Higher powers of quantum white noise derivatives

Aymen Ettaieb
Habib Ouerdiane
Hafedh Rguigui
HIGHER POWERS OF QUANTUM WHITE NOISE DERIVATIVES

AYMEN ETTAIEB, HABIB OUERDIANE, AND HAFEDH RGUIGUI

ABSTRACT. By a Wick differential equation, we characterize the operator $W_{l,m}(f)$ studied in [1, 3, 9] where $l, m \in \mathbb{N} \cup \{0\}$ and $f \in \mathcal{S}({\mathbb{R}})$. As an application we give in our setting a new renormalization in order to get the higher powers of white noise. Then, we investigate the commutation relations obtained from the quantum white noise (QWN) derivatives in order to introduce two operators acting on white noise operators, from which we get the higher powers of quantum white noise derivatives and a \ast-Lie algebra generalizing the renormalized higher power white noise Lie algebra.

1. Introduction

In recent years operator theory over white noise functions has been considerably studied. Motivated by the attempts of developing a satisfactory theory of quantization of gravity and by the attempts to develop nonlinear generalization of stochastic and white noise analysis, the renormalized higher powers of quantum white noise (RHPWN) \ast-Lie algebra has been investigated in quantum probability.

The white noise functionals a_t (annihilation density) and a_t^\ast (creation density) satisfy the Boson commutation relation:

$$[a_t^\ast, a_s^\ast] = [a_t, a_s] = 0; \quad [a_t, a_s^\ast] = \delta(t-s),$$

where $t, s \in \mathbb{R}$, δ is the Dirac delta function, $[x, y] := xy - yx$ is usual operator commutator. Giving meaning to the higher powers of creation and annihilation densities, i.e., to the formal expression a_t^n, a_k^l, where $n, k \in \mathbb{N} \cup \{0\}$, is an old and important problem in quantum field theory. In their work, Accardi, Bockas and Franz (see [1], [3] and [5]) studied the higher powers of quantum white noises:

$$W_{n,k}(f) = \int_{\mathbb{R}} f(t)(a_t^\ast)^n a_t^k dt.$$ (1.1)

It was shown that, using the renormalization

$$\delta^l(t-s) = \delta(s)\delta(t-s), \quad l = 2, 3, ...$$ (1.2)

Received 2014-2-10; Communicated by the editors. Article is based on a lecture presented at the International Conference on Stochastic Analysis and Applications, Hammamet, Tunisia, October 14-19, 2013.

2010 Mathematics Subject Classification. Primary 60H40; Secondary 46A32, 46F25, 46G20.

Key words and phrases. QWN-derivatives, higher powers of the QWN-derivatives, higher powers white noise Lie algebra.
and choosing test functions that vanish at zero, the renormalized higher power white noise (RHPWN) ∗-Lie algebra is effectively defined by the following commutation relations

\[[W_{n,k}(g), W_{N,K}(f)]_{\text{RHPWN}} := (kN - Kn)W_{n+N-1,k+K-1}(gf). \]

(1.3)

In [9], Chung, Ji and Obata used a new renormalisation to give the renormalized product obtained from the powers of creation and annihilation operators to overcome the difficulties caused by higher powers of delta functions arising from successive application of the canonical commutation relations.

The purpose of this paper is to investigate the commutation relations obtained from the quantum white noise derivatives \(D_+^n \) \(D_-^n \) (see [14]) and their adjoint \((D_+^n)^* \), \((D_-^n)^* \) (see [6]) in order to give a commutation relation generalizing (1.3). In fact, instead of (1.1) we consider the operator

\[
B^{n_1,n_2}_{k_1,k_2}(f) = \int f(t)(D_+^{n_1}(D_-^{n_2})(D_+^{k_1})(D_-^{k_2}) dt, \quad f \in S(\mathbb{R}),
\]

and its approximation by an operator \(D^{l,m}_{n,k}(f_e) \) with a more regular kernel.

For two operators \(B^{l,m}_{n,k}(f) \) and \(B^{l,m}_{n,k}(g) \) we take approximations \(D^{l,m}_{n,k}(f_e) \) and \(D^{l,m}_{n,k}(g_e) \), respectively. We prove that the composition \(D^{l,m}_{n,k}(f_e)D^{l,m}_{n,k}(g_e) \) is well defined for \(f_e \in N^{\otimes l+m} \otimes N^{\otimes n+k} \) and \(g_e \in N^{\otimes l+1+m} \otimes N^{\otimes n+1+k} \), while \(B^{l,m}_{n,k}(f)B^{l,m}_{n,k}(g) \) is not in general. We are then lead to a renormalization similar to those in [9]. As a result, we get

\[
\left[B^{n_1,n_2}_{k_1,k_2}(f)B^{n_1',n_2'}_{k_1',k_2'}(g) \right]_{\text{ren}} = B^{n_1,n_2}_{k_1,k_2}(f) + B^{n_1',n_2'}_{k_1',k_2'}(g)
\]

\[
+ k_1n_1' B^{n_1+n_1'-1,n_2+n_2'-1}_{k_1+k_1'-1,k_2+k_2'}(fg)
\]

\[
+ k_2n_2' B^{n_1+n_1',n_2+n_2'-1}_{k_1+k_1',k_2+k_2'-1}(fg)
\]

\[
+ k_1k_2n_1'n_2' B^{n_1+n_1'-1,n_2+n_2'-1}_{k_1+k_1'-1,k_2+k_2'-1}(fg).
\]

This paper is organized as follows: in section 2, we assemble some basic notations in quantum white noise calculus and we recall the classical case in the space of all entire functions with \(\theta \)--exponential growth of finite type, where \(\theta \) is a young function. In section 3, we develop in our setting the renormalization introduced in [9] and we characterize the operator \(W_{n,k}(f) \) by a Wick differential equation. In section 4, we give two new operators which generalizes those introduced by Accardi, Boukas and Franz using a renormalization similar to those introduced in [9] to obtain the higher powers of the quantum white noise derivatives.

2. Preliminaries

Let \(E = S(\mathbb{R}) \) be the Schwartz space consisting of rapidly decreasing \(C^\infty \) functions and \(E' = S'(\mathbb{R}) \) the space of tempered distributions. We denote by \(N \) the complexification of \(E \), i.e., \(N = E + iE \). We start with the following real Gel’fand triple:

\[
E \subset L^2(\mathbb{R}, dt) \subset E'.
\]

(2.1)
The Gel'fand triple (2.1) can be reconstructed in a standard way (see Ref. [18]) by the harmonic oscillator $A = 1 + t^2 - d^2/dt^2$ and $L^2(\mathbb{R}, dt)$. The eigenvalues of A are $2n + 2$, $n = 0, 1, 2, \ldots$, the corresponding eigenfunctions $\{e_n; n \geq 0\}$ form an orthonormal basis for $L^2(\mathbb{R}, dt)$ and each e_n is an element of E. In fact, E is a nuclear space equipped with the Hilbertian norms

$$|\xi|_p = |A^p\xi|_0, \quad \xi \in E, \quad p \in \mathbb{R}$$

and we have

$$E = \proj \lim_{p \to \infty} E_p, \quad E' = \ind \lim_{p \to \infty} E_{-p},$$

where, for $p \geq 0$, E_p is the completion of E with respect to the norm $|\cdot|_p$ and E_{-p} is the topological dual space of E_p. The inequality

$$|\xi|_p \leq \rho^p|\xi|_{p+q}, \quad \xi \in E, \quad p \in \mathbb{R}, \quad q \geq 0,$$

holds with $\rho = 1/2$.

Let $\theta : \mathbb{R}_+ \to \mathbb{R}_+$ be a continuous, convex, increasing function satisfying $\lim_{x \to \infty} \frac{\theta(x)}{x} = \infty$ and $\theta(0) = 0$. Such a function is called a Young function. The polar function associated to θ denoted by $\theta^*(x)$ given by

$$\theta^*(x) = \sup_{t \geq 0} \{tx - \theta(t)\}$$

is again a Young function and $(\theta^*)^* = \theta$.

For a complex Banach space $(B, \| \cdot \|)$, let $\mathcal{H}(B)$ denotes the space of all entire functions on B. For each $m > 0$ we denote by $\text{Exp}(B, \theta, m)$ the space of all entire functions on B with $\theta-$exponential growth of finite type m, i.e.,

$$\text{Exp}(B, \theta, m) = \{ f \in \mathcal{H}(B); \quad \| f \|_{\theta,m} := \sup_{z \in B} |f(z)e^{-\theta(m)\|z\|})| < \infty \}.$$

The projective system \(\{\text{Exp}(N_{-p}, \theta, m); p \in \mathbb{N}, m > 0\} \) give the space $\mathcal{F}_\theta(N') = \proj \lim_{p \to \infty; m \downarrow 0} \text{Exp}(N_{-p}, \theta, m)$.

