counterpart. Both EURIBOR 

and sterling futures have shown a consistent growth in the volume of trading and its value since 

2000. Another contract that showed steady year by year volume growth is the three-month 

Euroswiss franc interest rate futures which historically has accounted for about 2-4 percent of the 

market volume.  

Two remaining contracts lag behind in terms of the occupied market share although they 

have observed different trends recently. The three-month Eurodollar interest rate futures was 

introduced by the exchange on March 18, 2004 and it had a good start back then delivering 

volume numbers just slightly below those of the Euroswiss franc contract. But trading of 

Eurodollar futures weakened dramatically in 2006 and became non-existent through 2007. The 

lack of success of the Eurodollar futures on Euronext.Liffe is attributed to the sharp response by 

the Chicago Mercantile Exchange, the original platform for the Eurodollar trading, who 

introduced several policy changes that meant to transfer its trading volume in Eurodollar futures 

from open outcry to the electronic trading platform, Globex, thereby reducing the transaction 

costs for traders while retaining its market share. Tse and Bandyopadhyay (2006) mention that 

about 27 firms in Europe signed on to use Globex through an incentive scheme that was started 

                                                 
45 There are two more STIR futures contracts that were traded on Euronext.Liffe during the featured time period that 
are not included in our analysis due to their limited trading volume. The three-month Euro LIBOR (ECU) interest 
rate contract ceased trading in 2001 and its volume in 2000 and 2001 was very low, e. g. 21 and 7 contracts traded 
per day on average respectively. The one-month EONIA (Euro Overnight Index Average) contract was traded 
during 2003-2006 but did not have much success, e. g. seven transactions in 2005 and only one transaction in 2006. 
Numbers in Table 4.2 (totals for the exchange and totals for STIR products) include those of Euro LIBOR and 
EONIA whereas percentages in Table 4.3 are based on totals within the group of STIR futures that exclude figures 
for these two contracts. 
46 “Short” in “short sterling” refers to short term, not short position. The definition and construction of the short 
sterling contract is not different from those for interest rates of other currencies as can be seen from Table 4.1. 
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Table 4.3 Volume, open interest, value of volume of trading and average size of a transaction of 
STIR futures on Euronext.Liffe in 2000-2007 
 

Average Daily Volume, contracts        

 
Euribor 

 
% 
 

Euro-
dollar 

% 
 

Euroswiss 
Franc 

% 
 

Euroyen 
 

% 
 

Sterling 
 

% 
 

2000 229,136 68.1 - - 18,195 5.4 56 0.0 89,043 26.5 

2001 355,805 69.7 - - 18,337 3.6 0 0.0 136,504 26.7 

2002 413,135 72.9 - - 19,438 3.4 7 0.0 134,015 23.7 

2003 537,860 74.4 - - 19,568 2.7 0 0.0 165,325 22.9 

2004 609,061 71.0 22,763 2.7 28,173 3.3 3 0.0 198,163 23.1 

2005 648,569 66.7 21,949 2.3 32,242 3.3 0 0.0 269,957 27.8 

2006 792,516 68.1 274 0.0 42,133 3.6 390 0.0 328,078 28.2 

2007 868,280 62.5 62 0.0 47,921 3.4 1,064 0.1 473,027 34.0 

 

Open Interest, contracts (in thousands)        

 
Euribor 

 
% 
 

Euro-
dollar 

% 
 

Euroswiss 
Franc 

% 
 

Euroyen 
 

% 
 

Sterling 
 

% 
 

2000 1,391.6 60.1 - - 143.8 6.2 0.0 0.0 779.6 33.7 

2001 1,717.9 66.2 - - 142.0 5.5 0.0 0.0 733.7 28.3 

2002 2,030.5 67.7 - - 158.1 5.3 0.0 0.0 811.9 27.1 

2003 2,236.5 66.5 - - 211.6 6.3 0.0 0.0 916.0 27.2 

2004 2,683.4 61.8 150.8 3.5 242.4 5.6 0.0 0.0 1,267.1 29.2 

2005 3,119.8 59.5 153.9 2.9 269.6 5.1 0.0 0.0 1,699.1 32.4 

2006 3,420.8 56.2 65.3 1.1 367.5 6.0 0.0 0.0 2,238.5 36.7 

2007 3,335.0 53.6 36.6 0.6 212.7 3.4 0.0 0.0 2,643.5 42.4 

 

Value of Volume by Product Group, euros (in billions)      

 
Euribor 

 
% 
 

Euro-
dollar 

% 
 

Euroswiss 
Franc 

% 
 

Euroyen 
 

% 
 

Sterling 
 

% 
 

2000 58,016.9 74.3 - - 2,765.7 3.5 13.0 0.0 17,261.2 22.1 

2001 91,086.2 74.5 - - 3,112.5 2.5 0.0 0.0 28,121.9 23.0 

2002 105,763.8 77.5 - - 3,392.8 2.5 1.5 0.0 27,321.3 20.0 

2003 137,692.2 80.2 - - 3,318.3 1.9 0.0 0.0 30,579.4 17.8 

2004 157,746.7 77.3 3,714.7 1.8 4,727.7 2.3 0.5 0.0 37,831.2 18.5 

2005 166,682.1 73.7 4,414.6 2.0 5,344.5 2.4 0.0 0.0 49,786.9 22.0 

2006 202,091.6 74.9 55.8 0.0 6,823.2 2.5 65.7 0.0 60,877.5 22.6 

2007 221,411.5 69.9 11.9 0.0 7,443.8 2.4 169.1 0.1 87,588.8 27.7 

 
Average number of contracts per transaction, contracts 

 
Euribor 

 
Eurodollar 

 
Euroswiss 

Franc 
Euroyen 

 
Sterling 

 

2000 12.7 - 31.2 148.5 12.8 

2001 12.6 - 33.6 0.0 15.5 

2002 10.5 - 28.2 294.8 13.7 

2003 9.5 - 28.9 0.0 13.7 

2004 8.5 19.2 25.0 147.2 12.9 

2005 8.7 20.7 19.3 22.0 11.9 

2006 8.6 38.6 14.0 77.8 10.3 

2007 9.4 51.4 14.3 91.8 11.3 
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in March 2004 when LIFFE introduced its Eurodollar contract. Singapore International Monetary 

Exchange (SIMEX) is another exchange that offers trading in the Eurodollar futures and its 

market share has also diminished considerably after the introduction of Globex47. The further 

sharp decrease in the Eurodollar futures trading on Euronext.Liffe over the 2006-2007 period 

reflects the continued success of the CME’s Globex and casts doubt on the future prospects of 

the Eurodollar segment on Euronext.Liffe. 

The three-month Euroyen interest rate futures contract, on the other side, has been around 

since 2000 but volume had not been observed until 2006. In 2007 its average daily volume of 

trading exceeded 1,000 contracts. The major global competitor for this contract is the Tokyo 

Financial Exchange but there is not much if any competition within the European market 

borders. It remains to be seen where the contact goes from there in terms of its trading volumes 

and how the TFX can respond to the possible threat of losing its market share in the segment. 

The observation of the average size of a typical transaction on three major STIR futures 

traded on Euronext.Liffe, the EURIBOR, the sterling and the franc, says that the average size of 

the transaction went down steadily between 2001 and 2006 but picked up slightly in 2007. It may 

indicate that the growth in STIR futures trading on Euronext.Liffe during 2001-2007 was spurred 

by the influx of smaller players who were not primarily engaged in the financial industry by the 

very nature of their activities but have been taking opportunity of an easy access to standardized 

interest rate hedging instruments. 

4.3 Methodology of the Analysis 

In order to identify the existence and to estimate the size of the interest rate futures 

premium, the empirical estimate of the convexity adjustment must be compared with its 

theoretically predicted magnitude. In order to compute its empirical estimate, the spot rate curve 

must be interpolated first using one or more of the conventional methods. After the yield curve 

has been constructed, the implied forward prices for 90-day contracts are obtained as 

,
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where F
EM

(t, m, m+0.25) is the implied empirical forward price of the contract for the rate 

applied to the period from m to m+0.25 (m is expressed in years) observed at time t and r(t, m) is 

                                                 
47 See Tse and Bandyopadhyay (2006) for more on the “Institutional war over Eurodollar market share” 
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the continuously compounded rate for maturity m at time t. The observed price of the three-

month futures contract, fEM
(t, m, m+0.25),  is obtained using 

360
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where fq(t, m, m+0.25) is the quoted futures price. The empirical convexity adjustment is 

subsequently obtained as the difference between FEM
(t, m, m+0.25) and the respective fEM

(t, m, 

m+0.25). 

