
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

12-1990

A Data Acquisition and Processing System for High Frequency A Data Acquisition and Processing System for High Frequency

Repetitive Waveforms Repetitive Waveforms

Daran Lynn Rehmeyer
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Rehmeyer, Daran Lynn, "A Data Acquisition and Processing System for High Frequency Repetitive
Waveforms" (1990). LSU Historical Dissertations and Theses. 8299.
https://repository.lsu.edu/gradschool_disstheses/8299

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has
been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F8299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/8299?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F8299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

A DATA ACQUISITION AND PROCESSING SYSTEM
FOR HIGH FREQUENCY REPETITIVE WAVEFORMS

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering
in

The Department of Electrical Engineering

by
Daran Lynn Bg.hmaya-r-.

B.S., Virginia Polytechnic Institute and State University, 1982
December 199(1-

MANUSCRIPT THESES

Unpublished theses submitted for the Master’s and Doctor’s

Degrees and deposited in the Louisiana State University Libraries

are available for inspection. Use of any thesis is limited by

the rights of the author. Bibliographical references may be

noted, but passages may not be copied unless the author has

given permission. Credit must be given in subsequent written

or published work.

A library which borrows this thesis for use by its clientele

is expected to make sure that the borrower is aware of the above

restrictions.

LOUISIANA STATE UNIVERSITY LIBRARIES

ACKNOWLEDGEMENT

My thanks go to Jorge Aravena, who adopted me when no one else

would have me. I appreciated the counsel and advice. I would

also like to thank Powsiri Klinkhachorn for helping organize and

clarify the concept for this thesis in the beginning. Thanks

also go to my committee Ahmed El-Amawy and Suresh Rai for

critiquing my presentation and thesis. And finally, my thanks

to my wife, Teresa, for tolerating me while I worked on this.

ii

TABLE OF CONTENTS

Acknowledgment ii

List of Figures v

Abstract vii

1. IntroductOon 1

2. Signal Acquisitonn 4

2.1 Rmquirennets 4

2.2 Equivaloct Time Sampling 5

3. Hardware Design and Constructonn 10

3.1 Data Acquisttonn Subsystem 10

3.2 Transmitlrr Trigger 13

3.3 Timing Subsystem 14

3.4 Intigratonn of the Subsystems 19

3.5 Evolutinn of the Timing Circuit Design . 23

3.6 ConttruetOnn 27

4. Testing of the Hardware 30

4.1 Hardware Testing Software 30

4.1.1 Subsystem Testing Software 30

4.1.2 Signal Acquisitonn Software 33

4.2 Hardware System Test 34

4.2.1 Individual Subsystems 34

4.2.1.1 Timing Subsystem 34

4.2.1.2 Transmittrr Trigger Subsystem 35

4.2.1.3 Data Acquisiionn Subsystem 35

iii

LIST OF FIGURES

Figure 1. System Block Diagram. 1

Figure 2. Real-Time Sampling at 1 GHz. 6

Figure 3. Repeating Signal. 7

Figure 4. Equivalent Time Sampling. 8

Figure 5. Data Acquisition, Timing, and Trigger Block

Diagram. 10

Figure 6. Data Acquisition Schematic. 13

Figure 7. Transmitter Trigger Schematic. 13

Figure 8. Timing Subsystem Block Diagram. 15

Figure 9. Timing Subsystem Schematic. 17

Figure 10. Effect of Feedback on the Comparator. 18

Figure 11. Integrated System Schematic.

Figure 11-A. Timing and Data Acquisition Subsystems

Schematic. 20

Figure 11-B. Address Decode/Chip Select and Transmitter

Trigger Schematic. 21

Figure 12. Acquisition Timing Diagram. 23

Figure 13. Ramp Circuit - First Try. 24

Figure 14. Ramp Circuit - Second Try. 25

Figure 15. Ramp Circuit - Third Try. 26

Figure 16. Fabricated System Board. 28

Figure 17. System Configuration for Evaluation and Test. 36

Figure 18. System Recorded Signal. 37

Figure 19. Oscilloscope Recorded Signal. 37

Figure 20. System Recorded Internal Ramp Signal. 39

Figure 21. Statistical AnalysSs of Ramp at 25% Point. 40

Figure 22. StatistCaal AnalysSs of Ramp at 50% Point. 41

Figure 23. Statistiaal AnalysSs of Ramp at 75% Point. 42

Figure 24. System Recorded Signal for Statistiaal

AnalysSs. 44

Figure 25. Statistiaal AnalysSs of Signal at 25% Point. 45

Figure 26. Stati-StCaa! AnalysSs of Signal at 50% Point. 46

Figure 27. Stati-StCaa! AnalysSs of Signal at 75% Point. 47

Figure 28. FFT of Recorded Signal. 51

Figure 29. 20~ Order Butterwotth Fiater. 52

Figure 30. 10th Order EHiptSc Fiater. 53

Figure 31. 20~ Order Ctebychev Type 1 Fiater. 53

Figure 32. 20th Order Ctebychev Type 2 Fiater. 54

Figure 33. wc=0.30 Butterwrtth Fiater. 54

Figure 34. wc=0.30 Eaaiptic Fiater. 55

Figure 35. wc=0.30 Ctebychev Type 1 Fiater. 55

Figure 36. wc=0.30 Ctebychev Type 2 Fiater. 56

Figure 37. DeconvoUuSlnn of Time Jitter. 57

Figure 38. Data InterpretaiSon Criteria. 58

Figure 39. Prc^^e^^ii^ Software - Midpoint Seie^!©.. 60

Figure 40. Data Processing and DiSplay Software Menu

Tree. 61,62

vi

Abstract

The purpose of this thesis is two-fold: to develop a

computerized data acquisition system to replace a system using an

oscilloscope-mounted Polaroid camera for recording waveforms, and

secondly, to develop the processing software to supplement and

ultimately replace the manual interpretations of the recorded

signals.

The impetus for upgrading the original acquisition system

is provided by two main factors. The first is the volume and

cost of the film required to record an entire waveform using the

Polaroid camera and second, the time consuming method of

recording and splicing the individual pictures together to form

a complete waveform. The current system requires 10 minutes to

record and 10 minutes to splice a single waveform. This

excessive time precludes continuous profiling and immediate

interpretation. Further time could be saved by changing from the

manual interpretation technique to one performed by software.

Greater consistency in interpretation results could also be

achieved.

To meet and exceed the resolution of the Polaroid-recorded

waveform, the data acquisition system would require a sampling

rate of 1 GHz. Sampling in real time at 1 GHz is possible.

Systems are available that meet and exceed this sampling rate.

However, the cost of these systems is prohibitive. This thesis

vii

covers the development of a low cost acquisition system that

fills the 1 GHz sampling rate requirement.

The analysis of the data is ad hoc hence the development of

specialized software is also necessary. The development of the

critical processing software will be covered.

viii

1. INTRODUCTION

This thesis describes the development of a very high speed

data acquisition system and the supporting acquisition and

processing software. The equipment is part of a proprietary soil

analyzer shown in block diagram form in Figure 1.

Figure 1. System Block Diagram.

I

The transmitter sends an electromagnetic pulse through the

material under test. The receiving antennae collects the

response and conditions it for the data acquisition system.

The current equipment configuration uses an oscilloscope­

mounted Polaroid camera for data collection. Data preparation is

carried out by hand splicing individual pictures to form a

complete waveform. A complete waveform is composed of eight

spliced pictures. The length of the recorded waveform is

approximately 4 microseconds. Current interpretation of the

recorded signals is based on visual analysis of the wave shape

1

2

and amplitude.

The subsystems selected for computerization are the Data

Acquisition System, Transmitter Trigger Circuit, and the Timing

Circuits. The transmitter and receiver will be left as is. The

greatest return on investment (both time and money) will only

come in eliminating the use of the Polaroid film and automating

the interpretation for consistency and speed.

The operation of the system is as follows: The timing

circuit generates a trigger pulse to the transmitter. The

transmitter fires and sends a signal to its antennae. The signal

travels through the material of interest and is picked up by the

receiver antennae. The receiver amplifies and filters the

incoming signal (all analog) and passes the signal to the data
i

acquisition system.

The timing circuit is also responsible for starting the data

acquisition procedure. The timing is set such that just before

the signal arrives at the input to the data acquisition system,

a signal is sent from the timing circuit which starts the

acquisition of the incoming signal.

Of the three subsystems selected for computerization, the

Data Acquisition System presents the greatest technical

challenge. To duplicate and exceed the resolution of the

Polaroid-recorded waveform in the proposed Data Acquisition

System, the digital sampling rate was set to 1 GHz with the

capability of collecting 4000 points per recorded waveform. The

3

method chosen to accomplish this is described in section 3.1.

The processing software is developed separately. It is

required that the computer interpretation be consistent with the

manual interpretation while also eliminating the inconsistencies

between different operators. The processing software is written

to be independent of the acquisition procedure so that it could

stand alone regardless of the method of acquisition (given data

input constraints).

The thesis is organized as follows: Chapter 2 is a

description of the hardware requirements and the solutions and

methods picked to satisfy each. The actual hardware design and

construction is described in chapter 3. Each of the completed

subsystems and the final integrated system is covered. Chapter

3 also includes a description of specific hurdles and design

problems encountered in the Timing Circuit subsystem design. The

test and evaluation of the hardware system is described in

chapter 4. The software developed to test each subsystem, the

physical test methods, and evaluation of the system are covered.

Chapter 5 describes the data processing and display software.

The signal conditioning, data interpretation, and data display

software are described. Finally, chapter 6 includes comments and

conclusions on this design project.

2. SIGNAL ACQUISITION

This chapter describes the basic system requirements and the

approach taken to design the data acquisition system. The

generic IBM-PC bus was selected to support the new hardware. The

PC was selected because the system bus is easily accessible

through the backplane expansion slots. Pascal was chosen as the

high-level programming language. Turbo-Pascal was specifically

selected because of its availability and the ability to

incorporate imbedded machine code in the program.

2.1 Requirements

In the original system utilizing the oscilloscope-mounted

Polaroid camera, the time scale on the oscilloscope was set to

0.05 usec/div and a maximum of eight frames would be shot. The

composite of these eight frames would result in roughly 4

microseconds of recorded waveform. To duplicate (and exceed)

this resolution digitally, the sampling rate was set at 1 GHz (1

nanosecond between samples) with again, 4 microseconds of

recorded waveform.

The output of the receiver has a maximum voltage swing of

16 volts nominal. A 12-bit converter was chosen to record the

waveform with adequate resolution.

The overall system requirements are:

- interface to IBM-PC bus

- record 4 microseconds of waveform

4

5

- 1 GHz sampling rate

- 12-bit resolution from A/D converter

- generate all necessary timing signals and trigger

pulses.

The fastest commercial PC-based real-time data acquisition

system found is marketed by Rapid Systems. It has a 100 MHz

sampling rate with an 8-bit resolution. This is still an order

of magnitude lower than the required sampling rate and also has

a lower resolution than required. Additionally, the input of

this system is constrained to 2 volts. The principle of

equivalent time sampling was used to satisfy the 1 GHz sampling

rate requirement. Equivalent time sampling is covered in the

next section.

2.2 Equivalent Time Sampling

All of the requirements listed previously are

straightforward except the 1 GHz sampling rate. The first

approach to meet the required sampling rate is to try real-time

sampling. Real-time sampling is defined as digitizing

sequentially from the same signal each sample point at the

required sampling rate. For a 1 GHz sampling rate, the time

between samples is the reciprocal of the sampling frequency or 1

nanosecond. Figure 2 depicts graphically the principle of real­

time sampling. Sampling at 1 GHz in real-time requires ultra-

high speed components and necessitates very accurate timing

6

constraints and therefore more complex design strategies which,

because of component cost and availability, put this approach

out of the reach of this project.

Figure 2. Real-Time Sampling at 1 GHz.

Since sampling at 1 GHz in real-time is an unreasonable goal

for this project, an alternative method had to be found. The

following discussion places the groundwork and justifies the

decision to use equivalent time sampling as the alternative

method.

For each firing of the transmitter, an identical signal is

received. The signal lasts from 4 to 12 microseconds before

returning to the zero-signal baseline. The received signals can

be assumed to be identical under the following conditions: the

transmitter and receiver antennas are not moved while sampling

and the signal from the transmitter is identical for each firing.

Both of these conditions are realistic expectations that appear

to be justified from the observed data. Outside interference

7

from other signal sources has not been shown to be a problem from

inspecting waveforms recorded on film. However, removal of

unwanted noise (eg. from other transmitted signals) could be

accomplished using active filters on the receiver input without

affecting the repeatability of the signal. Additionally, because

of the short duration of the transmitted and received pulses,

external influences from temperature changes or other

environmental variations are negligible and have not been

observed. Figure 3 graphically depicts a repetitive signal

obtained by successive firings of the transmitter.

Figure 3. Repeating Signal.

Using equivalent time sampling the waveform can be stored.

Equivalent time sampling is a technique which allows digitization

of high frequency, repetitive signals. With each "pass" of the

signal, one point on the waveform is digitized. For a 1 GHz

sampling rate, this one point is 1 nanosecond away in relative­

time from the previous point that was digitized. Figure 4

graphically depicts the principle of equivalent time sampling.

8

In order to collect n sequential values of a repetitive waveform,

the transmitter must be triggered n times. Let h be the required

relative-time interval between the sequential values (1

nanosecond for this system) . If Tk and are the starting times

of the k and k+1 pulses, then the real time distance between the

k and k+1 samples is ~ Tk + h. Notice that as long as

repeatability is assured, the difference Tk+1 - Tk may be allowed

to vary. The critical value in the equation is h. The

repeatability of h determines the accuracy of the equivalent time

sampling system.

Figure 4. Equivalent Time Sampling.

The challenge then is to design a timing circuit capable of

accurately triggering an A/D conversion with an equivalent time

sampling rate of 1 GHz.

9

The major error introduced in equivalent-time waveforms is

due to time jitter. Time jitter is defined as the error

introduced in the recorded waveform when the relative-time

between samples varies from the specified amount (here 1

nanosecond). Computational methods (deconvolution techniques)

have been developed to compensate for and reduce the effects of

time jitter. However, the literature recommends that the time

jitter be reduced to a minimum by hardware design then use

computational methods if still required. [7][10][12]

3. HARDWARE DESIGN AND CONSTRUCTION

A block diagram of the system to be designed is shown in

Figure 5.

Figure 5. Data Acquisition, Timing, and Trigger Block Diagram.

The design will be handled as three separate subsystems and

then integrated. The IBM-PC leaves I/O addresses 300H-31FH

available for prototype boards. Addresses in this range will be

used to control the Data Acquisition, Trigger, and Timing

circuits.

3.1 Data Acquisition Subsystem

Since the maximum conversion time between samples is

dependent on the transmitter firing rate and that rate would be

controlled by the transmitter firing circuit and software, a

10

11

slower and cheaper A/D converter could be used. However, because

of the high frequency content of the received signal, a high

speed Track/Hold amplifier would be needed on the input of the

A/D converter. The requirements set for the A/D converter were:

- 12-bit conversion

- microprocessor/TTL compatible

- 8-bit bus interface

- modest conversion time

- modest price.

The ADC674A from Burr Brown was selected. The conversion

time of the ADC674A is 12 microseconds (nominal). This

conversion time is comparable to the maximum time it takes for

the received signal to return to the zero-signal baseline. Thus,

a minimum amount of time is wasted before the transmitter can be

triggered and the next sample taken.

Because of the high frequency of the signal to be digitized,

a high speed track/hold amplifier would be needed to hold each

sample point stable until the converter can complete the

conversion. Because of the high frequency content of the

received signal, the fastest possible track/hold amplifier

aperture time and shortest possible aperture jitter would be

needed. ECL track/hold amplifiers provide the fastest aperture

time (2 nanoseconds) and shortest aperture jitter (2

picoseconds). However, because of the cost and incompatibility

with the TTL circuitry, the ECL chips could not be used. The

12

Analog Devices HTC-0300A was selected for its high speed

(aperture time of 6 nanoseconds, aperture jitter 50 picoseconds)

and its compatibility with the A/D converter and TTL control

circuitry.

The nominal 6 nanosecond aperture time of the Track/Hold

amplifier is the delay from application of the Hold command to

the Track/Hold amplifier to when the Track/Hold amplifier

actually "holds" the input signal constant at its output. This

effectively represents a "constant" time delay applied to all

Hold commands. What determines the accuracy of the acquisition

is the aperture jitter or uncertainty. This is the range over

which the "constant" delay may vary from one Hold command to the

next. The 50 picosecond aperture jitter is well within the

specified accuracy of 1 nanosecond.

Figure 6 shows the basic data acquisition subsystem

schematic. The op amp on the input of the Track/Hold amplifier

serves two purposes. First, the maximum allowable input voltage

to the amplifier is plus or minus 15 volts and the output range

of the amplifier is plus or minus 10 volts. The op amp limits

the maximum input voltage to the amplifier to roughly plus or

minus 12 volts. This protects against overvoltage damage to the

amplifier. Secondly, the op amp provides a DC offset for the

input signal to bring it into the Track/Hold amplifier and A/D

converter input ranges.