On the other hand, \(\{\text{Exp}(N_p, \theta, m); p \in \mathbb{N}, m > 0\} \) becomes an inductive system of Banach spaces and we put

$$\mathcal{G}_\theta(N) = \ind \lim_{p \to \infty; m \uparrow \infty} \text{Exp}(N_p, \theta, m).$$

It is known that every $\phi \in \mathcal{F}_\theta(N')$ admits a Taylor expansion of the form:

$$\phi(x) = \sum_{n=0}^{\infty} <x^{\otimes n}, \phi_n>, \quad x \in N', \phi_n \in N^{\otimes n}. \quad (2.4)$$

Let $F_\theta(N')$ be the space of all Taylor coefficients ϕ_n obtained from (2.4). It is known that

$$F_\theta(N) = \proj \lim_{p \to \infty; m \downarrow 0} F_{\theta,m}(N_p),$$

where

$$F_{\theta,m}(N_p) = \{ \phi = (\phi_n); \phi_n \in N_p^{\otimes n}, \quad \|\phi\|_{\theta,p,m} = \sum_{n=0}^{\infty} \theta_n^{-2m^{-n}}|\phi_n|^2 < \infty \}.$$
and
\[\theta_n = \inf_{r>0} \frac{e^{\theta(r)}}{r^n}, \quad n = 0, 1, 2, \ldots. \]
Moreover, equipped with the projective limit topology, \(F_{\theta}(N) \) is a nuclear Fréchet space and is isomorphic to \(F_{\theta}(N') \). Let
\[G_{\theta}(N') = \lim_{p \to \infty, m \to \infty} G_{\theta,m}(N_{-p}), \]
where
\[G_{\theta,m}(N_{-p}) = \left\{ \Phi = (F_n); F_n \in N_{-p}^{\otimes n}, \sum_{n=0}^{\infty} (n!)^2 m^n |F_n|_{-p}^2 < \infty \right\}. \]
By definition, \(F_{\theta}(N) \) and \(G_{\theta}(N') \) are dual to each other, for more details see ([8], [12] and [20]). Let \(\Gamma \) and \(\Upsilon \) be locally convex spaces. We denote by \(\mathcal{L}(\Gamma, \Upsilon) \) the space of continuous linear operators from \(\Gamma \) into \(\Upsilon \). It is a fundamental fact in quantum white noise theory ([8] and [18]) that every white noise operator \(\Xi \in \mathcal{L}(\mathcal{F}_{\theta}(N'), \mathcal{F}_{\theta}^*(N')) \) admits a unique Fock expansion
\[\Xi = \sum_{l,m=0}^{\infty} \Xi_{l,m}(\kappa_{l,m}), \tag{2.5} \]
where, for each pairing \(l, m \geq 0, \kappa_{l,m} \in (N^{\otimes (l+m)})_{\text{sym}(l,m)} \) and \((N^{\otimes (l+m)})_{\text{sym}(l,m)}'\) denote the subspace of \((N^{\otimes (l+m)})'\) consisting of symmetric elements. The Wick symbol of \(\Xi \in \mathcal{L}(\mathcal{F}_{\theta}(N'), \mathcal{F}_{\theta}^*(N')) \) is a \(\mathbb{C} \)-valued function on \(N \times N \) defined by
\[\sigma(\Xi)(\xi, \eta) = \langle \Xi \xi, \xi \eta \rangle e^{-<\xi, \eta>}, \quad \xi, \eta \in N, \tag{2.6} \]
where the exponential function is by definition \(e(z) := e^{<z, \xi>}, \quad z \in N' \). In fact, the integral kernel operator \(\Xi_{l,m}(\kappa_{l,m}) \) is characterized via the Wick symbol transform by
\[\sigma(\Xi_{l,m}(\kappa_{l,m}))(\xi, \eta) = <\kappa_{l,m}, \eta^\otimes l \otimes \xi^\otimes m>, \quad \xi, \eta \in N. \tag{2.7} \]

Let \(\mathcal{H}_{\theta}(N \oplus N) \) be the space of all holomorphic functions \(g \) given by \(g(x, y) = \sum_{l,m=0}^{\infty} <x^\otimes l \otimes y^\otimes m, g_{l,m}> \) such that
\[|g|_{\theta, p, (\gamma_1, \gamma_2)}^2 := \sum_{l,m=0}^{\infty} \theta_l^{-2} \theta_m^{-2} \gamma_1^{-l} \gamma_2^{-m} |g_{l,m}|_p^2 < \infty, \quad \forall p \geq 0, \quad \gamma_1, \gamma_2 > 0, \]
see for more details ([6] and [16]). Then from the topological isomorphism between the two spaces \(\mathcal{L}(\mathcal{F}_{\theta}^*(N'), \mathcal{F}_{\theta}(N')) \) and \(\mathcal{H}_{\theta}(N \oplus N) \) via the symbol map (see [6]), we can define a family of seminorms of operators \(\Xi = \sum_{l,m=0}^{\infty} \Xi_{l,m}(\kappa_{l,m}) \) in \(\mathcal{L}(\mathcal{F}_{\theta}^*(N'), \mathcal{F}_{\theta}(N')) \) by
\[\|\Xi\|_{\theta, p, (\gamma_1, \gamma_2)}^2 = \sum_{l,m=0}^{\infty} \theta_l^{-2} \theta_m^{-2} \gamma_1^{-l} \gamma_2^{-m} |\kappa_{l,m}|_p^2, \]
for all \(p \geq 0 \) and \(\gamma_1, \gamma_2 > 0. \)

Theorem 2.1. (see Ref. [16]) The Wick symbol map yields a topological isomorphism between \(\mathcal{L}(\mathcal{F}_{\theta}(N'), \mathcal{F}_{\theta}^*(N')) \) and \(\mathcal{G}_{\theta}(N \oplus N) \), where \(\mathcal{G}_{\theta}(N \oplus N) \) denotes the nuclear space obtained as in (2.3).
The operator $\Xi_{l,m}(\kappa_{l,m})$ formally expressed as

$$\Xi_{l,m}(\kappa_{l,m}) = \int_{\mathbb{R}^{l+m}} \kappa_{l,m}(s_1, \ldots, s_l, t_1, \ldots, t_m) \times a^*_s a_t ds_1 \cdots ds_l dt_1 \cdots dt_m,$$

where a_t and a^*_t are, respectively, the annihilation and creation operators. In this way $\Xi_{l,m}(\kappa_{l,m})$ can be considered as the operator polynomials of degree $l + m$ associated to the distribution $\kappa_{l,m} \in (\mathcal{N}^*_{\sigma(l+m)})^*_{sym(l,m)}$ as coefficient and therefore every white noise operator is a function of the quantum white noise. This gives a natural idea for defining the derivatives of an operator $\Xi \in \mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0^*(N'))$ with respect to the quantum white noise coordinate system $\{a_t, a^*_t; t \in \mathbb{R}\}$. From Refs. [13] and [14], we summarize the novel formalism of quantum white noise derivatives. For $\zeta \in E$, ∂_ζ denotes the holomorphic derivative in the direction ζ and ∂^*_ζ is its adjoint operator. Both ∂_ζ and ∂^*_ζ belong to $\mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0^*(N')) \cap \mathcal{L}(\mathcal{F}_0^*(N'), \mathcal{F}_0^*(N'))$. Thus, for any white noise operator $\Xi \in \mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0^*(N'))$, the commutators

$$[\partial_\zeta, \Xi] = \partial_\zeta \Xi - \Xi \partial_\zeta, \quad [\partial^*_\zeta, \Xi] = \partial^*_\zeta \Xi - \Xi \partial^*_\zeta,$$

are well defined white noise operators in $\mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0^*(N'))$. The quantum white noise derivatives are defined by

$$D^+_\zeta \Xi = [\partial_\zeta, \Xi], \quad D^-_\zeta \Xi = -[\partial^*_\zeta, \Xi]. \quad (2.8)$$

These are called the creation derivative and annihilation derivative of Ξ, respectively. The adjoint operators of D^+_ζ and D^-_ζ denoted by $(D^+_\zeta)^*$ and $(D^-_\zeta)^*$ are introduced in [6]. For $\xi, \eta, \zeta \in N$, we define the partial derivatives $\partial_{1,\zeta}$ and $\partial_{2,\zeta}$ in the direction ζ as follows

$$(\partial_{1,\zeta} f)(\xi, \eta) = \lim_{\epsilon \to 0} \frac{f(\xi + \epsilon \zeta, \eta) - f(\xi, \eta)}{\epsilon},$$

$$(\partial_{2,\zeta} f)(\xi, \eta) = \lim_{\epsilon \to 0} \frac{f(\xi, \eta + \epsilon \zeta) - f(\xi, \eta)}{\epsilon},$$

where $f \in \mathcal{G}_{q_{\sigma}}(N \oplus N)$. The adjoint of $\partial_{1,\zeta}$ and $\partial_{2,\zeta}$ denoted by $\partial^*_{1,\zeta}$ and $\partial^*_{2,\zeta}$ are defined by

$$\ll \partial^*_{1,\zeta} f, g \gg = \ll f, \partial_{1,\zeta} g \gg, \quad \ll \partial^*_{2,\zeta} f, g \gg = \ll f, \partial_{2,\zeta} g \gg,$$

where $f \in \mathcal{G}_{q_{\sigma}}(N \oplus N)$ and $g \in \mathcal{H}_{q_{\sigma}}(N \oplus N)$.

