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Abstract

The process of maintenance and enhancement of legacy software systems is a 

laborious and unavoidable task. Often these systems lack structure or modularity, as 

they were developed using programming languages and paradigms that do not 

incorporate object-oriented features and sound design principles. The software 

engineer’s task can be simplified if tools are available to identify object like features in 

the code. These tools can help transform the non-object-oriented code to object oriented 

code. This research describes a comprehensive and systematic process for 

transformational reengineering of legacy systems.

Research in reengineering is mainly focused on clustering techniques that group 

procedures present in the legacy system into candidate objects. These clustering 

approaches are limited to systems with well-defined data structures and procedures. 

Several of these approaches are either not comprehensive, limited to certain types of 

systems, or depend extensively on engineer knowledge of the system. Unlike these 

approaches that analyze legacy systems at the procedural level, the reengineering 

process we present analyzes systems at the statement level.

This process results in the identification of object operations. These operations, 

along with the state variables and the user defined data structures, are arranged in a 

hierarchy that represents the object structure of the reengineered variant of the legacy 

system. From this system hierarchy, objects are identified and encapsulated by 

streamlining the interfaces. The reengineering process is incorporated in a tool, 

ReArchitect

xiii

4
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Programs are statically analyzed and represented as a statement dependence 

graph (StDG) for further processing. The StDG is a fine-grained representation with 

modular representation for functions and program slices. It can adapt to program 

changes, unlike other representations. The StDG is restructured by merging cohesive 

components in the graph. The restructured graph is used to build the object structure, 

which is used to identify the objects.

The StDG is a theoretically sound framework that provides support for many 

problems found in the reengineering domain. We show the value of the StDG in two 

such domains: program slicing and maintenance. The StDG is restructured differently 

for different requirements (space/time), and for different types of applications.

xiv
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Chapter 1 

Introduction

1.1 Introduction

Industrial-strength software is complex. This complexity makes it difficult to 

comprehend all the subtleties of its design. Regardless, complexity is an essential 

property of the software which we need to master. Causes for this complexity include: 

complexity of the problem domain, difficulty of managing the development process, the 

flexibility possible through the software, and the evolutionary nature of the software 

[Booc 94].

A software system should evolve if it is to be useful over time. Continual 

satisfaction demands continuing change. During the life of a system, its environment 

changes, user needs change, and developing concepts and technologies advance. 

Systems failing to adopt to these changes become increasingly less useful in the new 

environment [Lehm 85]. Evolution of software is also known as software maintenance.

The understanding and adaptation of systems to advanced technologies is the 

topic of this research. Reengineering is the process of examination, understanding, and 

altering a system with the intent to implement it in a new form to make it more 

maintainable. In this research, we present a methodology for reengineering procedural 

systems to object-oriented systems. The remainder of the chapter presents an overview 

of the maintenance problem, the objectives of this research, and finally a description of 

the organization of this dissertation.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2 Background

1.2.1 Maintenance

The life span of a system consists of specification, design, implementation and 

maintenance phases. The maintenance phase requires the greatest effort and resources. 

On an average, maintenance costs constitute 70-90% of the total system costs (Thom

84]. The American National Standards Institute defines software maintenance as the 

“modification of a software product after delivery to correct faults, to improve 

performance or other attributes, or to adopt the product to changed environments” [Chik 

90].

One reason for high maintenance costs is that the structure of the systems which 

have to be modified may not be obvious to the maintainer. As systems evolve, their 

structure degrades and the complexity of the structure increases, unless specific 

complexity control effort is applied [Lehm 85]. Complexity control actions are rarely 

carried out in the real world due to lack of time and/or cost considerations. Further, 

system structure is also corrupted when changes are made without regard to the overall 

architecture of the system. As changes are made, these changes introduce new system 

faults which then require more changes to correct them. Gradually the system 

approaches a limit where it is no longer cost-efficient or even technically motivating to 

continue the maintenance.

1.2.2 Program understanding

A system and its components need to be understood before changes can be 

made. Program understanding is the task of extracting information about a program’s

2
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behavior (what the program does and how it does it) from the source code. The 

understanding process occupies 50-90% of maintenance cost [Thom 84]. Program 

understanding is a conceptually complex process of making sense of a complex system. 

One reason for this complexity is lack of system documentation. Often changes are 

made only to the source code of the system because of time and high costs involved in 

updating the documentation, resulting in inconsistencies between the source code and its 

documentation. Due to inaccurate and/or incomplete documentation, the source code 

becomes the only dependable source of information for maintenance.

Maintenance costs are also governed by the approaches adopted for system 

development Systems developed using information hiding principles are better suited 

for maintenance [Booc 94]. If support from the software development methodology, 

documentation, and the structure of the system are absent maintenance becomes a 

technically challenging process.

13,3 Current status of legacy software systems

Many systems in use today have evolved for several years, with modification 

after modification layered upon the original implementation by several generations of 

programmers. These systems were developed using a procedural paradigm, which uses 

algorithmic decomposition methods and imperative languages such as C, for 

implementation.

Maintenance of software developed with a procedural paradigm presents many 

problems. In procedural programs, it is difficult to define well-delimited components 

and their relationships because often they are not visible. Algorithmic decomposition 

highlights the ordering of events, and each module in the system denotes a major step in

3
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the overall process. Further, imperative languages do not generally provide facilities for 

expressing system structure information.

Additionally, many of the modifications that have been made were not 

anticipated in the original design of these systems, resulting in global modifications to 

incorporate the changes. A global change distributes design information over the entire 

system, corrupting the existing system structure. It is advantageous to hide these 

modifications in one module and still achieve the same functionality. Furthermore, the 

development documentation of these systems is often out of date or nonexistent. The 

result is that understanding and maintaining these systems is difficult and time 

consuming.

