Louisiana State University

LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

12-1990

A Data Acquisition and Processing System for High Frequency
Repetitive Waveforms

Daran Lynn Rehmeyer
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation

Rehmeyer, Daran Lynn, "A Data Acquisition and Processing System for High Frequency Repetitive
Waveforms" (1990). LSU Historical Dissertations and Theses. 8299.
https://repository.Isu.edu/gradschool_disstheses/8299

This Thesis is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It has
been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@Isu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F8299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/8299?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F8299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

A DATA ACQUISITION AND PROCESSING SYSTEM
FOR HIGH FREQUENCY REPETITIVE WAVEFORMS

A Thesis
M‘

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering
in
The Department of Electrical Engineering

by
Daran Lynn Behmeyer—

B.S., Virginia Polytechnic Institute and State University, 1982
December 199(.

C A

| &bl

MANUSCRIPT THESES

Unpublished theses submitted for the Master's and Doctor's
Degrees and deposited in the Louisiana State University Libraries
are available for inspection. Use of any thesis is limited by
the rights of the author. Bibliographical references may be
noted, but passages may not be copied unless the author has
given permission. Credit must be given in subsequent written
or published work.

A library which borrows this thesis for use by its clientele
is expected to make sure that the borrower is aware of the above

restrictions.

LOUISIANA STATE UNIVERSITY LIBRARIES

ACKNOWLEDGEMENT

My thanks go to Jorge Aravena, who adopted me when no one else
would have me. I appreciated the counsel and advice. I would
also like to thank Powsiri Klinkhachorn for helping organize and
clarify the concept for this thesis in the beginning. Thanks
also go to my committee Ahmed El-Amawy and Suresh Rai for
critiquing my presentation and thesis. And finally, my thanks

to my wife, Teresa, for tolerating me while I worked on this.

ii

TABLE OF CONTENTS

Acknowledgment , ii
List of Figures v
Abstract ' vii
1. Introduction , 1
2. Signal Acquisition 4
2.1 Requirements 4
2.2 Equivalent Time Sampling 5
3. Hardware Design and Construction 10
3.1 Data Acquisition Subsystem 10
3.2 Transmitter Trigger - 13
3.3 Timing Subsystem ‘ \ 14
3.4 - Integration of the Subsystems 19
3.5 Evolution of the Timing Circuit Design : 23
3.6 Construction 27
4, Testing of the Hardware 30
4.1 Hardware Testing Software 30
4.1.1 Subsystem Testing Software 30
4,1.2 Signal Acquisition Software | 33
4.2 Hardware System Test 34
4.2.1 Individual Subsystems 34
4.2.1.1 Timing Subsystem 34
4.2.1.2 Transmitter Trigger Subsystem 35

4.2.1.3 Data Acquisition Subsystem 35

iii

LIST OF FIGURES

Figure 1. System Block Diagram. » 1
Figure 2. Real-Time Sampling at 1 GHz. 6
Figure 3. Repeating Signal. 7
Figure 4. Equivalent Time Sampling. 8

Figure 5. Data Acquisition, Timing, and Trigger Block

Diagram. 10
Figure 6. Data Acquisition Schematic. 13
Figure 7. Transmitter Trigger Schematic. 13
Figure 8. Timing Subsystem Block Diagram. 15
Figure 9. Timing Subsystem Schematic. 17
Figure 10. Effect of Feedback on the Comparator. 18

Figure 11. Integrated System Schematic.
Figure 11-A. Timing and Data Acquisition Subsystems
Schematic. , 20

Figure 11-B. Address Decode/Chip Select and Transmitter

Trigger Schematic. : 21
Figure 12. Acquisition Timing Diagram. 23
Figure 13. Ramp Circuit - First Try. 24
Figure 14. Ramp Circuit - Second Try. 25
Figure 15. Ramp Circuit - Third Try. _ 26
Figure 16. Fabricated System Board. ‘ 28

Figure 17. System Configuration for Evaluation and Test. 36
Figure 18. System Recorded Signal. 37

Figure 19. Oscilloscope Recorded Signal. 37

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

20.
21.
22.
23.

24,

25.
26.
27.
28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.

40.

‘System Recorded Internal Ramp Signal.

Statistical Analysis of Ramp at 25% Point.
Statistical Analysis of Ramp at 50% Point.
Statistical Analysis of Ramp at 75% Point.
System Recorded Signal for Statistical

Analysis.

Statistical Analysis of Signal at 25% Point.
Statistical Analysis of Signal at 50% Point.

Statistical Analysis of Signal at 75% Point.

FFT of Recorded Signal.

20*" Order Butterworth Filter.

10*" Order Elliptic Filter.

20" Order Chebychev Type 1 Filter.

20" Order Chebychev Type 2 Filter.
w,=0.30 Butterworth Filter.

w.=0.30 Elliptic Filter.

w.=0.30 Chebychev Type 1 Filter.

w.=0.30 Chebychev Type 2 Filter.
Deconvolution of Time Jitter.

Data Interpretation Criteria.

Processing Software - Midpoint Selection.
Data Processing and Display Software Menu

Tree.

vi

39
40
41

42

44
45

46

51
52
53
53
54
54
55
55
56
57
58

60

61,62

Abstract

The purpose of this thesis is two-fold: to develop a
computerized data acquisition system to replace a system using an
oscilloscope-mounted Polaroid camera for recording waveforms, and
secondly, to develop the processing software to supplement and
ultimately replace the manual interpretations of the recorded
signals.

The impetus for upgrading the original acquisition system
is provided by two main factors. The first is the volume and
cost of the film required to record an entire waveform using the
Polaroid camera and second, the time consuming method of
recording and splicing the individual pictures together to form
a complete waveform. The current system requires 10 minutes to
record and 10 minutes to splice a single waveform. This
excessive time precludes continuous profiling and immediate
interpretation. Further time could be'saved by changing from the
manual interpretation technique to one performed by software.
Greater consistency in interpretation results could also be
achieved.

To meet and exceed the resolution of the Polaroid-recorded
waveform, the data acquisition system would require a sampling
rate of 1 GHz. Sampling in real time at 1 GHz is possible.
Systems are available that meet and exceed this sampling rate.

However, the cost of these systems is prohibitive. This thesis

vii

covers the development of a low cost acquisition system that
fills the 1 GHz sampling rate requirement.

The analysis of the data is ad hoc hence the development of
specialized software is also necessary. The development of the

critical processing software will be covered.

viii

1. INTRODUCTION

This thesis describes the development of a very high speed
data acquisition system and the supporting acquisition and
processing software. The equipment is part of a proprietary soil

analyzer shown in block diagram form in Figure 1.

|
DATA |
ACQ. [&———— RECEIVER - RECEIVER ANT. (
RESULTS A | f
| oKTs. [TRANSMITTER| XMTRANT. |

Figure 1. System Block Diagram.

The transmitter sends an electromagnetic pulse through the
material under test. The receiving antennae collects the
response and conditions it for the data acquisition system.

The current equipment configuration uses an oscilloscope-
mounted Polaroid camera for data collection. Data preparation is

carried out by hand splicing individual pictures to form a

complete waveform. A complete waveform is composed of eight
spliced pictures. The length of the recorded waveform is
approximately 4 microseconds. Current interpretation of the

recorded signals is based on visual analysis of the wave shape

and amplitude.

The subsystems selected for computerization are the Data
Acquisition System, Transmitter Trigger Circuit, and the Timing
Circuits. The transmitter and receiver will be left as is. The
greatest return on investment (both time and money) will only
come in eliminating the use of the Polaroid film and automating
the interpretation for consistency and speed.

The operation of the system is as follows: The timing
circuit generates a trigger pulse to the transmitter. The
transmitter fires and sends a signal to its antennae. The signal
travels through the material of interest and is picked up by the
receiver antennae. The receiver amplifies and filters the
incoming signal (all analog) and passes the signal to the data
acquisition system. /

The timing circuit is also responsible for starting the data
acquisition procedure. The timing is set such that just before
the signal arrives at the input to the data acquisition system,
a signal is sent from the timing circuit which starts the
acquisition of the incoming signal.

Of the three subsystems selected for computerization, the
Data Acquisition System presents the greatest technical
challenge. To duplicate and exceed the resolution of -the
Polaroid-recorded waveform in the proposed Data Acquisition
System, the digital sampling rate was set to 1 GHz with the

capability of collecting 4000 points per recorded waveform. The

method chosen to accomplish this is described in section 3.1.

The processing software is developed separately. It is
required that the computer interpretation be consistent with the
manual interpretation while also eliminating the inconsistencies
between different operators. The processing software is written
to be independent of the acquisition procedure so that it could
stand alone regardless of the method of acquisition (given data
input constraints).

The thesis is organized as follows: Chapter 2 is a
description of the hardware requirements and the solutions and
methods picked to satisfy each. The actual hardware design and
construction is described in chapter 3. Each of the completed
subsystems and the final integrated system is covered. Chapter
3 also includes a description of specific hurdles and design
problems encountered in the Timing Circuit subsystem design. The
test and evaluation of the hardware system is described in
chapter 4. The software developed to test each subsystem, the
physical test methods, and evaluation of the system are covered.
Chapter 5 describes the data processing and display software.
The signal conditioning, data interpretation, and data display
software are described. Finally, chapter 6 includes comments and

conclusions on this design project.

2. SIGNAL ACQUISITION

This chapter describes the basic system requirements and the
approach taken to design the data acquisition system. The
generic IBM-PC bus was selected to support the new hardware. The
PC was selected because the system bus is easily accessible
through the backplane expansion slots. Pascal was chosen as the
high-level programming language. Turbo-Pascal was specifically
selected because of its availability and the ability to

incorporate imbedded machine code in the program.

2.1 Requirements

In the original system utilizing the oscilloscope-mounted
Polaroid camera, the time scale on the oscilloscope was set to
0.05 usec/div and a maximum of eight frames wouid be shot. The
composite of these eight frames would result in roughly 4
microseconds of recorded waveform. To duplicate (and exceed)
this resolution digitally, the sampling rate was set at 1 GHz (1
nanosecond between samples) with again, 4 microseconds of
recorded waveform.

The output of the receiver has a maximum voltage swing of
16 volts nominal. A 12-bit converter was chosen tq record the
waveform with adequate resolution.

The overall system requirements are:

- interface to IBM-PC bus

- record 4 microseconds of waveform

- 1 GHz sampling rate

- 12-bit resolution from A/D converter

- generate all necessary timing signals and trigger
pulses.

The fastest commercial PC-based real-time data acquisition
system found 1is mafketed by Rapid Systems. It has a 100 MHz
sampling rate with an 8-bit resolution. This is still an order
of magnitude lower than the required sampling rate and also has
a lower resolution than required. Additionally, the input of
this system is constrained to 2 volts. The principle of
equivalent time sampling was used to satisfy the 1 GHz sampling
rate requirement. Equivalent time sampling is covered in the

next section.

2.2 Equivalent Time Sampling

All of the requirements listed previously are
straightforward except the 1 GHz sampling rate. The first
approach to meet the required sampling rate is to try real-time
sampling. Real-time sampling is defined as digitizing
sequentially from the same signal each sample point at the
required sampling rate. For a 1 GHz sampling rate, the time
between samples is the reciprocal of the sampling frequency or 1
nanosecoﬁd. Figure 2 depicts graphically the principle of real-
time sampling. Sampling at 1 GHz in real-time requires ultra-

high speed components and necessitates very accurate timing

6
constraints and therefore more complex design strategies which,
because of component cost and availability, put this approach

out of the reach of this project.

SAMPLED DATA POINTS \

|

' |

: RECEIVED SIGNAL |

i

TRANSMITTER P & Y #
. FIRES 1 nSEC |
TME |

Figure 2. Real-Time Sampling at 1 GHz.

Since sampling at 1 GHz in real-time is an unreasonable goal
for this project, an alternative method had to be found. The
following discussion places the groundwork and justifies the
decision to use equivalent time sampling as the alternative
method.

For each firing of the transmitter, an identical signal is
received. The signal lasts from 4 to 12 microseconds before
returning to the zero-signal baseline. The received signals can
be assumed to be identical under the following conditions: the
transmitter and receiver antennas are not moved while sampling
and the signal from the transmitter is identical for each firing.
Both of these conditions are realistic expectations that appear

to be justified from the observed data. Outside interference

2
from other signal sources has not been shown to be a problem from
inspecting waveforms recorded on film. However, removal of
unwanted noise (eg. from other transmitted signals) could be
accomplished using active filters on the receiver input without
affecting the repeatability of the signal. Additionally, because
of the short duration of the transmitted and received pulses,
external influences from temperature changes or other
environmental variations are negligible and have not been
observed. Figure 3 graphically depicts a repetitive signal

obtained by successive firings of the transmitter.

IDENTICAL RECEIVED SIGNALS ' \

N~ N DA
N EAVA IRV VBV A

—
TIME

Figure 3. Repeating Signal.

Using equivalent time sampling the waveform can be stored.
Equivalent time sampling is a technique which allows digitization
of high frequency, repetitive signals. With each "pass" of the
signal, one point on the waveform is digitized. For a 1 GHz
sampling rate, this one point is 1 nanosecond away in relative-
time from the previous point that was digitized. Figure 4

graphically depicts the principle of equivalent time sampling.

8
In order to collect n sequential values of a repetitive waveform,
the transmitter must be triggered n times. Let h be the required
relative-time interval between the sequential values (1
nanosecond for this system). If T, and T,,, are the starting times
of the k and k+1 pulses, then the real time distance between the
k and k+1 samples is T,, - T, + h. Notice that as long as
repeatability is assured, the difference T,,, - T, may be allowed
to vary. The critical wvalue in the equation is h. The
repeatability of h determines the accuracy of the equivalent time

sampling system.
PT2
PT1
m paN ! PAN
TRIG 1 _/ S TRIG 2 U VTRIGN

RELATIVE TIME
PT 2‘-.| r_

o®s
° PTN
PT {—>" » /

o0
%

0. |
RECONSTRUCTED SIGNAL
AFTERN PTS

Figure 4. Equivalent Time Sampling.

The challenge then is to design a timing circuit capable of
accurately triggering an A/D conversion with an equivalent time

sampling rate of 1 GHz.

9

The major error introduced in equivalent-time waveforms is

due to time jitter. Time Jjitter is defined as the error
introduced in the recorded waveform when the relative-time
between samples varies from the specified amount (here 1
nanosecond). Computational methods (deconvolution techniques)
have been developed to compensate for and reduce the effects of
time jitter. However,’the literature recommends that the time
jitter be reduced to a minimum by hardware design then use

computational methods if still required. [7][10][12]

3. HARDWARE DESIGN AND CONSTRUCTION
A block diagram of the system to be designed is shown in

Figure 5.

!
1
|
<@———— ADCONVERTER j[@——— RECEIVER" * {
|
|
\

1

—— TIMING }

. TRANSMITTER
—— " iRGGER [TRANSMITTER 1[
|

PC DATA, ADDRESS, CONTROL BUSES

Figure 5. Data Acquisition, Timing, and Trigger Block Diagram.

The design will be handled as three separate subsystems and
then integrated. The IBM-PC leaves I1/0 addresses 300H-31FH
available for prototype boards. Addresses in this range will be
used to control the Data Acquisition, Trigger, and Timing

circuits.

3.1 Data Acquisition Subsystem
Since the maximum conversion time between samples is
dependent on the transmitter firing rate and that rate would be

controlled by the transmitter firing circuit and software, a

10

11
slower and cheaper A/D converter could be used. However, because
of the high frequency content of the received signal, a high
speed Track/Hold amplifier would be needed on the input of the
A/D converter. The requirements set for the A/D converter were:

- 12-bit conversion

microprocessor/TTL compatible

8-bit bus interface

modest conversion time

modest price.

The ADC674A from Burr Brown was selected. The conversion
time of the ADC674A 1is ‘12 microseconds (nominal). This
conversion time is comparable to the maximum time it takes for
the received signal to return to the zero-signal baseline. Thus,
a minimum amount of time is wasted before the transmitter can be
triggered and the next sample taken.

Because of the high frequency of the signal to be digitized,
a high speed track/hold amplifier would be needed to hold each
sample point stable until the converter can complete the
conversion. Because of the high frequency content of the
received signal, the fastest possible track/hold amplifier
aperture time and shortest possible aperture jitter would be
needed. ECL track/hold amplifiers provide the fastest aperture
time (2 nanoseconds) and shortest aperture jitter (2
picoseconds). However, because of the cost and incompatibility

with the TTL circuitry, the ECL chips could not be used. The

12
Analog Devices HTC-0300A was selected for its high speed
(aperture time of 6 nanoseconds, aperture jitter 50 picoseconds)
and its compatibility with the A/D converter and TTL control
circuitry.

The nominal 6 nanosécond aperture time of the Track/Hold
amplifier is the delay from application of the Hold command to
the Track/Hold amplifier to when the Track/Hold amplifier
actually "holds" the input signal constant at its output. This
effectively represents a "constant" time delay applied to all
Hold commands. What determines the accuracy of the acquisition
is the aperture jitter or uncertainty. This is the range over
which the "constant" delay may vary from one Hold command to the
next. The 50 picosecond aperture jitter is well within the
specified accuracy of 1 nanosecond.

Figure 6 shows the basic data acquisition subsystem
schematic. The op amp on the input of the Track/Hold amplifier
serves two purposes. First, the maximum allowable input voltage
to the amplifier is plus or minus 15 volts and the output range
of the amplifier is plus or minus 10 volts. The op amp limits
the maximum input voltage to the amplifier to roughly plus or
minus 12 volts. This protects against overvoltage damage to the
amplifier. Secondly, the op amp provides a DC offset for the
input signal to bring it into the Track/Hold amplifier and A/D

converter input ranges.

13

' 5 oe2 12 o 2 a2 \

Fho Tsho The of Lo Lo Sk
T(T|Z I|(T|Z
' T |- 1K SIGNAL
RE Viogle +Vcc -Ves J TH Vliogic +Vec -Vee TR e
D11 20 ANALOG ANALOQ| AD844 5V
D10 RANGH out N |
D9 ANALOG| ANALOG INPUT
o] COMMON GND [V e =
o7 -
o] ADC674 HTC-0300A
05
‘ 04 47
| L 0a REFIN
! D2 REF OUT
o1 BIPOLAR| .
0o OFFSET) LOGIC POWER
i TS _A0_CE_12/8 GND ‘ Tom

—

| R = = =
|

Figure 6. Data Acquisition Schematic.

3.2 Transmitter Trigger

The trigger input of the transmitter haé a nominal input
impedance of 50 ohms and requires a minimum amplitude pulse of 10
volts to trigger an output pulse. A monostable multivibrator,
the 74LS122, was selected to generate the trigger pulse. Figure

7 shows the trigger circuit schematic.

. . 100p 33K TRANSMITTER 7

< TRIGGER PULSE
— TR Q
© 74L5122 i
o— =

1 A2 B1 R !

- +5V

Figure 7. Transmitter Trigger Schematic.

14

By adjusting an external resistor and capacitor, the trigger
pulse length can be controlled. The Al, A2 and B1l, B2 inputs

are connected to ground and Vcc respectively. These connections

cause the positive going edge of a pulse on the CLEAR line to

trigger the trigger pulse. The CLEAR input pulse is generated
from the address decode logic for address 304H. The output pulse
from the 74LS122 must be converted into a 10 volt minimum
amplitude pulse for input to the 50 ohm impedance of the
transmitter trigger. An amplifier circuit was designed to
convert the TTL pulse to a nominal 12 volt pulse for input to the

50 ohm impedance transmitter trigger input.

3.3 Timing Subsystem

The design of the timing subsystem is the most critical
aspect in setting the accuracy of the entire data acquisition
system. The accuracy of the recorded signal depends upon the
ability of the timing circuit to generate the HOLD signal for the
Track/Hold amplifier for each sample point as close to 1
nanosecond from the previous point in relative-time as possible.
To meet the resolution requirement of 1 nanosecond, the
difference between the sample points in relative-time should be
as close to 1 nanosecond as possible. The difference between the
actual time and the specified 1 nanosecond is called timing noise

or jitter and optimally should be much 1less than the 1

15
nanosecond. Ideally, if available, a counter operating at 1 GHz
which could count from the transmitter trigger pulse to the
desired sample point and trigger the Track/Hold amplifier would
fill this requirement. However, no counters operating at this
frequency and TTL compatible were found. A second approach was
investigated. A programmable digital delay line with a one
nanosecond step between delays could be used. To record a
waveform four microseconds long, the delay line would require a
minimum of 4000 programmable steps. A 12-bit delay line with
4096 steps would suffice. Again, however, no 12-bit delay lines
were found.