Proposition 2.2. [6] For $\zeta \in N$, the creation and the annihilation derivatives of $\Xi \in \mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0^*(N'))$ are given by

$$D^-_\zeta \Xi = \sigma^{-1} \partial_{1,\zeta} \sigma(\Xi) \quad \text{and} \quad D^+_\zeta \Xi = \sigma^{-1} \partial_{2,\zeta} \sigma(\Xi). \quad (2.9)$$

Moreover, their dual adjoint are given by

$$(D^-_\zeta)^* \Xi = \sigma^{-1} \partial^*_{1,\zeta} \sigma(\Xi) \quad \text{and} \quad (D^+_\zeta)^* \Xi = \sigma^{-1} \partial^*_{2,\zeta} \sigma(\Xi). \quad (2.10)$$

For $x, y, u, v \in N$, we have the following equalities

$$D^+_x \Xi_{l,m}(\kappa_{l,m}) = l \Xi_{l-1,m}(x \odot^1 \kappa_{l,m}) \quad (2.11)$$

$$D^+_y \Xi_{l,m}(\kappa_{l,m}) = m \Xi_{l,m-1}(\kappa_{l,m} \odot^1 y) \quad (2.12)$$
\[(D^+_z)^* \Xi_{l,m}(\kappa_{l,m}) = \Xi_{l+1,m}(u\otimes \kappa_{l,m}) \quad (2.13)\]
\[(D^-_z)^* \Xi_{l,m}(\kappa_{l,m}) = \Xi_{l,m+1}(\kappa_{l,m}\otimes v), \quad (2.14)\]

where, for \(z_p \in (N^\otimes p)'\), and \(\xi_{l-p+m} \in N^\otimes_{l-p+m}\), \(p \leq l+m\), the contractions \(z_p \otimes_p \kappa_{l,m}\) and \(z_p \otimes_p \kappa_{l,m}\) are defined by
\[
< z_p \otimes_p \kappa_{l,m}, \xi_{l-p+m} > = < \kappa_{l,m}, z_p \otimes \xi_{l-p+m} > \quad < z_p \otimes_p \kappa_{l,m}, \xi_{l-p+m} > = < \kappa_{l,m}, z_p \otimes \xi_{l-p+m} > .
\]

For \(z \in N\), the \(QN\)-derivatives \(D^\Xi_z\) and their adjoins \((D^\Xi_z)^*\) are respectively a continuous linear operators from \(\mathcal{L}(\mathcal{F}_b(N'), \mathcal{F}_b(N'))\) into itself and from \(\mathcal{L}(\mathcal{F}_b(N'), \mathcal{F}_b(N'))\) into itself, (see [6] and [22]).

3. Higher Powers of White Noise Derivatives

Let \(\varphi \in \mathcal{F}_b(N')\) given by
\[
\varphi(z) = \sum_{n=0}^{\infty} < z^\otimes n, \varphi_n >, \quad z \in N', \quad \varphi_n \in N^\otimes n. \quad (3.1)
\]

For \(x \in N'\), the holomorphic derivative of \(\varphi\) at \(z \in N'\) in the direction \(x\) is defined by
\[
\partial_x \varphi(z) = \lim_{t \to 0} \frac{\varphi(z+tx) - \varphi(z)}{t}.
\]

Therefore, we get
\[
\partial_x \varphi(z) = \sum_{n=1}^{\infty} n < z^\otimes (n-1), x^\otimes_1 \varphi_n > .
\]

Recall that \(\delta_t \in N'\) is the Dirac function at \(t\). Then \(\partial_{\delta_t} := a_t\) is called Hida’s differential operator. The adjoint operator \(\partial^*_y\) of \(\partial_y\) is defined by duality, i.e.,
\[
\ll \partial^*_y \Phi, \varphi \gg = \ll \Phi, \partial_y \varphi \gg, \quad \Phi \in \mathcal{F}_b^*(N'),
\]

from which we get \(\partial^*_y \varphi(z) = \sum_{n=0}^{\infty} < z^\otimes (n+1), x^\otimes f_n > \). Then, for \(x, y \in N\) we have
\[
[\partial_x, \partial^*_y] = \ll x, y \gg I, \quad (3.2)
\]

where \(I\) is the identity operator. For a later use, let \(\{e_i\}_{i \geq 0}\) be the complete orthonormal basis of \(L^2(\mathbb{R}, dt)\) and put
\[
e_{i,} = e_{i_1} \otimes \ldots \otimes e_{i_t}, \quad e_{j,} = e_{j_1} \otimes \ldots \otimes e_{j_m}, \quad \rightarrow_{i} = (i_1, \ldots, i_t), \quad \rightarrow_{j} = (j_1, \ldots, j_m)
\]

Lemma 3.1. For \(l, m \in \mathbb{N} \cup \{0\}\) and \(\kappa \in (N^\otimes (l+m))'\), the integral kernel operator \(\Xi_{l,m}(\kappa)\) admits the following expression:
\[
\Xi_{l,m}(\kappa) = \sum_{i, j=0}^{\infty} < \kappa, e_{i,} \otimes e_{j,} > \partial^*_e_{i_1} \ldots \partial^*_e_{i_t} \partial_{e_{j_1}} \ldots \partial_{e_{j_m}}. \quad (3.3)
\]
Proof. We denote by $T_{l,m}(\kappa)$ the righthand side of (3.3). Then we have

$$\sigma(T_{l,m}(\kappa))(\xi, \eta) = \sum_{\ell, j=0}^{\infty} <\kappa, e_\ell \otimes e_j > <\xi^{\otimes m}, e_\ell > <\eta^{\otimes l}, e_j >$$

which is equal to (2.7).

Let $l, m \geq 0$ and $g \in (N^{\otimes (l+m)})'$. We put

$$|g|_{l,m;p,q} = \left(\sum_{\ell, j=0}^{\infty} |<g, e_\ell \otimes e_j >|^2 |e_\ell|^2 |e_j|^2 \right)^{1/2}, \quad p, q \in \mathbb{R}.$$

This is always finite for $g \in N^{\otimes (l+m)}$. Obviously $|g|_{l,m;p,p} = |g|_p$, see [18].

Proposition 3.2. Let $l, m \geq 0$ and $\kappa \in N^{\otimes l} \otimes (N^{\otimes m})'$. Then, $\Xi_{l,m}(\kappa) \in \mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0(N'))$. Moreover, for any $p \geq 0$ and $q > 0$, there exist a constant $c(l, m, \gamma) > 0$ such that

$$|\Xi_{l,m}(\kappa)\varphi|_{\theta, p, \gamma} \leq c(l, m, \gamma)|\kappa|_{l,m;p,-(p+q)} |\varphi|_\theta^{1/2} |\varphi|_{p+q}, \quad \forall \gamma > 0. \quad (3.4)$$

Proof. Let $\varphi \in \mathcal{F}_0(N')$ represented by $(\varphi_n)_{n \geq 0}$. Then, we obtain

$$\Xi_{l,m}(\kappa)\varphi(x) = \sum_{n=0}^{\infty} \sum_{l, j=0}^{\infty} <\kappa, e_\ell \otimes e_j > \left(\frac{(n+m)!}{n!} \right)^{1/2} \theta_{n+l}^{-2} \gamma^{-l-n} |e_\ell|_p |e_j|_m |\varphi_n+m |>.$$

Therefore, for $p \geq 0$ and $\gamma > 0$, we have

$$|\Xi_{l,m}(\kappa)\varphi|_{\theta, p, \gamma}^2 = \sum_{n=0}^{\infty} \sum_{l, j=0}^{\infty} |<\kappa, e_\ell \otimes e_j >|^2 \left(\frac{(n+m)!}{n!} \right) \theta_{n+l}^{-2} \times \gamma^{-l-n} |e_\ell|_p |e_j|_m |\varphi_n+m |^2.$$

Using inequalities

$$\left(\frac{m!}{(m-n)!} \right)^2 \leq 4^m (n!)^2, \quad \theta_{m-n}^{-2} \leq 4^m \theta_m^{-2} \theta_n^{-2}, \quad m \geq n, \quad (3.5)$$

we obtain

$$|\Xi_{l,m}(\kappa)\varphi|_{\theta, p, \gamma}^2 \leq \sum_{n=0}^{\infty} \sum_{l, j=0}^{\infty} |<\kappa, e_\ell \otimes e_j >|^2 4^m 4^{n+l}(m!)^2 \times \theta_m^{-2} \theta_n^{-2} \gamma^{-l-n} |e_\ell|_p |e_j|_m |\varphi_n+m |^2.$$

From the fact that, see [18],

$$|e_j|_m |\varphi_n+m |_p \leq \rho^m |e_j|_{-(p+q)} |\varphi_n+m |_{p+q}, \quad q \geq 0,$$

we get

$$|\Xi_{l,m}(\kappa)\varphi|_{\theta, p, \gamma} \leq c(l, m, \gamma)|\kappa|_{l,m;p,-(p+q)} |\varphi|_\theta^{1/2} |\varphi|_{p+q}, \quad (3.4)$$
where $c(l, m, γ) = 2^{m+l}θ_l^{-1}γ^{-l}m!$. This completes the proof. □

In [9], Chung, Ji and Obata studied an operator which admits the following formal expression:

$$W_{l,m}(f) = Ξ_{l,m}(τ_{l+m}(f)) = \int_{\mathbb{R}} f(t)(a_t^*)^l a_t^m dt,$$

(3.6)

where $f \in N'$ and the operator $τ_k(f) : N' \rightarrow (N^\otimes k)'$ is defined by

$$< τ_k(f), ξ_1 \otimes ... \otimes ξ_k > = < f, ξ_1 ... ξ_k >, \quad ξ_1, ..., ξ_k ∈ N, \quad k ∈ \mathbb{N},$$

where $ξ_1 ... ξ_k$ is a pointwise product. The operator $τ_k(f)$ is called the distribution concentrated on the diagonal induced from f. It is noticeable that $W_{l,m}(f) \in L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N'))$, for any $f \in N'$. Then there is no meaning of composition $W_{l,m}(f)W_{l',m'}(g)$.