13

Figure 6. Data Acquisition Schematic.

3.2 Transmitter Trigger

The trigger input of the transmitter has a nominal input

impedance of 50 ohms and requires a minimum amplitude pulse of 10

volts to trigger an output pulse. A monostable multivibrator,

the 74LS122, was selected to generate the trigger pulse. Figure

7 shows the trigger circuit schematic.
I

+5V

Figure 7. Transmitter Trigger Schematic.

14

By adjusting an external resistor and capacitor, the trigger

pulse length can be controlled. The Al, A2 and Bl, B2 inputs

are connected to ground and Vcc respectively. These connections

cause the positive going edge of a pulse on the CLEAR line to

trigger the trigger pulse. The CLEAR input pulse is generated

from the address decode logic for address 304H. The output pulse

from the 74LS122 must be converted into a 10 volt minimum

amplitude pulse for input to the 50 ohm impedance of the

transmitter trigger. An amplifier circuit was designed to

convert the TTL pulse to a nominal 12 volt pulse for input to the

50 ohm impedance transmitter trigger input.

3.3 Timing Subsystem

The design of the timing subsystem is the most critical

aspect in setting the accuracy of the entire data acquisition

system. The accuracy of the recorded signal depends upon the

ability of the timing circuit to generate the HOLD signal for the

Track/Hold amplifier for each sample point as close to 1

nanosecond from the previous point in relative-time as possible.

To meet the resolution requirement of 1 nanosecond, the

difference between the sample points in relative-time should be

as close to 1 nanosecond as possible. The difference between the

actual time and the specified 1 nanosecond is called timing noise

or jitter and optimally should be much less than the 1

15

nanosecond. Ideally, if available, a counter operating at 1 GHz

which could count from the transmitter trigger pulse to the

desired sample point and trigger the Track/Hold amplifier would

fill this requirement. However, no counters operating at this

frequency and TTL compatible were found. A second approach was

investigated. A programmable digital delay line with a one

nanosecond step between delays could be used. To record a

waveform four microseconds long, the delay line would require a

minimum of 4000 programmable steps. A 12-bit delay line with

4096 steps would suffice. Again, however, no 12-bit delay lines

were found.

An alternative timing circuit was developed. Using a linear

ramp generating circuit, a digital-to-analog converter (DAC), and

a differential comparator, an accurate timing circuit could be

designed. Figure 8 shows the circuit in block diagram form.

Figure 8. Timing Subsystem Block Diagram.

Operation of the Timing Subsystem is as follows: The DAC

16

output is set to a particular voltage. The ramp is triggered and

starting from zero, the ramp voltage increases in a linear

fashion. When the ramp voltage reaches the level of the DAC

output voltage, the comparator fires, activating the HOLD for the

Track/Hold amplifier. To store the next sample point, the DAC

output voltage is increased by 1 least-significant-bit, the ramp

reset, and then triggered again. The process repeats for each

sample.

4 microseconds of waveform must be recorded. This length

requires a minimum ramp length of 4 microseconds. The fastest

TTL-output differential comparators have a maximum allowable

differential input voltage of 5 volts nominal. This condition

limits the range of the ramp from 0 to 5 volts. Given a 0 to 5

volt, 4 microsecond ramp, 4000 discrete levels must be

recognizable. This will determine the resolution required from

the DAC. A 12-bit DAC will provide 4096 discrete voltage levels,

which for a 0-5 volt range will be 1.22 millivolts per step.

Using a DAC with a maximum output voltage range of 0-5 volts will

also ensure that the differential input voltage limit to the

comparator is not exceeded. The AD667 from Analog Devices was

selected because it fits all the above requirements with the

addition of interfacing to an 8-bit data bus. Figure 9 shows the

timing subsystem schematic.

17

Figure 9. Timing Subsystem Schematic.

The ramp circuit design is covered in detail in section 3.5,

an overview is given here. The 74LS107A is used to switch the

ramp on and off by a pulse on the CLK input. The Q output

switches the output of the LF412 op amp from 0 to -5 volts. This

change switches the 2N3823 FET on and off respectively. When the

FET is turned off, the current from the constant current source

(collector of PNP transistor ECG395) flows into the 200 pf

capacitor. A linear voltage increase (ramp) results. The

combination of the two FET's in the NPD5566 isolates the ramp

18

circuit from the comparator to remove any non-linearities caused

by the loading of the comparator and feedback circuits.

The AD9686 differential comparator is a high-speed TTL

voltage comparator. This comparator has a nominal 7 nanosecond

propagation delay from the input to the output switching to the

high output level. The IK ohm resistor from the Q output to the

positive input of the comparator latches the output of the

comparator high on the first transition of the Q output. Figure

10 illustrates the comparator response with and without feedback.

Figure 10. Effect of Feedback on the Comparator.

If noise is present on the ramp output or DAC output, with

no feedback, the comparator may switch numerous times before

settling to the final level. With feedback, the input to the

comparator is pulled to +5 volts on the first transition of the

19

output. The feedback keeps the output from switching more than

once. Multiple level transitions disrupt the analog-to-digital

conversion.

3.4 Integration of the Subsystems

Integrating the three subsystems requires determining what

timing relationships exist among the various signals that must be

passed between the subsystems. Specific logic connections and

relationships had to be determined also. Finally, what timing

relationships should be controlled by software and/or what should

be specifically controlled by hardware had to be determined and

incorporated into the hardware or conversely left until the

operating software was written.

Figures 11-A and 11-B show the entire system with all inter­

connections .

The more involved connections are explained below.

The complementary outputs of the differential comparator

provide the complementary TRACK/HOLD and READ/CONVERT signals.

The TRACK/HOLD signal to the track/hold amplifier must precede

the READ/CONVERT signal to the A/D converter by roughly 120

nanoseconds. This ensures that the output of the track/hold

amplifier is stable before the conversion is started. An AMDM-

150 TTL delay line from Rhombus Industries was inserted into the

READ/CONVERT line to provide the necessary delay.

Initially, both the transmitter trigger pulse and the ramp-

20

Figure ll-A. Timing and Data Acquisition
Subsystems Schematic.

21

Figure 11-B. Chip Select/Address Decode and
Transmitter Trigger Schematic.

22

start pulse were generated by the operating software. Although

the code which generated the two pulses was purely sequential, in

actuality, the time between these two pulses was not constant.

The variation of the actual time between the two pulses from one

sample to the next was too large and was not acceptable. The

large variation introduced excessive jitter in the recorded

signal. A line was connected from the 74LS122 (the transmitter

trigger pulse source) to one side of an EXCLUSIVE-OR gate. The

other side of the EXCLUSIVE-OR gate was connected to the software

controlled ramp-start control circuit. This way, the ramp would

be started from a transmitter trigger pulse with an acceptable

amount of variation from sample to sample, but could still be

controlled by software (eg., to turn the ramp off).

The manufacturer of the transmitter specifies the

transmitter output pulse time jitter as no greater than 5

nanoseconds. This means the time delay from the transmitter

trigger pulse on the input of the transmitter to the output pulse

from the transmitter will vary by no more than 5 nanoseconds

between transmitter firings. Because the acquisition is started

by the transmitter trigger pulse and not the actual transmitter

output pulse, this variation could add significant time jitter

error to the recorded waveform. This error was deemed acceptable

for the current equipment configuration and design.

The timing of the trigger, conversion, and A/D converter

data read cycles are shown in Figure 12. Software initiated

23

versus hardware initiated signals are shown.

Figure 12. Acquisition Timing Diagram.

3.5 Evolution of the Timing Circuit Design

The timing circuit design proved to be the greatest

challenge. Device specific limitations became readily apparent.

In low speed/accuracy applications, these limitations would not

24

exhibit the same degrading effects on the circuit. The timing

ramp circuit went through three major design iterations. Each

iteration will be covered in sequence.

Figure 13 shows the first design iteration.

Figure 13. Ramp Circuit - First Try.

Operation is as follows: Assume initially the Q output of

the 74LS107 is high and QI is turned on. Op amp A maintains a

constant voltage drop across resistor R1. Since the input to an

op amp (ideally) draws no current, a constant current flows

through the 5 volt zener diode and out the collector of Q2.

Since QI is turned on, this current; is dumped directly to ground.

A pulse on CS1 toggles the Q output, setting it low. This turns

off QI. The current now charges Cl. The constant current into

Cl causes a linear voltage increase which is output to the

comparator by op amp C. When the maximum length of the ramp is

25

reached, sending another pulse on CS1 turns Q of the 74LS107 on,

QI back on, and dumps the incoming current and charge on Cl to

ground. The maximum ramp voltage is limited to 5 volts by the 5

volt zener diode.

The most noticeable problem with this circuit was the ramp

length. The ramp length could not be adjusted any shorter than

about 12 microseconds. Varying capacitor values, resistor

values, and reference voltage values had no significant affect.

Detailed examination of the circuit showed that the op amp used

to drive the input to the comparator (Op Amp C) had a maximum

slew rate of 0.5 V/uSecond. The op amp was operating at its

maximum slew rate and was setting the limit on the ramp length.

Iteration 2 involved replacing this op amp with an

alternative circuit without the restriction on the slew rate.

Figure 14 shows the second circuit.

Figure 14. Ramp Circuit - Second Try.

The ramp length now could be adjusted to 4 microseconds by

26

setting Cl, Rl, and the IK ohm adjustable resistor. The problems

which surfaced now were more subtle. Noise and jitter on the

ramp were having an affect on the recorded signal.

Several additional steps were taken to increase the

stability and decrease the noise in the circuit. Figure 15 shows

the third iteration.

Figure 15. Ramp Circuit - Third Try.

A FET was substituted for the NPN bipolar transistor used

to shunt the charging capacitor to ground. The FET provides a

more linear transition into saturation or cutoff causing the

voltage developed on Cl to be more linear. The original Op Amp

B had a very slow slew rate (0.5 V/uSec). When the Q output of

the 74LS107 would toggle, it would take roughly 2.5 microseconds

for the op amp to switch the transistor QI fully on or off. An

op amp with a slew rate of 10 V/uSec was substituted for this op

amp. The FET could now be switched in roughly 0.5 microsecond.

The 5 volt zener diode which limits the ramp height was also

27

moved to reduce extraneous noise on the output voltage as Cl

charged.

This circuit represents the last design iteration and is

incorporated in the Timing subsystem. This circuit meets the

requirements of a linear 0-5 volt, 4 microsecond ramp.

3.6 Construction

There are two possible areas to concentrate on to eliminate

noise and jitter from the system. The first is by optimizing the

system hardware design while the second is by applying signal

processing techniques to the recorded signal to remove or reduce

any noise or jitter. This section describes the hardware

construction to reduce noise. Section 5.1 describes signal

processing techniques to reduce the noise.

The original data acquisition system was built on a proto­

board type PC board. This board had obvious deficiencies.

Primarily, this type of board is not intended to hold analog

circuits, especially circuits requiring high speeds and high

accuracy. The data acquisition system was redesigned onto a

custom printed circuit board. This board was designed

specifically to reduce noise and increase the accuracy of the

high speed analog circuits. Additionally, more care could be

taken in separating the analog and digital circuits to reduce

cross talk. This board showed great improvement over the

original. Figure 16 is a photograph of the final circuit board.

Figure 16. Fabricated System Circuit Board. 28

29

As the board was already designed and built, further design

changes in the hardware would be costly in both time and money.

For example, a known contributor to the time jitter in the

recorded signal is from the jitter of the transmitter output (see

Section 3.4). By changing the data conversion trigger to the

actual transmitter output pulse versus the transmitter trigger

pulse would eliminate the source of jitter. However, the cost

would be too high with limited gain. Section 5.1 describes the

application of signal processing techniques to improve the signal

at minimal cost and with greater flexibility.

4. TESTING OF THE HARDWARE

To test the hardware system, numerous software modules were

required. Each module was written to test a specific subsystem

of the hardware. This chapter describes the software modules

that were developed, the physical test methods for the hardware,

and the results of the tests. Both quantitative and qualitative

measurements are made of the system accuracy.

4.1 Hardware Testing Software

The hardware system software could be divided into two

distinct areas. Software was developed to test each of the

functional areas of the hardware system. Secondly, software was

written for the actual waveform acquisition and storage. Each

area is covered in the following sections.

4.1.1 Subsystem Testing Software

Software was written to test specific hardware subsystems.

The software would excite the subsystem under test. An

oscilloscope is used to monitor the circuit and where applicable

the results of the operation are displayed on the computer

screen. Programs were written to test the following subsystems:

ramp circuit, DAC, trigger circuit, and the A/D converter.

The different subsystems are controlled by logic pulses

generated by addressing specific I/O addresses. The DAC and A/D

converter circuits utilize the data bus from the computer to

30

31

write to and read from the converters respectively. The other

subsystems are controlled solely by pulses at the required

addresses. The data lines are not utilized (data output while

the address lines are activated are ignored). The following

table lists the I/O address, the subsystem affected, and the

result of activating that address.

I/O ADDRESS SUBSYSTEM

300 H A/D Converter

301 H A/D Converter

302 H DAC

303 H DAC

304 H Trigger Circuit

RESULT

Reads high order byte of 12-

bit converter (D4-D11).

Reads 12-bit converter lower

4 bits (D0-D3) shifted to

high end of byte. Low end

of byte is 0 filled.

Writes 4 high order bits

(D8-D11) shifted to low end

of byte to converter.

Writes low order byte (D0-

D7) to 12-bit converter.

Activates 74LS122 astable

multivibrator. The rising

edge of the pulse triggers

the 74LS122. Duration of

the output pulse is

controlled by external

32

resistor and capacitor

combination.

305 H Ramp Circuit Toggles Q output of

74LS107A. Turns ramp ON to

OFF or OFF to ON (Q high

turns ramp' on) .

306 H Ramp Circuit Connected to CLEAR of

74LS107A. Sets Q low (turns

ramp off).

A total of eleven testing programs were written. These

could be grouped into three types. The first were individual

programs which performed each step of the data acquisition

process for one sample point. These programs are:

RESET - turns ramp off.

TOGGLE - switches ramp ON to OFF or OFF to ON.

SETJDAC - set DAC to specified voltage.

TRIGGER - initiates trigger output pulse.

CONVERT - start A/D converter conversion.

READ - read from A/D converter.

CONVERT2 - performs entire acquisition procedure for

one sample.

The second type were programs written to perform selective

subsystem tests. These tests would cycle numerous times to allow

viewing of the logic waveforms to verify proper circuit

33

operation. These programs were:

TOGGLE2 - switches ramp ON to OFF/OFF to ON 5000 times.

READ2 - reads A/D converter 1000 times.

TRIG_TST - initiates trigger output pulse 1000 times.

The last program type was for calibrating the DAC. This

program, called DAC_TST, provides the required digital inputs to

the DAC to perform the zero and gain adjusts on the DAC. These

adjustments ensure the DAC output operates over the proper range

(0-5 volts).

Listings for each program are in Appendix A.

4.1.2 Signal Acquisition Software

The signal acquisition software is responsible for the

actual waveform acquisition and storage. The individual programs

which performed each step of a single data point acquisition, as

written for the subsystem tests, could be incorporated as

procedures in the waveform acquisition program A total of 4

microseconds of waveform were to be stored as set forth in the

original system requirements. The ramp was designed for a 0 to

5 volt rise in 4 microseconds. Since the DAC output was set for

0 to 5 volts also, all 12 bits (4096 discrete voltage levels) had

to be used to record the entire 4 microseconds. The addition of

these 96 samples changes the theoretical absolute maximum

equivalent-time sampling resolution to 0.98 nanoseconds.

As most of the required acquisition procedures had been

34

developed during the testing stage, the majority of the signal

acquisition software development involved writing user interfaces

and developing waveform display, storage, and print routines.

A listing for the 1 GHz signal acquisition program is in

Appendix A. This program is titled T1G12B. This is the program

designed to meet the original data acquisition speed and accuracy

requirements.

4.2 Hardware System Test

This section covers the individual hardware system tests,

the operation of the system as a whole, and evaluation of the

system operation and accuracy.

4.2.1 Individual Subsystems

Each subsystem was tested using the Subsystem Testing

Software as described in Section 4.1.1. Actual testing is

described in the following sections. Refer to Figure 11A and 11B

for the test points referenced in the following sections.

4.2.1.1 Timing Subsystem

The ramp circuit is tested by placing an oscilloscope probe

(Channel A) at Test Point (TP) 1 and a second probe (Channel B)

at TP2. The program TOGGLE2 is executed. Channel A shows the

pulse generated from the address decode logic for I/O address

305H. Channel B shows the actual ramp voltage signal. The ramp

35

turns on or off with each pulse on Channel A.

The DAC circuit is tested by placing a voltmeter probe at

TP5. Executing the program SET_DAC allows the operator to

specify the DAC output voltage. This voltage can be verified on

the voltmeter.