1.2.4 Object-oriented paradigm

The object-oriented paradigm has entered the mainstream of computing and has 

matured over the past decade [Booc 94]. This paradigm has proven to be advantageous 

over the procedural paradigm in all phases of software development, from analysis and 

design to implementation and maintenance. The expressive power of object-based and 

object-oriented programming languages is one reason for their rise in popularity.

An object-oriented system is decomposed according to the key abstractions in 

the problem domain. It emphasizes the agents that either cause action or are the subjects 

upon which these operations act. It directly addresses the inherent complexity of the 

software by facilitating intelligent decisions regarding the separation of concerns and 

information hiding. Object-oriented decomposition has a number of advantages over 

algorithmic decomposition. It yields smaller systems through the reuse of common

4
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mechanisms [Booc 94]. Also, these systems are more resilient to change and thus evolve 

more easily over time.

The ability to comprehend different kinds of information at once is limited. The 

object-oriented concepts of abstraction, encapsulation, modularity and hierarchy, help 

overcome this limitation. An abstraction denotes the essential characteristics of an 

object that distinguish it from all other kinds of objects and thus provide crisply defined 

conceptual boundaries, relative to the perspective of the viewer [Booc 94]. 

Encapsulation is the technique of combining data and operations needed to process the 

data under one entity. Modularity is the property of a system that has been decomposed 

into a set of cohesive, loosely coupled modules. Hierarchy is the ordering of 

abstractions.

1.2.5 Reengineering

Software developers, both new system developers and system maintainers, are 

slowly moving to the object-oriented paradigm- Maintainers of procedural systems face 

many problems in the process of moving the systems. Technological advances have 

provided little help with the process.

When a procedural system needs to be migrated to an object-oriented 

architecture, two basic options are available. One option is to discard the old system and 

build a new one. The other option is to encapsulate or wrap the old system and then 

communicate with it via a standard application program interface. The former option is 

unlikely to happen due to cost considerations. In some cases, it is impractical. The latter 

option results in a system that will continue to have all the drawbacks of the old system. 

Current research is focusing on a third option, reengineering.

5
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The field of reengineering is growing rapidly in response to the need to support 

legacy system maintenance. Reengineering of procedural systems to object-oriented 

systems requires a radical restructuring of the systems. So far, this restructuring has 

been an impractical, highly risky, and costly undertaking because of the lack of a 

reliable and automated translation process [Wood 98].

We use the following reengineering model proposed by [Jaco 91] for this work:

Reengineering = Reverse engineering + A + Forward Engineering 

Reverse engineering is the process of analyzing a subject system to understand and 

represent the system at a higher level of abstraction. The “A” represents changes to be 

made to the system. Change can be in the functionality, in the implementation 

technique, or in the design of the system. Forward engineering is the re-implementation 

of the system.

13 Overview of the Research

13.1 Objective

The goal of this research is to define a reengineering methodology for 

transforming procedural systems into an object-oriented architecture. In particular, this 

research extracts a procedural design from an existing system (reverse engineering), 

makes changes to the design (A), and identifies and extracts objects in the procedural 

code for use in implementing the system with the object-oriented paradigm (forward 

engineering). The methodology is supported by a tool to assist the reverse engineering 

process. The tool is called ReArchitect.

6
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Reengineering reflects a design decision that is inherently subjective. Hence, it is 

unlikely that the reengineering can ever be fully automated. The assistance of the 

software engineer is crucial to any tool [Wood 98]. The tool should be able to help the 

engineer understand the program and the process, and also be able to incorporate the 

knowledge of the engineer into the process. In particular, the tool should be capable of 

program slicing (for understanding) and restructuring (for understanding program and 

improving the quality of results obtained), in addition to reengineering.

U 2  Reengineering process

We propose the reengineering methodology presented in figure 1.1. The 

reengineering process along with the roles of the ReArchitect and the software engineer 

are indicated in the figure. Four important steps are involved in the reengineering 

process.

i. Reverse engineering. The program code is analyzed statically. The design of the 

program is extracted and represented in the form of a graph known as a 

Statement Dependence Graph (StDG).

ii. Design change. The StDG is restructured, which results in identification of 

cohesive components in the program. The restructured graph is known as a 

Restructured StDG (VRG).

iii. Design optimization. The VRG is optimized for object identification.

iv. Object identification. A potential objects chart known as a State Reference graph 

(SRG) is built from the VRG and call graph. The code and the SRG are used for 

object identification and extraction from the code.

7
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StDG

Design
change

r  Reverse 
engineering

Software
Engineer RSGCode

ReAfchiti

Object 
identification jo O  code

f  Design 
optimization

SRG

Legend: > ^  Transformation process
^  ReArchitect interaction 

 ^  Engineer interaction

Figure 1.1. Reengineering process

Role of the software engineer. The software engineer develops new software specific 

knowledge with the help of the ReArchitect This knowledge is used in the 

reengineering process for further processing of the program and for obtaining optimal 

results.

8
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Role of the ReArchitect. ReArchitect helps in extraction of information, model 

creation, visualization and slicing for program understanding, and program restructuring 

transformations. It incorporates the input of the software engineer in the process. Each 

step in the process is automatic. The results of each step are presented to the software 

engineer for understanding and for feedback.