To overcome this problem, Chung, Ji and Obata approximate $τ_{l+m}$ in equation (3.6) by sufficiently regular functions $(f_ε)_{ε>0} ⊂ N^\otimes (l+m)$ and defined the renormalized product by eliminating a certain divergence terms.

Recall that (see [16] and [14]) for $Ξ_1, Ξ_2 ∈ L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N'))$ there exists a unique operator $Ξ = Ξ_1 ◦ Ξ_2$ and is denoted by

$$Ξ = Ξ_1 ◦ Ξ_2.$$

It is noteworthy that, equipped with the Wick product $L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N'))$ becomes a commutative *-algebra. A continuous linear map

$$D : L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N')) → L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N'))$$

is called a Wick derivation if

$$D(Ξ_1 ◦ Ξ_2) = D(Ξ_1) ◦ Ξ_2 + Ξ_1 ◦ D(Ξ_2), \quad Ξ_1, Ξ_2 ∈ L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N')).$$

For more detail see [15]. Recall that from [22], for $B_1, B_2 ∈ L(N', N')$, the QWN-conservation operator admits the following integral representation

$$N_{B_1, B_2}^Q = \int_{\mathbb{R}^2} τ_{B_1}(s,t)a_s^* ◦ D_t^+ dsdt + \int_{\mathbb{R}^2} τ_{B_2}(s,t)a_s ◦ D_t^- dsdt$$

on $L(\mathcal{F}_θ(N'), \mathcal{F}_θ(N'))$. In particular, if we take $B_1 = B_2 = I$, we get

$$N^Q = \int_{\mathbb{R}} a_s^* ◦ D_t^+ dt + \int_{\mathbb{R}} a_s ◦ D_t^- dt.$$

(3.7)

It is shown that N^Q is a Wick derivation.

Theorem 3.3. For $f ∈ N$, the operator $W_{l,m}(f)$ is given by

$$W_{l,m}(f) = \left(\frac{∂}{∂t_1}\right)^l \left(\frac{∂}{∂t_2}\right)^m Ξ_{t_1,t_2}(f)|_{t_1=t_2=0},$$

where $Ξ_{t_1,t_2}(f) = \int_{\mathbb{R}} f(s)e^{ot_1a_s^*}e^{ot_2a_s}ds$ and $Ξ_{t_1,t_2}(s) = f(s)e^{ot_1a_s^*}e^{ot_2a_s}$ is the unique solution of the following Wick differential equation

$$N^Q(Ξ) = (t_1a_s^* + t_2a_s) ◦ Ξ, \quad \text{if } t_1, t_2 \neq 0$$

(3.8)

and $Ξ_{0,0}(s) = f(s)I$, where I is the identity operator.
Proof. The unique solution of (3.8), is given by

\[\Xi_{t_1,t_2}(s) = F \circ e^{\delta Y}, \]

where \(N^Q(F) = 0 \) and \(N^Q(Y) = t_1 a_s^* + t_2 a_s \). Let \(Y = t_1 a_s^* + t_2 a_s \). Applying \(N^Q \) to \(Y \), we get

\[N^Q(Y) = \int_{\mathbb{R}} a_t^* \circ D_t^+ (t_1 a_s^* + t_2 a_s) dt + \int_{\mathbb{R}} a_t \circ D_t^- (t_1 a_s^* + t_2 a_s) dt \]
\[= \int_{\mathbb{R}} a_t^* \circ (t_1 \delta(t-s)) dt + \int_{\mathbb{R}} a_t \circ (t_2 \delta(t-s)) dt \]
\[= t_1 a_s^* + t_2 a_s. \]

From [22], we have

\[\sigma \left(N^Q(\Xi_{x,y}) \right)(\xi, \eta) = (\langle x, \eta \rangle + \langle y, \xi \rangle \exp(\langle x, \eta \rangle + \langle y, \xi \rangle), \]

where \(x, y, \xi, \eta \in \mathbb{N} \) and the operator \(\Xi_{x,y} \) is defined by

\[\Xi_{x,y}(\frac{x^{\otimes l}}{l!} \otimes \frac{y^{\otimes m}}{m!}). \]

It is noteworthy that \(\{ \Xi_{x,y}, x, y \in \mathbb{N} \} \) spans a dense subset of \(L^\infty(\mathcal{F}_\theta^*, \mathcal{F}_\theta(N')) \).

On the other hand

\[\sigma \left(\sum_{l,m=0}^{\infty} (l + m) \Xi_{l,m}(\frac{x^{\otimes l}}{l!} \otimes \frac{y^{\otimes m}}{m!}) \right)(\xi, \eta) \]
\[= \sum_{l=1,m=0}^{\infty} \frac{1}{(l-1)! m!} \sigma(\Xi_{l,m}(x^{\otimes l} \otimes y^{\otimes m}))(\xi, \eta) \]
\[+ \sum_{l=0,m=1}^{\infty} \frac{1}{l! (m-1)!} \sigma(\Xi_{l,m}(x^{\otimes l} \otimes y^{\otimes m}))(\xi, \eta) \]
\[= \sum_{l=1,m=0}^{\infty} \frac{1}{(l-1)! m!} (\langle x, \eta \rangle)^l (\langle y, \xi \rangle)^m \]
\[+ \sum_{l=0,m=1}^{\infty} \frac{1}{l! (m-1)!} (\langle x, \eta \rangle)^l (\langle y, \xi \rangle)^m \]
\[= (\langle x, \eta \rangle + \langle y, \xi \rangle \exp(\langle x, \eta \rangle + \langle y, \xi \rangle). \]

By a density argument, for \(F = \sum_{l,m=0}^{\infty} \Xi_{l,m}(\kappa_{l,m}) \), we deduce that

\[N^Q(F) = \sum_{l,m=0}^{\infty} (l + m) \Xi_{l,m}(\kappa_{l,m}). \]

Then, \(N^Q(F) = 0 \) gives \(l + m = 0 \) or \(\kappa_{l,m} = 0 \) for all \(l, m \geq 0 \). Therefore, \(F = \Xi_{0,0}(\kappa_{0,0}) = cI \) where \(c \in \mathbb{C} \) and \(I \) is the identity operator. But, for \(t_1 = t_2 = 0, \)
we have $c = f(s)$. Which gives

$$\Xi_{t_1, t_2}(s) = f(s)e^{\varphi(t_1 a^*_1 + t_2 a^*_2)} = f(s)e^{\varphi(t_1 a^*_1) e^{t_2 a^*_2}}.$$

Therefore,

$$\Xi_{t_1, t_2}(f) = \int f(s)e^{\varphi(t_1 a^*_1) e^{t_2 a^*_2}} ds.$$

Hence, we obtain

$$\left(\frac{\partial}{\partial t_1}\right)^l \left(\frac{\partial}{\partial t_2}\right)^m \Xi_{t_1, t_2}(f) = \int f(s)(a^*_1)^l \circ (a^*_2)^m \circ e^{\varphi(t_1 a^*_1) e^{t_2 a^*_2}} ds \quad (3.9)$$