The operation of the comparator is verified by placing an

oscilloscope probe (Channel B) at TP6. Channel k's probe is

moved to TP2. The DAC is set to a midrange value (using

SET_DAC). TOGGLE2 is executed. Triggering on Channel A, the

ramp is shown increasing. When the ramp reaches the DAC output

level, the comparator will switch (Channel B). If these tests

are successful, the entire Timing Subsystem is operational.

4.2.1.2 Transmitter Trigger Subsystem

The Transmitter Trigger Circuit is tested by attaching an

oscilloscope probe (Channel A) at TP3 and a second probe (Channel

B) at TP4. The program TRIG_TST is executed. This program

addresses the transmitter trigger circuit repeatedly at I/O

address 304H. Channel A will show a TTL pulse from the address

decode logic. Channel B will show .a 12 volt pulse approximately

8 microseconds long.

4.2.1.3 Data Acquisition Subsystem

The data acquisition subsystem is checked by applying known

voltages to the signal input and performing the conversion.

36

Specifically, 0, +5, and +12 volts are applied to the input (from

the system power supplies). The program CONVERT2 is executed

with the result displayed on the terminal.

When all three subsystems are checked operational, the

system is checked as a unit.

4.2.2 Integrated System Test

The entire system is tested by connecting all the components

as shown in Figure 17.

Figure 17. System Configuration for Evaluation and Test.

A real signal is recorded with the system and compared to

its equivalent from an oscilloscope. See Figures 18 and 19.

Note that the signals compare favorably.

37

Figure 19. Oscilloscope Recorded Signal.

38

4.2.3 Evaluating System Operation and Accuracy

A quantitative measure of the accuracy of the data

acquisition system is made by measuring the noise and jitter of

the ramp used in the timing circuit. A qualitative measure of

the accuracy of the entire system is made by sampling a real

signal numerous times and checking for repeatability. A

quantitative measure of the entire system accuracy is made also.

4.2.3.1 Ramp Evaluation

Measuring the accuracy of the internal ramp circuit of the

data acquisition system shows the base accuracy of the system.

The system can not be more accurate than the ramp circuit itself.

The ramp accuracy was measured using two methods. By the first

method, the ramp was recorded by the designed data acquisition

system itself. The ramp signal at Test Point 2 was connected to

the input of the system. Figure 20 shows the actual recorded

ramp.

39

2000

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

Time (nS)

Figure 20. System Recording Internal Ramp Signal.

Comparing the recorded ramp to an ideal ramp, the following

statistical values were found:

Standard deviation: 5.054,

Mean: 1.1015.

This standard deviation is 0.26% of full scale and is an

acceptable value.

Keeping the same connection, the second method samples the

ramp at the 25, 50, and 75 percent point of the ramp (in time)

for one complete sample period (4096 data points) each. As the

40

sample should be taken from the exact same point on the ramp for

each sample point in each set, the quality of the ramp can be

derived at each point. Figures 21, 22, and 23 show the data

collected for the 25, 50, and 75 percent points respectively.

The 'Typical Data Set' in each figure represents a single data

set of 4096 points which has had no filtering or averaging

applied. The 'Averaged Data Set (4)' in each figure represents

an average of four different single data sets, each with 4096

points.

TYPICAL DATA SET AVERAGED DATA SET (4)

MIN= 1233 MAX- 1291

MEAN- 1269.16 STD. DEVIATION- ai67

MIN- 1259 MAX- 1276

MEAN- 1268.41 STD. DEVIATION- 1.521

HISTOGRAM OF SAMPLES FROM
25% POINT OF RAMP

Figure 21. Statistical Analysis of Ramp at 25% Point.

41

MIN= 1483 MAX= 1595

MEAN= 1509.58 STD.DEVIATION= 3.834

MIN= 1500 MAX= 1532

MEAN= 1509.16 STD. DEVtATION= 2.126

HISTOGRAM OF SAMPLES FROM
50% POINT OF RAMP

Figure 22. Statistical Analysis of Ramp at 50% Point.

42

Figure 23. Statistical Analysis of Ramp at 75% Point.

These figures show that the ramp accuracy is within an

acceptable range. Note also, that this is actually a worst case

measurement of the ramp accuracy. Routing the ramp to the input

of the data acquisition system places a load on the ramp and

43

comparator circuits which in normal operation would not be there.

This loading actually degrades the recorded ramp and the accuracy

of the timing system.

4.2.3.2 Real Signal Evaluation

The real signal evaluation actually measures the accuracy

of the entire system. Inaccuracies in timing and the transmitter

will be measured now. A qualitative measurement is made by

comparing Figures 18 and 19. The signal is repeatable and

compares very favorably with the oscilloscope record. A

quantitative measurement is made by taking samples at the 25, 50,

and 75 percent points on the signal as was performed on the ramp.

Figure 24 shows the signal and location the data points were

recorded from.

44

Figure 24. System Recording Signal for Statistical Analysis.

Figures 25, 26, and 27 show the data collected for the 25,

50, and 75 percent points respectively. Again, the 'Typical Data

Set' in each figure represents a single data set of 4096 points

which has had no filtering or averaging applied. The 'Averaged

Data Set (4) ' in each figure represents an average of four

different single data sets, each with 4096 points.

45

Figure 25. Statistical Analysis of Signal at 25% Point.

46

HISTOGRAM OF SAMPLES FROM
50% POINT OF SIGNAL

Figure 26. Statistical Analysis of Signal at 50% Point.

Figure 27. Statistical Analysis of Signal at 75% Point.

The entire system accuracy is within an acceptable range.

As was expected however, the system accuracy is lower than the

ramp accuracy. This can be attributed to the jitter inherent in

the transmitter. Note also, that the accuracy at the 25 and 75

percent point look very good compared to the 50 percent point.

48

The signal is relatively flat where the system recorded the data

at the 25 and 75 percent points. Data recorded in these regions

will not show the true effects of time jitter. Data recorded at

the 50 percent point is recorded on a portion of the signal which

has a very large slope. The effects of time jitter are very

evident by the larger standard deviation.

5. DATA PROCESSING AND DISPLAY SOFTWARE

The software for processing and performing computer

interpretation was developed separately from the hardware system

software. This software is also written to be independent of the

actual hardware acquisition system. The only requirement placed

on the data is that it meet the input requirements of the

program. Two methods are provided to input the data. The data

format and input requirements for each method are as follows:

Input Method 1

- 4096 data points/waveform

- 4 waveforms/station

- 4 waveforms stored on disk as single text file

- each set of 4096 points concatenated to previous set

- data values range from 0 to 4095.

Input Method 2

- 4096 data points/waveform

- 1 waveform/station

- 1 waveform stored on disk as single text file

- 1 set of 4096 points

- data values range from 0 to 4095.

The vast majority of the code written for the data

processing and display software is related to user interfaces and

data presentation. It will be described in subsequent sections.

The specialized digital signal processing and application

specific (actual interpretation) code will also be described.

49

50

The entire program is listed in Appendix B.

5.1 Signal Conditioning Software

Three methods are incorporated into the software to reduce

the effects of noise on the recorded signal. These are:

amplitude averaging, smoothing, and filtering. Averaging is

automatically performed when a waveform is input via Input Method

1 described previously. Each waveform is read from the disk file

and the corresponding data points added. Amplitude averaging is

performed: the result of adding the corresponding data points

from each waveform is divided by four. Smoothing is an optional

procedure that averages data points that exceed a threshold limit

with their neighbors. The threshold is set such that if the

difference between two points is greater than the difference

between 90% of the remaining points, that point is averaged with

its neighbors.

Filtering is also an optional procedure. The following

discussion describes the various filter types which were examined

and the final choice of filter to incorporate in the software and

apply to the recorded waveform.

The Fast Fourier Transform (FFT) of the signal in Figure 24

is shown in Figure 28. The FFT was performed on the waveform

data from 1000 nanoseconds to 3047 nanoseconds.

51

Figure 28. FFT of Recorded Signal.

The FFT shows that the majority of the spectrum is at and

below 25 percent of the sample frequency. Several filter types

were designed with varying order numbers and cut-off frequency.

Figures 29 through 36 display representative results of several

tests using different classes of filtering algorithms and cutoff

frequencies. The figures show that setting too low a cut-off

frequency may cause loss of significant information. As an

illustrative example, Figure 29 shows the effect of reducing the

52

bandwidth of a 20th order Butterworth filter. It is apparent that

setting wc = 0.2 produces a signal that has little resemblance to

the oscilloscope record (Figure 19) . Conversely, setting wc = 0.5

leaves too much corruptive noise.

The selection of the filtering algorithm also has a

significant effect on the resulting signal.

Figure 29. 20th Order Butterworth Filter.

53

A
D

C
V

al
ue

 D
isp

la
ye

d
w

ith
 O

ffs
et

s
A

D
C

V
al

ue
 D

isP
^y

ed
 w

ith
 O

ffs
et

s

Figure 30. 10th Order Empto Filter.

3000

-2000
2000

2500

1500

1000

500

0

-5(00

-10(0)

-1500

300028(002200 24(00 26(00 3^^

Time (nS)

Figure 31. 20" Order Chebychev Type 1 Fileer

54

Figure 32. 20th Order Ctebychev Type 2 Filter.

Figure 33. wc=0.30 Butterwotth Filter.

5 5

A
D

C
V

al
ue

 w
ith

 D
isp

la
y

O
ffs

et
s

A
D

C
V

al
ue

 D
isp

la
ye

d
w

ith
 O

ffs
et

s

Figure 34. w~=0.30 Elliptic Filter.

Figure 35. wc=O.33 Chebychev Type 1 Filter

56

Figure 36. wc=0.30 Chebychev Type 2 Filter.

The final selection of filtering algorithm has been made by

visual comparison with the scope record. The complexity of a

high order filter is also considered a strong disadvantage for

single precision implementation in the software. Therefore, a

2nd order Elliptic filter was selected. Elliptic filters provide

the same filtering with a lower order than the other filter

types. [14]

Since the final result is highly subjective, the final

implementation has a default cutoff frequency of 0.3. However,

the user has the option of varying this frequency in a limited

range.

51

Another processing technique was investigated also.

Deconvolution of the time jitter from the recorded waveform was

performed [7] [10] [12]. The time jitter was assumed to have a

Gaussian pdf. The FFT of the pdf has the same form as the pdf:
Pdf=^e"t(r^

4 Cz.1T/1 r)2-
Fourier Transform(pdf)= e

The deconvolution procedure is described in the frequency

domain by the following equation:

Y(f) = X(f)P(f),

where: Y(f) = system response,

X(f) = input waveform,

P(f) = Fourier Transform of gaussian time jitter pdf.

Figure 37 shows the recorded waveform after applying the

deconvolution technique with different standard deviation values.

Figure 37. Deconvolution of Time Jitter.

58

The deconvolution technique did not provide an increase in

resolution over that of filtering described previously. Also,

the computing expense is much greater to perform deconvolution

versus filtering in the time domain.

5.2 Data Interpretation Software

Interpretation of the recorded signal is generally

straightforward. The midpoint of the waveform between each

maximum and minimum is marked. The time (from a zero point at

the beginning of the waveform) is recorded for each mark and then

compiled for interpretation. Figure 38 illustrates this.

Figure 38. Data Interpretation Criteria.

The manual interpretation technique introduces significant

59

error. This error is due to variations in the initial center

point picks and variations in the time measurements from the zero

point.

The critical processing software, i.e., the software

responsible for the center point pick, is written as an

exchangeable procedure. The 4096-point array holding the

filtered/averaged sample points is passed to the procedure. The

procedure passes back a linked-list holding the position in the

array of each center point pick. The procedure was written to be

exchangeable so that future interpretation techniques, methods,

or criterion could be written as procedures and easily

substituted for the current procedure.

The technique used for the procedure incorporated in this

version of the program finds each maximum and corresponding

minimum. The midpoint value is then found between the maximum

and minimum and added to the linked-list. The maximum or minimum

is found by forming an average of a small section of the waveform

and comparing this average to an average obtained by moving out

the waveform. When the average peaks, a maximum or minimum has

been encountered. This technique is illustrated in Figure 39.

60

Figure 39. Processing Software - Midpoint Selection.

The midpoint between the maximum and minimum is taken as the

waveform midpoint and added to the linked-list which is returned

to the main program.

5.3 Data Display Software

The display software generates the graphical display of the

waveform being processed. A graphical display of the computer

generated interpretation can be viewed also. The display

software provides the user with the facilities to edit the

computer generated interpretation and see the results of the edit

61

immediately. The user can 'zoom' in on any selected section of

the waveform to facilitate editing the interpretation.

5.4 The User Interface

Since the system is likely to be operated by occasional

users, a menu driven interface was considered desirable. The

overall structure of the menu tree is illustrated in Figure 40.

The user manual for the data display and processing software is

included in Appendix C. For convenience, the user manual can

also be retrieved from within the program by selecting the 'Help'

option from the first menu.

Figure 40. Data Processing and Display Software Menu Tree.

62

Figure 40. Data Processing and Display Software Menu Tree

6. COMMENTS AND CONCLUSIONS

It has been successfully demonstrated that a data

acquisition system for repetitive high frequency waveforms can be

designed and constructed inexpensively. The accuracy of the

constructed system meets the original requirements. While this

system was designed to solve a specific problem (to eliminate an

oscilloscope and Polaroid camera), the system should

theoretically be able to record any repetitive waveform with the

proper input and trigger/timing constraints.

The data display and processing software complements the

hardware system by reducing noise on the signal. Averaging,

smoothing, and filtering are all used to improve the signal

quality. The use of a software algorithm to perform the

interpretation removes the inconsistencies inherent in the manual

method. The software could be adapted to other signal processing

problems with the replacement or exchange of the interpretation

specific procedures. The display and user interface sections

could remain unchanged.

63

REFERENCES

1 P.R.Rigg, J.E.Carroll, C.Eng, "Low-Cost Computer-Based Time-

Domain Microwave Network Analyser, " IEEProc., vol. 127, pt.

H, no. 2, pp. 107-111, April 1980.

2 N.S.Nahman, "The Measurement of Baseband Pulse Rise Times

of Less than 10-’ Second," Proc. IEEE, vol. 55, no. 6, pp.

855-864, June 1967.

3 N.S.Nahman, "Picosecond-Domain Waveform Measurements, " Proc.

IEEE, vol. 66, no. 4, pp. 441-454, April 1978.

4 N.S.Nahman, "Picosecond-Domain Waveform Measurement: Status

and Future Directions," IEEE Trans. Instrum. Meas., vol. IM-

32, no. 1, pp. 117-124, March 1983.

5 H.M. Cronson, P.G.Mitchell, "Time-Domain Measurements of

Microwave Components," IEEE Trans. Instrum. Meas., vol. IM-

22, no. 4, pp. 320-325, December 1973.

6 A.M.Nicolson, G.F.Ross, "Measurement of the Intrinsic

Properties of Materials by Time-Domain Techniques," IEEE

Trans. Instrum. Meas., vol. IM-19, no. 4, pp. 377-382,

November 1970.

7 W.L.Gans, "The Measurement and Deconvolution of Time Jitter

in Equivalent-Time Waveform Samplers," IEEE Trans. Instrum.

Meas., vol IM-32, no. 1, pp. 126-133, March 1983.

64

65

8 B.J.Elliott, "System for Precise Observations of Repetitive

Picosecond Pulse Waveforms," IEEE Trans. Instrum. Meas.,

vol. IM-19, no. 4, pp. 391-395, November 1970.

9 H.M.Cronson, A.M.Nicolson, P.G.Mitchell, "Extensions of Time

Domain Metrology Above 10 GHz to Materials Measurements,"

IEEE Trans. Instrum. Meas., vol. IM-23, no. 4, pp. 463-468,

December 1974.

10 W.L.Gans, J.R.Andrews, "Time Domain Automatic Network

Analyzer for Measurement of RF and Microwave Components,"

NBS Tech. Note 672, September 1975.

11 "Technical Reference - Personal Computer," IBM Personal

Computer Hardware Reference Library, April 1984.

12 N.S.Nahman, M.E. Guillaume, ."Deconvolution of Time Domain

Waveforms in the Presence of Noise," NBS Tech. Note 1047,

October 1981.

13 E.O. Brigham, 'The Fast Fourier Transform and its

Applications', Prentice-Hall, Englewood Cliffs, New Jersey,

1988.

14 L.R.Rabiner, B.Gold, 'Theory and Application of Digital

Signal Processing', Prentice-Hall, Englewood Cliffs, New

Jersey, 1975.

APPENDIX A

DATA ACQUISITION SOFTWARE LISTING

66

67

{)

{ CONVERT }

{ }

{ begin adc converslnn }

{)

{ addresses location 300h (i/o) to start conversinn }

{ }

program CONVERT;

begin

inlir^e>$^lba/OO^/:^03/

See);

end.