13 3  Implementation considerations

A prototype of the ReArchitect is implemented in Java. It has three key phases:

i. Extraction. Extraction and representation of the program dependences in the 

form of Statement Dependence Graph (StDG).

ii. Transformation. Transformation of the StDG to VRG.

iii. Application. Use of the VRG for finding slices of the program and for applying 

modifications to the program (maintenance activities).

1.4 Outline of the Dissertation

The dissertation is organized as follows:

Chapter 1 discusses the maintenance problem and the objectives of this research. 

The new reengineering process model is briefly introduced.

Chapter 2 presents the motivation for the research and reviews reengineering 

approaches available in the literature.

Chapter 3 discusses the issues in program analysis and representation, along 

with approaches available in the literature. The chapter summarizes the requirements for 

a program representation, and describes a new program representation, known as the

9
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Statement Dependence Graph (StDG). A representation of alias information and 

construction of the StDG are also presented in the chapter.

Chapter 4 describes techniques to restructure the StDG. The restructured StDG 

is known as the Restructured StDG (VRG). The VRG can be used for program slicing, 

program maintenance, and for reengineering.

Chapter S presents the application of the VRG to program slicing and program 

maintenance. Program slices are used to understand programs. A new slicing technique, 

known as modular slicing, is introduced in the chapter. Program restructuring is used for 

understanding and for improving the quality of reengineering processing. The chapter 

also describes how the VRG can be used for program maintenance.

Chapter 6 describes the reverse engineering process. The language independent 

format (LIF) is an intermediate representation for programs. The chapter describes a 

process for the translation of LIF to the StDG. The StDG and other design views of the 

program are represented graphically.

Chapter 7 discusses various approaches available for object identification and 

describes a new approach using the VRG. It also presents how the new design of the 

program is represented.

Chapter 8 describes a forward engineering process that involves identification 

and extraction of objects. Examples designed to demonstrate the process and a case 

study are also included.

Chapter 9 presents the conclusions and contributions of the dissertation. 

Implementation details of the ReArchitect are also described in the chapter.

10
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Chapter 2 

Motivation and Related Research

2.1 Motivation for the Research

Roughly 75 billion dollars were spent on maintenance in 1990 alone [Wood 98]. 

Reliable help to partially automate the maintenance activities or to reduce the 

complexity of the underlying software system could have a staggering economic impact 

Reengineering is the ultimate step in the maintenance process. Moreover, it is the only 

recourse available for migrating systems to different architectures or environments. 

Reengineering software is not normally effective unless some automated tool support 

can be deployed to support the process [Wood 98][Some 96].

Unfortunately software engineers have little or no tool support available to them 

[Wood 98]. Existing tools are limited to automatically extracting and analyzing program 

structure. They extract features such as relationships between functions or relationships 

between functions and variables. Unfortunately, structural information alone is not 

sufficient for performing meaningful operations on programs [Some 96]. The 

“semantic” or “conceptual” understanding required can only be provided through human 

assistance. Human interactions are crucial because of the technical complexities and the 

lack of validated methodologies for reengineering. Moreover, reengineering from a 

procedural paradigm to an object-oriented paradigm reflects a design decision that is 

inherently subjective, and thus human interaction is unavoidable [Siff 99]. For instance, 

static analysis of programs is one area where human interaction is known to be 

beneficial.

11
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Static analysis is the process of extracting semantic information about a program 

at compile time. Static analysis of programs is hard - hence several simplifying 

assumptions are made [Land 92]. The results thus obtained are approximate, therefore, 

input from the software engineer can improve the analysis. The input is also crucial in 

other stages of the reengineering process. As a result, complete automation of the 

reengineering process is not feasible [Gall 95][Snee 98]. A reengineering tool should be 

capable of not only helping the software engineer but also incorporating the engineer’s 

knowledge into the reengineering process.

For an engineer to provide help, understanding of the program is crucial. One 

way to help the human better understand the code is by simplifying the program 

structure. Ongoing maintenance of software systems tends to destroy program structure, 

complicating efforts to gain a deeper understanding of the code [Some 96]. When code 

is restructured, it is often easier to understand. Program slicing is known to help in 

understanding code [Weis 84][Gall 91].

Other reasons for reengineering procedural systems to object-oriented 

architectures are:

• Object-oriented development methods can be used to gradually modernize an 

old system [Newc 95].

•  There is a need to integrate object-oriented programming into an existing system 

that is not implemented using modem programming techniques. A technique 

such as information hiding, for example, can help reduce the complexity of the 

system.

12
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•  Object-oriented programming in general, and inheritance in particular makes it 

possible to define and use modules that are functionally incomplete. It then 

allows extension of the modules without upsetting the operation of other 

modules or their clients. This feature makes the system more flexible, more 

easily extensible, and simpler to maintain.

• Finding objects within procedural programs has become a promising approach to 

reduce the effort in program understanding and maintenance cost Object 

identification constitutes a basis for a complete re-architecting of the system 

from the conventional procedural program to an object-oriented program.

• Identification of object like features in a program, including the support for 

testing and debugging, helps avoid the degradation of the original design during 

maintenance and facilitates reuse [Liva 92].

• Even though it is generally unrealistic to replace an old system by a completely 

new system, there is a need for methods to gradually replace older system parts.