For $t_1 = t_2 = 0$, the equation (3.9) gives

$$\left(\frac{\partial}{\partial t_1}\right)^l \left(\frac{\partial}{\partial t_2}\right)^m \Xi_{t_1, t_2}(f)|_{t_1 = t_2 = 0} = \int f(s)(a^*_1)^l \circ (a^*_2)^m ds = W_{l, m}(f),$$

which completes the proof. \qed

It's obvious that

$$\Xi_{t_1, t_2}(f) = \sum_{l, m=0}^{\infty} \frac{l! m!}{l^! m!} W_{l, m}(f)$$

$$= \sum_{l, m=0}^{\infty} \frac{l! m!}{l^! m!} \Xi_{l, m}(\tau_{l+m}(f)).$$

Recall from [9] that, for $f \in N$ there exists a family of functions $\{\kappa_{\epsilon}^{l, m}\}_{\epsilon > 0} \subset N^{\otimes l+m}$ such that

$$\lim_{\epsilon \to 0} |\tau_{l+m}(f) - \kappa_{\epsilon}^{l, m}|_{-p} = 0,$$

for some $p \geq 0$ and for all $l, m \geq 0$. Let $f, g \in N$ and $l, m, n, k \in \mathbb{N} \cup \{0\}$. We approximate $\tau_{l+m}(f)$ and $\tau_{n+k}(g)$ by sufficiently regular functions $\{\kappa_{\epsilon}^{l, m}\}_{\epsilon > 0} \subset N^{\otimes l+m}$ and $\{\lambda_{\epsilon}^{n, k}\}_{\epsilon > 0} \subset N^{\otimes n+k}$, respectively. By virtue of the regularity of integral kernels $\Xi_{l, m}(\kappa_{\epsilon}^{l, m})$ and $\Xi_{n, k}(\lambda_{\epsilon}^{n, k})$, the composition $\Xi_{l, m}(\kappa_{\epsilon}^{l, m}) \Xi_{n, k}(\lambda_{\epsilon}^{n, k})$ is defined in $L(F_{\theta}(N'), F_{\theta}(N'))$. For $j \leq \min(m + l, n + k)$, we define the inner contraction by

$$\kappa_{\epsilon}^{l, m} \circ_j \lambda_{\epsilon}^{n, k}(s_1, ..., s_{m+l-j}, t_1, ..., t_{n+k-j})$$

$$= \int_{\mathbb{R}^{n+k}} \kappa_{\epsilon}^{l, m}(s_1, ..., s_{m+l-j}, u_{j}, ..., u_{1}) \lambda_{\epsilon}^{n, k}(u_{1}, ..., u_{j}, t_{1}, ..., t_{n+k-j}) du_{1}...du_{j}.$$

For $l, m, n, k \in \mathbb{N} \cup \{0\}$, we define the coordinate permutation

$$s^{l, m}_{n, k} h(s_1, ..., s_l, t_1, ..., t_m, u_1, ..., u_n, v_1, ..., v_k)$$

$$= h(s_1, ..., s_l, u_1, ..., u_n, t_1, ..., t_m, v_1, ..., v_k).$$

By a simple modification of Proposition 4.1 in [9], we get
Proposition 3.4. Let $\kappa = (\kappa_{l,m})_{l,m \geq 0}$ and $\lambda = (\lambda_{n,k})_{n,k \geq 0}$, where $\kappa_{l,m} \in N^{\otimes l+m}$ and $\lambda_{n,k} \in N^{\otimes n+k}$ for all $l, m, n, k \in \mathbb{N} \cup \{0\}$. Then, for $t_1, t_2, s_1, s_2 \in \mathbb{R}$, we have

$$
\Xi_{t_1, t_2}(\kappa)\Xi_{s_1, s_2}(\lambda) = \sum_{l, m, n, k = 0}^{\infty} \frac{t_1^{l} t_2^{m} s_1^{n} s_2^{k}}{l! m! n! k!} \sum_{j=0}^{m+n} j! \left(\begin{array}{c} m+n \cr j \end{array} \right) \left(\begin{array}{c} m \cr j \end{array} \right)
\times \Xi_{l+n-j, m+k-j}(\kappa_{l,m} \circ \lambda_{n,k}).
$$

Let $f, g \in N$ and $t_1, t_2, s_1, s_2 \in \mathbb{R}$. Let $\{\kappa_{l,m}^{(e)}\}_{e > 0} \subset N^{\otimes l+m}$ and $\{\lambda_{n,k}^{(e)}\}_{e > 0} \subset N^{\otimes n+k}$ approximate $\tau_{l+m}(f)$ and $\tau_{n+k}(g)$, respectively, for all $l, m, n, k \in \mathbb{N} \cup \{0\}$. Then, we introduce the following renormalized product

$$
[W_{l,m}(f) W_{n,k}(g)]_{ren}
= \lim_{e \to 0} \left(\frac{\partial}{\partial t_1} \right)^l \left(\frac{\partial}{\partial t_2} \right)^m \left(\frac{\partial}{\partial s_1} \right)^n \left(\frac{\partial}{\partial s_2} \right)^k Z_e(t_1, t_2, s_1, s_2)/_{t_1, t_2, s_1, s_2=0},
$$

where

$$
Z_e(t_1, t_2, s_1, s_2) = \Xi_{t_1, t_2}(\kappa_{e})\Xi_{s_1, s_2}(\lambda_{e}) - \sum_{l, m, n, k = 0}^{\infty} \frac{t_1^{l} t_2^{m} s_1^{n} s_2^{k}}{l! m! n! k!} \sum_{j=2}^{m+n} j! \left(\begin{array}{c} m+n \cr j \end{array} \right) \left(\begin{array}{c} m \cr j \end{array} \right)
\times \Xi_{l+n-j, m+k-j}(\kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)}).\n$$

Theorem 3.5. Let $f, g \in N$ and $l, m, n, k \in \mathbb{N} \cup \{0\}$. Then, we have

$$
[W_{l,m}(f) W_{n,k}(g)]_{ren} = W_{l,m}(f) \circ W_{n,k}(g) + m l' W_{l+m-1, m+m'-1}(fg).
$$

Proof. By a simple calculation, we have

$$
Z_e(t_1, t_2, s_1, s_2) = \sum_{l, m, n, k = 0}^{\infty} \frac{t_1^{l} t_2^{m} s_1^{n} s_2^{k}}{l! m! n! k!} \Xi_{l+n+m+k}(S_{l,m,k}^{l,m}(\kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)}))
+ mn \Xi_{l+n-1, m+k-1}(S_{l,m,k}^{l,m-1}(\kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)})).\n$$

Therefore

$$
\left(\frac{\partial}{\partial t_1} \right)^l \left(\frac{\partial}{\partial t_2} \right)^m \left(\frac{\partial}{\partial s_1} \right)^n \left(\frac{\partial}{\partial s_2} \right)^k Z_e(t_1, t_2, s_1, s_2)/_{t_1, t_2, s_1, s_2=0}
= \Xi_{l+n+m+k}(S_{l,m,k}^{l,m}(\kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)})) + mn \Xi_{l+n-1, m+k-1}(S_{l,m,k}^{l,m-1}(\kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)})).\n$$

But we know (see [9]) that

$$
\lim_{e \to 0} \kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)} = \tau_{l+m}(f) \otimes \tau_{n+k}(g)
$$

in $N^{\otimes (l+m+n+k)}$ and

$$
\lim_{e \to 0} \kappa_{l,m}^{(e)} \circ \lambda_{n,k}^{(e)} = \tau_{l+m+n+k-2}(fg)
$$

in $N^{\otimes (l+m+n+k-2)}$. Hence we obtain

$$
[W_{l,m}(f) W_{n,k}(g)]_{ren} = \Xi_{l+n+m+k}(S_{l,m,k}^{l,m}(\kappa_{l,m} \circ \lambda_{n,k}))
+ mn \Xi_{l+n-1, m+k-1}(S_{l,m,k}^{l,m-1}(\kappa_{l,m} \circ \lambda_{n,k})).\n$$
On the other hand,
\[\Xi_{l+n-1,m+k-1}(S_{m-1,k}^{l,n-1}(\tau_{l+m+n+k-2}(fg))) = W_{l+n-1,m+k-}(fg) \]
and
\[\sigma\left(\Xi_{l+n,m+k}(S_{m,k}^{l,n}(\tau_{l+m}(f) \otimes \tau_{n+k}(g)))\right) (\xi, \eta) \]
\[= \left< \tau_{l+m}(f) \otimes \tau_{n+k}(g), \eta^{\otimes (l+n)} \otimes \xi^{\otimes (m+k)} \right> \]
\[= \left< \tau_{l+m}(f), \eta^{\otimes l} \otimes \xi^{\otimes m} \right> \left< \tau_{n+k}(g), \eta^{\otimes n} \otimes \xi^{\otimes k} \right> \]
\[= \sigma(W_{l,m}(f)) (\xi, \eta) \sigma(W_{n,k}(g)) (\xi, \eta). \]

Therefore, we obtain
\[\Xi_{l+n,m+k}(S_{m,k}^{l,n}(\tau_{l+m}(f) \otimes \tau_{n+k}(g))) = W_{l,m}(f) \circ W_{n,k}(g), \]
which completes the proof.

\[\square \]

4. Higher Powers of Q W\(N\)-derivatives

In the following proposition we give an important commutation relations using the operators \(D_x^+\), \((D_y^+)^*\), \(D_x^-\) and \((D_y^-)^*\) for \(x, y \in N\) on the nuclear algebra \(\mathcal{L}(\mathcal{F}_\theta(N'), \mathcal{F}_\theta(N'))\).

