2000

Activation and Metabolism of P-Nitrosophenol and 2,2'-Thiobis-Ethanol by Horse Liver and Human Alcohol Dehydrogenase: Toxicological Implications.

Billy Fred Dudley Jr
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
Dudley, Billy Fred Jr, 'Activation and Metabolism of P-Nitrosophenol and 2,2'-Thiobis-Ethanol by Horse Liver and Human Alcohol Dehydrogenase: Toxicological Implications.' (2000). LSU Historical Dissertations and Theses. 7192.
https://digitalcommons.lsu.edu/gradschool_disstheses/7192

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
ACKNOWLEDGMENTS

In acknowledging those who have given me great support and direction during my graduate career, I would first like to thank Dr. Gary Winston. While serving as my advisor, Dr. Winston was encouraging and showed great patience and effort in helping me to achieve my goals. In addition to Dr. Winston, I would like to thank the members of my graduate committee, Dr. Grover Waldrop, Dr. Barbara Shane, and Dr. Ezzat Younathan, for their help towards completion of my research and the requirements for the degree. Dr. Andy Deutsch was also instrumental in guiding me in the pursuit of my doctoral degree. I would like to also express my appreciation to Dr. Harold Silverman, Dr. Terry Bricker, and the faculty of the Department of Biological Sciences for their help in providing support, lab space, and equipment after my advisor moved to North Carolina. In particular, I’d like to thank Dr. Waldrop and the members of his lab for tolerating my frequent invasion of their lab space. I would also like to thank Dr. Thomas Hurley and Dr. William Bosron for providing purified human alcohol dehydrogenase during much of my graduate career.

There have been many people during the years who have had positive influence on my life, but few more than my friends in the lab and department. The members of the Winston Lab, Jose Castaneda, John Dugas, Susan Dobias, Robin Ertl, Robin Ertl, Zofia Maskos, Max Mayeaux, Caroline Metosh-Dickey, and Alex Tkachenko, have made many times enjoyable and have helped to keep me focused. I would especially like to acknowledge my lab mate, Linda Heffernan, for her friendship and help over the years.

Lastly I would like to thank my family for the love and support that they’ve given my over the years. My mother and brother Brice Dudley have been tremendous
sources of strength in helping to achieve my goals. And I thank my best friend David West for being an ear that listened when I was enjoying my work and when I wasn't. I am grateful to them all.
TABLE OF CONTENTS

DEDICATION ..ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES ...viii

LIST OF FIGURES ..ix

LIST OF ABBREVIATIONS ...xi

ABSTRACT ..xii

CHAPTER 1 INTRODUCTION ...1
 1.1 Human ADH Isozymes .. 2
 1.2 Mechanism of Catalysis: The Role of Zinc in ADH Catalysis 4
 1.3 Physiological Substrates ... 6
 1.3.1 Contribution to Phase I Metabolism .. 6
 1.3.2 Activity in Ethanol Metabolism .. 6
 1.4 C-Nitroso Compounds as Substrates ... 7
 1.4.1 Arylamines and Nitroarenes .. 7
 1.4.2 Nitroarene Reduction ... 8
 1.5 Metabolism of 2,2'-Thiobis-ethanol .. 10

CHAPTER 2 P-NITROSOPHENOL REDUCTION BY LIVER CYTOSOL
FROM ADH-POSITIVE AND NEGATIVE DEERMICE
(PEROMYSCUS MANICULATUS) ... 12
 2.1 Introduction ... 12
 2.2 Materials and Methods ... 14
 2.2.1 Chemicals and Enzymes ... 14
 2.2.2 Animals ... 14
 2.2.3 Preparation of Cytosolic Fractions .. 15
 2.2.4 Enzyme Assays ... 15
 2.3 Results .. 16
 2.3.1 NAD(P)H: Quinone Oxidoreductase and Alcohol Dehydrogenase Activities
 of Deermouse Liver Cytosol ... 16
 2.3.2 p-Nitrosophenol Reduction by ADH* and ADH' Deermouse Cytosol 17
 2.3.3 Effect of Inhibitors on p-Aminophenol Formation by ADH' Deermouse
 Cytosol ... 18
 2.3.4 Effect of Inhibitors on ADH' Deermouse Cytosol .. 23
 2.3.5 NAD(P)H Oxidation by Deermouse Cytosol .. 23
 2.4 Discussion .. 25

CHAPTER 3 REDUCTION OF P-NITROSOPHENOL BY ALCOHOL
DEHYDROGENASE: COMPARISON OF HUMAN AND HORSE
LIVER ISOZYMES ... 29
 3.1 Introduction ... 29
3.2 Materials and Methods ...32
 3.2.1 Chemicals and Enzymes ...32
 3.2.2 Preparation of Cytosolic Fractions ...33
 3.2.3 Enzyme Assays ...33
3.3 Results ..35
 3.3.1 Effect of Inhibitors on NADH-Dependent p-Aminophenol Formation by Human Liver Cytosol35
 3.3.2 NADH-Dependent pNSP Reduction by HLADH and Purified Human ADH Isozymes: Effect of Pyrazole37
 3.3.3 Determination of Steady-State Kinetic Constants for Acetaldehyde and pNSP Reduction via HLADH41
 3.3.4 Spectral Transitions During the Reduction of pNSP by ADH Isozymes ..41
3.4 Discussion ..55

CHAPTER 4 EFFECT OF pH ON ALCOHOL DEHYDROGENASE DEPENDENT REDUCTION OF P-NITROSOPHENOL: COMPARISON OF HORSE LIVER AND HUMAN ISOZYMES......64
4.1 Introduction ..64
4.2 Materials and Methods ...65
 4.2.1 Chemicals and Enzymes ...65
 4.2.2 Expression of Human ADH Isozymes65
 4.2.3 Purification of Enzymes ..66
 4.2.4 Western Blot Analysis ...68
 4.2.5 Enzyme Assays ...72
 4.2.6 Kinetic Analysis ...72
 4.2.7 Data Processing ...73
4.3 Results ..73
 4.3.1 Determination of Kinetic Constants for C-Nitroso-reduction and Dependence on pH ...74
 4.3.2 Determination of Ionization Constants for pNSP Reduction Catalyzed by HLADH and Human ADH79
 4.3.3 Inhibition Kinetics ...82
4.4 Discussion ..84

CHAPTER 5 OXIDATION OF 2,2'-THIODIGLYCOL BY ALCOHOL DEHYDROGENASE: COMPARISON OF HUMAN LIVER ISOENZYMES ...92
5.1 Introduction ..92
5.2 Materials and Methods ...94
 5.2.1 Chemicals and Enzymes ...94
 5.2.2 Enzyme Assays ...95
 5.2.3 Data Analysis ...95
5.3 Results ..96
 5.3.1 Oxidation of TDG by Purified Human ADH Isozymes96
 5.3.2 Kinetic Constants for ADH-Catalyzed Oxidation of TDG97
 5.3.3 Inhibition by Pyrazole of TDG Oxidation by Human ADH102
5.4 Discussion ..104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX A THE PRESENCE OF URACIL-DNA GLYCOSYLASE IN INSECTS IS DEPENDENT UPON DEVELOPMENTAL COMPLEXITY

A.1 Abstract ... 127
A.2 Introduction .. 128
A.3 Materials and Methods ... 129
 A.3.1 Materials .. 129
 A.3.2 Preparation of [uracil-3H, 32P]Poly(dA-dT) 129
 A.3.3 Assay of Uracil-DNA Glycosylase Activity .. 129
 A.3.4 Insect Populations .. 130
 A.3.5 Preparation of Extracts .. 130
A.4 Results ... 131
A.5 Discussion ... 136

APPENDIX B LETTERS OF PERMISSION .. 138

APPENDIX C COMPUTER DATA ... 140

VITA .. 145
LIST OF TABLES

Table 1.1 Residues lining the substrate-binding cleft of HLADH and Human ADHs. ...4
Table 2.1 ADH-dependent NAD(P)H oxidation by deermouse cytosolic fractions.24
Table 3.1 Kinetic constants for Horse Liver ADH towards pNSP and acetaldehyde at pH 7.4...44
Table 3.2 Activity of HLADH and Human ADH isozymes as ethanol oxidases, nitroso- and benzoquinoneimine reductases..........................53
Table 4.1 Purification chart for human alcohol dehydrogenase.69
Table 4.2 pH dependence of the apparent kinetic parameters for the reduction of p-nitrosophenol by ADH isozymes.79
Table 4.3 Comparison of the pKbE and pKbES values determined from secondary plots and plots of log Vmax/KM against pH............................82
Table 4.4 Apparent Ki values for the inhibition of ADH-catalyzed pNSP reduction by acetaldehyde. ..84
Table 5.1 Specific activities of ADH-catalyzed oxidation of thiodiglycol and inhibition by pyrazole (1mM)...97
Table 5.2 Kinetic parameters for the oxidation of thiodiglycol and ethanol by ADH isozymes. ...102
Table 5.3 Apparent Ki constants for the inhibition of TDG oxidation by pyrazole and acetaldehyde. ...103
Table A.1 Types of insect populations tested for uracil-DNA glycosylase activity. ...131
Table A.2 Uracil-DNA glycosylase activity in the house cricket (A. domesticus). ...133
Table A.3 Uracil-DNA glycosylase activity in different insects.134
LIST OF FIGURES

Fig. 1.1 Computer graphics model of the active site of β1-ADH ..5

Fig. 2.1 Effect of varying the protein concentration on NADH- (A) and NADPH- (B) dependent formation of p-aminophenol from p-nitrosophenol by deer mouse cytosolic fractions ..18

Fig. 2.2 Effect of NADH and NADPH on p-aminophenol formation from p-nitrosophenol by deer mouse cytosolic fractions ..19

Fig. 2.3 Effect of pyrazole and dicumarol on NADH-dependent formation of p-aminophenol from p-nitrosophenol by cytosol from ADH+ deer mice20

Fig. 2.4 Effect of pyrazole and dicumarol on NADPH-dependent formation of p-aminophenol from p-nitrosophenol by cytosol from ADH+ deer mice22

Fig. 3.1 Effect of Inhibitors on NADH-dependent pAP formation by HLC36

Fig. 3.2 Effect of Inhibitors on NAD(P)H-dependent pAP formation by HLADH37

Fig. 3.3A NADH-dependent pNSP reduction by HLADH and purified human isozymes: Effect of pyrazole ...38

Fig. 3.3B NADH-dependent pNSP reduction by HLADH and purified human isozymes: Effect of pyrazole ...39

Fig. 3.4A Determination of Kinetic Constants for pNSP and Acetaldehyde Reduction by HLADH ...42

Fig. 3.4B Determination of Kinetic Constants for pNSP and Acetaldehyde Reduction by HLADH ...43

Fig. 3.5A Changes in absorption spectra during the reduction of pNSP by HLADH ...45

Fig. 3.5B Changes in absorption spectra during the reduction of pNSP by π-ADH46

Fig. 3.5C Changes in absorption spectra during the reduction of pNSP by αα-ADH47

Fig. 3.5D Changes in absorption spectra during the reduction of pNSP by β1β1-ADH ..48

Fig. 3.5E Changes in absorption spectra during the reduction of pNSP by β2β2-ADH ..49

Fig. 3.5F Changes in absorption spectra during the reduction of pNSP by χ-ADH50

Fig. 3.5G Changes in absorption spectra during the reduction of pNSP by σ-ADH51
Fig. 3.5H Changes in absorption spectra during the reduction of pNSP by HLC............52

Fig. 4.1 SDS-PAGE for class I αα-ADH purification steps..70

Fig. 4.2 Western blot of purified human ADH..71

Fig. 4.3 Effect of pH on the reduction of p-Nitrosophenol..76

Fig. 4.4 Effect of pH on the reduction of p-Nitrosophenol: 1/v vs. 1/S......................77

Fig. 4.5 pH-dependence of the catalytic efficiency (log V_{max}/K_m) for HLADH and
human ADH-dependent reduction of pNSP...80

Fig. 4.6 Secondary Plot of the slopes determined from pH-dependent double reciprocal
plots versus 1/[H$^+$]...81

Fig. 4.7 Competitive inhibition of σ-ADH catalyzed C-nitrosoreduction by 4.75 mM
acetaldehyde...83

Fig. 4.8 pH-dependence of the catalytic efficiency (log V_{max}/K_m) for σ-ADH-
dependent reduction of pNSP..86

Fig. 5.1A Oxidation of 2,2'-Thiobis-ethanol by αα- and β1β1-ADH.........................98

Fig. 5.1B Oxidation of 2,2'-Thiobis-ethanol by β2β2- and γ1γ1-ADH......................99

Fig. 5.1C Oxidation of 2,2'-Thiobis-ethanol by σ-ADH..100

Fig. A.1 Determination of pH optimum..132

Fig. A.2 Thin-layer chromatography of reaction products.....................................133
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH</td>
<td>alcohol dehydrogenase</td>
</tr>
<tr>
<td>BQI</td>
<td>1,4-benzoquinoneimine</td>
</tr>
<tr>
<td>DC</td>
<td>dicumarol</td>
</tr>
<tr>
<td>DEA</td>
<td>diethanolamine</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>HLADH</td>
<td>horse liver alcohol dehydrogenase</td>
</tr>
<tr>
<td>HLC</td>
<td>human liver cytosol</td>
</tr>
<tr>
<td>MES</td>
<td>2-(N-morpholino)ethanesulfonic acid</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>β-nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>β-nicotinamide adenine dinucleotide, reduced</td>
</tr>
<tr>
<td>NADPH</td>
<td>β-nicotinamide adenine dinucleotide phosphate, reduced</td>
</tr>
<tr>
<td>NEA</td>
<td>N-ethylmorpholine</td>
</tr>
<tr>
<td>NQOR</td>
<td>NAD(P)H: quinone oxidoreductase</td>
</tr>
<tr>
<td>pAP</td>
<td>p-aminophenol</td>
</tr>
<tr>
<td>pN-OHAP</td>
<td>p-N-hydroxyaminophenol</td>
</tr>
<tr>
<td>pNSP</td>
<td>p-nitrosophenol</td>
</tr>
<tr>
<td>PDB</td>
<td>protein data bank</td>
</tr>
<tr>
<td>PYR</td>
<td>pyrazole</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>TDG</td>
<td>thiodiglycol</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
</tbody>
</table>
ABSTRACT

C-nitroso compounds are reactive intermediates in the toxic sequelae of nitroarene metabolism. Alcohol dehydrogenase (ADH) contributes significantly to NADH-dependent C-nitroso reduction by cytosol relative to NAD(P)H: quinone oxidoreductase (NQOR). NADPH-dependent pNSP reduction by liver cytosol of ADH+ animals is mostly dicumarol-sensitive which implicates NQOR as the major NADPH-dependent activity.

Although, extensive structural homology between horse and different isozymes of human ADH exist, significant differences occur within the active site, which account for great variability among substrate specificities, kinetic constants, and response to inhibitors. We have studied the metabolic activity of horse liver alcohol dehydrogenase (HLADH), purified class I αα, β₁β₁, and β₂β₂, class II π, class III χ and class IV σ human isozymes, and human liver cytosol (HLC) towards the C-nitroso substrate pNSP. Significant differences in the reaction rates towards pNSP were observed between HLADH and the human isozymes. The relative order of the rates of pNSP reduction by ADH was HLADH > αα > π > σ > χ > β₂β₂ > β₁β₁. pNSP reduction catalyzed by HLADH, purified class I αα, β₁β₁, and β₂β₂, class III χ and class IV σ human isozymes show pH dependence with maxima greater than or equal to pH 6. This pH dependence seemingly reflects a protein moiety involved in the proton relay system.

Thiodiglycol (TDG) can undergo oxidation catalyzed by ADH. We have compared the catalytic activity of purified human liver class I αα, β₁β₁, β₂β₂ and γ₁γ₁ ADH, class II π ADH, class III χ ADH, and class IV σ ADH with respect to TDG oxidation. Specific activities with respect to TDG were 123, 79, 347, 647, and 12.
nmol/min/mg for the αα, β1β1, β2β2, γ1γ1, and π ADH, respectively. Class III χ ADH
did not exhibit activity with this substrate. The specific activity of class IV σ ADH was
estimated at about 1632 nmol/min/mg. The activities of class IV σ and class I γ1 ADH
are of significant interest because of their prevalence in the eyes, lungs, stomach and
skin, all potential target organs of sulfur mustard toxicity.
CHAPTER 1 INTRODUCTION

Alcohol dehydrogenase (ADH; EC 1.1.1.1) is the primary enzyme responsible for the oxidation of ethanol, with the production of acetaldehyde and NADH being the first step of ethanol elimination in humans (1). The reaction follows an ordered bi bi mechanism in which the binding of cofactor, NAD\(^+\), near the enzyme active site precedes binding of substrate. This catalytically inactive binary complex then binds one molecule of ethanol to form the catalytically active ternary complex. Catalysis occurs instantly with hydride transfer from ethanol to the bound cofactor. Acetaldehyde is then released, followed by the release of NADH. This reaction is reversible, with the ADH catalyzed reduction of acetaldehyde resulting in the production of ethanol. Although its definitive functional activity is the oxidation of ethanol, alcohol dehydrogenase is a key enzyme in phase I xenobiotic metabolism, having a variety of substrates.

Alcohol dehydrogenases constitute a complex system of proteins derived from gene duplications at minimally four different levels. The system includes proteins of different type regarding family relationships and overall organization. It also includes different enzymes within each family, as well as different classes of the enzymes, and different isozymes within the classes, apart from allelic variants. The medium-chain alcohol dehydrogenases now constitute a well-established protein family with characterized relationships of general interest and include the classical alcohol dehydrogenases, the liver and yeast enzymes. In common, these enzymes typically contain a zinc ion at their active sites. The different enzymes within the family originated at an early stage of evolution and exhibit characteristic properties, distinguishable in quaternary structure, substrate specificity, and internal deletions/insertions (2, 3).
Mammalian zinc-containing ADH constitute an enzyme family of multiple isoforms. Of these Horse Liver Alcohol Dehydrogenase (HLADH) is the most widely studied. Being an 80 kDa dimer, HLADH is composed of two 40 kDa monomers, each containing 374 amino acids and two zinc ions, one having a structural function and the other a catalytic function.

1.1 Human ADH Isozymes

Humans produce more than 20 ADH isozymes composed of as many as nine different subunits (4). The horse enzyme shares between 87% and 60% sequence homology with the human isozymes. Having been differentiated into five classes based on their electrophoretic mobilities and inhibition by pyrazole and some of its 4-alkylated derivatives, the inter-class differences between the human isozymes are large and affect charge, enzyme activity, and inhibition patterns. The overall residue identity shows 60% homology between classes; many residues at the active site are substituted, especially in the substrate-binding pocket, which is large and hydrophobic in the traditional ethanol-active liver enzyme of class I, but different in the enzymes of the other classes.

Genes at three loci, ADH 1, ADH 2, and ADH 3, code for the class I isozymes α-, β-, and γ-ADHs, respectively, with allelic variants of β and γ (5, 6). These molecular forms are effectively inhibited by 4-methylpyrazole. Primary and secondary alcohols are almost equally good substrates for class I ADHs. Patterns of class I isozymes also vary because of allelic polymorphism within and among different racial groups. Variants involving the β subunit have been designated β₁ (Caucasian), β₂ (Oriental), and β₃ (African) (6). Class II and class III each consist solely of one
isozyme, \(\pi\)-ADH and \(\chi\)-ADH, respectively, which are relatively insensitive to pyrazole inhibition. Class II ADH, translated by ADH 4, acts on primary aliphatic alcohols and aromatic aldehydes (7). All human isozymes catalyze the oxidation of ethanol; however, the \(K_M\) of class II ADH for ethanol oxidation is significantly higher than that of class I forms. Of the vertebrate ADHs that have been identified, only one form, class III ADH, has been conserved in all organisms (8). Class III has been implicated as the ancestral type, as supported by estimates of the divergence rate, and its presence in invertebrates and prokaroytes as well as animals (9). Class III ADH functions \textit{in vitro} as a glutathione-dependent formaldehyde dehydrogenase, which suggests that this was the original function that drove the evolution of ADH (10). Class III is a product of the ADH 5 gene. The \(\pi\) and \(\chi\) subunits share about 60% sequence homology with each other or the other isozymes and have not been observed to form heterodimers. Class IV is encoded by the ADH 7 locus, producing the \(\sigma\)-ADH. Found predominately in the stomach, the \(\sigma\)-ADH is considered to have a significant role in retinol metabolism and first-pass ethanol metabolism (11-13). As with HLADH, these medium chain dehydrogenases are dimeric 80kd NAD\(^+\)- and zinc-dependent ADHs, containing 4 mol of zinc per dimer (14, 15). These ADHs also illustrate separate genetic controls, with constituent forms (class III \(\chi\)), inducible forms (class I \(\gamma\)), and genes differently expressed during ontogenesis, with fetal and adult forms (class I \(\alpha, \beta, \text{and } \gamma\)) (16, 17). Classes I through IV have been investigated extensively by analyses of divergent natural variants and correlation of their replacements with the residues lining the substrate-binding pocket (Table 1.1), where a minimum of eleven positions are of major importance (18-20).
Table 1.1 Residues lining the substrate-binding cleft of HLADH and Human ADHs.

<table>
<thead>
<tr>
<th>Class</th>
<th>Source</th>
<th>Amino acid at position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(inner)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 93 140 141 57 116 294 318</td>
</tr>
<tr>
<td>I</td>
<td>Horse E</td>
<td>Ser Phe Phe Leu Leu Leu Val Ile Phe Met Leu</td>
</tr>
<tr>
<td></td>
<td>Human α</td>
<td>Thr Ala Phe Leu Met Val Val Ile Tyr Met Leu</td>
</tr>
<tr>
<td></td>
<td>Human β</td>
<td>Thr Phe Phe Leu Leu Leu Val Val Tyr Met Leu</td>
</tr>
<tr>
<td></td>
<td>Human γ</td>
<td>Ser Phe Phe Val Leu Leu Val Ile Phe Met Leu</td>
</tr>
<tr>
<td>II</td>
<td>Human π</td>
<td>Thr Tyr Phe Phe Leu Val Phe Leu Glu Ile</td>
</tr>
<tr>
<td>III</td>
<td>Human γ</td>
<td>Thr Tyr Tyr Met Asp Val Val Ala Leu Phe Val</td>
</tr>
<tr>
<td>IV</td>
<td>Human σ</td>
<td>Thr Phe Phe Met Met Ile Val Val Leu Met Phe</td>
</tr>
</tbody>
</table>

Table adapted from Eklund et al., 1990 and Satre et al., 1994. (13, 19)

1.2 Mechanism of Catalysis: The Role of Zinc in ADH Catalysis

A great deal of experimentation has been devoted to the role of the metal ion in catalysis, especially the mode of substrate binding and activation as well as the nature of metal-linked equilibria, including the role of metal-bound water. Although much work has been done to evaluate the kinetic mechanism of ADH catalyzed reactions, many questions remain concerning the coordination chemistry of the catalytic zinc and its role in substrate binding and hydride transfer. It is not clear whether all substrates are bound directly to the active site zinc or whether a second-sphere of coordination occurs. Many investigators support a protein-substrate structure with the carbonyl oxygen of an aldehyde substrate bound directly to the catalytic zinc in HLADH in a tetrahedral arrangement (21-24). On the other hand, some investigators have proposed that the metal ion remains coordinated to a water molecule and that the substrate is hydrogen bonded to this water molecule (25, 26). Necessary information to answer these questions is difficult to acquire because of the uninformative zinc ion in the active
Fig. 1.1 Computer graphics model of the active site of β₁-ADH. This model indicates the positions of the active site residues, bound NAD⁺, and the structural zinc ion relative to the catalytic zinc ion. This model was generated using the Sybyl (Tripos Associates, Inc.) molecular modeling software, version 6.4. The coordinates of the human β₁ isozyme (PDB code 3HUD) are those of Hurley et al. (27).
site of the enzyme. Because of its chemical nature, zinc does not lend itself to conventional methods of studying the active site metal ligands.

1.3 Physiological Substrates

1.3.1 Contribution to Phase I Metabolism

Aldehydes, ketones, and alcohols are frequent functional groups that appear in drugs and other xenobiotics. These functional groups are often metabolized in vivo by oxidation or reduction. Since these functional groups often impart pharmacological properties, the oxidation or reduction of these groups is a means of detoxification (28). However, in some cases more reactive species may be produced and can lead to toxicity. One of the most important enzymes for these reactions is ADH.

1.3.2 Activity in Ethanol Metabolism

Extrahepatic tissues contain isozymes of ADH with a much lower affinity for ethanol than the hepatic isozymes; as a consequence, at the levels of ethanol achieved in the blood, these extrahepatic enzymes are inactive and, therefore, extrahepatic metabolism of ethanol is negligible, with the exception of the stomach.

At least three different forms of ADH exist in the stomach, with either high or low K_M values for ethanol (11). Because of the extraordinarily high gastric ethanol concentration after alcohol ingestion, even the gastric ADH, with a high K_M for ethanol, becomes active and significant gastric ethanol metabolism ensues. This “first pass alcohol metabolism” decreases the bioavailability of ethanol and represents a barrier against its systemic effects, at least when ethanol is consumed in small amounts.

Although other enzymes such as catalase and those of the Microsomal Ethanol Oxidizing System may have significant roles in ethanol oxidation, especially at chronic levels, the main pathway for ethanol disposition involves hepatic ADH, an enzyme of
the cell cytosol. Ethanol ingestion results in numerous enzymatic and metabolic changes in the liver and other organs and tissues (29). These changes include an increased NADH/NAD$^+$ ratio, a decrease in the hepatic ratio of reduced versus oxidized glutathione, induction of cytosolic glutathione-S-transferases, and conversion of xanthine dehydrogenase to xanthine oxidase leading to an overall induction in the expression of xanthine oxidase activity in the liver (30). As a net result of ethanol oxidation, an excess of reducing equivalents in the liver, primarily as NADH, is obtained. The resulting enhanced NADH/NAD$^+$ ratio may produce a change in the ratio of those metabolites that depend on NADH/NAD$^+$ coupled reduction (31).