{ mov dx, 300h }

{ out dx, al }

68
{ }

(CONVERT2 }

{ }

{ Test program for adc chip }

{ }

{ performs all steps for one data point acquisition }

{ }

program CONVERT2;

var
voltagep,

loop

voltage

: word;

: real;

{ actual adc word }

{ counter variable)

(actual adc voltage }

begin { TEST program convert2

}{ reset ramp

inline ($ba/$06/$03/

See);

{ set dac

{ mov dx, 306h

{ out dx, al

}

}

}

inline ($ba/$03/$03/ { mov dx, 303h }

$b8/$08/$00/ { mov ax, 800h)

$ee/ { out dx, al }

$86/$c4/ { xchg al, ah }

$4a/ (dec dx)

See); { out dx, al ■ }

{ trigger ramp }

inline ($ba/$OS/$03/ { mov dx, 305h }

See); { out dx, al }

{ wait)

for loop : = 1 to 40 do

inline ($90); { nop }

{ reset ramp)

inline ($ba/$O5/$03/ { mov dx, 30Sh }

See); { out dx, al }

(wait }

for loop := 1 to 20 do

inline ($90); (nop }

{ read conversion }

inline ($ba/$00/$03/ { mov dx, 300h }

$ec/ (in al, dx }

$86/$c4/ { xchg ai, ah }

$42/ { inc dx 1

$ec/ { in al, dx }

$bl/$04/ { mov el, 04h }
$d3/$e8/ (shr ax, cl }
$a3/voltagep); (mov voltagep, ax }

69
voltage := voltagep * 4.88e-3;

writein (voltage:lO:6);

end. { TEST program convert2 }

70

{ }

{ DAC_TST }

{ }

{ Test program for dac chip. }

{ }

{ DAC binary input is Straight Binary. OOOOh is minimum }

{ output, OFFFh is maximum. }

(}

{ DAC test connection is made at test-point #5. }

{ }

{ DAC Zero Adjust - sets DAC output to OOOOh input. }

{ Actual output is adjusted to 0.000V at 100K variable }

{ resistor connected to Bipolar Offset pin 4 on DAC chip. }

(}

{ DAC Gain Adjust - sets DAC output to OFFFh input. }

{ Actual output is adjusted to 4.9988V at 100 ohm variable }

{ resistor connected between pins 6 and 7 on DAC chip. }

()

{ DAC Functional Test - functional test cycles DAC thru }

{ OOOOh to OFFFh (0V to 5V output). This is the maximum }

{ functional range that the DAC will be operating in. }

{ Cycle can be repeated as required. Exiting test exits)

(program. }

{ }

program DAC_TST;

var

loop

ans

: word;

: char;

{ counter variable }

{ keyboard prompt }

begin { TEST program dac_tst }

write ('Perform DAC zero adj.? y/n ');

readln (ans);

writein J'**********');

if upcase (ans) = 'Y' then

begin { if }

inline ($ba/$03/$03/

SbO/SOO/

See/

$4a/

See) ;

write ('Hit any key when finished

readln (ans);

writein ('**********');

{ mov dx, 303h

{ mov al, OOh

{ out dx, al

{ dec dx

{ out dx, al

with DAC zero adj.');

)

)

}

)

}

end; { if)

write ('Perform DAC gain adj.? y/n ');

readln (ans);

writein ('**********');

if upcase (ans) = 'Y' then

begin { if)

inline ($ba/$03/$03/ { mov dx, 303h }
$b8/$ff/$0f/ { mov ax, Offfh)
See/ { out dx, al }
$86/$c4/ { xchg al,ah)
$4a/ { dec dx)
See) ; { out dx, al)

write ('Hit any key when finished with DAC gain adj.');

readln (ans);

writein ('**********');

end; { if }

write ('Perform DAC test? y/n ');

71

readln (ans);

writein ('**********));

if upcase (ans) = 'Y' then

repeat

inline ($ba/$03/$03/

$b8/$00/$00);

(mox dx, 3$3h

(mov ax, ooooh

)

}

for loop := $$$$$ to $0fff do

inline ($ee/ { out dx, al }

$86/$c4/ { xchg al, ah)

$4a/ { dec dx }

$ee/ { out dx, al)

$86/$c4/ (xchg al, ah)

4/ { inc ax }

$42); { inc dx }

write (Repeat DAC test? yin ');

readln (ans);

writein ('**********');

until upcase (ans) = 'N'

end. (TEST program dac_tst)

72

{

{ READ

{

{ Test program to read adc

{ ,
{ addresses locations 300h and 301h for hi and 1o

{ bytes

{

}

}

}

J
}

}

}

}

program READ;

var
voltage : real;

function adc:word;

inline ($ba/$OO/$O3/

$ec/

$86/$c4/

$42/

Sect

$bl/$04/

$d3/$e8);

{ aid converter value }

{ mov dx, 3DOh }

(in al, dx }

{ xchg aI, ah }

(inc dx }

(in aI, dx }

{ mov el, 04h }

(shr ax, cl }

begin

voltage := ade * 4.88e-3;

writein (voltage:l0:6);

end.

73

{ }

{ READ2 . }

{ }

(Test program to read adc }

{ }

{ addresses locations 300h and 301h for hi and 1o }

{ bytes }

{ }

{ reads converter 1000 times)

{ >

program READ2;

var
loop

voltage

: integer;

: real;

{ counter variable

{ aid converter value

}

)

function adc::word;

inline C^loa/$00/^!^03/ { mov dx, 300h)

Sec/ { in al, dx)

$86/$c4/ { xchg al, ah }

$42/ (inc dx }

Sec/ (in al, dx }

$b1/$04/ { mov cl, 04h }

$d3/$e8); { shr ax, cl }

begin

for loop := 1 to 1000 do

begin

voltage := adc * 4.88e-3;

writein (voltage:10:6);

end.;

end.

14

{ RESET

{

(reset ramp program

{ addresses location 306h (i/o) to reset ramp circuit

{
{ turns ramp OFF

program RESET;

begin
inline($ba/$06/$03/

See);

end.

{ mov dx, 306h }

{ out dx, al }

75

{ I

{ SET DAC }

{)

{ set dac output voltage)

{ . >

{ address location 302h, 303h (i/o) for low and high }

{ byte, user inputs desired voltage (0 to +5 volts) }

(>

program SET_DAC;

var
voltage : real;

out_voltage : word;

{selected o/p voltage }

{word output to dac)

begin

repeat { until valid range }

writein ('Input the voltage level for the DAC to output: ');

writein;

readln (VOLTAGE);

if (voltage > 4.996) or (voltage < 0) then

writein ('Input voltage is out of range');

until (voltage >= 0) and (voltage <= 4.996);

out_voltage := round(voltage / 1.22e-3);

inline($ba/$03/$03/ { mov dx, 303h }

$ee/ (out dx, al)

$86/$c4/ { xchg al, ah }

$4a/ (dec dx }

See); { out dx, al)

writein (out_voltage:10);

end.

76

{ >

{ TOGGLE }

()

{ toggle ramp ON to OFF or OFF to ON }

{ >

{ addresses location 005h (i/o) to toggle ramp circuit }

{ }

program TOGGLE;

begin

inline($ba5$55/0O3/

See);

end.

(mov dx, 005h }

(out dx, al }

'll

{ }

{ TOGGLE2 }

{ }

{ toggles ramp: program cycles 10000 times }

(}

{ addresses location 305h (i/o) to toggle ramp circuit }

()

program TOGGLE2;

var
loop,

loopl : integer;

{ counter variable

{ counter variable

}

}

begin

for loop : = 1 to 10000 do

begin

inline($ba/$55/033/ { mov dx, 305h }

See); { out dx, al)

for 100p1 := 1 to 1000 do

inline ($90); { nop }

end;

end.

78
(}

{ TRIG_TST)

{ }

{ Test program for trigger circuit }

{ }

{ contents of 'al' register are unchanged for this }

(operation and are not important as address is used as }

{ strobe, data lines are not utilized. }

{ }

{ Oscilloscope connections for test: Test-point #3 }

{ provides trigger, Test-point #4 is 'trigger pulse'.)

()

{ Loop repeats 1000 times. User prompted for continue y/n }

{ }

program TRIG_TST;

var
loop : integer;

ans : char;

begin (TEST program trig_tst }

repeat
for loop := 1 to 1000 do

begin (for }

writein (loop:5);

inline ($52/

$ba/$04/$03/

$ee/

$5a) ;

end; { for }

read (ans) ;

until upcase (ans) = ' Y'

end. { TEST program trig_tst }

{ counter variable }

{ keyboard prompt)

(push dx }

(mov dx, 304h)

{ out dx, al)

(pop dx }

79
{ ' }

{ TRIGGER }

{ }

{ Test program for trigger circuit - single pulse }

{ }

{ addresses location 394h (i/o)to initiate trigger }

{ }

program TRIGGER;

begin { TEST program trigger }

inline ($ba/S04/S03/ { mov dx, 304h }

See); { out dx, al }

end. { TEST program trigger }

80

{)

{ program for data acquisition }

{ 1 GHz 12 BIT }

{ }

program T1G12B;

uses dos, crt, graph;

.4096] of word;
type

single

job_string

= array[1..4,1

= string[20];

var

store,

finished : boolean;

ans : char;

waveform : single;

job : job_string;

shot,

loop : integer;

{ store session variable }

{ continue? variable }

{ continue? answer }

{ waveform array }

{ job name)

{ counter variable }

procedure reset;

inline($ba/$06/$03/ { mov dx, 306h }

See); { out dx, al)

procedure set dac (voltage:word);

inline ($58/ (pop ax }

$ba/$03/$03/ (mov dx, 303h }

See/ { out dx, al)

$86/$c4/ { xchg al,F ah }

$4a/ { dec dx)

See); (out dx, al }

procedure trigger;

inline($ba/$04/$03/ { mov dx, 304h }

See); { out dx, al)

procedure micro delay (m_delay:integer);

var
loop : integer; { counter variable }

begin

for loop := 1 to m_delay do

inline($90);

end;

(nop }

function adczword;

81

inline($ba/$00/$03/

Sec/

$86/$c4/

$42/

Sec/

$bl/$04/

Sd3/$e8);

{ mov dx, 300h }

{ in al, dx }

{ xchg al, ah }

{ inc dx }

{ in al, dx }

{ mov cl, 04h)

{ shr ax, cl }

procedure acquire_waveform (var waveform:single; shot:integer);

var

count : integer;

voltage : word;

finished : boolean;

{ counter variable }

{ actual input voltage }

{ entire signal recorded?)

begin {procedure acquire_waveform)

writein;

count := 0;

finished := false;

voltage : = $0;

repeat { until finished)

inc (count);

set_dac (voltage);

inc (voltage);

trigger;

micro_delay(40);

reset;

micro_delay(20);

waveform[shot,count] : = adc;

if (count > 200) and (waveform[shot, count] = 4095) then

begin

count := 0;

voltage := 0;

write ('*');

end;

if count = 4096 then

finished := true;

until finished;

writein;

set_dac ($0) ;

end; (procedure acquire_waveform)

procedure store_on_disk (var waveform:single; job:job_string);

var
loopl,

loop : integer;

waveform_file : text;

file_name,

path ; job_string;

{ counter variable }

(file to store waveform]

{ name of file to store }

(path name }

begin (procedure store_on_disk)

path := 'a:\' + job + 'V;

write ('Enter name of file to store waveform under: path);

readln (file_name);

file_name := path + file_name;

writein (file_name);

82
assign (waveform_file, file_name);

rewrite (waveform_file);

for loopl := 1 to 4 do

for loop := 1 to 4096 do

write (waveform_file, waveform[loopl,loop]:6);

close (waveform_file);

end; {procedure store_on_disk)

procedure show_waveform (var waveform:single);

var
graphdriver,

graphmode,

window : integer;

in_char : char;

avg,
finished : boolean;

procedure next(var window:integer; var waveform:single);

var
loopl,

loop : integer;

begin

clrscr;

outtextxy (1,2,' E:exit A:average P:print file ->:next

window <-:previous window');

case window of

1,2,3,4,5 : for loopl := 1 to 4 do

for loop := 0 to 639 do

putpixel(loop, waveform[loopl, (loop+1)

+ (window*640)] div 12, red);

6 : for loopl := 1 to 4 do

for loop := 0 to 255 do

putpixel(loop, waveform[loopl,(loop+1)

+ (window*640)] div 12, red);

end;

inc(window);

end;

procedure previous(var window:integer; var waveform:single);

var
loopl,

loop : integer;

begin

clrscr;

outtextxy (1,2,' E:exit A:average P:print file ->:next

window <-:previous window');

for loopl := 1 to 4 do

for loop := 0 to 639 do

putpixel(loop,waveform[loopl,(loop+1)+((window-2)*640)]

div 12, red);
dec(window);

end;

procedure average (var waveform:single);

83

var
loop,

loopl : integer;

begin

for loop := 1 to 4096 do

begin

for loop1 := 2 to 4 do

waveformll, loop] := waveformll, loop] + waveform]loppl, loop];

waveform]l,lopp] : = waveforrnllloop] div 4;

for loopl := 2 to 4 do

waveformlloopl[loop] : = waveform[l,loop];

end;

end;

procedure print—Waveoorm (var waveform:single; avg:boolean) ;

var
print_file

loop,

loopl,

loop2,

loop3,

exp_count,

data_print,

min,

max
found

: text;

: integer;

: boolean;

function exponent (y,x:integer)integer;

var
temp,

loop : integer;

begin

temp := 1;

for loop := 1 to x do

temp := temp * y;

exponent := temp;

end;

begin

if not avg then

assign (print_file, 't1g12b.sig')

else

assign (print_file, 't1g12b.ave');

rewrite (print_file);

write (print_file, chr(27), chr(13), 'P', chr(27), '@',

chr(27), 'x', chr(O), chr(13));

for loop := 0 to 4095 do

if (loop mod 8) = 0 then

begin

max : = 0;

min := 684;

for lolp1 := 1 to 4 do

for loop2 := loop to (loop + 7) do

begin

if max < (waveform[loopl,loop2 + 1] div 6) then

max := waveform[loopl[loop2 + 1] div 6;

if min> (waveform[loopl,loop2 + 1] div 6) then

min := waveform[loopl[loop2 + 1] div 6;

end;

84
write (print_file, chr(27), 'K', chr(175), chr(2), chr(O));

for loopl := (max + 1) to 683 do

write (print_file, chr(O));

for loopl := max downto min do

begin

data_print := 0;

exp_count := 0;

for loop2 := (loop + 7) downto loop do

begin

found := false;

for loop3 := 1 to 4 do

if ((waveform[loop3,loop2 + 1] div 6) =

loopl) and (not found) then

begin

found := true;

data_print := data_print + exponent(2,exp_count);

end;

exp_count := exp_count + 1;

end;

if data_print = 26 then

data_print := 25

else if data_print = 9 then

data_print := 10;

write (print_file, chr(data_print));

end;

for loopl := 0 to (min +1) do

write (print_file, chr(0));

write (print_file, chr(0), chr(0), chr(27), 'J', chr(23), chr(27), '<');

end;

close (print_flie);

end;

begin

graphdriver := ega64;

graphmode := egahi;

initgraph (graphdriver, graphmode, 'c:\tpas\');

clrscr;

window := 2;

avg := false;

previous (window, waveform);

finished := false;

repeat (until finished }

in_char := readkey;

case ord(in_char) of

69,101 : finished := true;

65, 97 : begin

77 : case window of

1,2,3,4,5,6: next(window, waveform);

7: t
end;

75 : case window of

1: r
2,3,4,5,6,7: previous(window, waveform);

end;

average (waveform);

avg := true;

case window of

1: begin

window := 2;

previous(window, waveform);

end;

2,3,4,5,6,7: begin

window := window - 1;

85
next(window, waveform);

end;

end;

end;

80,112 : prlnt_waveform (waveform, avg) ;

end;

until finished;

closegraph;

clrscr;

end;

begin { main program }

clrscr;

write ('Will this session be stored on disk? Y/N ');

ans := readkey;

writein;,

if upcase(ans) = 'Y' then

begin

store := true;
write ('Enter name of job (name length cannot exceed 5 characters): ');

readln(job);

writein;

writein ('Install formatted disk in drive "a:".');

writein;

writein ('Hit any key to continue');

ans := readkey;

writein;

mkdir('a:\' + job);

end

else

store := false;

writein;

inline ($fa); { cli)

finished : = false;

while not finished do

begin

shot := 1;

repeat { until shot > 4 }

set_dac ($0);

reset;

acquire_waveform (waveform, shot);

write ('Do you want to view this waveform? (raw data) Y/N');

ans := readkey;

if upcase(ans) <> 'N' then

for loop := 1 to 4096 do

begin

write (waveform!shot,loop]:6);

if (loop mod 10) = 0 then

writein;

end;

writein;

write ('Is this waveform recorded correctly? Y/N');

ans := readkey;

writein;

if upcase(ans) = 'Y' then

begin

writein ('Waveform Accepted — Shot #: ', shot:3);

inc(shot);

end

else

86

writeln ('Waveform Rejected — Shot i: ', shot:3,' next.');

until shot> 4;

write ('Do you want to view this waveform? (graphically) Y/N

ans := readkey;

if upcase(ans) <> 'N' then

show_waveform (waveform);

writeln;

if store then

begin

write ('Do you want to store this waveform? Y/N

ans := readkey;

writeln;

if upcase(ans) = 'Y' then

store_on_disk (waveform, job);

end;

write ('Do you want to acquire another waveform? Y/N

ans := readkey;

writeIn;

if upcase(ans) = 'N' then

finished := true;

end;

inline ($fb); (sti }

end. { main program)

APPENDIX B

POST PROCESSING SOFTWARE LISTING

87

88
{ This Listing is Arranged as follows:

1. Procedure List Showing Procedure Nesting.

2. Procedure List Showing Calling Procedures, Procedures Called, and

Procedure Function.