An alternative timing circuit was developed. Using a linear
ramp generating circuit, a digital-to—analog converter (DAC), and
a differential comparator, an accurate timing circuit could be

designed. Figure 8 shows the circuit in block diagram form.

‘\
RAMP DIFFERENTIAL \
o I COMPARATOR
+\> # TRACKHOLD
- P READ/CONVERT \!
, : TO DATA ACQUISITION
» DAC SYSTEM \
|

Figure 8. Timing Subsystem Block Diagram.

Operation of the Timing Subsystem is as follows: The DAC

16
output is set to a particular voltage. The ramp is triggeéed and
starting from zero, the ramp voltage increases in a linear
fashion. When the ramp voltage reaches the level of the DAC
output voltage, the comparator fires, activating the HOLD for the
Track/Hold amplifier. To store the next sample point, ﬁhe DAC
output voltage is increased by 1 least-significant-bit, the ramp
reset, and then triggered again. The process repeats for each
sample.

4 microseconds of waveform must be recorded. This length
requires a minimum ramp length of 4 microseconds. The fastest
TTL-output differential comparators have a maximum allowable
differential input voltage of 5 volts nominal. This condition
limits the range of the ramp from 0 to 5 volts. Given a 0 to 5
volt, 4 microsecond ramp, 4000 discrete 1levels must be
recognizable. This will determine the resolution required from
the DAC. A 12-bit DAC will provide 4096 discrete voltage levels,
which for a 0-5 volt range will be 1.22 millivolts per step.
Using a DAC with a maximum output voltage range of 0-5 volts will
also ensure that the differential input voltage limit to the
comparator is not exceeded. The AD667 from Analog Devices was
selected because it fits all the above requirements with the
addition of interfacing to an 8-bit data bus. Figure 9 shows the

timing subsystem schematic.

17

74LS107A

|

MELEEITELTEE

]

. T
Vout /
LF414

AD667

' A3 A2 A1_AO

L

Figure 9. Timing Subsystem Schematic.

The ramp circuit design is covered in detail in section 3.5,
an overview is given here. The 74LS107A is used to switch the
ramp on and off by a pulse on the CLK input. The Q output
switches the output of the LF412 op amp from 0 to -5 volts. This
change switches the 2N3823 FET on and off respectively. When the
FET is turned off, the current from the constant current source
(collector of PNP transistor ECG395) flows into the 200 pf
capacitor. A linear voltage increase (ramp) results. The

combination of the two FET’s in the NPD5566 isolates the ramp

18

circuit from the comparator to remove any non-linearities caused
by the loading of the comparator and feedback circuits.

The AD9686 differential comparator is a high-speed TTL
voltage comparator. This comparator has a nominal 7 nanosecond
propagatioh delay from the input to the output switching to the
high output level. The 1K ohm resistor from the Q output to the
positive input of the comparator 1latches the output of the
comparator high on the first transition of the Q output. Figure

10 illustrates the comparator response with and without feedback.

NOISY RAMP | \
T TO +5 VOLTS }

NOISY RAMP
OUTPUT

COMPARATOR COMPARATOR |
Q OUTPUT .- Q OUTPUT /

WITHFEEDBACK |

o)
3
3

NO FEEDBACK

Figure 10. Effect of Feedback on the Comparator.

If noise is present on the ramp output or DAC output, with
no feedback, the comparator may switch numerous times before
settling to the final level. With feedback, the input to the

comparator is pulled to +5 volts on the first transition of the

19
output. The feedback keeps the output from switching more than
once. Multiple level transitions disrupt the analog-to-digital

conversion.

3.4 Integratioﬁ of the Subsystems

Integrating the three subsystems requires determining what
timing relationships exist among the various signals that must be
passed between the subsystems. Specific logic connections and
relationships had to be determined also. Finally, what timing
relationships should be controlled by software and/or what should
be specifically controlled by hardware had to be determined and
incorporated in;o_ the hardware~ or conversely left until the
operating software was written.

Figures 11-A and 11-B show the entire system with all inter-
connections.

The more involved connections are explained below.

The complementary outputs of the differential comparator

provide the complementary TRACK/HOLD and READ/CONVERT signals.

The TRACK/HOLD signal to the track/hold amplifier must precede
the READ/CONVERT signal to the A/D converter by roughly 120
nanoseconds. This ensures that the output of the track/hold
amplifier is stable before the conversion is started. An AMDM-

150 TTL delay line from Rhombus Industries was inserted into the

READ/CONVERT line to provide the necessary delay.

Initially, both the transmitter trigger pulse and the ramp-

€th 345

Figure 11-A.

Timing and Data Acquisition

Subsystems Schematic.

3
’ y sV
|
200 ‘L
Q Vee 4
) LI PP 0
Sheet Cy 10 IN3823 =
2 . F4LsoIA ¢V
— 13—
. (55 >— 4]
J K
T
ey 15
- o.l
LFDESEG
RamP
ou¥ PuT 1K +S
45V
i ls 1.5k K44 6
4
E) + -
1
Zf' l 40 § L
7 a6 U -
5187 ?ﬂ' U, pac oureur 5| 8\‘:’ Z TEACk [rotd
] 73 by d 7L,
. , AP A e] oA
A Q? D7 10 A (A 7 — e Aﬂ/(ouvcﬂf
° =183 out -2V -5y
2o 412V ‘
S Blpg ”‘/‘“e"_ AMDM-150
= READ[tormver 3
§ & Bu ﬂ'e"f 1 { 170 Se¢ Bewn "y
— NRECIEES : L
; 2 4 & 3 =
6Hesng Ad 5 HL 12 = +5V 15 4 -1 13 ol
™~] -
h o 1o | +lio 10 tho [sho{_fto 1K
S ==z . ESEAE
S - | == . H=1=3= "
s '] BT Fi" 24 22§ . 1N Sl(yUM.
. RIE Ve Voo Ve 1o) A‘fmim suatoh |13 s 4 /P
o i oot | ™ Abwix NG
nd M) -sy
L B 104 AL 2 f g ot 15
Da- 07 FFIpA e 1 1¢-03004 WO | 1=
Zog ADce74 100 - TAIS vom
\I oy o) =
19
'—.(gg A -V
o3 o1 v N
LAY] . !};f:? v{\/‘ togie | Pl "EJ
4 s A¢ ce nit j 100 6aD | Gud RO
— © 3 q 3 F3 15 :o—L 13, -:(—
— 5|08 A
€3 B - | = =
Sheet Z s = .
Ao

20

Bus Ad-44

ADOress

9 n {o 1
z’% 3 Z(\(’
I / Csy TO swmeert _
T— C51: 4, 4, 4, 305 H
' €32 2 X4, A, 201,303 H
3 2 \:1 ‘ZM 57 0 sweer s _ .‘ -z
Q " 15V [X At '41 ':w/'jol #l
:Eé _ s+ 2 A-DA‘AI 3044
< \ ¢ A2 —
N 71 &C = (31 1O SHEET | €Ss= X A Ay 306,303 H
- L) o 12 "
4 8
A2 "75 21 \ {54
VNUsED
9 5 y
() (23
‘{>> 1] —_\S Jl>é £
At :‘0 " Ll > (55 710 SueeT |
|- +5Y
1 A’l . .
o3 Ay . O - 75T PomuT
Ad ‘ 70 SHEET I
Ad
| +11V
————_[—\“N AN H2y
o.l - : 120 %
= @1 lop. 3.3k m e (4
"'_l‘/_I_\,\NL, v {_‘*"‘I WV 15V . <M1 TRIGGER
- I 3 I %o fursé
; 17¢c0 £ lk
- i 8 3 h
n 0 Liog o
s Fdisily |- -5 -
15V —e
w3 oz [0.01 ¢.0] 00A] 0433 0 .06 @.<3) Sle i
osbelocleatoetoood <t L, ° =
LTI LtlIT Lt Lt L+ L ALz 8161
- - = = — = - = - - 7, II 2' 3 4
v v v 4
°"_L°°1L"'_'L o o:t]_oi ;I o-_l}_ - v u,,,[% pvq Seeeti
III IIT IT
Figure 11-B. Chip Select/Address Decode and
Transmitter Trigger Schematic.

22
start pulse were generated by the operating software. Although
the code which generated the two pulses was purely sequential, in
actuality, the time between these two pulses was not constant.
The variation of the actual time between the two pulses from one
sample to the next was too large and was not acceptable. The
large variation introduced excessive jitter in the recorded
signal. A line was connected from the 74LS122 (thé transmitter
trigger pulse source) to one side of an EXCLUSIVE—Oﬁ gate. The
other side of the EXCLUSIVE-OR gate was connected to the software
controlled ramp-start control circuit. This way, the ramp would
be started from a transmitter trigger pulse with aﬁ acceptable
amount of variation from sample to sample, but could still be
controlled by software (eg., to turn the ramp off).

The manufacturer of the transmitter specifies the
transmitter output pulse time jitter as no greater than 5
nanoseconds. This means the time delay from the fransmitter
trigger pulse on the input of the transmitter to the output pulse
from the transmitter will vary by no more than 5 nanoseconds
between transmitter firings. Because the acquisition is started
by the transmitter trigger pulse and not the actual transmitter
output pulse, this variation could add significant time jitter
error to the recorded waveform. This error was deemed acceptable
for the current equipment configuration and design.

The timing of the trigger, conversion, and A/D converter

data read cycles are shown in Figure 12. Software initiated

versus hardware initiated signals are shown.

23

XMTR
TRIGGER
U) N U Sy NI
RAMP DACLEVEL====-=== === h RAMP RESET
i C BY SOFTWARE
H DATAHOLD M
. -DELAYED h DATACONVERT ¢
RT 120 nS -
DELAY
| STATUS 15uS
‘ CONVERSION
fntuieindeiiiebialy infebnbebebeieieinbabubnty Suletebniniebeietn bty v r-mor
CS3 : :
LYo Ll
.-C-é. l—
AOW /W// o oy
YT
AVa _- J//{i.?.thq§(
DATA
— >
TRIGGER !] DATA ACQUISITION — READ
HARDWARE INITIATED SIGNALS
——————— SOFTWARE INITIATED SIGNALS
Figure 12. Acquisition Timing Diagram.
3.5 Evolution of the Timing Circuit Design
The timing circuit design proved to be the greatest

challenge.

Device specific limitations became readily apparent.

In low speed/accuracy applications, these limitations would not

/

24
exhibit the same degrading effects on the circuit. The timing
ramp circuit went through three major design iterations. Each
iteration will be covered in sequence.

Figure 13 shows the first design iteration.

5V Rl

ct

i

cax o
74LS107A OF AMPB

R -y =

cst

OP AMP A

J K 1K

+5V " 604
TO INPUT OF = 1:
OP AMPC E > COMPARATOR

Figure 13. Ramp Circuit - First Try.

Operation is as follows: Assume initially the Q output of
the 74LS107 is high and Ql is turned dn. Op amp A maintains a
constant voltage drop across resistor Rl. Since the ihput to an
op amp (ideally) draws no current, a constant current flows
through the 5 volt zener diode and out the collectbr of Q2.
Since Q1 is turned on, this current: is dumped directly to ground.
A pulse on CS1 toggles the Q output, seﬁtiné it low. This turns
off Q1. The current now charges Cl. The constant current into
Cl causes a linear voltage increase which is output to the

comparator by op amp C. When the maximum length of the ramp is

25

reached, sending another pulse on CS1 turns Q of the 74LS107 on,
Q1 back on, and dumps the incoming current and charge on Cl to

ground. The maximum ramp voltage is limited to 5 volts by the 5

volt zener diode.

The most noticeable problem with this circuit was the ramp
length. The ramp length could not be adjusted any shorter than
about 12 microseconds. Varying capacitor values, resistor
values, and reference voltage values had no significant affect.
Detailed examination of the circuit showed that the op amp used
to drive the input to the comparator (Op Amp C) had a maximum
slew rate of 0.5 V/uSecond. The op amp was operating at its
maximum slew rate and was setting the limit on the ramp length.

Iteration 2 involved replacing this op amp with an
alternative circuit without the restriction on the slew rate.
Figure 14 shows the second circuit.

5V R1
2 !
a p—— +12V

L

|

I

|

cl » ’

1K a1 —~ 1]
6.2v |

I

|

I

[

|

© cst aKk Qa
w A

|
! 74LS107A OP AMP B OPAMPR

————CR

J K

Ll. a2y
220 - - =
604

+5V]
220
v el - _ 12V

NPD5566 =

|II—| }

> TO INPUT OF
COMPARATOR

Figure 14. Ramp Circuit - Second Try.

The ramp length now could be adjusted to 4 microseconds by

26
setting C1, R1l, and the 1K ohm adjustable resistor. The problems
which surfaced now were more subtle. Noise and jitter on the
ramp were having an affect on the recorded signal.

Several additional steps were taken to increase the
stability and decrease the noise in the circuit. Figure 15 shows

the third iteration.

: > ECG iy \
. 385
: P T A —w
| 1K
i (o]
| 1K I
‘ cst clk ofF—AA -
‘ 74LS107A 2N3823
. —=r 1 LFa12
| J K. 1K 5
! u -12v
“ +SV - 20
i NPDSS66
|
' | » TOINPUT OF
; COMPARATOR
|

Figure 15. Ramp Circuit - Third Try.

A FET was substituted for the NPN bipolar transistor used
to shunt the charging capacitor to ground. The FET provides a
more linear transition into saturation or cutoff causing the
voltage developed on Cl to be more linear. The original Op Amp
B had a very slow slew rate (0.5 V/uSec). When the Q output of
the 74LS107 would toggle, it would take roughly 2.5 microseconds
for the op amp to switch the transistor Q1 fully on or off. An
op amp with a slew rate of 10 V/uSec was substituted for this op
amp. The FET could now be switched in roughly 0.5 microsecond.

The 5 volt zener diode which limits the ramp height was also

27
moved to'reduce extraneous noise on the output voltage as Cl
charged.

This circuit represents the last design iteration and is
incorporated in the Timing subsystem. This circuit meets the

requirements of a linear 0 - 5 volt, 4 microsecond ramp.

3.6 Construction

There are two possible areas to concentrate on to eliminate
noise and jitter from the syétem. 'The first is bymoptimizing the
system hardware design while the second is by applying signal
processing techniques to the recorded signal to‘reméve or reduce
any noise or Jjitter. This section describes the hardware
construction to reduce noise. Section 5.1 describes signal
processing techniques to reduce the noise.

The original data acquisition system was built on a proto-
board type PC board. This board had obvious deficiencies.
Primarily, this type of board is not intended to hold analog
circuits, especially circuits requiring high speeds and high
accuracy. The data acquisition system was redesigned onto a
custom printed circuit board. This board was designed
specifically to reduce noise and increase the accuracy of the
high speed analog circuits. Additionally, more care could be
taken in separating the analog and digital circuits to reduce
cross talk. This board showed great improvement over the

original. Figure 16 is a photograph of the final circuit board.

Figure 16.

Fabricated System Circuit Board.

8¢

29

As the board was already designed and built, further design
changes in the hardware would be costly in both time and money.
For example, a known contributor to the time jitter in the
recorded signal is from the jitter of the transmitter output (see
Section 3.4). By changing the data conversion trigger to the
actual transmitter output pulse versus the transmitter trigger
pulse would eliminate the source of jitter. However, the cost
would be too high with limited gain. Section 5.1 describes the
application of signal processing techniques to improve the signal

at minimal cost and with greater flexibility.

4, TESTING OF THE HARDWARE

To test the hardware system, numerous software modules were
required. Each module was written to test a specific subsystem
of the hardware. This chapter describes the software modules
that were developed, the physical test methods for the hardware,
and the results of the tests. Both quantitative and qualitative

measurements are made of the system accuracy.

4,1 Hardware Testing Software

The hardware system software could be divided into two
distinct areas. Software was developed to test each of the
functional areas of the hardware system. Secondly, software was
written for the actual waveform acquisition and storage. FEach

area is covered in the following sections.

4.1.1 Subsystem Testing Software

Software was written to test specific hardware subsystems.
The software would excite the subsystem under test. An
oscilloscope is used to monitor the circuit and where applicable
the results of the operation are displayed on the computer
screen. Programs were written to test the following subsystems:
ramp circuit, DAC, trigger circuit, and the A/D converter.

The different subsystems are controlled by logic pulses
generated by addressing specific I/0 addresses. The DAC and A/D

converter circuits utilize the data bus from the computer to

30

31
write to and read from the converters respectively. The other
subsystems are controlled solely by pulses at the required
addresses. The data lines are not utilized (data output while
the address lines are activated are ignored). The following
table lists the I/0O address, the subsystem affected, and the

result of activating that address.

I/0 ADDRESS SUBSYSTEM RESULT

300 H A/D Converter Reads high order byte of 12—
bit converter (D4-D11).

301 H A/D Converter Reads 12-bit converter lower
4 bits (D0-D3) shifted to
high end of byte. Low end
of byte is 0 filled.

302 H DAC Writes 4 high order bits
(D8-D11) shifted to low end
of byte to converter.

303 H DAC . Writes low ordef byte (DO-
D7) to 12-bit converter.

304 H Trigger Circuit Activates 74LS122 astable
multivibrator. The rising
edge of the pulse triggers
the 74LS122. Duration of
the output pulse is

controlled by external

32
resistor and capacitor
combination.

305 H Ramp Circuit Toggles Q output of
74LS107A. Turns ramp ON to
OFF or OFF to ON (Q high
turns ramp on).

306 H Ramp Circuit Connected to CLEAR of

741,S107A. Sets Q low (turns

ramp off).
A total of eleven testing programs were written. These
could be grouped into three types. The first were individual

pfograms which performed each step of the data acquisition
process for one sample point. These programs are:

RESET - turns ramp off.

TOGGLE - switches ramp ON to OFF or OFF to ON.

SET _DAC - set DAC to specified voltage.

TRIGGER - initiates trigger output pulse.

CONVERT - start A/D converter conversion.

READ - read from A/D converter.

CONVERT2 - performs entire acquisition procedure for

one sample.
The second type were programs written to perform selective

subsystem tests. These tests would cycle numerous times to allow

viewing of the 1logic waveforms to verify proper circuit

33
operation. These programs were:
TOGGLE2 - switches ramp ON to OFF/OFF to ON 5000 times.
READ2 - reads A/D cciverter 1000 times.
TRIG_TST -~ initiates trigger output pulse 1000 times.
The last program type was for calibrating the DAC. This
program, called DAC_TST, provides the required digital inputs to
the DAC to perform the zero and gain adjusts on the DAC. These
adjustments ensure the DAC output operates over the proper range
(0 - 5 volts).

Listings for each program are in Appendix A.

4.1.2 Signal Acquisition Software

The signal acquisition software is responsible for the
actual waveform acquisition and storage. The individual programs
which performed each step of a single data point acquisition, as
written for the subsystem tests, could be incorporated as
procedures in the waveform acquisition program A total of 4
microseconds of waveform were to be stored as set forth in the
original system requirements. The ramp was designed for a 0 to
5 volt rise in 4 microseconds. Since the DAC output was set for
0 to 5 volts also, all 12 bits (4096 discrete voltage levels) had
to be used to record the entire 4 microseconds. The addition of
these 96 samples changes the theoretical absolute maximum
equivalent-time sampling resolution to 0.98 nanoseconds.

As most of the required acquisition procedures had been

34
developed during the testing stage, the majority of the signal
acquisition software development involved writing user interfaces
and developing waveform display, storage, and print routines.

A listing for the 1 GHz signal acquisition program is in
Appendix A. This program is titled T1G12B. This is the program
designed to meet the original data acquisition speed and accuracy

requirements.

4.2 Hardware System Test
This section covers the individual hardware system tests,
the operation of the system as a whole, and evaluation of the

system operation and accuracy.

4.2.1 Individual Subsystems

Each subsystem was tested using the Subsystem Testing
Software as described in Section 4.1.1. Actual testing is
described in the following sections. Refer to Figure 11A and 11B

for the test points referenced in the following sections.

4.2.1.1 Timing Subsystem

The ramp circuit is tested by placing an oscilloscope probe
(Channel A) at Test Point (TP) 1 and a second probe (Channel B)
at TP2. The program TOGGLE2 is executed. Channel A shows the
pulse generated from the address decode logic for I/0 address

305H. Chanrnel B shows the actual ramp voltage signal. The ramp

35
turns on or off with each pulse on Channel A.