1.4 C-Nitroso Compounds as Substrates

1.4.1 Arylamines and Nitroarenes

Activation of nitroaromatic compounds to mutagens involves formation of partially reduced metabolites, such as C-nitroso- or hydroxylamino compounds (32). The mutagenicity of nitroarenes and arylamines is closely related to the steady-state concentrations of the nitroso and hydroxylamino intermediates produced during their respective reductive and oxidative metabolism. Therefore, formation and removal of the nitroso intermediates of arylamines and nitroaromatics is an important consideration in the mutagenic expression of these compounds. The potent mutagenic and carcinogenic potential of nitro- and nitrosoarenes is widely accepted to involve their facile reduction to N-hydroxyarylamines (Scheme 1). The nitroso moiety may undergo a two electron reduction via a nitroxyl radical to hydroxylamine, which has been reported as the proximal carcinogen. The hydroxylamine may either undergo direct conversion to the primary carcinogen, the nitrenium ion, or it may be acetylated and by
way of N,O-Transacetylase it is then converted to the DNA binding acetoxy hydroxylamine.

1.4.2 Nitroarene Reduction

Aromatic C-nitroso compounds are abundant in the environment (32). They are readily formed intermediates of reductive metabolism of nitroarenes and oxidative metabolism of arylamines. Microsomal and cytosolic enzymes are involved in the metabolism of mutagenic nitroarenes and arylamines (33-37). Arylamines are synthetic industrial compounds. Much research has been undertaken to understand the toxic sequelae of arylamines. Nitroarenes are ubiquitous, anthropogenically generated
contaminants formed predominantly by incomplete combustion (38). They have been detected in gasoline emissions, fly ash, cigarette smoke, grilled foods, incinerator emissions, residential home heaters and wood burning stoves (38, 39). Aromatic C-nitroso compounds have also been used in the vulcanization of some synthetic rubbers, as antioxidants in lubricating oils.

In 1971, Dunn and Bernhard reported the reduction of \(p \)-nitroso-N,N-dimethylaniline catalyzed by horse liver alcohol dehydrogenase. It was noted that the nitroso moiety is both isosteric and isoelectronic with aldehyde functionality. Purified horse liver ADH and yeast ADH catalyzed NADH-dependent reduction of \(p \)-nitroso-N,N-dimethylaniline to the corresponding amine (40-42). The cytosolic fraction of rat liver contains various NADH- or NADPH-linked enzymes which can reduce certain nitrosoarenes to the corresponding amines (43). Based on the sensitivity of the reaction to pyrazole, a role for alcohol dehydrogenase in NADH-dependent C-nitroso reductase activity of liver cytosol was indicated (44-48). ADH catalyzed the 4-electron reduction of \(p \)-nitrosophenol to \(p \)-aminophenol and showed a slightly acidic pH optimum. The C-nitroso reductase activity of porcine heart, which lacks ADH activity, co-eluted with menadione reductase activity upon partial purification and was supported by either NADH or NADPH (46, 47). Maskos and Winston have shown that ADH catalyzes both the reduction of 2-nitrosofluorene and the rearrangement of N-hydroxy-2-aminofluorene (36). Moreover, NADH-dependent C-nitroso reductase activity catalyzed by rat liver cytosol is inhibited more than 85% by pyrazole (48). Although ADH has been known to catalyze reduction of the C-nitroso functional group to its
corresponding hydroxylamine for nearly two decades, the toxicological ramifications of this reaction have not been fully explored.

1.5 Metabolism of 2,2'-Thiobis-ethanol

Sulfur mustard is a poisonous chemical warfare agent. It was used as recently by Iraq to attack its own Kurdish population in the Iranian-occupied village of Halbja in 1988 (49). Mustard gas is toxic as droplets, liquid, vapor, and, primarily, in the form of an aerosol. It is easily absorbed by many foodstuffs, porous materials, paint and varnish coatings, and rubber articles, all of which will remain contaminated for long intervals (50). Public concern has arisen from possible exposure and potential health hazards resulting from destruction of stockpiles of these chemical agents. Scientific data are being accumulated concerning potential adverse effects, including toxicology, carcinogenicity, mutagenicity, and teratogenicity. Sulfur mustard is a poisonous chemical agent that exerts a local action on the eyes, skin, and respiratory tissues, with subsequent systemic action on the nervous, cardiac, and digestive systems in humans and laboratory animals (51).

Soon after introduction into body tissues, hydrolysis of sulfur mustard occurs to form 2,2'-Thiobis-ethanol (thiodiglycol) and semimustard, which are relatively nontoxic. Recent research has shown that sulfur mustard inhibits serine and threonine phosphatases and that this inhibition was more closely related to the concentration of thiodiglycol (TDG) than the mustard itself (52). Subsequent observations have shown TDG to be a substrate for HLADH and ADH in human skin cytosol (53).

The objective of these studies was two fold: 1. To determine the role of ADH in the reductive metabolism of C-nitroso compounds in cytosol where other nitroso reducing enzymes are present simultaneously; 2. To further elucidate the mechanism
by which ADH catalyzes the reduction of C-nitroso substrates by comparing the activities of HLC, purified HLADH, and purified human ADH isozymes with respect to the model C-nitroso substrate pNSP; and 3. To characterize the activities of individual human ADH isozymes with respect to thiodiglycol. Evidence is presented to show distinctly different mechanisms and kinetics by these different systems.
CHAPTER 2 P-NITROSOPHENOL REDUCTION BY LIVER CYTOSOL FROM ADH-POSITIVE AND NEGATIVE DEERMICE (PEROMYSCUS MANICULATUS)

2.1 Introduction

Aromatic C-nitroso compounds are abundant in the environment (32). They are readily formed intermediates of reductive metabolism of nitroarenes and oxidative metabolism of arylamines. The cytosolic fraction of rat liver contains various NADH- or NADPH-linked enzymes which can reduce certain nitrosoarenes to the corresponding amines (43). Based on the sensitivity of the reaction to pyrazole, a role for alcohol dehydrogenase (ADH; EC 1.1.1.1) in NADH-dependent C-nitroso reductase activity of liver cytosol was indicated (44-48). ADH catalyzed the 4-electron reduction of p-nitrosophenol to p-aminophenol and showed a slightly acidic pH optimum. Purified horse liver ADH and yeast ADH catalyzed NADH-dependent reduction of p-nitroso-N,N-dimethylaniline to the corresponding amine (40-42). NAD(P)H: quinone oxidoreductase (EC 1.6.99.2) has been shown to reduce a variety of nitroso aromatics including p-nitrosophenol, nitrosobenzene, nitrosonaphthol and 5-nitroso-8-quinolinol (47). The C-nitroso reductase activity of porcine heart, which lacks ADH activity, co-eluted with menadione reductase activity upon partial purification and was supported by either NADH or NADPH (46, 47)

Activation of nitroaromatic compounds to mutagens occurs via nitroreduction and involves formation of partially reduced metabolites such as C-nitroso or hydroxylamino compounds. Therefore formation and removal of the nitroso intermediates of arylamines and nitroaromatics is an important consideration in the mutagenic expression of these compounds. The mutagenic and carcinogenic potential

1 Reprinted by Permission of Archives of Biochemistry and Biophysics.
of nitro and nitroso arenes is a function of their ability to be reduced to their corresponding N-hydroxylamine (54, 55). Although ADH has been known to catalyze reduction of the C-nitroso functional group to its corresponding hydroxylamine for nearly two decades, the toxicological significance of this reaction remains largely unexplored.

We have recently characterized NAD(P)H-dependent reduction of \(p \)-nitrosophenol by liver cytosol from male Sprague-Dawley rats that had been maintained for 30 days on either an alcohol-containing liquid diet or a control diet in which carbohydrate was substituted isocalorically for ethanol (48). Based on potent inhibition by dicumarol of cytosolic NADPH-dependent \(p \)-nitrosophenol reduction, our studies indicated that this activity was mainly attributable to NAD(P)H: quinone oxidoreductase in liver; this was true with cytosol from ethanol- or pair-fed rats. The total \(p \)-nitrosophenol reductase of cytosol from ethanol-fed rats was about 2-fold higher than that of controls and the apparent ethanol-inducible portion of the activity was completely inhabitable by dicumarol. Pyrazole only weakly inhibited NADPH-dependent cytosolic reduction of \(p \)-nitrosophenol by the ethanol- and pair-fed systems, respectively, which indicated a relatively minor contribution of ADH. By contrast, NADH-dependent \(p \)-nitrosophenol reduction by cytosol from ethanol-and pair-fed rats was effectively inhibited by pyrazole (~60 %). Dicumarol was a relatively weak inhibitor of NADH-dependent \(p \)-nitrosophenol reduction in both the ethanol and pair-fed systems. Thus, NADH-dependent C-nitroso reductase activity of rat liver appears to be predominantly ADH-catalyzed.
The development of an ADH-negative deermouse by Burnett and Felder (56) has contributed significantly to the understanding of the in vivo ramifications of ADH (57). The model was used to show the predominant role of microsomal cytochrome P450 in non-ADH-dependent ethanol oxidation in vivo (58). As sundry other liver enzymes, eg. NAD(P)H: quinone oxidoreductase, xanthine oxidase (EC 1.1.3.22) or aldehyde oxidase (EC 1.2.3.1) are capable of nitro, nitroso and hydroxylamino reduction in liver, the ADH-negative deermouse offers advantages in elucidating ADH and non-ADH metabolism of nitroso and hydroxylamines in vitro and in vivo. Herein evidence is presented to show that ADH is the major NADH-dependent C-nitroso reductase of the deermouse liver and that in ADH-negative deermouse liver, NAD(P)H: quinone oxidoreductase is the predominant NADH- and NADPH-dependent C-nitroso reductase. The total insensitivity of p-nitrosophenol reduction to allopurinol suggests the lack of a role for xanthine or aldehyde oxidase as a p-nitrosophenol reductase in liver cytosol of both ADH-positive and negative deermice.

2.2 Materials and Methods

2.2.1 Chemicals and Enzymes

Allopurinol, dicumarol, pyrazole, NADH, NADPH, HLADH, and potassium ferricyanide were from Sigma (St. Louis, MO). p-Aminophenol, p-nitrosophenol, and phenol were from Aldrich Chemical Co. (Milwaukee, WI). All other chemicals were of the highest grade commercially available.

2.2.2 Animals

ADH-positive (ADH+) and ADH-negative (ADH-) deermice were provided by Dr. Michael R. Felder, Department of Biology, University of South Carolina, Columbia,
SC. These animals were acclimated for one week in the LSU animal housing facility on a 12:12 hour light:dark cycle and fed standard laboratory chow and water *ad libitum*.

2.2.3 Preparation of Cytosolic Fractions

Cytosolic fractions (105,000 x g supernatants) were prepared by differential centrifugation of liver homogenates according to standard techniques in the literature (59). Fractions were aliquoted and stored at -80°C prior to use.

2.2.4 Enzyme Assays

Formation of *p*-aminophenol from *p*-nitrosophenol was determined by a modification of the procedure described by Horie *et al.* (44). Essentially, *p*-nitrosophenol (0.05-1mM) was incubated for 15 minutes in the presence of 200 μM NADH or NADPH and an appropriate amount of activating enzyme (approximately 0.05 mg/ml cytosolic protein or 0.025 mg/ml purified HLADH) in 50 mM potassium phosphate buffer, pH 7.4, in a final volume of 2 ml. The reaction was initiated by addition of NAD(P)H and terminated by addition of 300 μl of 1 M Na₂CO₃. *p*-Aminophenol was detected spectrophotometrically by subsequent addition of 300 μl of 5% (w/v) aqueous phenol and 200 μl of 0.2% (w/v) potassium ferricyanide. The color was allowed to develop for 15 min and the absorbance measured at 630 nm against a blank containing all reagents but the enzyme fraction. The concentration of *p*-aminophenol formed was calculated from a standard curve using commercially available *p*-aminophenol. Additional incubations contained 15 μM dicumarol, 5 mM pyrazole, or 20 μM allopurinol. At these inhibitor concentrations, the reduction of dichlorophenolindolephenol (DCPIP) or *p*-nitrosophenol by purified NAD(P)H:quinone oxidoreductase, ethanol oxidation and *p*-nitrosophenol reduction by purified ADH and urate formation from hypoxanthine by purified xanthine oxidase were...
inhibited 80-90%. Higher concentrations were without further effect. Time course studies followed the basic procedure except that reactions were begun at individual time points so that all could be terminated simultaneously.

Anaerobic experiments were conducted as stated above except that the reactions were run in a nitrogen atmosphere. The reaction mixture and a solution of NADH were degassed with nitrogen for 15 min and sealed with a rubber septum. Reactions were initiated by injecting the degassed NADH directly through the septum of test tubes containing the nitrogen saturated reaction mixture.

Cytosolic NAD(P)H: quinone oxidoreductase activity of deermouse liver cytosol was measured by monitoring the change in absorbance of DCPIP essentially by the method of Emster et al (60). Liver cytosolic ADH activities were measured by the method of Bonnichsen et al (61), which is based on spectrophotometric measurement of NADH formation from NAD+ in the presence of ethanol.

The oxidation of NAD(P)H catalyzed by either purified enzymes or cytosol was measured by following the loss of absorbance of the reduced pyridine nucleotide at 330 nm. This wavelength was chosen instead of the traditional 340 nm to correct for interferences at 340 nm by p-nitrosophenol (48). Specific activities were quantified from the corrected millimolar extinction coefficient of 5.87 mM⁻¹ · cm⁻¹ for the reduced pyridine nucleotide at 330 nm.

2.3 Results

2.3.1 NAD(P)H: Quinone Oxidoreductase and Alcohol Dehydrogenase Activities of Deermouse Liver Cytosol

The specific activities for dicumarol-sensitive, NADH- and NADPH-dependent DCPIP reduction (NAD(P)H: quinone oxidoreductase activity) catalyzed by liver
cytosol from ADH- deermice were essentially identical (25.4 ± 3.1 and 25.1 ± 1.7 nmol/min/mg cytosolic protein, respectively). With cytosol from ADH+ deermice the specific activities were 7.2 ± 1.2 and 11.1 ± 1.7 nmol/min/mg for NADH and NADPH, respectively. Thus NAD(P)H: quinone oxidoreductase activity is about 2-3 times greater in the ADH+ deermouse than in the ADH-. The specific activity of liver cytosolic ADH in the ADH+ and ADH- animals, respectively were 4.9 ± 0.7 and 0.4 ± 0.2 nmol/min/mg protein.

2.3.2 p-Nitrosophenol Reduction by ADH+ and ADH- Deermouse Cytosol

Cytosolic fractions from ADH+ and ADH- deermice catalyze NAD(P)H-dependent reduction of p-nitrosophenol to p-aminophenol (Figs. 2.1A and 2.1B). With either cofactor the reaction appears to be first order with respect to cytosolic protein concentration up to approximately 50 μg/ml. Figure 2.1A also shows that NADH-dependent rates were about three times greater with ADH+ cytosol than with ADH- cytosol, whereas NADPH-dependent rates of p-aminophenol formation catalyzed by cytosol from ADH+ and ADH- deermice were essentially equivalent (Fig. 2.1B).

The time courses for the reduction reactions are shown in Figure 2.2, where it is seen that p-aminophenol formation catalyzed by cytosol from ADH+ deermice (panel A) is linear for up to 15 minutes with either of the cofactors. However, with NADH (filled triangles) the reaction clearly plateaus more abruptly than it does with NADPH (open triangles). The initial velocity of the NADH-dependent reaction, taken at ten minutes, is about two times greater than the NADPH-dependent reaction (44 ± 6 vs. 24 ± 4 nmol/min/mg, respectively). With cytosol from ADH- deermice (panel B), p-aminophenol formation was linear up to 30 minutes and, reminiscent of DCPIP reduction, specific activities were essentially identical with either NADH or NADPH
(13.4 ± 0.4 vs. 13 ± 0.6 nmol/min/mg, respectively). The patterns of \(p \)-nitrosophenol reduction by ADH\(^+\) deermouse cytosol are similar to those reported previously by our laboratory for cytosol from male Sprague-Dawley rats (48).

![Graph](image)

Fig. 2.1 Effect of varying the protein concentration on NADH- (A) and NADPH- (B) dependent formation of \(p \)-aminophenol from \(p \)-nitrosophenol by deermouse cytosolic fractions. Increasing concentrations of cytosol from ADH\(^+\) (closed triangles) and ADH\(^-\) (open triangles) were incubated in the presence of \(p \)-nitrosophenol as described under Materials and Methods. Each data point represents the mean ± SD of at least three experiments run in triplicate with cytosol pooled from 4 animals from each treatment group.

2.3.3 Effect of Inhibitors on \(p \)-Aminophenol Formation by ADH\(^+\) Deermouse Cytosol

To evaluate the role of certain enzymes in the cytosolic fractions of the ADH\(^+\) deermouse that might participate in the reduction of \(p \)-nitrosophenol to \(p \)-aminophenol, the effects of classical inhibitors of putative nitroso reductases present in liver cytosol...
Fig. 2.2 Effect of NADH and NADPH on p-aminophenol formation from p-nitrosophenol by deermouse cytosolic fractions. Cytosol from ADH⁺ (A) and ADH⁻ (B) deermice was incubated in the presence of p-nitrosophenol for time periods ranging from 0-60 min as described under Materials and Methods. Rates for the NADH-dependent (closed triangles) and NADPH-dependent (open triangles) C-nitroso reductase activities are shown. Each data point represents the mean ± SD of at least three experiments run in triplicate with cytosol pooled from 4 animals from each treatment group.

were studied. The inhibitors employed were: allopurinol, which forms an irreversible complex with the molybdenum center of xanthine and aldehyde oxidase (62); dicumarol, a potent inhibitor of NAD(P)H: quinone oxidoreductase (60); and pyrazole, which forms a "dead-end" complex with ADH (63). Prior to using these inhibitors for our cytosolic studies preliminary experiments were conducted to establish their inhibitory effects on p-nitrosophenol reduction by purified NAD(P)H: quinone
oxidoreductase, ADH and xanthine oxidase. At the concentrations employed dicumarol inhibited p-nitrosophenol reduction by NAD(P)H: quinone oxidoreductase by greater than 80% and pyrazole inhibited purified horse liver and human $\beta_2\beta_2$-ADH (both class I ADH) by greater than 90%, (data not shown). Purified xanthine oxidase did not catalyze p-nitrosophenol reduction.

![Graph](image)

Fig. 2.3 Effect of pyrazole and dicumarol on NADH-dependent formation of p-aminophenol from p-nitrosophenol by cytosol from ADH$^+$ deer mice. Cytosol from ADH$^+$ deer mice was incubated in the presence of p-nitrosophenol for time periods ranging from 0-60 min as described under Materials and Methods. Final concentrations in 2 ml were: Pyrazole, 5 mM (closed triangles) and Dicumarol, 15 μM (closed squares). Control values are represented by the open squares. INSET: Effect of inhibitors on NADPH-dependent p-aminophenol formation from p-nitrosophenol by cytosol from ADH$^+$ deer mice (data shown for a 15 min incubation period). CON, Control; DC, Dicumarol; PYR, Pyrazole. Each data point represents the mean ± SD of at least three experiments run in triplicate with cytosol pooled from 4 animals from each treatment group.
The effects of the inhibitors were significantly dependent upon the pyridine nucleotide cofactor employed in the reaction. Figure 2.3 shows pyrazole (5mM) to be an effective inhibitor (85-90%) of the NADH-dependent C-nitroso reductase activity of cytosol from ADH* deermice over the entire time course studied. Thus, this activity appears to be attributable to cytosolic ADH. With NADPH the inhibition by pyrazole was less than 20% and not statistically significant (Fig. 2.3 inset; shown for 15 min time point only). Dicumarol had little effect on the NADH-dependent reaction thus, NAD(P)H: quinone oxidoreductase does not appear to have a significant role in NADH-dependent reduction of p-nitrosophenol by these cytosolic preparations. In contrast to the nominal effect of dicumarol on NADH-dependent activity the NADPH-dependent reaction was inhibited by greater than 90% (Fig. 2.3 inset). Allopurinol, at concentrations (20-200 μM) that potently inhibit the formation of urate from hypoxanthine catalyzed by 0.15 units of purified xanthine oxidase, was without effect on NADH- or NADPH-dependent activities, which indicates that neither cytosolic xanthine oxidase nor aldehyde oxidase are likely to be involved in the cytosolic reduction of p-nitrosophenol (data not shown) under the conditions in which these experiments were conducted.

We considered the possibility that the insensitivity of p-nitrosophenol reduction by ADH+ and ADH- cytosol to allopurinol was due to failure to see an appropriate product contribution from xanthine oxidase activity under aerobic conditions. An identical experiment was conducted under nitrogen atmosphere to determine if the contribution of xanthine oxidase could be enhanced and therefore visualized under anaerobic conditions and, if so, whether the enhanced activity was allopurinol-sensitive.
The results showed that p-nitrosophenol reduction by ADH+ cytosol was increased by 97% and by ADH− cytosol by 60% under a nitrogen atmosphere. In both instances the increase in activity was insensitive to allopurinol. Thus, it appears that the increase in activity under nitrogen atmosphere is due to enzymes other than xanthine oxidase, which does not seem to have a role in p-nitrosophenol reduction by cytosol from either ADH+ or ADH− deermice whether oxygen is present or not.

Fig. 2.4 Effect of pyrazole and dicumarol on NADPH-dependent formation of p-aminophenol from p-nitrosophenol by cytosol from ADH+ deermice. Cytosol from ADH+ deermice was incubated in the presence of p-nitrosophenol for time periods ranging from 0-60 min as described under Materials and Methods. Final concentrations in 2 ml were: Pyrazole, 5 mM (closed triangles) and Dicumarol, 15 μM (closed squares). Control values are represented by the open squares. INSET: Effect of inhibitors on NADH-dependent p-aminophenol formation from p-nitrosophenol by cytosol from ADH+ deermice (data shown for a 15 min incubation period). CON, Control; DC, Dicumarol; PYR, Pyrazole. Each data point represents the mean ± SD of at least three experiments run in triplicate with cytosol pooled from 4 animals from each treatment group.
2.3.4 Effect of Inhibitors on ADH- Deermouse Cytosol

Whereas a significant cofactor preference was observed in the ADH+ deermouse model with respect to C-nitroso reductase activity, this was not the case with cytosolic fractions from ADH- deermice; NADH- and NADPH-dependent activities were essentially equivalent (Fig. 2.4). Neither pyrazole nor allopurinol (not shown) significantly inhibited the rates of formation of p-aminophenol from p-nitrosophenol. However, with either of these cofactors, dicumarol potently inhibits reduction of p-nitrosophenol; the NADH-dependent reaction is shown for the 15 min time point only (Fig. 2.4 inset). Thus, the reduction of p-nitrosophenol by this ADH-deficient cytosolic fraction appears to be mainly catalyzed by NAD(P)H: quinone oxidoreductase. We note that at the concentrations of the inhibitors employed virtually no cross-reactivity was observed between these inhibitors and the enzymes probed in their respective purified forms. For example, 15 μM dicumarol was without effect on C-nitroso reduction by purified ADH from horse liver and xanthine oxidase from buttermilk, but did potently inhibit menadione and C-nitroso reduction by purified NAD(P)H: quinone oxidoreductase from rat liver (not shown).

2.3.5 NAD(P)H Oxidation by Deermouse Cytosol

ADH-dependent rates of NAD(P)H oxidation catalyzed by the two deermouse cytosolic fractions in the presence of the C-nitroso substrate were also determined to confirm the results obtained for the formation of p-aminophenol. These data are summarized in Table 2.1. Consistent with the data on p-aminophenol formation the rate of NADH oxidation in the presence of p-nitrosophenol was about twice that of NADPH oxidation with ADH+ cytosol (77 ± 6 vs. 36 ± 1 nmol/min/mg). With ADH+ cytosol the rates of NADH and NADPH oxidation were similar (71 ± 3 vs. 62 ± 5 nmol/min/mg).
Pyrazole inhibited NADH oxidation catalyzed by ADH⁺ cytosol by about 70% (77 ± 6 to 22 ± 3 nmol/min/mg) and not that catalyzed by ADH⁻ cytosol (59 ± 4 vs. 62 ± 5 nmol/min/mg). Dicumarol inhibited the NADH-dependent ADH⁺ and ADH⁻ cytosolic reactions by 51% and 85%, respectively. Results of the NADPH-dependent reaction were as expected, as the majority of NADPH oxidation catalyzed by ADH⁺ and ADH⁻ cytosol was highly dicumarol-sensitive and nominally pyrazole-sensitive. NADPH oxidation by ADH⁺ and ADH⁻ cytosol was inhibited by dicumarol by approximately 80%, (from 36 ± 1 to 7 ± 2 and 71 ± 3 to 13 ± 1 nmol/min/mg by ADH⁺ and ADH⁻ cytosol, respectively).

Table 2.1 ADH-dependent NAD(P)H oxidation by deermouse cytosolic fractions.

<table>
<thead>
<tr>
<th>NADH</th>
<th>nmol NAD(P)H oxidized/min/mg cytosolic protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADH⁺</td>
</tr>
<tr>
<td>Control</td>
<td>77 ± 6*</td>
</tr>
<tr>
<td>+Pyrazole</td>
<td>22 ± 3 [71%]</td>
</tr>
<tr>
<td>+Dicumarol</td>
<td>38 ± 2 [51%]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NADPH</th>
<th>nmol NAD(P)H oxidized/min/mg cytosolic protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADH⁺</td>
</tr>
<tr>
<td>Control</td>
<td>36 ± 1</td>
</tr>
<tr>
<td>+Pyrazole</td>
<td>28 ± 2 [22%]</td>
</tr>
<tr>
<td>+Dicumarol</td>
<td>7 ± 2 [81%]</td>
</tr>
<tr>
<td></td>
<td>ADH⁻</td>
</tr>
<tr>
<td>Control</td>
<td>71 ± 3</td>
</tr>
<tr>
<td>+Pyrazole</td>
<td>70 ± 3 [1%]</td>
</tr>
<tr>
<td>+Dicumarol</td>
<td>13 ± 1 [82%]</td>
</tr>
</tbody>
</table>

Oxidation of NAD(P)H was monitored spectrophotometrically at 330 nm as described in Materials and Methods. (*) results represent means ± SD of triplicate determinations on cytosolic fractions pooled from four animals from each group. (b) Values in brackets represent percent inhibition relative to uninhibited controls. Pyrazole and dicumarol concentrations are 5 mM and 15 μM, respectively.
2.4 Discussion

The present study confirms in another mammalian species previous data from our laboratory that showed that cytosolic NADH-dependent p-nitrosophenol reduction is predominantly pyrazole-sensitive, which suggests that this C-nitroso reductase activity is associated with ADH in the liver (48). In fact, 5 mM pyrazole was significantly more effective as an inhibitor of p-nitrosophenol reduction by ADH* deermouse cytosol (85-90%) than that by rat liver cytosol (50-60%; see ref. (48)). Moreover, the present studies with the ADH-negative deermouse extend our earlier findings to show that non-ADH metabolism of a model C-nitroso substrate is apparently associated predominantly with liver cytosolic NAD(P)H: quinone oxidoreductase; this was true of both the NADH- and NADPH-dependent activities. In the ADH* system NADH-dependent activity was as sensitive to dicumarol as was the NADPH-dependent activity, a result that is consistent with the equal affinity of NAD(P)H: quinone oxidoreductase for the two pyridine nucleotides. The higher specific activity of NAD(P)H: quinone oxidoreductase in the ADH* animal renders the contribution of this enzyme approximately equivalent to that of the ADH* animal. Whether or not this is a compensatory action remains to be established. Nevertheless, ADH apparently was able to out compete the quinone oxidoreductase in the ADH* cytosol for p-nitrosophenol substrate when NADH was used as the cofactor.