In order to compute the theoretically predicted value of the convexity adjustment, the 

evolution of the term structure of the forward rates must be build first. This paper relies on the 

discrete version of the one-factor HJM model. The implementation of the HJM model in discrete 

time is described in Grant and Vora (1999), Chance (2004) and Grant and Vora (2006). The 

implied forward price is independent of the term structure model used and it is computed using 

(4.1). The predicted three-month interest rate futures price at point of time t before the futures 

maturity date is computed as 
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where r(m, m+0.25) is the three-month LIBOR at the expiration of the futures contract (the 

settlement LIBOR futures rate) and the expected value is taken under risk neutral probability 

distribution. 

In order to construct the evolution of the term structure, three important inputs must be 

identified first: the initial term structure of interest rates, their volatilities and volatilities’ 

evolution in time, and the step size of the model. The initial term structure of interest rates is 

obtained from the interpolated spot curve that is also used to compute the implied forward rates. 

The choice of the volatility function can be sensitive and, therefore, three popular volatility 

specifications are considered for robustness purposes48: 

Type 1: Volatility is a function of maturity time only, i. e. σ(t1, T) = σ(t2, T) for 0 ≤ t1 < t2 < 

T, where σ(t, T) is the standard deviation of the one-period forward rate that matures at T as 

observed at time t. This is the least computationally burdensome case if implemented using a 

binomial tree approach since it results in a recombining tree. 

Type 2: Volatility is a function of time to maturity only, i. e. σ(t1, T1) = σ(t2, T2) for T1 – t1 = 

T2 – t2. This is a more realistic case compared to the one above since empirical observations 
                                                 
48 The trivial case of the constant volatility both in time and cross-sectionally is not considered. 

  (4.2) 

  (4.3) 
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demonstrate that volatility indeed varies with time left till maturity of the implied forward 

contract. The resulting binomial tree, if implemented however, will be a non-recombining one. 

Type 3: The exponentially dampened volatility, σ(t, T) = σexp[-λ(T-t)]. This volatility 

specification is similar to that in b) since it is also a function of time to maturity. The binomial 

tree resulting from this application would not recombine as well. 

The first volatility specification puts more weight on the volatility at the back end of the 

yield curve where the estimated value of the convexity adjustment for longer maturities depends 

on the current volatilities of the forward rates with farther expiration dates. The second 

specification spreads the weight uniformly across volatilities of a number of current forward 

rates and the predicted convexity adjustment becomes a function of the current volatilities of the 

rates for the whole range of maturities. The third volatility specification is a variation of the 

second one and its advantage is that it allows to eliminate the influence of possible outlier 

products in the computed volatilities of the current yield curve. The choice of these three 

specifications, though does not cover the whole universe of all possible options, includes the 

often mentioned and applied ones and should serve as a mean of validating that the results of the 

paper are not contingent upon the choice of the volatility function. Other choices may include 

specification of the volatility as a (G)ARCH process. By far, the proposed analysis is more 

comprehensive in this matter than those used in previous related works where the volatility input 

and its specification have more restrictive forms and fewer considerations. 

It is believed that the length of the step in the term structure evolution model should be 

chosen as small as possible. If implemented using a binomial tree approach, it, however, would 

result in an exponentially increasing number of nodes after each extra step unless the resulting 

binomial tree recombines. Two out of three volatility specification described earlier would bear a 

significant computation burden if the binomial tree modeling is performed. The alternative 

solution is to conduct Monte Carlo simulations. I construct a model with a weekly step. Note 

however that if the weekly step (∆t) is chosen, one no longer models the term structure of three-

month forward rates, since the modeled forward rates are the rates that apply to the time period 

of ∆t, i. e. one week. Hence, the term structure of one-week forward rates is constructed49, while 

the three-month forward rates, assuming that three months are equivalent in length to 13 weeks, 

are calculated using the following no-arbitrage requirement: 

                                                 
49 One-week forward rates are taken as weekly continuously compounded rates. 
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Eventually, the expected future three-month spot rates are computed and they are subsequently 

used to calculate the theoretical futures prices according to (4.3). The theoretically predicted 

futures prices are further subtracted from the implied forward prices in order to obtain the 

predicted value of the convexity adjustment. 

In order to calculate the initial volatility estimates, all forward rates are converted into 

weekly continuously compounded rates and their historical standard deviations are calculated. 

The weekly forward rate volatilities under the first two specifications described above are 

computed as the daily standard deviations measured using the range of rates for the last N 

business days (including the current business day) multiplied by the square root of five. For the 

exponentially dampened volatility, parameters σ and λ must be identified. Regression analysis is 

used for that purpose. Once the weekly volatilities of all weekly forward rates50 are computed as 

described above, their natural logarithms are regressed on respective expiration periods. The 

resulting slope is the negative λ, while the exponential of the intercept is the σ parameter. 

In order to perform Monte Carlo simulation of the evolution of the term structure of 

forward rates, 100 draws of the vector of standard normally distributed variable are employed for 

each business day observation in the sample51. Also the antithetic variate technique is utilized by 

changing signs of the values of each drawn vector of random elements and building the evolution 

of forward rates a new. Therefore, the total number of the forward rate paths built for each 

business day observation in the sample is 200. The averages of the futures prices across 200 

different paths are taken and recorded as the theoretical, or predicted, futures prices. 

In order to calculate the futures premium defined as the difference between the observed 

(empirical) and the predicted (theoretical) convexity adjustments, the two estimates must be for 

the contracts on the same underlying three-month interest rate that also have same expiration 

time. Since the term structure is modeled using the weekly step, the maturities of the predicted 

forward-futures differential are restricted to those of one week, two weeks, three weeks and so 

on, while the observed convexity adjustment can be applied to maturities that may include a 

                                                 
50 Excluding the spot rate 
51 To verify that 100 is a large enough number of draws, for the first 100 business day observations in the sample 
simulations were also conducted using 1,000 random draws. The evidence is that the sharp increase in the number of 
draws resulted in small insignificant improvements. 
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certain number of weeks and its fraction. The best if not the only way to get over this limitation 

is to interpolate the predicted values of the differential to odd maturities, i. e. the maturities that 

include a fraction of a week. For that purpose if, for example, the available predicted values are 

for maturities of 21 and 28 days but the observed value is for 25 days, the predicted values for 

the two adjacent weekly maturities are used to obtain the value of the in-between maturity via 

interpolation. The employed interpolation method can be chosen to be a linear one since in most 

cases the difference between the predicted values for the two adjacent weekly maturities is quite 

insignificant, especially for shorter maturities, and even for longer maturities it rarely exceeds 

one third of a basis point, and therefore this will not result in the introduction of a significant 

interpolation bias52. Numerically, the procedure looks as following: 
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where ∆(t) is the predicted convexity adjustment for maturity of t days, j is the number of full 

weeks in the maturity length and i is the number of days in the maturity above that of j weeks. 

For the aforementioned example above where one needs to obtain the predicted value for the 

maturity of 25 days, j is equal to three and i is equal to four. 

4.4 Data Description 

Data for CHF (Swiss franc) LIBOR were obtained from the British Bankers' Association 

website. The data were acquired for the sample period from 10/2/2002 until 2/28/2007. In total, 

there are 1,116 business day observations for Swiss franc LIBOR in the sample. The Euroswiss 

franc futures quotes are obtained for the same sample period from Econstats 

(www.econstats.com). The first contract in the sample matures in December 2002 and the last 

contract in the sample expires in June 2008. In total, there are 3,359 quote observations for the 

Euroswiss franc futures. Quotes for up to three futures with consecutive quarterly maturities are 

considered only since the implied forwards’ maturities are limited to those below or equal to nine 

months. 

Data for GBP (British pound) LIBOR were obtained from the British Bankers' 

Association website. The data were acquired for the sample period from 12/01/1997 until 

2/28/2007. In total, there are 2,335 day observations for GBP LIBOR in the sample. The short 

                                                 
52 Shynkevich (2008) shows that the two components of the convexity adjustment are both exponential functions of 
maturity with different specifications. The choice of linear interpolation instead shall not affect this paper’s results 
due to the insignificant nature of the introduced bias. 
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sterling interest rate futures quotes are obtained for the same sample period from Turtle Trader 

(www.turtletrader.com) and Econstats53. The first contract in the sample matures in December 

1997 and the last contract in the sample expires in December 2007. Data for two contracts in the 

sample range (June 2000 and March 2001) are missing. In total, there are 10,664 quote 

observations for short sterling futures. Quotes for up to seven futures with consecutive quarterly 

maturities are considered. All such contracts possess sufficient liquidity and if LIBOR data are 

used together with that for swaps of one year, 18 month and two year maturities, it allows to 

extend the maturity range in the analysis of the convexity adjustment for British currency interest 

rate futures up to two years.   