The DAC circuit is tested by placing a voltmeter probe at
TP5. Executing the program SET DAC allows the operator to
specify the DAC output voltage. This voltage can be verified on
the voltmeter.

The operation of the comparator is verified by placing an
oscilloscope probe (Channel B) at TP6. Channel A’s probe is
moved to TP2. The DAC is set to a midrange value (using
SET DAC). TOGGLEZ2 is executed. Triggering on Channel A, the
ramp is shown increasing. When the ramp reaches the DAC output
level, the comparator will switch (Channel B). If these tests

are successful, the entire Timing Subsystem is operational.

4.2.,1.2 Transmitter Trigger Subsysteﬁ

The Transmitter Trigger Circuit iéytested by attaching an
oscilloscope probe (Channel A) at TP3 and a second probe (Channel
B) at TP4. The program TRIG_TST is executed.i This prégram
addresses the transmitter trigger circuit 'repeatedly at I/O
address 304H. Channel A will show a TTL pulse from the address
decode logic. Channel B will show.a 12 volt pulse approximately

8 microseconds long.

4,2.1.3 Data Acquisition Subsystem
The data acquisition subsystem is checked by applying known

voltages to the signal input and performing the conversion.

36

Specifically, 0, +5, and +12 volts are applied to the input (from

the system power supplies). The program CONVERT2 is executed

with the result displayed on the terminal.

When all three subsystems are checked operational, the

system is checked as a unit.

4.2.2 Integrated System Test

The entire system is tested by connecting all the components

as shown in Figure 17.

OSCILLOSCOPE \
RESULTS A

‘ RECEIVER [@——{RECEIVER ANT. |
L v , |
DATA ACQUISITION |
& TIMING SYSTEM |
" (COMPUTER) N |
 RESULTS '
; B TRANSMITTER [—{ XMTRANT. | |

Figure 17. System Configuration for Evaluation and Test.

A real signal is recorded with the system and compared to

its equivalent from an oscilloscope. See Figures 18 and 19.

Note that the signals compare favorably.

Figure 19.

Oscilloscope Recorded Signal.

37

38

4.2.3 Evaluating System Operation and Accuracy

A quantitative measure of the accuracy of the data
acquisition system is made by measuring the noise and jitter of
the ramp used in the timing circuit. A qualitative measure of
the accuracy of the entire system is made by sampling a real
signal numerous times and checking for repeatability. A

quantitative measure of the entire system accuracy is made also.

4.2.3.1 Ramp Evaluation

Measuring the accuracy of the internal ramp circuit of the
data acquisition system shows the base.accuracy of the system.
The system can not be more accurate than the ramp circuit itself.
The ramp accuracy was measured using two methods. By the first
method, the ramp was recorded by the designed data acquisition
system itself. The ramp signal at Test Point 2 was connected to

the input of the system. Figure 20 shows the actual recorded

ramp.

39

2000
; 1900 L

1800

1700 |-

x

1600 |

1500 |-

ADC Value

1400 |

|

T

1300 | 'V/J]i
{{

|

|

1200

1100 |

‘ 1000 Lol 1 1 [11 1 IJ | 1 [L1 1 [| I T -] l | . ' 1 L1 l L1 1 !JALI 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (nS)

Figure 20. System Recording Internal Ramp Signal.

Comparing the recorded ramp to an ideal ramp, the following
statistical values‘were found:
Standard deviation: 5.054,
Mean: 1.1015.
This standard deviation is 0.26% of full scale and is an
acceptable value.
Keeping the same connection, the second method samples the
ramp at the 25, 50, and 75 percent point of the ramp (in time)

for one complete sample period (4096 data points) each. As the

40

sample should be taken from the exact same point on the ramp for
each sample point in each set, the quality of the ramp can be

derived at each point. Figures 21, 22, and 23 show the data
collected for the 25, 50, and 75 percent points respectively.
The ’Typical Data Set’ in each figure represents a single data
set of 4096 points which has had no filtering or averaging
applied. The ’Averaged Data Set (4)’ in each figure represents

an average of four different single data sets, each with 4096

points.
2000 2000
| Ng
1500 | 1500 |
1000 1000
| | |
500 500 | |
I ! |
|
0 R TN I =ty NP 0 4J_1_A_4JJL'—LL41|M ’
1230 1240 1250 1260 1270 1280 1290 1300 1230 1240 1250 1260 1270 1280 1290 1300 /
r. ‘
TYPICAL DATA SET AVERAGED DATA SET (4) JI
MIN= 1233 - MAX= 1291 MIN= 1258 MAX= 1276 (
MEAN= 1269.16 STD. DEVIATION= 3.167 MEAN=V 126841 STD. DEVIATION= 1.521 J

HISTOGRAM OF SAMPLES FROM f
25% POINT OF RAMP |

Figure 21. Statistical Analysis of Ramp at 25% Point.

41

12500 2500
) l N

,2000 2000
1500 | 1500 |-

1000 1000

500 | . 500 -

a [Lm

|

[N FVETE SUTRSCSET] FUNEETRETL FEURTY 0 LJ[.............. [T [PETREER N Lo

o L. |
1480 1500 1520 1540 1560 1580 1600 1480 1500 1520 1540 1560 1580 1600'

TYPICAL DATA SET AVERAGED DATA SET (4)
MIN= 1483 MAX= 1535 MIN= 1500 MAX= 1532 ‘
MEAN= 150958 STD.DEVIATION= 3.834 MEAN= 1509.16 STD. DEVIATION= 2128 }

HISTOGRAM OF SAMPLES FROM (
50% POINT OF RAMP o B

Figure 22. Statistical Analysis of Ramp at 50% Point.

42

2500 | - 2500 1
\ [[1

1500 | J 1500 |- ‘

%1000'— 1000 |

| i [

o [

500 | 500 | _

\ 0',,.,1..._._L;‘r!d...ﬂ—u_._‘,|u,_. 0> II_JJLu

1750 1760 1770 1780 1790 1800 1810 1750 1760 1770 1780 1790 1800 1810

TYPICAL DATA SET AVERAGED DATA SET (4)
MIN= 1754 MAX= 1804 MIN= 1774 MAX= 1789
MEAN= 17828 STD. DEVIATION= 3.150 MEAN= 17822 STD. DEVIATION= 1.578

HISTOGRAM OF SAMPLES FROM
75% POINT OF RAMP

Figure 23. Statistical Analysis of Ramp at 75% Point.

These figures show that the ramp accuracy is within an
acceptable range. Note also, that this is actually a worst case
measurement of the ramp accuracy. Routing the ramp to the input

of the data acquisition system places a load on the ramp and

43
comparator circuits which in normal operation would not be there.
This loading actually degrades the recorded ramp and the accuracy

of the timing system.

4,2.3.2 Real Signal Evaluation
The real signal evaluation éCtually measures the accuracy

of the entire system. Inaccuracies in timing and the transmitter

will be measured now. A qualitative measurement is made by
comparing Figures 18 and 19. The signal is repeatable and
compares very favorably with the oscilloscope record. A

quantitative measurement is made by taking samples at the 25, 50,
and 75 percent points on the signal as was performed on the ramp.
Figure 24 shows the signal and location the data points were

recorded from.

44

3500 |
; |
3000 |- 1\
2500 - ﬂ | JI
3 : (]
;(>U 2000 |- ;)
3 T I
Sl IRTITRTV IR
5 \ u " i
1000 |
! 25% 50% 75%
: POINT POINT |POINT
500 00" 700 4200 1700 2200 2700 5200 3700
Time (nS)

Figure 24. System Recording Signal for Statistical Analysis.

Figures 25, 26, and 27 show the data collected for the 25,
50, and 75 percent points respectively. Again, the ‘Typical Data
Set’ in each figure represents a single data set of 4096 points
which has had no filtering or averaging applied. The ‘Averaged
Data Set (4)’ in each figure represents an average of four

different single data sets, each with 4096 points.

ham 1500

1000 | 1000

L

500 | 500 |
[T IS | ' AT NI IR N Y i S PEPEPE

0 Lol s
1400 1450 1500 1550 1600 1650 1700 1750

TYPICAL DATA SET

MIN= 1430 MAX= 1720

MEAN= 1506.06 STD. DEVIATION= 26.605

Figure 25.

1400 1450 1500 1550 1600 1650 1700 1750

MR A I

AVERAGED DATA SET (4)

MIN= 1454 MAX= 1583

MEAN= 1507.64 STD. DEVIATION= 13.506

HISTOGRAM OF SAMPLES FROM
25% POINT OF SIGNAL

Statistical Analysis of Signal at 25% Point.

45

1000

, 800

1600 |-

500

400

1200

'100 -

0 L | ISR
1600 1700 1800 1800 2000 2100 2200 23G0

TYPICAL DATA SET

MIN= 1631 MAX = 2271

MEAN= 20745 STD. DEVIATION= 68.504

1000

800 |
600 |-

500 |

400

100 -

NP TN B TP o A BRI BT S B |

0 Ll
1600 1700 1800 1900 20

AVERAGED DATA SET (4) |

2100 2200 2300 |

|

MIN= 1833 MAX= 2179

MEAN= 207526 STD. DEVIATION= 40.677

HISTOGRAM OF SAMPLES FROM
~ 50% POINT OF SIGNAL

Figure 26. Statistical Analysis of Signal at 50% Point.

46

47

1500 : 1500

11000 } 1000 |

500 |

s g, T FEERE FUETE W | FEWE R N W

0 (¢
2960 2970 2980 2990 3000 3010 3020 3030 3040 2960 2970 2980

TYPICAL DATA SET AVERAGED DATA SET (4)

MIN= 2968 MAX = 3032 MIN= 2983 MAX= 3011

MEAN= 2999.46 STD. DEVIATION= 7.484 MEAN=2997.94 STD. DEVIATION= 3210

(

|

HISTOGRAM OF SAMPLES FROM .
75% POINT OF SIGNAL

Figure 27. Statistical Analysis of Signal at 75% Point.

The entire system accuracy is within an acceptable range.
As was expected however, the system accuracy is lower than the

ramp accuracy. This can be attributed to the jitter inherent in

the transmitter. Note also, that the accuracy at the 25 and 75

percent point look very‘good compared to the 50 percent point.

48
The signal is relatively flat where the system recorded the data
at the 25 and 75 percent‘pqints. Data recorded in these regions
will not show the true effects of time jitter. Data recorded at
the 50 percent point is recorded on a portion of the signal which
has a very large slope. The effects of time jitter are very

evident by the larger standard deviation.

5. DATA PROCESSING AND DISPLAY SOFTWARE

The software for processing and performing computer
interpretation was developed separately from the hardware system
software. This software is also written to be independent of the
actual hardware acquisition system. The only requirement placed
on the data is that it meet the input requirements of the
program. Two methods are provided to input the data. The data
format and input requirements for each method are as follows:

Input Method 1

4096 data points/waveform

4 waveforms/station

4 waveforms stored on disk as single text file

- each set of 4096 points concatenated to previous set

data values range from 0 to 4095.

Input Method 2

4096 data points/waveform

1 waveform/station

1 waveform stored on disk as single text file

1 set of 4096 points

data values range from 0 to 4095.

The vast majority of the code written for the data
processing and display software is related to user interfaces and
data presentation. It will be described in subsequent sections.
The specialized digital signal processing and application

specific (actual interpretation) code will also be described.

49

50

The entire program is listed in Appendix B.

5.1 ’Signal Coﬁ&iﬁiéning Software

Three methods are incorporated into the software to reduce
the effects of noise on the recorded signal. These are:
amplitude averaging, smoothing, and filtering. Averaging 1is
automatically performed when a waveform is input via Input Method
1 described érévioUsly. Each waveform is read from the disk file
and the corfesponding data points added. Amplitude averaging is
performedg the result of adding the corresponding data points
from each waveform is divided by four. Smoothing is an optional
procedure tha£ averages data points that exceed a threshold limit
with their neighbors. The threshold is set such that if the
difference between two points is greater than the difference
between 90% of the remaining points, that point is averaged with
its neighbors.

Filtering is also an optional procedure. The following
discussion describes the various filter types which were examined
and the final choice of filter to incorporate in the software and
apply to the recorded waveform.

The Fast Fourier Transform (FFT) of the signal in Figure 24
is shown in Figure 28. The FFT was performed on the waveform

data from 1000 nanoseconds to 3047 nanoseconds.

51

107 T T —
106_
105

104H]

hdagnkudc

103} |

102}

101}

100 : :
500 1000 1500 2000 2500

“‘ L Frequency (x/(2048*1E-9))

Figure 28. FFT of Recorded Signal.

The FFT shows that the majority of the spectrum is at and

below 25 percent of the sample frequency. Several filter types

were designed with varying order numbers and cut-off frequency.
Figures 29 through 36 display representative results of several
tests using different classes of filtering algorithms and cutoff

frequencies. The figures show that setting too low a cut-off

frequency may cause loss of significant information. As an

illustrative example, Figure 29 shows the effect of reducing the

52
bandwidth of a 20th order Butterworth filter. It is apparent that
setting wc = 0.2 produces a signal that has little resemblance to
the oscilloscope record (Figure 19) . Conversely, setting wc = 0.5
leaves too much corruptive noise.

The selection of the filtering algorithm also has a

significant effect on the resulting signal.

Figure 29. 20th Order Butterworth Filter.

ADC Value DisP"yed with Offsets

Figure 30. 10th Order Emp€to Filter.

3000
2500

@

3

5 1500

£

= 1000

=

3

=

= 500

.2

[a]

@ 0

=3

S

5 500

[a]

<
-10(0)
-1500
-2000
2000 2200 24(00 26(00 28(00 3000 3

Time (nS)

Figure 31. 20" Order Chebychev Type 1 Fileer

Figure 32.

20th Order Ctebychev Type 2 Filter.

Figure 33. wc=0.30 Butterwotth Filter.

54

ADC Value Displayed with Offsets

Figure 34. w~=0.30 Elliptic Filter.

ADC Value with Display Offsets

Figure 35.

wc=0.33 Chebychev Type 1 Filter

55

56

Figure 36. wc=0.30 Chebychev Type 2 Filter.

The final selection of filtering algorithm has been made by
visual comparison with the scope record. The complexity of a
high order filter is also considered a strong disadvantage for
single precision implementation in the software. Therefore, a
2nd order Elliptic filter was selected. Elliptic filters provide
the same TfTiltering with a Blower order than the other Tfilter
types. [14]

Since the final result is highly subjective, the final
implementation has a default cutoff frequency of 0.3. However,
the user has the option of varying this frequency in a limited

range.

51

Another processing technique was investigated also.
Deconvolution of the time jitter from the recorded waveform was
performed [7] [10] [12]. The time jitter was assumed to have a

Gaussian pdf. The FFT of the pdf has the same form as the pdf:
Pdf="e""t(r"

4 Cz.17/1 r)?-
Fourier Transform(pdf)= e

The deconvolution procedure 1is described in the frequency
domain by the following equation:
Y(F) = X(HP),

where: Y(f) = system response,

X(F) input waveform,
P(P)

Figure 37 shows the recorded waveform after applying the

Fourier Transform of gaussian time jitter pdf.

deconvolution technique with different standard deviation values.

Figure 37. Deconvolution of Time Jitter.

58

The deconvolution technique did not provide an increase in
resolution over that of filtering described previously. Also,
the computing expense is much greater to perform deconvolution

versus filtering in the time domain.

5.2 Data Interpretation Software

Interpretation of the recorded signal is generally
straightforward. The midpoint of the waveform between each
maximum and minimum is marked. The time (from a zero point at
the beginning of the waveform) is recorded for each mark and then

compiled for interpretation. Figure 38 illustrates this.

MAXIMUM/MINIMUM
MIDPOINTS
ZERO 7 4
POINT / l‘\ ",
—_——ed e e e == - /
S v/ -, 4
TIME 1
TIME 2]
TIME 3 > !

Figure 38. Data Interpretation Criteria.

The manual interpretation technique introduces significant

59
error. This error is due to variations in the initial center
point picks and variations in the time measurements from the zero
point.

The critical processing software, i.e., the software
responsible for the center point pick, is written as an
exchangeable procedure. The 4096-point array holding the
filtered/averaged sample points is passed to the procedure. The
procedure passes back a linked-list holding the position in the
array of each center point pick. The procedure was written to be
exchangeable SO that future interpretation techniques, methods,
or criterion could be written as procedures and easily
substituted for the current procedure.

The technique used for the procedure incorporated in this
version of the program finds each maximum and corresponding
minimum. The midpoint value is then found between the maximum
and minimum and added to the linked-list. The maximum or minimum
is found by forming an average of a small section of the waveform
and comparing this average to an average obtained by moving out
the waveform. When the average peaks, a maximum or minimum has

been encountered. This technique is illustrated in Figure 39.

60

Figure 39. Processing Software - Midpoint Selection.

The midpoint between the maximum and minimum is taken as the
waveform midpoint and added to the linked-list which is returned

to the main program.

5.3 Data Display Software

The display software generates the graphical display of the
waveform being processed. A graphical display of the computer
generated interpretation can be viewed also. The display
software provides the user with the Tfacilities to edit the

computer generated interpretation and see the results of the edit

61
immediately. The user can ‘zoom’ in on any selected section of

the waveform to facilitate editing the interpretation.

5.4 The User Interface

Since the system is likely to be operated by occasional
users, a menu driven interféce was considered desirable. The
overall structure of the menu tree is illustrated in Figure 40.
The user manual for the data display and processing software is
included in Appendix C. For convenience, the user manual can
also be retrieved from within the program by selecting the ’Help’

option from the first menu.

Base Menu

A. Process New Waveform
1 B. RecallEdit Waveform
C. Display Interpretation

D. Hel
E.a{ SELE-'()()()

A B

c | A load4Sets of Data and Average

¢ B. Load Single Set of Data
C. Exit
A&B
if A was Base Menu SeI;:::olrgl I—ﬁ" B was Base Menu Selection
Specify Waveform File to Load
<ESCs | Specity Wavef!rm File to Load <ESG 1o E"“i

<ESC> to Exit Specify Break List File to Load

<ESC> 1o Exit

Figure 40. Data Processing and Display Softwuare Menu Tree.

¢

A. Edit Waveform
B. Break List Generation, Edit, Etc.

Pt _£sCs Exit

<ESC>

62

—

A

<ESC>,D

A. Edit Waveform Data

B. Filter Waveform

C. Smooth Waveform

D. Save on Disk and Exit With Changes

>
<ESC> Exit Without Changes

lA

k,

c

Specify Start of Waveform

Perform Function

!

7

Specify Break List and
Waveform File to Load

y

Display Interpretation

<ESC> Exit

<ESC>

F3

Generate Break List if
Base Menu Option A Was
Used to Load Waveform

.

<ESC> Exit

Display Breaks, Select Area to
Expand to View/Edit.

<ESC>
—»

r

F1: Quit
F2: Edit

F3: Previous Menu |

F4: Store Breaks

[l 5

F4

Store Break List

Show Operations Manual

<ESC> Exit

<ESC>

Figure 40.

¥ Base Menu

F1: Quit

F2: Delete Break

F3: Add Break

F4: Move Break

F5: Update Break
Liston Disk

F6: Previous Menu

F1

F2,F3,F4

Perform Function

®)

Retum to DOS

Data Processing and Display Software Menu Tree.

6. COMMENTS AND CONCLUSIONS

It has been successfully demonstrated that a data
acquisition system for repetitive high frequency waveforms can be
designed and constructed inexpensively. The accuracy of the
constructed system meets the original requirements. While this
system was designed to solve a specific problem (to eliminate an
oscilloscope and Polaroid camera), the system should
theoretically be able to record any repetitive waveform with the
proper input and trigger/timing constraints.

The data display and processing software complements the
hardware system by reducing noise on the signal. Averaging,
smoothing, and filtering are all used to improve the signal
quality. The use of a software algorithm to perform the
interpretation removes the inconsistencies inherent in the manual
method. The software could be adapted to other signal processing
problems with the replacement or exchange of the interpretation
specific procedures. The display and user interface sections

could remain unchanged.

63

REFERENCES

P.R.Rigg, J.E.Carroll, C.Eng, "Low—Cost Computer—-Based Time-
Domain Microwave Network Analyser," IEE Proc., vol. 127, pt.
H, no. 2, pp. 107-111, April 1980.