Proposition 4.1. [11] For all \(x, y \in N\), we have

1. \([D_x^+, D_y^+] = [D_x^-, D_y^-] = [D_x^+, D_y^-] = D_x^-, D_y^+] = 0\)

2. \([D_x^+)^*, (D_y^+)^*] = [(D_x^-)^*, (D_y^-)^*] = 0\)

3. \([D_x^+ \otimes (D_y^+)^*] = 0\)

4. \([D_x^+ \otimes (D_y^+)^*]' = < x, y > I \)

Using a similar notation:
\(e_i^+ = e_{i_1} \otimes ... \otimes e_{i_{n_1}}, e_j^- = e_{j_1} \otimes ... \otimes e_{j_{n_2}}, e_i^- = e_{u_1} \otimes ... \otimes e_{u_{k_1}}, e_j^+ = e_{v_1} \otimes ... \otimes e_{v_{k_2}},\)
\(i = (i_1, ..., i_{n_1}), j = (j_1, ..., j_{n_2}), i = (u_1, ..., u_{k_1}), j = (v_1, ..., v_{k_2}),\)

where \(n_1, n_2, k_1, k_2 \in N \cup \{0\}\). For \(f \in (N^\otimes(n_1+n_2+k_1+k_2))'\) and \(p, p', q, q' \in \mathbb{R}\), we put

\[|f|_{\tau}^2 = \sum_{i, j, u, v} |< f, e_i^+ \otimes e_j^- \otimes e_u^- \otimes e_v^+ | e_j^- \otimes e_u^- \otimes e_v^+ |^2 \]

This is always finite for \(f \in N^\otimes(n_1+n_2+k_1+k_2)\). However, this is possibly infinite. In fact, for \(p, p', q, q' \in \mathbb{R}\) and \(r, s, r', s' \geq 0\),

\[|f|_{\tau}^2 \leq \rho^{2(r_1+n_2+r'_1+k_1+s'_2)} |f|_{\tau}^2 \]

where \(\rho \geq 0\).
Definition 4.2. Let \(n_1, n_2, k_1, k_2 \in \mathbb{N} \cup \{0\} \) and \(f \in (N \otimes (n_1+n_2+k_1+k_2))' \). We introduce the operator
\[
D^{n_1, n_2}_{k_1, k_2}(f) := \sum_{l \in \mathbb{N}} \sum_{m \in \mathbb{N}} \sum_{i, j, u, \overline{u}, \overline{v}, v = 0} < f, e_i^\gamma \otimes e_j^\gamma \otimes e_u^\gamma \otimes e_{\overline{u}}^\gamma >
\]
\[
\times (D_{e_{i_1}}^{+}) \cdots (D_{e_{i_l}}^{+}) (D_{e_{j_1}}^{-}) \cdots (D_{e_{j_m}}^{-})
\]
\[
\times (D_{e_{u_1}}^{+}) \cdots (D_{e_{u_k}}^{+}) (D_{e_{\overline{u}_1}}^{-}) \cdots (D_{e_{\overline{u}_k}}^{-}).
\]

Proposition 4.3. For \(f \in N \otimes (n_1+n_2) \otimes (N \otimes (k_1+k_2))' \), the operator \(D^{n_1, n_2}_{k_1, k_2}(f) \) is continuous from \(\mathcal{L}(\mathcal{F}_0^+(N'), \mathcal{F}_0(N')) \) into itself. Moreover, for any \(p \in \mathbb{R} \), choosing \(q, q' \geq 0 \) satisfying \(|f|_{n_1, n_2, k_1, k_2; p, -(p+q), -(p+q+q')} < \infty \), we have
\[
\| D^{n_1, n_2}_{k_1, k_2}(f) \Xi \|_{\theta, p, (\gamma_1, \gamma_2)} \leq c(k_1, k_2, q, q', \gamma_1, \gamma_2) |f|_{n_1, n_2, k_1, k_2; p, -(p+q), -(p+q+q')} \| \Xi \|_{\theta, p+q+q', (\gamma_1, \gamma_2, \frac{n_1}{16p+q'}, \frac{n_2}{16p+q'})},
\]
where \(c(k_1, k_2, q, q', \gamma_1, \gamma_2) > 0 \) and \(\Xi \in \mathcal{L}(\mathcal{F}_0^+(N'), \mathcal{F}_0(N')) \).

Proof. Let \(\Xi \in \mathcal{L}(\mathcal{F}_0^+(N'), \mathcal{F}_0(N')) \) with expansion \(\Xi = \sum_{l, m = 0}^{\infty} \Xi_{l, m}(\kappa_{l, m}) \). Then using the equalities (2.14), (2.11), (2.14) and (2.13) respectively, we get
\[
D^{n_1, n_2}_{k_1, k_2}(f) \Xi = \sum_{l = k_1, m = k_2}^{\infty} \sum_{i, j, u, \overline{u}, \overline{v}, v = 0} < f, e_i^\gamma \otimes e_j^\gamma \otimes e_u^\gamma \otimes e_{\overline{u}}^\gamma > \frac{m!}{(m-k_2)!} \Xi_{l-n_1-k_1, m+n_2-k_2}(e_{-i}^\gamma \otimes \hat{e}_{-j}^\gamma \otimes \kappa_{l, m} \otimes \beta_{k_1, k_2} \otimes e_1^\gamma \otimes e_2^\gamma).
\]
Therefore, we have
\[
\| D^{n_1, n_2}_{k_1, k_2}(f) \Xi \|_{\theta, p, (\gamma_1, \gamma_2)}^2 = \sum_{l = k_1, m = k_2}^{\infty} \sum_{i, j, u, \overline{u}, \overline{v}, v = 0} \sum_{m = 0}^{\infty} \theta_{l+1}^{-2} \theta_{n_1}^{-2} \theta_{k_1}^{-2} \theta_{n_2}^{-2} \theta_{k_2}^{-2} (l! m! (l-k_1)! (m-k_2)!)^2.
\]

Using inequalities in (3.5), we obtain
\[
\| D^{n_1, n_2}_{k_1, k_2}(f) \Xi \|_{\theta, p, (\gamma_1, \gamma_2)}^2 = \sum_{l = k_1, m = k_2}^{\infty} \sum_{i, j, u, \overline{u}, \overline{v}, v = 0} \theta_{l+1}^{-2} \theta_{n_1}^{-2} \theta_{k_1}^{-2} \theta_{n_2}^{-2} \theta_{k_2}^{-2} (l! m! (l-k_1)! (m-k_2)!)^2 \times 16^{l+n_1+n_2-k_1-k_2} \gamma_1^{l-n_1-k_1} \gamma_2^{m-n_2-k_2} (l! m! (l-k_1)! (m-k_2)!)^2.
\]
On the other hand, for any \(q, q' \geq 0 \), we have
\[
|e_{\alpha} \otimes e_{\beta} \otimes e_{k_1} \otimes e_{k_2} - e_{k_2} \otimes e_{k_1}|^2_p \leq \rho^{2q(l+m-k_1-k_2)+2q'(l+m-k_2)}|e_{\alpha}|^2_p \times |e_{\beta}|^2_p |e_{k_1}|^2_p |e_{k_2}|^2_p |f_{k_1,m}|^{2q+q'}.
\]

This gives the desired statement. \(\square\)

For \(f \in N^{\otimes (n_1+n_2+k_1+k_2)} \) and \(g \in N^{\otimes (k_1+k_2+k'_1+k'_2)} \), we define the contraction by
\[
f \circ_{k_1,k_2} g = \sum \sum \sum <f, e_{\alpha} \otimes e_{\beta} \otimes e_{\gamma} \otimes e_{\chi}> \times <g, e_{\alpha'} \otimes e_{\beta'} \otimes e_{\gamma'} \otimes e_{\chi'}> \times e_{\alpha} \otimes e_{\beta} \otimes e_{\gamma} \otimes e_{\chi}.
\]

By definition \(f \circ_{0,0} g = f \otimes g \). The coordinate permutation \(S \) is defined by
\[
S(n_1, n'_1, n_2, n'_2, k_1, k_2, k'_1, k'_2) f(\alpha, \beta, \gamma, \chi, \alpha', \beta', \gamma', \chi') = f(\alpha, \beta', \beta, \gamma, \gamma', \chi, \chi', \alpha', \beta),
\]
where
\[
\alpha = (\alpha_1, ..., \alpha_n), \quad \beta = (\beta_1, ..., \beta_n), \quad \gamma = (\gamma_1, ..., \gamma_k), \quad \chi = (\lambda_1, ..., \lambda_k),
\]
\[
\alpha' = (\alpha'_1, ..., \alpha'_n), \quad \beta' = (\beta'_1, ..., \beta'_n), \quad \gamma' = (\gamma'_1, ..., \gamma'_k), \quad \chi' = (\lambda'_1, ..., \lambda'_k).
\]

From [9], for \(f \in N \) and \(m \geq 0 \), there exists \(\{f_\epsilon\}_{\epsilon \geq 0} \subset N^{\otimes m} \) such that
\[
\lim_{\epsilon \to 0} |f_\epsilon - \tau_m(f)|_p = 0,
\]
for some \(p \geq 0 \). By a simple modification of Lemma (4.2) in [9], we get

Lemma 4.4. Let \(\{f_\epsilon\} \) and \(\{g_\epsilon\} \) approximate \(\tau_{m+2}(f) \) and \(\tau_{n+2}(g) \), respectively, where \(f, g \in N \) and \(m, n \geq 0 \). Then
\[
\lim_{\epsilon \to 0} f_\epsilon \circ_{0,0} g_\epsilon = \tau_{m+n+1}(fg) \quad (4.2)
\]
in \((N^{\otimes m+n+1})' \),
\[
\lim_{\epsilon \to 0} f_\epsilon \circ_{1,0} g_\epsilon = \lim_{\epsilon \to 0} f_\epsilon \circ_{0,1} g_\epsilon = \tau_{m+n+1}(fg) \quad (4.3)
\]
in \((N^{\otimes m+n+1})' \) and
\[
\lim_{\epsilon \to 0} f_\epsilon \circ_{1,1} g_\epsilon = \tau_{n+1+n}(fg) \quad (4.4)
\]
in \((N^{\otimes n+1+n})' \).