Data for EURIBOR quoted spot rates were obtained from www.euribor.org. The data 

were acquired for the sample period from 12/30/1998 until 9/25/2007. In total, there are 2,243 

day observations for EURIBOR in the sample. The EURIBOR interest rate futures quotes are 

acquired for the same sample period from CRB Trader (www.crbtrader.com). The first contract 

in the sample matures in June 1999 and the last contract in the sample expires in June 2009. In 

total, there are 15,700 quote observations for EURIBOR futures. As with the short sterling 

futures, for the euro currency, quotes for up to seven futures with consecutive quarterly 

maturities are considered. All such contracts possess sufficient liquidity, as do euro swap 

contracts with maturities of one year, 18 months and two years54. 

The spot yield curves of rates for all three currencies were interpolated by employing the 

extended Nelson-Siegel method. According to the Bank for International Settlements paper     

No. 25 (2005), this method that was originated by Nelson and Siegel (1988) and later extended 

by Svensson (1995) is the most popular numerical optimization approach to construct the yield 

curve and has been utilized by a number of world central banks. For the Swiss franc term 

structure interpolation, CHF LIBOR rates for the one-week period and for all twelve monthly 

maturities were used to fit the curve. For EURIBOR (British pound), the EURIBOR (GBP 

LIBOR) rates for the one-week expiration and for all twelve monthly maturities were used as 

                                                 
53 Turtle Trader sample covers period from 12/01/1997 to 10/01/2002 while Econstats’ is for the 10/02/2002 – 
2/28/2007 interval. 
54 The liquidity of euro-denominated interest rate swaps improved significantly following the development of the 
European Monetary Union. Average daily turnover of over-the-counter (OTC) interest rate contracts reached €231 
billion in 2001. By the very same year the turnover of Euro swaps had exceeded that of all interest rate products 
other than US Treasuries (Wooldridge [2004]). It (liquidity) was enhanced by the rapid integration of markets in the 
Eurozone. Wooldridge (2004) states that, unlike the euro government bond yield curve, a single euro swap curve 
emerged almost overnight. Trading in the euro swap market was further boosted by increased hedging activity. 
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well as the implied spot rates for maturities of 18 months and two years. The last two were 

obtained by using the mid-quotes of euro (sterling) swap rates for respective maturities. The 

expiration periods (maturity lengths) were computed using the modified following business day 

convention and the end-end dealing rule55. The interpolation was done for rates instead of that 

for implied zero-coupon prices56 and, as the Nelson-Siegel model implies, for the interpolation 

procedure all quoted and derived spot rates were converted into continuously compounded rates 

with the actual/365 day count as following57: 
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where rq
(t, m) is the quoted / implied spot rate based on annual compounding and the actual/360 

day count for maturity m as observed at time t. 

To calculate the implied spot rates for euro and sterling currencies for maturities of 18 

months and two years, swap rates must be used to obtain discount factors first. The sterling 

interest rate swap rates are quoted similarly to those on the US dollar interest rate swaps since 

both instruments imply semi-annual fixed payments. Therefore, one needs to apply the following 

equation in order to compute the discount factors for 18 months and two years: 
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where S(t, 0.5m) is the discount factor at time t applied for maturity 0.5m and it is equal to    

exp(-r(t, 0.5m)0.5m), 

           c(t, 0.5m) is the swap rate for maturity 0.5m at time t. 

And then the implies spot rates for those maturities are obtained using  

                                                 
55 The British Bankers’ Association’s modified following business day convention defines the maturity date as the 
first following day that is a business day in London and the principal financial centre of the currency concerned, 
unless that day falls in the next calendar month. In this case only, the maturity date will be the first preceding day in 
which both London and the principal financial centre of the currency concerned are open for business. The end-end 
dealing rule states that in cases when a deposit is made on the final business day of a particular calendar month, the 
maturity of the deposit shall be on the final business day of the month in which it matures, not the corresponding 
date of the month of maturity. 
56 Svensson (1995) points out that minimizing yield errors provides a substantially better fit for short maturities 
while the two procedures (minimization of squared price errors versus squared yield errors) tend to perform equally 
well for long maturities. This is because yields for short maturity bonds are much more sensitive to changes in prices 
of those bonds than yields for bonds with longer maturities. 
57 Quoted LIBOR and swap rates for British pound are initially based on the actual/365 day count and formula (4.6) 
must be changed accordingly for calculation of sterling spot rates (360 is replaced by 365). 
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The extraction of discount factors from euro interest rate swaps differs since, unlike for 

the US dollar interest rate swap, the fixed leg of the euro swap is based on the annual payments. 

The two-year swap will have two fixed leg payments: at the end of the first year and at the end of 

the second year. The 18-month swap will also have two fixed leg payments: at the maturity it 

will equal to the swap rate times the swap face value, whereas six months from the swap value 

date, the fixed leg payment will be equal to the swap rate divided by two times the face value58. 

Hence, equation (4.7) used for the US dollar denominated swaps that is also applicable to the 

British pound interest rate swaps must be modified accordingly for the euro denominated swaps. 

The eighteen-month discount factor is found from  
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where  ,)5.0)5.0(exp()5.0( rS −= r(0.5) is the continuously compounded six-month EURIBOR and 

c(1.5) is the 18-month swap rate. 

The two-year discount factor is computed in the following way: 
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where c(2) is the two-year swap rate and S(1) is the one-year discount factor obtained from 
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The swap rate quotes for both euro and sterling interest rate swaps are obtained from 

Bloomberg. If the swap rates are quoted at a different time of the day compared to the EURIBOR 

and GBP LIBOR quotes, a concern related to the potential errors arising from the non-

synchronous data in the sample arises. A few authors augment swap rate data with short-term 

LIBOR. Dai and Singleton (2000), for example, use a data set of swap rates for maturities from 

two to ten years and augment it with the six-month LIBOR rate. The source of their swap data is 

Datastream and the non-synchronicity of quotes arises immediately since LIBOR are quotes as 

of 11 am London time, while swap rates are recorded at the end of trading day in London which 

is 5:30 pm London time. It was brought to attention by Rendleman (2004) that Bloomberg allows 

historical data on swap rates to be collected as of 6 am, 1 pm and 5:30 pm Eastern time of each 

                                                 
58 The author is grateful to Mark Garofalo for this clarification. 
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trading day which corresponds to Tokyo, London and New York “closing” time respectively. 

There is, in fact, no market closing in any of those places since swaps can be traded over-the-

counter 24 hours a day, but Bloomberg created these virtual time stamps for a matter of 

convenience. If one chooses swap rate quotes corresponding to the Tokyo “closing” time, as this 

paper does, that would perfectly match the timing of the LIBOR/EURIBOR publication (6 am in 

New York corresponds to 11 am in London). Hence, the subsequent results and conclusions will 

be clean from the data non-synchronicity. 

To mitigate the influence of the interpolation error in the analysis of identification of the 

futures premium, the criteria for an interpolated yield curve are introduced that would allow it to 

be included in the final sample. For the Swiss franc spot rate term structure, a yield curve on a 

particular business day is considered to satisfy the interpolation criteria if the sum of all thirteen 

absolute fitted errors is below 20 basis points and each absolute error does not exceed five basis 

points. That leaves fitted daily yield curves for 1,116 business days. For EURIBOR and British 

pound spot rate term structures, the criteria are the same as above if the spot rates up to a 

maturity of twelve months were considered only and swap rate data were not available on that 

day. When the implied spot rates for maturities longer than twelve months obtained from the 

observed swap rate quotes were also used to fit the spot yield curve, the criteria are 25 basis 

points and five basis points for the sum and each individual absolute error respectively. These 

criteria leave 2,064 daily yield curves for EURIBOR/swap and 2,158 spot rate curves for British 

LIBOR/swap respectively. 