Under the experimental conditions used herein, cytosolic C-nitroso reductase activity of neither the ADH* nor ADH* animals was sensitive to allopurinol, even at concentrations that inhibited urate formation from hypoxanthine by purified commercial xanthine oxidase or cytosol by greater than 90% (not shown). Thus, under aerobic conditions liver cytosolic xanthine oxidase from ADH* or ADH* deermice (and more
than likely aldehyde oxidase) does not catalyze reduction of p-nitrosophenol to the amine. One possibility which might explain the apparent lack of a role for xanthine oxidase as a cytosolic C-nitroso reductase in the rat (48), and presently the deermouse, is that in contrast to ADH and NAD(P)H: quinone oxidoreductase, xanthine oxidase involves univalent reduction of nitro and nitroso substrates to oxygen labile free radical intermediates (64). Thus, rapid loss of the free electron of the radical intermediate to molecular oxygen can be envisaged, which precludes formation of further reduced products (65). Under aerobic conditions in the presence of p-nitrosophenol and purified xanthine oxidase NADH oxidation was very slow and no faster than in the absence of p-nitrosophenol (not shown). This would indicate that p-nitrosophenol is not a suitable acceptor of electrons from xanthine oxidase. If a redox cycle was being mediated via a free radical intermediate of p-nitrosophenol in the manner described above, a stimulation in the rate of NADH oxidation relative to the rate catalyzed by the xanthine oxidase in the absence of p-nitrosophenol should have resulted. Furthermore, even in a nitrogen atmosphere, which did enhance p-aminophenol formation from p-nitrosophenol, allopurinol was without effect.

Both microsomal and cytosolic enzymes are involved in the metabolism of nitro and nitroso arenes (33, 65, 66). The equilibrium between the nitroso and hydroxylamine intermediates is an important consideration in the mutagenic expression of arylamines and nitroarenes (38) because the hydroxylamine is the precursor of the highly electrophilic arylnitrenium ion, which reacts strongly with nucleophilic centers of DNA. The results of kinetic studies indicated the transient formation of an enzyme-
bound intermediate of p-nitrosophenol by 2-electron transfer from one molecule of NADH (45).

Cytosolic NAD(P)H: quinone oxidoreductase is a major inducible nitro and nitroso reductase (67); it is induced by polychlorinated biphenyls (PCB, (67)), polynuclear aromatic hydrocarbons (68) and ethanol (48). ADH is not induced by exposure to these xenobiotics, therefore the contribution of NAD(P)H: quinone oxidoreductase to cytosolic C-nitroso reduction would be expected to be enhanced when it is induced. Under these experimental conditions, the induction of liver cytosolic NAD(P)H: quinone oxidoreductase upon pretreatment of rats with the PCB mixture Aroclor-1254® was nearly 20-fold over non-treated controls (67). When the effects of pyrazole and dicumarol on NADH-dependent cytosolic p-nitrosophenol reduction was compared in control and PCB-induced rats the inhibition pattern in the controls were similar to that reported herein for ADH+ deermice and in PCB-induced rats pyrazole inhibition was only about 10-15% and dicumarol inhibition about 85-90% (unpublished results).

The reduction of a nitro group to the amine involves transfer of six electrons. Thus, aside from possible conjugated products, e.g. acetylated, etc. there are five potential intermediates of nitroarene reductive metabolism. These include, the nitroso and hydroxylamine intermediates and three free radical species, the nitro anion, the nitroxyl and the aminoxyl radicals. The radical intermediates could either bind to nucleophilic centers of tissue macromolecules or lose the free electron to molecular oxygen thereby producing various oxygen radicals via a redox cycle. We have noted that neither NAD(P)H: quinone oxidoreductase purified from rat liver nor ADH purified
from horse liver enhance the rates of oxygen consumption or NAD(P)H oxidation in the presence of nitronaphthalene or 4-nitroquinoline N-oxide (69), whereas these parameters are markedly increased by purified cytochrome P450 reductase and xanthine oxidase. Thus, it does not appear that the reduction of C-nitroso substrates catalyzed by ADH or NAD(P)H: quinone oxidoreductase results in significant production of radical intermediates.

The results of this study, in conjunction with those of others cited herein, suggest a complex interplay of cytosolic enzymes in the metabolism of nitro and nitrosoarenes. This complexity is in part related to the content of the enzyme in the liver and availability and redox status of pyridine nucleotide cofactors in the cytosolic fraction, both of which are subjected to alteration by xenobiotic exposure. Further, it is likely that intermediates of a primary or secondary reaction can shift loci, for example, a nitroaromatic might first be reduced by NAD(P)H: quinone oxidoreductase or xanthine oxidase and the resulting nitroso product might preferentially be further reduced by ADH. Certainly a great deal more investigation is required before the metabolic sequelae of biotransformation of nitro or nitroso arenes to DNA adduct formation is elucidated with precision.
CHAPTER 3 REDUCTION OF p-NITROSOBENZENOL BY ALCOHOL DEHYDROGENASE: COMPARISON OF HUMAN AND HORSE LIVER ISOZYMES

3.1 Introduction

Alcohol dehydrogenase (ADH, EC 1.1.1.1) is the primary enzyme responsible for the oxidation of ethanol, with the production of acetaldehyde and NADH being the first step of ethanol elimination (1). The reaction follows an ordered bi bi mechanism in which the binding of the cofactor NAD$^+$ near the enzyme active site precedes binding of substrate. This binary complex then binds one molecule of ethanol to form the catalytically active ternary complex. Catalysis occurs by hydride transfer from ethanol to the bound cofactor followed by the ordered release of acetaldehyde and NADH. This reaction is reversible with the ADH-catalyzed reduction of acetaldehyde resulting in the production of ethanol.

Mammalian zinc-containing ADH constitute an enzyme family of multiple isoforms. Horse liver alcohol dehydrogenase (HLADH) is the most widely studied. HLADH is composed of two 40 kDa monomers, each containing 374 amino acids and two zinc ions, one having a structural function and the other a catalytic function (70, 71).

Humans express more than 20 ADH isozymes composed of as many as nine different subunits (4). The horse enzyme shares between 60% and 87% sequence identity with the human isozymes. Having been differentiated into five classes based on their genotypes, electrophoretic mobilities and inhibition by pyrazole and some of its 4-alkylated derivatives, the inter-class differences between the human isozymes are large and affect charge, enzyme activity, and inhibition patterns. The overall residue identity shows 60% homology between classes; many residues at the active site differ especially...
in the substrate-binding pocket, which is large and hydrophobic in the traditional ethanol-active liver enzyme of class I, but different in the enzymes of the other classes.

Genes at three loci, ADH 1, ADH 2, and ADH 3, code for the class I isozymes α-, β-, and γ-ADHs, respectively, with allelic variants of β and γ (5, 6). These molecular forms are effectively inhibited by 4-methylpyrazole. Primary and secondary alcohols are almost equally good substrates for class I ADHs. Patterns of class I isozymes also vary because of allelic polymorphism within and among different racial groups. Variants involving the β subunit have been designated β₁ (Caucasian), β₂ (Oriental), and β₃ (African) (6). Class II and class III each consist solely of one isozyme, π-ADH and χ-ADH, respectively, which are relatively insensitive to pyrazole inhibition. Class II ADH, translated by ADH 4, acts on primary aliphatic alcohols and aromatic aldehydes (7). All human isozymes catalyze the oxidation of ethanol; however, the Kₘ of class II ADH for ethanol is significantly higher than that of class I forms. Of the vertebrate ADHs that have been identified, only one form, class III ADH, has been conserved in all organisms (8). Class III ADH functions in vitro as a glutathione-dependent formaldehyde dehydrogenase, which suggests that this was the original function that drove the evolution of ADH (10). Class III is produced from the ADH 5 gene. The π and χ subunits share about 60% sequence identity with each other or the other isozymes and have not been observed to form heterodimers. Class IV is encoded by the ADH 7 locus that expresses the σ-ADH. Found predominately in the stomach, σ-ADH is considered to have a significant role in retinol metabolism and first-pass ethanol metabolism (11-13). As with HLADH, these medium chain
dehydrogenases are dimeric 80kd NAD$^+$- and zinc-dependent ADHs, containing 4 zinc atoms per dimer (14, 15).

Microsomal and cytosolic enzymes are involved in the metabolism of mutagenic nitroarenes and arylamines (33, 34). Arylamines are synthetic industrial compounds. Much research has been undertaken to understand the toxic sequelae of arylamines (66, 72). Previous studies have shown that the mutagenic activation of 2-aminofluorene, a benchmark mutagenic arylamine, is lowered by liver microsomal fractions from ethanol-fed rats, but increased by the corresponding cytosolic fraction, when compared to pair-fed controls (66). Nitroarenes are ubiquitous, anthropogenically-generated contaminants formed predominantly by incomplete combustion (38). They have been detected in gasoline emissions, fly ash, cigarette smoke, grilled foods, incinerator emissions, residential home heaters and wood burning stoves (38, 39).

Dunn and Bernhard (1971) reported the reduction of p-nitroso-N,N-dimethylaniline by horse liver ADH (40). It was noted that the nitroso moiety is both isosteric and isoelectronic with aldehyde functionality. Activation of nitroaromatic compounds to mutagens involves formation of partially reduced metabolites, such as C-nitroso- or hydroxylamino compounds (67). The mutagenicity of nitroarenes and arylamines is closely related to the steady-state concentrations of the nitroso and hydroxylamino intermediates produced during their respective reductive and oxidative metabolism (54, 55). The potent mutagenic and carcinogenic potential of nitro- and nitrosoarenes is widely accepted to involve their facile reduction to N-hydroxyarylamines.
ADH catalyzes both the reduction of 2-nitrosofluorene and the rearrangement of N-hydroxy-2-aminofluorene, which provides cogent evidence for the production of the electrophilic intermediate arylnitrenium ion (36). Moreover, NADH-dependent C-nitroso reductase activity catalyzed by both ADH-positive deer mouse cytosol and rat liver cytosol is inhibited more than 85% by pyrazole, thereby implicating ADH as an important catalyst in these cytosolic fractions. (48, 73). Leskovac et al. have reported the metabolism of p-nitroso-N,N-dimethylaniline by yeast ADH and the HLADH catalyzed reduction of pNSP (74, 75). Although ADH has been known to catalyze the reduction of the C-nitroso functional group to its corresponding hydroxylamine for nearly two decades, the toxicological ramifications of this reaction had not been fully explored until recently (36, 37, 48, 73). To implicate a role for the various human ADH in the toxicity of C-nitroso compounds we compared the activities of purified human ADH isozymes with respect to the model C-nitroso substrate pNSP. The results were compared with those of purified HLADH, a benchmark ADH in biochemical studies. Evidence is presented to show distinctly different mechanisms and kinetics of pNSP reduction by these different ADH isozymes.

3.2 Materials and Methods
3.2.1 Chemicals and Enzymes

Pyrazole, NADH, NADPH, benzaldehyde and potassium ferricyanide were obtained from Sigma (St. Louis, MO). pAP, pNSP, and phenol were obtained from Aldrich Chemical Co. (Milwaukee, WI). Crystalline HLADH was obtained from Boehringer-Mannheim (Indianapolis, IN). All other chemicals were of the highest grade commercially available. Purified human liver ADH isozymes were generously
provided for these studies by Dr. W. F. Bosron, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine.

3.2.2 Preparation of Cytosolic Fractions

Human liver obtained from a normal caucasian female human liver autopsy sample was generously provided by Dr. Sanda Clejan (Department of Pathology, Tulane University Medical Center, New Orleans, Louisiana). The cytosolic fraction (105,000 x g supernatant) of this human liver sample was prepared by differential centrifugation of liver homogenates according to standard techniques in the literature (59). Fractions were aliquoted and stored at -80°C prior to use.

3.2.3 Enzyme Assays

Formation of pAP from pNSP was determined essentially by the method of Horie et al. (44) with modifications (48). pNSP (0.05-1mM) was incubated for 15 minutes in the presence of 200 μM NADH or NADPH and approximately 0.05 mg/ml cytosolic protein or 1 μg/ml purified HLADH or 0.7-1 μg/ml purified human ADH in 50 mM potassium phosphate buffer or 0.1 M MES, 51 mM NEA, 51 mM DEA, pH 7.4, in a final volume of 2 ml. The reaction was initiated by addition of cofactor and terminated by addition of 300 μl of 1 M Na₂CO₃. pAP formation was detected spectrophotometrically by subsequent addition of 300 ml of 5% (w/v) aqueous phenol and 200 ml of 0.2% (w/v) potassium ferricyanide. The color was allowed to develop for at least 15 min and the absorbance was read at 630 nm against a reagent blank. The concentration of pAP formed was calculated from a standard curve using commercially available pAP. Additional reactions contained 15 mM dicumarol, 5 mM pyrazole, or 20 mM allopurinol. The extent of pNSP reduction was determined spectrophotometrically by tracing the loss of absorbance at 400 nm. The enzyme-catalyzed reaction was
quantified using the extinction coefficient of pNSP, $\varepsilon_{400} = 21.92 \text{ mM}^{-1}\text{cm}^{-1}$. Spectral transition studies were determined in tandem cuvettes. The two chambers of the sample cuvette contained: 1) 50 mM potassium phosphate buffer, pH 7.4, and 2) 120 μM pNSP, 200 μM NADH, 50 mM potassium phosphate buffer, pH 7.4, and purified ADH in a final volume of 1 ml. Those of the reference cuvette contained: 1) 200 μM NADH, 50 mM potassium phosphate buffer, pH 7.4, and purified ADH, and 2) 120 μM pNSP and 50 mM potassium phosphate buffer, pH 7.4, in a final volume of 1 ml. The reactions were initiated with addition of the enzyme. Reactions were followed spectrophotometrically at 1-1.5 min intervals for 15 min time periods. ADH activities were measured by the method of Bonnichsen et al. (61), which is based on spectrophotometric measurement of NADH formation from NAD$^+$ in the presence of ethanol. All spectrophotometric measurements were performed with a Hitachi U-3110 UV-visible spectrophotometer at 25°C.

Quinone reductase activity by ADH was determined by a modification of the procedure described by Ernster et al. (76) for NAD(P)H: quinone oxidoreductase (DT-diaphorase). 1,4-Benzquinoneimine (BQI) was synthesized by Dr. Zofia Maskos in our laboratory by oxidation of pAP in CH$_3$CN in the presence of Ag$_2$O at room temperature as described by Novak and Martin (77). The reaction mixture contained 0.05 M phosphate buffer, pH 7.4, 0.2 mM NAD(P)H and 32 mM BQI. The reaction was followed by recording the reduction of BQI at 262 nm ($\varepsilon_{262} = 28.2 \text{ mM}^{-1}\text{cm}^{-1}$) and the oxidation of NADH at 340 nm ($\varepsilon_{340} = 6.22 \text{ mM}^{-1}\text{cm}^{-1}$).
3.3 Results

3.3.1 Effect of Inhibitors on NADH-Dependent \(p \)-Aminophenol Formation by Human Liver Cytosol

As a first approach to evaluating a role for the various NADH-linked enzymes in the cytosolic fractions of human liver that might participate in the reduction of \(p \)-NSP to \(p \)-aminophenol (\(p \)AP), the effects of classical inhibitors of putative nitroso reductases present in liver cytosol were studied (Fig. 3.1). The inhibitors employed were allopurinol, which forms an irreversible complex with the molybdenum center of xanthine (EC 1.1.3.22) and aldehyde (EC 1.2.3.1) oxidase (62); dicumarol, a potent inhibitor of NAD(P)H:quinone oxidoreductase (60); and pyrazole, which forms a "dead-end" complex with some ADH isozymes and NAD\(^+\) (63).

Cytosol prepared from a normal female human liver autopsy sample catalyzed NAD(P)H-dependent reduction of \(p \)NSP (Fig. 3.1). As was reported for this activity catalyzed by cytosol from rat liver and ADH-positive deer mouse liver (48, 73), NADH-dependent \(p \)NSP reduction catalyzed by human liver cytosol was sensitive to inhibition by pyrazole. These experiments showed that 5 mM pyrazole potently inhibited (> 90%) the NADH-dependent formation of \(p \)AP from \(p \)NSP; this inhibition was actually greater than that caused by pyrazole on the cytosolic reduction of \(p \)NSP by the rodent liver cytosols, which were 75% and 85%, respectively (48, 73). Thus, this activity appears to be attributable to cytosolic ADH. Dicumarol inhibited the NADH-dependent reaction by only 7%; thus, NAD(P)H:quinone oxidoreductase does not appear to have a significant role in NADH-dependent reduction of \(p \)NSP. NADPH-dependent activity was potently inhibited by dicumarol in rodent and human liver cytosol. Unexpectedly, and in direct contrast to rodent liver cytosol, pyrazole inhibited the NADPH-dependent
reduction of pNSP by human liver to about 80%. In agreement with our studies of
deer mouse and rat liver cytosols, allopurinol inhibited neither NADH- nor NADPH-
dependent pAP formation by human liver cytosol. Pyrazole also inhibited the NADH-
dependent activity of purified horse liver by greater than 90% and the NADPH-
dependent activity by about 30% (Figure 3.2).

![Bar chart showing the effect of inhibitors on NADH-dependent pAP formation by HLC.](image)

Fig. 3.1 Effect of Inhibitors on NADH-dependent pAP formation by HLC. Reaction conditions are: 50 mM phosphate buffer, pH 7.4; 0.2 mM NADH; 120 μM pNSP; and 0.05 mg/ml cytosolic protein. Data shown for 15 min time point and is the result of triplicate determinations.
Fig. 3.2 Effect of Inhibitors on NAD(P)H-dependent pAP formation by HLADH. Reaction conditions are: 50 mM Potassium phosphate, pH 7.4; 0.2 mM NADH; 120 μM pNSP; and 2.5 μg/ml HLADH. Data shown for 15 min time point and is the result of triplicate determinations.

3.3.2 NADH-Dependent pNSP Reduction by HLADH and Purified Human ADH Isozymes: Effect of Pyrazole

Because NADH is the preferred cofactor for ADH-catalyzed C-nitroso reduction further studies were done only with respect to NADH-dependent activity. Figure 3.3 A & B shows the time courses of NADH-dependent C-nitroso reductase activity of purified human ADH representatives of classes I - IV and HLADH. The graphs illustrate the formation of pAP over a period of 60 min, except in the case of the human

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 3.3A NADH-dependent pNSP reduction by HLADH and purified human isozymes: Effect of pyrazole. Reaction Conditions: In 2 ml, 50 mM Potassium phosphate, pH 7.4; 0.2 mM NADH; 5 mM pyrazole. (A) 1 μg/ml HLADH; 120 μM pNSP. (B) 0.75 μg/ml αα-ADH; 300 μM pNSP. (C) 0.75 μg/ml β1β1-ADH; 300 μM pNSP. (D) 1 μg/ml β2β2-ADH; 300 μM pNSP. (E) 0.41 μg/ml χ-ADH; 300μM pNSP. (F) 0.7 μg/ml π-ADH; 120 μM pNSP. (G) 0.8 μg/ml σ-ADH; 300 μM pNSP.
Fig. 3.3B NADH-dependent pNSP reduction by HLADH and purified human isozymes: Effect of pyrazole. Reaction Conditions: In 2 ml, 50 mM Potassium phosphate, pH 7.4; 0.2 mM NADH; 5 mM pyrazole. (A) 1 µg/ml HLADH; 120 µM pNSP. (B) 0.75 µg/ml αα-ADH; 300 µM pNSP. (C) 0.75 µg/ml β1β1-ADH; 300 µM pNSP. (D) 1 µg/ml β2β2-ADH; 300 µM pNSP. (E) 0.41 µg/ml γ-ADH; 300µM pNSP. (F) 0.7 µg/ml π-ADH; 120 µM pNSP. (G) 0.8 µg/ml σ-ADH; 300 µM pNSP.
class II π-ADH, where only a 30 min time course is presented. The data illustrate the marked differences in the metabolism of pNSP by the various purified human ADHs and HLADH. Initial experiments were performed at a concentration of pNSP (120 μM) comparable to that used in our previous studies (48, 73). However, at this concentration of pNSP, the class I, III, and IV ADH isozymes did not catalyze the formation of pAP at levels high enough to achieve quantifiable data at all of the time points studied; therefore, time courses with these isozymes were determined using 300 μM pNSP.

Class II π-ADH showed greater preference for the C-nitroso substrate than the class I αα-, β1β1-, and β2β2-, class III χ-, and class IV σ-ADHs. Pyrazole, which is a potent inhibitor of ethanol oxidation by class I ADH and a weak inhibitor of that by class II π-ADH, potently inhibited pNSP reduction by class I β1β1-ADH and HLADH but not that by class I αα- and β2β2-ADH, class II, class III and class IV ADH. NADH-dependent pNSP reduction by class I αα-ADH was linear for the entire time course studied and 5 mM pyrazole inhibited this activity by 40% (Fig. 3.3A). The activities of the human beta isozyme homodimers, β1β1 and β2β2, were linear for up to 60 min, however, they show varying degrees of inhibition by pyrazole. pNSP reduction by the β1β1-ADH isozyme was inhibited 90% by 5 mM pyrazole whereas the β2β2-ADH-catalyzed activity was inhibited by about 60%. As was seen for ethanol oxidation, pyrazole inhibition of the Class II π and Class III χ isozymes was negligible (< 5%). At 300 μM pNSP class IV σ-ADH-catalyzed formation of pAP was linear for up to 20 min.

Thereafter, product formation began to plateau, indicating that the concentration of pNSP had become limiting in the reaction. In this regard the pNSP concentrations are
presumed to be below saturating in the reaction. The reaction catalyzed by class IV σ-ADH was inhibited 50% by pyrazole.

3.3.3 Determination of Steady-State Kinetic Constants for Acetaldehyde and pNSP Reduction via HLADH

Figure 3.4A shows a Lineweaver-Burk plot for pNSP reduction by HLADH where pNSP concentrations were varied over a range of 0.03-1.2 mM in the presence of a constant concentration of 50 nM HLADH and 0.9 mM NADH. A similar plot was obtained for acetaldehyde (1.2-14.2 mM) reduction via 10 nM HLADH and 0.3 mM NADH (Fig. 3.4B). Calculated K_M and V_{max} values for each were determined using a statistical program described by Cleland (78) and are compared in Table 3.1. The catalytic efficiency (k_{cat}/K_M) of HLADH toward pNSP reduction was similar to its efficiency toward acetaldehyde reduction (2017 mM$^{-1}$ min$^{-1}$ vs. 2332 mM$^{-1}$ min$^{-1}$, respectively). However, the K_M and V_{max} values for acetaldehyde reduction were at least three times greater than those obtained for pNSP reduction. The kinetic constants for the human ADH-catalyzed reduction of pNSP were determined for the class I α_1-, β_1-, and β_2-, and the class II π-ADH isozymes. Each human isozyme appeared to be at least one order of magnitude less efficient in catalyzing pNSP reduction than HLADH. The lower efficiencies are attributable to higher K_M and lower V_{max} values associated with pNSP reduction.

3.3.4 Spectral Transitions During the Reduction of pNSP by ADH Isozymes

As reported by Maskos and Winston (37) a unique feature of HLADH-catalyzed reduction of pNSP (Fig. 3.5) was the formation of a spectral intermediate between 252 and 261 nm, which arises concomitantly with loss of absorbance associated with the nitroso compound at 400 nm. This intermediate then decayed slowly, giving rise to an
Fig. 3.4A Determination of Kinetic Constants for pNSP and Acetaldehyde Reduction by HLADH. Reaction with 0.9 mM NADH in 50 mM phosphate buffer at pH 7.4. HLADH was present at 50 nM. Each data point represents the mean of at least three experiments run in triplicate.
Fig. 3.4B Determination of Kinetic Constants for pNSP and Acetaldehyde Reduction by HLADH. Reaction with 0.3 mM NADH in 50 mM phosphate buffer at pH 7.4. HLADH was present at 10 nM. Each data point represents the mean of at least three experiments run in triplicate.
Table 3.1 Kinetic constants for Horse Liver ADH towards \(p\)NSP and acetaldehyde at pH 7.4.