3. Program Listing.

1. Procedure Nesting

PROCESS

MENU (menu_choices:choice_array; var selection:integer)

PATH_TO_FILE (var filename:name_string)

ENTER_PATH (var filename:name_string; var in_char:char)

SELECT_LOAD_OPTION(var load_optlon:char)

LOAD_WAVEFORM (var signal—array:waveform; filename:name_string);

PROCESS—4_SIGNALS (var averaged—array:waveform; filename:name_string)

INSERT_BREAK (s_break:integer; S—positive:boolean; var

break_list:listpointer)

PICK—BREAKS (var signal—array:waveform; var break_list:listpointer)

NEW—WAVEFORM (var signal—array:waveform; var filename:name_string)

DISPLAY_BREAKS (break_list:listpointer; var signal—array:waveform)

DISPLAY—WAVEFORM (var signal—array:waveform; filename:name_string)

STORE—BREAK—LIST (filename:name_string; break_list:listpointer)

DISPLAY—EXPANDED—WAVEFORM (start, stop:integer; break_list:listpointer;

mode:option; var signal—array:waveform)

EDIT—BREAKS (var finished:boolean; filename:name_string; var

break—list:listpointer; var signal—array:waveform; start,x:integer)

DISPLAY—START—END (var displaystart, displayend, start,stop:integer)

BREAK—SELECT (start, stop, move:integer; var

signal—array:waveform; var break_list:listpointer)

DELETE—BREAK (start, stop, move:integer; var

success:boolean; var break_list:listpointer)

ADD—BREAK (start, stop, move:integer; var break_list:listpointer)

MOVE—BREAK (var start, stop, move:integer; var

break—list:listpointer; var signal—array:waveform)

EXPAND—WAVEFORM (var signal—array:waveform; var break_list:listpointer;

var finished:boolean; filename:name_string)

EDIT—WAVEFORM—DATA (var temp_array:waveform)

FILTERING (var temp_array:waveform)

SMOOTHING (var temp_array:waveform)

EDIT—WAVEFORM (var signal—array:waveform;filename:name_string)

DISPLAY—EXPAND (var signal—array .'waveform; filename :name_string;

var break—list:listpointer;breaks:boolean)

DISPLAY—INTERPRETATION (var signal—array:waveform;

var filename:name_string;var breaks_list:listpointer)

EDIT—FROM—DISK—DISPLAY—INTERPRETATION (var signal—array:waveform;

var filename, b_filename:name_string; var break_list:listpointer;

var break—list:listpointer)

89
2. Procedure Function Listing

program PROCESS;

uses graph,dos,crt,drivers;

const

array_length = 4096;

type

choice_array = array[1..5] of string[40];

waveform = array[1..array_length] of integer;

name_string = string[40];

option = string[10];

break_rec = record

break : integer;

positive : boolean;

end;

listpointer = Alistnode;

listnode = record

break : integer;

positive : boolean;

next : listpointer;

end;

const

opening_menu: choice_array =(

'A.

'B.

'C.

'D.

PROCESS NEW WAVEFORM',

RECALL/EDIT WAVEFORM',

DISPLAY

HELP ',

INTERPRETATION',

'E. EXIT');

var
signal_array

break record

break file

: waveform;

: break rec;

: file of break_rec; [global to whole program}

path_filenamel,

path_filename

break list

graphdriver,

selection,

graphmode

breaks

: name string;

: listpointer;

: integer;

: boolean;

{**}
{**}

procedure MENU (menu_choices:choice_array; var selection:integer);

var

yy<
loop : integer;

in_char : char;

P : pointer;

size : word;

Calls: none

Called by: Main Program

Function: Returns selection from menu display to the calling program. An

integer (1 -5) is returned in the variable "selection". Menu displayed is passed

90
to MENU procedure in "menu_choices": an array which can hold up to 5 character

strings. Each string must be prefixed with a letter (ie. A - E) .

(**)

(** j

procedure PATH_TO_FILE (var filename:name_string);

var

X,
loop : integer;

size : word;

q : pointer;

in_char : char;

dirinfo : searchrec;

{ global inside path_to_file}

{ global inside path_to_file}

Calls: ENTERJPATH (internal)

Called by: NEW_WAVEFORM
EDIT_FROM_DISK_DISPLAY_INTERPRETATION

Function: Facilitates entry of path and filename of file to retrieve.
Procedure checks that path and filename are valid but does not check that file is

a valid file type. Returns path and filename to calling program in "filename"

variable. Also facilitates display of specified directories.

(A***)

procedure ENTER PATH (var filename:name_string; var in_char:char);

var
loop : integer;

temp : name_string;

Calls: none

Called by: PATH_TO_FILE (internal)

Function: Actual keyboard entry of filename or directory path. Returns path

in "filename" variable and last keyboard entry in "in_char" variable.

j*** *j

I**)

procedure SELECT_LOAD_OPTION (var load_option:char);

Calls: none

Called by: NEW_WAVEFORM
EDIT_FROM_DISK_DISPLAY_INTERPREATAION

Function: Facilitates user selection to read single data set or from
concatenated data set to then perform averaging.

(**)

(**)

procedure LOAD_WAVEFORM (var signal_array‘.waveform; filename :name_string) ;

var
value,

loop : integer;

disk_file : text;

Calls: none

Called by: NEW_WAVEFORM

91
EDIT_FROM_DISK_DISPLAY_INTERPREATAION

Function: Reads a single data set into the computer from a disk file. Reads
4096 data points - does no averaging.

j**j

(**j

procedure PROCESS_4_SIGNALS (var averaged_array:waveform; filename:name_string);

var
value,

loop,

loopl

disk_file

: integer;

: text;

Calls:
Called by:

none
NEW WAVEFORM

EDIT FROM DISK DISPLAY INTERPRETATION

calling program. Expects four concatenated sets of data. Reads all four, adds

respective data points and divides by 4 to compute average. Resulting average is

returned to calling program in "averaged_array" variable.

Function: Reads data from disk file specified in "filename" variable sent from

variables to end of current break list. "break_list" variable is returned to

calling program.

procedure

{**}

INSERT_BREAK (s_break:integer; s positive:boolean; var

break_list:listpointer);

var

temp,

traverse : listpointer;

Calls:
Called by:

none
PICK BREAKS

EDIT_FROM_DISK_DISPLAY_INTERPREATAION

Function: Adds break points sent to procedure in "s_break" and "s_positive"

J**}
{***★**1

procedure PICK_BREAKS (var signal_array:waveform; var break_list:listpointer);

const

ave_length = 20;

overlap =0;

diff = 5;

var
avl,

av2,

av3,

inflectionl,

inflection2,

midpoint,

start : integer;

peak,

valley .: boolean;

92

function AVERAGE (var signal_array:waveform; start:integer):integer;

Calls: INSERT_BREAK

Called by: DISPLAY_EXPAND

Function: Picks breaks from waveform based on the following method: three
averages are computed on three partially overlapping sections of the waveform.

When a peak or valley is detected (by comparing the three averages) the break is

chosen as the midpoint between the last valley (or peak) and the present peak (or

procedure NEW_WAVEFORM (var signal_array:waveform; var filename:name_string);

valley).

program.

The variable "signal_array" and "break_list" are returned to the calling

{***}

{***}

var
old_fillpattern : word;

option : char;

variables to calling program

Calls: PATH TO FILE

PROCESS 4 SIGNALS

SELECT LOAD OPTION

LOAD_WAVEFROM

Called by: Main Program

Function: Inputs raw waveform data. Returns "signal_array" and "filename"

(**j

procedure DISPLAY_BREAKS (break_list:listpointer; var signal_array:waveform);

const

ydiv

yadd

28;

-20;

var
loop,

X : integer;

temp : listpointer;

t : pointer;

size : word;

Calls: none
EXPAND WAVEFORMCalled by:

Function:
displayed by DISPLAY_WAVEFORM procedure,

program.

Displays breaks passed to it in "break_list" variable on waveform

"signal_array" is passed back to calling

I***}
{***}

procedure DISPLAY_WAVEFORM (var signal_array .’waveform; filename:name_string) ;

const

ydiv

yadd

28;

-20;

var

93
last,

current,

loopl,

space,

x,
loop

dummy

: integer;

: char;

Calls:
Called by:

none
EDIT_WAVEFORM

EXPAND_WAVEFORM

DISPLAY EXPAND

Function:
variable is

Displays entire waveform across top of screen,

passed back to calling program.

signal-array"

{***}
{***)

procedure STORE_BREAK_LIST (filename:name_string; break_list:listpointer);

var
loop,

x :
in_char :

P :
size :

temp_string,

break_filename :

temp_j>ointer :

integer;

char;

pointer;

word;

name_string;

listpointer;

Calls:
Called by:

none
EDIT

EXPAND WAVEFORM

BREAKS

Function: _
file on disk. This is not an ASCII file! "filename" variable is passed to

procedure and holds name of currently shown waveform file.

Stores break list (as passed to it in "break_list" variable) on to

, This is not an ASCII file! "

{***}
{*** j

procedure DISPLAY_EXPANDED_WAVEFORM (start, stop:integer; break_list:listpointer;

mode:option; var signal_array:waveform);

const

yadd = -40;

ydiv = 14;

var
temp : listpointer;

t : pointer;

size : word;

loop,

xex,
length,

displaystart,

displayend : integer;

Calls: none

Called by: EXPAND_WAVEFORM
BREAK_SELECT

94

Function: Displays waveform from "start" to "stop" across the lower half of
the screen, "start" and "stop" are selected and passed by calling program. Breaks

are displayed, "mode" specifies 'view' or 'edit'. "signal_array" is passed back

to calling program.

{***}
J***}

procedure EDIT_BREAKS (var finished:boolean; filename:name_string;

var break_list:listpointer; var signal_array:waveform;

start, x:integer);

const

yadd

ydiv

var
in_char

move

success

= -40;

= 14;

{global to Edit Breaks }

{global to Edit Breaks }

char;

integer;

boolean;

function ARRAY POSITION (displayend, displaystart,

point:integer):integer;

Calls:

Called by:

BREAK_SELECT (internal)

DELETE_BREAK (internal)

ADD_BREAK (internal)

MOVE_BREAK (internal)

STORE_BREAK_LIST

EXPAND WAVEFORM

Function:
breaks is
11

Moving, deleting, and adding

can be stored on disk.

Facilitates edit of breaks on waveform.

facilitated. An updated break list

signal_array" is passed back to calling program, "finished" and "mode" are also

returned to the calling program.

{**}

procedure DISPLAY_START_END (var displaystart, displayend, start, stop:integer);

var
length

Calls:
Called by:

: integer;

none

BREAK_SELECT

DELETE_BREAK

ADD BREAK

Function: Determines actual array values that begin and end displayed waveform
from DISPLAY_EXPAND_WAVEFORM procedure. These values are returned in

"displaystart" and "displayend" variables respectively. "start" and "stop" are

also returned to calling program.

{**}

procedure BREAK_SELECT (start, stop, move:integer; var

signal_array:waveform; var break_list:listpointer);

var
current_position,

displaystart,

displayend : integer;

95

Calls: DISPLAY_START_END
DISPLAY_EXPANDED_WAVEFORM

Called by: MOVE_BREAK
EDIT_BREAKS (internal)

Function: Displays break select box on waveform. Passes "signal_array"
variable back to calling program.

(**}

procedure DELETE_BREAK (start, stop, move:integer; var

success:boolean; var break_list:listpointer);

var
delete_position,

tolerance,

displaystart,

displayend

tempi,

temp

: integer;

: listpointer;

Calls:
Called by:

DISPLAY'START END

MOVE_BREAK

EDIT BREAKS (internal)

Function: Deletes selected break from break list. Updates "break_list" and
passes variable back to calling program.

{**}

procedure ADD_BREAK (start, stop, move:integer; var

break_list:listpointer);

var
add_position,..

displaystart,

displayend : integer;

back to calling program

tempi,

temp : listpointer;

Calls:
Called by:

DISPLAY START END

: MOVE BREAK

EDIT_BREAKS (internal)

Function: Adds break to break list. Updates "break_list" and passes variable

{**}

procedure MOVE BREAK (var start, stop, move:integer; var

break_list:listpointer; var signal_array:waveform);

var
movel

in char

success

: integer;

: char;

: boolean;

Calls: BREAK SELECT

DELETE BREAK

ADD BREAK

Called by: EDIT_BREAKS (internal)

Function: Moves selected break the specified amount. Updates "break_list"

96
variable and passes it back to the calling program. Also passes "start", "stop",

"move", "last_move", and "signal_array" variables back to calling program.

{***}
(***}

procedure EXPAND_WAVEFORM (var signal_array:waveform; var break_llst:listpointer;

var finlshed:boolean; filename:name_string);

const

yadd = -40;

ydiv = 14;

variables to calling program

var
in char

q
size

start,

X

: char;

: pointer;

: word;

: integer;

Calls: DISPLAY EXPANDED WAVEFORM

STORE BREAK LIST

EDIT BREAKS

DISPLAY BREAKS

DISPLAY WAVEFORM

Called by: DISPLAY_EXPAND

Function:
waveform to

Displays instructions and facilitates selection of segment of

display in expanded form. Returns "signal_array" and "finished"

I***}
{***}

procedure EDIT_WAVEFORM_DATA (var temp_array:waveform);

var
size word;

q : pointer;

x,
loop : integer;

in_char : char;

Calls:
Called by:

none
EDIT_WAVEFORM

Function: Allows user to select start of good data on waveform. Waveform is
shifted to start of good data, end is filled with last value. Returns updated

"temporary" waveform file.

{***}
{***}

procedure FILTERING (var temp_array:waveform);

type

second_order_elliptic = array[1..11,1..3] of real;

real_waveform = array[1..array_length] of real;

const
coeffic_a : second_order_elliptic = ((1,-1.4410,0.6978), (0.20)

(1,-1.3694,0.6753), (0.22}

(1,-1.2957,0.6540), (0.24)

97
(1,-1.2199,0.6341), {0.26}

(1,-1.1423,0.6155), (0.28)

(1,-1.0628,0.5983), (0.30)

(1,-0.9818,0.5824), (0.32)

(1,-0.8991,0.5678), (0.34)

(1,-0.8149,0.5545), (0.36)

(1,-0.7293,0.5426), (0.38)

(1,-0.6424,0.5320)); (0.40)

frequency. Returns updated "temporary" waveform file.

coeffic_b : second order elliptic = ((0.1750,-0.0932,0.1750), (0.20}

(0.1840,-0.0621,0.1840), {0.22}

(0.1937,-0.0291,0.1937), {0.24}

(0.2043,0.0056,0.2043), {0.26}

(0.2157,0.0419,0.2157), {0.28}

(0.2278,0.0798,0.2278), {0.30}

(0.2407,0.1192,0.2407) , {0.32}

(0.2543,0.1601,0.2543), {0.34}

(0.2686,0.2025,0.2686), {0.36}

(0.2835,0.2462,0.2835), {0.38}

(0.2992,0.2912,0.2992)); {0.40}

var

temp : real_waveform;

Wc,

loop : integer;

in char : char;

Calls: none

Called by: EDIT_WAVEFORM

Function: Performs second order elliptic filtering on waveform in time domain.

Allows user to specify cutoff frequency between 0.2 and 0. 4 the sampling

{***}

{***)

procedure SMOOTHING (var temp_array:waveform);

var
max_difference,

above_threshold,

below_threshold,

loop : integer;

finished : boolean;

count : real;

Calls:
Called by:

none
EDIT_WAVEFORM

Function: Finds top 10% magnitude differences from point to point. Performs
smoothing across these points. Returns updated "temporary" wavefrom file.

{***}
{***}

procedure EDIT_WAVEFORM (var signal_array:waveform; filename_name_string);

var
temp_array : waveform;

loop : integer;

in_char : char;

temp_string : name_string;

98
disk_file : text;

Calle: EDIT_WAVEFORM_DATA
FILTERING

SMOOTHING

DISP LAY_WAVE FORM

Called by: DISPLAY_EXPAND

Function: Gives options for editing/processing actual waveform data. Returns
"signal_array" to calling program.

{***)

I***j

procedure DISPLAY_EXPAND (var signal_array:waveform;

filename:name_string; var break_list:listpointer;breaks:boolean);

var
finished : boolean;

in_char : char;

Calls: DISPLAY_WAVEFORM
EXPAND_WAVEFORM

PICK_BREAKS

EDIT_WAVEFORM

Called by: EDIT_FROM_DISK
Main Program

Function: Calls DISPLAY_WAVEFORM procedure to display entire waveform and
EXPAND_WAVEFORM procedure to facilitate expanding and displaying the selected

section of the waveform. Calls EDIT_WAVEFORM procedure to facilitate waveform

edit procedures. Returns "signal_array" and ”break_list” variables to the calling

program.