To identify the presence of the futures premium, the contracts with expiration of at least 

10 days are considered to compute the empirical estimate of the convexity adjustment and to 

subsequently calculate its predicted value. The futures prices and respective forward prices are 

matched by the settlement dates of the forward contracts. The total number of matched forward-

futures pairs for the Swiss rates is 3,206, for EURIBOR is 13,841, and for the sterling rates is 

9,608. 

4.5 Estimation Results 

The sensitivity of the term structure modeling with regard to the volatility input is not 

restricted to the chosen specification of the volatility function but it also depends on the way the 

historical volatility is measured. For instance, daily volatility of the forward rates can be 

computed using historical rates for the last business week (five days), last month (21 days), last 
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quarter (62 days), or any other period of time. Not only each of those approaches will produce 

different standard deviation estimates, but there can be a pattern where volatilities calculated 

using one range of quotes tend to exceed respective standard deviations that were computed 

using rate data for some other span of time. Such a tendency is clearly observed in the rate data 

for all three currencies used in this paper. By checking the sample of LIBOR rates for the Swiss 

franc, it is observed that the daily standard deviation, if measured using the historical quotes for 

the preceding three months, exceeds the one computed using the rate quotes for the last month in 

88.1 percent of cases, while the latter exceeds the one-day standard deviation measured using the 

quotes for the last five days in 90.0 percent of cases. For the sample of EURIBOR rates, the 

respective numbers are 90.1 and 92.1 percent, while for the sample of British pound LIBOR, 

they are 87.0 and 89.6 percent respectively.  

Note that the above percentages are for standard deviations that were calculated using a 

set of spot rates. However, under the HJM model, it is weekly forward rates and their volatilities 

that are used to construct the evolution of the term structure of rates. The pattern of producing 

higher volatilities when a larger sample of quotes is used is also valid for the interpolated 

forward rates. In the sample for the Swiss franc forward rates, the daily standard deviation 

measured using historical quotes for the last three months, exceeds the one computed using the 

rate quotes for the last month in 86.9 percent of cases, while the latter exceeds the one-day 

standard deviation measured using the quotes for the last five days in 88.8 percent of cases. The 

respective percentages for the EURIBOR sample are 86.2 and 87.1, while for the volatilities of 

British pound forward rates they are 87.9 and 88.1 percent respectively. Since the predicted 

value of the interest rate forward-futures price differential is an increasing function of the 

volatility inputs, these observations imply that the theoretical convexity adjustment will tend to 

be larger when the historical volatilities are measured using a larger sample of rate quotes. 

Hence, all else equal, the longer the period for which the forward rate standard deviations are 

taken, the higher the interest rate futures premium would be. 

In this paper all three mentioned ways to calculate the historical volatilities of the forward 

rates are used: when the sample consists of interpolated forward rates for the last three months 

(Model 1), the last month (Model 2) and the last week (Model 3). The results, if they differ 

significantly, will signal that the computation of the predicted convexity adjustment and the 

implied futures premium can be biased depending on the way the volatility inputs are calculated. 



 114 

Recall that the other robustness check that this paper uses is the choice of the volatility evolution 

specification. By utilizing this two-dimensional approach as for the choice of the inputs, i. e. 

volatility computation (three models) and its evolution specification (three types), this paper 

performs the most comprehensive robustness check of the obtained results that previous 

literature devoted to the measurement of the interest rate convexity adjustment has been lacking.   

Table 4.4 consists of three panels that contain summary statistics of the futures premium 

results for the three rate samples: Swiss franc, euro and British pound. The Jarque-Bera statistic 

is highly significant for each subsample of results (not reported in the table) indicating strong 

non-normality of the futures premium distribution. Bootstrapped 95 percent confidence intervals 

for the respective means are provided.  

Panel A of Table 4.4 shows results for the premium in the Euroswiss franc futures. The 

average values of the premium for the first three nearby contracts range from 0.18 to 0.54 basis 

points depending on the type and the model of the volatility computation which essentially tells 

that the Euroswiss interest rate futures have been priced off the implied LIBOR forward curve. 

Such results can also signal that in the low interest rate environment observed in Switzerland, the 

interest rate futures premium tends to be negligible, at least for maturities below one year. 

Therefore, similar results must be expected if the analysis is performed for Japanese yen interest 

rate futures.  

Panel B of Table 4.4 shows results for the premium in the EURIBOR futures. In all 

occasions but one (Model 1, Type 1) for maturities less than a year the premium does not exceed 

one basis point but the range of values it can most likely take widens with maturity and its mean 

estimate can reach up to four basis points for the 7th nearby contract (Model 1, Type 1, yet 

again). The widening of the gap between the results with increasing maturity demonstrates that 

the computation of the predicted value of the convexity adjustment can be quite sensitive to the 

choice of the combination of the volatility input and its modeled evolution given the high interest 

rate volatility environment. Model 1 tends to produce a futures premium of a size of a couple of 

basis points, Model 2 is likely to yield a moderate premium of less than one basis point, whereas 

Model 3 may show the absence of the premium altogether. 

Panel C of Table 4.4 shows results for the premium in the short sterling futures. The 

findings here are similar to those for the EURIBOR sample: moderate premium of less than one 

basis point for the contracts with maturities below one year with results for longer maturities 
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being more sensitive to the model choice. Model 1 yields a premium of 2-3 basis points on 

average for the contracts with maturities beyond one year, Model 2 produces a premium less than 

one basis point and Model 3 yields no premium. 

The major finding from the table can be summarized as following. The choice of the 

interval for which the volatility inputs are computed (the model) as well as the choice of the 

volatility specification (the type) affects the results. Longer intervals taken into consideration for 

the volatility calculation lead to higher predicted values of the convexity adjustment and result in 

a larger futures premium. The differences in the estimated futures premium are negligible for 

Table 4.4 Futures premium measures as the difference between the observed and the predicted 
forward-futures price differential, basis points 
 
Panel A: Swiss franc (CHF) sample 

1st nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.20 0.20 0.20 0.19 0.19 0.19 0.18 0.18 0.18 

median 0.18 0.18 0.17 0.16 0.17 0.17 0.16 0.16 0.16 

stdev 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 

obs. 1102 1102 1102 1102 1102 1102 1102 1102 1102 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 

h. b. 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.23 

 

2nd nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.54 0.51 0.51 0.47 0.46 0.46 0.45 0.45 0.45 

median 0.49 0.46 0.44 0.42 0.42 0.41 0.40 0.40 0.40 

stdev 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 

obs. 1102 1102 1102 1102 1102 1102 1102 1102 1102 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.47 0.45 0.44 0.41 0.40 0.40 0.39 0.39 0.39 

h. b. 0.60 0.57 0.57 0.54 0.53 0.52 0.52 0.51 0.51 

 

3rd nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.48 0.37 0.36 0.30 0.26 0.25 0.23 0.22 0.22 

median 0.44 0.33 0.31 0.24 0.20 0.20 0.18 0.18 0.17 

stdev 0.99 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 

obs. 1002 1002 1002 1002 1002 1002 1002 1002 1002 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.42 0.32 0.30 0.24 0.19 0.19 0.16 0.16 0.16 

h. b. 0.54 0.44 0.42 0.36 0.32 0.31 0.29 0.28 0.27 
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(Table 4.4 continued) 
 
Panel B: Euro (EUR) sample 

1st nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.54 0.54 0.54 0.52 0.52 0.52 0.51 0.51 0.51 

median 0.45 0.45 0.45 0.43 0.43 0.43 0.43 0.43 0.43 

stdev 0.79 0.79 0.79 0.79 0.79 0.80 0.79 0.79 0.79 

obs. 1994 1994 1994 2033 2033 2033 2049 2049 2049 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.51 0.51 0.51 0.49 0.48 0.49 0.48 0.48 0.48 

h. b. 0.58 0.57 0.57 0.55 0.55 0.55 0.55 0.55 0.55 

 

2nd nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.77 0.74 0.74 0.65 0.64 0.64 0.63 0.62 0.62 

median 0.65 0.62 0.62 0.56 0.55 0.55 0.54 0.54 0.54 

stdev 1.07 1.06 1.06 1.06 1.06 1.06 1.07 1.07 1.07 

obs. 1994 1994 1994 2033 2033 2033 2049 2049 2049 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.73 0.70 0.69 0.61 0.59 0.59 0.58 0.58 0.58 

h. b. 0.82 0.79 0.79 0.70 0.69 0.69 0.68 0.67 0.67 

 