<table>
<thead>
<tr>
<th></th>
<th>(K_m) (mM)</th>
<th>(V_{max}) (μmol/min/mg)</th>
<th>(k_{cat}/K_m) mM(^{-1}) min(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)NSP</td>
<td>0.52</td>
<td>13.11</td>
<td>2017</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>1.68</td>
<td>48.98</td>
<td>2332</td>
</tr>
</tbody>
</table>

Kinetic constants for \(p\)NSP reduction via Human ADH isozymes at pH 7.4

<table>
<thead>
<tr>
<th></th>
<th>(K_m) (mM)</th>
<th>(V_{max}) (μmol/min/mg)</th>
<th>(k_{cat}/K_m) mM(^{-1}) min(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha\alpha)-ADH</td>
<td>4.19</td>
<td>2.55</td>
<td>49</td>
</tr>
<tr>
<td>(\beta_1\beta_1)-ADH</td>
<td>1.10</td>
<td>1.66</td>
<td>121</td>
</tr>
<tr>
<td>(\beta_2\beta_2)-ADH</td>
<td>2.02</td>
<td>1.49</td>
<td>59</td>
</tr>
<tr>
<td>(\pi)-ADH</td>
<td>2.19</td>
<td>4.84</td>
<td>177</td>
</tr>
<tr>
<td>(\chi)-ADH</td>
<td>0.70</td>
<td>1.46</td>
<td>168</td>
</tr>
<tr>
<td>(\sigma)-ADH</td>
<td>1.30</td>
<td>6.95</td>
<td>428</td>
</tr>
</tbody>
</table>

Reaction conditions were as follows: 50 mM Potassium phosphate buffer; 30-1270 μM \(p\)NSP; 1.25—15 mM Acetaldehyde; 2 mM NADH; 0.8-4 μg/ml HLADH; 2.3 μg/ml \(\alpha\alpha\)-ADH; 2.5 μg/ml \(\beta_1\beta_1\)-ADH; 3.3 μg/ml \(\beta_2\beta_2\)-ADH; 1.9 μg/ml \(\pi\)-ADH. Assays with \(\chi\)- and \(\sigma\)-ADH were performed in 0.1 M MES, 51 mM NEA, 51 mM DEA, pH 7.4; 3.8 μg/ml \(\chi\)-ADH; 1.2 μg/ml \(\sigma\)-ADH.

Absorbance due to \(p\)AP formation (232 nm). Neither HLC nor any of the human ADH isozymes tested appeared to catalyze the formation of this intermediate. The reaction catalyzed by human ADH indicated that the decay of \(p\)NSP at 400 nm and NADH at 340 nm is associated with the formation of \(p\)AP with an absorbance maximum at 232 nm (Fig. 3.5). The maxima associated with the intermediate at 252 and 261 nm in the HLADH catalyzed reaction are characteristic of the observed spectrum of 1,4-benzoquinoneimine (BQI) (77). Maskos and Winston (37) have proposed two distinct
Fig. 3.5A Changes in absorption spectra during the reduction of pNSP by HLADH. Time interval between scans is 1 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM pNSP, 0.1mM NADH. Enzyme concentration: 20 µg/ml HLADH. Graph was reprinted from Maskos and Winston, 1994 (37).
Fig. 3.5B Changes in absorption spectra during the reduction of ρNSP by π-ADH. Time interval between scans is 1.5 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM ρNSP, 0.1mM NADH. Enzyme concentration: 25 μg/ml π-ADH. Graph was reprinted from Maskos and Winston, 1994 (37).
Fig. 3.5C Changes in absorption spectra during the reduction of pNSP by $\alpha\alpha$-ADH. Time interval between scans is 1.5 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1 ml; 0.1 mM pNSP, 0.1 mM NADH. Enzyme concentration: 15 μg/ml $\alpha\alpha$-ADH.
Fig. 3.5D Changes in absorption spectra during the reduction of pNSP by $\beta_1\beta_1$-ADH. Time interval between scans is 1.5 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM pNSP, 0.1mM NADH. Enzyme concentration: 39 μg/ml $\beta_1\beta_1$-ADH.
Fig. 3.5E Changes in absorption spectra during the reduction of pNSP by β₂β₂-ADH. Time interval between scans is 1.5 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM pNSP, 0.1mM NADH. Enzyme concentration: 24 μg/ml β₂β₂-ADH.
Fig. 3.5F Changes in absorption spectra during the reduction of pNSP by χ-ADH. Time interval between scans is 2 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM pNSP, 0.1 mM NADH. Enzyme concentration: 24 μg/ml χ-ADH.
Fig. 3.5G Changes in absorption spectra during the reduction of pNSP by σ-ADH. Time interval between scans is 1 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM pNSP, 0.1mM NADH. Enzyme concentration: 8 μg/ml σ-ADH.
Fig. 3.5H Changes in absorption spectra during the reduction of pNSP by HLC. Time interval between scans is 1.5 min. Reaction Conditions: 50 mM Potassium phosphate, pH 7.4 in 1ml; 0.1 mM pNSP, 0.1mM NADH. Enzyme concentration: 0.38 mg/ml HLC.
mechanisms for the metabolism of pNSP by ADH isozymes dependent on the ability of the individual enzymes to efficiently metabolize BQI.

Pursuant to the study of Maskos and Winston, we show the comparative activities of HLADH and various human ADH isozymes with respect to nitroso and benzoquinoneimine reduction and ethanol oxidation (Table 3.2). The rates for reduction of pNSP and appearance of pAP were calculated based on the change in absorbance at 400 and 232 nm, respectively, as seen in the spectral profiles. HLADH was considerably more active than the human isozymes as a pNSP reductase. The specific activity for reduction of pNSP by HLADH was 1.53 μmol/min/mg, which was two times greater than that of the most active human ADH. However, HLADH, which exhibits relatively poor activity as a benzoquinoneimine reductase (0.001 μmol/min/mg), had a specific activity of 0.218 μmol/min/mg for pAP formation.

Table 3.2 Activity of HLADH and Human ADH isozymes as ethanol oxidases, nitroso- and benzoquinoneimine reductases.

<table>
<thead>
<tr>
<th></th>
<th>Ethanol Oxidation</th>
<th>pNSP reduction</th>
<th>1,4-Benzoquinoneimine reduction</th>
<th>pAP formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μmol/min/mg</td>
<td>μmol/min/mg</td>
<td>μmol/min/mg</td>
<td></td>
</tr>
<tr>
<td>HLADH</td>
<td>1.1</td>
<td>1.53</td>
<td>0.001</td>
<td>0.218</td>
</tr>
<tr>
<td>Human αα-ADH</td>
<td>1.43</td>
<td>0.707</td>
<td>0.369</td>
<td>0.635</td>
</tr>
<tr>
<td>Human β1β1-ADH</td>
<td>0.12</td>
<td>0.027</td>
<td>0.012</td>
<td>0.025</td>
</tr>
<tr>
<td>Human β2β2-ADH</td>
<td>0.6</td>
<td>0.090</td>
<td>0.200</td>
<td>0.082</td>
</tr>
<tr>
<td>Human χ-ADH</td>
<td>4.69</td>
<td>0.145</td>
<td>ND<sup>a</sup></td>
<td>0.140</td>
</tr>
<tr>
<td>Human π-ADH</td>
<td>0.08</td>
<td>0.530</td>
<td>6.650</td>
<td>0.541</td>
</tr>
<tr>
<td>Human σ-ADH</td>
<td>40.0</td>
<td>0.189</td>
<td>No Activity</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Reaction conditions were as follows: 50 mM phosphate buffer; 10 mM EtOH (6mM Cinnamyl Alcohol with χ-ADH); 120 μM pNSP; 32 μM BQI; 0.1-0.2 mM NADH; 25-50 μg/ml HLADH; 0.75-15 μg/ml αα-ADH; 22-93 μg/ml β1β1-ADH; 4.2-42 μg/ml β2β2-ADH; 1.9-48 μg/ml π-ADH; 0.45-2.7 μg/ml χ-ADH; 8-22 μg/ml σ-ADH. Results represent mean of triplicate determinations.

^aActivity not determined.
The specific activity of class I $\alpha\alpha$-ADH for the reduction of pNSP was 0.707 μmol/min/mg, which was higher than all other human isozymes tested. The relative order of specific activities for pNSP reduction by these ADH isozymes was HLADH > $\alpha\alpha$ > π > σ > $\beta_2\beta_2$ > $\beta_1\beta_1$. The specific activity of class I $\beta_2\beta_2$-ADH for ethanol oxidation was about 8 times higher than that of class II π-ADH (0.6 μmol/min/mg vs. 0.08 μmol/min/mg, respectively). Class II π-ADH is known to have a much lower ethanol oxidase activity than $\beta_2\beta_2$-ADH (79). In contrast to ethanol oxidation, the specific activity of class II π-ADH for reduction of pNSP was 6 times higher than that of class I $\beta_2\beta_2$-ADH (0.53 μmol/min/mg vs. 0.09 μmol/min/mg, respectively). Class I $\alpha\alpha$-ADH catalyzed ethanol oxidation with activity similar to HLADH, i.e. 1.4 μmol/min/mg vs. 1.1 μmol/min/mg, respectively. In the reactions catalyzed by human ADH, the rate of pAP formation was almost identical to the rate of pNSP disappearance (0.6 vs. 0.7 μmol/min/mg, respectively, for $\alpha\alpha$-ADH). Thus, the second step of the reaction, the reduction of benzoquinoneimine, does not appear to be rate limiting for the overall reaction. The rate of BQI reduction catalyzed by class II π-ADH was at least an order of magnitude higher than all other ADH isoenzymes tested, which may indicate a role for π-ADH as a biological quinone reductase (37). Each of the human ADH isozymes showing BQI reductase activity catalyzed the reduction of BQI at least 2 orders of magnitude faster than the corresponding rate for HLADH-catalyzed BQI reduction. At first hand, a comparison of the rates of pNSP reduction versus the rates of BQI reduction (Table 3.2) would indicate that the activities of class I $\alpha\alpha$- and $\beta_1\beta_1$-ADH toward BQI were slightly lower than their corresponding activities toward pNSP. The concentration of pNSP used in these reactions was 120 μM. Since the lowest K_M
value obtained for pNSP with any of the human ADH isozymes was approximately 700 μM, pNSP is subsaturating. At 32 μM the concentration of BQI used in these reactions was also most likely not saturating; therefore, an increase in BQI concentration to levels used for pNSP would likely increase the rates of its reduction. Thus, the rate of BQI reduction, the second reductive step, potentially could exceed that of pNSP reduction, the first reductive step of the reaction. In contrast, HLADH-catalyzed reduction of BQI was 3 orders of magnitude lower than pNSP reduction, 0.001 μmol/min/mg vs. 1.53 μmol/min/mg, respectively. Reduction of BQI (32 μM) with class IV α-ADH was not observed.

3.4 Discussion

Both microsomal and cytosolic enzyme activities are involved in the metabolism of nitroaromatics and arylamines. Activation of nitroaromatic compounds to mutagens involves formation of partially reduced metabolites, such as C-nitroso or hydroxylamino compounds, via nitroreduction (54, 55). Formation and removal of the nitroso intermediates of arylamines and nitroaromatics is of the utmost importance in their mutagenic expression.

The objective of our previous studies was to determine the role of ADH in the reductive metabolism of C-nitroso compounds in cytosol where other C-nitroso group reducing enzymes are present simultaneously. In these studies pNSP was used as an aldehyde-substrate analog to compare the C-nitroso reductase activities of several ADH isozyme representatives of the four major classes of ADH expressed in human liver and other tissues. In our previous studies with deermouse cytosol it was suggested that the metabolism of pNSP involves a complex interplay of cytosolic enzymes. Therefore, our
approach to the study of cytosolic C-nitroso reduction was to use assay specific enzyme inhibitors of different putative C-nitrosoreductases, i.e. pyrazole, allopurinol, and dicumarol. The rate of NADPH-dependent C-nitroso reduction by cytosolic fractions was about 50% lower than the NADH-dependent rate; indicating that a substantial amount of the C-nitroso reduction is due to NADH-dependent enzymes. Pyrazole inhibited NADH-dependent pNSP reduction by ADH-positive deermouse cytosol by > 85%. Thus, ADH appears to contribute substantially to NADH-dependent C-nitroso reduction. The NAD(P)H: quinone oxidoreductase inhibitor, dicumarol, inhibited NADH-dependent pAP formation from pNSP by about 25%; however, dicumarol potently inhibited the NADPH-dependent formation (90-95%). Similar results were also reported by Hajos and Winston for the rat cytosolic system (48).

Our experiments with human liver cytosol showed that pyrazole potently inhibited the NADH-dependent formation of pAP from pNSP. This inhibition was more profound than that seen with rat liver cytosol. NADPH-dependent activity was potently inhibited by dicumarol and not inhibited by pyrazole. In agreement with our previous studies with deermouse and rat liver cytosols, allopurinol did not inhibit either NADH- or NADPH-pAP formation by human liver cytosol. The data indicate NADH-dependent C-nitrosoreductase activity in human liver cytosol, as in rat and deermouse liver, as being associated mainly with alcohol dehydrogenase. Thus, NADH-dependent reduction of pNSP by human liver cytosol behaves essentially identical to that observed in the rat and deermouse liver cytosols. Although NADPH-dependent pNSP reductase activity of human liver cytosol was only about 15% of NADH-dependent activity, it was strongly inhibited by both dicumarol and pyrazole. NADPH can be used as a
cofactor by certain ADH isozymes, albeit less efficiently than NADH (70, 80). Our
data suggest the presence of an ADH in human liver cytosol with preference for
NADPH that is not present in the rodent cytosols studied, or the presence of ADH that
can use NADPH with similar efficiency as NADH. Supporting evidence of significant
NADH-dependent C-nitroso reduction due to ADH is the fact that purified HLADH
presented the same general trends as those seen with the cytosolic preparations.
HLADH catalyzed NADH-dependent reduction of pNSP and was potently inhibited
(90%) by 5 mM pyrazole.

ADH isozymes display wide variation in both substrate and inhibitor specificity
(81). There are both inter- and intraclass differences in their substrate specificities (14,
82, 83). Methanol, digitoxigenins, the glycol intermediates in norepinephrine
metabolism, and the intermediary alcohols and aldehydes of dopamine metabolism are
substrates of class I ADH (14, 82-84), while class II preferentially catalyzes benzyl
alcohol/benzaldehyde oxidoreduction (14). Thus far, only long-chain aliphatic alcohols
have been found to be good substrates of class III ADH (83). Purified class IV ADH
exhibits the highest catalytic efficiency with long chain alcohols. It also exhibits
activity with more complex alcohols such as all-trans-retinol. Therefore, it was not
surprising that human ADH exhibited marked differences in the metabolism of pNSP.
Class II π-ADH, which has a much lower preference for ethanol than the class I
isozymes (79, 85), showed significantly greater efficiency in the reduction of the C-
nitroso substrate than the class I ADH. pNSP reduction by class I αα- and β1β2-ADH
and class II π-ADH inferred a lower affinity with these isozymes for the nitroso
substrate as compared to HLADH, β1β1-, χ- and σ-ADH.
Pyrazole, a potent inhibitor of ethanol oxidation by class I ADH and a weak inhibitor of that by classes II and III, potently inhibited ρNSP reduction by β1β1-ADH but not that by α-ADH and γ-ADH. The activity of human α- and γ-ADHs appeared to be relatively insensitive to inhibition by 5 mM pyrazole. Whereas, the activity of αα-, β2β2- and ζ-ADH were inhibited by about 50%, β1β1-ADH is inhibited by about 90%. As the β1β1-ADH isoform is the predominate ADH found in the liver of caucasians, it is significant to note the similarities in the nitrosoreductase capabilities of this enzyme and HLC. Inhibition by pyrazole was similar between HLC and β1β1-ADH; both were inhibited by more than 90%. These results lend credence to the interpretation that the predominance of C-nitrosoreductase activity in the cytosol is due to ADH.

The differences in the activities between ADH isozymes may be attributed to their distinctively different active site geometries. The inner part of the substrate-binding pocket is formed by the zinc atom, its ligands, the nicotinamide ring of NADH, and residues 48 and 93 (18). The class I αα-ADH isozyme has the greatest overall structural identity with class I β-ADH. However, their substrate binding pockets differ dramatically (86). For instance, the active site of β1β1-ADH is narrow and restrictive near the catalytic zinc atom and can bind small substrates in relatively few conformations, thus increasing opportunities for productive bonds between the substrate and amino acid side chains of the active site. The active site of the αα-ADH isozyme cannot restrict the binding of small substrates and more non-productive bonds may be formed. The αα-ADH, having an Ala-93 substitution for the Phe-93 that is present in other class I, II, and IV ADH, exhibits a more spacious active site near the catalytic zinc atom and narrows as the distance from the zinc increases. In contrast to small substrates
such as ethanol, the increased volume of the active site near the catalytic zinc atom of
\(\alpha\alpha\)-ADH may accommodate the phenol ring of \(pNSP\) in a more productive orientation
than can be accomplished with \(\beta_1\beta_1\)-ADH. Eklund et al. have reported that the active
site of \(\beta_1\beta_1\)-ADH limits access to the catalytic zinc ion for bulky compounds such as
benzyl alcohol and cyclohexanol (18), which are of similar size and geometry as \(pNSP\).

The preference of class III \(\chi\)-ADH for larger substrates, as seen in its preference
for cinnamyl alcohol over ethanol explains its ability to catalyze \(pNSP\) reduction at a
rate more than twice that of the \(\beta\) isoforms, the predominate liver ethanol
dehydrogenases. Cinnamyl alcohol has a phenyl ring bound to a propenol moiety. This
preference may be due to a unique substrate binding site that encloses twice the volume
of the \(\beta_1\beta_1\) substrate binding site (86). While the inner portion of the active site in these
isozymes is similar, the larger outer portion of the \(\chi\)-ADH active site may allow the
phenol ring of \(pNSP\) greater degrees of movement and thus allow this substrate to
achieve an orientation more conducive to catalysis.

The substrate-binding site of class IV \(\sigma\)-ADH is enlarged near the catalytic zinc
ion and the middle region of the substrate-binding pocket is narrow. In general, \(\sigma\)-ADH
catalyzed oxidation of primary aliphatic alcohols presents increasing catalytic
efficiencies as the chain length increases (4, 11). However, \(\sigma\)-ADH shows different
kinetic properties with more complex alcohols, such as steroid alcohols and secondary
alcohols. Class IV \(\sigma\)-ADH is unable to oxidize bulky secondary alcohols efficiently.
Likewise, while \(\sigma\)-ADH exhibits considerably greater activity as an ethanol oxidase, its
activity is comparatively much lower than HLADH and \(\pi\)-ADH with respect to \(pNSP\)
reduction. However, it has been shown that the \(\sigma\)-ADH generally exhibits greater

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
efficiency catalyzing the reduction of aldehydes (nitroso analogs) than corresponding alcohols at pH 7.5, having both lower K_M and higher V_{max} values (11). Aromatic compounds have also been shown to be good substrates for class IV α-ADH. The best substrate found so far for σ-ADH is m-nitrobenzaldehyde, having a K_M and k_{cat}/K_M of 41 μM and 135,000 mM$^{-1}$ min$^{-1}$, respectively (11). Benzaldehyde was also a good substrate with K_M and k_{cat}/K_M values of 430 μM and 6,900 mM$^{-1}$ min$^{-1}$, respectively.

Given the structural similarity between these two aldehydes and pNSP, it is surprising that the σ-ADH does not exhibit activities and efficiencies with the nitroso substrate ($k_{cat}/K_M = 428$ mM$^{-1}$ min$^{-1}$) more comparable to the benzaldehyde substrate. This comparatively lower activity may indicate inhibitory secondary interactions of the pNSP hydroxyl moiety with active site residues.

As in alcohol oxidation, the overall pNSP reduction rate is likely dependent on coenzyme-binding residues since the rate-limiting step in alcohol oxidation has been shown to be the dissociation of NADH. The clearest example of this is the difference in pNSP reduction rates between $\beta_1\beta_1$-ADH and $\beta_2\beta_2$-ADH. These two class I β-ADH variants differ by only one residue in their substrate- and coenzyme-binding sites; Arg 47 in β_1 has been replaced by a His residue in β_2 (6). Yet, $\beta_2\beta_2$-ADH catalyzed pNSP reduction at a rate 4 times higher than that of $\beta_1\beta_1$-ADH.

As the nitroso moiety is both isosteric and isoelectronic with aldehyde functionality, it was informative to compare the ADH catalyzed reductions of pNSP and acetaldehyde. HLADH shows a three-fold higher K_M and V_{max} for acetaldehyde than for pNSP. In comparison, Leskovac et al. (75) showed similar results in that the V_{max} values for pNSP and acetaldehyde were of the same order of magnitude. It is of more
significance that the catalytic efficiency of the HLADH-catalyzed reduction of \(p \)-NSP is virtually identical to that of the reduction of acetaldehyde, the classical substrate of the enzyme, which indicates that \(p \)-NSP is an excellent substrate for the liver enzyme. Moreover, the higher \(K_m \) for acetaldehyde may indicate a greater affinity of the enzyme for the larger \(p \)-NSP substrate.

In a study that compared HLADH with class II \(\pi \)-ADH, Maskos and Winston (37) observed a spectral intermediate in the reaction of HLADH-dependent reduction of \(p \)-NSP that was not present in the reaction catalyzed by \(\pi \)-ADH. This intermediate was identified based on its spectral characteristics as BQI. Assuming that the initial stages of the \(p \)-NSP reductase reaction are identical for both ADH isozymes, it was suggested that the human \(\pi \)-ADH removed BQI more efficiently than HLADH removed it. This led Maskos and Winston (37, 87) to propose a dual mechanism for the reduction of \(p \)-NSP by ADH. The first mechanism, attributed to \(\pi \)-ADH, envisages a homogeneous chemical reaction that is coupled between two successive electron transfer reactions. During ADH-dependent reduction of \(p \)-NSP, coordination of the nitroso oxygen to the active site zinc activates the substrate for nucleophilic attack by NADH, which yields \(p \)-hydroxyaminophenol and NAD\(^+\) at the active site. The \(p \)-hydroxyaminophenol may then undergo rapid dehydration to \(p \)-benzoquinoneimine, which is subsequently reduced in an ADH-dependent manner to \(p \)-AP. In the other mechanism, BQI is released from the ADH active site and undergoes a non-enzymatic reaction to form an arylnitrenium ion. This nitrenium ion may undergo subsequent hydrolysis to benzoquinone or nonenzymatic NADH-dependent reduction to \(p \)-AP. This latter mechanism was suggested for HLADH. The present data indicates that all of the human class I and
class II ADH studied are capable of catalyzing the 2-electron reduction of 1,4-benzoquinoneimine to pAP. Class II π-ADH was particularly efficient \((k_{\text{cat}}/K_m = 30 \mu M^{-1} \text{min}^{-1})\). Uniquely, the class IV σ-ADH enzyme is not indicated to catalyze benzoquinoneimine reduction. The apparent inability of σ-ADH to reduce BQI suggested a mechanism for pNSP reduction analogous to that for HLADH. However, the fact that a spectral intermediate in the σ-ADH-catalyzed reaction was not detected precludes this assumption. The fact that the rate of pNSP disappearance (0.189 \(\mu\text{mol/min/mg}\)) is similar to the rate of pAP appearance (0.180 \(\mu\text{mol/min/mg}\)) indicates that any intermediate formed in the σ-ADH catalyzed reaction is efficiently removed. As stated previously, the initial step of pNSP reduction involves ADH-dependent formation of \(p\)-hydroxyaminophenol, which is then dehydrated to BQI. One possible explanation for the absence of an intermediate in the σ-ADH profile is that this isozyme may stabilize the hydroxyaminophenol, preventing dehydration, and may efficiently catalyze the direct reduction of the hydroxyaminophenol to pAP. It is also possible that the σ-ADH does indeed catalyze BQI reduction; however, at 32 \(\mu\text{M}\) the concentration of BQI is insufficient to overcome diffusion and initiate catalysis. It is well known that class IV σ-ADH exhibits a substantially higher \(K_m\) for ethanol oxidation as compared to the other human enzymes. However, because reduction of pNSP leads to formation of BQI at the active site of σ-ADH, the obstacle imposed by diffusion into the active site is eliminated, thereby allowing immediate BQI reduction.

The present data show significant differences in the metabolism of pNSP by purified human ADH and HLADH isozymes and in the sensitivities of these ADH to inhibition by pyrazole. These results may prove important in the understanding of the
mutagenic activation of C-nitroso intermediates in the metabolism of arylamines and nitroarenes. Detailed characterization of the steady state kinetic parameters of the C-nitroso reductase activity of these enzymes is presented in Chapter 4.
CHAPTER 4 EFFECT OF pH ON ALCOHOL DEHYDROGENASE DEPENDENT REDUCTION OF P-NITROSOPHENOL: COMPARISON OF HORSE LIVER AND HUMAN ISOZYMES

4.1 Introduction

The ADH-dependent oxidation of alcohols and reduction of aldehydes is critically dependent on one or more proton transfer steps. These proton transfers would be expected to involve ionizing groups at the active center of the enzyme. A proton relay system has been proposed for HLADH catalyzed alcohol oxidation in which a proton is transferred from the alcohol to form an alcoholate anion that is bound to the active site zinc atom (88). In the relay, the proton is transferred through a hydrogen-bonded network from the alcohol to Ser 48, to the 2'-hydroxyl of the nicotinamide ribose, and finally to the His 51 imidazole, which acts as the terminal general base catalyst that transfers the proton to solvent. Structural analysis of human \(\beta_1\beta_1\)-ADH shows that this hydrogen bond network is also present in this isozyme, in which threonine substitutes for serine at position 48 (27).

Evidence for the mechanistic importance of ionizing groups at the active center of HLADH has been obtained by examination of the pH dependence of individual reaction steps in the catalytic mechanism (70). Such studies, however, have led to different conclusions concerning the effect of pH on the hydride transfer process. Brooks et al. reported base catalysis by a dissociating group with a \(pK_a \) of 6.5 for hydride transfer from ethanol to NAD\(^+\) (89). McFarland et al. (90) concluded that ternary-complex inter-conversion cannot be subject to acid-base catalysis by a protonic acid with a \(pK_a \) between 6 and 10. These authors found that the rate of hydride transfer from NADH to aromatic aldehydes is nearly independent of pH within the range of 6 – 10.
The present investigation was undertaken in order to establish the pH-dependence of the ADH-catalyzed reduction of pNSP, a model C-nitroso compound. Herein, we compare the C-nitrosoreductase activities of HLADH, human class I αα-, β1β1-, and β2β2-ADH, class III χ-ADH, and class IV σ-ADH with respect to pH.

4.2 Materials and Methods

4.2.1 Chemicals and Enzymes

Pyrazole, NADH, NADPH, HLADH, benzaldehyde and potassium ferricyanide were obtained from Sigma (St. Louis, MO). pAP, pNSP, and phenol were obtained from Aldrich Chemical Co. (Milwaukee, WI). All other chemicals were of the highest grade commercially available.