N.S.Nahman, "The Measurement of Baseband Pulse Rise Times
of Less than 10~° Second," Proc. IEEE, vol. 55, no. 6, pp.
855-864, June 1967.

N.S.Nahman, "Picosecond-Domain Waveform Measurements," Proc.
IEEE, vol. 66, no. 4, pp. 441-454, April 1978.

N.S.Nahman, "Picosecond-Domain Waveform Measurement: Status
and Future Directions, "™ IEEE Trans. Instrum. Meas., vol. IM-
32, no. 1, pp. 117-124, March 1983.

H.M. Cronson, P.G.Mitchell, "Time-Domain Measurements of
Microwave Components," IEEE Trans. Instrum. Meas., vol. IM-
22, no. 4, pp. 320-325, December 1973.

A.M.Nicolson, G.F.Ross, "Measurement of the Intrinsic
Properties of Materials by Time-Domain Techniques," IEEE
Trans. Instrum. Meas., vol. IM-19, no. 4, pp. 377-382,
November 1970.

W.L.Gans, "The Measurement and Deconvolution of Time Jitter
in Equivalent-Time Waveform Samplers," IEEE Trans. Instrum.

Meas., vol IM-32, no. 1, pp. 126-133, March 1983.

64

10

11

12

13

14

65
B.J.Elliott, "System for Precise Observations of Repetitive
Picosecond Pulse Waveforms,"™ IEEE Trans. Instrum. Meas.,
vol. IM-19, no. 4, pp. 391-395, November 1970.
H.M.Cronson, A.M.Nicolson, P.G.Mitchell, "Extensions of Time
Domain Metrology Above 10 GHz to Materials Measurements,"
IEEE Trans. Instrum. Meas., vol. IM-23, no. 4, pp. 463-468,
December 1974.
W.L.Gans, J.R.Andrews, "Time Domain Automatic Network
Analyzer for Measurement of RF and Microwave Components,"
NBS Tech. Note 672, September 1975.
"Technical Reference - Perspnal Computer," IBM Personal
Computer Hardware Reference Library, April 1984.
N.S.Nahman, M.E. Guillaume, "Deconvolution of Time Domain
Waveforms in the Presence of Noise," NBS Tech. Note 1047,
October 1981.
E.O.Brigham, ‘The Fast Fourier Transform and its
Applications’, Prentice-Hall, Englewood Cliffs, New Jersey,
1988.
L.R.Rabiner, B.Gold, 'Theory and Application of Digital
Signal Processing’, Prentice-Hall, Englewood Cliffs, New

Jersey, 1975.

APPENDIX A

DATA ACQUISITION SOFTWARE LISTING

66

CONVERT
begin adc conversion

addresses location 300h (i/o) to start conversion

program CONVERT;

begin
inline ($ba/$00/$03/ { mov dx, 300h
See); { out dx, al

end.

67

e e e e

CONVERT2
Test program for adc chip

performs all steps for one data point acquisition

e ke e

program CONVERT2;

var
voltagep, { actual adc word }
loop : word; { counter variable }
voltage : real; { actual adc voltage }

begin { TEST program convert2 }

{ reset ramp }
inline ($ba/$06/$03/ { mov dx, 306h }
See); { out dx, al }
{ set dac }
inline ($ba/$03/$03/ { mov dx, 303h }
$b8/508/5$00/ { mov ax, 800h }
See/ { out dx, al }
$86/$c4/ { xchg al, ah }
Sda/ { dec dx }
See); { out dx, al }

{ trigger ramp }

inline ($ba/$05/$03/ { mov dx, 305h }
See); { out dx, al }
{ wait }

for loop := 1 to 40 do

inline ($90); { nop }
{ reset ramp }

inline ($ba/$05/$03/ { mov dx, 305h }
See); { out dx, al }
{ wait }

for loop := 1 to 20 do

inline ($90); { nop }
{ read conversion }

inline ($ba/$00/$03/ mov dx, 300h

{ }
Sec/ { in al, dx }
$86/5c4/ { xchg al, ah }
$42/ { inc dx }
Sec/ { in al, dx }
$b1/504/ { mov cl, 04h }
$d3/Se8/ { shr ax, cl }

{ }

$a3/voltagep); mov voltagep, ax

end.

voltage := voltagep * 4.88e-3;
writeln (voltage:10:6);
{ TEST program convert2 }

69

L e e e e e R e e e e I N PSS DU N

DAC_TST
Test program for dac chip.

DAC binary input is Straight Binary. 0000h is minimum

output, OFFFh is maximum.

DAC test connection is made at test-point #5.

DAC Zero Adjust - sets DAC output to 0000h input.

Actual output is adjusted to 0.000V at 100K variable
resistor connected to Bipolar Offset pin 4 on DAC chip.

DAC Gain Adjust - sets DAC output to OFFFh input.
Actual output 1is adjusted to 4.9988V at 100 ohm variable
resistor connected between pins 6 and 7 on DAC chip.

DAC Functional Test - functional test cycles DAC thru
0000h to OFFFh (OV to 5V output). This is the maximum

functional range that the DAC will be operating in.

Cycle can be repeated as required. Exiting test exits

program.

program DAC_TST;

var
loop : word; { counter variable
ans : char; { keyboard prompt

begin { TEST program dac_tst }

write (’Perform DAC zero adj.? y/n ’);
readln (ans);
writeln ('****tt***t');
if upcase (ans) = 'Y’ then
begin { if }

inline (S$ba/$03/$03/ { mov dx, 303h
$b0/500/ { mov al, 00h
See/ { out dx, al
S4a/ { dec dx
See); { out dx, al

write (’Hit any key when finished with DAC zero adj.’):

readln (ans);
Writeln (/*X***xxxxx%xxr).
end; { if }
write (’Perform DAC gain adj.? y/n ’);
readln (ans);
writeln (f*xxxaxkkxk*r).
if upcase (ans) = ‘Y’ then
begin { if }

inline ($ba/$03/503/ { mov dx, 303h
$b8/S££/50£/ { mov ax, Offfh
See/ { out dx, al
$86/5c4/ { xchg al,ah
Sd4a/ { dec dx
See); { out dx, al

write ('Hit any key when finished with DAC gain adj.’);

readln (ans);
writeln (/ ***x*xkikkkxt).
end; { if)
write (’Perform DAC test? y/n ’);

e

~— N et e e

N
o

e e et e e e S v e e e S e e S e e A e e e e e

readln (ans);
writeln (fAxkkkkkkxkks) .
if upcase (ans) = 'Y’ then

end.

repeat

inline ($ba/$03/$03/
$b8/$00/$00) ;

for loop := $0000 to $O0fff do

inline (See/
$86/$c4/
S4a/
See/
$86/5c4/
$40/
$42);

write (’Repeat DAC test? y/n ');

readln (ans);
writeln (/ **xxaxkxkx%s) .

until upcase (ans) = 'N’

{ TEST program dac_tst }

mox dx, 303h
mov ax, 0000h

out dx, al

xchg al, ah
dec dx

out dx, al

xchg al, ah
inc ax

inc dx

71

e e e e

program READ;

var
voltage

function adc:

inline

begin
voltage :=

READ
Test program to read adc

addresses locations 300h
bytes

: real; {

word;

(S$ba/$00/503/ {
Sec/ {
$86/Sc4/ {
$42/ {
Sec/ {
$bl/504/ {
$d3/%e8); {

adec * 4.88e-3;

writeln (voltage:10:6):

end.

and 301h for hi and lo

a/d converter value }

mov dx, 300h
in al, dx
xchg al, ah
inc dx

in al, dx
mov cl, 04h
shr ax, cl

S v et v e

72

et e e e e Y

program READ2

var
loop
voltage

READ2

Test program to read adc

addresses locations 300h and 301h for hi and lo

bytes

reads converter 1000 times

.
’

: integer; {
: real; {

function adc:word;

inline

begin
for loop :=
begin
voltage
writeln
end;
end.

(Sba/$00/$03/
Sec/
$86/%c4/
$42/

Sec/
$bl1/504/
$d3/5e8);

B e Ny

1 to 1000 do

:= adc * 4.88e-3;
(voltage:10:6);

counter variable
a/d converter value

mov dx, 300h
in al, dx
xchg al, ah
inc dx

in al, dx
mov cl, 04h
shr ax, cl

73

RESET
reset ramp program

addresses location 306h (i/0) to reset ramp circuit

turns ramp OFF

program RESET;

begin
inline ($ba/$06/$03/ { mov dx, 306h
See); { out dx, al

end.

<
o

SET_DAC
set dac output voltage

address location 302h, 303h (i/o) for low and high
byte. user inputs desired voltage (0 to +5 volts)

ke e e e e

program SET_DAC;

var
voltage s real; {selected o/p voltage }
out_voltage : word; {word output to dac }
begin
repeat { until valid range
writeln (’Input the voltage level for the DAC to output: ‘);
writeln;

readln (VOLTAGE);
if (voltage > 4.996) or (voltage < 0) then
writeln (’Input voltage is out of range’);
until (voltage >= 0) and (voltage <= 4.996¢);

out_voltage := round(voltage / 1.22e-3);

inline ($ba/$03/$03/ { mov dx, 303h }
See/ { out dx, al }
$86/$c4/ { xchg al, ah }
$4a/ { dec dx }
See) ; { out dx, al }

writeln (out_voltage:10);
end.

~
w

TOGGLE
toggle ramp ON to OFF or OFF to ON

addresses location 305h (i/o) to toggle ramp circuit

_—~ A

program TOGGLE;

begin
inline ($ba/$05/503/ { mov dx, 305h
See); { out dx, al

end.

76

et et e o e

TOGGLE2
toggles ramp: program cycles 10000 times

addresses location 305h (i/o) to toggle ramp circuit

program TOGGLEZ2;

var
loop, { counter variable
loopl : integer; { counter variable
begin
for loop := 1 to 10000 do
begin
inline ($ba/$05/$03/ { mov dx, 305h }
See); { out dx, al }
for loopl := 1 to 1000 do
inline ($90):; { nop }
end;

end.

77

TRIG_TST

Test program for trigger circuit
contents of 'al’ register are unchanged for this
operation and are not important as address is used as

strobe. data lines are not utilized.

Oscilloscope connections for test: Test-point #3
provides trigger, Test-point #4 is 'trigger pulse’.

Loop repeats 1000 times. User prompted for continue y/n

program TRIG_TST;

var
loop : integer; { counter variable

ans : char; { keyboard prompt

begin { TEST program trig_tst }
repeat
for loop := 1 to 1000 do
begin { for }
writeln (loop:5);

inline ($52/ { push dx
$ba/$04/$03/ { mov dx, 304h
See/ { out dx, al
$5a): { pop dx

end; { for }
read (ans);
until upcase (ans) = ‘'Y’
end. { TEST program trig_tst }

~—

78

TRIGGER
Test program for trigger circuit - single pulse

addresses location 394h (i/o)to initiate trigger

_— A e A

program TRIGGER;

begin { TEST program trigger }
inline ($ba/$04/5$03/ { mov dx, 304h
See); { out dx, al

end. { TEST program trigger }

79

program for data acquisition
1 GHz 12 BIT

program T1G12B;
uses dos, crt, graph;

type
single = array[l..4,1..4096] of word;
job_string = string{20];
var
store, { store session variable
finished : boolean; { continue? variable
ans : char; { continue? answer
waveform : single; { waveform array
job : job_string; { job name
shot,
loop : integer; { counter variable
procedure reset;
inline ($ba/$06/503/ { mov dx, 306h
See); { out dx, al
procedure set_dac (voltage:word);
inline ($58/ { pop ax
$ba/$03/$03/ { mov dx, 303h
See/ { out dx, al
$86/5c4/ { xchg al, ah
S4a/ { dec dx
See):; { out dx, al

procedure trigger;
inline($ba/$04/5$03/ { mov dx, 304h
See); { out dx, al

procedure micro_delay (m_delay:integer);

var
loop : integer; { counter variable
begin
for loop := 1 to m_delay do
inline($90); { nop
end;

function adc:word;

inline(

$ba/$00/$03/
Sec/
586/5c4/
$42/

Sec/
$b1/504/
$d3/%e8);

mov dx, 300h
in al, dx
xchg al, ah
inc dx

in al, dx
mov cl, 04h
shr ax, cl

procedure acquire waveform (var waveform:single; shot:integer);

var
count
voltage
finished

begin {procedure acquire_waveform}

writeln;
count := 0;
finished :=
voltage :=
repeat
inc (coun
set_dac (
inc (volt
trigger;
‘micro_del
reset;
micro_del
waveform|

integer;
: word;
: boolean;

false;
$0;

t):
voltage);
age);

ay(40);

ay(20);
shot, count]

adc;

counter variable }
actual input voltage }
entire signal recorded?}

until finished)

1f (count > 200) and (waveform[shot,count] = 4095) then

begin

count
volta
write

end;
if count
finishe
until finis

writeln;
set_dac ($0
end;

:= 0;
ge := 0;
(I*I);
= 4096 then
d := true;
hed;

):

{procedure acquire_waveform}

procedure store_on_disk (var waveform:

var
loopl,
loop
waveform fi
file_name,
path

integer;
le : text;

: job_string;

begin (procedure store_on_disk}

path := ’a:

readln (fil
file name
writeln (fi

\’ + job + "\’;
write (’Enter name of file to store

e_name);

le_name);

:= path + file_name;

single; job:job_string);

_—

counter variable }
file to store waveform}
name of file to store }
path name }

waveform under: ’, path);

81

assign (waveform_file, file_name);
rewrite (waveform file);
for loopl := 1 to 4 do
for loop := 1 to 4096 do
write (waveform file, waveform[loopl,loop]:6);
close (waveform file);
end; {procedure store_on_disk}

procedure show_waveform (var waveform:single);

var
graphdriver,
graphmode,
window : integer;
in_char : char;
avg,
finished : boolean;

procedure next(var window:integer; var waveform:single);

var
loopl,
loop : integer;

begin
clrscr;
outtextxy (1,2,’ E:exit A:average P:print file ->:next
window <-:previous window’);
case window of
1,2,3,4,5 : for loopl :=1 to 4 do
for loop := 0 to 639 do
putpixel (loop, waveform(loopl, (1loop+1)
+ (window*640)] div 12, red);
6 : for loopl := 1 to 4 do
for loop := 0 to 255 do
putpixel (loop, waveform([loopl, (loop+1)
+ (window*640)] div 12, red);
end;
inc (window) ;
end;

procedure previous(var window:integer; var waveform:single);

var
loopl,
loop : integer;

begin
clrscr;
outtextxy (1,2,’ E:exit A:average P:print file ->:next
window <-:previous window’);
for loopl := 1 to 4 do
for loop := 0 to 639 do
putpixel (loop,waveform|[loopl, (loop+1)+((window~2) *640)]

div 12, red);

dec (window) ;
end;

procedure average (var waveform:single);

82

83

var
loop,
loopl : integer;
begin
for loop := 1 to 4096 do
begin
for loopl := 2 to 4 do
waveform([1l, loop] := waveform[l, loop] + waveform[loopl, loop]:
waveform([1l, loop] := waveform[l,loop] div 4;
for loopl := 2 to 4 do
waveform{loopl,loop] := waveform(l, loopl]:;
end;
end;
procedure print waveform (var waveform:single; avg:boolean);
var
print_file : text;
loop, ‘
loopl,
loop2,
loop3,
exp_count,
data_print,
min,
max integer;
found ¢ boolean;
function exponent (y,x:integer) :integer;
var
temp,
loop : integer;
begin
temp := 1;
for loop := 1 to x do
temp := temp * y;
exponent := temp;
end;
begin
if not avg then
assign (print_file, ‘tlgl2b.sig’)
else
assign (print_file, ‘tlgl2b.ave’);
rewrite (print_file);
write (print_file, chr(27), chr(13), ’'P’, chr(27), ’e’,
chr(27), ’'x’, chr(0), chr(13));

for loop := 0 to 4095 do

if (loop mod 8) = 0 then
begin
max := 0;
min := 684;
for loopl := 1 to 4 do
for loop2 := loop to (loop + 7) do
begin

if max < (waveform|[loopl,loop2 + 1] div 6) then
max := waveform[loopl,loop2 + 1] div 6;
if min > (waveform[loopl,loop2 + 1] div 6) then
min := waveform([loopl,loop2 + 1] div 6;
end;

write (print_file, chr(27), ’'K’, chr(175), chr(2), chr(0));
for loopl := (max + 1) to 683 do
write (print_file, chr(0));
for loopl := max downto min do
begin
data_print
exp_count :
for loop2
begin
found := false;
for loop3 :=1 to 4 do
if ((waveform[loop3,loop2 + 1] div 6) =
loopl) and (not found) then

= 0;
0;
(loop + 7) downto loop do

begin
found := true;
data_print := data_print + exponent (2,exp count);
end; '
exp_count := exp_count + 1;
end;
if data_print 26 then
data_print 25
else if data_print = 9 then
data_print := 10;
write (print_file, chr(data_print));
end;
for loopl := 0 to (min + 1) do
write (print_file, chr(0));

84

write (print_file, chr(0), chr(0), chr(27), *J’, chr(23), chr(27), '<’);

end;
close (print_file);
end;

begin

graphdriver := egat64;
graphmode := egahi;
initgraph (graphdriver, graphmode, ‘c:\tpas\’);
clrscr;
window := 2;
avg := false;
previous (window, waveform);
finished := false;
repeat (until finished }

in_char := readkey;

case ord(in char) of

77 : case window of
1,2,3,4,5,6: next(window, waveform);

T1:
end;
75 : case window of
1:
2,3,4,5,6,7: previous(window, waveform):;
end; .

69,101 : finished := true;
65, 97 ': begin
average (waveform);
avg := true;
case window of
1: begin
window := 2;
previous (window, waveform) ;
end;
2,3,4,5,6,7: begin
window := window - 1;

next (window, waveform);

end;
end;
- end;
80,112 : print_waveform (waveform, avg);
end;

until finished;
closegraph;
clrscr;

end;

begin { main program }
clrscr;
write ('Will this session be stored on disk? Y/N 7);
ans := readkey;
writeln;,
if upcase(ans) = 'Y’ then

begin

store := true;

write (’Enter name of job (name length cannot exceed 5 characters):

readln (job);
writeln;
writeln (’Install formatted disk in drive "a:".’);
writeln;
writeln (’/Hit any key to continue’);
ans := readkey;
writeln;
mkdir(ra:\’ + job);
end
else
store := false;
writeln;
inline (Sfa):; { cli }
finished := false;
while not finished do
begin
shot := 1;
repeat { until shot > 4 }
set_dac (§0);
reset;
acquire waveform (waveform, shot);
write ('Do you want to view this waveform? (raw data) Y/N’);
ans := readkey;
if upcase(ans) <> ’N’ then
for loop := 1 to 4096 do
begin
write (waveform([shot,loop]:6);
if (loop mod 10) = 0 then
writeln;
end;
writeln;
write (’Is this waveform recorded correctly? Y/N');
ans := readkey;
writeln;
if upcase(ans) = 'Y’ then
begin
writeln (’Waveform Accepted -- Shot #: ', shot:3);
inc(shot);
end
else

N

85

writeln (’Waveform Rejected -- Shot #: ', shot:3, '
until shot > 4;
write (Do you want to view this waveform? (graphically)
ans := readkey;
if upcase(ans) <> ’N’ then
show_waveform (waveform);
writeln;
1f store then
begin
write ('Do you want to store this waveform? Y/N ’);
ans := readkey;
writeln;
if upcase(ans) = 'Y’ then
store_on_disk (waveform, job);
end;
write (‘Do you want to acquire another waveform? Y/N ’);
ans := readkey;

writeln;
if upcase(ans) = N’ then
finished := true;
end;
inline ($Sfb): (sti }

end.