3rd nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.81 0.68 0.65 0.46 0.41 0.39 0.37 0.35 0.35 

median 0.67 0.56 0.54 0.41 0.36 0.35 0.33 0.32 0.32 

stdev 1.21 1.16 1.16 1.10 1.09 1.09 1.11 1.11 1.11 

obs. 1991 1991 1991 2030 2030 2030 2046 2046 2046 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.76 0.64 0.61 0.41 0.36 0.35 0.32 0.30 0.30 

h. b. 0.86 0.73 0.70 0.50 0.46 0.44 0.41 0.40 0.39 

 

4th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 1.11 0.81 0.72 0.41 0.29 0.26 0.15 0.11 0.10 

median 1.02 0.71 0.61 0.46 0.35 0.31 0.23 0.19 0.19 

stdev 1.22 1.21 1.22 1.17 1.17 1.18 1.22 1.22 1.22 

obs. 1942 1942 1942 1965 1965 1965 1976 1976 1976 

bootstrapped 95% confidence interval for the mean: 

l. b. 1.06 0.76 0.67 0.36 0.24 0.21 0.10 0.06 0.05 

h. b. 1.17 0.87 0.78 0.47 0.34 0.31 0.20 0.16 0.15 
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(Table 4.4 continued) 
 

5th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 1.62 1.08 0.91 0.49 0.26 0.19 0.09 0.00 -0.02 

median 1.40 0.94 0.79 0.50 0.30 0.25 0.16 0.09 0.07 

stdev 1.66 1.41 1.39 1.19 1.15 1.16 1.21 1.20 1.20 

obs. 1942 1942 1942 1965 1965 1965 1976 1976 1976 

bootstrapped 95% confidence interval for the mean: 

l. b. 1.54 1.02 0.85 0.44 0.21 0.14 0.04 -0.05 -0.08 

h. b. 1.69 1.15 0.97 0.54 0.31 0.24 0.15 0.06 0.03 

 

6th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 2.53 1.68 1.44 0.82 0.42 0.32 0.19 0.00 -0.03 

median 1.93 1.33 1.15 0.66 0.37 0.30 0.13 0.02 -0.02 

stdev 2.48 1.86 1.75 1.56 1.23 1.21 1.57 1.22 1.22 

obs. 1942 1942 1942 1965 1965 1965 1976 1976 1976 

bootstrapped 95% confidence interval for the mean: 

l. b. 2.42 1.59 1.36 0.76 0.36 0.27 0.12 -0.05 -0.08 

h. b. 2.64 1.76 1.53 0.89 0.47 0.38 0.27 0.05 0.02 

 

7th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 3.90 2.65 2.43 1.59 0.86 0.77 0.68 0.24 0.20 

median 2.64 1.92 1.78 1.05 0.68 0.59 0.35 0.14 0.10 

stdev 4.05 2.87 2.72 3.40 1.81 1.74 4.15 1.74 1.70 

obs. 1742 1742 1742 1758 1758 1758 1769 1769 1769 

bootstrapped 95% confidence interval for the mean: 

l. b. 3.72 2.52 2.31 1.45 0.78 0.70 0.53 0.15 0.13 

h. b. 4.10 2.78 2.57 1.77 0.95 0.85 0.99 0.31 0.28 

 
Panel C: British pound (GBP) sample 

1st nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.62 0.61 0.62 0.57 0.57 0.57 0.56 0.56 0.56 

median 0.49 0.48 0.48 0.44 0.44 0.44 0.44 0.44 0.44 

stdev 1.12 1.12 1.12 1.09 1.09 1.09 1.09 1.09 1.09 

obs. 2086 2086 2086 2125 2125 2125 2139 2139 2139 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.58 0.57 0.58 0.53 0.53 0.52 0.51 0.51 0.51 

h. b. 0.67 0.66 0.68 0.62 0.61 0.62 0.60 0.61 0.61 
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(Table 4.4 continued) 
 

2nd nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 0.90 0.81 0.82 0.61 0.59 0.59 0.53 0.52 0.52 

median 0.71 0.64 0.66 0.51 0.48 0.49 0.44 0.44 0.44 

stdev 1.55 1.51 1.51 1.42 1.42 1.42 1.41 1.41 1.41 

obs. 2070 2070 2070 2109 2109 2109 2123 2123 2123 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.83 0.75 0.76 0.55 0.52 0.53 0.47 0.46 0.46 

h. b. 0.96 0.89 0.89 0.67 0.65 0.65 0.59 0.58 0.58 

 

3rd nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 1.02 0.80 0.76 0.41 0.33 0.32 0.23 0.20 0.20 

median 0.77 0.61 0.57 0.38 0.31 0.30 0.22 0.21 0.20 

stdev 1.79 1.67 1.64 1.41 1.40 1.39 1.39 1.38 1.38 

obs. 1990 1990 1990 2029 2029 2029 2043 2043 2043 

bootstrapped 95% confidence interval for the mean: 

l. b. 0.95 0.73 0.68 0.35 0.27 0.26 0.17 0.14 0.14 

h. b. 1.10 0.87 0.83 0.47 0.40 0.39 0.29 0.26 0.26 

 

4th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 1.25 0.86 0.73 0.20 0.04 0.00 -0.13 -0.18 -0.20 

median 0.92 0.66 0.58 0.27 0.15 0.12 0.01 -0.04 -0.06 

stdev 2.04 1.66 1.57 1.55 1.47 1.47 1.54 1.53 1.52 

obs. 1772 1772 1772 1811 1811 1811 1825 1825 1825 

bootstrapped 95% confidence interval for the mean: 

l. b. 1.15 0.79 0.66 0.12 -0.03 -0.07 -0.20 -0.26 -0.28 

h. b. 1.34 0.94 0.80 0.28 0.11 0.07 -0.06 -0.12 -0.13 

 

5th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 2.57 2.12 1.80 0.30 0.05 -0.01 -0.32 -0.46 -0.48 

median 1.95 1.45 1.20 0.33 0.08 -0.01 -0.22 -0.33 -0.36 

stdev 2.92 2.77 2.57 1.79 1.74 1.73 1.73 1.70 1.70 

obs. 692 692 692 731 731 731 745 745 745 

bootstrapped 95% confidence interval for the mean: 

l. b. 2.35 1.93 1.62 0.18 -0.08 -0.15 -0.46 -0.58 -0.61 

h. b. 2.78 2.34 1.99 0.44 0.19 0.12 -0.20 -0.34 -0.36 
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(Table 4.4 continued) 
 

6th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 3.79 3.04 2.57 0.92 0.56 0.48 0.12 -0.07 -0.09 

median 2.73 2.13 1.88 0.80 0.45 0.40 0.02 -0.12 -0.13 

stdev 3.90 3.52 2.97 1.86 1.67 1.65 1.69 1.63 1.62 

obs. 469 469 469 508 508 508 522 522 522 

bootstrapped 95% confidence interval for the mean: 

l. b. 3.46 2.72 2.29 0.77 0.41 0.33 -0.01 -0.21 -0.23 

h. b. 4.18 3.34 2.84 1.08 0.70 0.62 0.27 0.06 0.05 

 

7th nearby contract 

 Model 1 Model 2 Model 3 

 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

mean 3.22 1.84 1.76 1.17 0.18 0.14 -0.26 -0.74 -0.76 

median 3.77 2.19 1.97 0.81 0.23 0.23 -0.29 -0.73 -0.72 

stdev 4.37 3.79 3.73 3.48 2.82 2.79 2.76 2.52 2.51 

obs. 164 164 164 203 203 203 211 211 211 

bootstrapped 95% confidence interval for the mean: 

l. b. 2.54 1.24 1.18 0.72 -0.24 -0.23 -0.62 -1.06 -1.09 

h. b. 3.89 2.40 2.32 1.65 0.56 0.52 0.12 -0.38 -0.43 
 

shorter maturity durations but increase with time to expiration. The results though are less 

sensitive to the choice of the volatility specification than to the choice of the sample size for 

volatility inputs computation. The futures premium values obtained using the exponentially 

dampened volatility specification do not differ much from those when the volatility is modeled 

as a function of time to maturity. However, if the volatility evolution is specified as a function of 

maturity time, the premium values tend to be higher. This can be explained by the fact mentioned 

earlier, namely, that such volatility specification allows the forward rates with longer maturities 

to carry their original volatilities, which are normally higher than those for rates at the front end 

of the spot curve, for the rest of their existence until the implied forward contract matures. Such 

a setup results in larger predicted values of the convexity adjustment and therefore a higher 

futures premium. 