2J2 Related Research

The reverse engineering of a program involves program understanding and design 

abstraction. Program understanding is a process of relating program artifacts to the 

conceptual model of the human observer. [Bigg 94] discusses issues that relate program 

artifacts to domain knowledge. A generic reverse engineering tool for program 

understanding is described in [Jarz 95]. [Chen 90][Plat 91] describe a means for C 

program representation and a toolkit for extracting different views of the program. A 

process of automatically exacting design knowledge from the source code for program

13
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understanding is presented in [Quil 94] [S nee 95]. [Snee 95] proposes seven types of 

objects such as user interface objects, information objects, and FILE objects. Programs 

are searched for these specific objects and are used in new object-oriented software 

development

One purpose of reengineering is to extract system parts for reuse. Reuse may be 

at the level of artifacts, sub-system, or the entire system. Program artifacts are in the 

form of components, abstract data types (ADT), or objects. Various researchers use 

terms such as functions [Lanu 93], segments [Ning 94], slices [Weis 84], plans [John

85], and concepts [Quil 94] to refer to program components.

A practical approach to components recovery is described in [Ning 94] [Lanu 

93]. A reengineering process for extracting ADTs is presented in [Conf 93]. Automatic 

extraction of objects from existing code may result in spurious or misleading groupings. 

To prevent the undesirable groupings, [Gall 95] discusses a mapping process from 

extracted objects to domain knowledge. An interactive approach to recovering ADTs 

and object instances is given in [Yeh 95]. Strategies for gradually transforming a system 

composed of procedural programs to object-oriented system are described in [Newc

95][Jaco 91]. Reengineering of legacy systems using Fusion/RE and Draco-puc 

transformation system is presented in [Pent 98]. Reengineering techniques have 

significant market value for vendors, thus much of the literature provides more details 

about the results of applying these techniques than to the techniques themselves.

To date, research in object identification has been focused mainly on developing 

techniques for extracting objects from data that has already been aggregated in 

programmer-defined data structures [Ruga 95]. Concept analysis is applied in [Siff 99]
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[Lind 97][Sahr 97] to identify potential modules. The concept analysis approach 

generates a variety of possible partitions from which a user can select an appropriate 

decomposition. The optimality of this approach depends on how well the attributes of 

functions are formulated for the concept analysis. This method requires that the user 

have a good knowledge of the system, as the process requires manual selection of 

appropriate attributes for the system under consideration and a suitable partition. 

Moreover, the number of partitions obtained is too large for manual inspection (one of 

the examples given in the paper has over 4000 partitions), and the process provides little 

help to the software engineer.

A clustering technique is used in [Wigg 97][Yeh 95][Canf 96][Liu 90][Dunn 93] 

to identify objects. Cohesion-based object identification approaches are presented in 

[Ache 95][Chu 92]. Gall and Klosch [Gall 93] generate data flow diagrams (DFDs) 

from the source code and use the data structures used in the data stores as potential 

object-candidates. Other user-defined data structures that are either declared in or 

related to the data structures that are already identified as potential object-candidates are 

also considered as potential object-candidates. This approach is suitable only to 

programs with user-defined data structures.

hi most of the approaches mentioned above, two types of undesired links are 

identified among sub-graphs - coincidental and spurious connections. Coincidental 

connections are due to routines that implement more than one function, each function 

logically belonging to a different object Spurious connections are related to routines 

that access more than one data structure. [Canf 96] proposes slicing to separate routines 

contributing to coincidental connections, and routines that introduce spurious
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connections are discarded from the graph. Several techniques do not mention how to 

identify the spurious or coincidental connections and others specify that it is the role of 

the software engineer [Liu 90] [Dunn 93].

[Canf 96] presents a statistical approach to identify these unwanted connections. 

[Canf 96] computes an index value for each procedure in the system that measures the 

internal connectivity of the sub-graph identified through the procedure. If the index 

value of a procedure is less than a step value, the connections due to the procedure are 

assumed to be either spurious or coincidental; these procedures are either discarded or 

eliminated with the help of a human expert This approach seems to work fine for 

certain type of systems with a limited number of unwanted connections. However, 

computation of the step value is subjective and also changes from iteration to iteration 

for the same system.

Non-code sources, such as documentation and manuals, are also used to find 

candidate variables for objects [Jaco 91][Gal 95]. This set of variables is further 

extended based on their relationship with other variables in the system. Processing 

elements that access these variables are extracted and grouped along with the variables 

to form object instances. These object instances are normalized to correct the 

inaccuracies, typically through human interaction, and their classes are abstracted by 

merging object instances.

The approach we use in this research avoids undesired links by separating the 

uses from definitions and by replacing direct uses of state variables by selector 

operations. Automatic identification [Canf 96] [Siff 99] of these connections invariably 

requires human participation. Moreover, the results thus obtained through a laborious
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process are not always reliable. We solve this problem by first separating a procedure 

which defines several state variables, which reduces the number of unwanted 

connections. The remaining unwanted connections are taken care of with the help of the 

software engineer by providing the engineer with supporting information. The 

engineer’s task is simplified by the definition of heuristics and general guidelines.

Several of the research initiatives discussed above represent the system as a 

graph, with functions, global variables, or function attributes as nodes, and references by 

the procedures to the variables as edges. Each isolated sub-graph contained in the graph 

is a candidate for an object The approach we present follows a similar approach, but it 

extends the graph nodes by including key local variables and program slices.
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Chapter 3

Static Analysis of Source Code

3.1 Introduction

Software is difficult and costly to modify. Automating tiresome mechanical 

tasks, such as program restructuring, reduce the burden of software maintenance. 

Several restructuring tools have been proposed, all centered on the concept of meaning- 

preserving transformations that are similar in spirit to compiler optimizations. Like 

optimizing compilers, these tools rely on static analysis to reason about the correctness 

of program changes.

Static analysis of programs is indispensable to any software tool, environment, 

or system that requires compile-time information about the semantics of programs. 