{ main program }

next.’):;

Y/N 7):;

86

APPENDIX B

POST PROCESSING SOFTWARE LISTING

87

88

{ This Listing is Arranged as follows:

1. Procedure List Showing Procedure Nesting.

2. Procedure List Showing Calling Procedures, Procedures Called, and
Procedure Function.

3. Program Listing.

1. Procedure Nesting

PROCESS
MENU (menu_choices:choice_array; var selection:integer)
PATH_TO_FILE (var filename:name_string)
ENTER_PATH (var filename:name_string; var in char:char)
SELECT_LOAD_OPTION(var load_option:char)
LOAD WAVEFORM (var signal array:waveform; filename:name_string);
PROCESS 4 SIGNALS (var averaged_array:waveform; filename: name_string)
INSERT_BREAK (s_break:integer; s_positive:boolean; var
break_list:listpointer)
PICK_BREAKS (var signal array:waveform; var break_ list: ‘listpointer)
NEW_ WAVEFORM (var signal _array:waveform; var filename:name _string)
DISPLAY BREAKS (break list:listpointer; var signal array: waveform)
DISPLAY | "WAVEFORM (var signal _array:waveform; filename:name_string)
STORE _ BREAK LIST (filename:name_string; break list: listpointer)
DISPLAY EXPANDED _WAVEFORM (start, stop: integer; break_list:listpointer;
mode:option; var signal array:waveform)
EDIT BREAKS (var finished:boolean; filename:name_string; var
break_list:listpointer; var signal_array:waveform; start,x:integer)
DISPLAY_START END (var displaystart, displayend, start,stop:integer)
BREAK_SELECT (start, stop, move:integer; var
signal_ array:waveform; var break_list:listpointer)
DELETE_BREAK (start, stop, move:integer; var
success:boolean; var break list:listpointer)
ADD_BREAK (start, stop, move:integer; var break list:listpointer)
MOVE _BREAK (var start, stop, move:integer; var
break_list:listpointer; var signal_array:waveform)
EXPAND_WAVEFORM (var signal_array:waveform; var break_ list:listpointer;
var finished:boolean; filename:name_string)
EDIT_WAVEFORM DATA (var temp_array:waveform)
FILTERING (var temp_array:waveform)
SMOOTHING (var temp_array:waveform)
EDIT_WAVEFORM (var signal array:waveform;filename:name_string)
DISPLAY EXPAND (var signal_array:waveform;filename:name_string;
var break_list:listpointer;breaks:boolean)
DISPLAY INTERPRETATION (var signal_array:waveform;
var filename:name_string;var breaks_ list:listpointer)
EDIT_FROM DISK DISPLAY INTERPRETATION (var slgnal array:waveform;
var filename, b_ filename:name _string; var break list:listpointer;
var break list:listpointer)

2. Procedure Function Listing

program PROCESS;
uses graph,dos,crt,drivers;

const
array length = 4096;

type
choice_array = array(l..5] of string([40];
waveform = arrayll..array length] of integer;
name_string = string[40];
option = string(10];
break_rec = record

break : integer;
positive : boolean;
end;
listpointer = “listnode;
listnode = record
break : integer;
positive : boolean;
next : listpointer:;
end;

const
opening_menu: choice_array ={(
‘A. PROCESS NEW WAVEFORM',
‘B. RECALL/EDIT WAVEFORM’,
*C. DISPLAY INTERPRETATION’,
‘D. HELP ',
'E. EXIT');

89

var
signal_array : waveform;
break record : break rec;
break file : file of break rec; {global to whole program}
path_filenamel,
path_filename : name string;
break_list : listpointer;
graphdriver,
selection,
graphmode : integer;
breaks : boolean;

{****'k***}
('k*******t***t*****t********************t**************)

procedure MENU (menu_choices:choice_array; var selection:integer);

var
YY,r
loop : integer;
in_char : char;
P : pointer;
size + word;
Calls: none

Called by: Main Program

Function: Returns selection from menu display to the calling program. An

integer (1-5) is returned in the variable "selection",

Menu displayed is passed

90

to MENU procedure in "menu_choices": an array which can hold up to 5 character
strings. Each string must be prefixed with a letter (ie. A - E).

(*ttt***t*t***t***tt***t**tt***t*t**t***tt*****t*t****t)
(*ttt***t*****t*******ttt*t*********t**t*t*****t*t*****}

procedure PATH_TO_FILE (var filename:name_string);

var ‘
X, { global inside path to_file}
loop : integer;
size - ¢ word;
q : pointer; { global inside path_to_file}
in_char : char;
dirinfo : searchrec;

Calls: ENTER_PATH (internal)

Called by: NEW_WAVEFORM
EDIT_FROM DISK DISPLAY INTERPRETATION

Function: Facilitates entry of path and filename of file to retrieve.
Procedure checks that path and filename are valid but does not check that file is
a valid file type. Returns path and filename to calling program in "filename"
variable. Also facilitates display of specified directories.

(*****t*********t***t*******t*t***t*t*t*******t**tt****)

procedure ENTER_PATH (var filename:name_string; var in_char:char);

var
loop : integer;
temp ¢ name_string;
Calls: : none

Called by: PATH TO FILE (internal)

Function: . Actual keyboard entry of filename or directory path. Returns path
in "filename" variable and last keyboard entry in "in_char" variable.

(*******t*********************t****t*******************)
{**********************************t**************t****}

procedure SELECT_LOAD_OPTION (var load option:char);

Calls: none
Called by: NEW_WAVEFORM
EDIT_FROM DISK_DISPLAY INTERPREATAION

Function: Facilitates user selection to read single data set or from
concatenated data set to then perform averaging.

{**t*t****t***t**t**t*tt*******ttt****t***t*******t*t**}
{*ttttt***t**t***t*tt*tttttt**************t*tt********t)

procedure LOAD_WAVEFORM (var signal array:waveform; filename:name_string);

var
value,
loop : integer;
disk_file : text;
Calls: none

Called by: NEW_WAVEFORM

91

EDIT_FROM DISK_DISPLAY_ INTERPREATAION

Function: Reads a single data set into the computer from a disk file. Reads
4096 data points - does no averaging.

(************************ﬁ*****************************)
{**)

procedure PROCESS_4_SIGNALS (var averaged_array:waveform; filename:name_string);

var
value,
loop,
loopl : integer;
disk_file ¢ text;

Calls: none
Called by: NEW_WAVEFORM
EDIT_FROM DISK DISPLAY_ INTERPRETATION

Function: Reads data from disk file specified in "filename™ variable sent from
calling program. Expects four concatenated sets of data. Reads all four, adds
respective data points and divides by 4 to compute average. Resulting average is
returned to calling program in "averaged_array" variable.

(******t**t**)
{******ﬁ***}

procedure INSERT_BREAK (s_break:integer; s_positive:boolean; var
break list:listpointer);
var
temp,
traverse : listpointer:;
Calls: none

Called by: PICK_BREAKS
EDIT _FROM DISK_DISPLAY_ INTERPREATAION

Function: Adds break points sent to procedure in "s_break" and "s_positive"
variables to end of current break list. "break list" variable is returned to

calling program.

(**} -
(**************ﬁ**k********************ﬁ***************)

procedure PICK_BREAKS (var signal_ array:waveform; var break_list:listpointer);

const
ave_length = 20;
overlap
diff

var
avl,
avz,
av3,
inflectionl,
inflection2,
midpoint,
start : integer;
peak,
valley .¢ boolean;

92

function AVERAGE (var signal_array:waveform; start:integer):integer;

Calls: INSERT_BREAK
Called by: DISPLAY EXPAND

Function: Picks breaks from waveform based on the following method: three
averages are computed on three partially overlapping sections of the waveform.
When a peak or valley is detected (by comparing the three averages) the break is
chosen as the midpoint between the last valley (or peak) and the present peak (or
valley). The variable "signal_array"™ and "break_list"™ are returned to the calling
program.

{******i***********t*tt***tttttt*t****************i*tttt*ttttt**}
{************t************t***********t*************t*tt****t***}

procedure NEW_WAVEFORM (var signal_array:waveform; var filename:name_string);

var
old fillpattern : word;
option : char;

Calls: PATH_TO_FILE

PROCESS 4 SIGNALS

SELECT_LOAD_OPTION

LOAD_WAVEFROM
Called by: Main Program

Function: Inputs raw waveform data. Returns "signal_array" and "filename"
variables to calling program.

{*ttttt***tt*t*****t**ii*t*t*ttt*t*******ii**t***t****t}

procedure DISPLAY BREAKS (break_list:listpointer; var signal_array:waveform);

const
ydiv = 28;
yadd = =-20;

var
loop,
X : integer;
temp ¢ listpointer;
t : pointer;
size : word;

Calls: none

Called by: EXPAND_ WAVEFORM

Function: Displays breaks passed to it in "break list"™ variable on waveform
displayed by DISPLAY WAVEFORM procedure. "signal_array" is passed back to calling
program.

(*tt**ttt*tt*****t*tt*t*t*********ﬁ*******t*******t********i***t}
(tttttt*****ttttt**********ttttt*********************t*t****tt**)

procedure DISPLAY WAVEFORM (var signal_array:waveform; filename:name_string):

const
ydiv = 28;
yadd = ~20;

var

93

last,

current,

loopl,

space,

X,

loop : integer;
dummy : char;

Calls: none .

Called by: EDIT_WAVEFORM
EXPAND_WAVEFORM
DISPLAY EXPAND

Function: Displays entire waveform across top of screen. "signal-array”
variable is passed back to calling program.

{t****************t******tt*****************t*****t*************}
(*'k**tt**'k*t*****tt***t***t*tt*t**********ttt*t***********ttt***)

procedure STORE_BREAK LIST (filename:name_string; break_list:listpointer);

var
loop,
x : integer;
in_char : char;
p : pointer;
size ¢ word;

temp_string,
break_filename : name_string;
temp_pointer : listpointer;

Calls: none
Called by: EDIT_BREAKS
EXPAND_WAVEFORM

Function: Stores break list (as passed to it in "break_list"™ variable) on to
file on disk. This 1is not an ASCII file! "filename" variable is passed to
procedure and holds name of currently shown waveform file.

(t**t**********t*tt**tt*****t****t***k****t********t*****t******}
{t**t**t**t**t******t***tt****t***t**t**t***t****t************t*}

procedure DISPLAY EXPANDED_WAVEFORM (start, stop:integer; break_list:listpointer;
mode:option; var signal_array:waveform);

const
yadd = -40;
ydiv = 14;

var
temp ¢ listpointer;
t ¢ pointer;
size : word;
loop,
xex,
length,
displaystart,

displayend : integer;

Calls: none
Callaed by: EXPAND WAVEFORM
BREAK_SELECT

94

Function: Displays waveform from "start" to "stop" across the lower half of
the screen. "start" and "stop" are selected and passed by calling program. Breaks
are displayed. "mode" specifies ’'view’ or ’edit’. "signal_array" is passed back

to calling program.

(************t***t*****************************t*t*t**********t*}
(**t********t**t*t*******t*********************t***t*********t**)

procedure EDIT BREAKS (var finished:boolean; filename:name_string;
var break_list:listpointer; var signal array:waveform;
start, x:integer):;

const
yadd = -40; {global to Edit Breaks }
ydiv = 14; {global to Edit Breaks }
var
in_char : char;
move : integer;
success : boolean;

function ARRAY POSITION (displayend, displaystart,
point:integer) :integer;

Calls: BREAK_SELECT (internal)
DELETE BREAK (internal)
ADD_BREAK (internal)
MOVE_BREAK (internal)
STORE_BREAK_LIST

Called by: EXPAND_WAVEFORM

Function: Facilitates edit of breaks on waveform. Moving, deleting, and adding
breaks is facilitated. An updated break 1list can be stored on disk,
"signal_array" is passed back to calling program. "finished" and "mode" are also

returned to the calling program.

{****************ttt*t************tt**t***t********}

procedure DISPLAY START END (var displaystart, displayend, start, stop:integer);

var
length : integer:;
Calls: none

Called by: BREAK_SELECT
DELETE_BREAK
ADD_BREAK

Function: Determines actual array values that begin and end displayed waveform
from DISPLAY EXPAND WAVEFORM procedure. These values are returned In
"displaystart”" and "displayend" variables respectively. "start" and "stop" are
also returned to calling program.

{*******************t**t*******t*************k*****}

procedure BREAK SELECT (start, stop, move:integer; var
signal array:waveform; var break list:listpointer);

var
current position,
displaystart,
displayend : integer;

95

Calls: DISPLAY_ START END
DISPLAY EXPANDED_ WAVEFORM
Called by: MOVE_BREAK
EDIT_BREAKS (internal)

Function: Displays break select box on waveform. Passes "signal_array"
variable back to calling program.

{************************t*************************}

procedure DELETE_BREAK (start, stop, move:integer; var
success:boolean; var break list:listpointer);

var
delete_ position, .
tolerance,
displaystart,
displayend : integer;
templ, i
temp : listpointer;

Calls: DISPLAY START_END
Called by: MOVE_BREAK
EDIT_BREAKS (internal)

Function: : Deletes selected break from break list. Updates "break_list" and
passes variable back to calling program.

(**)

procedure ADD BREAK (start, stop, move:integer; var
‘ break_list:listpointer);

var
add_position,. .-
displaystart,
displayend : integer;
templ,
temp : listpointer;

Calls: DISPLAY START END
Called by: MOVE_BREAK
EDIT_BREAKS (internal)

Function: Adds break to break list. Updates "break list"™ and passes variable
back to calling program.

{**}

procedure MOVE BREAK (var start, stop, move:integer; var
break list:listpointer; var signal_array:waveform);

var
movel : integer;
in char : char;
.success : boolean;
Calls: BREAK _SELECT
DELETE_BREAK
ADD BREAK

Called by: EDIT BREAKS (internal)

Function: Moves selected break the specified amount. Updates "break_list"

96
variable and passes it back to the calling program. Also passes "start", "stop",
"move", "last_move", and "signal_array" variables back to calling program.

{***t*******************}
(***)

procedure EXPAND WAVEFORM (var signal_array:waveform; var break_list:listpointer;
var finished:boolean; filename:name_string);

const
yadd = -40;
ydiv = 14;
var
in_char ¢ char;
q : pointer;
size : word;
start,
X : integer;
Calls: DISPLAY EXPANDED_ WAVEFORM

STORE_BREAK_LIST
EDIT BREAKS
DISPLAY_ BREAKS
DISPLAY WAVEFORM
Called by: DISPLAY EXPAND

Function: Displays instructions and facilitates selection of segment of
waveform to display in expanded form. Returns "signal_array" and "finished™
variables to calling program.

{***}
{**************t************************************t***********)

procedure EDIT WAVEFORM DATA (var temp_array:waveform);

var
size word;
q : pointer;
Xy
loop : integer;
in_char ¢ char;
Calls: none

Called by: EDIT_WAVEFORM

Function: Allows user to select start of good data on waveform, Waveform is
shifted to start of good data, end is filled with last value. Returns updated
"temporary" waveform file.

(**t*********************tt**k**********************************}
(*******t**t**}

procedure FILTERING (var temp_array:waveform);

type
second _order_elliptic = array[l..11,1..3] of real;
real_waveform = arrayll..array_length] of real;

const
coeffic_a : second order_elliptic = ((1,-1.4410,0.6978), {0.20}
(1,-1.3694,0.6753), {0.22}
(1,-1.2957,0.6540), {0.24}

coeffic_b

var
temp
We,
loop
in_char

Calls:
Called by:

Function:

frequency.

: second order_elliptic

real_waveform;

integer;
: char;

none
EDIT_WAVEFORM

(1,-1.2199,0.6341),
(1,-1.1423,0.6155),
(1,-1.0628,0.5983),
(1,-0.9818,0.5824),
(1,-0.8991,0.5678),
(1,-0.8149,0.5545),
(1,-0.7293,0.5426),
(1,-0.6424,0.5320));

= ((0.1750,-0.0932,0.1750),
(0.1840,-0.0621,0.1840),
(0.1937,-0.0291,0.1937),
(0.2043,0.0056,0.2043),
(0.2157,0.0419,0.2157),
(0.2278,0.0798,0.2278),
(0.2407,0.1192,0.2407),
(0.2543,0.1601,0.2543),
(0.2686,0.2025,0.2686),
(0.2835,0.2462,0.2835),
(0.2992,0.2912,0.2992)) ;

{0.26}
(0.28}
{0.30}
{0.32}
{0.34)
{0.36}
{0.38}
{0.40}

{0.20}
{0.22}
{0.24}
{0.26}
{0.28}
{0.30}
{0.32}
{0.34}
{0.36}
{0.38}
{0.40}

97

Performs second order elliptic filtering on waveform in time domain.
Allows user to specify cutoff frequency between 0.2 and 0.4 the sampling

Returns updated "temporary" waveform file.

(**********t**)
(***t*****)

procedure SMOOTHING (var temp_array:waveform);

var

max_difference,
above_threshold,
below_threshold,
loop : integer;

finished
count

Calls:
Called by:

Function:

smoothing across these points.

procedure EDIT WAVEFORM (var signal_array:waveform; filename_name_string);

var

: boolean;
real;

none
EDIT_WAVEFORM

Finds top 10% magnitude differences from point to point.

Performs
Returns updated "temporary" wavefrom file.

{******t****t******t*****************t***t******************t***}
{******t****t*****************tt*t**********t****tt*****tt****t*)

temp_array : waveform;
loop : integer;

in_char

: char;

temp_string : name_string;

98

disk_file ¢ text;
Calls: EDIT_WAVEFORM DATA
FILTERING
SMOOTHING

DISPLAY WAVEFORM
Called by: DISPLAY EXPAND

Function: Gives options for editing/processing actual waveform data. Returns
"signal_ array" to calling program.

{***************t*t*******************t*****t****t*tt**t****tt*i)

(***************************i***t*******************************}

procedure DISPLAY EXPAND (var signal_array:waveform;
filename:name_string; var break_list:listpointer;breaks:boolean);

var
finished : boolean;
in_char : char;

Calls: DISPLAY WAVEFORM

EXPAND_WAVEFORM
PICK_BREAKS
. EDIT_WAVEFORM
Called by: EDIT_FROM DISK
Main Program

Function: Calls DISPLAY WAVEFORM procedure to display entire waveform and
EXPAND_WAVEFORM procedure to facilitate expanding and displaying the selected
section of the waveform. Calls EDIT_WAVEFORM procedure to facilitate waveform
edit procedures. Returns "signal array" and "break list” variables to the calling

program,
{*t******t***t*********************tt*******t***ti*it****ii*****}

(ﬁ******t**************************************t**i********i**t*)

procedure DISPLAY INTERPRETATION (var signal_array:waveform;
var filename:name_string; var break list:listpointer);

var
temp : listpointer;
x1,
x2 : integer;
in_char ¢ char;

Calls: DISPLAY_WAVEFORM

DISPLAY_BREAKS
Called by: - EDIT FROM DISK_DISPLAY_ INTERPRETATION

Function: Displays computer generated interpretation of waveform from specified
waveform and pre-generated break list.

{tii*****i**t*t**i*******t**i*t***************tt*********t**i***)
(*********t********************************t*******************i}

procedure EDIT FROM DISK DISPLAY INTERPRETATION (var signal_array:waveform;
var filename,b_filename:name_string; var break_list:listpointer;edit:boolean);

var
option : char;

Calls: PATH_TO_FILE

99

PROCESS_4_SIGNALS

INSERT_BREAK

DISPLAY_EXPAND

LOAD_WAVEFORM

DISPLAY INTERPRETATION
Called by: Main Program

Function: Recalls waveform and previously stored break list from disk file.
Returns "signal_array", "filename", "b_filename", and "break_list” variables back
to calling program if called from Main Program Option B. If Main Program OptionC
was selected, the computer interpreataion is generated.