4.2.2 Expression of Human ADH Isozymes

E.coli JM105 cells containing the cDNA of individual human ADH isozymes subcloned into the EcoRI site of the procaryotic expression vector pKK223-3 (Pharmacia Biotech) were a generous gift of Dr. Tom Hurley (Department of Biochemistry and Molecular biology, Indiana University School of Medicine, Indianapolis, IN 46202). The cells were grown at 37°C to OD595 ≥ 0.6 in 4 L of modified TB media (12 g/liter peptone, 12 g/liter yeast extract, 4 ml/liter glycerol, 17 mM KH₂PO₄, 72 mM K₂HPO₄) containing 50 µg/ml of ampicillin and 50 µl/L of antifoam A. Then ZnSO₄ and isopropyl-β-thiogalactopyranoside was added to a final concentration of 7 µM and 0.2 mM, respectively, to induce the expression of the alcohol dehydrogenase gene. The cultures were then placed in a 16°C shaking water bath and incubated for 24 hrs. The cells were centrifuged at 5,000 x g and lysed in isozyme specific buffer (αα: 10 mM Tris, 1 mM benzamidine, 10 µM ZnSO₄, 2 mM DTT, pH 8;
\(\beta_1 \beta_1 \) and \(\beta_2 \beta_2 \): 10 mM Tris, 10 \(\mu \)M ZnSO\(_4\), 1 mM EDTA, 1 mM benzamidine, 1 mM DTT, pH 8; \(\sigma \): 50 mM Tris, 1 mM benzamidine, 2 mM DTT, pH 8.8; \(\chi \): 10 mM Tris, 10 \(\mu \)M ZnSO\(_4\), 1 mM EDTA, 1 mM benzamidine, 2 mM DTT, pH 7.5) using ultrasonication (output control to 4.5 with a pulse of 1 second and a duty cycle of 50\%) (91). The lysate was centrifuged at 35,000 \(\times \) g for 35 min.

4.2.3 Purification of Enzymes

Purification procedures were modified from previous reported methods (83, 86, 92). All of the recombinant enzymes were initially purified from the lysate-supernatant by batch chromatography over DEAE-cellulose (DE52, Whatman International, LTD.) equilibrated in the appropriate lysis buffer at 4\(^\circ\)C. Alcohol dehydrogenase does not stick to the resin and was eluted in the column flow-through and concentrated.

The activity pools of the ADH isozymes \(\beta_1 \beta_1 \) and \(\beta_2 \beta_2 \) were then buffer exchanged into 7 mM HEPES, 10 \(\mu \)M ZnSO\(_4\), 1 mM EDTA, 1 mM benzamidine, 1 mM DTT, pH 7.7. The enzyme was then applied to an S-Sepharose column (Sigma Biochemicals, 100 ml resin). The bound enzyme was washed and then eluted with a 0-100\% gradient of 200 mM NaCl. The active fractions were pooled and dialyzed into 50 mM Tris, 10 \(\mu \)M ZnSO\(_4\), 1 mM DTT, pH 7.5. The dialyzed sample was applied to an Affi-Gel Blue (BioRad Laboratories, 30 ml resin) equilibrated with the dialysis buffer. The bound enzyme was washed and then removed by bump stripping the column with 800 mM NaCl in equilibration buffer. The eluted sample was then dialyzed into 10 mM Tris, 10 \(\mu \)M ZnSO\(_4\), 0.5 mM DTT, pH 7.5 and, when not used immediately, stored in 50\% glycerol.
The recombinant human αα-ADH isozyme was purified using modifications of the procedure for purification of the human ββ isoenzymes. Briefly following batch chromatography over DEAE in lysis buffer, the enzyme was dialyzed into 7 mM HEPES, 10 μM ZnSO₄, 1 mM benzamidine, 2 mM DTT, pH 7.2. The enzyme was then applied to an S-Sepharose column. The bound enzyme was washed and then eluted with a 0-100% gradient of 250 mM NaCl. The active fractions were pooled and dialyzed into 50 mM Tris, 10 μM ZnSO₄, 0.5 mM DTT, pH 7.5. The dialyzed sample was applied to an Affi-Gel Blue equilibrated with the dialysis buffer. The bound enzyme was washed and then removed by bump stripping the column with 800 mM NaCl in equilibration buffer. The eluted sample was then dialyzed into 10 mM ACES, 0.5 mM DTT, pH 6.8.

The recombinant σ isozyme was purified using the following procedure. Following DEAE chromatography, the flow through was buffer exchanged into 7 mM Sodium Phosphate, 1 mM benzamidine, 1 mM DTT, pH 6.4 by dialysis. The enzyme was then applied to a 100 ml resin S-Sepharose column equilibrated with dialysis buffer. The bound enzyme was washed and then eluted with a linear gradient of sodium phosphate from 7 to 65 mM. The active fractions were pooled and then dialyzed into 20 mM Sodium Phosphate, 0.5 mM DTT, pH 8.

As with the previous isozymes, the supernatant containing the human class III χ-ADH isozyme was first subjected to DEAE chromatography. The elutant was then dialyzed against 10 mM Tris, 10 μM Zinc Sulfate, 1 mM DTT, pH 8 and then applied to a 100 ml Q-Sepharose (Sigma Biochemicals) column equilibrated with dialysis buffer.
Class III χ-ADH was then eluted from the resin with a 0-100% 200 mM NaCl gradient. Active fractions were pooled and dialyzed into 10 mM Tris, 0.5 mM DTT, pH 7.5.

Enzyme was detected after each purification step by protein determination and activity assays of each fraction. Pooled fractions were concentrated using the Centricon (Amicon) system at individual purification steps as needed.

4.2.4 Western Blot Analysis

To determine the extent of purification and confirm the presence of purified ADH isozymes SDS-PAGE and Western blot analyses were performed. SDS-PAGE and Western blots were done by standard techniques described by Laemmli (93) and Towbin et al. (94), respectively. For western blots, the primary antibody used to probe the blots was rabbit-anti-HLADH. The secondary antibody was an anti-rabbit containing biotinylated conjugate. The blot was then treated with alkaline phosphatase conjugated ExtraAvidin (Sigma) followed by staining with nitroblue tetrazolium and 5-bromo-6-chloro-3-indoly 1-phosphate in 100 mM sodium bicarbonate (pH 9.8) containing 1 mM MgCl₂. A representative gel and western blot are presented in figures 4.1 and 4.2, respectively. A purification chart has been provided in Table 4.1. Total protein concentrations were determined by the method of Bradford (95) using the Bio-Rad protein kit. Where minor bands were present, the concentrations of the purified ADH isozymes were confirmed by taking densitometric scans of SDS-PAGE gels and comparing those densities to a standard curve compiled using densities of known concentrations of HLADH.
Table 4.1 Purification chart for human alcohol dehydrogenase.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total vol. (ml)</th>
<th>Protein Total Protein (mg)</th>
<th>Total Activity (μmol/min)</th>
<th>Specific Activity (μmol/min/mg)</th>
<th>% Yield</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35K</td>
<td>50</td>
<td>2.33</td>
<td>116.5</td>
<td>11.30</td>
<td>96.97</td>
<td>100</td>
</tr>
<tr>
<td>DEAE (conc)</td>
<td>20</td>
<td>1.44</td>
<td>28.8</td>
<td>8.72</td>
<td>121.10</td>
<td>77</td>
</tr>
<tr>
<td>S-Sep</td>
<td>30</td>
<td>0.04</td>
<td>1.2</td>
<td>3.75</td>
<td>1872.99</td>
<td>33</td>
</tr>
<tr>
<td>Beta II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35K</td>
<td>65</td>
<td>2.91</td>
<td>189.2</td>
<td>7.42</td>
<td>51.01</td>
<td>100</td>
</tr>
<tr>
<td>DEAE (conc)</td>
<td>30</td>
<td>1.43</td>
<td>42.9</td>
<td>6.05</td>
<td>84.55</td>
<td>81</td>
</tr>
<tr>
<td>S-Sep</td>
<td>40</td>
<td>0.24</td>
<td>9.6</td>
<td>2.60</td>
<td>217.04</td>
<td>35</td>
</tr>
<tr>
<td>Affi Blue</td>
<td>30</td>
<td>0.10</td>
<td>3.0</td>
<td>2.31</td>
<td>461.41</td>
<td>31</td>
</tr>
<tr>
<td>Beta I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35K</td>
<td>80</td>
<td>1.99</td>
<td>159.2</td>
<td>48.63</td>
<td>488.73</td>
<td>100</td>
</tr>
<tr>
<td>DEAE (conc)</td>
<td>35</td>
<td>1.66</td>
<td>58.1</td>
<td>39.73</td>
<td>478.65</td>
<td>82</td>
</tr>
<tr>
<td>S-Sep</td>
<td>45</td>
<td>0.16</td>
<td>7.2</td>
<td>11.57</td>
<td>1446.38</td>
<td>24</td>
</tr>
<tr>
<td>Affi Blue</td>
<td>30</td>
<td>0.09</td>
<td>2.8</td>
<td>12.35</td>
<td>2684.37</td>
<td>25</td>
</tr>
<tr>
<td>Alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35K</td>
<td>74</td>
<td>0.70</td>
<td>51.8</td>
<td>8.39</td>
<td>239.63</td>
<td>100</td>
</tr>
<tr>
<td>DEAE (conc)</td>
<td>28</td>
<td>1.43</td>
<td>40.0</td>
<td>6.17</td>
<td>86.32</td>
<td>74</td>
</tr>
<tr>
<td>S-Sep</td>
<td>35</td>
<td>0.36</td>
<td>12.6</td>
<td>3.58</td>
<td>198.65</td>
<td>43</td>
</tr>
<tr>
<td>Affi Blue</td>
<td>30</td>
<td>0.14</td>
<td>4.2</td>
<td>2.90</td>
<td>413.80</td>
<td>35</td>
</tr>
<tr>
<td>Chi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35K</td>
<td>86</td>
<td>2.56</td>
<td>220.2</td>
<td>24.03</td>
<td>187.75</td>
<td>100</td>
</tr>
<tr>
<td>DEAE (conc)</td>
<td>20</td>
<td>2.36</td>
<td>47.2</td>
<td>23.33</td>
<td>197.69</td>
<td>97</td>
</tr>
<tr>
<td>Q-Sep</td>
<td>30</td>
<td>0.30</td>
<td>9.0</td>
<td>13.01</td>
<td>867.04</td>
<td>54</td>
</tr>
</tbody>
</table>

Q-Sep and S-Sep denote the respective sepharose columns; FP, fold purification; conc, concentrated.
Fig. 4.1 SDS-PAGE for class I αα-ADH purification steps. Gel was loaded with 5-10 μg protein /lane and stained with coomasie blue dye reagent. Lanes represent: 1, αα-ADH 35K-supernatant; 2, αα-ADH DEAE pool; 3, αα-ADH S-sepharose pool; 4, αα-ADH Affi-Gel blue pool; 5, Standards.
Fig. 4.2 Western blot of purified human ADH. 3-5 µg protein was loaded per lane. Blot was probed with rabbit-anti-HLADH antibody.
4.2.5 Enzyme Assays

Formation of \(pAP \) from \(pNSP \) was determined essentially by the method of Horie et al. (44) with modifications (48). \(pNSP \) (0.12-1 mM) was incubated for 15 minutes in the presence of 1 mM NADH and an appropriate concentration of purified HLADH or purified human ADH in a 100 mM MES, 51 mM NEA, 51 mM DEA three component buffer in a final volume of 200 \(\mu \)l. The reaction was initiated by addition of cofactor and terminated by addition of 30 \(\mu \)l of 1 M \(\text{Na}_2\text{CO}_3 \). \(pAP \) formation was detected spectrophotometrically by subsequent addition of 30 ml of 5% (w/v) aqueous phenol and 20 ml of 0.2% (w/v) potassium ferricyanide. The color was allowed to develop for at least 15 min and the absorbance was read at 630 nm on a Biotek P750 Microplate reader. The concentration of \(pAP \) formed was calculated from a standard curve of commercially available \(pAP \). Additional reactions contained 4.75 mM acetaldehyde.

4.2.6 Kinetic Analysis

ADH activities were measured by the method of Bonnichsen et al. (61), which is based on spectrophotometric measurement of NADH formation from \(\text{NAD}^+ \) in the presence of ethanol. Activity was monitored at 340 nm in a Hitachi spectrophotometer using a molar extinction coefficient of 6.22 mM\(^{-1}\) cm\(^{-1}\) for NADH. To determine the recovery of enzyme during purification and the stability of the purified alcohol dehydrogenases, the activity was measured with 2.5 mM \(\text{NAD}^+ \) and 33 mM ethanol (100 mM for \(\sigma \)-ADH) as substrates in 0.1 M glycine, pH 10.0 (for \(\alpha\alpha, \beta_1\beta_1, \) and \(\sigma \)) or in 0.1 M sodium phosphate, pH 8.5 (\(\beta_2\beta_2 \)). Activity measurements for the class III \(\chi \)-
ADH were performed using 2.5 mM NAD$^+$ and 5 mM cinnamyl alcohol in 0.1 M glycine, pH 10.0.

4.2.7 Data Processing

Data were fitted to the appropriate rate equations using the statistical software Enzymes Kinetics (version 1.2) described by Cleland (96). The variation of the kinetic parameters with pH was determined by examining the rates at each pH value, with NADH present at a saturating concentration and the concentration of pNSP varied. The V_{max}/K_M values obtained from a fit to Eq. 1 at low pNSP concentrations for each pH, where v is the observed velocity, V_{max} is the maximum velocity, K_M is the Michaelis constant, and S is the concentration of pNSP, were plotted against pH in a log-log plot (97). These pH profile curves were fitted to Eq. 2 to obtain pK values (96), where y is V_{max}/K_M and C is the pH-independent maximum value of that parameter. K_b is the dissociation for groups on the enzyme or substrate. Equation 2 was used to fit a single ionization on the pH profile. The competitive inhibition constants were determined by fitting the data at each pH to Eq. 3. The value I represents the concentration of inhibitor and K_i is the inhibition constant.

Equation 1
$v = \frac{V_{\text{max}}S}{(K_M + S)}$

Equation 2
$\log y = \log \left[\frac{C}{(1 + K_b/[H^+])}\right]$

Equation 3
$v = \frac{V_{\text{max}}S}{[K_M(1 + I/K_i) + S]}$

4.3 Results

The C-nitrosoreductase activities of natural variants of the human ADH enzyme and HLADH have been compared and contrasted. The individual human isozymes
were expressed in *E. coli* and, following purification, were analyzed for their ability to catalyze NADH-dependent reduction of *p*NSP to *p*AP in the direct reaction and in the NAD⁺-dependent coupled reaction in which NADH is generated from metabolic conversion of NAD⁺ by ADH-dependent oxidation of ethanol. The effects of varying the pH on these reactions were also studied.

4.3.1 Determination of Kinetic Constants for C-Nitrosoreduction and Dependence on pH

The C-nitrosoreductase activity of each ADH isozyme was determined by measuring the production of *p*AP as a function of the concentration of *p*NSP and pH. The reactions were run for 15 min at which time the amount of *p*AP formed was determined colorimetrically at 630 nm as described previously (48, 73). The basis of this assay is the conversion of *p*AP to benzoquinonimine (BQI) by potassium ferricyanide with subsequent color development by aqueous phenol (44). HLADH catalyzes the reduction of *p*NSP by a mechanism that is different from that of human isozymes (Chapter 3) (37, 87). Reduction of *p*NSP involves the formation of BQI, the dehydration product of *p*N-OHAP, as a reaction intermediate. Unlike with the human isozymes, the conversion of this intermediate to *p*AP is not efficiently catalyzed by HLADH (37). *p*NSP reduction and *p*AP formation rates catalyzed by human ADH isozymes are essentially identical (Table 3.2). The colorimetric assay, which detects the ultimate reduced product of *p*NSP reduction, *p*AP, and any remaining BQI, is a reliable method for measuring *p*NSP reduction catalyzed by ADH. As noted in Chapter 3, ADH-catalyzed formation of *p*AP from 300 µM *p*NSP was linear for at least 20 min with each of the isozymes studied. In these studies, the concentration of *p*NSP did not exceed 1 mM as higher concentrations resulted in spectral interference of the assay due
to the strong absorbance of pNSP. The v vs. S plots shown in figure 4.3 show that each of the ADH enzymes approximated Michealis-Menten kinetics. Accurate quantitative measurement of \(V_{\text{max}} \) for these reactions at higher pH was problematic because of spectral interferences at the higher concentrations of pNSP alluded to above. However, reasonable approximations of \(K_M \) and \(V_{\text{max}} \) for ADH-catalyzed reduction of pNSP were possible from the substrate concentration range studied.

The human ADH variants exhibited distinct pH profiles. The concentration of hydrogen ion ([H\(^+\)]) was shown to be a noncompetitive mixed type activator/inhibitor of the ADH catalyzed reduction of pNSP. The double reciprocal plots in figure 4.4 for the various human ADH show the dependence of both \(K_M \) and \(V_{\text{max}} \) on the pH of the reaction. Varying the pH of the enzyme-catalyzed reaction results in double reciprocal plots that intersect either below or above the x-axis for all of the ADH studied, except in the case of the class I \(\alpha \alpha \)-ADH, which shows a pattern more reminiscent of competitive interactions. In the pH range studied, the HLADH and class IV \(\sigma \)-ADH-catalyzed C-nitroso reductase activity decreased with increasing pH, i.e. decreasing [H\(^+\)], throughout. For the remaining human ADH isozymes C-nitroso reductase activity reached a maximum or plateaued at lower pH values indicating an inhibitory effect of [H\(^+\)] (Fig. 4.3 and 4.4). pNSP reduction by HLADH and \(\sigma \)-ADH were maximal at pH values of 6 or greater, while reductions catalyzed by \(\alpha \alpha \)- and \(\chi \)-ADH were maximal at 6.8 and 6.4, respectively.

In the pH range studied, pH 6 – 8, pNSP can exist in two tautomeric forms, the predominate quinone monoxime and the nitroso form. Equilibrium between these two forms involves a mesomeric common ion. In aqueous solution at pH > 6, pNSP exists
Fig. 4.3 Effect of pH on the reduction of p-Nitrosophenol. Reactions were conducted in a 0.1 M MES, 0.051 M NEA, 0.051 M DEA three component buffer system, 1 mM NADH, 0.12 – 1 mM pNSP, 4.8 mM Acetaldehyde. Enzyme concentrations: HLADH 0.25 µg/ml, αα-ADH 0.8 µg/ml, β1β1-ADH 54.5 µg/ml, β2β2-ADH 22.5 µg/ml, χ-ADH 3.75 µg/ml, σ-ADH 1.228 µg/ml. Individual data points are the means of at least 4 determinations.
Fig. 4.4 Effect of pH on the reduction of p-Nitrosophenol: $1/v$ vs. $1/S$. Reactions were conducted in a 0.1 M MES, 0.051 M NEA, 0.051 M DEA three component buffer system, 1mM NADH, 0.12 – 1 mM pNSP, 4.8 mM Acetaldehyde. Enzyme concentrations: HLADH 0.25 µg/ml, αα-ADH 0.8 µg/ml, β1β1-ADH 54.5 µg/ml, β2β2-ADH 22.5 µg/ml, χ-ADH 3.75 µg/ml, σ-ADH 1.228 µg/ml. Individual data points are the means of at least 4 determinations.
primarily in the ion form with a wavelength maximum at 400 nm (98, 99). Maskos and Winston have determined that the pK value for the ionization of free pNSP is 6.20 ± 0.05 (100). While the ionization of pNSP appears to lower the binding affinity of pNSP to the active site of horse liver ADH, it does not totally prevent it. Thus, a significant decrease in activity between pH 6 and 6.4 may be attributable to the ionization of free pNSP. However, as seen in figures 4.3 and 4.4, pAP formation catalyzed by individual ADH isozymes is not significantly altered in this pH range.

The apparent K_M and V_{max} for HLADH- and human ADH-catalyzed pNSP reduction are presented in Table 4.2. Kinetic constants were determined using the kinetics programs of Cleland (96) and from Hanes-Woolf plots (97). Each ADH isozyme catalyzed pNSP reduction with maximum activities at acidic pH. V_{max} values for pNSP reduction decrease with increasing pH. As seen in our previous studies (chapter 3), HLADH catalyzed the reduction of pNSP at a rate significantly greater than the most active human isozyme tested, i.e., α-ADH (96 vs. 24 μmol/min/mg at pH 6, respectively). The relative orders of activity were HLADH > α > σ > χ > β₂ > β₁. The ADH isozymes exhibited slight variations in K_M as the pH was varied. Michaelis constants for the class IV σ-ADH remained fairly stable between pH 6 and 7.4, then increased as the pH of the reaction was increased to pH 8 (0.72 mM to 1.73 mM), indicating a decrease in the enzymes affinity for the nitroso substrate at alkaline pH. In contrast, K_M values for HLADH, β₂β₂-, and χ-ADH decreased with increasing pH. K_M values for pNSP reduction by αα- and β₁β₁-ADH showed minima between pH 6.4 – 6.8, and maxima at pH 8. Of the ADH isozymes studied, class I αα-ADH presented the highest K_M value for pNSP, with a maximum of 9.2 mM at pH 8.
Table 4.2 pH dependence of the apparent kinetic parameters for the reduction of \(p \)-nitrosophenol by ADH isozymes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Isozyme</th>
<th>(K_M)</th>
<th>(V_{max})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6.4</td>
<td>6.8</td>
<td>7.4</td>
<td>8</td>
<td>6</td>
<td>6.4</td>
<td>6.8</td>
</tr>
<tr>
<td>I</td>
<td>HLADH</td>
<td>1.40</td>
<td>1.12</td>
<td>0.75</td>
<td>0.64</td>
<td>0.84</td>
<td>95.5</td>
<td>49.3</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td>(\alpha \alpha)-ADH</td>
<td>2.53</td>
<td>1.48</td>
<td>1.92</td>
<td>2.81</td>
<td>9.18</td>
<td>23.8</td>
<td>15.7</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>(\beta_1 \beta_1)-ADH</td>
<td>1.82</td>
<td>2.08</td>
<td>1.18</td>
<td>1.42</td>
<td>2.78</td>
<td>0.27</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(\beta_2 \beta_2)-ADH</td>
<td>1.25</td>
<td>1.20</td>
<td>0.95</td>
<td>0.63</td>
<td>ND</td>
<td>0.86</td>
<td>0.49</td>
<td>0.43</td>
</tr>
<tr>
<td>III</td>
<td>(\chi)-ADH</td>
<td>2.00</td>
<td>1.32</td>
<td>0.81</td>
<td>0.63</td>
<td>0.56</td>
<td>6.72</td>
<td>4.71</td>
<td>2.50</td>
</tr>
<tr>
<td>IV</td>
<td>(\sigma)-ADH</td>
<td>0.72</td>
<td>0.74</td>
<td>0.86</td>
<td>0.98</td>
<td>1.73</td>
<td>14.4</td>
<td>10.5</td>
<td>7.42</td>
</tr>
</tbody>
</table>

Units for kinetic constants: \(K_M \), mM; \(V_{max} \), \(\mu \text{mol/min/mg} \). Reactions were conducted in a 0.1 M MES, 0.051 M NEA, 0.051 M DEA three component buffer system, 1 mM NADH, 0.12 – 1 mM \(p \)NSP. Enzyme concentrations: HLADH 0.25 \(\mu \text{g/ml} \), \(\alpha \alpha \)-ADH 0.8 \(\mu \text{g/ml} \), \(\beta_1 \beta_1 \)-ADH 54.5 \(\mu \text{g/ml} \), \(\beta_2 \beta_2 \)-ADH 22.5 \(\mu \text{g/ml} \), \(\chi \)-ADH 3.75 \(\mu \text{g/ml} \), \(\sigma \)-ADH 1.228 \(\mu \text{g/ml} \). ND, Not Determined.

4.3.2 Determination of Ionization Constants for \(p \)NSP Reduction Catalyzed by HLADH and Human ADH

Table 4.3 shows the ionization constants for the free enzymes and the enzyme-substrate complexes. The constants were determined from secondary plots (example in Fig. 4.6) of the slopes and intercepts of the double reciprocal plots (Fig. 4.4) versus the inverse of the concentration of hydrogen ion or from plotting \(\log V_{max}/K_M \) vs. pH (Fig. 4.5). For all of the ADH isozymes the efficiencies for \(p \)NSP reduction decreased with increasing pH. Therefore, ionization constants were determined using a statistics program which determined the constants according to equation 2. With both methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 4.5 pH-dependence of the catalytic efficiency ($\log \frac{V_{\text{max}}}{K_m}$) for HLADH and human ADH-dependent reduction of pNSP. The curve drawn through the experimental data points was obtained by fitting the data to equation 2.
Fig. 4.6 Secondary Plot of the slopes determined from pH-dependent double reciprocal plots versus $1/[H^+]$. Reaction conditions: $120 - 1000 \mu M$ pNSP; 3.75 mM NAD^+; and $0.1 \text{ M MES}, 0.051 \text{ M NEA}, 0.051 \text{ M DEA}, \text{pH 7.4}$. Enzyme concentration: $1.228 \mu\text{g/ml } \sigma\text{-ADH}$.

the ionizations effecting the reduction of pNSP by the enzymes were equivalent despite the method of determination. Each ADH isozyme showed a $pK_b E$ (pK of the free enzyme) of $7.3 - 7.7$. Only for the class I $\alpha\alpha$- and $\beta_1\beta_1$-ADH were the ionization constants for the enzyme-substrate complex significantly different from those of the free enzyme (8.8 vs. 7.2 for $\alpha\alpha$-ADH, respectively). Standard errors for each determination were ± 0.1 or less.
Table 4.3 Comparison of the pK^E_b and pK^ES_b values determined from secondary plots and plots of $\log V_{max}/K_M$ against pH.

<table>
<thead>
<tr>
<th>Class</th>
<th>Isozyme</th>
<th>Secondary Plots</th>
<th>log V_{max}/K_M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pK^E_b</td>
<td>pK^ES_b</td>
</tr>
<tr>
<td>I</td>
<td>HLADH</td>
<td>7.8</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>$\alpha\alpha$-ADH</td>
<td>7.2</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>$\beta_1\beta_1$-ADH</td>
<td>7.8</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>$\beta_2\beta_2$-ADH</td>
<td>7.4</td>
<td>7.6</td>
</tr>
<tr>
<td>III</td>
<td>χ-ADH</td>
<td>7.6</td>
<td>7.0</td>
</tr>
<tr>
<td>IV</td>
<td>σ-ADH</td>
<td>7.3</td>
<td>7.8</td>
</tr>
</tbody>
</table>

The values of pK^E_b and pK^ES_b represent the pK of the free enzyme and enzyme-substrate complex, respectively.