{***}

{***}

procedure DISPLAY_INTERPRETATION (var signal_array:waveform;

var filename:name string; var break_list:listpointer);

Called by: EDIT_FROM_DISK_DISPLAY_INTERPRETATION

var

temp

xl,

x2

in_char

: listpointer;

: integer;

: char;

Calls: DISPLAY WAVEFORM

DISPLAY BREAKS

waveform and pre-generated break list
Function: Displays computer generated interpretation of waveform from specified

{***}

(***}

Calls:

procedure EDIT_FROM_DISK_DISPLAY_INTERPRETATION (var signal_array:waveform;

var filename,b_filename:name_string; var break_list:listpointer;edit:boolean);

var
option : char;

PATH_TO_FILE

99

PR0CESS_4_SIGNALS

INSERT_BREAK

DISPLAY_EXPAND

LOAD_WAVEFORM -

DISPLAY_INTERPRETATION

Called by: Main Program

Function: Recalls waveform and previously stored break list from disk file.
Returns "signal_array", "filename", "b_filename", and "break_list" variables back

to calling program if called from Main Program Option B. If Main Program OptionC

was selected, the computer interpreataion is generated.

{***}

{***}

MAIN PROGRAM

Calls: MENU
NEW_WAVEFORM

DISPLAY_EXPAND

EDIT_FROM_DISK_DISPLAY_INTERPRETATION

Function: Operates from base menu:

1- New Waveform View and Edit

2- Recall Waveform and Break List from Disk for View and Edit

3- Recall Waveform and Break List from Disk for Interpretation Display

4- Display Help File

5- Exit to DOS

3. Program Listing }

{$M 40000,0,25000}

program PROCESS;

uses graph,dos,crt,drivers;

const

array_length = 4096;

type
cholce_array = array[1..5] of string[40};

waveform = array[1..array_length] of integer;

name_string = strlng[40];

help_string = strlng[80J;

option = string[10];

break_rec = record

break : integer;

positive : boolean;

end;

listpointer = "listnode;

listnode = record

break : integer;

positive : boolean;

next : listpointer;

end;

const

opening_menu: choice_array =(

'A. PROCESS NEW WAVEFORM',

100

'B. RECALL/EDIT WAVEFORM',

'C. DISPLAY INTERPRETATION',

'D. HELP ',

'E. EXIT');

var
signal_array

break_record

break_file

path_filenamel,

path_f ilename

break_list

graphdriver,

selection,

graphmode

breaks

: waveform;

: break_rec;

: file of break_rec; {global to whole program)

: name_string;

: listpointer;

: integer;

: boolean;

{**}

(A***)

procedure MENU (menu_choices:choice_array; var selection:integer);

var

yy,
loop

in_char

P
size

: integer;

: char;

: pointer;

: word;

begin .

size := imagesize(1,1,16,9);

getmem(p,size);

setcolor(green);

rectangle(20,20,getmaxx - 20,getmaxy - 20);

setfillstyle(solidfill, green);

floodfill(0,0,green);

setfillstyle (solidfill, white);

setcolor(white);

for loop:=l to 5 do

outtextxy(70,40+(loop-1)*10,menu_choices[loop]);

outtextxy(70,120,'Enter Choice or Use Arrow keys and Hit <RETURN>')!

yy:=39;

getimage(1,1,16,9,pA);

putimage(68,yy,pA,xorput);

selection:=0;

repeat

in_char := upcase(readkey);

case ord(in_char) of

80 : begin

put image(68,yy,pA,xorput);

if yy=79 then

yy:=39

else

yy:=yy+10;

putimage(68,yy,pA,xorput);

end;

72 : begin

putimage(68,yy,pA,xorput);

if yy=39 then

yy:=79

else

yy:=yy-10;

putimage(68,yy,pA,xorput);

101

end;

65,66,67,68,69 : selection := ord(in_char) - 64;

13 : selection := (yy div 10) - 2;

end;

until selection <> 0;

freemem(p, size);

end;

{**}

{**}

procedure PATH_TO_FILE (var filename:name_string);

var

x,
loop

size

q
in_char

dirinfo

: integer;

: word;

: pointer;

: char;

: searchrec;

{ global inside path_to_file)

{ global inside path_to_file)

(**j

procedure ENTER_PATH (var filename:name_string; var in_char:char) ;

var
loop : integer;

temp : name_string;

begin

x := 150;

for loop := 1 to 40 do

putimage(150 + (loop-1)*9,60,qA,copyput) ;

in_char := readkey;

filename := '';

for loop := 1 to 73 do

putimage(9 + (loop-1)*8,85,qA,copyput);

while (ord (in_char) <> 13) and (ord(in_char) <> 27)

and (ord(in_char) <> 59) do

begin

if (x < 509) and (ord(in_char) <> 8) then

begin -

filename := filename + in_char;

outtextxy(x,60,in_char);

if x < 510 then

x := x + 9;

end

else if ord(in_char) = 8 then

begin

if x > 150 then

x := x - 9;

putimage(x,60,qA,copyput);

temp := '';

for loop := 1 to ((x-149)div 9) do

temp := temp + filename[loop] ;

filename := temp;

end;

in_char := readkey;

end;

end;

(*******************************»*************** ******* I

102
begin

size := imagesize (1,1,8,8);

getmem(q,size);

setviewport(21,21,getmaxx - 21, getmaxy - 21,clipon);

clearviewport;

getimage(21,21,28,28,qA);

rectangle(148,56,509, 69);

repeat (until doserror » 0)

setviewport(21,61,getmaxx - 21,68,clipon);

clearviewport;

setviewport(21,120,getmaxx - 21,130,clipon) ;

clearviewport;

setviewport(21,21,getmaxx - 21, getmaxy - 21,clipon);

outtextxy(60,40,'Enter Path and Filename for File to Retrieve:');

outtextxy(60,101,'<RETURN> to Continue <F1> for Directory <ESC> to

Exit');

enter_path (filename, in_char);

if ord(in_char) = 13 then

begin

findfirst(filename,anyfile,dirinfo);

case doserror of

0 : clrscr;

3 : outtextxy(10,85,'Path Not Found (Dos Error -3): ' + filename);

18 : outtextxy(10,85,'No More Files (Dos Error ■ 18): ' + filename);

end;

end

else if ord(in_char) = 59 then

begin

setviewport(21,61,getmaxx - 21,68,clipon);

clearviewport;

setviewport(21,120,getmaxx - 21,130,clipon);

clearviewport;

setviewport(21,21,getmaxx - 21, getmaxy - 21,clipon);

outtextxy(60,40,'Enter Directory to Show:');

outtextxy(100,101,'<RETURN> to Continue <ESC> to Exit');

enter_path (filename, in_char);

if ord(in_char) <> 27 then

begin

setviewport(21,131,getmaxx - 21, getmaxy - 21, clipon);

clearviewport;
setviewport (21,21,getmaxx - 21, getmaxy - 21,clipon);

setcolor(red);

line(0,111,getmaxx,111);

line(0,125,getmaxx,125);

line(99,125,99,getmaxy);

line(198,125,198,getmaxy);

line(297,125,297,getmaxy);

line(396,125,396,getmaxy);

line(495,125,495,getmaxy);

setcolor(yellow);
outtextxy(90,115,'Directory Shown is: ' + filename);

findfirst(filename, archive, dirinfo);

loop := 128;

x := 0;

while doserror = 0 do

begin

outtextxy(2 + x,loop,dirinfo.name);

findnext(dirinfo);

loop := loop +9;

if loop = 308 then

begin

loop := 128;

x := x + 99;

103

end;

end;

setcolor(white);

end

else

filename :=

end

else

filename := ";

until (doserror = 0) or (ord(in_char) = 27);

freemem(q, size);

end;

{**}

{**}

procedure SELECT_LOAD_OPTION (var load_option:char);

begin

setviewport(21,21,getmaxx - 21, getmaxy - 21, clipon);

clearviewport;

outtextxy(10,10,'You Have Two Choices:');

outtextxy(10,28,'- You can load a file holding raw waveform data. The file');

outtextxy(10,37,' must hold four sets of concatenated data, 4096 points each.'

;)

outtextxy (10,82,'- You can load a file holding a single waveform data set of');

outtextxy(10,46,'

outtextxy(30,64,'

The four sets are averaged.');

PRESS <A>');

outtextxy(10,91,'

outtextxy(10,100,'

outtextxy(30,118,'

outtextxy(20,145,'

4096 points. NO modification is done to the data set:');

It is displayed as it is recorded.');

PRESS ');

PRESS <C> to EXIT');

load_option := readkey;

while not (ord(load_option) in [65,97,66,98,67,99]) do

load_option := readkey;

end;

{**1
{**1

procedure LOAD_WAVEFORM (var signal_array:waveform;filename:name_string);

var
value,

loop : integer;

disk_file : text;

begin

assign(disk_file,filename);

reset(disk_file);

outtextxy(200,100,'Retrieving File');

for loop := 1 to array_length do

begin;

read(disk_file,value);

signal_array[loop] := 4095 - value;

end;

close(disk_file);

end;

{**1

(**j

procedure PROCESS_4_SIGNALS (var averaged_array:waveform;filename:name_string);

104

var
value,

loop,

loopl : integer;

disk_file : text;

begin

assign(disk_file,filename);

reset(disk_file);

outtextxy(200,100,'Retrieving File');

for loop := 1 to array_length do

read(disk_file,averaged_array[loop]);

for loopl := 1 to 3 do

for loop := 1 to array_length do

begin

read(disk_file,value);

averaged_array[loop] := averaged_array[loop] + value;

end;

close(dlsk_flie);

outtextxy(210,110,'Averaging Waveforms');

for loop := 1 to array_length do

averaged_array[loop] := 4095 - (averaged_array[loop] div 4);

end;

{**}
I**}

procedure INSERT_BREAK (s_break:integer; s_positive:boolean;

var break_list:listpointer);

var

temp,

traverse : listpointer;

begin

new(temp);

tempA.break := s_break;

tempA.next := nil;

tempA.positive := s_posltive;

if break_list = nil then

break_list := temp

else

begin

traverse := break_list;

while traverseA.next <> nil do

traverse := traverse".next;

traverseA.next := temp;

end;

end;

(**}

J**}

procedure PICK_BREAKS (var signal_array:waveform;var break_list:listpointer);

const

ave_length = 20;

overlap = 0;

diff = 5;

var
avl,

105
av2,

av3,

inflection].,

inflection2,

midpoint,

start : integer;

peak,

valley : boolean;

(**j

function AVERAGE (var signal_array:waveform; start:integer):integer;

var

sum,
loop ; integer;

begin

sum := 0;

for loop := start to (start + ave_length) do

sum := sum + signal_array[loop];

average := sum div ave_length;

end;

{**j

begin

start := 1;

avl := average(signal_array, start);

start := start + 1 + ave_length - overlap;

av2 := average(signal_array, start);

start := start + 1 + ave_length - overlap;

av3 := average (signal__array, start);

peak := false;

valley := false;

repeat (until peak or valley or at end)

if ((avl<av2) and (av2>av3)) or ((avl<av2) and (abs(av2-av3) < diff)) or

((abs (avl-av2) < diff) and (av2>av3)) then

peak := true

else if ((avl>av2) and (av2<av3)) then

valley := true

else

begin

avl := av2;

av2 := av3;

start := start + 1 + ave_length - overlap;

av3 := average(signal_array, start);

end;

until peak or valley or ((start + 1 + ave_length - overlap)>array_length);

inflectionl := start - (ave_length div 2) + overlap;

avl := av2;

av2 := av3;

start := start + 1 + ave_length - overlap;

av3 := average(signal_array, start);

repeat (until end)

repeat (until peak or valley or end)

if ((avl<av2) and (av2>av3)) or ((avl<av2) and (abs(av2-av3) < diff)) or

((abs(avl-av2) < diff) and (av2>av3)) then

begin

peak := true;

valley := false;

end

else if ((avl>av2) and (av2<av3)) then

106
begin

valley := true;

peak := false;

end

else

begin

avl := av2;

av2 := av3;

start := start + 1 + ave_length;

av3 := average(signal_array, start);

end;

until peak or valley or ((start + 1 + ave_length - overlap)>array_length);

inflection2 := start - (ave_length div 2) + overlap;

midpoint := inflection2 - (inflection2 - inflectionl) div 2;

insert_break (midpoint, peak, break_list);

inflectionl := inflection2;

peak := false;

valley := false;

avl := av2;

av2 := av3;

start := start + 1 + ave_length;

av3 := average(signal_array, start);

until (start + 1 + ave_length - overlap) > array_length;

end;

{***

**

**************************** ****★*****★**★*★★**★**★★ **************************** new WAVEFORM PROCEDURE ************************

**

***j

procedure NEW_WAVEFORM (var signal_array:waveform; var filename:name_string);

var
old_fillpattern : word;

option : char;

begin

break_list := nil;

setfillstyle(solidfill,black);

bar(150,5,350,16);

outtextxy(160,7,'Retrieve Waveform File');

select_load_option(option);

if not (ord(option) in [67,99]) then

begin

path_to_file(path_filename);

if path_filename <> '' then

if ord(option) in [65,97] then

process_4_signals(signal_array,path_filename)

else

load_waveform(signal_array, path_filename);

end

else

path_filename := ";

end;

{***

*******★★★★★★★*★★**★*******★ ********************************

**************************** DISPLAY breaks ********************************
**************************** ********************************

107
**

***1

procedure DISPLAY_BREAKS (break_list:listpointer; var signal_array:waveform);

const

ydiv = 28;

yadd = -20;

var
loop,

X : integer;

temp : listpointer;

t : pointer;

size : word;

begin

for loop := 1 to 10 do

putpixel(1,loop,lightmagenta) ;

size := imagesize(1,1,1,10);

getmem(t,size);

getimage(l,l,l,10,tA);

putimage(1,1, tA,xorput);

temp := break_list;

while tempA.next <> nil do

begin

x := ((tempA.break div 7) + 1) + 19 + (((tempA.break mod 7) - 1) * 2)

div 7;

putimage(x,signal_array[tempA.break]div ydiv + round(1.25 * yadd),tA,orput);

temp := tempA.next;

end;

freemem(t, size);

end;

(**★

**************************** DISPLAY waveform ********************************
**************************** ********************************

**

***1

procedure DISPLAY_WAVEFORM (var signal_array:waveform; filename:name_string);

const

ydiv = 28;

yadd = -20;

var
last,

current,
loopl,

space,

x,
loop : integer;

dummy : char;

begin

setviewport (0,0,getmaxx,getmaxy,true);

clearviewport;

settextstyle(smallfont,horizdir, 4);

outtextxy(10,getmaxy - 10,filename);

setviewport(0,0,639,110,clipoff);

108
x := 20;

last := (signal_array[1] div ydiv) + yadd;

putpixel(x, last, white);

for loop := 8 to array_length do

if ((loop-1) mod 7) = 0 then

begin

x := x + 1;

current := (signal_array[loop] div ydiv) + yadd;

putpixel(x, current, white);

space := abs(last - current);

if (space > 1) and (current > last) then

for loopl := 1 to (space div 2) do

begin

putpixel(x, current - loopl, white);

putpixel(x - 1, last + loopl, white);

end

else if (space > 1) and (current < last) then

for loopl := 1 to (space div 2) do

begin

putpixel(x, current + loopl, white);

putpixel(x - 1, last - loopl, white);

end;

last := current;

end;

settextstyle(defaultfont,horizdir,1);

setviewport (O,O,getmaxx,getmaxy,true);

end;

I***

**

**************************** ********************************

**************************** STORE BREAK LIST ********************************

**************************** ********************************

**

***}

procedure STORE_BREAK_LIST (filename:name_string; break_list:listpointer);

var
loop,

x
in_char

P
size

temp_string,

break_filename

temp_pointer

: integer;

: char;

: pointer;

: word;

: name_string;

; listpointer;

begin

size := imagesize(1,1,8,8);

getmem(p,size);

getimage(1,1,8,8,pA);

setviewport(160,120,480,180,clipon);

clearviewport;

setviewport(0,0,getmaxx,getmaxy, clipoff);

rectangle(160,120,480,180);

rectangle(165,122,475,178);

floodfill(161,121,white) ;

outtextxy(169,127,'Displayed Waveform Filename:');

outtextxy(174, 136,filename) ;

outtextxy(169,148,'Name of File to Store Breaks:');

x := 174;

in_char := readkey;

J

109
break_filename :=

while (ord(in_char) <> 13) and (ord(in_char) <> 27) do

begin

if (x < 464) and (ord(in_char) <> 8) then

begin

break_filename := break_filename + in_char;

outtextxy(x,157,in_char) ;

if x < 465 then

x := x + 9;

end

else if ord(in_char) = 8 then

begin

if x > 174 then

x := x - 9;

putimage(x,157,pA,andput);

temp_string := '

for loop := 1 to ((x-173)div 9) do

temp_string := temp_string + break_filename[loop] ;

break_filename := temp_string;

end;

in_char := readkey;

end;

temp_jpointer := break_list;

assign(break_file,break_filename);

rewrite(break_file);

break_record.break := temp_pointerA.break;

break_record.positive := temp_pointerA.positive;

write(break_file,break_record);

repeat (until tempjpointerA.next = nil)

tempjiointer := temp_pointerA.next;

break_record.break := temp_pointerA.break;

break_record.positive := temp_pointerA.positive;

write(break_file,break_record);

until temp_pointerA.next = nil;

close(break_file);

freemem(p, size);

end;