Static analysis has been used successfully in program maintenance [Gall 91], program 

integration [Horw 8 8 ], transformation [Opdy 92] [Gris 95], reverse engineering [Erra

96], and slicing [Jack 94]. Over time, static analysis techniques have been improved. 

Still, they can only conservatively approximate the control and data flow dependences 

between different program components. Fortunately, these approximate dependences are 

generally sufficient for the purpose of program understanding and restructuring; 

however, the quality of results depends on the quality of the analysis.

Static analysis is also termed dependence analysis or data flow analysis. In 

section 3.2, we further elaborate on this concept Previous approaches to static analysis 

are strongly related to the concept of an intermediate program representation. These 

representations are the data structures of choice for many types of tools, as their use in
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static analysis is well understood. Various types of representations used in the literature 

are discussed in section 3.3. Section 3.4 discusses meaning preserving transformations. 

This research defines an analysis technique based on a new program representation that 

can be used in a wide variety of activities including program slicing, maintenance, and 

transformation. We present this representation, known as Statement Dependence Graph 

(StDG) in section 3.5 and provide a brief summary of this chapter in section 3.6.

3.2 Dependence Analysis

A dependence between two program statements is a conflict that prevents the 

statements from executing concurrently. The use of dependence analysis originated in 

compiler design for the purposes of optimization and parallelization. The same 

principles are now being applied to programs for the purposes of debugging, 

maintenance, and restructuring. Dependences among program statements can be broadly 

categorized as data dependences, control dependences, and flow dependences.

Data dependences

A data dependence between two program statements indicates that changing the 

statement’s order of execution may change the program’s computation. Consider the 

following sequence of statements:

SI: A = B + C
S2: D = A -E

The value of the variable A is defined in SI and used in S2. Clearly reversing the order 

of execution of SI and 52 changes the semantic nature of the code. The data dependence 

that exists between statements SI and 52 is known as a Definition-Use (def-use)
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dependence. Another type of dependence is a Use-Dejmition [Horw 8 8 ] (use-def)

dependence, as illustrated in the following sequence of statements:

SI: D = F + G
S2: F = H - I

The value of variable F  is used in SI and defined in S2. Again, reversing the order of

execution of SI and 52 changes the semantic nature of the code fragment. This type of

dependence is also known as anti-dependence. Yet another type of data dependence is

Defimtion-Order [Horw 8 8 ] (def-order) dependence, as illustrated using the following

statements.

SI: if (J) K = 0;
S2: if (L) K = 1;
S3: M = K;

The value of the variable M in S3 clearly depends on the order of execution of

statements SI and 52. Data dependences are typically viewed as a dependence graph.

Where the nodes represent statements and the directed edges between nodes represent

data dependences.

Control dependences

A control dependence [Horw 8 8 ][Liva 92] from statement 5,- to statement 5y-

exists when statement Sj should be executed only if statement 5,- produces a certain

value. For example, consider the following sequence of statements:

SI: if (N)
S2: P = Q + R;

Execution of 52 depends on the value of predicate N. In the dependence graph, directed

edges from the statement containing the predicate to the statements depending on the

predicate represent control dependences.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Flow Dependences

A flow dependence exists between statements 5, and Sj, if S,- must be executed 

before Sj can be executed. The order of execution of output statements, for instance, is 

flow dependent if the order of the output is important Def-order and use-def 

dependences can be considered as flow dependences.

3.2.1 Issues in static analysis

Granularity

Dependences are analyzed at the expression level [Jack 94][Ems 94][Kinl 94] or 

at the statement level [Horw 90] [Weis 84]. Dependences exists among the variables 

that are used or defined in a program statement and not among the statements 

themselves. In a single statement more than one variable may be defined or used. A 

course-grained analyses, which considers dependences at the statement level, provides 

no indication among which variables the dependence exists. A fine-grained analysis 

considers the dependences among the variables (or expressions). The loss of 

information in coarse-grained analyses fails to answer important questions about the 

dependences.

Pointers, aliasing and arrays

Statically finding aliases is a fundamental problem of static analysis. An alias 

occurs at some point during execution of a program when two or more names exist for 

the same storage location. This situation can occur due to procedure calls, pointer 

variables, and array references. For example, the C statement “p = <£v” creates an alias 

between *p and v. Aliases are associated with program points, indicating not only that 

*p and v refer to the same location during execution but also the location in the program
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at which they refer to the same location. Static analysis of languages with pointers, 

dynamic storage, and recursive data structures is hard (probably NP complete [Land 

92]). Hence, the static-analysis community has resorted to simplifying assumptions and 

approximate solutions, resulting in less precise data flow information which can 

adversely affect the effectiveness of analysis that depends on this information.

Each element of an array can be considered as an independent variable, but 

determining the subscript of the array statically is nontrivial. Knowledge of when an 

array is completely defined is helpful, but this knowledge is not always easy to obtain; 

hence, the arrays are usually considered as a scalar unit.

Interprocedural analysis

The analysis of the effects of a call is known as interprocedural analysis. 

Analyzing a program or a procedure (function) determines the sets of variables used and 

defined by the procedure. Unless these sets can be determined, worst case assumptions 

must be made. For example, if the procedure includes a call to another procedure, in the 

absence of information about the called procedure it must be assumed that all variables 

visible to the called procedure will be used and defined. This assumption, while safe, 

prevents many structural manipulations. Better results occur if the effects of a call are 

more carefully analyzed.

Programming language issues

Dependences depend on how a language represents computation and the 

language constructs used to control the computation. We chose ANSI C to demonstrate 

the concepts presented in this research. In some ways, C is an ideal choice as it presents
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most of the difficulties inherent in existing imperative languages. C is also widely used 

in industry and academia.