The obtained conclusion is that the estimation of the predicted convexity adjustment as 

well as the search for the futures premium can be sensitive to the volatility inputs and the 

produced results may be biased or inconclusive. The obtained size of the futures premium which 

ranges from zero to four basis points in this paper depending on the model used is too small and 

thus economically insignificant in the wake of the possible presence of the asynchronicity and 
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the bid-ask spread. There is no evidence of the consistent mispricing of the major Eurocurrency 

futures traded on Euronext.LIFFE that was reported for the Eurodollar futures in 1980s. 

4.6 Forward Rate Agreement (FRA) and Its Pricing 

The caveat of using the implied forward prices for the convexity adjustment and the 

futures premium analysis is that they have a derived or synthetic nature and, hence, represent 

non-tradable financial instruments. Therefore, the question of whether the futures are traded at a 

premium to the respective forwards could be rephrased to whether the futures are priced off the 

implied forward curve. In order to see whether there exists a futures premium, one has to 

compare futures to a traded instrument that has all features of the forward contract. Such 

instrument is the over-the-counter traded forward rate agreement (FRA). 

According to Questa (1999), FRAs were first introduced in 1984 and a year later the 

British Bankers Association (BBA) developed a standard contract for the new market, also 

known as FRABBA. At the end of 2003, the notional amount of outstanding FRAs on rates for 

all major currencies totaled the equivalent of $10.8 trillion. Smithson (1998) mentions that 

London, not New York, dominates the FRA trading, even in the US dollar segment. FRAs are 

available for a variety of maturities and rates. The non-standard term FRAs are those that are 

fixed on “broken dates”, the so called “IMM dates”. These are called the IMM FRAs and they 

are the most convenient for the analysis of the existence of the interest rate futures premium 

since such contracts have the very same underlying as the Eurocurrency futures, the three-month 

LIBOR or EURIBOR interest rate, and they have the same expiration dates as the respective 

interest rate futures. The IMM FRAs offer the highest liquidity since they have the largest 

volumes of trading among all other types of FRAs and therefore are regarded as a money-market 

instrument. The FRA rates are quoted by a number of large banks and these quotations are 

available electronically via Bloomberg and Reuters. 

Apart from the difference in cash flows stemming from daily marking-to-market of the 

Eurocurrency interest rate futures, when comparing the Eurocurrency futures versus the IMM 

FRAs for hedging or other purposes, attention must be paid to the contracts pricing and 

settlement rules. First of all, forward rate agreements are priced and settled differently from the 

implied forwards considered previously in this paper as well as from the Eurocurrency futures. 

An FRA is quoted as a rate and it actually does not have a price (which is not to be misled with 
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the contract’s value). At the expiration date the FRA is cash settled according to the following 

formula: 

,
1

)(

kr

kNrr FRA

+

−
 

where r is the underlying rate at the settlement date (the reference rate, e. g. three-month LIBOR) 

in decimals, 

           rFRA is the quoted FRA rate in decimals at the time when the transaction is entered, 

           k is the adjustment factor which is equal to the number of days in the FRA term (usually 

comprising three, six or 12 months) divided by the day basis59, 

           N is the notional value of the contract. 

Note in particular, that the futures settlement implies the maturity of underlying deposit 

of 90 days while the FRA term is based on the actual number of days in the three months that 

separate the settlement date and the implied deposit’s maturity date, and this number is normally 

higher than 90. The final difference between the IMM FRA and the Eurocurrency futures is that 

the former has the two business day lag between the date when the interest rate is quoted (the 

trade date) and the date when the transaction is entered (the spot date). Similarly, two business 

days separate the date when the contract expires and the reference rate is set for the settlement 

purposes (the fixing date) and the date when the cash settlement takes place (the settlement 

date)60. Such conventions of the IMM FRA are in line with Euromarkets standards and similar to 

those that interest rate swap transactions are based on61. On the contrary, the Eurocurrency 

futures are entered and settled on the same date when the price quote or the settlement quote 

becomes available. In general, however, even despite certain pricing differences mentioned 

above, the IMM FRAs and the Eurocurrency interest rate futures are functionally equivalent in 

terms of hedging interest rate risk. 

As can be seen from (4.12), a long position in FRA is a bet on rising interest rates in the 

future and/or a hedge for a future short position in the underlying interest rate. The principal is 

not exchanged, it serves as a basis to calculate the settlement payment. Since FRAs comprise no 

exchange of principal, the credit risk is limited to the amount due at the settlement date which is 

                                                 
59 k is usually based on the actual/360 day count rule. 
60 The British pound FRAs are settled at the fixing date, not at the settlement date two business days later, and 
therefore constitute an exception. The adjustment factor for British pound FRA is based on the actual/365 day count 
which represents another exception. 
61 As a matter of fact, FRAs are closely related to swaps; the former resembles a one-date LIBOR-in-arrears swap. 

(4.12) 
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a function of the difference between the underlying rate at expiration and the locked-in reference 

rate. 

A number of textbooks devoted to derivatives and fixed income instruments (Smithson 

[1998], Reverre [2001] and Coyle [2001] among others) argue that the FRA rate must be equal to 

the respective forward rate. Hull (2006) suggests that the FRA rate is usually set equal to the 

forward rate when FRA is first initiated. It can be shown using a no-arbitrage argument that the 

FRA rate is equal to the respective forward rate, i. e. 
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where r(t) is the annually compounded spot rate for maturity t which is expressed as a fraction of 

a year, t is the time to expiration of the FRA and m is the time period the reference rate is for, e. 

g. three months. 

The above pricing of an FRA is based on the no-arbitrage argument. The underlying no-

arbitrage argument states that neither of the following two zero-cost transactions, borrow a 

longer maturity deposit at r(t+m), lend a shorter maturity deposit at r(t) and sell an FRA at rFRA, 

or lend a longer maturity deposit at r(t+m), borrow a shorter deposit at r(t) and buy an FRA at 

rFRA, will be able to produce a positive cash flow at time t. The pricing formula (4.13) and its 

underlying argument are, however, subject to two assumptions. First, the two respective 

interbank market rates are public information and second, it is possible to freely lend as well as 

borrow funds at those rates. If one considers the IMM FRAs which are fixed on broken dates, the 

two respective interbank market rates are normally not available. For example, if the contract 

expires on the last IMM date of 2008, December 15, and today is October 23, then t is equal to 

53 and the sum of t and m is 144. The conventional spot rates for such periods do not exist, thus 

creating limits to arbitrage. Second, even if the conventional maturities (the ones for Eurodollar 

deposits) are considered, the actual borrowing and lending will likely be conducted at respective 

bid and ask rate quotes, where the latter is a mark up over the former. Therefore, in the wake of 

such limits, the IMM FRA rate may not be obtained using (4.13) but rather must be within the 

specific range so that that arbitrage is not executable given the quoted bid and ask rates. The size 

of such range depends on the quoted bid-ask spreads of the respective rates and may in all 

likelihood reach double digits in basis points. Hence, in the presence of the limits to the standard 

arbitrage, the quoted FRA rate can deviate from the respectively implied forward rate. 

(4.13) 
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Empirical evidence tends to support the validity of the above proposed argument.     

Table 4.5 shows how frequently the difference between the quoted FRA rate and the implied 

forward rate lies in a specific range. The FRA rates are for the contracts with standard constant 

three-month maturities. The implied forward rates are computed using the respective quoted 

LIBOR rates as in (4.13). The contract is defined as the NxM type, where N is the number of 

months until the expiration of the contract and M-N is the maturity of the underlying deposit. 

Table 4.5 presents results for the subsample of the existing contracts with M ≤ 12 and M – N = 3. 

The data cover the period from 3/19/2003 to 2/28/2007 for the Swiss franc subsample and the 

British pound subsample, whereas for the euro subsample the period is from 3/19/2003 to 

9/25/2007. The data for FRA quoted rates is obtained from Datastream. 