Proposition 4.5. For \(f \in N^{\otimes (n_1+n_2+k_1+k_2)} \) and \(g \in N^{\otimes (n'_1+n'_2+k'_1+k'_2)} \), we have
\[
D_{k_1,k_2}^{n_1,n_2}(f)D_{k'_1,k'_2}^{n'_1,n'_2}(g) = \sum_{n,k=0}^{(k_2 \land n'_2)/(k_1 \land n'_1)} n!k! \left(\begin{array}{c} k_1 \\ n \\ k \end{array} \right) \left(\begin{array}{c} n'_1 \\ k \end{array} \right) \left(\begin{array}{c} k_2 \\ n \end{array} \right) \left(\begin{array}{c} n'_2 \\ n \end{array} \right) \times D_{k_1+k'_1-k-n,n}^{n_1+n_2-n-n}(S(f \circ_{k,n} g)),
\]
where \(S = S(n_1, n'_1 - k, n_2, n'_2 - n, k_1 - k, k'_1, k_2 - n, k'_2) \).
Definition 4.6. For \(n_1, n_2, k_1, k_2 \in \mathbb{N} \cup \{0\} \) such that \(n_1 + n_2 + k_1 + k_2 \geq 1 \) and \(f \in (N^{\otimes (n_1+n_2+k_1+k_2)})' \), we introduce the operator
\[
B_{k_1,k_2}^{n_1,n_2}(f) := D_{k_1,k_2}^{n_1,n_2}(\tau_{n_1+n_2+k_1+k_2}(f)).
\] (4.5)

Lemma 4.7. The operator in equation (4.5) admits the following representation
\[
B_{k_1,k_2}^{n_1,n_2}(f) = \int_{\mathbb{R}} f(t)(D^+_{t^+})^{n_1}(D^-_{t^+})^{n_2}(D^+_{t^-})^{k_1}(D^-_{t^-})^{k_2} dt.
\]

Proof. Applying the wick symbol to righthand side of (4.5), we get
\[
\sigma \left(D_{k_1,k_2}^{n_1,n_2}(\tau_{n_1+n_2+k_1+k_2}(f)) \Xi^a,b \right)(\xi,\eta)
\]
\[
= \sum_{\tau_1,\tau_2,\tau_3,\tau_4=0}^{\infty} <\tau_{n_1+n_2+k_1+k_2}(f), e_{\tau_1}^{\otimes} e_{\tau_2}^{\otimes} e_{\tau_3}^{\otimes} e_{\tau_4}^{\otimes} > \times e_{\tau_2}^{\otimes} b^\otimes_{k_2} \times e_{\tau_3}^{\otimes} \xi^\otimes_{a_1} \times e_{\tau_4}^{\otimes} \eta^\otimes_{a_1} > \sigma(\Xi^a,b)(\xi,\eta)
\]
\[
= <\tau_{n_1+n_2+k_1+k_2}(f), b^\otimes_{k_2} \otimes a^\otimes_{k_1} \otimes \xi^\otimes_{n_2} \otimes \eta^\otimes_{n_1} > \sigma(\Xi^a,b)(\xi,\eta)
\]
\[
= <f, a^{k_1} b^{k_2} \xi^{n_2} \eta^{n_1} > \sigma(\Xi^a,b)(\xi,\eta).
\]

On the other hand, we have
\[
\sigma \left(\int_{\mathbb{R}} f(t)(D^+_{t^+})^{n_1}(D^-_{t^+})^{n_2}(D^+_{t^-})^{k_1}(D^-_{t^-})^{k_2} dt \Xi^a,b \right)(\xi,\eta)
\]
\[
= \int_{\mathbb{R}} f(t) \sigma \left((D^+_{t^+})^{n_1}(D^-_{t^+})^{n_2}(D^+_{t^-})^{k_1}(D^-_{t^-})^{k_2} \Xi^a,b \right)(\xi,\eta) dt
\]
\[
= \int_{\mathbb{R}} f(t) b(t)^{k_2} a(t)^{k_1} \xi(t)^{n_2} \eta(t)^{n_1} dt
\]
\[
= <f, a^{k_1} b^{k_2} \xi^{n_2} \eta^{n_1} > .
\]

By density argument, we complete the proof. \(\square\)

Proposition 4.8. For \(f \in N \) and \(l,m \in \mathbb{N} \cup \{0\} \), we have
\[
B_{0,0}^{l,m}(f) \Xi = W_{l,m}(f) \circ \Xi.
\] (4.6)

In particular,
\[
B_{0,0}^{l,m}(f) \Xi^{0,0} = W_{l,m}(f).
\] (4.7)

Proof. By definition
\[
B_{0,0}^{l,m}(f) = \int_{\mathbb{R}} f(t) (D^+_{t^+})^{l}(D^-_{t^+})^{m} dt.
\]

But in [22], the adjoint of the QWN-derivatives are given by
\[
D^+_{t^+} \Xi = a^+_t \circ \Xi
\] (4.8)
and
\[
D^-_{t^+} \Xi = a^-_t \circ \Xi,
\] (4.9)
where \(\Xi \in \mathcal{L}(\mathcal{F}_\theta(N'), \mathcal{F}_\theta^*(N')) \). Which gives
\[
B_{l,m}^1(f)\Xi = \int \mathbb{R} f(t)(a_t) \odot (a_t) \odot \Xi dt
= \int \mathbb{R} f(t)(a_t)^{\odot m} dt \odot \Xi
= W_{l,m}(f) \odot \Xi.
\]
This completes the proof. \(\Box \)

Proposition 4.9. For \(l, m \in \mathbb{N} \cup \{0\} \) and \(f \in N \), we have
\[
B_{l,m}^0(f) = \sigma^{-1}(W_{l,m}(f) \otimes I)\sigma
\] (4.10)
and
\[
B_{0,m}^0(f) = \sigma^{-1}(I \otimes W_{l,m}(f))\sigma
\] (4.11)

Proof. Let \(x, y, \xi, \eta \in N \). Then, we get
\[
\sigma(B_{l,m}^0(f)\Xi)(\xi, \eta) = \int \mathbb{R} f(s) (a_s^{\odot m}) \odot \Xi \odot \odot (a_s^{\odot m}) \odot \Xi \odot \odot (a_s^{\odot m}) \odot \Xi ds.
\]
On the other hand,
\[
\sigma(\sigma^{-1}(W_{l,m}(f) \otimes I)\sigma(\Xi))(\xi, \eta) = (W_{l,m}(f) \otimes I)\sigma(\Xi)(\xi, \eta).
\] (4.12)
The right hand side of equation (4.12) gives
\[
(W_{l,m}(f) \otimes I)\sigma(\Xi)(\xi, \eta) = \int \mathbb{R} f(s) (a_s^{\odot m}) \odot \Xi \odot \odot (a_s^{\odot m}) \odot \Xi \odot \odot (a_s^{\odot m}) \odot \Xi ds.
\]
One can show that
\[
(a_s^{\odot m}) \odot e_x \sim \left(\delta^{\odot n}_{\odot (n-l)!} \frac{x^{\odot n-l}}{(n-l)!} \right)_{n \geq l}.
\]
Therefore, we obtain
\[
((a_s^{\odot m}) \odot e_x)(\eta) = \eta(s)^{\odot x} \eta(s)^{\odot x}.
\]
Which gives
\[
(W_{l,m}(f) \otimes I)\sigma(\Xi)(\xi, \eta) = \sigma(\Xi)(\xi, \eta) \int \mathbb{R} f(s) x(s)^{\odot m} \eta(s)^{\odot m} ds.
\]
By identification and a density argument, we deduce (4.10). Similarly, we get (4.11). \(\Box \)
Lemma 4.11. For two operators $T_1, T_2 \in \mathcal{L}(\mathcal{L}(\mathcal{F}_\theta^*(N'), \mathcal{F}_\theta(N')))$ there exists a unique $T \in \mathcal{L}(\mathcal{L}(\mathcal{F}_\theta^*(N'), \mathcal{F}_\theta(N')))$ such that

$$\sigma(T\Xi^{a,b})(\xi, \eta) = \sigma(T_1\Xi^{a,b})(\xi, \eta)\sigma(T_2\Xi^{a,b})(\xi, \eta).$$

This operator T is called the wick product of T_1 and T_2 and it denoted by

$$T = T_1 \circ T_2.$$

Lemma 4.12. For $f \in N$, we have $B_{k_1, k_2}^{0,0}(f) \in \mathcal{L}(\mathcal{L}(\mathcal{F}_\theta^*(N'), \mathcal{F}_\theta(N')))$ and hence $[B_{k_1, k_2}^{0,0}(f), B_{k_1, k_2}^{n_1, n_2}(g)]$ is well-defined in $\mathcal{L}(\mathcal{L}(\mathcal{F}_\theta(N'), \mathcal{F}_\theta^*(N')))$ for any $g \in N'$. In this case

$$[B_{k_1, k_2}^{0,0}(f), B_{k_1, k_2}^{n_1, n_2}(g)] = n_1 n_2 B_{k_1, k_2}^{n_1 - 1, n_2 - 1}(fg).$$