Constituents in a C program can be broadly identified as expressions and 

statements. Statements may contain expressions; expressions cannot contain statements. 

Braces, { and }, are used to group statements into a block. A semicolon is a statement 

terminator, hi this research, the following symbols are also considered as statement 

terminators: ‘{ \ ‘}’ (an exception is a do . . . w h ile  loop,

‘}w h ile  (e x p re s s io n )  ; ’ is placed in one line) , and ‘)’, only if ‘)’ is not followed 

by a ‘{ \ One statement per line is allowed in programs. Statements express most of the 

control flow semantics of C. Expressions are syntactic constructs that actually represent 

program computation, but may also contain embedded control flow. Control in a C 

program can be thought of as moving from expression to expression [Kern 90]. C, like 

most languages, does not specify the order in which the operands of an operator are 

evaluated (including function arguments). Function calls, nested assignment statements, 

increment operators and decrement operators cause side effects, hi expressions 

involving side effects, there can be subtle dependencies on the order in which variables 

taking part in the expressions are updated. C allows local jumps (using c o n tin u e  and 

b reak ) within a block and non-local jumps (using go to ), adding to complexity of the 

analysis. The support of pointers and aliases poses additional challenges during analysis. 

3 ^ 2  Approaches to static analysis

Exhaustive approach

Program analysis approaches can be classified as exhaustive and demand-driven. 

An exhaustive approach analyzes all the intra- and interprocedural variable dependences
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and stores them in persistent data structures. That is, exhaustive approaches represent a 

portion of the program (often a single function) in its entirety. All facts of the program 

appear explicitly in these data structures, usually as an edge between two nodes. [Lyle 

95] [Gris 95][Benn 92].

Demand-driven approach

An alternative approach is demand-driven retrieval of data flow information. 

This approach has been applied to the construction of complete program representations 

in a program slicer using abstract syntax trees (AST) and control flow graph (CFG) 

[Atiti 96]. An implementation of the unified interprocedural graph (UIG) in a 

maintenance environment incrementally constructs sub-graphs for specified procedures 

when needed for a particular tool [Harr 93]. A framework for deriving demand-driven 

algorithms for interprocedural data flow analysis of imperative programs is given in 

[Dues 95]. A demand for data flow information is modeled as a set of data flow queries, 

and the responses to these queries are found through a partial reversal of the respective 

data flow analysis. Cstructure, a tool for meaning preserving transformations, performs 

an on demand control flow analysis on the AST representation of C programs, using a 

technique known as virtual control flow [Morg 97]. The analysis approach we use in 

this work is a hybrid one. First, we use the exhaustive approach to build a graph 

representation of the program. Then, the graph is restructured to group the nodes in the 

graph. Dependences within the grouped nodes are discarded. These discarded internal 

dependences among grouped statements are obtained on demand.
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3 3  Program Representation

The choice of program representation plays a critical role in the analysis and 

restructuring of the source code. Any suitable representation must be a data structure 

that can be rapidly traversed to determine the dependence information. Program 

representations can be broadly divided into two categories [Morg 97]: multiple 

representations and unified representations. A multiple representation, as the name 

indicates, uses more than one representation for a program. Unified representations 

combine several representations into a single, all-purpose representation.

33.1 Multiple representations

Multiple representations can be further divided into discarding type and non­

discarding type. Non-discard types use a different representation for presenting each 

view of the code. Discard types use a different representation in each stage of the 

translation process from source code to the target program.

Non-discard type

The process of program comprehension is often aided by providing the user with 

different views of the code. Some tools use a different program representation for each 

view of the code [Gris 95][Plat 91][Unra 95][Choi 94]. [Gris 95] uses abstract syntax 

trees (AST), control flow graph (CFG), and program dependency graph (PDG). [Plat 91] 

uses abstract syntax graph (ASG), cross reference graph (CRG), CFG, and data flow 

graph (DFG). [Choi 94] uses CFG and a static single assignment (SSA) form for 

program analysis. The SSA form ensures that each use of a variable is reached by
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exactly one definition. [Benn 95] uses a language independent format (LIF) and PDG 

for slicing programs.

Restructuring tools have been built using multiple internal program 

representations. Star diagram [Gris 95] uses three representations, the AST, CFG, and 

PDG, together with two-way mappings to interrelate them. The mappings become 

problematic when the program is being modified, as all representations and the 

mappings between them must be updated. Although they provide comprehensive 

semantic information, multiple program representations in a software manipulation tool 

pose a number of serious drawbacks. First, each individual representation must be 

constructed and stored, hi addition, these representations share some redundant 

information. Second, some types of mapping functions are required to relate items in 

one representation to items in another. The mappings also consume memory resources. 

Third, if the tool manipulates the program, some technique is needed to keep all the 

representations consistent 

Discard type

Discard type representations are built in stages. At each stage, a different 

representation is built from the previous representation and the source program. 

However, the steady abstraction of the program from one representation to the next 

involves a loss of some of the information contained in the previous representations. A 

tool may need information readily available in a final representation, but it must relate 

this information to the appropriate location in the source. A tool that does not alter the 

program could maintain a one-way mapping back to some prior representation. For 

example, the slicer in [Atki 96] discards the AST after constructing the more useful
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CFG. Each CFG node records the node number from the associated location in the 

original AST. hi order to display a slice once it has been computed, an AST identical to 

the original is recreated on demand horn the source code, complete with matching node 

numbers. Another way to achieve this result is to update the mapping to the source from 

a prior representation to the current representation, similar to a compiler that saves 

source file and line number information for debugging purposes. Some of the most 

commonly used representations are:

• Abstract syntax trees (AST), or parse trees [Aho 8 6 ] - This representation, 

which is closest to source code, may be easily annotated to allow regeneration 

of the original source [Morg 97]. Each node in the AST usually reflects a 

production in the context free grammar for the programming language in which 

the program is written.