4.3.3 Inhibition Kinetics

The effect of acetaldehyde on the kinetic parameters for reduction of pNSP was examined as a function of pH. Because the C-nitroso moiety is isosteric and isoelectronic with the aldehyde functional group (40) it was anticipated that acetaldehyde would competitively inhibit pNSP reduction by the various ADH. Inhibition by acetaldehyde was indeed competitive with respect to pNSP for all of the ADH isozymes in the pH range studied. To illustrate this point, Fig. 4.7 shows a Hanes-Woolf plot (S vs. S/v) for σ-ADH catalyzed pNSP reduction at pH 7.4 in the absence and presence of 4.75 mM acetaldehyde where parallel lines indicate changes in K_M without concurrent changes in V_{max}. Apparent K_s for acetaldehyde are presented in Table 4.4. Inhibition constants range from 3.7 – 51 mM for all of the ADH at all pH values studied. The class I $\alpha\alpha$-ADH isozyme was only inhibited by 4.75 mM
Fig. 4.7 Competitive inhibition of α-ADH catalyzed C-nitrosoreduction by 4.75 mM acetaldehyde. Reaction conditions: 120 – 1000 μM pNSP; 3.75 mM NAD$^+$; and 0.1 M MES, 0.051 M NEA, 0.051 M DEA, pH 7.4. Enzyme concentration: 1.228 μg/ml α-ADH.

Acetaldehyde in the pH range of 6.8 – 7.4. At pH values of 6, 6.4, and 8, αα-ADH-catalyzed pNSP reduction was either not inhibited or showed increases in activity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4.4 Apparent K_i values for the inhibition of ADH-catalyzed pNSP reduction by acetaldehyde.

<table>
<thead>
<tr>
<th>Class</th>
<th>Isozyme</th>
<th>pH 6</th>
<th>pH 6.4</th>
<th>pH 6.8</th>
<th>pH 7.4</th>
<th>pH 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>HLADH</td>
<td>5.6</td>
<td>24.3</td>
<td>32.1</td>
<td>17.2</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>$\alpha\alpha$-ADH</td>
<td>NI</td>
<td>NI</td>
<td>50.1</td>
<td>3.7</td>
<td>NI</td>
</tr>
<tr>
<td></td>
<td>$\beta_1\beta_1$-ADH</td>
<td>51.3</td>
<td>27.9</td>
<td>31.7</td>
<td>20.4</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>$\beta_2\beta_2$-ADH</td>
<td>10.6</td>
<td>28.1</td>
<td>11.3</td>
<td>9.4</td>
<td>ND</td>
</tr>
<tr>
<td>III</td>
<td>χ-ADH</td>
<td>41.7</td>
<td>14.3</td>
<td>9.7</td>
<td>15.0</td>
<td>18.4</td>
</tr>
<tr>
<td>IV</td>
<td>σ-ADH</td>
<td>20.7</td>
<td>24.2</td>
<td>29.4</td>
<td>15.8</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Units for kinetic constants: K_i, mM. Reactions were conducted in a 0.1 M MES, 0.051 M NEA, 0.051 M DEA three component buffer system, 1mM NADH, 0.12 - 1 mM pNSP, 4.8 mM Acetaldehyde. Enzyme concentrations: HLADH 0.25 µg/ml, $\alpha\alpha$-ADH 0.8 µg/ml, $\beta_1\beta_1$-ADH 54.5 µg/ml, $\beta_2\beta_2$-ADH 22.5 µg/ml, χ-ADH 3.75 µg/ml, σ-ADH 1.228 µg/ml. NI, No Inhibition. ND, Not Determined.

4.4 Discussion

The effects of varying the hydrogen ion concentration [H$^+$] on the activity of enzymes have close similarities to the effects of activators and inhibitors (101).

Treatment of the effects of the [H$^+$] may be viewed in the same way as other effectors and can yield valuable information on the nature of the kinetic mechanism obeyed by the enzyme. In addition, the characteristic ionization constants of amino acid side-chain groups may help to identify specific groups as playing a role in the reaction. Here, we have considered the effects of the [H$^+$] on ADH-dependent C-nitrosoreductase activity, both in terms of kinetic analysis with the [H$^+$] as the variable and in terms of the use of the effects of pH to identify specific ionizing groups.

Kinetic and structural comparisons have illustrated that homologous enzymes can differ markedly in substrate specificity. Increasing the size of the active site enhances the reactivity of alcohol dehydrogenase with large substrates such as
benzaldehyde but decreases the reactivity of small substrates such as ethanol (86). Although ADH isozymes have broad specificity, variations in amino acid residues in the substrate-binding pocket produce different activities, which may be of physiological significance.

The ADH isozymes studied catalyze the reduction of pNSP at significantly different rates and exhibit different affinities for the nitroso substrate. The relative orders of ADH dependent pNSP reduction were HLADH > αα- > σ- > γ- > β2β2- > β1β1-ADH. Seemingly in opposition to its high rate of catalysis with the nitroso substrate, the class I αα-ADH exhibits the lowest affinity for pNSP as inferred from its comparatively high K_M at each pH studied. While K_M values for pNSP showed marginal differences over the pH range studied, V_{max} values for each ADH isozyme showed significant variations with pH. However, the pH dependent variation in enzyme-catalyzed pNSP reduction is essentially the same for all of the ADH isozymes studied. The data shows that as pH is increased there is a concurrent decrease in pAP formation, i.e. C-nitrosoreduction. Therefore, there is a significant dependence of ADH-catalyzed C-nitrosoreduction on the $[H^+]$. As seen in Fig. 4.3, at comparatively low $[H^+]$, pH 6.8 – 8, C-nitrosoreduction by each ADH isozyme is directly proportional to the increase in pH. When the pH is more acidic, formation of pNSP is not directly proportional to decreases in pH, indicating a change in ionization of either the enzyme or the enzyme–substrate complex. Ionizations associated with free substrate are important in various enzyme catalyzed reactions, however, as stated above, the pK_a of pNSP is 6.2, and thus, is not a consideration here.
In these studies, acetaldehyde was employed as an alternate substrate in the ADH-catalyzed reactions. In this role, acetaldehyde would be expected to compete with pNSP and inhibit the formation of the productive ADH-NADH-pNSP ternary complex. As expected, the competitive inhibitor acetaldehyde decreased the efficiency of the ADH isozymes in the reduction of pNSP. Furthermore, plots of log V_{max}/K_m vs. pH for acetaldehyde inhibited reactions indicate the same ionizations as the uninhibited reactions (Fig. 4.8).

Fig. 4.8 pH-dependence of the catalytic efficiency (log V_{max}/K_m) for σ-ADH-dependent reduction of pNSP. Comparison of Control and 4.75 mM acetaldehyde inhibited reactions. Reaction conditions: 120 – 1000 µM pNSP; 3.75 mM NAD$^+$; and 0.1 M MES, 0.051 M NEA, 0.051 M DEA, pH 7.4. Enzyme concentration: 1.228 µg/ml σ-ADH.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
If substrate binding does not affect the ionization constants, the effect will be truly noncompetitive, with \(V_{\text{max}} \) and the slope changed but \(K_m \) unaffected (101). In the simplest mechanism for inhibition, the inhibitor can bind both to the free enzyme to give an enzyme-inhibitor complex and to the enzyme-substrate complex to give an enzyme-substrate-inhibitor complex. If the inhibitor exhibits stronger effects on the enzyme than the enzyme-substrate complex both \(K_m \) and \(V_{\text{max}} \) will decrease with increasing concentrations of the inhibitor (101). In fig. 4.4, Lineweaver-Burk plots for HLADH, and \(\chi \)-ADH catalyzed C-nitrosoreduction show just such a pattern, with pH-dependent lines intersecting below the x-axis. On the other hand, Lineweaver-Burk plots for the class I \(\alpha \alpha \), \(\beta \beta \), and class IV \(\sigma \)-ADH, show pH-dependent lines intersecting above the x-axis, inferring that with these enzymes the inhibitor binds more strongly to the enzyme-substrate complex. As the concentration of NADH used in these studies was saturating, it can be assumed that the enzymes were present as enzyme-NADH binary complexes and pH effects associated with the free enzymes were in fact in the binary complex. Therefore, kinetic constants presented in Table 4.2 reflect changes in C-nitroso reduction due to ionizations of the ADH-NADH complex or the ADH-NADH-\(\rho \)NSP tertiary complex.

Many ionizable groups may be involved in an enzyme-catalyzed reaction. Typically, any given reaction mechanism requires that ionizable residues be in a particular ionic form for activity (101). The first residue to become protonated or deprotonated as the pH is adjusted from that which is optimum is the one that is reflected in a pH-dependent change in enzyme activity measurements (101). The ionizations of other groups at pH values farther from the pH optimum are undetectable.
because they affect only the equilibrium between inactive forms of the enzyme. However, other groups present in the enzyme may influence the ionization of the reactive group (102).

Structural studies of HLADH with coenzyme and substrate or inhibitors (23, 88, 103) have indicated that the substrate binding site is lined with hydrophobic residues including Phe 93. Other amino acids that line the alcohol-binding cleft and that may affect substrate binding include Ser 48, Leu 57, Phe 110, Leu 116, Leu 141, and Ile 318 (23); of these residues, Ser 48 is the only one that is ionizable. The kinetic properties of human ADH with substitutions at residue 47 in the coenzyme-binding site are quite different. The differences in K_m and V_{max} of ethanol oxidation between the β_1-β_1-ADH and β_2-β_2-ADH isozymes has been attributed to the presence of the weaker base, His, at position 47 of β_2-β_2 in place of Arg in β_1-β_1; it is the only difference between β_1-β_1-ADH and β_2-β_2-ADH (6). Examination of the structure of HLADH reveals that Arg 47 interacts with one of the adenosine phosphate oxygens of NAD$^+$ (23). Both the horse EE and human β_1-β_1 ADH have Arg at position 47 and bind coenzyme with high affinity. Class I $\alpha\alpha$- and class IV σ-ADH have either Gly at position 47, while the class I β_2-β_2- and class III χ-ADH have His at this position (18, 104).

When studying the reduction of p-nitroso-N, N-dimethylanline (NDMA) by yeast ADH, Trivic and Leskovac (42) reported a pH profile that reflected a pK of 8.6 for a catalytically active enzyme group in the enzyme-NADH complex. This was concluded because the concentration of NDMA was less than K_m, rates of the reaction were proportional to V_{max}/K_m, and the pH-profile reflected the dissociation in the enzyme-NADH complex (42). Kvassman and Pettersson (105), have proposed that the
pH dependence of NADH binding is attributable to electrostatic effects of the coenzyme pyrophosphate group on the ionization of zinc-bound water. In the present studies, only ionization constants for the enzyme-substrate complex in reactions catalyzed by class I αα- and β₂β₂-ADH were found to be 8.4-8.8. The calculated pK values of the free enzyme found in our experiments do not approximate the value of 8.6. However, if we assume that the enzyme is present as enzyme-NADH complexes, then the wide range of pKₐ values obtained for the ADH isozymes in our experiments might also reflect dissociation of the ADH-NADH complex. As stated previously, dissociation of NADH is dependent on the binding strength (basicity) of the amino acid at position 47. The 0.6 log unit change in the constants reflect changes in the amino acid, 7.8 for HLADH and β₁β₁-ADH (Arg 47), 7.5 for β₂β₂-ADH and χ-ADH (His 47), and 7.2 for αα-ADH and σ-ADH (Gly 47).

From the profiles of log Vₘₐₓ/Kₘ vs. pH (Fig. 4.5), a catalytically active enzyme group with a pKₐ of 7.4 - 7.8 was implicated in catalysis. However, using deuterium isotope effects, Maskos and Winston have reported an enzymatic residue with a pK of 6.5-6.7 in the HLADH-NADH complex that is involved in the binding of pNISP (87). This later ionization constant is typical of an imidazole ligand; however, imidazoles may exhibit pK’s in the range of 5-8 in proteins (102, 106).

The catalytic zinc atom is bound at the bottom of the substrate binding pocket by three protein ligands; two sulfur atoms from Cys 46 and Cys 174 and one nitrogen atom from His 67. A water molecule or hydroxyl ion, depending on the pH, completes a distorted tetrahedral coordination (70). The zinc-bound water molecule is involved in a system of hydrogen bonds which include Ser 48 (Thr 48 in most human and in yeast
isozymes) and His 51 which comprise an obligatory proton relay system for catalysis (13, 19, 70). Mutagenesis of any one of the residues of the proton relay system inactivates ADH (107). In the relay, the proton is transferred through a hydrogen bonded network from the alcohol to Ser 48, to the 2'-hydroxyl of the nicotinamide ribose, and finally to His 51 imidazole, which acts as the terminal general base catalyst that transfers the proton to solvent (88). Dissociation of the nicotinamide moiety follows.

Sekhar and Plapp (108) have reported that the pH dependence for binding of NAD$^+$ to HLADH may arise when deprotonation of His 51 reduces electrostatic repulsion with the charged nicotinamide ring or promotes ionization of the zinc-bound water through the connecting hydrogen bond network. The pH dependence for NAD$^+$ shows a bell-shaped pH dependence, with pK values of 6.3 – 6.9 and 9 – 9.7, and the maximal rate at pH 8 (108). The pK near 9 has been assigned to the zinc-bound water (109). Light et al. proposed that since both the HLADH and αα-ADH isozymes show pK values near 7, and both enzymes have His 51, it is likely that the pK at 7 involved the histidine residue linked in the hydrogen bonded system to the zinc-ligand (110). Jacobs et al. have suggested that the absence of a pH effect during the reduction of aromatic aldehydes as seen in previous studies is consistent with electrophilic catalysis of hydride transfer and that such catalysis could result from protonation of substrate by a protonic acid-base catalyst or of complexation by zinc (111). The data of McFarland and Chu (90) support this conclusion in that catalysis by protonic acid (with a pK between 6 and 10) would show strong pH dependence. While the pK$_b^{ES}$ in Table 4.3 are not typical of His 51 when compared with previous data and may be the result of
other ionizing groups in the ADH active sites, the significant difference in values for the class III χ-ADH as compared to the other isozymes does imply that these ionizations reflect changes in the proton relay system.
CHAPTER 5 OXIDATION OF 2,2'-THIODIGLYCOL BY ALCOHOL DEHYDROGENASE: COMPARISON OF HUMAN LIVER ISOENZYMES

5.1 Introduction

Sulfur mustard is a poisonous chemical warfare agent. It was used as recently by Iraq to attack its own Kurdish population in the Iranian-occupied village of Halbja in 1988 (49). Public concern arises from possible exposure and potential health hazards resulting from destruction of stockpiles of these chemical agents. Scientific data are being accumulated concerning potential adverse effects, including toxicology, carcinogenicity, mutagenicity, and teratogenicity.

Soon after introduction into body tissues, hydrolysis of mustard occurs to form 2,2'-thiobis-ethanol (thiodiglycol) and semimustard, which are relatively nontoxic. Recent research has shown that sulfur mustard inhibits serine and threonine phosphatases and that this inhibition was more closely related to the concentration of thiodiglycol (TDG) than the mustard itself (52). Subsequent observations have shown TDG to be a substrate for horse liver alcohol dehydrogenase (HLADH) and ADH in human skin cytosol (53).

Mammalian zinc-containing ADH constitute an enzyme family of multiple isoforms. Of these, HLADH is the most widely studied. HLADH is a dimer composed of two 40 kDa monomers, each containing 374 amino acids and two zinc ions, one having a structural function and the other a catalytic function. Humans produce more than 20 ADH isozymes composed of as many as nine different subunits (4). The horse enzyme shares between 60% and 87% sequence homology with the human isozymes. The latter have been assigned to their respective classes based on their electrophoretic
mobilities and inhibition by pyrazole and its 4-alkylated derivatives. The overall residue identity shows 60% homology between classes; many residues at the active site are substituted, especially in the substrate-binding cleft, which is large and hydrophobic in the traditional ethanol-active liver enzyme of class I, but different in the enzymes of the other classes. These ADH classes also differ in their tissue distribution. However, individual ADH isozymes are identical regardless of their tissue localization.

The class I α-, β-, and γ-ADHs, with allelic variants of β and γ (5, 6), are effectively inhibited by 4-methylpyrazole. Primary and secondary alcohols are typically good substrates for class I ADHs. Patterns of class I ADH also vary because of allelic polymorphism within and among different racial groups. Variants involving the β subunit have been designated β₁ (Caucasian), β₂ (Oriental), and β₃ (African) (6). Homo- and heterodimers of α, β, and γ subunits of human class I ADH are present in liver, kidney, skin, gastrointestinal tract and to a lesser extent lung (112).

Class II and class III ADH consist solely of one isozyme, π-ADH and χ-ADH, respectively, and are relatively insensitive to pyrazole inhibition. Class II ADH acts on primary aliphatic alcohols and aromatic aldehydes (7). All human ADH catalyze the oxidation of ethanol; however, the K_m of class II ADH for ethanol oxidation is significantly higher than that of class I forms. Of the vertebrate ADHs that have been identified only class III ADH has been conserved in all organisms (8). Class III ADH functions in vitro as a glutathione-dependent formaldehyde dehydrogenase, which suggests that this was the original function that drove the evolution of ADH (10) and identifies the ADH family as part of the cellular defense system. The π and χ subunits
share about 60% sequence identity with respect to each other and the other isozymes; these have not been observed to form heterodimers.

Class IV consists of σ-ADH. The class IV σ-ADH has unique enzymatic properties, with exceptionally high \(K_m \) and \(k_{cat} \) values for ethanol and alcohols and aldehydes of physiological interest. Found predominately in the stomach, the σ-ADH is considered to have a significant role in retinol metabolism and first-pass ethanol metabolism (11-13).

There has been extensive research done to elucidate the catalytic properties, expression and localization of ADH in mammalian tissues (113-116). Recently, Cheung, et al. (117) characterized the ADH content of human skin. Heightened awareness of the biological threats imposed by chemical warfare agents has prompted the study of the metabolism of these compounds and their intermediates. Herein, we have compared and contrasted the catalytic activity of HLADH and purified \(\alpha\alpha \), \(\beta_1\beta_1 \), \(\beta_2\beta_2 \), \(\gamma_1\gamma_1 \), \(\chi \), \(\pi \), and \(\sigma \) human ADH isozymes to oxidize TDG.

5.2 Materials and Methods

5.2.1 Chemicals and Enzymes

Tris-maleate and \(\beta \)-nicotinamide adenine dinucleotide were obtained from Sigma Chemical Co. (St. Louis, MO). Thiodiglycol and pyrazole were from Aldrich Chemical Co. (Milwaukee, WI). Horse liver alcohol dehydrogenase was obtained from Boehringer-Mannheim (Indianapolis, IN). All other chemicals were of the highest grade commercially available. Purified human liver ADH isozymes were generously provided for these studies by Dr. Thomas Hurley, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
5.2.2 Enzyme Assays

Thiodiglycol oxidation by alcohol ADH was determined according to Brimfield et al. (1998) with modifications. All solutions were prewarmed to 30°C. Aliquots of a 5 mM NAD⁺ solution in 20 mM tris-maleate buffer, pH 7.6 was placed in the wells of a 96-well microtiter plate. A solution of the appropriate enzyme concentration diluted in 20 mM tris-maleate buffer, pH 7.6 was added to each well. The microtiter plates were baseline determined in a THERMOMax MAXline Molecular Dynamics Microplate Reader running SOFTmax™ software and equipped for constant temperature (preincubated for 2 min). At the end of the preincubation period, the appropriate concentration of substrate in 0.85% saline at 30°C was added. The reaction was followed by measuring the change in absorbance at 340 nm for 5 min with mixing before each reading. Under the described conditions the ADH-catalyzed reactions were linear for at least 15 min and first order with respect to enzyme concentration. In reactions containing pyrazole, the volume of the NAD⁺ solution added was reduced by 10 µl, and 10 µl of the appropriate concentration of inhibitor in tris-maleate buffer was added before the 2 min incubation. The total reaction volume was 250 µl. Ethanol oxidation was measured by the method of Bonnichsen et al. (61), which is based on spectrophotometric measurement of NADH formation from NAD⁺ in the presence of ethanol.

5.2.3 Data Analysis

Kinetic constants for TDG were determined by monitoring the production of NADH at 340 nm (ε = 6.32 mM⁻¹ cm⁻¹). Kₘ and Vₘₐₓ values for TDG were calculated using the statistical software Enzyme Kinetics (version 1.2) described by Cleland (96).
and from a fit of the kinetic data to the Lineweaver-Burk equation \(\frac{1}{v} = \frac{K_m}{V_{\max}S} + \frac{1}{V_{\max}} \), where \(S \) is the concentration of TDG. \(k_{cat} \) (min\(^{-1}\)) was obtained by dividing \(V_{\max} \) by the concentration of active sites assuming a subunit MW of 40,000. \(K_m \) and \(V_{\max} \) were confirmed from Hanes-Woolf plots. \(K_i \) values for inhibition by pyrazole were calculated from Dixon plots (118).

5.3 Results

5.3.1 Oxidation of TDG by Purified Human ADH Isozymes

The specific activities of each of the purified ADH isozymes were determined at saturating concentrations of TDG. Of the ADH isozymes class IV \(\sigma \)-ADH exhibited the highest specific activity, which was 1632 nmol/min/mg in the presence of 400 mM TDG (Table 5.1). The specific activities of the class I ADH were, respectively 123, 79, 347 and 647 nmol/min/mg for the \(\alpha \alpha \), \(\beta_1 \beta_1 \), \(\beta_2 \beta_2 \) and \(\gamma_1 \gamma_1 \) isozymes. The class II \(\pi \)-ADH exhibited the lowest activity, 12 nmol/min/mg protein. The class III \(\chi \)-ADH did not exhibit activity with this substrate even when followed for 1 hour with saturating levels of substrate and elevated levels of enzyme. Only long-chain aliphatic alcohols have been found to be good substrates of class III \(\chi \)-ADH (83).

When compared with ethanol oxidation, the relative orders of activity were essentially the same, with the class I \(\gamma_1 \gamma_1 \)-ADH being 4-5 fold greater than the \(\alpha \alpha \)-ADH and the \(\beta_1 \beta_1 \)-ADH having notably lower activity. The specific activity for \(\beta_2 \beta_2 \)-ADH was about half that of the \(\gamma_1 \gamma_1 \)-ADH, whereas \(\beta_2 \beta_2 \)-ADH oxidized ethanol at a rate twice that of \(\gamma_1 \gamma_1 \)-ADH. HLADH, also a class I isozyme, had a slightly higher specific activity than that of the \(\gamma_1 \gamma_1 \)-ADH, 780 nmol/min/mg versus 647 nmol/min/mg, respectively. The specific activity of class IV \(\sigma \)-ADH was approximately three times
greater with respect to TDG oxidation and seven times greater with respect to ethanol oxidation than that of class I γγ-ADH.

5.3.2 Kinetic Constants for ADH-Catalyzed Oxidation of TDG

Based on the specific activity measurements of Table 5.1, only the class I and class IV ADH were subjected to more detailed kinetic analysis. All enzymes tested exhibited classical Michaelis-Menten kinetics (Figure 5.1A-C). The class I isozymes, αα, β1β1, γγ, and HLADH, exhibited K_m's for TDG from 1.3-8.7 mM (Table 5.2). The highest K_m value for TDG oxidation among the class I isozymes was for β2β2-ADH (48 mM). In these studies, HLADH was shown to catalyze the oxidation of TDG with a K_m of 6.1 mM and a V_{max} of 780 nmol/min/mg compared to Brimfield's (1998) values.

Table 5.1 Specific activities of ADH-catalyzed oxidation of thiodiglycol and inhibition by pyrazole (1mM).