(t*t*********************t*****‘k**‘k************i**i*************)
{‘k*‘k***t*******tt****t*t*k*t***t**t**‘k‘k******ti**t**************)

MAIN PROGRAM

Calls: MENU
NEW_WAVEFORM
DISPLAY EXPAND
EDIT_FROM DISK DISPLAY INTERPRETATION

Function: Operates from base menu:

1- New Waveform View and Edit

2- Recall Waveform and Break List from Disk for View and Edit

3- Recall Waveform and Break List from Disk for Interpretation Display
4- Display Help File

5- Exit to DOS

3. Program Listing }

{$M 40000, 0,25000)
program PROCESS;
uses graph,dos,crt,drivers;

const
array_length = 4096;

type
choice_array = array([l..5] of string(40};
waveform = array(l..array length] of integer;
name_string = string(40];
help_string = string[80];
option = string(10];
break_rec = record

break : integer;
positive : boolean;
end;
listpointer = “listnode;
listnode = record
break : integer;
positive : boolean;
next : listpointer;
end;

const
opening_menu: choice_array =(
‘A. PROCESS NEW WAVEFORM’,

100

'B. RECALL/EDIT WAVEFORM’,
'C. DISPLAY INTERPRETATION’,
‘D. HELP ',

"E. EXIT'):;

var
signal_array : waveform;
break_record ¢ break_rec;
break file : file of break_rec; {global to whole program)
path_filenamel,
path_filename ¢ name_string;
break list : listpointer;
graphdriver,
selection,
graphmode : integer;
breaks : boolean;

{*************t***********************t****************)
(**)

procedure MENU (menu_choices:choice_array; var selection:integer);

var
YY,
loop : integer;
in_char ¢ char;
P : pointer;
size : word;
begin
size := imagesize(1,1,16,9);

getmem(p,size);
setcolor (green);
rectangle(20,20,getmaxx - 20,getmaxy - 20);
setfillstyle(solidfill, green):;
floodfill (0,0, green);
setfillstyle(solidfill, white):
setcolor (white);
for loop:=1 to 5 do
outtextxy(70,40+ (loop-1) *10,menu_choices[loop]):
outtextxy (70,120, 'Enter Choice or Use Arrow keys and Hit <RETURN>');
yy:=39;
getimage(1,1,16,9,p");
putimage (68, yy,p", xorput);
selection:=0;
repeat
in_char := upcase(readkey):;
case ord(in_char) of
80 : begin
putimage (68,yy,p",xorput);
if yy=79 then
yy:=39
else
yy:=yy+10;
putimage (68, yy,p”,xorput);
end;
72 : begin
putimage (68, yy,p",xorput);
if yy=39 then

yy:=79
else
yy:=yy-10;

putimage (68, yy,p",xorput);

101

end;
65,66,67,68,69 : selection := ord(in_char) - 64;
13 : selection := (yy div 10) - 2;
end;
until selection <> 0;
freemem(p, size);
end;

(**)
(**}

procedure PATH TO FILE (var filename:name_string);

var
X, { global inside path to_file}
loop : integer;
size : word;
q : pointer; { global inside path_to file}
in char : char;
dirinfo : searchrec;

(**k***}

procedure ENTER_PATH (var filename:name string; var in char:char);

var
loop : integer;
temp : name_string;
begin
x = 150;

for loop := 1 to 40 do

putimage (150 + (loop-1)*9,60,q9", copyput);
'in_char := readkey;
filename := '’;
for loop := 1 to 73 do .

putimage (9 + (loop-1)*8,85,9",copyput);
while (ord(in_char) <> 13) and (ord(in_char) <> 27)

and (ord(in_char) <> 59) do

begin
if (x < 509) and (ord(in_char) <> 8) then
begin -
filename := filename + in char;
outtextxy(x, 60,in_char);
if x < 510 then
X = x + 9;
end
else if ord(in_char) = 8 then
begin
if x > 150 then
X :=x -9;
putimage (x,60,9",copyput) ;
temp :="'’;
for loop := 1 to ((x-149)div 9) do
temp := temp + filename[loop];
filename := temp;
end;
in_char := readkey;
end;
end;

(**********tttt******t****i********k**************kkt**)

102

begin
size := imagesize(1,1,8,8);
getmem(q,size);
setviewport (21,21, getmaxx - 21, getmaxy - 21,clipon);
clearviewport;
getimage (21,21,28,28,9%);
rectangle(148,56,509,69);

repeat {until doserror = 0)

setviewport(21,61,getmaxx - 21,68,clipon);
clearviewport;

setviewport(21,120,getmaxx - 21,130,clipon);
clearviewport;

setviewport(21,21,qgetmaxx - 21, getmaxy - 21,clipon);
outtextxy (60,40, 'Enter Path and Filename for File to Retrieve:’);
outtextxy (60,101, '<RETURN> to Continue <F1> for Directory <ESC> to
Exit’);
enter_path (filename, in_char);
if ord(in_char) = 13 then
begin
findfirst(filename,anyfile,dirinfo);
case doserror of

0 : clrscr;
3 : outtextxy(10,85,’Path Not Found (Dos Error = 3): ' + filename);

18 : outtextxy(10,85,’No More Files (Dos Error = 18): ‘' + filename);

end;
end
else if ord(in_char) = 59 then
begin
setviewport(21,61,getmaxx - 21,68,clipon);
clearviewport;
setviewport(21,120,getmaxx ~ 21,130,clipon):
clearviewport;
setviewport (21,21,getmaxx - 21, getmaxy - 21,clipon);
outtextxy (60,40, 'Enter Directory to Show:’);
outtextxy (100,101, ’<RETURN> to Continue <ESC> to Exit’);
enter_path (filename, in_char);
i1f ord(in_char) <> 27 then
begin
setviewport(21,131,getmaxx - 21, getmaxy = 21, clipon);
clearviewport;
setviewport (21,21, getmaxx - 21, getmaxy - 21,clipon);
setcolor(red);
line(0,111,getmaxx,111);
1ine(0,125,getmaxx,125);
1line (99,125,99,getmaxy);
line(198,125,198,getmaxy);
line (297,125,297,getmaxy) ;
1ine (396,125,396,getmaxy) ;
1ine (495,125,495,getmaxy);
setcolor (yellow);
outtextxy (90,115, ’Directory Shown is: ' + filename):
findfirst(filename, archive, dirinfo):
loop := 128;
x := 0;
while doserror = 0 do
begin
outtextxy(2 + x,loop,dirinfo.name);
findnext (dirinfo);
loop := loop + 9;
if loop = 308 then
begin
loop := 128;
X = x + 99;

103

end;
end;
setcolor (white);
end
else
filename := '’;
end
else
filename := '’;
until (doserror = 0) or (ord(in_char) = 27);
freemem(q, size);
end;

‘***tt*****ttﬁ***tt*****t******************************}
{**t**t**tt*tﬁ*tt**************************************)

procedure SELECT_LOAD_OPTION (var load_option:char);

begin
setviewport (21,21,getmaxx - 21, getmaxy - 21, clipon);
clearviewport;
outtextxy(10,10,’You Have Two Choices:’);
outtextxy(10,28,’—- You can load a file holding raw waveform data. The file’);
outtextxy(10,37,’ must hold four sets of concatenated data, 4096 points each.’
)
outtextxy(10,46,’ - The four sets are averaged.’);
outtextxy(30,64,’ PRESS <A>');
outtextxy(10,82,’~ You can load a file holding a single waveform data set of’);
outtextxy(10,91,’ 4096 points. NO modification is done to the data set:’);
outtextxy (10,100, It is displayed as it is recorded.’);
outtextxy (30,118, PRESS ');
outtextxy(20,145,’ PRESS <C> to EXIT'):;
load_option := readkey;
while not (ord(load_option) in [65,97,66,98,67,99]) do
load_option := readkey;
end;

{**)
{*********************************k********************}

procedure LOAD_WAVEFORM (var signal_array:waveform;filename:name_string);

var
value,
loop : integer;
disk_file ! text;
begin

assign(disk_file,filename);
reset (disk_file);
outtextxy (200,100, 'Retrieving File’);
for loop := 1 to array length do
begin;
read(disk_file,value);
signal_array[loop] := 4095 - value;
end;
close(disk_file);
end;

{******************************k***********************)
(**********************k*********k*********************}

procedure PROCESS_4_SIGNALS (var averaged_array:waveform;filename:name string);

var

value,

loop,

loopl : integer;
disk_file ¢ text;

begin

assign(disk_file,filename);

reset (disk_file);

outtextxy (200,100, 'Retrieving File’);

for loop := 1 to array_length do
read(disk file,averaged array|[loop]):;

for loopl := 1 to 3 do

for loop := 1 to array_length do
begin
read(disk_file,value);
averaged_array(loop] := averaged_array(loop] + value;
end;

close(disk_file);
outtextxy(210,110,’Averaging Waveforms’);
for loop := 1 to array_length do
averaged_array([loop] := 4095 - (averaged_array[loop] div 4);

end;

{***************t**ttt**t***********************t******)
(*t**t*ttt****t****t*****tt*t*tt*tt***t*t*tttt*tt**t*t*)

procedure INSERT BREAK (s_break:integer; s_positive:boolean;

var break_list:listpointer);

var

temp,
traverse : listpointer;

begin

new(temp);
temp”.break := s_break;

temp”.next := nil;
temp”.positive := s positive;
if break_list = nil then
break list := temp
else
begin

traverse := break list;
while traverse”.next <> nil do
traverse := traverse”.next;
traverse”.next := temp;
end;

end;

{*******tt*t*t****************t****t****t****ﬁ*********)
{*****************tt******tt*********************tt**ti)

const

ave_length = 20;
overlap = 0;
diff = 5;

var

avl,

104

procedure PICK BREAKS (var signal_array:waveform;var break_list:listpointer);

105

av2,

av3,

inflectionl,
inflection2,
midpoint,

start : integer;
peak,

valley ~ : boolean;

{********t********t*****************t*********t*t**t*t*}

function AVERAGE (var signal_array:waveform; start:integer):integer;

var

sum,

loop :+ integer;
begin

sum := 0;

for loop := start to (start + ave_length) do

sum := sum + signal_array[loop];

average := sum div ave length;

end;
{*********t****t***t**tt**'kttt************t*******t*ttt)

begin

start := 1;
avl := average(signal_array, start);
start := start + 1 + ave_length - overlap;
av2 := average(signal_array, start);
start := start + 1 + ave_length - overlap;
av3 := average (signal array, start):;
peak := false;
valley := false;
repeat (until peak or valley or at end}
if ((avl<av2) and (av2>av3)) or ((avl<av2) and (abs(av2-av3) < diff)) or
((abs(avl-av2) < diff) and (av2>av3)) then

peak := true
else if ((avl>av2) and (av2<av3)) then
valley := true
else
begin
avl := av2;
av2 := av3;
start := start + 1 + ave_length - overlap;
av3 := average(signal array, start);
end;
until peak or valley or ((start + 1 + ave_length - overlap)>array_length);
inflectionl := start - (ave_length div 2) + overlap;
avl := av2;
av2 := av3;

start := start + 1 + ave_length - overlap;
av3 := average(signal_array, start);
repeat {until end}
repeat (until peak or valley or end}
if ((avl<av2) and (av2>av3)) or ((avl<av2) and (abs(av2-av3) < diff)) or
((abs(avl-av2) < diff) and (av2>av3)) then

begin
peak := true;
valley := false;
end

else if ((avl>av2) and (av2<av3)) then

106

begin
valley := true;
peak := false;
end
else
begin
avl := av2;
av2 := av3;
start := start + 1 + ave_length;
av3 := average(signal_array, start);
end;
until peak or valley or ((start + 1 + ave_length - overlap)>array length);
inflection2 := start - (ave_length div 2) + overlap:;
midpoint := inflection2 - (inflection2 - inflectionl) div 2;
insert_break (midpoint, peak, break_list);
inflectionl := inflection2;
peak := false;
valley := false;
avl := av2;
av2 := av3;
start := start + 1 + ave_length;
av3 := average(signal_array, start);
until (start + 1 + ave_length - overlap) > array_length;
end;

{***t**t***t************
AKKRKRKAKR R KRR AR R A ARKARA AR AR R ARNA A AR A RN AR AR R AR AR RAARARA AR AAAR AR RAR R RR AR ARA R AR AR AR Ak kK

KA KRR A KA R AR R RR AR R AR KRR AR AR AR KK ok ok kK Kk ok ke ok k Kk k ko ke k ok kK kR
AhkkAKRKKRKKR AR ARk Xk khkhkkkkk k% NEW WAVEFORM PROCEDURE A **xkhkk Ak khkkkh Ak Ak kk k&
Kk kR AR RRRAKRR R AR KR AR KRR A KRR K KKK KKKKRKKA KK KR KR KR KA Ak kK

AR AR AR A AR AR AR AR AR AR R AR A AR AR AR AR AR AR AR AR R RAR R AR KRR AN AR AR AR AR AR KRR AN AR R A AR AR Ak ok ok hk
k****************************)

procedure NEW_WAVEFORM (var signal_array:waveform; var filename:name_string);

var
old fillpattern : word;
option : char;
begin

break_list := nil;
setfillstyle(solidfill,black);
bar(150,5,350,16);
outtextxy(160,7,'Retrieve Waveform File’);
select_load option(option);
if not (ord(option) in [67,99]) then
begin
path_to_file(path_filename);
if path_filename <> '’ then
if ord(option) in [65,97] then
process_4_signals(signal_array,path_filename)
else
load_waveform(signal_array, path_filename);
end
else
path_filename := ’';
end;

{******************************tt********t*************************t****t***k*
AKAKRKRKKARKR AR KRR AR AR AR A RR KRR AR R AR AR AR AR AR AR A AR KR ARA A AR AR A A AR AR AR AR AR KRR AR AR Ak kk k&
AKRKKARKAKNAKRKAA AR AARA KA ARk Ak kK AR AR KA KRR AN AAA R A AR KRAKR A A AR R A KA kK
AhkRAXAkAkAAA KA AA Rk ARk AR AAAhnkkx DISPLAY BREAKS KAARAAAKRKRAKRAARRRKR AR AR A A Rk Ak Ak ok k k&
Ak RAKAAKAAAAAAAA AR AR KRR AR AR KK AKX AARKRARKAAKRAA AR A RN AR AR AR AR kk ok kkkok

107

KARA KA AR KRR AR AR R AR KA AR R AR R AR RN AR AR AR AR AR AR AR AR AR AR AR AR R AR R R A AR KRR AR AR A A Rk kA Ak ARk
**********t*******t*i******t*t***tt********t****t*******************t*t******}

procedure DISPLAY BREAKS (break_ list:listpointer; var slgnal_array:waveform);

const
ydiv = 28;
yadd = =20;

var
loop,
X : integer;
temp ¢ listpointer;
t : pointer;
size : word;

begin

for loop := 1 to 10 do
putpixel (1, loop, lightmagenta) ;
size := imagesize(1,1,1,10);
getmem(t,size);
getimage(1,1,1,10,t");
putimage(1,1,t", xorput);
temp := break_list;
while temp”.next <> nil do
‘begin
x := ((temp”.break div 7) + 1) + 19 + (((temp”.break mod 7) - 1) * 2)
div 7;
putimage (x,signal_array([temp”.break]div ydiv + round(1.25 * yadd),t",orput);
temp := temp”.next;
end;
freemem(t, size):;
end; :

(***********************t*t*********t***t********t********k*******************
AKKA KRR KA KA A KRR KR KR AR AR KRR AR A AR KRR AR AR AR AR A A AR AR AR ARk kAR Ak Ak ko k kA kR kA AR ARk KA KKk k ok *

ARk AR kkhkkhkXrkhkkkkkhkkkkkkkkk A kA AAAA KA KK AR AR KKKk kk kk kkokkkk
Ak kkkkkkkkkkkkkkxkkkkkAxxkk*x DTSPLAY WAVEFORM ARKAKRA R KA A AR AR KA A AR AR AR AR AR AR kK
AKX AAKRKAAKRAR R AR AR KR AR AAR K kA k& KKK KAA KRR KA KA KRR KRR AR KA A AR AR KA KKk K

ARKKA KA AR KRR AR AR AN AR R AR R AR AR AR AR AR R A KRR RN AR AR KRR R AR AR ARRR AR R AR RN A A AR A AR A AR AR AR Ak
**************************************t**************************************)

procedure DISPLAY WAVEFORM (var signal_array:waveform; filename:name_string);

const
ydiv = 28;
yadd = -20;

var
last,
current,
loopl,
space,
X,
loop
dummy

integer;
char;

begin
setviewport (0,0,getmaxx,getmaxy,true);
clearviewport;
settextstyle(smallfont, horizdir,4);
outtextxy(10,getmaxy - 10, filename);
setviewport (0,0,639,110,clipoff);

x := 20;

last

:= (signal_array(l] div ydiv) + yadd;

putpixel (x, last, white);
for loop := 8 to array_length do
if ((loop-1) mod 7) = 0 then
begin

x 1= x + 1;
current := (signal_arrayl(loop] div ydiv) + yadd;
putpixel (x, current, white);
space := abs(last - current);
if (space > 1) and (current > last) then
for loopl := 1 to (space div 2) do
begin
putpixel (x, current - loopl, white);
putpixel(x - 1, last + loopl, white);
end
else if (space > 1) and (current < last) then
for loopl := 1 to (space div 2) do
begin
putpixel (x, current + loopl, white);
putpixel(x - 1, last - loopl, white);
end;
last := current;

end;
settextstyle (defaultfont,horizdir,1);
setviewport (0,0,getmaxx,getmaxy,true);

end;

108

{*******k*****ﬂ*******t**t**k*********ﬁ***t***t***************************k***
AR AR RRRRR AN KRR AR AR AR AR AR RAA KRR R AN RAAR AR AR R AR R AN AR ARR R AR AR AR AR AR AR AN A AR AN Rk Ahkk

LAS RSS20 RRRRRERRREE S

IZEZE2 RS RESSS RS SRR RR SRR Sd

Ahkkhkhkhkhhhhkhkhkkhhhkkkkkkxrkdxxx STORE BREAK LIST (22 REESRSRS 2222 RS RER S

(2R 2R 2220 RRERRRRRRRRRREREE]

I2Z 2SS SREESRERSSR 2R RRR R SR SRS

ARk kAR Rk kR R Rk AR A A AR AR AR AR AR R A AR R A AR AR AR AR AR R AR AR R Ak ko A Ak k koo ko kok ok &
t****tﬁﬁ**ﬁ****ﬁ***t**t*ﬁﬁﬁ**ﬁ*ﬁ*ttt***ﬁ*ﬁﬁ****ﬁ**ﬁ**i**t*i*t*tt*******t*t***)

procedure STORE BREAK LIST (filename:name_string; break list:listpointer);

var
loop,
X : integer;
in_char : char;
P : pointer;
size : word;

temp_string,
break_filename : name_string;
temp_pointer : listpointer;

begin
size

:= imagesize(1,1,8,8);

getmem(p,size);

getimage(1,1,8,8,p");

setviewport (160,120,480,180,clipon);
clearviewport;
setviewport (0,0, getmaxx,getmaxy,clipoff);
rectangle(160,120,480,180);
rectangle(165,122,475,178);
floodfill(161,121,white);

outtextxy (169,127, 'Displayed Waveform Filename:’);
outtextxy(174,136,filename);

outtextxy (169,148, 'Name of File to Store Breaks:’);
x = 174;

in_char := readkey;

109

break_filename := ’‘;
while (ord(in_char) <> 13) and (ord(in_char) <> 27) do

begin
if (x < 464) and (ord(in_char) <> 8) then
begin
break_filename := break_filename + in_char;
outtextxy(x,157,in_char);
if x < 465 then
X = x + 9;
end
else if ord(in_char) = 8 then
begin
if x > 174 then
X = x - 9;
putimage (x,157,p", andput) ;
temp_string := '’;
for loop := 1 to ((x-173)div 9) do
temp_string := temp_string + break_filename[loop];
break_filename := temp_string;
end;
in_char := readkey;
end;

temp_pointer := break_list;

assign(break_file, break _filename);

rewrite (break_file);

break record.break := temp_pointer”.break;

break record.positive := temp _pointer”.positive;

wrlte(break file,break_record);

repeat {until temp_pointer”.next = nil}
temp_pointer := temp_pointer”.next;
break_record.break := temp_ pointer”.break;
break record.positive := temp pointer”.positive;
write(break file,break_record);

until temp pointer”.next = nil;

close(break_file);

freemem(p, size);

end;

{********i********************t****t**
AR AR A AR R AR KRR A AR RN AR AR R AR R AR R KRR R AR AR AN AR AAR AR AR AR AR RA AR AR AR AR AR AR A AR R AR AR Ak AR

AARKAA KK ARAR AR KKk kkok kok kkok (222822 RS RRRRRRRRRES R
Ahkkkhkhkhhkhkhkkkhkhkkkkkxxxkkx DTSPLAY EXPANDED WAVEFORM Ak kA RKAARRKARKRKRRARAKRAAA AR KR
(222 SR SR RRRRRRRRERERSE] Ak kA RKRAKRAKRKRKRRAAA AN A A AR AKX

KRR AR AR R AR AR KRR AR AR AR R AR AR AR AR R AR AR AR KRR R RR KRR AR AR KRR RARRA KR AR KRR RA R AR AR AR R A ARk Ak k kK
*************t************************************t**************************)

procedure DISPLAY EXPANDED_WAVEFORM (start, stop:integer; break list:listpointer;
mode:option; var signal_array:waveform);

const
yadd = -40;
ydiv = 14;

var
temp : listpointer;
t : pointer;
size : word;
loop,
Xex,
length,
displaystart,

displayend : integer:;