• Control flow graph (CFG) [Aho 8 6 ] - CFGs form more abstract representation 

than an AST. The CFG consists of nodes representing the computations in a 

program connected by edges showing the flow of control from node to node. It 

can be constructed directly by parsing the source or from an AST. This 

representation is used for solving many data flow analysis problems.

• Data flow graphs (DFG) [Ferr 87] - An important component of compilation is 

data-flow analysis that computes information about the potential flow of data 

throughout a program. Intra-procedural data-flow analysis considers the flow of 

data within a procedure, while assuming some approximation about definitions 

and uses of reference parameters and global variables at call sites. 

Interprocedural data-flow analysis computes information about the flow of data
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across procedure boundaries caused by reference parameters and global 

variables.

• Cross reference graphs (CRGs) [Plat 91] - The CRG provides information on 

the definition and uses of objects (i.e. variables, types, functions, and macros). 

CRGs can he used to retrieve information such as a list of all the variables and 

functions used by a function or all users of a given program object

• Program dependence graph (PDG) [Ferr 87] -  The most abstract of all the 

representations, the PDG combines data flow and control-flow information into 

a single structure that is useful for a variety of program transformations and 

optimizations. The PDG is a labeled, directed, multi-graph where each node 

represents a program construct such as declarations, assignment statements, and 

control predicates. Edges of the PDG represent data values passed from one 

expression to another and control conditions that influence the order of 

execution. The PDG is useful for compiler optimizations [Ferr 87], program 

slicing [Otte 84], and transformation [Bow 95].

Other representations exists which use these representations, either modified or 

in combination. The inter-procedural flow graph (IFG) [Harr 94] is one example. The 

dependence flow graph, a variant of PDG used in [Ping 90] for analyzing program 

dependencies, is another example.

3.3.2 Unified representations

Some representations combine several representations into a single, all-purpose 

graph. This approach overcomes some of the mapping and consistency concerns that 

arise with the use of multiple representations; however, a single all-purpose
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representation may fail to capture all aspects of a program. Many different 

representations, including the PDG, have been proposed. These representations include:

• System dependence graph (SDG) [Horw 90] - the SDG is an extension to PDG 

that is limited to a single procedure. The SDG is a super graph of the PDG, 

which captures the calling context of the called procedures.

• Unified interprocedural graph (UIG) [Harr 91] - The UIG combines SDG and 

important features of other program representations, while adding new 

information, to provide an integrated representation. The UIG combines 

relationships found in a call graph, a program summary graph, an 

interprocedural flow graph, and a system dependence graph. Data flow 

dependencies are explicitly represented. As a result the UIG can be quite large 

and costly to compute [Morg 97].

• Combined C graph (CCG) [Kinl 94] - The CCG is a fine-grained representation 

for programs written in the C language. The CCG is used for constructing 

program slices, call graph, flow-sensitive data flow, def-use and control 

dependence views. The CCG is an extension of the UIG that attempts to 

overcome some of the UIG’s limitations as applied to C programs. The CCG 

allows the representation of embedded side effects, control flows, and value- 

retuming functions with value parameters. The effects of pointer parameters are 

also modeled.

• Value dependence graph (VDG) [Weis 94] - The VDG is a sparse, parallel, 

functional, data flow-like program representation. It is composed of nodes
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which represent computation and arcs which carry values between 

computations. The VDG, unlike SDG, is a very fine-grained representation.

• Jackson model [Jack 94] - Like the VDG, this model also addresses the 

coarseness of the PDG. In this model each statement is represented as a site and 

variables as ports within a site. Variable dependences within a statement are 

represented as internal edges; and data and control dependences are represented 

as external edges.

A single representation eliminates redundant information and reduces access 

times to different representations because an algorithm need only access one 

representation. It also helps comprehension by incorporating all program relationships 

into one representation [Kinl 94]. Single, all-inclusive representations may create 

scalability problems. Since none of these data structures explicitly contains all the 

information required by restructuring transformations, the question of how to obtain the 

remaining information must still be answered. The StDG representation we present in 

this work is a fine-grained, discard type, multiple representation. StDG uses a low-level 

intermediate representation known as language independent format (LIF). The LIF is 

discarded once the StDG is derived.

3.4 Program Restructuring Transformations

Transformations are the structural (syntactic constructs) changes made to a 

program to change its appearance, either to improve its maintainability or its speed. 

Meaning-preserving transformations are the transformations carried out in a controlled 

environment that allow only those transformations that do not affect the semantics of the
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program. A major drawback of meaning-preserving transformations is that every step of 

the transformation process must ensure that the program semantics remains constant. In 

this research, we focus on source to source transformations only.

A meaning-preserving transformation has two parts: checks and modifications. 

Checks determine the legality of the modifications. A transformation check can be 

divided into four components [Morg 97]: syntactic, scoping, control, and data 

dependence checks. Syntactic checks ensure that the grammar of the programming 

language in which the program is written is correct Scoping checks make sure that the 

variables are within their declared scopes. The control checks make sure that the 

dependence of a statement on a test expression is not disturbed. Finally, the data flow 

dependences are ensured through data dependence checks.