{***

★★★★★I**

************************* **************************

************************* DISPLAY EXPANDED WAVEFORM **************************

************************* **************************

**

***}

procedure DISPLAY_EXPANDED_WAVEFORM (start, stopiinteger; break_list:listpointer;

mode:option; var signal_array:waveform);

const

yadd = -40;

ydiv = 14;

var
temp : listpointer;

t : pointer;

size : word;

loop,

xex,
length,

displaystart,

displayend : integer;

110
begin

setfillstyle(emptyfill,black);

rectangle(0,110,639,338);

setviewport(1,111,638,337,clipon);

clearviewport;

xex := 0;

length := 7 * (stop - start);

if length > getmaxx then

begin

displaystart := 7 * (start - 20) - (getmaxx - (length mod getmaxx))

div 2;

if displaystart < 0 then

displaystart := 0;

displayend := displaystart + ((length div getmaxx) +1) * getmaxx;

if displayend > array_length then

begin

displaystart := displaystart - (displayend - array_length);

if displaystart < 0 then

begin

displaystart := 0;

displayend := ((length div getmaxx) + 1) * getmaxx;

end

else

displayend := array_length;

end;

for loop := displaystart to displayend do

if (loop mod ((length div getmaxx) +1)) =0 then

begin

putpixel(xex,(signal_array[loop] div ydiv) + yadd,white);

xex := xex + 1;

end;

end

else (length <= getmaxx)

begin

displaystart := 7 * (start - 20) - (getmaxx - length) div 2;

if displaystart < 0 then

displaystart := 0;

displayend := displaystart + getmaxx;

if displayend > array_length then

begin

displaystart := displaystart - (displayend - array_length);

displayend := array_length;

end;

for loop := displaystart to displayend do

begin

putpixel(xex,(signal_array[loop] div ydiv) + yadd,white);

xex := xex + 1;

end;

end;

setviewport(0,0,getmaxx,getmaxy, clipoff);

rectangle(displaystart div 7 + 20,0,displayend div 7 + 20,110);

setfillstyle(solidfill,red);

floodfill(displaystart div 7 + 25,2,white);

floodfill(displaystart div 7 + 25,108,white);

floodfill(displayend div 7 + 15,2,white);

floodfill(displayend div 7 + 15,108,white);

setviewport(1,111, 638,339, clipoff) ;

rectangle(0,0,45,13);

setfillstyle(solidfill,blue);

floodfill(2,2, white);

outtextxy(7,3, mode);

for loop := 1 to 20 do

putpixel(1,loop,cyan);

Ill
size := Imagesize(1,1,1,20);

getmem(t,size);

getimage(1,1,1,20,tA);

putimage(1,1,tA,xorput);

temp := break_list;

while (tempA.break < displaystart) and (tempA.next <> nil) do

temp := tempA.next;

if tempA.next <> nil then

while (tempA.break <= displayend) and (tempA.next <> nil) do

begin

xex := (tempA.break - displaystart) div ((displayend-displaystart + 1)

div getmaxx);

putimage(xex,signal_array[tempA.break]div ydiv + round(1.25 *

yadd),tA,orput);

temp := tempA.next;

end;

setviewport(0,0,getmaxx,getmaxy,clipoff);

freemem(t, size);

end;

I***

**************************** *******************************

**************************** EDIT BREAKS *******************************

**************************** *******************************

**

***}

procedure EDIT_BREAKS (var finishedzboolean; filename:name_string;

var break_list:listpointer; var signal_arrayswaveform; start, xzinteger);

const

yadd = -40;

ydiv = 14;

(global

(global

to Edit Breaks

to Edit Breaks
}
}

var
in_char

move

success

: char;

: integer;

: boolean;

{A***}

function ARRAY_POSITION (displayend, displaystart, point:integer):integer;

begin
array_position := displaystart + point * ((displayend -

displaystart + l)div getmaxx);

end;

{**}

procedure DISPLAY_START_END (var displaystart, displayend, start, stop:integer);

var
length : integer;

begin

length := 7 * (stop - start);

if length > getmaxx then

begin
displaystart := 7 * (start - 20) - (getmaxx - (length mod getmaxx))

div 2;

if displaystart < 0 then

112

displaystart := 0;

displayend := displaystart + ((length div getmaxx) +1) * getmaxx;

if displayend > array_length then

begin

displaystart := displaystart - (displayend - array_length);

if displaystart < 0 then

begin

displaystart := 0;

displayend := ((length div getmaxx) + 1) * getmaxx;

end

else

displayend := array_length;

end;

end

else (length <= getmaxx)

begin

displaystart := 7 * (start - 20) - (getmaxx - length) div 2;

if displaystart < 0 then

displaystart := 0;

displayend := displaystart + getmaxx;

if displayend > array_length then

begin

displaystart := displaystart - (displayend - array_length);

displayend := array_length;

end;

end;

end;

I**}

procedure BREAK_SELECT (start, stop, move:integer; var signal_array:waveform;

var break_list:listpointer);

var
current_position,

displaystart,

displayend : integer;

begin

display_start_end(displaystart, displayend, start, stop);

current_position := 320 + move;

if current_position < 4 then

current_position := 4

else if current^position > (getmaxx - 5) then

current_joosition := getmaxx - 5;

display_expanded_waveform(start, stop, break_list, 'EDIT', signal_array);

setviewport(1,111,638,339,cllpon);

setcolor(green);

rectangle(current_position - 4, signal_array[arrayjposition(displayend,

displaystart, current_position)]div ydiv + round(1.32 * yadd),

current_position + 4, signal_array[array_position(displayend,

displaystart, currentjposition)]div ydiv + round(1.32 * yadd) + 24);

setcolor(white);

setviewport(0,0,getmaxx, getmaxy, clipoff);

end;

{★a**}

procedure DELETE_BREAK (start, stop, move:integer; var success:boolean;

var break_list:listpointer);

var
delete_position,

113
tolerance,

displaystart,

displayend : integer;

tempi,

temp : listpointer;

begin

display_start_end(displaystart, displayend, start, stop);

tolerance := (displayend-displaystart)div 640;

delete_position := array_position(displayend, displaystart, 320 + move);

temp := break_list;

tempi := temp;

while (tempA.break < (delete_position-tolerance)) and (tempA.next <> nil) do

begin

tempi := temp;

temp := tempA.next;

end;

if (tempA.next O nil) and (tempA.break >= (delete_position-tolerance)) and

(tempA.break <= (delete_position+tolerance)) then

begin

if temp = break_list then

break_list := tempA.next

else

tempiA.next := tempA.next;

tempA.next := nil;

dispose(temp);

success := true;

end

else

success := false;

end;

{**}

procedure ADD_BREAK (start, stop, move:integer; var break_list:listpointer);

var
add_position,

displaystart,

displayend : integer;

tempi,

temp ; listpointer;

begin

display_start_end(displaystart, displayend, start, stop);

add_position := array_position(displayend, displaystart, 320 + move);

temp := break_list;

while (tempA.next <> nil) and (tempA.nextA.break < add_position) do

temp := tempA.next;

new(tempi);

tempiA.break := add_position;

tempiA.positive := true;

if (temp = break_list) and (tempA.break > add_position) then

begin

tempiA.next := temp;

break_list := tempi;

end

else

begin

tempiA.next := tempA.next;

tempA.next := tempi;

end;

end;

114

I**}

procedure MOVE_BREAK (var start, stop, move:integer; var break_list:listpointer;

var signal_array:waveform);

var
movel : integer;

in_char : char;

success : boolean;

begin

setviewport(10,getmaxy - 20,633,getmaxy - 12, clipoff);

clearviewport;

setviewport(0,0,getmaxx,getmaxy, clipoff);

movel := move;

repeat
outtextxy(10, getmaxy - 20, '<- -> CTRL+-> - -> X 20 CTRL+<- -');

outtextxy(317,getmaxy - 20, ' <- X 20 F4 - Return To Previous Menu');

in_char := readkey;

case ord(in_char) of

116 : begin

end;

62 : move := movel;

delete break(start, stop, movel, success. break­ .list);

movel

end;

:= movel + 20;

115 : begin

delete_break(start, stop, movel, success r break-.list);

movel := movel - 20;

end;

75 : begin

deleteJbreak(start. stop, move1, success, break _list);

movel := movel - 1;

end;

77 : begin

delete_break(start, stop, move1, success, break list);

movel := movel +1;

end;

if ord(in_char) in [116,115,75,77] then

begin

if success then

add_break (start, stop, movel, break_list);

break_select(start, stop, movel, signal_array, break_list);

end;

until ord(in_char) = 62;

end;

{**}

begin

move := 0;

setviewport(1, 111,46,124,clipoff) ;

clearviewport;

rectangle(0,0,45,13);

floodfill(2,2,white);

outtextxy(7,3,'EDIT');

setviewport(0,0,getmaxx, getmaxy, clipoff);

break_select(start, x, move, signal_array, break_list);

outtextxy(10,getmaxy - 20,'Fl - Quit F2 - Delete F3 - Add');

outtextxy(305,getmaxy - 20,'F4 - Move F5 - Update F6 - Prev. Menu');

in_char := readkey;

repeat (until Fl or F6)

115

in_char := readkey;

case ord(in_char) of

116: move := move + 20;

115: move ;= move - 20;

75: move ;= move - 1;

77: move := move +1;

59: finished := true;

60: delete break(start, x, move, success, break_list);

61: add_break (start, x, move, break list);

62: move_break(start, x, move, break list, signal_array);

63: store_break list(filename, break_list);

64: t
end;

if ord(in_char) in [116,115,75,77,60,61,62,63] then

begin
break_select(start, x, move, signal_array, break_list);

outtextxy(10,getmaxy - 20,'Fl - Quit F2 - Delete F3 - Add');

outtextxy(305,getmaxy - 20,'F4 - Move F5 - Update F6 - Prev. Menu');

end;

until ord(in_char) in [59, 64];

end;

{***

**

**************************** *******************************

**************************** EXPAND WAVEFORM *******************************

**************************** *******************************

**

***}

procedure EXPAND_WAVEFORM (var signal_array:waveform; var break_list:listpointer;

var finishedzboolean; filename:name_string);

const

yadd = -40;

ydiv = 14;

var
in_char : char;

g : pointer;

size : word;

start,

x : integer;

begin

line(20,2,20,108);

size := imagesize(20,2,20,108);

getmem(q, size);

getimage(20,2,20,108,qA);

setviewport(1,111,638,337,clipoff);

clearviewport;

setviewport(0,0,getmaxx,getmaxy, clipon) ;

repeat

rectangle(1,111,45,124);

setfillstyle(solidfill,blue);

floodfill(2,112,white) ;

outtextxy(7,114,'VIEW') ;

outtextxy(25,getmaxy - 100,'To Expand the Waveform:');

outtextxy (25, getmaxy - 91,' 1. Use arrow keys to move the marker right or left

to') ;

outtextxy(454,getmaxy - 91,' the beginning');

outtextxy(25,getmaxy - 82,' of the waveform segment to be expanded, hit');

outtextxy(401,getmaxy - 82,' <RETURN>.');

116

outtextxy(25,getmaxy - 73,' 2. Use arrow keys to specify the area to be

expanded');

outtextxy(449,getmaxy - 73,', hit <RETURN>.');

outtextxy(25,getmaxy - 55,'<CTRL + Arrow key> combination facilitates faster

marker movement.');

outtextxy(75,getmaxy - 35,'<ESC> to Exit');

display_breaks(break_list, signal_array);

x := 20;

repeat (until in_char = return}

in_char := readkey;

case ord(in_char) of

116 : begin

putimage(x,2,qA,xorput);

x:= x + 20;

if x >= (getmaxx - 35) then

x := getmaxx - 35;

putimage(x,2,qA,xorput);

end;

115 : begin

putimage(x,2,qA,xorput);

x:= x - 20;

if x <= 20 then

x := 20;

putimage(x,2,qA,xorput);

end;

75 : begin

putimage(x,2,qA,xorput);

x:= x - 1;

if x <= 20 then

x := 20;

putimage(x,2,qA,xorput);

end;

77 : begin

putimage(x,2,qA,xorput);

x:= x + 1;

if x >= (getmaxx - 35) then

x := getmaxx - 35;

putimage(x,2,qA,xorput);

end;

end;

until ord(in_char) in [13, 27];

start := x;

if ord(in_char) <> 27 then

repeat (until ord(in_char) = return}

in_char := readkey;

case ord(in_char) of

116 : begin

if x <> start then

putimage(x,2,qA,xorput);

x:= x + 20;

if x >= (getmaxx - 35) then

x := getmaxx - 35;

putimage(x,2,qA,xorput);

end;

115 : begin

if x <> start then

putimage(x,2,qA,xorput);

x:= x - 20;

if x > start then

putimage(x,2,qA,xorput)

else

x := start;

end;

117

75 : begin

if x <> start then

putimage(x,2,qA,xorput);

x:= x - 1;

if x > start then

put image(x,2,q A,xorput)

else

x := start;

end;

77 : begin

if x <> start then

putimage(x,2,qA,xorput);

x:= x + 1;

if x >= (getmaxx - 35) then

x := getmaxx - 35;

putimage(x,2,qA,xorput);

end;

end;
until ((ord(in_char) = 13) and (x <> start)) or (ord(in_char) = 27);

if ord(in_char) <> 27 then

begin
display_expanded_waveform(start, x, break_list, 'VIEW', signal_array);

outtextxy(80,getmaxy - 20,'Fl - Quit F2 - Edit F3 - Previous Menu');

outtextxy(440,getmaxy - 20,'F4 - Store Breaks');

repeat (until Fl, F2, or F3)

in_char := readkey;

if ord(in_char) = 62 then

begin

store_break_list(filename, break_list);

display_expanded_waveform(start, x, break_list, 'VIEW',

signal_array);

outtextxy(80,getmaxy - 20,'Fl - Quit F2 - Edit F3 - Previous

Menu');

outtextxy(440,getmaxy - 20,'F4 - Store Breaks');

end;

until ord(in_char) in [59,60,61];

case ord(in_char) of

59 : finished := true;

60,61 : begin

if ord(in_char) = 60 then

edit_breaks(finished, filename, break_list, signal_array,

start, x);

clearviewport;

display_waveform(signal_array, filename);

putimage(20,2,qA, xorput);

end;

end;

end

else

finished := true;

until finished;

freemem(q, size);

end;

{**★********************************
**
★★★★★★★★★★★★★★★★★★★★★★★★★★A *****************************
*************************** EDIT waveform data *****************************
*************************** *****************************

★★★★★★★★★★★★★★♦★★★★★★★★★★★★★★★★★★★★★I**
A**}

procedure EDIT_WAVEFORM_DATA (var temp_array:waveform);

118

var
size : word;

q : pointer;

x,
loop : integer;

in_char : char;

begin

setviewport(1,150,638,337,cllpoff);

clearviewport;

setviewport(0,0,getmaxx,getmaxy,clipon);

outtextxy(25,getmaxy - 109,'Select Start of Waveform "good" Data:');

outtextxy(25,getmaxy - 100,' Use arrow keys and <CTRL + arrow keys> to

position');

outtextxy(25,getmaxy - 91,' marker to start of good data on the waveform.');

outtextxy(25,getmaxy - 82,' Hit <RETURN> to select point, ');

outtextxy(25,getmaxy - 73,' <ESC> to exit without changes.');

line(20,2,20,108);

size := imagesize(20,2,20,108);

getmem(q, size);

getimage(20,2,20,108,qA);

x := 20;

repeat (until in_char = return or esc)

in_char := readkey;

case ord(in_char) of

116 : begin

putimage(x,2,qA,xorput);

x:= x + 20;

if x >= (getmaxx - 35) then

x := getmaxx - 35;

putimage(x,2,qA,xorput);

end;

115 : begin

putimage(x, 2, qA,xorput);

x:= x - 20;

if x <= 20 then

x := 20;

putimage(x,2,qA,xorput);

end;

75 : begin

putimage(x,2,qA,xorput);

x:= x - 1;

if x <= 20 then

x := 20;

putimage(x,2,qA,xorput);

end;

77 : begin

putimage(x,2,qA,xorput);

x:= x + 1;

if x >= (getmaxx - 35) then

x := getmaxx - 35;

putimage(x,2,qA,xorput);

end;

end;

until ord(in_char) in [13, 27];

if ord(in_char) <> 27 then

begin

x := 7*(x-20);

for loop := x to array_length do

temp_array[loop - x + 1] := temp_array[loop];

for loop := (array_length - x + 2) to array_length do

temp_array[loop] := temp_array[array_length];

119

end;

freemem(q, size);

end;