Table 4.5 Percentage of occurrences when the difference between the quoted FRA rate and the 
implied forward rate lies in a specific range 
 
Panel A: Swiss franc (CHF) sample 

  

Range, Forward Rate Agreement, type 

b. p. 1x4 2x5 3x6 4x7 5x8 6x9 7x10 8x11 9x12 

(-1;1) 36.0 27.5 23.9 - - 23.3 - - 17.7 

(-2,2) 69.2 53.3 47.4 - - 43.1 - - 34.6 

(-3;3) 89.3 75.5 67.1 - - 62.8 - - 46.6 

(-4,4) 95.4 90.3 81.4 - - 75.2 - - 59.8 

(-5;5) 98.0 95.5 90.7 - - 85.5 - - 71.8 

          

Panel B: Euro (EUR) sample 

  

Range, Forward Rate Agreement, type 

b. p. 1x4 2x5 3x6 4x7 5x8 6x9 7x10 8x11 9x12 

(-1;1) 27.4 20.4 18.8 27.4 25.7 25.8 20.1 19.7 20.1 

(-2,2) 61.6 48.3 46.6 52.7 48.8 47.3 38.7 39.9 38.5 

(-3;3) 87.1 71.5 69.0 70.1 66.8 67.5 57.6 55.3 54.5 

(-4,4) 93.5 84.4 82.3 80.2 81.0 78.3 74.4 71.0 69.4 

(-5;5) 95.4 92.2 88.8 87.6 87.3 85.1 83.1 82.3 79.9 

          

Panel C: British pound (GBP) sample 

  

Range, Forward Rate Agreement, type 

b. p. 1x4 2x5 3x6 4x7 5x8 6x9 7x10 8x11 9x12 

(-1;1) 41.9 30.9 28.9 25.4 26.6 24.8 19.0 18.8 24.3 

(-2,2) 69.8 57.1 54.9 48.5 49.7 49.2 36.8 36.9 43.1 

(-3;3) 85.2 75.4 75.0 68.4 66.7 67.1 52.1 52.4 60.8 

(-4,4) 92.9 86.7 87.2 81.6 77.9 79.5 68.2 63.8 75.1 

(-5;5) 97.2 91.8 92.6 89.5 86.3 86.9 77.4 75.5 83.5 
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The findings demonstrate that the quoted FRA rate does differ from the implied forward 

rate obtained from the two respective spot LIBOR rates quoted on the same day62. The observed 

difference can be partially attributed to the presence of the bid-ask spread in the quoted FRA 

rates which normally constitutes one to three basis points. The difference is more frequently 

observed and is more pronounced for contracts with longer expiration time, i. e. a higher N. Such 

outcome outlines the presence of the limits to arbitrage and suggests that equation (4.13) can 

serve only as an approximation of the actual FRA rate. Moreover, the spread between the FRA 

rate and the respective implied forward rate tends to widen considerably in the times of the credit 

market distress. Figure 4.1 shows the mean, the maximum and the minimum of the absolute 

value of the FRA/forward rate spread for nine three-month euro FRA contracts (from 1x4 to 

9x12) for the period from 6/26/2007 to 9/26/2007. The spread widened considerably in the 

middle of August 2007, the time when the financial crisis of 2007-2009 has begun, and stayed at 

the elevated level for the rest of the sample period. 

4.7 Estimation of the Futures/FRA Convexity Adjustment 

To estimate the FRA rate in the presence of limits to arbitrage, note that the FRA value 

must be a martingale, i. e. the expected payoff of entering the FRA transaction under risk neutral 

expectations must be zero. Given the settlement formula for the FRA contract in (4.12), the zero 

expected payoff condition is 
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Since rFRA can be treated as a constant, the above formula implies that the FRA rate must be 

equal to 

.
1

1~
/

1

~









+









+
=

rk
E

rk

r
ErFRA  

The convexity adjustment in the IMM FRA market is modeled as following. Since the 

futures is marked to market daily, its rate is equal to the expected LIBOR rate at the expiration. 

Therefore, the difference between the Eurocurrency futures rate and the respective IMM FRA 

quoted rate is equal to 

                                                 
62 The FRA rates are taken as the closing rates as of 4 pm London time, whereas LIBOR spot rates are published at 
11 am London time same day. This asynchronicity in quotes, however, would not prevent from executing the 
arbitrage have the latter been possible. 

(4.14) 

(4.15) 
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since the covariance term is always negative. The expression above is the IMM FRA/futures rate 

differential, or the convexity adjustment for the IMM FRA market, which is different from the 

futures-forward rate differential shown in Hull (2006), or that derived by Kirikos and Novak 

(1997). How much should this differential normally be and what does it depend on? First, the 

formula says that the differential is independent of the maturity and the current level of interest 

rate. It is expected though that the differential’s size will be an increasing function of the 

underlying rate’s expected level and its volatility. 

 
Figure 4.1 Absolute value of the FRA/implied forward rate differential across nine pairs of euro 
rates for the period from 6/26/2007 to 9/26/2007, basis points 

 

Table 4.6 presents results of the predicted value of the futures/FRA convexity adjustment 

for all three samples of rates used for the futures premium analysis when arbitrage is not possible 

to execute. The results are shown for all three volatility specifications described in section 4.3. 

The initial estimates of the forward rate volatilities are obtained by computing daily standard 

deviations using a historical sample of rates over the last month. This method is supposed to 

yield more reliable results than the one where the standard deviations are computed using the 

(4.16) 
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Table 4.6 Predicted values of the futures/FRA convexity adjustment and the futures/forward 
convexity adjustment, basis points 
 
Type 1 is based on the volatility specification where volatility is a function of maturity time only. Type 2 is based on 
the volatility specification where volatility is a function of time to maturity. Type 3 is based on the exponentially 
dampened volatility specification. Initial volatility estimates are computed as the weekly standard deviations using 
Model 2 (range of rates for the last 21 business days including the current day). Means and standard deviations are 
presented. 
 
Panel A: Swiss franc (CHF) sample 

Futures/FRA convexity adjustment given limits of arbitrage 

 Type 1  Type 2  Type 3 

maturity mean stdev  mean stdev  mean stdev 

13 weeks 0.03 0.06  0.03 0.05  0.03 0.05 

26 weeks 0.13 0.18  0.08 0.12  0.07 0.11 

39 weeks 0.34 0.42  0.17 0.22  0.16 0.22 

         

Futures/forward convexity adjustment if arbitrage is executable: 

 Type 1  Type 2  Type 3 

maturity mean stdev  mean stdev  mean stdev 

13 weeks 0.05 0.07  0.04 0.07  0.04 0.07 

26 weeks 0.22 0.29  0.14 0.21  0.12 0.21 

39 weeks 0.65 0.83  0.35 0.48  0.34 0.48 

         

Panel B: Euro sample 

Futures/FRA convexity adjustment given limits of arbitrage: 

 Type 1  Type 2  Type 3 

maturity mean stdev  mean stdev  mean stdev 

13 weeks 0.13 0.56  0.13 0.55  0.11 0.49 

26 weeks 0.33 1.13  0.27 1.08  0.25 1.07 

39 weeks 0.61 1.71  0.46 1.67  0.42 1.69 

52 weeks 1.03 2.48  0.69 2.18  0.63 2.32 

65 weeks 1.67 3.88  0.98 2.85  0.91 3.10 

78 weeks 2.83 6.92  1.38 3.74  1.31 4.05 

91 weeks 5.12 13.93  1.96 5.02  1.91 5.19 

         

Futures/forward convexity adjustment if arbitrage is executable: 

 Type 1  Type 2  Type 3 

maturity mean stdev  mean stdev  mean stdev 

13 weeks 0.19 0.82  0.18 0.81  0.17 0.71 

26 weeks 0.60 2.16  0.52 2.15  0.48 2.02 

39 weeks 1.36 4.09  1.08 4.06  1.00 4.00 

52 weeks 2.64 7.03  1.91 6.55  1.78 6.75 

65 weeks 4.76 11.90  3.14 9.95  2.95 10.48 

78 weeks 8.45 20.78  4.93 14.65  4.69 15.37 

91 weeks 15.44 38.92  7.60 21.43  7.34 21.72 
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(Table 4.6 continued) 
 
Panel C: British pound (GBP) sample 

Futures/FRA convexity adjustment given limits of arbitrage 

 Type 1  Type 2  Type 3 

maturity mean stdev  mean stdev  mean stdev 

13 weeks 0.11 0.17  0.09 0.15  0.10 0.15 

26 weeks 0.32 0.39  0.23 0.33  0.22 0.31 

39 weeks 0.63 0.70  0.42 0.53  0.37 0.48 

52 weeks 0.97 1.05  0.65 0.75  0.54 0.66 

65 weeks 1.30 1.47  0.91 1.01  0.77 0.89 

78 weeks 1.71 1.97  1.18 1.31  1.06 1.18 

91 weeks 2.51 2.78  1.50 1.64  1.44 1.57 

         

Futures/forward convexity adjustment if arbitrage is executable 

 Type 1  Type 2  Type 3 

maturity mean stdev  mean stdev  mean stdev 

13 weeks 0.15 0.24  0.14 0.22  0.15 0.22 

26 weeks 0.57 0.72  0.43 0.62  0.43 0.60 

39 weeks 1.37 1.53  0.96 1.22  0.87 1.14 

52 weeks 2.52 2.73  1.77 2.06  1.54 1.89 

65 weeks 4.01 4.38  2.85 3.18  2.50 2.92 

78 weeks 6.01 6.66  4.24 4.63  3.86 4.32 

91 weeks 9.28 9.97  6.05 6.50  5.79 6.29 
 

rates over the last three months since the latter is more prone to the bias in the estimated 

volatility numbers caused by the interpolation error. For comparison purposes, Table 4.6 also 

shows respective statistics for the futures/FRA convexity adjustment when there are no limits to 

arbitrage, which represents the standard futures/forward rate differential. 