In connection with the wick products, we get

$$B_{k_1, k_2}^{0,0}(f)B_{k_1, k_2}^{n_1, n_2}(g) = B_{k_1, k_2}^{0,0}(f) \circ B_{k_1, k_2}^{n_1, n_2}(g) + n_1 n_2 B_{k_1, k_2}^{n_1 - 1, n_2 - 1}(fg).$$

Proof. We are going to prove that

$$B_{k_1, k_2}^{0,0}(f)B_{k_1, k_2}^{n_1, n_2}(g) = B_{k_1, k_2}^{0,0}(f) \circ B_{k_1, k_2}^{n_1, n_2}(g).$$

For $a, b, \xi, \eta \in E$, we have

$$\sigma\left(B_{k_1, k_2}^{0,0}(f)B_{k_1, k_2}^{n_1, n_2}(g)\Xi^{a,b}\right)(\xi, \eta) = <g, a^{k_1} b^{k_2} \eta^{n_1} \xi^{n_2} > f, \xi \eta >.$$
Theorem 4.13. For \(f, g \in \mathbb{N} \) and \(n_1, n_2, n_1', n_2', k_1, k_2, k_1', k_2' \in \mathbb{N} \cup \{0\} \), we have
\[
\left[B_{k_1, k_2}^{n_1, n_2}(f) B_{k_1', k_2'}^{n_1', n_2'}(g) \right]_{\text{ren}} = B_{k_1, k_2}^{n_1, n_2}(f) \circ B_{k_1', k_2'}^{n_1', n_2'}(g)
+ k_1 n_1' B_{k_1 + k_1' - 1, k_2 + k_2}'(f g)
+ k_2 n_2' B_{k_1 + k_1' - 1, k_2 + k_2}'(f g)
+ k_1 k_2 n_1' n_2' B_{k_1 + k_1' - 1, k_2 + k_2}'(f g).
\]

We define the commutator
\[
\left[B_{k_1, k_2}^{n_1, n_2}(f), B_{k_1', k_2'}^{n_1', n_2'}(g) \right]_{\text{RHP}} = \left[B_{k_1, k_2}^{n_1, n_2}(f) B_{k_1', k_2'}^{n_1', n_2'}(g) \right]_{\text{ren}}
- \left[B_{k_1', k_2'}^{n_1', n_2'}(g) B_{k_1, k_2}^{n_1, n_2}(f) \right]_{\text{ren}}.
\]

Theorem 4.14. There exists a \(*\)-Lie algebra with generators
\[
\{B_{k_1, k_2}^{n_1, n_2}(f) : k_1, k_2, n_1, n_2 \in \mathbb{N}, f \in \mathbb{N}\},
\]
involuted brackets given by:
\[
\left(B_{k_1, k_2}^{n_1, n_2}(f) \right)^* = B_{k_1, k_2}^{n_1, n_2}(f)
\]
and brackets given by:
\[
\left[B_{k_1, k_2}^{n_1, n_2}(f), B_{k_1', k_2'}^{n_1', n_2'}(g) \right]_{\text{RHP}} = (k_1 n_1' - k_1' n_1) B_{k_1 + k_1' - 1, k_2 + k_2}'(f g)
+ (k_2 n_2' - k_2' n_2) B_{k_1 + k_1' - 1, k_2 + k_2}'(f g)
+ (k_1 k_2 n_1' n_2' - k_1' k_2' n_1 n_2) B_{k_1 + k_1' - 1, k_2 + k_2}'(f g).
\]

Proof. For all \(f, g \in \mathbb{N} \) and \(k_1, k_2, n_1, n_2, k_1', k_2', n_1', n_2' \in \mathbb{N} \),
\[
\left[B_{k_1, k_2}^{n_1, n_2}(f), B_{k_1', k_2'}^{n_1', n_2'}(g) \right]_{\text{RHP}} = 0
\]
and
\[
\left[B_{k_1, k_2}^{n_1, n_2}(f), B_{k_1', k_2'}^{n_1', n_2'}(g) \right]_{\text{RHP}} = - \left[B_{k_1', k_2'}^{n_1', n_2'}(g), B_{k_1, k_2}^{n_1, n_2}(f) \right]_{\text{RHP}}.
\]

Using Theorem 4.13, we show that commutation relations \([\cdot, \cdot]_{\text{RHP}}\) satisfy the Jacobi identity:
\[
\left[B_{k_1, k_2}^{n_1, n_2}(f), \left[B_{k_1', k_2'}^{n_1', n_2'}(g), B_{k_1, k_2}^{n_1, n_2}(h) \right]_{\text{RHP}} \right]_{\text{RHP}}
+ \left[B_{k_1', k_2'}^{n_1', n_2'}(g), \left[B_{k_1', k_2'}^{n_1, n_2}(f), B_{k_1, k_2}^{n_1, n_2}(h) \right]_{\text{RHP}} \right]_{\text{RHP}}
+ \left[B_{k_1, k_2}^{n_1, n_2}(f), \left[B_{k_1', k_2'}^{n_1', n_2'}(g), B_{k_1', k_2'}^{n_1', n_2'}(h) \right]_{\text{RHP}} \right]_{\text{RHP}} = 0,
\]
which completes the proof. \(\square\)

Remark 4.15. Note that for \(n_2 = k_2 = n_2' = k_2' = 0 \), we get
\[
\left[B_{k_1, 0}^{n_1, 0}(f), B_{k_1', 0}^{n_1', 0}(g) \right]_{\text{RHP}} = (k_1 n_1' - k_1' n_1) B_{k_1 + k_1' - 1, 0}(f g)
\]
and for \(n_1 = k_1 = n'_1 = k'_1 = 0 \), we obtain
\[
\left[B_{0,k_2}^{0,n_2}(f), B_{0,k_2}^{0,n'_2}(g) \right]_{\text{RHP}} = \left(k_2 n'_2 - k'_2 n_2 \right) B_{0,k_2+k'_2-1}^{0,n_2+n'_2-1}(fg).
\]
This gives two copies of representation of renormalized higher powers of quantum white noise \(*\)-Lie algebra on \(\mathcal{L}(\mathcal{F}_0(N'), \mathcal{F}_0(N')) \).

Proposition 4.16. For \(l, m, l', m' \geq 0 \), we have
\[
\left[B_{0,0}^{l,m}(f) \Xi^{0,0}, B_{0,0}^{l',m'}(g) \Xi^{0,0} \right]_{\text{RHPWN}} = (ml' - l'm) B_{0,0}^{l+l'-1,m+m'-1}(fg) \Xi^{0,0}
\]
on \(\mathcal{F}_0(N') \), which gives a representation of \((\text{RHPWN}) \)*-Lie algebra on \(\mathcal{F}_0(N') \).

Proof. From Proposition 4.8, we get
\[
\left[B_{0,0}^{l,m}(f) \Xi^{0,0}, B_{0,0}^{l',m'}(g) \Xi^{0,0} \right]_{\text{RHPWN}} = \left[W_{l,m}(f), W_{l',m'}(g) \right]_{\text{RHPWN}}.
\]
Using the renormalization condition, we obtain
\[
\left[W_{l,m}(f)W_{l',m'}(g) \right]_{\text{RHPWN}} = \lim_{\varepsilon \to 0} \left\{ \Xi_{l,m}(f_{\varepsilon}) \Xi_{l',m'}(g_{\varepsilon})
\right. \left. - \sum_{k=1}^{m+m'} k! \left(\begin{array}{c} m \\ k \end{array} \right) \left(\begin{array}{c} l' \\ k \end{array} \right) \Xi_{l+l'-k,m+m'-k}(S(f_{\varepsilon} \circ k g_{\varepsilon})) \right\}
\]
\[
= W_{l,m}(f) \circ W_{l',m'}(g) + ml'W_{l+l'-1,m+m'-1}(fg).
\]
By a similar calculus,
\[
\left[W_{l',m'}(g)W_{l,m}(f) \right]_{\text{RHPWN}} = W_{l,m}(f) \circ W_{l',m'}(g) + m'lW_{l+l'-1,m+m'-1}(fg).
\]
Obviously, the equation (4.18) is equivalent to (1.3), which completes the proof. \(\square \)

References

500 AYMEN ETTAIEB, HABIB OUERDIANE, AND H. RGUIGUI

AYMEN ETTAIEB: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES OF TUNIS UNIVERSITY OF TUNIS EL-MANAR, 1060 TUNIS, TUNISIA
E-mail address: ettaieb97134@gmail.com

HABIB OUERDIANE: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES OF TUNIS UNIVERSITY OF TUNIS EL-MANAR, 1060 TUNIS, TUNISIA
E-mail address: habib.ouerdiane@fst.rnu.tn

HAFEDH RGUIGUI: HIGH SCHOOL OF SCIENCES AND TECHNOLOGY OF HAMMAM SOUSSE,, UNIVERSITY OF SOUSSE, RUE LAMINE ABASSI, 4011 HAMMAM SOUSSE, TUNISIA.
E-mail address: hafedh.rguigui@yahoo.fr