{***

**

*************************** **★★**★**★***★★**★★**★**★★*★*

*************************** FILTERING ' *****************************

*************************** *****************************

**

***}

procedure FILTERING (var temp_array:waveform);

type

second_order_elliptic = array[l..11,1..3] of real;

real_waveform = array[1..array_length] of real;

const

coefflc_a : second_order_elliptic = ((1,-1.4410,0.6978), (0.20)

(1,-1.3694,0.6753), {0.22}

(1,-1.2957,0.6540), (0.24)

(1,-1.2199,0.6341), {0.26}

(1,-1.1423,0.6155), {0.28}

(1,-1.0628,0.5983), {0.30}

(1,-0.9818,0.5824), {0.32}

(1,-0.8991,0.5678), {0.34}

(1,-0.8149,0.5545), {0.36}

(1,-0.7293,0.5426), {0.38}

(1,-0.6424,0.5320)); {0.40}

coeffic_b : second_order_elliptic = ((0.1750,-0.0932,0.1750), {0.20}

(0.1840,-0.0621,0.1840), {0.22}

(0.1937,-0.0291, 0.1937), {0.24}

(0.2043,0.0056,0.2043), {0.26}

(0.2157, 0.0419,0.2157), (0.28)

(0.2278,0.0798,0.2278), {0.30}

(0.2407,0.1192,0.2407), {0.32}

(0.2543,0.1601,0.2543), {0.34}

(0.2686,0.2025,0.2686), {0.36}

(0.2835,0.2462,0.2835), {0.38}

(0.2992,0.2912,0.2992)); {0.40}

var
temp : real_waveform;

Wc,

loop : integer;

in_char : char;

begin

setviewport(1,150,638,337,clipoff);

clearviewport;

setviewport(0,0,getmaxx,getmaxy,clipon);

repeat

in_char := readkey;

outtextxy(25,getmaxy - 111,'Select Filter Cut-Off Frequency:');

outtextxy(25,getmaxy - 100,' A. 0.20 G . 0.32');

outtextxy(25,getmaxy - 91,' B. 0.22 H. 0.34');

outtextxy(25,getmaxy - 82,' C. 0.24 I. 0.36');

outtextxy(25,getmaxy - 73,' D. 0.26 J. 0.38');

outtextxy(25,getmaxy - 64,' E. 0.28 K. 0.40') ;

outtextxy(25,getmaxy - 55,' F. 0.30 --RECOMMENDED! ');

outtextxy(25,getmaxy - 44, ' <ESC> to exit with no filtering');

120
Wc := 0;

case ord(in_char) of

~ = 1;

= 2;

= 3;

= 4;

= 5;

= 6;

= 7;

= 8;

= 9;

= 10;

= 11;

65,97 : Wc

66,98 : Wc

67,99 : Wc

68,100: Wc

69,101: Wc

70,102: Wc

71,103: Wc

72,104 : Wc

73,105: Wc

74,106: Wc

75,107: Wc

end;

or (ord(in_char) = 27);

<> 27 then

until (Wc <> 0)

if ord(in_char)

begin

outtextxy(380,getmaxy-80,'WAIT - FILTERING IN PROGRESS'),

templl] := coeffic_b[Wc,1]*temp_array[1];

temp[2] : = coeffic_b[Wc,1]*temp_array[2] + coefficjb[Wc,2]*temp arraytl] -

, , _ coeffic_a[Wc,2]*temp[1];
for loop := 3 to array_length do

temp[loop] := coeffic_b[Wc,1]*temp_array[loop] +

coeffic_b[Wc,2]*temp_array[loop-1] +

coeffic_b[Wc,3]*temp_array[loop-2] -

coeffic_a[Wc,2]*temp[loop-1] -

coeffic_a[Wc,3]*temp[loop-2];

for loop ;= 1 to array_length do

temp_array[loop] : = round(temp[loop]);

end;

end;

j***

**

ii*i*ti*i**iiit**i**i'ii(i ***********

*************************** SMOOTHING ***********

*************************** ★★*★★******

**

**

*****************1

procedure SMOOTHING (var temp_array:waveform);

var
max_difference,

above_threshold,

below_threshold,

loop : integer;

finished : boolean;

count : real;

begin

outtextxy(380,getmaxy-80,'WAIT - SMOOTHING IN PROGRESS');

max_difference := 0;

count := 0;

finished := false;

for loop := 1 to (array_length - 1) do

if (abs(temp_array[loop] - temp_array[loop + 1])) > max_difference then

max_difference := abs(temp_array[loop] - temp_array[loop + 1]);

repeat { until finished }

above_threshold := 0;

below_threshold := 0;

for loop := 1 to (array_length - 1) do

if (abs(temp_array[loop] - temp_array[loop +1])) >= (max_difference * count)

121

then
above_threshold : = above_threshold + 1

else

below_threshold := below_threshold + 1;

if (above_threshold / (above_threshold + below_threshold)) <=0.1 then

finished := true

else

count := count + 0.001;

until finished;

for loop := 1 to (array_length - 2) do

if (abs(temp_array[loop] - temp_array[loop + 1])) >= (max_difference * count)

then
temp_array[loop + 1] := (temp_array[loop] + temp_array[loop + 2]) div 2;

end;

{***

**

*************************** *********************************

*************************** EDIT WAVEFORM *********************************

*************************** *********************************

**

***1

procedure EDIT_WAVEFORM (var signal_array:waveform; var filename:name_string);

var
temp_array : waveform;

in_char : char;

loop : Integer;

temp_string: name_string;

disk_file : text;

begin

for loop ;= 1 to array_length do

temp_array[loop] := signal_array[loop];

repeat

setviewport(1,150,638,337,clipoff);

clearviewport;

setviewport(0,0,getmaxx,getmaxy,clipon);

outtextxy(25,getmaxy - 127,'To Edit the Waveform:');

outtextxy(25,getmaxy - 118,' <A> - Edit Waveform Data');

outtextxy(25,getmaxy - 109,’ - Perform Filtering');

outtextxy(25,getmaxy - 100,' <C> - Perform Smoothing');

outtextxy(25,getmaxy - 91,' <D> - Save Waveform and Exit WITH Changes');

outtextxy(25,getmaxy - 73,' <ESC> - Exit Without Changes');

in_char := readkey;

while not (ord (in_char) in [65,66, 67,68, 97,98, 99, 100,27]) do

in_char := readkey;

case ord(in_char) of

65.97 : edit_waveform_data(temp_array);

66.98 : filtering(temp_array);

67.99 : smoothing(temp_array);

68,100: begin

loop := 1;

temp_string := '';

while filename[loop] <> '.' do

begin

temp_string := temp_string + filename[loop];

loop := loop +1;

end;

temp_string := temp_string + '.';

filename := temp_string + 'EDT';

assign(disk_file, filename);

122
rewrite(disk_file);

for loop := 1 to array_length do

begin

write(disk_file, 4095 - temp_array[loop], '

signal_array[loop] := temp_array[loop];

end;

end;

end;

if not (ord(in_char) in [27,69,101]) then

display_waveform(temp_array, filename);

until ord(in_char) in [27,68,100];

end;

**

*************************** *********************************

*************************** DISPLAY_EXPAND *********************************

A************************** *********************************

**

***|

procedure DISPLAY_EXPAND (var signal_array:waveform; filename:name_string;

var break_list:listpointer; breaks:boolean);

var
finished

in_char

: boolean;

: char;

break list);

begin

finished := false;

if breaks then

pick_breaks(signal_array,

repeat

display_waveform(signal_array, filename);

outtextxy(25,getmaxy - 110,'

outtextxy(25,getmaxy - 91,'

Select:');

<A> - To edit waveform by filtering,

truncation,');

or smoothing.');

To proceed with break-list generation,');

store and edit options.');

to Exit');

outtextxy(431,getmaxy - 91,'

outtextxy(25,getmaxy - 73,' -

outtextxy(404,getmaxy - 73,'view,

outtextxy(75,getmaxy - 35,'<ESC>

repeat

in_char := readkey;

case ord(in_char) of

27 : finished := true;

65.97 : edit_waveform(signal_array, filename);

66.98 : expand_waveform(signal_array, break_list, finished, filename);

end;

until ord(in_char) in [27,65,66,97,98];

until finished;

end;

p**

**

*************************** ***************************

*************************** DISPLAY INTERPRETATION ***************************

*************************** ***************************

**

***1

procedure DISPLAY_INTERPRETATION (var signal_array:waveform;

var filename:name_string; var break_list:listpointer);

123

var
temp : listpointer;

xl,

x2 : integer;

in_char : char;

begin

display_waveform(signal_array, filename);

displayjbreaks(break_list, signal_array);

temp := break_list;

while temp <> nil do

begin

xl := ((temp".break div 7) + 1) + 19 + (((temp".break mod 7) - 1) * 2)

div 7;
if temp".next <> nil then

x2 := ((temp".next".break div 7) + 1) + 19 + (((temp".next".break mod 7)

- 1) * 2) div 7

else

x2 := getmaxx - 35;

setfillstyle(solidfill,green);

bar(xl,getmaxy-200,x2,getmaxy-150);

temp := temp".next;

if temp <> nil then

begin

xl := ((temp".break div 7) +1) + 19 + (((temp".break mod 7) - 1)

* 2) div 7;
if temp".next <> nil then

x2 := ((temp".next".break div 7) + 1) + 19 + (((temp".next".break

mod 7) - 1) * 2) div 7

else

x2 := getmaxx - 35;

setfillstyle(solidfill,red) ;

bar(xl,getmaxy-200,x2,getmaxy-15 0);

temp := temp".next;

end;

end;

outtextxy(50,getmaxy-30,'Hit any key to continue');

in_char := readkey;

end;

(***

A***

*************************** ** edit from disk *********************************
*************************** *********************************

**

***1

procedure ED IT_FR0M_~DI SK__D ISPLAY_~IINTERPRETATION (var signal array: waveform;

var filename,b_filename:name_strlng; var break_list:listpointer;

edit zboolean);

var
option : char;

begin

setfillstyle(solidfill,black);

bar(150,5,350,16);

outtextxy(160,7,'Retrieve Waveform File');

select_load_option(option);

if not (ord(option) in [67,99]) then

begin

path_to_file(filename);

124

if filename <> '' then

begin

if ord(option) in [65,97] then

process_4_signals(signal_array, filename)

else

load_waveform(signal_array, filename);

setviewport(0,0,getmaxx,getmaxy,clipoff);

setfillstyle(solidfill,white);

clearviewport;

rectangle(20,20,getmaxx - 20,getmaxy - 20);

floodfill(0,0,white);

setfillstyle(solidfill,black);

bar(150,5,350,16);

outtextxy(152,7,'Retrieve Break List File');

path_to_file(b_filename);

if b_filename <> '' then

begin

assign(break_file,b_filename);

reset(break_file);

break_list := nil;

while not eof(break_file) do

begin

read(break_file,break_record);

insert_break (break_record.break, break_record.positive,

break_list);

end;

if edit then

display_expand(signal_array, filename, break_list, false)

else

display_interpretation(signal_array, filename, break_list);

end;

end;

end

else

filename := ";

end;

{*****************★***

★★★A**********************************

★★*★***★★★★★**★★★★★★*★★★ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*

**************************** MAIN program ********************************
★★★★★★★★★★★★★★★★★★★★it******* ***AAAAA*AA*AA*AAAAA*AA*A**AAAAA

★ **★★*★**★★*★**★****★***■*★*•*★•**★*★*★★**■************★**★*★**★****★*★****★*★*★★*

**1

begin

graphdriver := ega64;

graphmode := egahi;

if registerbgidriver(Segavgadriverproc) <0 then

halt;

initgraph(graphdriver,graphmode,'');

repeat (until selection = exit)

clrscr;

menu (opening_menu,selection);

case selection of

1 : begin (NEW WAVEFORM)

new_waveform (signal_array,path_filename);

breaks := true;

if path_filename <> '' then

display_expand(signal_array, path_filename, break_list, breaks);

end;

2 : (EDIT_WAVEFORM)

edit_from_disk_display_interpretation(signal_array, path_filenamel,

125

path_filename, break_list, true);

3 : {DISPLAY INTERPRETATION}

edit_from_disk_display_interpretation(signal_array, path_filenamel,

path_filename, break_list, false);

4 : begin (HELP)

closegraph;

swapvectors;
exec('\command.com','/c type HELP.DOC I more') ;

swapvectors;

initgraph(graphdriver,graphmode,'');

end;

5 : (ok_to_exit);

end;

setgraphmode(graphmode) ;

until selection = 5;

clrscr;

closegraph;

end.

APPENDIX C

Data Processing and Display Software Operations Manual

126

127

Data Processing and Display Software Operations Manual

Introduction

This manual describes the options available for this

program and the acceptable input for each option.

Base Menu

Five options are available from the base menu.

Select A to: input an unedited waveform.

Requires input of waveform file

name.

Select B to: input an edited waveform and

previously generated interpretation.

Requires input of waveform and break

list file names.

Select C to: display computer interpretation of

specified waveform. Requires input

of waveform and break list file

names. No editing or modifications

can be performed from within this

option.

Select D to: display this manual.

Select E to: exit to DOS.

128

Selections C, D, and E have no other options available.

Selections A and B are described below. A and B both

facilitate inputing a waveform to the system. Selection A

will be covered first.

Base Menu Selection A

The type of file format the waveform is stored in must

be specified:

Input Method A

- 4096 data points/waveform

- 4 waveforms/station

- 4 waveforms stored on disk as single text file

- each set of 4096 points concatenated to previous

set

- data values range from 0 to 4095.

Input Method B

- 4096 data points/waveform

- 1 waveform/station

- 1 waveform stored on disk as single text file

- 1 set of 4096 points

- data values range from 0 to 4095.

The program prompts for the complete path and filename

of the waveform to retrieve. To display a directory listing,

129

select 'Fl', then specify the complete path of the directory.

A file extension must be specified. For example, to list all

files in a directory type

After the file has been loaded successfully, two options

are displayed:

A. Edit Waveform,

B. Break List Generation.

Selecting A facilitates various waveform edit

procedures. These are:

1. waveform edit: specify start of valid data.

2. filtering: apply filtering algorithm.

3. smoothing: apply smoothing algorithm.

Any changes to the waveform can be saved or discarded by

selecting the appropriate exit option ('D' or <ESC>

respectively). Exiting this menu returns to the previous

menu.

Selecting B generates the break list and displays the

breaks on the waveform. Using the arrow keys and the

CTRL+arrow key combinations, a cursor can be moved to the

beginning of any section of the waveform to be expanded.

Place the first cursor and hit <Return>. Again, using the

arrow keys, place the second cursor at the end of the section

to exp [and. Hit <Return>. The selected area will be

130

expanded to fill the lower half of the terminal screen.

Two options are available:

1. editing the displayed breaks, and

2. storing the in a disk file for later retrieval.

Storing the break list simply requires entering the

filename to store the list under. If 'F2-EDIT' is selected,

four new options are displayed. A rectangular box is

displayed midscreen on the waveform. The arrow and

CTRL+arrow keys control the placement of the box.

To delete a break, it must be centered in the box.

Adding a break places a break at the center of the box.

Selecting 'F4-MOVE' allows movement of an existing break that

is centered in the box. Selecting 'F5" facilitates storage

of the displayed break list onto the disk.

Base Menu Selection B

Selection B provides all the same options as selection

A except as noted below. In addition to specifying the

waveform file to enter, a break list file must be specified

also. This break list file should have been generated from

the specified waveform BUT does not have to be.

After the waveform and break list have been loaded DO

NOT edit the waveform data by specifying a new start point,

131

filtering, or smoothing. A new break list will NOT be

generated. The list loaded from disk will be kept. To edit

a waveform, always use Base Menu Selection A to load the

waveform. All other options are identical to the Base Menu

Selection A.

To display the computer generated interpretation after

completing all waveform and break list edit functions, the

files must be stored onto the disk. Return to the Base menu

and select option C.

VITA

Daran Rehmeyer was born in 1960 in Baltimore, Maryland.

He graduated in 1982 with a B.S.E.E. from Virginia Polytechnic

Institute and State University in Blacksburg, Virginia. He

worked for Vector Automation, Inc. in Baltimore as a technical

writer and for Schlumberger Offshore Services as a Senior

Field Engineer. He began studies at Louisiana State

University, Baton Rouge, Louisiana in 1987 to pursue a

M.S.E.E. Since returning to school, he has been employed at

Quaternary Resource Investigations, Inc. in Baton Rouge as a

Senior Engineer, responsible for development of a ground

penetrating radar system. He is a member of the IEEE and the

IEEE Geoscience and Remote Sensing Society, the NSPE, and Eta

Kappa Nu.

132

MASTER’S EXAMINATION AND THESIS REPORT

Candidate: Daran Lynn Rehmeyer

Major Field: Electrical Engineering

Title of Thesis: A Data Acquisition and Processing System for High Frequency
Repetitive Waveforms

Date of Examination:

	A Data Acquisition and Processing System for High Frequency Repetitive Waveforms
	Recommended Citation

	tmp.1642708449.pdf.zwBlJ