<table>
<thead>
<tr>
<th>Class</th>
<th>ADH isozyme</th>
<th>Specific Activity (nmol/min/mg)</th>
<th>% Pyrazole Inhibition</th>
<th>Alcohol Oxidation (μmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>αα</td>
<td>123</td>
<td>83</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>β1β1</td>
<td>79</td>
<td>100</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>β2β2</td>
<td>347</td>
<td>56</td>
<td>5.64</td>
</tr>
<tr>
<td></td>
<td>γγ</td>
<td>647</td>
<td>90</td>
<td>2.06</td>
</tr>
<tr>
<td>II</td>
<td>π</td>
<td>12</td>
<td>0</td>
<td>0.11</td>
</tr>
<tr>
<td>III</td>
<td>χ</td>
<td>No Activity</td>
<td>-----</td>
<td>2.70(a)</td>
</tr>
<tr>
<td>IV</td>
<td>σ</td>
<td>1632</td>
<td>73</td>
<td>15.40</td>
</tr>
</tbody>
</table>

Activities are means of triplicate measurements. Specific Activities of TDG were determined at: 45 mM TDG with 2.8 μg/ml αα, 45 mM TDG with 6.83 μg/ml β1β1, 200 mM TDG with 6.9 μg/ml β2β2, 33.4 mM TDG with 1.6 μg/ml γγ, 33.4 mM TDG with 4.4 μg/ml π, and 400 mM TDG with 0.21 μg/ml σ-ADH. (a)Alcohol oxidase activity measurements for χ-ADH were performed using cinnamyl alcohol. All alcohol oxidase activity measurements were in 100 mM Glycine, pH 10; except β2β2, which was in 100 mM Sodium Phosphate, pH 8.5.
Fig. 5.1A Oxidation of 2,2'-Thiobis-ethanol by αα- and β1β1-ADH. The experiments were conducted as described under Materials and Methods under the following conditions: 4.2 mM - 45 mM TDG, 2.77µg/ml αα-ADH; 8.3 µM - 45mM TDG, 6.83 µg/ml β1β1-ADH. All reactions contained 5mM NAD+ in 20 mM tris-maleate buffer, pH 7.6. (Insert) Michaelis-Menten plot of V vs. S data for the oxidation of TDG by αα- and β1β1-ADH. Each data point represents the mean ± SD of at least three trials.
Fig. 5.1B Oxidation of 2,2'-Thiobis-ethanol by $\beta_2\beta_2$- and $\gamma_1\gamma_1$-ADH. The experiments were conducted as described under Materials and Methods under the following conditions: 16.7 mM – 200 mM TDG, 6.9 μg/ml $\beta_2\beta_2$-ADH; 4.2 mM – 45 mM TDG, 1.55 μg/ml $\gamma_1\gamma_1$-ADH. All reactions contained 5mM NAD$^+$ in 20 mM tris-maleate buffer, pH 7.6. (Insert) Michaelis-Menten plot of V vs. S data for the oxidation of TDG by $\beta_2\beta_2$- and $\gamma_1\gamma_1$-ADH. Each data point represents the mean ± SD of at least three trials.
Fig. 5.1C Oxidation of 2,2'-Thiobis-ethanol by σ-ADH. The experiments were conducted as described under Materials and Methods under the following conditions: 75 mM - 600 mM TDG, 0.21 µg/ml cr-ADH. All reactions contained 5mM NAD+ in 20 mM tris-maleate buffer, pH 7.6. (Insert) Michaelis-Menten plot of V vs. S data for the oxidation of TDG by σ-ADH. Each data point represents the mean ± SD of at least three trials.
of 3.7 mM and 220 nmol/min/mg, respectively. The class IV α isozyme, which has a
K_M of 41 mM for ethanol oxidation (4), has a K_M for TDG that is two orders of
magnitude higher than that of the class I ADHs at 255 mM. Michaelis-Menten plots for
the α isozyme showed a linear increase in activity up to approximately 200 mM
approaching V_max at 300-400 mM TDG (Figure 5.1C). Above 600 mM the reaction was
noticeably inhibited, for example, in the range of 800 mM – 1 M (data not shown) the
oxidative activity of σ-ADH is reduced by half, probably due to ionic perturbations by
these very high substrate concentrations. Exhibiting the highest activity of the ADH
isoenzymes tested, V_max for σ-ADH was 2545 nmol/min/mg protein (k_cat = 1018 min⁻¹).
Class I αα- and β₁β₁-ADH oxidize TDG with approximate k_cat/K_M values of 7-9 mM⁻¹
min⁻¹ and γ₁γ₁ had a value of about 187 mM⁻¹ min⁻¹. The k_cat/K_M for σ-ADH was
estimated at about 4 mM⁻¹ min⁻¹. Caution needs to be exercised when interpreting the
kinetic data of σ-ADH. We note that the reaction appears first order with respect to
substrate concentration to above 200 mM. At such high concentrations ethanol displays
substrate inhibition of other ADH (119). Therefore, we cannot be certain whether the
plateau in the v vs. S plot for σ-ADH is a true reflection of saturation kinetics or
substrate perturbation of the ADH activity. If the latter is true, then calculation of a K_M
and hence catalytic efficiency may not be accurate. An equally valid interpretation may
be that σ-ADH is highly efficient and may not be saturable by TDG even at high mM
concentrations. That this hypothesis has credence is suggested by the relative
efficiencies (k_cat/K_M) observed with longer chain (4-8 C) aliphatic alcohols and σ-ADH,
which are more than two orders of magnitude greater than that obtained with ethanol.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 5.2 Kinetic parameters for the oxidation of thiodiglycol and ethanol by ADH isozymes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Isozyme</th>
<th>TDG</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K_M</td>
<td>k_{cat}</td>
</tr>
<tr>
<td>I</td>
<td>HLADH</td>
<td>6.1</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td>$\alpha\alpha$</td>
<td>8.7 (7.9 ± 1.2)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>$\beta_1\beta_1$</td>
<td>3.9 (4.7 ± 0.4)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>$\beta_2\beta_2$</td>
<td>48 (54 ± 5.3)</td>
<td>915</td>
</tr>
<tr>
<td></td>
<td>$\gamma_1\gamma_1$</td>
<td>1.3 (1.4 ± 0.1)</td>
<td>244</td>
</tr>
<tr>
<td>IV</td>
<td>σ</td>
<td>255 (293 ± 87)</td>
<td>1018</td>
</tr>
</tbody>
</table>

Units for kinetic constants: K_M, mM; k_{cat}, min$^{-1}$; k_{cat}/K_M, mM$^{-1}$ min$^{-1}$. Enzyme concentrations used were: 2.8, 6.8, 6.9, 1.6 and 0.2 µg/ml respectively, for $\alpha\alpha$, $\beta_1\beta_1$, $\beta_2\beta_2$, $\gamma_1\gamma_1$, and σ-ADH. Values in parentheses are K_M values calculated from hyperbolic curve fits of the data with the software Enzyme Kinetics (version 1.2) by Cleland (96). Data for ethanol oxidation catalyzed by $\alpha\alpha$, $\gamma_1\gamma_1$, and σ-ADH were from Pares et al. (120), for $\beta_1\beta_1$ from Bosron et al. (121), for $\beta_2\beta_2$ from Kedishvili et al. (122), and for HLADH from Lee et al. (123).

In this regard, TDG most closely resembles a 5C aliphatic alcohol in its structural motif.

5.3.3 Inhibition by Pyrazole of TDG Oxidation by Human ADH

Using the most active isozymes, we determined that 1 mM pyrazole, a potent inhibitor of ADH, inhibited the class I $\alpha\alpha$, $\beta_1\beta_1$, $\beta_2\beta_2$ and $\gamma_1\gamma_1$-ADH, and class IV σ-ADH by 83, 100, 56, 90, and 73%, respectively (Table 5.1). Both pyrazole and acetaldehyde competitively inhibited the ADH catalyzed oxidation of TDG. Inhibition by these competitive inhibitors with respect to the $\alpha\alpha$-ADH yielded apparent K_i values of 82 and 161 µM, respectively (Table 5.3). Under the experimental conditions employed in these studies, the $\beta_1\beta_1$ isozyme was inhibited 100 % by 0.4 mM pyrazole and 2.3 mM acetaldehyde. The apparent K_i values for class I $\beta_2\beta_2$-ADH was 430 µM.
The oxidation of TDG catalyzed by $\gamma_1\gamma_1$-ADH was also completely inhibited by pyrazole over the concentration range of 0.4 – 2 mM. By increasing the concentration of TDG to 40-75 mM, well above saturation of the enzyme, activity measurements were obtained that allowed for the determination of an apparent K_i for pyrazole inhibition from the slopes of double reciprocal plots of uninhibited reactions and reactions containing 1 mM pyrazole. Pyrazole inhibition of class I $\gamma_1\gamma_1$-ADH catalyzed TDG oxidation showed an apparent K_i of 3.2 μM. Determination of the apparent K_i's for pyrazole and acetaldehyde inhibition of the σ-ADH catalyzed oxidation was hampered due to the variations in the ability to saturate the enzyme as discussed previously. In this experiment, the higher activity of the σ isozyme may also lead to higher concentrations of NADH being formed from the oxidation of TDG. This higher concentration of NADH may drive the reduction of acetaldehyde, resulting in non-linear double reciprocal plots in these reactions.

Table 5.3 Apparent K_i constants for the inhibition of TDG oxidation by pyrazole and acetaldehyde.

<table>
<thead>
<tr>
<th>Class</th>
<th>Isozyme</th>
<th>Pyrazole</th>
<th>Acetaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$\alpha\alpha$</td>
<td>82</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>$\beta_2\beta_2$</td>
<td>430</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>$\gamma_1\gamma_1$</td>
<td>3.2</td>
<td>ND</td>
</tr>
<tr>
<td>IV</td>
<td>σ</td>
<td>878</td>
<td>ND</td>
</tr>
</tbody>
</table>

K_i units are μM. ND denotes Not Determined. The experiments were conducted as described in Materials and Methods and K_i values were calculated from Dixon plots. Enzyme concentrations used were: 2.8 μg/ml $\alpha\alpha$, 6.9 μg/ml $\beta_2\beta_2$, 1.6 μg/ml $\gamma_1\gamma_1$, and 0.21 μg/ml σ-ADH.
5.4 Discussion

Sulfur mustards are oily lipophilic liquids that penetrate skin and mucosal surfaces within 3 to 5 minutes after contact to provoke local discomfort both to the respiratory tract and to the skin (51). Employees in factories manufacturing mustard gas can become partially or totally disabled because of injury to the mucosa of the respiratory system after protracted exposure to small quantities of mustard gas vapor. Typically, such workers develop an aggregate of several symptoms, most notably problems of the eyes, respiratory tract, gastrointestinal tract, and the nervous system.

In previous incidents of exposure to mustard in solution, the lungs, kidneys, and skin sustained the most damage. In general, 80% of mustard making contact with skin will evaporate, and the 20% remaining will penetrate the skin; however, only 2% of the mustard becomes fixed, so that 18% is absorbed into the circulation to cause systemic intoxication (124). Nagy et al. (125) has estimated that as little as 6 μg/cm² of liquid sulfur mustard will cause lesions in human skin in most exposed sites. Of the three immediate target tissues of chemical warfare agents, namely, the skin, eyes and respiratory system, the ones that are immediately susceptible to the toxic action of mustard are the eyes (126). Mustard gas penetrates the cornea more rapidly than it does the skin, within 2 to 3 minutes after contact. The higher absorbance rate may lead to higher localized concentrations of TDG in the eyes. Next to eye lesions, the greatest discomfort produced by exposure to mustard gas is that resulting from irritation and injury of the respiratory system (51).

Human gastric mucosa contains only the class I γ1γ1-ADH and the ubiquitous class III χ-ADH (11). As discussed above, gastrointestinal problems have been
identified in workers at factories that manufacture mustard gas from protracted exposure to small quantities of mustard gas vapor. Therefore, if TDG oxidation is relevant to sulfur mustard toxicity as has been proposed by Brimfield et al. (1998), then the class I $\gamma_1\gamma_1$-ADH is indicated, based on our studies with purified enzymes, as a major catalyst in the sequelae of toxic action. Again, the present data indicate that TDG is not a substrate of class III χ-ADH.

Duester et al. (16, 127) has reported that the ADH3 gene, which encodes class I γ-ADH, is inducible by certain chemicals. The ADH3 gene was found to possess a retinoic acid response element in its promoter region that may function in some tissues to regulate the amount of ADH activity in response to retinoic acid. It remains to be established whether or not $\gamma_1\gamma_1$-ADH is induced by TDG, but if this substrate behaves similarly to others for this isoenzyme it may account, at least in part, for the deleterious effects of TDG. We are not aware of any studies to indicate induction of class I $\gamma_1\gamma_1$-ADH by TDG; nevertheless, its marked catalytic efficiency toward TDG suggests that such a study would be of importance in regard to TDG exposure. To the best of our knowledge class I $\gamma_1\gamma_1$-ADH is the only human ADH that has been shown to be inducible by xenobiotic agents.

Recent immunohistochemical studies have shown the presence of class I ADH and class III ADH enzymes in human skin, predominantly in the epidermis, with very little expression of the class II protein in the epidermis and dermis (117). The severity of skin lesions as a consequence of exposure to mustard is dependent upon the dose of the agent, the humidity, and the length of exposure (128). It has also been shown that sweaty human skin incurred greater damage from mustard exposure because its
sensitivity to the compounds was enhanced by a film of moisture on the skin surface (129). In this regard class I ADH was observed primarily in the microvasculature and sweat duct moisture (117).

The class I isozymes show significant differences in their abilities to catalyze the oxidation of TDG. One difference is β2β7-ADH catalyzes a 5-fold greater rate of TDG oxidation compared to that of β1β1-ADH; the former is found in 65% of Japanese and Chinese populations (130). These polymorphic variants are the result of a single amino acid substitution, Arg 47 for His in β2 (6), which is located in the coenzyme binding cleft and provides electrostatic stabilization for coenzyme binding (91, 92). Thus, the difference seen in the activity of these β variants may be attributed to the ability of the β1 isozyme to bind NAD⁺ in a more stable conformation, which may translate into slower release of NADH as product (91). We are unaware of the existence of data suggesting significant differences in the toxicity of sulfur mustards amongst different ethnic groups. Nevertheless, the above indicates that such a study of ADH-dependent oxidation of TDG in different ethnic groups is of heuristic value.

The class III χ-ADH is expressed in most organ systems. Despite its presence in most tissues χ-ADH does not catalyze TDG oxidation with up to 30 mM TDG thus, it is unlikely that χ-ADH plays a role in TDG metabolism. χ-ADH has a unique substrate binding site that encloses twice the volume of the β1β1 substrate binding site (86). Cinnamyl alcohol, a preferred substrate of χ-ADH, has a large phenyl ring bound to a propenol moiety, which favors formation of productive interactions within the active site. Also, the dihydric nature of the TDG molecule may favor unproductive associations with amino acid side chains lining the substrate binding site. Brimfield et

al. (1998) found no evidence to suggest oxidation by ADH of both hydroxyl groups of TDG. One possibility is that through its associations with amino acid side chains the hydroxyl moiety that is not directly involved in oxidation may hinder the TDG from obtaining a productive orientation in the substrate binding site.

Class IV σ-ADH is the extrahepatic form of ADH found in the epithelial cells, especially the lining of the stomach and esophagus (131). mRNA for σ-ADH has also been detected in human cornea and skin. Assuming that localized TDG concentrations in the eyes following sulfur mustard exposure may be high due to the fast absorption rate, TDG may achieve its apparent high \(K_m \) (122). However, even at TDG concentrations well below its \(K_M \), the class IV σ-ADH catalyzed oxidation of TDG can exceed that of the other human ADH isozymes. Based on the \(v \) vs. \([S]\) plot for TDG oxidation by σ-ADH (Fig. 5.1) we estimated the \(K_M \) at greater than 200 mM, which translates to an enzyme with an efficiency (\(k_{cat}/K_M \)) for TDG oxidase of about 4 - 5 mM⁻¹ min⁻¹. The substrate binding site of σ-ADH is enlarged near the catalytic zinc ion and the middle region of the substrate binding pocket is narrow. This enlarged active site would not restrict the binding modes of relatively small substrates, thus more non-productive encounters between the enzyme and such small substrates will occur, which is reflected in higher \(K_M \) values (86). In general, oxidation of primary aliphatic alcohols by σ-ADH presents increasing catalytic efficiencies as the chain length increases, primarily a result of decreasing \(K_M \) values (4, 11). σ-ADH is unable to oxidize steroid alcohols and secondary alcohols efficiently. At pH 7.4, σ-ADH has a \(K_M \) of 120 mM for \(S(+)\)-2-Butanol (4). At pH 10, a \(K_M \) of 140 mM is noted for cyclohexanol (11).

Hurley and Vessell (132) have suggested that the enlarged entrance to the σ-ADH
alcohol-binding site may yield fewer productive versus unproductive encounters between the enzyme and secondary alcohols.

The highest efficiency for TDG catalysis by the various purified human ADH studied was observed with the class I \(\gamma_1 \gamma_1 \)-ADH (>180 mM\(^{-1}\) min\(^{-1}\)). ADH classes I, II and III are constitutively expressed in human skin, a major target of sulfur mustard toxicity, with localization in specific regions of the epidermis. We note that class I \(\gamma \)-, \(\alpha \)- and the \(\beta \)-ADHs all catalyze TDG oxidation. \(\gamma_1 \gamma_1 \)-ADH was clearly the most efficient of these; the value of \(k_{\text{cat}}/K_M \) was at least an order of magnitude greater than that of the others (see Results) suggesting a marked potential for involvement in TDG oxidation by the skin. Although the class I isozymes can form heterodimers \textit{in vivo} and the \(\alpha \), \(\beta_1 \), and \(\beta_2 \) isozymes show significant TDG oxidase activity, implying that these isozymes may have a role in oxidizing TDG \textit{in vivo}, their limited tissue distribution and the high catalytic efficiency of the \(\gamma_1 \) isozyme would seem to limit any significant participation of these isozymes in the action of sulfur mustards in the primary target tissues. The class I \(\alpha \)- and \(\beta \)-ADH isozymes are not expressed in the eyes nor gastrointestinal tract. Class III \(\chi \)-ADH does not catalyze TDG oxidation; thus, it seems unlikely that this isoenzyme has a role in the oxidation of TDG by human skin cytosol (53). Class II \(\pi \)-ADH catalyzed low level TDG oxidation (12 nmol/min/mg); however, because both liver and skin NADH-dependent cytosolic oxidation of TDG was potently inhibited by pyrazole and class II ADH is pyrazole-insensitive a minor role for this class of ADH in TDG oxidation is suggested.

The low \(K_i \) value obtained for pyrazole inhibition with \(\gamma_1 \gamma_1 \)-ADH suggests a possible therapeutic role for pyrazole and 4-substituted pyrazoles in sulfur mustard.
toxicity if indeed ADH-dependent TDG metabolism is part of the toxic sequelae of sulfur mustard. The high activity of the σ-ADH, although less efficient than the γ1γ1-ADH, may account for sulfur mustard action in eyes, however, the apparent high
K_i of pyrazole inhibition may limit the effectiveness of pyrazole therapy. The exact role that the ADH-catalyzed oxidation of TDG plays in sulfur mustard toxicity has not been established. However, these studies may prove important in the interpretation of the interactions between sulfur mustard and metabolic systems of humans.
CHAPTER 6 SUMMARY

Liver cytosolic fractions are known to catalyze the reduction of certain C-nitroso compounds to their corresponding hydroxylamines and amines. C-nitroso compounds are highly reactive intermediates in the toxic sequelae of nitroarene metabolism. Alcohol dehydrogenase, NAD(P)H: quinone oxidoreductase and xanthine and aldehyde oxidase have been implicated as C-nitroso reductases. To probe the role of these cytosolic enzymes in the reduction of C-nitroso compounds we have studied the effects of classical inhibitors of these enzymes on the ability of liver cytosolic fractions from ADH+ and ADH- deermice to reduce p-nitrosophenol (pNSP) to p-aminophenol (pAP). Pyrazole, a potent inhibitor of ADH, inhibited NADH- pNSP reduction by ADH+ cytosol by > 85%. Thus, ADH contributes substantially to NADH-C-nitroso reduction by cytosol from ADH+ deermice. The NAD(P)H: quinone oxidoreductase inhibitor, dicumarol, inhibited NADH-dependent pAP formation about 25%; however, dicumarol potently inhibited the NADPH-dependent formation (90-95%). As expected, cytosol from ADH- deermice did not catalyze pyrazole-sensitive (ADH-dependent) C-nitroso reduction with NADH as the cofactor. Both NADPH- and NADH- pNSP reduction by ADH- cytosol was inhibited >90% by dicumarol. The xanthine oxidase/aldehyde oxidase inhibitor, allopurinol, was without effect on NAD(P)H cytosolic p-nitrosophenol reduction from ADH- and ADH+ deermice under either aerobic or anaerobic conditions. Our findings suggest that in the ADH+ animal, ADH contributes significantly to NADH-dependent C-nitroso reduction by cytosol relative to NAD(P)H: quinone oxidoreductase. NADPH-dependent pNSP reduction by liver cytosol of ADH+ animals is mostly dicumarol-sensitive which implicates NAD(P)H: quinone
oxidoreductase as the major NADPH-dependent activity. In ADH- deermice, both NADH- and NADPH-dependent p-nitrosophenol reduction is essentially all dicumarol-sensitive (NAD(P)H: quinone oxidoreductase-dependent). Because the toxic expression of C-nitroso compounds are mediated by hydroxylamine intermediates, the present data indicate the importance of considering the role of ADH in the toxic sequelae of nitro and nitroso arenes.

ADH is a Zn-containing metalloenzyme. Although, extensive structural homology between horse and different isozymes of human liver ADH exist, significant differences occur within the active site, which account for great variability among substrate specificities, kinetic constants, and response to inhibitors. We have studied the metabolic activity of horse liver alcohol dehydrogenase (HLADH), purified class I αα, β1β1, and β2β2, class II α, class III χ and class IV σ human isozymes, and human liver cytosol (HLC) towards the model C-nitroso substrate pNSP. Significant differences in the reaction rates of pNSP reduction and the sensitivity to pyrazole inhibition were observed between HLADH and the human isozymes. Class II α-ADH catalyzed pNSP reduction at a rate ~10 times greater than did class I β2β2-ADH and was relatively insensitive to pyrazole. The relative order of the rates of pNSP reduction by these ADH isozymes was HLADH > αα > α > σ > χ > β2β2 > β1β1. Interestingly, while pNSP reduction by HLADH proceeds via an observable spectral intermediate between 252-257 nm, such a spectral intermediate is not apparent with the human isozymes. pNSP reduction catalyzed by HLADH, purified class I αα, β1β1, and β2β2, class III χ and class IV σ human isozymes show pH dependence with maxima greater than or
equal to pH 6. These pH dependence seemingly reflects a protein moiety involved in the proton relay system.

Sulfur mustard is a poisonous chemical agent that exerts local action on the eyes, skin, and respiratory tissues, with subsequent systemic action on the nervous, cardiac, and digestive systems in humans. This toxic action is thought to be related to the generation of 2,2'-thiodiglycol (TDG; also known as 2,2'-bis-thiodiethanol), the hydrolysis product of sulfur mustard. TDG subsequently can undergo oxidation catalyzed by ADH. Human ADH isoenzymes differ in their tissue distribution. Therefore, we have compared the catalytic activity of purified human liver class I α, β₁, β₂ and γ₁ ADH, class II π ADH, class III χ ADH, and class IV σ ADH with respect to TDG oxidation. Specific activities with respect to TDG were 123, 79, 7, 647, and 8 nmol/min/mg for the class I α, β₁, β₂ and γ₁ ADH and class II π ADH, respectively. Class III χ ADH did not exhibit activity with this substrate. The specific activity of class IV σ ADH was estimated at about 2545 nmol/min/mg. 1 mM pyrazole, a potent inhibitor of class I and class II ADH, inhibited the class I α, β₁ and γ₁ ADH and class IV σ ADH by 83, 100, 90, and 73%, respectively. The class I α and β₁ ADH oxidized TDG with k_{cat}/K_M values of 8-9 mM⁻¹ min⁻¹, and class I γ₁ ADH with a value of 154 mM⁻¹ min⁻¹. The k_{cat}/K_M value for class IV σ ADH was estimated at 4 mM⁻¹ min⁻¹. The activities of class IV σ and class I γ₁ ADH are of significant interest because of their prevalence, respectively, in the eyes, lungs, stomach and skin, all potential target organs of sulfur mustard toxicity.
REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87. Z. Maskos, W. H. Welch and G. W. Winston (2000). Reduction of \(p\)-Nitrosophenol Catalyzed by Horse Liver Alcohol Dehydrogenase: Evidence for a Mechanism Involving Dual Pathways. (*Unpublished Results*).

91. C. L. Stone, W. F. Bosron and M. F. Dunn (1993). Amino Acid Substitutions at Position 47 of Human $\beta_1\beta_1$ and $\beta_2\beta_2$ Alcohol Dehydrogenases Affect Hydride Transfer and Coenzyme Dissociation Rate Constants. *J. Biol. Chem., 268*, 892-899.

APPENDIX A THE PRESENCE OF URACIL-DNA GLYCOSYLASE IN INSECTS IS DEPENDENT UPON DEVELOPMENTAL COMPLEXITY

A.1 Abstract

The metamorphosis of insects can, in a general way, be divided between those organisms that undergo pupation accompanied by cellular histolysis and those that gradually develop into adults without an intervening pupal stage of development. In the former case, the death of a cell population is an integral part of development that is tightly associated with massive DNA degradation during pupation. In that regard, it has been suggested that uracil-containing DNA acts as a target for the nucleolytic breakdown of DNA during histolysis in insects (133), thus placing into question how compatible the existence of uracil-DNA glycosylases would be for this form of developmental signal. As a result, we tested for the presence of a uracil-DNA glycosylase in insects representative of those having an intervening pupal stage of development and those that do not. We show here that a nonpupating insect contains a uracil-DNA glycosylase activity. Conversely, crude extracts of *Drosophila melanogaster*, as well as three other insect populations that undergo pupation similar to that found in *Drosophila*, do not contain detectable levels of this DNA repair activity. Thus, there appears to be a consistent correlation between cellular destruction during development and the absence of a uracil-DNA glycosylase, which supports the possibility that uracil-containing DNA may play an important role in those cells targeted for death.

\(^2\) Reprinted by permission of the Journal of Biological Chemistry.
A.2 Introduction

Uracil is found in DNA either as the consequence of misincorporation during DNA synthesis or, alternatively, as the result of cytosine deamination. The latter event has been shown to be mutagenic, causing GC:AT transition mutations in bacterial strains lacking uracil-DNA glycosylase activity (ung), thus demonstrating the importance of this enzyme (134). Indeed, uracil-DNA glycosylases were assumed to exist in virtually all organisms. However, the ubiquitous nature of this activity eventually came into some doubt when a number of laboratories failed to detect the repair of uracil-containing DNA in extracts from Drosophila melanogaster (135-137). On the other hand, Drosophila was found to contain a nuclease that preferentially acts on uracil-containing DNA, but only in developmental stages prior to the cellular destruction observed during histolysis (136). In view of this, a closer examination of uracil metabolism in Drosophila was undertaken. These studies revealed that the dUTPase activity responsible for keeping cellular dUTP levels low in relationship to TTP is also developmentally expressed and limited to embryonic stages coincident to the production of cells ultimately destroyed during pupation (138). Finally, an inhibitor of dUTPase activity was also detected in these early stages of Drosophila development, where it was presumed that it acted to moderate dUTPase activity, thereby providing a greater opportunity for uracil incorporation into DNA (133, 139).

The novel features associated with uracil metabolism in Drosophila provided an experimental basis for suggesting that perhaps insects as a whole were deficient in uracil-DNA glycosylase activity (136). Recently, however, it was shown that Drosophila, as well as the locust Locusta migratoria, contains this DNA repair activity (140). Notably, the developmental pathways used by these two organisms are vastly
different (see Table A.1), giving us reasons to reinspect insects with regard to those that pupate like Drosophila as opposed to those insects like locusts that emerge from the egg and pass through immature stages of development (nymph) until they become sexually mature. In this paper, we confirm, using another nonpupating organism similar to the locust, the existence of a uracil-DNA glycosylase activity. On the other hand, we were unable to find this activity in Drosophila or in three other insect populations that undergo pupation. The absence of uracil-DNA glycosylase activity may therefore be unique to only those insects that undergo pupation.

A.3 Materials and Methods

A.3.1 Materials

Deoxy[5-3H]uridine 5'-triphosphate and deoxycytidine 5'-[\textalpha-32P]triphosphate were purchased from Amersham Corp. [\textalpha-32P]dUTP was prepared from [\textalpha-32P]dCTP by deamination of 1 N NaOH as described by Johnson and Demple (141).