Two major results are obtained from the table. First, for all three samples, the 

conventional futures/forward convexity adjustment exceeds the FRA/futures convexity 

adjustment when there are limits to arbitrage and the discrepancy between those two becomes 

more evident with the maturity. Second, the average size of the futures/FRA convexity 

adjustment is extremely low: it does not exceed one basis point for maturities less than a year 

and is between one and five basis points, depending on the model used, for maturities below two 

years. Hence, it would be very hard if not impossible to detect the presence of the convexity 

adjustment in the IMM FRA quotes empirically given the limits of arbitrage and minor data 

imperfections such as the asynchronicity and the presence of a bid-ask spread in the quoted rates. 

It would also be reasonable to assume that with such low values of the convexity adjustment in 
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the IMM FRA quotes, in order to cover for their costs, the market makers’ offer rate will be a 

mark up over, and the IMM FRA bid quote will be a mark down from the corresponding 

Eurocurrency interest rate futures contract. Hence, the IMM FRAs are more likely to be priced 

off the respective Eurocurrency futures rather than the implied forward curve. Such scenario 

would make the empirical estimation of the convexity adjustment on the IMM FRA market look 

like a search for a needle in a haystack. To summarize, this section provides evidence that 

despite all shortcomings that arise when one is performing the analysis of the convexity 

adjustment using the implied forward rates, the replacement of the latter by the IMM FRA quotes 

for the purposes of the analysis is not expected to yield more credibility to the obtained findings. 

The results would most likely be inconclusive and subject to an error.  

4.8 Summary and Conclusions 

This paper contributes to the literature by extending the previous research on the 

convexity adjustment in interest rate futures in two major ways. First, a matching technique is 

utilized to determine the presence of the convexity adjustment in the futures quotes on each 

individual trading day. This method helps to identify whether the observed futures prices tend to 

be overestimated which would suggest the presence of the robust futures premium. The analysis 

is performed for the three most traded interest rate futures contracts in Europe: EURIBOR 

futures, short sterling futures and Euroswiss futures. The results suggest that the futures premium 

is barely present for the contracts with maturities less than one year as its size is likely to be a 

fraction of a basis point. The innovative feature of the analysis is that it was extended for the 

EURIBOR futures and the short sterling futures for maturities beyond nine months by using the 

quoted swap rates. The size of the futures premium for maturities above twelve months is shown 

to be a function of the model assumptions regarding the volatility parameters and their evolution.  

The second contribution of the paper is in dismissing the recent claims that the use of the 

rates on the forward rate agreements that have same expiration dates as the respective 

Eurocurrency futures (IMM FRAs) instead of the implied forward rates is supposed to yield 

more meaningful findings due to the fact that the IMM FRAs are the actually traded forward 

contracts. The paper extends the statement that can be met in a number of textbooks on 

derivatives and fixed income that the rate on a forward rate agreement contract is a function of 

the current term structure and is equal to the implied forward rate. This is not the case in the 
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presence of the limits to arbitrage as the two rates would differ and their difference increases 

with the maturity.  

The fact that the IMM FRA rate is supposed to exceed the implied forward rate and be 

close to the respective futures rate given the limits of execution of the standard arbitrage allows 

to explain why the recent research has not been able to detect the presence of the convexity 

adjustment in the futures relative to IMM FRA market. The paper shows that the whole idea of 

detecting the empirical presence of the convexity adjustment in the IMM FRA market or lack of 

thereof is questionable to implement due to the illusory nature of the subject under consideration 

whose size is supposed to be within the limits of the bid-ask spread. Therefore, the claims that 

the convexity adjustment has not been empirically priced into IMM FRA quotes lack substance 

and are subject to revision. 
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Chapter 5 Conclusions 

 
This dissertation explores the issues surrounding the nature of the interest rate forward-

futures differential, also known as the convexity adjustment. The existence of the convexity 

adjustment has been justified in the theoretical literature but its empirical presence has been 

inconclusive and subject to a number of caveats embedded in the analysis such as the 

asynchronicity, the derived nature of the implied forwards, the Eurocurrency futures pricing 

design among others. This research work that consists of three essays focuses on looking at the 

major factors and imperfections that can be met while investigating the size and the nature of the 

convexity adjustment by incorporating the former and eliminating the latter from the analysis. 

In the first part of my dissertation I investigate the magnitude of the forward-futures 

differential, also known as the convexity adjustment, for Eurodollar interest rate instruments and 

attempt to identify factors affecting its size. I show that, opposite to theoretical implication, the 

magnitude of the forward-futures rate differential is much smaller than what was expected, and 

that its sign is negative on many occasions. I further check for potential data skews and other 

imperfections that may be behind the obtained results and find that neither asynchronicity bias, 

nor the unconventional feature of the Eurodollar futures pricing can explain the observed 

phenomena. The term structure interpolation error and the two business day lag between the 

fixing (settlement) date and the transaction (value) date to which the implied forward rates and 

prices are applied cannot be attributed to the observed abnormality either. I also find that if the 

regression analysis is conducted for the price differential instead of that for the rate differential, it 

results in a much better goodness-of-fit. However, the negative nature of the differential is not 

captured by the default factor proxied by the TED spread and remains largely unexplained. 

The second essay takes a closer look at the relationship between Eurocurrency interest 

rate futures prices and forward prices by focusing on the way the Eurocurrency futures 

settlement procedure affects the forward-futures differential analysis. Sundaresan (1991) argues 

that the implied forward price from the spot LIBOR term structure is inappropriate for the 

purposes of comparison with the Eurodollar futures price due to the differences in settlement 

procedures and introduces a hypothetical forward contract in order to eliminate the presence of 

the settlement factor. I show that there is no need to come up with hypothetical contracts in order 

to compare forward prices with those of futures by demonstrating that the difference between the 
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implied forward price obtained from the spot rate term structure and the original Eurodollar 

futures price at any point of time before maturity is composed of two parts: the element due to 

marking-to-market and the element arisen from the unconventional settlement of the 

Eurocurrency futures. The essay further investigates how changing frequency of the marking-to-

market may affect the size of its component within the HJM term structure framework. The 

finding is that the three-month step in the discrete HJM model is quite appropriate since the 

results with monthly and weekly steps do not lead to significant improvements. Finally, the 

marking-to-market effect appears to be negligible for maturities of 12 months or less but its size 

is expected to grow exponentially with the time to maturity. It is also demonstrated that the 

discrepancy between the forward price and the futures price arisen from the unconventional 

settlement of the Eurocurrency futures can be hedged using a specific basket of caplets. 

The third essay performs the analysis of the convexity adjustment for the three most 

traded interest rate futures contracts in Europe: EURIBOR futures, short sterling futures and 

Euroswiss franc futures. I show that, opposite to the earlier studies that conclude about 

mispricing of the futures, the futures premium is barely detectible for the three contracts, 

especially for maturities below one year. The futures premium for maturities above twelve 

months varies across the models and is a subject to model assumptions regarding the volatility 

input and its evolution. I also extend the statement that can be met in a number of textbooks on 

derivatives and fixed income that the rate on a forward rate agreement (FRA) contract is a 

function of the current term structure and is equal to the implied forward rate. This is not the case 

in the presence of the limits to arbitrage as the two rates would differ and their difference 

increases with the maturity. This finding allows to challenge the results in recently published 

works that argue that the convexity adjustment is not priced in by the IMM FRA market makers. 

On the contrary, the theoretically predicted FRA/futures rate difference is shown to be 

indistinguishable and therefore would be hard to detect empirically given the presence of 

asynchronicity and the bid-ask spread in the reported quote data. 
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