110

begin
setfillstyle(emptyfill, black);
rectangle(0,110,639,338);
setviewport(1,111,638,337,clipon);
clearviewport;
xex := 0;
length := 7 * (stop - start);
if length > getmaxx then
begin
displaystart := 7 * (start - 20) - (getmaxx - (length mod getmaxx))
div 2;
if displaystart < 0 then
displaystart := 0;
displayend := displaystart + ((length div getmaxx) + 1) * getmaxx;
if displayend > array_length then
begin
displaystart := displaystart - (displayend - array_length);
if displaystart < 0 then

begin
displaystart := 0;
displayend := ((length div getmaxx) + 1) * getmaxx;
end
else
displayend := array_length;
end;

for loop := displaystart to displayend do
if (loop mod ((length div getmaxx) + 1)) = 0 then

begin
putpixel (xex, (signal_array(loop] div ydiv) + yadd,white);
Xex := xex + 1;
end;
. end
else {length <= getmaxx}
begin

displaystart := 7 * (start - 20) - (getmaxx - length) div 2;
if displaystart < 0 then
displaystart := 0;

.displayend := displaystart + getmaxx;
if displayend > array_length then
begin

displaystart := displaystart - (displayend - array_length);
displayend := array_length;

end;
for loop := displaystart to displayend do
begin
putpixel (xex, (signal_array(loop] div ydiv) + yadd,white);
xex := xex + 1;
end;
end;

setviewport (0,0, getmaxx, getmaxy,clipoff);
rectangle(displaystart div 7 + 20,0,displayend div 7 + 20,110);
setfillstyle(solidfill,red);
floodfill (displaystart div 7 + 25,2,white);
floodfill(displaystart div 7 + 25,108,white);
floodfill (displayend div 7 + 15,2,white);
floodfill(displayend div 7 + 15,108,white);
setviewport (1,111, 638,339,clipoff);
rectangle(0,0,45,13);
setfillstyle(solidfill,blue);
floodfill(2,2,white);
outtextxy(7, 3, mode) ;
for loop := 1 to 20 do

putpixel (1, loop,cyan);

111

size := imagesize(1,1,1,20);
getmem(t,size);
getimage(1,1,1,20,t");
putimage(1,1,t”, xorput);
temp := break list;
while (temp”.break < displaystart) and (temp~.next <> nil) do
temp := temp”.next;
if temp”.next <> nil then
while (temp”.break <= displayend) and (temp”.next <> nil) do
begin
xex := (temp”.break - displaystart) div ((displayend-displaystart + 1)
div getmaxx);
putimage (xex,signal_array(temp”.break]div ydiv + round(1.25 *
yadd),t*,orput);
temp := temp”.next;
end;
setviewport (0, 0, getmaxx, getmaxy, clipoff) ;
freemem(t, size):;
end;

{*****k**************k********************k***t******************t***t****t*t*
Ah kA AR ARA AR AN A AR A A RN AR AR A AR AT A KKK AR AR R AR A KRRk Ak kA Ak Ak ok ok Ak ok Ak k ok kk ok ok k ok kk ok k

ARk RAKRKAKARKKAARAKRKA AR AR AR AR A A ARk Kk ARKARAAKR KRR KA AR AR KA AR AR AR KA Ak k&
AhkhkRAhk Rk ARk hkA Ak kk Kok k kokk kkkk EDIT BREAKS AR AR AR AARKRKRRNKRARAN R KRR ARk AR Ak Ak k&
KA AAKRKRA A KRR ARAR A A AR KRR AR Ak Ak kX KRR KRR KR KRR RNRAKR AR R Ak A Ak Ak hkkkkxk

AR KRR KRR KRR AR KRR AR AR AR AR AR R AR R KA RRR KRR R KA R KRR AR KRR AR R AR AR KRR AR KRR R AR R AR R Ak kk k ok Ak kk
**************************ﬁ**ﬁ*ﬁ**i********t***kt******t***********k*********}

procedure EDIT_BREAKS (var finished:boolean; filename:name_string;
var break_list:listpointer; var signal_array:waveform; start, x:integer);

const
yadd = =-40; {global to Edit Breaks }
ydiv = 14; (global to Edit Breaks }
var
in_char : char;
move : integer;
success : boolean;

(***t****************************i********ﬁ********}

function ARRAY POSITION (displayend, displaystart, point:integer) :integer;

begin
array position := displaystart + point * ((displayend -
displaystart + 1)div getmaxx);
end;

(***************t*****t***t***k**************i**k**)

procedure DISPLAY START END (var displaystart, displayend, start, stop:integer);

var :
length : integer;

begin
length := 7 * (stop - start);
if length > getmaxx then
begin
displaystart := 7 * (start — 20) - (getmaxx - (length mod getmaxx))
div 2;
if displaystart < 0 then

displaystart := 0;
displayend := displaystart + ((length div getmaxx) + 1) * getmaxx;
if displayend > array_length then
begin
displaystart := displaystart - (displayend - array_length);
if displaystart < 0 then
begin
displaystart := 0;
displayend := ((length div getmaxx) + 1) * getmaxx;
end
else
displayend := array_length;
end;
end
else
begin
displaystart := 7 * (start - 20) - (getmaxx - length) div 2;
if displaystart < O then
displaystart := 0;
displayend := displaystart + getmaxx;
if displayend > array_length then
begin
displaystart := displaystart - (displayend - array length);
displayend := array_length;
end;
end;
end;

{length <= getmaxx}

{**}

112

procedure BREAK_SELECT (start, stop, move:integer; var signal _array:waveform;

var break_list:listpointer);

var
current_position,
displaystart,
displayend : integer;

begin
display_start_end(displaystart, displayend, start, stop);
current_position := 320 + move;
if current_position < 4 then
current_position := 4
else if current_position > (getmaxx -~ 5) then
current_position := getmaxx - 5;

display expanded_waveform(start, stop, break_list, ’'EDIT’, signal_array);

setviewport (1,117,638,339,clipon);

setcolor (green) ;

rectangle (current_position - 4, signal_arraylarray position(displayend,
displaystart, current position)]div ydiv + round(1.32 * yadd),
current_position + 4, signal_arraylarray position(displayend,

displaystart, current position)]ldiv ydiv + round(1.32 * yadd) + 24);
setcolor (white) ;

setviewport (0,0,getmaxx, getmaxy, clipoff);
end;

{*#***t****t***tk#*k*tk*t*ﬁ*tﬁ***t****t****k****ﬂ**)
procedure DELETE BREAK (start, stop, move:integer; var success:boolean;
var break_list:listpointer);

var
delete position,

113

tolerance,

displaystart,

displayend : integer;
templ,

temp : listpointer;

begin
display_start_end(displaystart, displayend, start, stop):
tolerance := (displayend-displaystart)div 640;
delete position := array position(displayend, displaystart, 320 + move);
temp := break_list;

templ := temp;
while (temp”.break < (delete_position-tolerance)) and (temp”.next <> nil) do
begin
templ := temp:;
temp := temp”.next;
end;

if (temp”.next <> nil) and (temp”.break >= (delete_position-tolerance)) and
(temp”.break <= (delete_positionttolerance)) then

begin
if temp = break_list then
break_list := temp”.next
else
templ”.next := temp”.next;
temp”.next := nil;
dispose (temp) ;
success := true;
end
else
success := false;
end;

{*********************i****************************)

procedure ADD_BREAK (start, stop, move:integer; var break_list:listpointer);

var
add_position,
displaystart,
displayend : integer;
templ,
temp : listpointer;

begin
display_ start_end(displaystart, displayend, start, stop);
add_position := array position(displayend, displaystart, 320 + move);
temp := break_list;
while (temp”.next <> nil) and (temp”.next”.break < add_position) do

temp := temp”.next;

new (templ);
templ”.break := add_position;

templ”.positive := true;
if (temp = break_list) and (temp”.break > add_position) then
begin

templ”~.next := temp;
break_list := templ;
end
else
begin
templ”.next := temp”.next;
temp”.next := templ;
end;
end;

114

(******************************t**************t****)

procedure MOVE_BREAK (var start, stop, move:integer; var break_list:listpointer;
var signal_array:waveform);

var
movel : integer;
in_char : char;
success : boolean;
begin
setviewport (10, getmaxy - 20,633,getmaxy - 12, clipoff)’;
clearviewport;

setviewport (0,0, getmaxx,getmaxy, clipoff);

movel := move;

repeat
outtextxy (10, getmaxy - 20, ’'<- -> CTRL+=> = => X 20 CTRL+<= =');
outtextxy (317,getmaxy - 20, ' <- X 20 F4 - Return To Previous Menu’);
in_char := readkey;
case ord(in char) of

116 : begin
delete_break(start, stop, movel, success, break_list);
movel := movel + 20;
end;

115 : begin
: delete_break(start, stop, movel, success, break_list);
movel := movel - 20;
end;
75 : begin
delete_break(start, stop, movel, success, break_list);
movel := movel - 1;

end;
77 : begin
delete_break(start, stop, movel, success, break_list);
movel := movel + 1;
end;
62 : move := movel;
end;
if ord(in_char) in (116,115,75,77] then
begin

if success then
add_break (start, stop, movel, break_list);
break_select (start, stop, movel, signal_array, break list):;
. end;
until ord(in_char) = 62;
end;

{**********k***********k***k*****************k****t}

begin
move := 0;
setviewport(1,111,46,124,clipoff);
clearviewport;
rectangle(0,0,45,13);
floodfill(2,2,white);
outtextxy(7,3,'EDIT');
setviewport (0,0, getmaxx, getmaxy, clipoff);
break_select(start, x, move, signal_array, break_list);
outtextxy(10,getmaxy - 20,'Fl - Quit F2 - Delete F3 - Add’);
outtextxy(305,getmaxy - 20,'F4 - Move F5 - Update F6 - Prev. Menu’);
in_char := readkey:;
repeat (until F1 or F6}

115

in_char := readkey;
case ord(in_char) of
116: move := move + 20;
115: move := move - 20;
75: move := move - 1;
77: move := move + 1;
59: finished := true;
60: delete_break(start, x, move, success, break_list);
61: add break(start, x, move, break_list);
62: move_break(start, x, move, breaf_list, signal_array):;
63: store_break list(filename, break list);
64:;
end;
if ord(in_char) in (116,115,75,77,60,61,62,63] then
begin
break_select (start, x, move, signal_array, break_list);
outtextxy(10,getmaxy — 20,’Fl1 - Quit F2 - Delete F3 - Add’);
outtextxy(305,getmaxy - 20,’F4 - Move FS5 - Update F6 - Prev. Menu'’);
end;
until ord(in_char) in (59, 64};
end;

(***********************************t******t*****t*****t******tt****t*********
1322322232232 222222322 2R R RS SS S22 22 R Rttt sl

Ak Rk kAR ARk AR KA AA KA AR KA KAk Kk k& kAKX A A AKRAKRARAKRAAAA Ak kA k Ak kkhk
Ak Ak AR AKRKRK AR KA AR ARk kk kkokkkk EXPAND WAVEFORM khkkhkhkhA Ak khkhkkkhkhk Ak kkkkkkkhkkhkk
I22 22282 RRRRE RS Ahkkhhkhdkhkkhkhkhkkkhkkokhkhodkddhkhk

ARAR KRR KR AR AR KRR AR AR R R KRR AR AR AR AR A AR AR KRR R AR R A AR R AR AR AR R AR AR ARk AR AR AR Ak Ak k kA ko k k&
***************t**t****t***********)

procedure EXPAND_WAVEFORM (var signal_array:waveform; var break_list:listpointer;
var finished:boolean; filename:name_string);

const
yadd = -40;
ydiv = 14;
var
in_char : char;
q : pointer;
size : word;
start,
X : integer;
begin

1ine(20,2,20,108);
size := imagesize(20,2,20,108);
getmem(q, size);
getimage (20,2,20,108,9");
setviewport(1l,111,638,337,clipoff);
clearviewport;
setviewport (0,0, getmaxx, getmaxy,clipon);
repeat
rectangle(1,111,45,124);
setfillstyle(solidfill,blue);
floodfill(2,112,white);
outtextxy(7,114,'VIEW’);
outtextxy(25,getmaxy - 100,’To Expand the Waveform:’);
outtextxy(25,getmaxy — 91,’ 1. Use arrow keys to move the marker right or left
to’);
outtextxy (454, getmaxy — 91,’ the beginning’);
outtextxy(25,getmaxy - 82, of the waveform segment to be expanded, hit’);
outtextxy(401,getmaxy - 82,’ <RETURN>.’);

116

outtextxy(25,getmaxy - 73,’ 2., Use arrow keys to specify the area to be
expanded’) ;
outtextxy(449,getmaxy - 73,’, hit <RETURN>.’);
outtextxy(25,getmaxy — 55,/<CTRL + Arrow key> combination facilitates faster
marker movement.’);
outtextxy(75,getmaxy - 35,/<ESC> to Exit’);
display breaks(break_list, signal_array):

x := 20;
repeat {until in_char = return}
in_char := readkey;
case ord(in_char) of
116 : begin
putimage (x,2,q", xorput);
x:= x + 20;
if x >= (getmaxx - 35) then
X := getmaxx - 35;
putimage (x,2,q9", xorput);
end;
115 : begin
putimage(x,2,q9",xorput);
x:= x — 20;
if x <= 20 then
x := 20;
putimage (x,2,q", xorput);
end;
75 : begin
putimage (x,2,q",xorput);
x:= x — 1;
1f x <= 20 then
x := 20;
putimage(x,2,q",xorput);
end;
77 : begin
putimage (x,2,q9", xorput) ;
x:=x + 1;
if x >= (getmaxx - 35) then
X := getmaxx - 35;
putimage(x,2,q*, xorput);
end;
end;

until ord(in_char) in [13, 27]:;
start := x;
if ord(in_char) <> 27 then
repeat {until ord(in_char) = return}
in_char := readkey;
case ord(in_char) of
116 : begin
if x <> start then
putimage (x,2,q9", xorput);
x:= x + 20;
if x >= (getmaxx — 35) then
X := getmaxx - 35;
putimage (x,2,q",xorput) ;
end;
115 : begin :
if x <> start then
putimage (x,2,q9", xorput) ;
X:= x - 20;
if x > start then
putimage (x,2,q9",xorput)
else :
x := start;
end;

117

75 : begin
if x <> start then
putimage (x,2,9", xorput) ;
x:= X - 1;
if x > start then
putimage (x,2,9", xorput)
else
X := start;
end;
77 : begin
if x <> start then
putimage (x,2,9", xorput);
x:= x + 1;
if x >= (getmaxx - 35) then
X = getmaxx - 35;
putimage (x,2,9", xorput) ;
end;
end;
until ((ord(in_char) = 13) and (x <> start)) or {ord (in_char) = 27);
if ord(in_char) <> 27 then
begin
display_expanded_waveform(start, x, break_list, ‘VIEW’, signal_array):
outtextxy(80,getmaxy - 20,'Fl - Quit F2 - Edit F3 - Previous Menu’);
outtextxy(440,getmaxy - 20,’F4 — Store Breaks’);
repeat {until F1, F2, or F3}
in_char := readkey;
if ord(in_char) = 62 then
begin
store break_list(filename, break_list);
display expanded_waveform(start, x, break_list, 'VIEW’,
signal_array):
outtextxy (80,getmaxy ~ 20,’F1l - Quit F2 - Edit F3 - Previous
Menu'’) ;
outtextxy (440, getmaxy - 20,’F4 - Store Breaks’):;
end;
until ord(in_char) in [59,60,61];
case ord(in_char) of
59 : finished := true;
60,61 : begin
if ord(in_char) = 60 then
edit_breaks(finished, filename, break_list, signal array,
start, X):
clearviewport;
display waveform(signal_array, filename);
putimage (20,2,9", xorput);
end;
end;
end
else
finished := true;
until finished;
freemem(q, size);
end;

(***********************ﬁ******t****ﬁ**t*k************************t********t**
KAk KRR KRR KRR KA KRR AR A AR AR R AR A A A R AR A AR AR AR AR A AR AR A A A A AR A A AR AR AR AR AR AR AR AR A AR A AR Rk k&

ARRA AR KRR I AR AR R KRR R A A KRN Ak & KAKKARKKKAK KR kR AR KA AR KA Kk kAR &
AXAKKK KR AR KARK AKX AR khkkkak* EDIT WAVEFORM DATA A * ARk Ak kk AR kA kk ARk kA kk AKXk kK
KKK RRK KRR KK AR AR AR AR KNk k & AAd kKRR KK KAk kk ek kK KRk kK kKX

KA RRAA AR AR AR AR AR AR AR AR AR AR R R AR A A AR KRR AR AR AR AR kA AR R A A AR kAR Ak Ak A A A kAR KR KRAKRIR AKX
*************************t*********t***k***********************t**t**********)

procedure EDIT_WAVEFORM DATA (var temp_array:waveform);

var
size
q
X,
loop
in_char

begin

: word;
: pointer;

: integer;
: char;

setviewport(1,150,638,337,clipoff);
clearviewport;
setviewport (0, 0, getmaxx, getmaxy, clipon);

outtextxy(25,getmaxy - 109,’Select Start of
- 100,’ Use arrow keys and <CTRL + arrow keys> to

Waveform "good" Data:’);

position’);

)

return or esc}

118

outtextxy (25, getmaxy
outtextxy(25,getmaxy - 91,’ marker to start of good data on the waveform.’);
outtextxy(25,getmaxy - 82,’ Hit <RETURN> to select point,
outtextxy(25,getmaxy - 73,' <ESC> to exit without changes.’):
line(20,2,20,108);
size. := imagesize(20,2,20,108);
getmem(q, size);
getimage (20,2,20,108,9");
x := 20;
repeat {until in_char =
in_char := readkey;
case ord(in_char) of
116 : begin
putimage (x,2,9", xorput) ;
x:= x + 20;
if x >= (getmaxx - 35) then
X := getmaxx - 35;
putimage (x,2,9", xorput);
end;
115 : begin
putimage (x,2,q9", xorput);
x:= x - 20;
if x <= 20 then
x := 20;
putimage (x,2,9", xorput);
end;
75 : begin
putimage(x,2,9", xorput);
X:= x - 1;
if x <= 20 then
x := 20;
putimage (x,2,9", xorput);
end;
77 : begin
putimage (x,2,9", xorput);
X:= x + 1;
if x >= (getmaxx - 35) then
X := getmaxx - 35;
putimage (x,2,q", xorput);
end;
end;

until ord(in_char) in [13, 27];
if ord(in_char) <> 27 then

begin

x = T*(x-20);

for

temp_array(loop - x + 1] :=
(array_length - x + 2) to array_ length do

for

loop :=

loop :=

temp_array[loop]

x to array_length do

temp_array(loop];

¢= temp_arraylarray_length];

119

end;
freemem(q, size);
end;

(*******************************t********t*********t*t*t**i*************t*****

AA kKKK A ARk R AN Ak AR R R A RN AR AR KRR KRR AR AR A A Ak k kA kA XA A AR A AR A Ak Ak Ak Ak kk ok Aok ok
AkkAk Ak khhkkkkkhkkkkkkhk kA kkxhkkk

T okkk kA kk ko Ak ok Ak kA ok Ak ok ok ok k ok ok ok ok
sk ko dok ok ok ok ok ok ok k ok ok kok kA Ak ok k ko kA

KA KRR A KKK KRR KR AR KRR KA K KRR AR
2222232322228 FILTERING
2222323222282l

Ik k Ak A AR R AR AR R AR AR RN AR R Ak kA ke ko ko kA AR A AR R Ak kAR A A kA AR A AR AR A kAN AR KA XK A K
AAAKAA IR RA KRR A KA AR KK AR AR AR AR AR A A AR AR R A AR AR R A AR AR R R A AR A ARk Ak kA Ak A A AR Kk k)

procedure FILTERING (var temp array:waveform):;

type
second_order_elliptic = array(l1..11,1..3) of real;
real_waveform = array(l..array_ length] of real;

const
coeffic_a : second_order elliptic = ((1,-1.4410,0.6978), {0.20}
(1,-1.3694,0.6753), {0.22}
(1,-1.2957,0.6540), {0.24}
(1,-1.2199,0.6341), {0.26)}
(1,-1.1423,0.6155), {0.28}
(1,-1.0628,0.5983), {0.30}
(1,-0.9818,0.5824), {0.32}
(1,-0.8991,0.5678), {0.34)
(1,-0.8149,0.5545), {0.36}
(1,-0.7293,0.5426), {0.38}
(1,-0.6424,0.5320)); {0.40)

coeffic b : second order_elliptic = ((0.1750,-0.0932,0.1750), {0.20}
(0.1840,-0.0621,0.1840), (0.22}