A.3.2 Preparation of [uracil-3H,32P]Poly(dA-dT)

Poly(dA-dT) containing [uracil-3H,\textalpha-32P]dUMP was made essentially as described by Johnson and Demple (141).

A.3.3 Assay of Uracil-DNA Glycosylase Activity

Reaction conditions were as described by Morgan and Chlebek (140), except for the manner in which assays were terminated and radioactive material was measured. Briefly, reactions (50\mu l) contained 40 mM Tris-HCl, 1 mM EDTA, 70 mM NaCl, and radioactive poly(dA-dT). Incubations were generally for 20 min at 37°C, at which time assays were precipitated by the addition of 20 \mu g of calf thymus DNA, 110 \mu l of 10% trichloroacetic acid, and 30 \mu l of 5% Norit suspension and were centrifuged in a
microcentrifuge for 15 min at 4°C (142). Radioactive material in the supernatant was
determined by removing an aliquot and measuring for radioactive material.

Norit-nonabsorbed reaction products were determined by ascending
polyethyleneimine-cellulose thin-layer chromatography as described by Gates and Linn
(143).

A.3.4 Insect Populations

Insects chosen for this study are identified in Table A.1. *Anticarsia gemmatalis*
eggs were from a colony kept in the Department of Entomology, Louisiana State
University, Agricultural Experiment Station, and were maintained according to
previously described methods (144). *Apis mellifera* eggs were obtained from an active
bee hive maintained by personnel of the Bee Breeding Laboratory, United States
Department of Agriculture (Baton Rouge, La.). *Diatraea saccharalis* eggs were
obtained from a laboratory colony maintained according to previously described
procedures (145, 146). *Acheta domesticus* eggs and nymphs were collected from a
colony maintained by the techniques described by Clifford et al. (147). *D.
Melanogaster* (Oregon-R) embryos were collected and stored as described by Deutsch
and Spiering (136) and Giroir and Deutsch (138). *Drosophila* embryos that had not
been subjected to dechorionation were a generous gift of Dr. M. R. Kelley (Loyola
Medical School, Maywood, Ill.).

A.3.5 Preparation of Extracts

Organisms identified in Table A.1 were placed in 40 mM Tris-HCl, pH 8, 1 mM
dithiothreitol, 4 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, and 0.2 M NaCl and
were homogenized in a glass homogenizer as described by Morgan and Chlebek (140). Cellular debris was generally removed by centrifugation at 12,000 × g.

A.3.6 Other Methods

Protein was measured by the technique of Bradford (95) using the Bio-Rad protein kit. Buffer pH values were routinely checked at 50 mM and room temperature.

A.4 Results

The search for a uracil-DNA glycosylase activity in insects originally focused on an organism that closely parallels the type of developmental life cycle found in locusts (Table A.1). The organism chosen was the cricket *A. domesticus*, which is a representative member of a group of insects that lack a pupal stage of development. Initial experiments did reveal some activity in this organism that was considerably enhanced when the pH optimum for the uracil-DNA glycosylase activity was subsequently discovered to be acidic and sharply centered around 6.0 (Fig. A.1).

| **Table A.1** Types of insect populations tested for uracil-DNA glycosylase activity. |
|---------------------------------|---------------------------------|
| **Endopterygota** | **Exopterygota** |
| *A. gemmatalis* (velvetbean caterpillar) | *A. domesticus* (house cricket) |
| *A. mellifera* (honeybee) | |
| *D. saccharalis* (sugarcane borer) | |
| *D. melanogaster* | |

(a) These insects undergo larval and pupal stages of development and develop their wings internally until they are externalized at the pupal molt. (b) These insects lack a pupal stage and develop their wings externally. The locust *L. migratoria*, which was previously identified as having uracil-DNA glycosylase activity (140), is also a representative member of this group of insects.
Fig. A.1 Determination of pH optimum. Reactions (50 μl) contained 5 or 2 μg of Drosophila or cricket protein, respectively, and ~100,000 cpm of [uracil-³H]poly(dA-dT). Assays were terminated with 144 μl of Norit suspension and centrifuged, and the supernatant (50 μl) was determined for radioactivity.

A common characteristic shared by uracil-DNA glycosylases found in other organisms is their inhibition by free uracil (135, 148). The activity detected in crickets was also inhibited by uracil (Table A.2), suggesting that the liberation of Norit-nonabsorbed material was due to the presence of an authentic uracil-DNA glycosylase protein. This was verified by separating the products of the reaction by polyethyleneimine chromatography (Fig. A.2), in which 95% of the Norit-nonabsorbed radioactivity was detected coincident with authentic uracil. The remainder of radioactive material migrated close to the origin of the polyethyleneimine chromatogram and most likely was oligonucleotides produced by nonspecific nucleases.
Table A.2 Uracil-DNA glycosylase activity in the house cricket (A. domesticus).

<table>
<thead>
<tr>
<th>Organism</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. domesticus</td>
<td>43 pmol/min</td>
</tr>
<tr>
<td>A. domesticus + 2.5 mM uracil</td>
<td><1 pmol/min</td>
</tr>
<tr>
<td>A. domesticus + D. melanogaster</td>
<td>42 pmol/min</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td><1 pmol/min</td>
</tr>
</tbody>
</table>

Each reaction received 4 µg of crude extract protein. In the mixing experiment, a protein extract (4 µg) of Drosophila was incubated for 5 min prior to the addition of a crude extract (4 µg) of A. domesticus.

Fig. A.2 Thin-layer chromatography of reaction products. Complete reactions indicated that ~3500 cpm of ³H were liberated by extracts (2 µg) of 1-day-old crickets. Thirty-two µl were applied to a polyethyleneimine-impregnated cellulose thin-layer plate along with authentic uracil and developed as described by Gates and Linn (143). Roughly 60% of the radioactivity applied to the chromatogram was recovered, with the majority as free uracil. ●, plus extract; ○, minus extract.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The above experiments were conducted using 1-day-old crickets (nymphs), which appear to have more uracil-DNA glycosylase activity than do embryos (Table A.3). Furthermore, there is not a sharp and distinctive pH optimum for the DNA glycosylase activity observed in embryos (data not shown). Thus, it may be that different forms of uracil-DNA glycosylase reside in crickets, one of which is originally expressed at emergence from the embryo.

<table>
<thead>
<tr>
<th>Table A.3 Uracil-DNA glycosylase activity in different insects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>A. gemmatalis</td>
</tr>
<tr>
<td>A. mellifera</td>
</tr>
<tr>
<td>A. saccharalis</td>
</tr>
<tr>
<td>D. saccharalis first instar larvae</td>
</tr>
<tr>
<td>D. melanogaster</td>
</tr>
<tr>
<td>A. domesticus</td>
</tr>
<tr>
<td>Embryos, with chorion</td>
</tr>
<tr>
<td>Embryos, chorion removed</td>
</tr>
<tr>
<td>1-Day-old adult (nymph)</td>
</tr>
<tr>
<td>E. coli uracil-DNA glycosylase</td>
</tr>
<tr>
<td>E. coli uracil-DNA glycosylase + Drosophila extract</td>
</tr>
</tbody>
</table>

Reactions were conducted at pH 6.0, except for those using purified *E. coli* uracil-DNA glycosylase, which were assayed at pH 7.5. Incubations were for 20 min at 37°C. Each reaction received 5 μg of crude extract protein or 2 units of *E. coli* uracil-DNA glycosylase capable of releasing 1 nmol of free uracil in 1 h at 37°C. Unless otherwise stated, extracts were produced from organisms in the embryonic stage of development.

Somewhat puzzling was the finding that there appears to be a relationship between the levels of uracil-DNA glycosylase activity detected and whether the insect was exposed to conditions to remove its chorion, as originally suggested by Morgan and...
Chlebek (140). As seen in Table A.3, roughly 5-fold more uracil-DNA glycosylase activity was observed in cricket embryos retaining intact chorions.

Having established the presence of a uracil-DNA glycosylase in crickets, we then turned to evaluating *Drosophila*, which is an example of an organism that undergoes pupation. We originally attempted to determine if, like crickets, the DNA glycosylase activity may also have an acidic pH optimum. However, tests performed at pH 5-8 failed to reveal detectable amounts of activity (Fig. A.1). Eliminating sonication proved to be an unsatisfactory means of revealing any activity, as did toluene treatment of embryos or the use of nondechorionated embryos (140). Thus, the use of a variety of conditions failed to show detectable amounts of uracil-DNA glycosylase activity in *Drosophila*.

An obvious distinction can be made between *Drosophila* and crickets as to the manner in which they develop after embryogenesis toward the onset of adulthood (Table A.1). It therefore seemed reasonable to question whether insects that undergo pupation such as *Drosophila* also lack uracil-DNA glycosylase activity. As seen in Table A.3, three additional organisms that share the common feature of undergoing pupation also lacked detectable amounts of activity on uracil-containing DNA. The extraction procedures or assay conditions were once again varied for experiments with the three other pupating species of insects identified in Tables A.1 and A.3, with the same unsuccessful results as for *Drosophila*.

One last question regarding the apparent absence of uracil-DNA glycosylase activity in *Drosophila* is whether there might be certain inhibitory factors present in their cells that could mask its detection. To test this, *Drosophila* extracts were
combined with labeled uracil-containing DNA for 5 min, and then purified *Escherichia coli* uraci-DNA glycosylase was added and allowed to incubate for the normal 20 min. As seen in Table A.3, the presence of *Drosophia* extracts had virtually no effect on the ability of the *E. coli* enzyme to liberate uracil residues from DNA. Similar results were obtained when *Drosophila* extracts failed to inhibit the uracil-DNA glycosylase activity present in *Bacillus subtilis* (135). Likewise, combining extracts of *Drosophila* and *A. domesticus* also failed to change the amount of activity revealed by the cricket protein (Table A.2). Taken together, the inability to detect uracil-DNA glycosylase activity in *Drosophila* does not appear to be due to some endogenous protease or inhibitory factor.

A.5 Discussion

After the formation of the cellular blastoderm in *Drosophila* embryogenesis, segregation of cells takes place; some of these cells are earmarked for their eventual destruction through a process known as histolysis. One of the characteristics associated with cellular death is DNA degradation, which could be mediated through a random nucleolytic attack on DNA or, perhaps instead, through a more selective pathway of DNA degradation. For example, the inheritance of paternal versus maternal chloroplasts in *Chlamydomonas* is dictated by DNA modifications in which the maternal chloroplast is methylated and stably inherited. Notably, paternal chloroplasts, which are degraded, contain the nonconventional base uracil in their DNA (149). Other examples exist in which the existence of modified or nonconventional bases in DNA is important for directing the breakdown or preserving the integrity of DNA molecules (150, 151).

For the four insect populations examined in this study that undergo pupation (Table A.1), we found that they all share the same characteristic of also lacking
detectable levels of an enzyme necessary for the removal of uracil residues in DNA. One may explain these results by hypothesizing that these insects utilize uracil-containing DNA as a target for initiating the DNA degradation associated with pupation. This interpretation of the data is reinforced by the previous finding of a protein inhibitor for *Drosophila* embryonic dUTPase (139), in which dUTPase is the main safety valve for preventing dUMP incorporation in DNA. Inhibition of dUTPase by a protein inhibitor has been identified in only one other organism, in which *B. subtilis* phage PBS2 induces an inhibitor of host-cell dUTPase, resulting in PBS2 having the only known genome that contains uracil instead of thymine in its DNA (152).

The presence of a pathway that moderates dUTPase activity, thus providing a greater opportunity for uracil incorporation into DNA, suggests a strategy that in all likelihood is part of a programmed cycle that ultimately leads to the death of certain cells. Programed cellular death is known to exist in *Caenorhabditis elegans* (153) and in the glucocorticoid-mediated cytolysis of thymocytes (154). In *Drosophila*, and perhaps in other insects that pupate, this program could involve the incorporation of uracil into the DNA of cells targeted for destruction, most likely through the moderation of dUTPase activity (139). Subsequently, a nuclease expressed as part of the histolyzation process would selectively degrade the uracil-containing DNA (136). Clearly, the presence of a uracil-DNA glycosylase would be incompatible with this form of instructed cellular death.
Dear Requestor:

Thank you for your request to use material from your work published in an Academic Press publication.

It is now the policy of Academic Press that authors need not obtain permission in the following cases: (1) to use their original figures or tables in their future works; (2) to make copies of their papers for their classroom teaching; and (3) to include their papers as part of their dissertation/thesis.

Sincerely,

Ana Merced 10/15/99

Paralegal Department
Academic Press - Permissions
407 345 3994
407 345 4058
ameredro@harcourtheace.com

A Division of Harcourt Brace & Company
Dear Dr. Dudley:

Please note your recent request for copyright permission has been granted for the following:

Volume: Page, Year

267: 11964-11967, 1992

Please note your original will follow by mail only if requested. For future requests, we can be contacted by e-mail at jbc@asbmb.faseb.org. If you have any questions, please contact us at the number listed above.

Sincerely yours,

PERMISSION GRANTED contingent upon obtaining that of the author

JUANA MEZGER

for the copyright owner

THE AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY
HYPERBOLIC CURVE FIT

FIT TO \(v = \frac{V_m A}{(K + A)} \)

<table>
<thead>
<tr>
<th>#</th>
<th>([A])</th>
<th>(1/[A])</th>
<th>Vobs</th>
<th>(1/Vobs)</th>
<th>Vcal</th>
<th>(1/Vcal)</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.670E+01</td>
<td>5.988E-02</td>
<td>1.170D+02</td>
<td>8.544E-03</td>
<td>1.185E+02</td>
<td>8.442E-03</td>
<td>-1.411D+00</td>
</tr>
<tr>
<td>2</td>
<td>3.340E+01</td>
<td>2.994E-02</td>
<td>1.914D+02</td>
<td>5.226E-03</td>
<td>1.921E+02</td>
<td>5.206E-03</td>
<td>-7.382D-01</td>
</tr>
<tr>
<td>3</td>
<td>5.010E+01</td>
<td>1.996E-02</td>
<td>2.458D+02</td>
<td>4.069E-03</td>
<td>2.423E+02</td>
<td>4.127E-03</td>
<td>3.476D+00</td>
</tr>
<tr>
<td>4</td>
<td>6.680E+01</td>
<td>1.497E-02</td>
<td>2.809D+02</td>
<td>3.560E-03</td>
<td>2.787E+02</td>
<td>3.587E-03</td>
<td>2.139D+00</td>
</tr>
<tr>
<td>5</td>
<td>8.350E+01</td>
<td>1.198E-02</td>
<td>3.085D+02</td>
<td>3.242E-03</td>
<td>3.064E+02</td>
<td>3.264E-03</td>
<td>2.068D+00</td>
</tr>
<tr>
<td>6</td>
<td>1.002E+02</td>
<td>9.980E-03</td>
<td>3.168D+02</td>
<td>3.156E-03</td>
<td>3.281E+02</td>
<td>3.048E-03</td>
<td>-1.123D+01</td>
</tr>
<tr>
<td>7</td>
<td>1.336E+02</td>
<td>7.485E-03</td>
<td>3.653D+02</td>
<td>2.738E-03</td>
<td>3.599E+02</td>
<td>2.778E-03</td>
<td>5.335D+00</td>
</tr>
</tbody>
</table>

CONST. VALUE

K	5.4894D+01	S.E. 4.0851D+00	Weight 5.9922E-02
V	5.0781D+02	S.E. 1.6027D+01	Weight 3.8930E-03
K/V	1.0810D-01	S.E. 4.8369D-03	Weight 4.2743E+04
1/V	1.9692D-03	S.E. 6.2151D-05	Weight 2.5888E+08
V/K	9.2508D+00	S.E. 4.1393D-01	Weight 5.8365E+00

SIGMA = 5.967630D+00

VARIANCE = 3.561261D+01

HYPERBOLIC CURVE FIT-PNSP 01-16-2000
HYPERBOLIC CURVE FIT

FIT TO $v = VmA/(K + A)$

<table>
<thead>
<tr>
<th>#</th>
<th>[A]</th>
<th>1/[A]</th>
<th>Vobs</th>
<th>1/Vobs</th>
<th>Vcal</th>
<th>1/Vcal</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.300E+00</td>
<td>1.205E-01</td>
<td>7.240D+01</td>
<td>1.381E-02</td>
<td>7.467E+01</td>
<td>1.339E-02</td>
<td>-2.271D+00</td>
</tr>
<tr>
<td>2</td>
<td>1.670E+01</td>
<td>5.988E-02</td>
<td>9.972D+01</td>
<td>1.003E-02</td>
<td>9.899E+01</td>
<td>1.010E-02</td>
<td>7.289D-01</td>
</tr>
<tr>
<td>3</td>
<td>2.500E+01</td>
<td>4.000E-02</td>
<td>1.170D+02</td>
<td>8.547E-03</td>
<td>1.108E+02</td>
<td>9.023E-03</td>
<td>6.170D+00</td>
</tr>
<tr>
<td>4</td>
<td>3.340E+01</td>
<td>2.994E-02</td>
<td>1.148D+02</td>
<td>8.710E-03</td>
<td>1.180E+02</td>
<td>8.477E-03</td>
<td>-3.158D+00</td>
</tr>
<tr>
<td>5</td>
<td>4.000E+01</td>
<td>2.500E-02</td>
<td>1.210D+02</td>
<td>8.263E-03</td>
<td>1.218E+02</td>
<td>8.209E-03</td>
<td>-8.018D-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONST.</th>
<th>VALUE</th>
<th>S.E.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>7.9217D+00</td>
<td>1.1669D+00</td>
<td>7.3435E-01</td>
</tr>
<tr>
<td>V</td>
<td>1.4595D+02</td>
<td>5.2708D+00</td>
<td>3.5996E-02</td>
</tr>
<tr>
<td>K/V</td>
<td>5.4278D-02</td>
<td>6.2315D-03</td>
<td>2.5752E+04</td>
</tr>
<tr>
<td>1/V</td>
<td>6.8519D-03</td>
<td>2.4745D-04</td>
<td>1.6331E+07</td>
</tr>
<tr>
<td>V/K</td>
<td>1.8424D+01</td>
<td>2.1151D+00</td>
<td>2.2352E-01</td>
</tr>
</tbody>
</table>

SIGMA = 3.716732D+00
VARIANCE = 1.381409D+01
HYPERBOLIC CURVE FIT

FIT TO \(v = \frac{V_m A}{(K + A)} \)

<table>
<thead>
<tr>
<th>#</th>
<th>([A])</th>
<th>(1/[A])</th>
<th>(V_{obs})</th>
<th>(1/V_{obs})</th>
<th>(V_{cal})</th>
<th>(1/V_{cal})</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.200E+00</td>
<td>2.381E-01</td>
<td>4.269D+01</td>
<td>2.343E-02</td>
<td>4.195E+01</td>
<td>2.384E-02</td>
<td>7.361D-01</td>
</tr>
<tr>
<td>2</td>
<td>8.300E+00</td>
<td>1.205E-01</td>
<td>5.679D+01</td>
<td>1.761E-02</td>
<td>5.684E+01</td>
<td>1.759E-02</td>
<td>-4.255D-02</td>
</tr>
<tr>
<td>3</td>
<td>1.670E+01</td>
<td>5.988E-02</td>
<td>6.798D+01</td>
<td>1.471E-02</td>
<td>6.955E+01</td>
<td>1.438E-02</td>
<td>-1.571D+00</td>
</tr>
<tr>
<td>4</td>
<td>2.500E+01</td>
<td>4.000E-02</td>
<td>7.454D+01</td>
<td>1.342E-02</td>
<td>7.506E+01</td>
<td>1.332E-02</td>
<td>-5.205D-01</td>
</tr>
<tr>
<td>5</td>
<td>3.340E+01</td>
<td>2.994E-02</td>
<td>7.973D+01</td>
<td>1.254E-02</td>
<td>7.820E+01</td>
<td>1.279E-02</td>
<td>1.533D+00</td>
</tr>
</tbody>
</table>

CONST. VALUE

\(K = 4.7398D+00 \)
\(V = 8.9294D+01 \)
\(K/V = 5.3081D-02 \)
\(1/V = 1.1199D-02 \)
\(V/K = 1.8839D+01 \)

\(\sigma = 1.370347D+00 \)

\(\text{VARIANCE} = 1.877850D+00 \)

HYPERBOLIC CURVE FIT-PNSP 01-16-2000
HYPERBOLIC CURVE FIT

FIT TO \(v = V_m A / (K + A) \)

<table>
<thead>
<tr>
<th>#</th>
<th>[A]</th>
<th>1/[A]</th>
<th>Vobs</th>
<th>1/Vobs</th>
<th>Vcal</th>
<th>1/Vcal</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.500E+01</td>
<td>1.053E-02</td>
<td>6.317D+02</td>
<td>1.583E-03</td>
<td>7.001E+02</td>
<td>1.428E-03</td>
<td>-6.837D+01</td>
</tr>
<tr>
<td>2</td>
<td>1.400E+02</td>
<td>7.143E-03</td>
<td>8.877D+02</td>
<td>1.127E-03</td>
<td>9.244E+02</td>
<td>1.082E-03</td>
<td>-3.674D+01</td>
</tr>
<tr>
<td>3</td>
<td>1.600E+02</td>
<td>6.250E-03</td>
<td>9.736D+02</td>
<td>1.027E-03</td>
<td>1.010E+03</td>
<td>9.903E-04</td>
<td>-3.613D+01</td>
</tr>
<tr>
<td>4</td>
<td>2.000E+02</td>
<td>5.000E-03</td>
<td>1.295D+03</td>
<td>7.723E-04</td>
<td>1.160E+03</td>
<td>8.623E-04</td>
<td>1.351D+02</td>
</tr>
<tr>
<td>5</td>
<td>3.000E+02</td>
<td>3.333E-03</td>
<td>1.503D+03</td>
<td>6.655E-04</td>
<td>1.446E+03</td>
<td>6.915E-04</td>
<td>5.656D+01</td>
</tr>
<tr>
<td>6</td>
<td>4.000E+02</td>
<td>2.500E-03</td>
<td>1.577D+03</td>
<td>6.342E-04</td>
<td>1.650E+03</td>
<td>6.062E-04</td>
<td>-7.281D+01</td>
</tr>
</tbody>
</table>

CONST. **VALUE** **S.E.** **Weight**

\(K = 2.9261D+02 \)
\(V = 2.8564D+03 \)
\(K/V = 1.0244D-01 \)
\(1/V = 3.5008D-04 \)
\(V/K = 9.7621D+00 \)

\(\text{SIGMA} = 9.229716D+01 \)
HYPERBOLIC CURVE FIT

FIT TO v = Vm*A/(K + A)

<table>
<thead>
<tr>
<th>#</th>
<th>[A]</th>
<th>1/[A]</th>
<th>Vobs</th>
<th>1/Vobs</th>
<th>Vcal</th>
<th>1/Vcal</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000E+00</td>
<td>1.000E+00</td>
<td>2.694D+02</td>
<td>3.713E-03</td>
<td>2.561E+02</td>
<td>3.905E-03</td>
<td>1.328D+01</td>
</tr>
<tr>
<td>2</td>
<td>2.100E+00</td>
<td>4.762E-01</td>
<td>3.722D+02</td>
<td>2.687E-03</td>
<td>3.693E+02</td>
<td>2.708E-03</td>
<td>2.913D+00</td>
</tr>
<tr>
<td>3</td>
<td>4.200E+00</td>
<td>2.381E-01</td>
<td>4.405D+02</td>
<td>2.270E-03</td>
<td>4.622E+02</td>
<td>2.164E-03</td>
<td>-2.166D+01</td>
</tr>
<tr>
<td>4</td>
<td>8.300E+00</td>
<td>1.205E-01</td>
<td>5.214D+02</td>
<td>1.918E-03</td>
<td>5.277E+02</td>
<td>1.895E-03</td>
<td>-6.325D+00</td>
</tr>
<tr>
<td>5</td>
<td>1.670E+01</td>
<td>5.988E-02</td>
<td>5.770D+02</td>
<td>1.733E-03</td>
<td>5.693E+02</td>
<td>1.756E-03</td>
<td>7.610D+00</td>
</tr>
<tr>
<td>6</td>
<td>2.500E+01</td>
<td>4.000E-02</td>
<td>5.922D+02</td>
<td>1.689E-03</td>
<td>5.845E+02</td>
<td>1.711E-03</td>
<td>7.770D+00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONST.</th>
<th>VALUE</th>
<th>S.E.</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.4112D+00</td>
<td>1.2095D-01</td>
<td>6.8362E+01</td>
</tr>
<tr>
<td>V</td>
<td>6.1745D+02</td>
<td>1.1735D+01</td>
<td>7.2618E-03</td>
</tr>
<tr>
<td>K/V</td>
<td>2.2856D-03</td>
<td>1.6499D-04</td>
<td>3.6735E+07</td>
</tr>
<tr>
<td>1/V</td>
<td>2.1696D-03</td>
<td>3.0780D-05</td>
<td>1.0555E+09</td>
</tr>
<tr>
<td>V/K</td>
<td>4.3753D+02</td>
<td>3.1585D+01</td>
<td>1.0024E-03</td>
</tr>
</tbody>
</table>

SIGMA = 1.425037D+01

VARIANCE = 2.030731D+02
VITA

Billy Fred Dudley was born in Shreveport, Louisiana, on November 27, 1968. He is the son of Billy F. Dudley, Sr. and Betty J. Dudley. He graduated from Captain Shreve High School in Shreveport, Louisiana in June 1986 and spent the summer working in the Medical Toxicology Department of Louisiana State University Medical School in Shreveport. In the Fall of 1986 Billy enrolled at Louisiana State University in Baton Rouge where he completed his bachelor of science degree in Biochemistry in August 1991. He was then accepted in the graduate program of the Biochemistry Department at Louisiana State University. He will receive a doctor of philosophy degree in biochemistry with a minor in physiology at spring commencement 2000.
DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Billy F. Dudley, Jr.

Major Field: Biochemistry

Title of Dissertation: Activation and Metabolism of p-Nitrosophenol and 2,2'-Thiobis-ethanol by Horse Liver and Human Alcohol Dehydrogenase: Toxicological Implications

Approved:

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

Date of Examination:

March 16, 2000