(0.1937,-0.0291,0.1937), ({0.24}
(0.2043,0.0056,0.2043), {0.26}
(0.2157,0.0419,0.2157), {0.28)
(0.2278,0.0798,0.2278), {0.30}
(0.2407,0.1192,0.2407), {0.32}
(0.2543,0.1601,0.2543), {0.34})
(0.2686,0.2025,0.2686), {0.36}
(0.2835,0.2462,0.2835), {0.38}
(0.2992,0.2912,0.2992)); {0.40}

var
temp ¢ real waveform;
We,
loop : integer;
in_char ¢ char;

begin .
setviewport(1,150,638,337,clipoff);
clearviewport;

setviewport (0,0, getmaxx, getmaxy,clipon);
outtextxy(25,getmaxy - 111,’Select Filter Cut-Off Frequency:’):;

outtextxy(25,getmaxy - 100,’ A. 0.20 G. 0.32%);

outtextxy(25,getmaxy - 91, B. 0.22 H. 0.34');
outtextxy(25,getmaxy - 82,’ C. 0.24 I. 0.36'):
outtextxy(25,getmaxy - 73, D. 0.26 J. 0.387);
outtextxy (25,getmaxy - 64,’ E. 0.28 K. 0.40");
outtextxy(25,getmaxy - 55,’ F. 0.30 -RECOMMENDED!’);
outtextxy(25,getmaxy - 44,’ <ESC> to exit with no filtering’):;
repeat

in_char := readkey;

120

We := 0;

case ord(in_char) of
65,97 : Wec := 1;
66,98 : Wc := 2;
67,99 : Wc := 3;
68,100: Wc := 4;
69,101: Wec := 5;
70,102: Wc := 6;
71,103: Wec := 7;
72,104: Wc := 8;
73,105: Wc := 9;
74,106: Wc := 10;
75,107: Wc := 11;

end;
until (We <> 0) or (ord(in_char) = 27);
if ord(in_char) <> 27 then
begin
outtextxy(380,getmaxy-80,'WAIT - FILTERING IN PROGRESS') ;
temp(l] := coeffic b(Wc,1l]*temp_array(1];
temp (2] := coeffic b[Wc l)*temp_array[2] + coeffic _b[Wc, 2]*temp_arrayl[l] -
coeffic_al[We, 2] *temp(1];
for loop := 3 to array length do
temp[loop] := coeffic b(Wc,1]*temp _array(loop] +
coeffic | _b[Wc,2]*temp_array(loop-1] +
coeffic | _b[Wc,3]*temp_array[loop-2] -
coeffic_a[Wc,2)*temp[loop-1] -
coefflc_a[WC 3]*temp[loop-2];
for loop := 1 to array_length do
temp_array[loop] := round(temp(loop]);
end;
end;

{***
**

KKKKAKKKKARAKRRKR AR KA KKRRKk Rk & LEEEEEE R X S B R O 2. £ 1
AKhkhkAKRAAX Ak kA AR Ak kk ok khkkkokx SMOOTHING LEEEEEE R R R RS B R R R g I G g gy
L2 RS2SRRSR RERRRS RN S R RS R ER SRR R R R R g Y S B A

**
***}

procedure SMOOTHING (var temp_array:waveform);

var
max_difference,
above_threshold,
below_threshold,

loop : integer;

finished : boolean;

count : real;
begin

outtextxy (380, getmaxy—-80,'WAIT - SMOOTHING IN PROGRESS’);
max_difference := 0;
count := 0;
finished := false;
for loop := 1 to (array_length - 1) do
if (abs(temp_array(loop] - temp_arrayl[loop + 1])) > max_difference then
max_difference := abs(temp_array[loop] - temp arraylloop + 1]);:
repeat { until finished }
above_threshold := 0;
below_threshold := 0;
for loop := 1 to (array_length - 1) do
if (abs(temp_array[loop] - temp_array(loop + 1])) >= (max_difference * count)

121

then
above_threshold := above_threshold + 1
else
below_threshold := below_threshold + 1;
if (above_threshold / (above_threshold + below_threshold)) <= 0.1 then
finished := true
else
count := count + 0.001;
until finished;
for loop := 1 to (array length - 2) do
if (abs(temp_array(loop] - temp_array[loop + 1])) >= (max_difference * count)
then
‘temp_array[loop + 1] := (temp_array[loop] + temp_arrayl[loop + 2]) div 2;
end;

{*************************t******t**
KA A KA AR A AR AR AR AR AR A AR AR AR A A AN A AR A AR AR AR AR AR KA AR AN AR AR A AR A RRRR AR AR AR Ak kk kK

KA AAAKR AR A A AR Ak kA kokkk kokkokokkk KA AA A ARARARA KA R A AR AR Ak A Ak Aok ok kkokk
AR AR AR A A A AR AR R AR AR AR Ak kA& EDIT WAVEFORM KAA AR AARA AR AR AR A A A Ak ok kk ke dkkkokk
AR KA KAk kh kkhk Aok ok okkk kok ok ko KAA AN KRAAA R RA R AR AR AR AR Ak Ak ok kok ko kk Ak

LA SRR RSS2 R R R I T
*******************************t***ﬁ*********t********t*********i************}

procedure EDIT_WAVEFORM (var signal_array:waveform; var filename:name string);

var
temp_array : waveform;
in_char : char;
loop : integer;

temp_string: name_string;
disk_file : text;

begin
for loop := 1 to array length do
temp_arrayl[loop] := signal_array(loop];
repeat
setviewport(1,150,638,337,clipoff);
clearviewport;

setviewport (0,0, getmaxx, getmaxy,clipon);
outtextxy(25,getmaxy - 127,'To Edit the Waveform:’);
outtextxy(25,getmaxy - 118,’ <A> - Edit Waveform Data’):
outtextxy(25,getmaxy - 109,' - Perform Filtering’):
outtextxy(25,getmaxy - 100,’ <C> - Perform Smoothing’);
outtextxy(25,getmaxy - 91,’ <D> - Save Waveform and Exit WITH Changes’);
outtextxy(25,getmaxy - 73,’ <ESC> - Exit Without Changes’);
in_char := readkey;
while not (ord(in_char) in (65,66,67,68,97,98,99,100,27]) do
in_char := readkey;
case ord{(in_char) of
65,97 : edit_waveform data(temp_array);
66,98 : filtering(temp_array);
67,99 : smoothing(temp_array);
68,100: begin
loop := 1;
temp_string := '‘;
while filename[loop] <> ‘.’ do
begin
temp_string := temp_string + filename[loop]:
loop := loop + 1;
end;
temp_string := temp string + ’.’;
filename := temp_string + ‘EDT’;
assign(disk_file, filename);

122

rewrite(disk_file);
for loop := 1 to array_length do
begin
write(disk_file, 4095 - temp_array[loop], ’ ’);
signal_array(loop] := temp_array(loopl;
end;
end;
end;
if not (ord(in_char) in [27,69,101]) then
display waveform(temp array, filename);
until ord(in_char) in [27,68,100];
end;

{**k**k****k***k************************
ARAAAA AR AR AR A AR A AR AR R AR AR A AR AR A AR A AR AR AR AR AR R A A A AR KRR AR A AR R AR R AR AR A AR AR AR KRR A Rk

AAAAAA A A A A A AR A ARk k ok k kk k ok ok LER RS S EESERER SRR R R SRR EE S
AAAAAKRAKRAR AR AR AR A A A Ak hkkk k DISPLAY EXPAND KAAAAAKR AR KRR A AR KRR AR A AR A kA Ak kkkk kK
AAKAKRKRAARA KRR AR AR AR KA KAk Ak k& & - AAAKAKRIAKAAKAAKA KA A KR A AR AR AKXk kk kK

AAAKR AR AR A AR A AR AR AR AR A AR R AR AR AR R AR AR A AR AR AR AR A A AR AR AR AR AR R AR A AR AR AR AR ARARRRAR AR
*************************************i**t********t****t**********************)

procedure DISPLAY_EXPAND (var signal_array:waveform; filename:name_string;
var break_list:listpointer; breaks:boolean);

var
finished : boolean;
in_char : char;
begin

finished := false;
if breaks then
pick_breaks(signal_array, break_ list);
repeat
display_waveform(signal array, filename);
outtextxy(25,getmaxy - 110,’Select:’);
outtextxy(25,getmaxy - 91,’ <A> - To edit waveform by filtering,
truncation,’);
outtextxy(431,getmaxy - 91,’ or smoothing.’);
outtextxy(25,getmaxy - 73,’ - To proceed with break-list generation,’):;
outtextxy(404,getmaxy ~ 73,'view, store and edit options.’);
outtextxy(75,getmaxy - 35,’<ESC> to Exit’);
repeat
in_char := readkey;
case ord(in_char) of
27 :+ finished := true;
65,97 : edit waveform(signal array, filename);
66,98 : expand_waveform(signal_array, break_list, finished, filename);
end;
until ord(in_char) in (27,65,66,97,98];
until finished;
end;

(****ﬁ***tt**t*************t********t**t******t****t**t***********************
(2222 RS S R R S E R R RS S RS RESS R SRRRRRRRRRRRRRRRT SRR RRRRRREE R

AXKKKKRK KR KKK KRR KK A Kk KK Ak Kk KK KAK KRR KRR AR KA KKK KA Kk KKk
Kk kk Kk Kk kkkkkk kk kX kkxk*kxx*x DISPLAY INTERPRETATION ***xkakkkkkhkhhkkk kA kkkhkkh k&
KARKRKK KKK KK KRR A KA KRR KRR Ak & R R R Y

AAAKRAR A A AR AR A KRR KRR A RAARARRA AR AR AR A AR AR AR AR AR Kk Ak ko kk ok kk kk ko k ko ko k& k ok kokk ko
*t*t**t**************************t***}

procedure DISPLAY INTERPRETATION (var signal_array:waveform;
var filename:name_string; var break_list:listpointer);

123

var
temp ¢ listpointer;
x1,
x2 : integer;
in_char : char;

begin

display waveform(signal array, filename):
display breaks(break_list, signal_array):
temp := break_ list;
while temp <> nil do
begin
x1l := ((temp”.break div 7) + 1) + 19 + (((temp”.break mod 7) - 1) * 2)
div 7;
if temp”.next <> nil then
x2 := ((temp”.next”.break div 7) + 1) + 19 + (((temp”.next”.break mod 7)
- 1) * 2) div 7
else
x2 := getmaxx - 35;
setfillstyle(solidfill, green);
bar (x1,getmaxy-200, x2, getmaxy-150) ;
temp := temp”.next;
if temp <> nil then
begin
x1 := ((temp~.break div 7) + 1) + 19 + (((temp”.break mod 7) - 1)
* 2) div 7;
if temp”.next <> nil then
x2 := ((temp”.next”.break div 7) + 1) + 19 + (((temp”.next”.break
mod 7) - 1) * 2) div 7
else
X2 := getmaxx - 35;
setfillstyle(solidfill,red);
bar (x1,getmaxy-200,x2, getmaxy-150) ;
temp := temp”.next;
end;
end;
outtextxy(50,getmaxy—-30,’Hit any key to continue’);
in_char := readkey:;
end;

{***********************t***k******t*****************ttt**********************
AR KR AR KA AR AR A AR R AR RA KR A AR A AR A AR AR AR A AR A A AR AR AR AR A AR AR R AR AR A A AN R AR AA AR R A KA kk kK

ARXKIARKAAARRAARR KR KR AR Rk kR k HAKKRKARK KA KRR AR KRR R AR AR Kk Kk k ok &k
KkKKAKKARKAR AR KK AA Kk Ak A X *k % EDIT FROM DISK ARKAXARAA KA AR Kk AR A AR A AR AR AR KA AR k&
ARAKAARK AR AR KR KRR AR K AR KA Kk &k AAKARKAKK A KR KR AR KR AR AR AR KA Rk kk Kk

AARARKA A AR AR AR AR AR A AR A A AR A IR AR AR AR AR AR A A AR AN AR AR AR AR AR AR RARARARNA AR AR AR AR AR AR AR kK
*t**********************t*****************************t*t************t****t**}

procedure EDIT_FROM DISK_DISPLAY INTERPRETATION (var signal array:waveform;
var filename,b_filename:name_string; var break list:listpointer;
edit:boolean);

var
option : char;

begin
setfillstyle(solidfill,black);
bar(150,5,350,16);
outtextxy(160,7,’Retrieve Waveform File’);
select_load option(option);
if not (ord(option) in [67,99]) then
begin
path to file(filename);

124

if filename <> ‘' then
begin
if ord(option) in [65,97] then
process_4_signals(signal_array, filename)
else
load_waveform(signal_array, filename);
setviewport (0,0, getmaxx, getmaxy,clipoff);
setfillstyle(solidfill,white);
clearviewport;
rectangle (20,20, getmaxx - 20,getmaxy - 20);
floodfill(0,0,white);
setfillstyle(solidfill,black);
bar(150,5,350,16);
outtextxy(152,7, ‘Retrieve Break List File’);
path_to_file(b_filename);
if b_filename <> ‘’ then
begin
assign(break_file,b_filename):;
reset (break_file);
break_list := nil;
while not eof (break_file) do
begin
read (break_file,break_record);
insert_break (break_record.break, break_record.positive,
break_list);

end;
if edit then
display expand(signal_array, filename, break_list, false)
else
display interpretation(signal_array, filename, break list);
end;
end;
end
else
filename := ’’;
end;

(***t***i**t***tt**t*t****t***t*************t**********t***t*tt*t******tt*****

IS S SRR RRRERRRRRERR Rttt Rttt RS RRRRRRRRREE S

kKKK ARARARKAARAAR AR KA kX kX KA IRk AKXAK AKX KK KKKk kok ko kkokk kkkkkkkx

Ahkk kKA Rk khkkhkhkhkkhkhkkkkkkkkhk ko MAIN PROGRAM KA A KR KAARAAAAKR AR A AR kA A A A A ARk kkk k&
KAKKKAKAAR KA AA AR AR A AR A XA KA XK ARk AAKAAA R A AR A A KRR ARAA AR AR AR A XA A A KA
AAKAKR KA KA AR AR RN KRN R AR AR KRR KRR KRR R AR KRR IR R R KRR AR A AR AR A AR AR R A A AR AR AR AR AR AR AA R AN A A ARk
*****t********t*****t*****t*********************t**************t**t**ﬁ*******}

begin
graphdriver := ega64;
graphmode := egahi;
if registerbgidriver(@egavgadriverproc) <0 then
halt;
initgraph(graphdriver, graphmode,’’);
repeat
clrscr;
menu (opening_menu,selection);
case selection of
1 : begin {NEW WAVEFORM}
new_waveform (signal_array,path_filename);
breaks := true;
if path_filename <> ’’ then
display_expand(signal_array, path filename, break_ list, breaks):;

end;
2 {EDIT_WAVEFORM}

edit_from disk display interpretation(signal_array, path_filenamel,

{until selection = exit}

125

path_filename, break_list, true);
3: {DISPLAY INTERPRETATION}

edit_from disk_display_interpretation{signal_array, path_filenamel,
path_filename, break_list, false);

4 : begin (HELP}

closegraph;
swapvectors;
exec (’ \command.com’,’/c type HELP.DOC|more’);
swapvectors;
initgraph(graphdriver,graphmode,’’);
end;
5 : {ok_to_exit};
end;
setgraphmode (graphmode) ;
until selection = 5;
clrscr;
closegraph;
end.

APPENDIX C

Data Processing and Display Software Operations Manual

126

127

Data Processing and Display Software Operations Manual

Introduction

This manual describes the options available for this

program and the acceptable input for each option.

Base Menu

Five options are available from the base menu.

Select A to:

Select B to:

Select C to:

Select D to:

Select E to:

input an unedited waveform.
Requires input of waveform file
name.

input an edited waveform and
previously generated interpretation.
Requires input of waveform and break
list file names.

display computer interpretation of
specified waveform. Requires input
of waveform and break 1list file
names. No editing or modifications
can be performed from within this
option.

display this manual.

exit to DOS.

128

Selections C, D, and E have no other options available.
Selections A and B are described below. A and B both
facilitate inputing a waveform to the system. Selection A

will be covered first.

Base Menu Selection A
The type of file format the waveform is stored in must
be specified:

Input Method A

4096 data points/waveform

4 waveforms/station

4 waveforms stored on disk as single text file

each set of 4096 points concatenated to previous

set

- data values range from 0 to 40095.

Input Method B

4096 data points/waveform

- 1 waveform/station

1 waveform stored on disk as single text file

1 set of 4096 points

data values range from 0 to 4095.

The program prompts for the complete path and filename

of the waveform to retrieve. To display a directory listing,

129
select 'F1’, then specify the complete path of the directory.
A file extension must be specified. For example, to list all
files in a directory type ’* *’,

After the file has been loaded successfully, two options
are displayed:

A. Edit wavefornm,

B. Break List Generation.

Selecting A facilitates various waveform edit
procedures. These are:

1. waveform edit: specify start of valid data.

2. filtering: apply filtering algorithm.

3. smoothing: apply smoothing algorithm.

Any changes to the waveform can be saved or discarded by
selecting the appropriate exit option (‘D! or <ESC>
respectively). Exiting this menu returns to the previous
menu.

Selecting B generates the break list and displays the
breaks on the waveform. Using the arrow keys and the
CTRL+arrow key combinations, a cursor can be moved to the
beginning of any section of the waveform to be expanded.
Place the first cursor and hit <Return>. Again, using the
arrow keys, place the second cursor at the end of the section

to expl[and. Hit <Return>. The selected area will be

130
expanded to fill the lower half of the terminal screen.

Two options are available:

1. editing the displayed breaks, and

2. storing the in a disk file for later retrieval.

Storing the break 1list simply requires entering the
filename to store the list under. If ’'F2-EDIT’ is selected,
four new options are displayed. A rectangular box is
displayed midscreen on the waveform. The arrow and
CTRL+arrow keys control the placement of the box.

To delete a break, it must be centered in the box.
Adding a break places a break at the center of the box.
Selecting 'F4-MOVE’ allows movement of an existing break that
is centered in the box. Selecting ’'F5" facilitates storage

of the displayed break list onto the disk.

Base Menu Selection B

Selection B provides all the same options as selection
A except as noted below. In addition to specifying the
waveform file to enter, a break list file must be specified
also. This break list file should have been generated from
the specified waveform BUT does not have to be.

After the waveform and break list have been loaded DO

NOT edit the waveform data by specifying a new start point,

131

filtering, or smoothing. A new break 1list will NOT be
generated. The list loaded from disk will be kept. To edit
a waveform, always use Base Menu Selection A to load the
waveform. All other options are identical to the Base Menu
Selection A.

To display the computer generated interpretation after
completing all waveform and break list edit functions, the
files must be stored onto the disk. Return to the Base menu

and select option C.

VITA

Daran Rehmeyer was born in 1960 in Baltimore, Maryland.
He graduated in 1982 with a B.S.E.E. from Virginia Polytechnic
Institute and State University in Blacksburg, Virginia. He
worked for Vector Automation, Inc. in Baltimore as a technical
writer and for Schlumberger Offshore Services as a Senior
Field Engineer. He began studies at Louisiana State
University, Baton Rouge, Louisiana in 1987 to pursue a
M.S.E.E. Since returning to school, he has been employed at
Quaternary Resource Investigations, Inc. in Baton Rouge as a
Senior Engineer, responsible for development of a ground
penetrating radar system. He is a member of the IEEE and the
IEEE Geoscience and Remote Sensing Society, the NSPE, and Eta

Kappa Nu.

132

MASTER'S EXAMINATION AND THESIS REPORT

Candidate: Daran Lynn Rehmeyer
Major Field: Electrical Engineering

Title of Thesis: A Data Acquisition and Processing System for High Frequency
Repetitive Waveforms

Approved:

Cdrg s

% Major Professor anq- Chairman

W

Dean of the Graduate Schoo]

EXAMINING COMMITTEE:

. YA W)
Savith f—

Date of Examination:

Oct (3, 1770

	A Data Acquisition and Processing System for High Frequency Repetitive Waveforms
	Recommended Citation

	tmp.1642708449.pdf.zwBlJ