Examples of meaning-preserving transformations are [Opdy 92]:

•  folding and unfolding. Folding replaces a code segment with a function call; 

unfolding expands a function call.

• abstraction. Abstraction substitutes a variable for every instance of an expression 

and defines the variable to be the value of the expression.

• splitting type. This transformation splits types into subtypes.

•  bubble up. This transformation moves a function out of an enclosing module and 

expands its scope.

To date, transformations have been carried out using a catalog-based approach 

[Benn 92][Morg 97][Opdy 92]. The catalog includes a large set of transformations 

covering all aspects of the program development The Maintainer’s Assistant lists over 

500 transformations [Benn 92]. This approach is useful for interactive tools where the
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user selects a segment of the code and a transformation from the catalog. The tool either 

transforms the code segment, if legal, or fails otherwise. Catalogs are prepared for a 

particular domain; thus, when the domain changes it becomes less suitable. It is also 

time consuming to find the best transformation from a large catalog.

This research defines a cohesion-based transformation approach that can be used 

in non-interactive environments. This approach uses the dependence information in the 

StDG to ensure that a given transformation does not change the output behavior of the 

program. These transformations either check to see that changing the source code does 

not affect the StDG’s form or change the StDG in a manner that guarantees semantic 

preservation.

3.5 Statement Dependence Graph

In this section, we present a new program representation. Previous works on the 

program representations were aimed at addressing the needs of the program slicing 

community. Program slicing is a technique for visualizing dependences and restricting 

attention to just the components of a program relevant to evaluation of certain 

expressions. The representation used in program slicing is not subjected to modification, 

and the communications between the representation and the program is straightforward. 

However, the representations used for restructuring transformations need to change 

along with the program, and the mapping between the representations and the program 

must also be updated. We consider the following criteria as important for 

representations used in program transformations:
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•  The representation should be simple to construct and use. It should be like a 

PDG based representation where the program is represented as a graph and 

dependences are analyzed through graph traversal [Horw 90].

•  The representation should be fine-grained; it should indicate the dependences 

among the variables that are defined and variables that are used in the 

statements [Lyle 95][Jack 94].

•  It should allow user input Static analysis can only specify dependences 

conservatively [Opdy 92]. The dependences can be more accurately specified 

with the help of a maintainer. Therefore, the model should be user 

understandable and easily modifiable.

•  It should allow statement level manipulation. A vast majority of the statements 

in programs are indivisible. A statement as a unit in the model can have a 

simple correspondence between the model and the program. All widely used 

models use many nodes to represent a single statement. Hence, a reference to a 

statement requires identification of all the nodes and edges that represent a 

statement, resulting in inefficient and complex algorithms.

•  All parts of the program should be represented. Usually, the statements in which 

variables are either used or defined have a representation in the model. Other 

statements (e.g., library routines that control the environment) can be ignored in 

dependence analysis. But, the effect of these statements cannot be ignored in 

maintenance activities. Similarly, syntactic constructs that do not use any 

variables have no place in dependence analysis models. A change can be
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contemplated and carried out at the model level if it includes all parts of a 

program.

• A group of statements should have a modular representation. This group can be 

a slice (defined later) or a procedure. Modularly represented slices or 

procedures can be analyzed and modified independent of the rest of the 

program.

All PDG based models satisfy the first criterion. All fine-grained models meet the 

second criterion. The NDM [Jack 94] satisfies the first two criteria and part of the final 

criterion (modular representation for a procedure). The representation model developed 

in this research, StDG, is a fine-grained, PDG based dependence model that satisfies all 

six criteria.

3.5.1 Terminology

In this section, we define terms used to express the semantics of the StDG.

Site. A site represents a statement in the dependence graph. The site is labeled with the 

statement number it represents. The site representation concept is taken from 

[Jack 94].

Port A port represents a variable. A use port represents a variable used and a defport a 

variable defined in a statement The combination of a variable name and the 

statement number in which it is used (or defined) is used as a port label. Use 

ports are placed at the top in a site and def ports at the bottom of a site in the 

dependence graph. In addition to the data variable ports, t ,  <p, X, Tj, are special 

ports used in the graph. The x and q> ports are used as structure variables, and the
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X and T) ports are used as temporary variables (the need for these variable is 

explained in section 3 .5 .2 ).

Edge. Ports are connected by edges. An edge represents a dependence among the 

variables; the dependence may be a data dependence, control dependence, or 

flow dependence. An edge has a source port and a sink port as well as a source 

site and a sink site.

Reaching defs. A data variable propagates from its definition sites (defined in section 

3.2) to the sites where it is used. Reaching defs at a site are the variables used at 

the site that are defined at other sites. A variable definition reaches a site in three 

ways; the site is within the scope of the variable’s declaration, the variable is 

global, or the variable is a parameter in a procedure call.

Exposed defs. Exposed defs at a site are the data variables defined at this site that are 

used at other sites. A variable definition may be exposed to other sites in four 

ways: the sites are within the same scope, the variable is global, the variable is a 

parameter passed by reference, or the variable is returned from a function.

Summary-site. A summary site is a site in which several statements are represented. 

Like other sites, the summary sites use ports are reaching defs, and the def ports 

are the exposed defs. Dependences within these statements are summarized and 

are indicated as internal edges among the use and def ports. The site label for the 

summary site is the smallest statement number among the statements it 

represents.

Flnal-use variable. Variable used in statements like output statements and in some 

function call statements are termed final-use. Statements using final-use
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variables are sometimes excluded from certain kinds of operations [Gall 94]; the 

effects of the use of these variables needs to be evaluated. The effects of a final- 

use variable are analyzed using a temporary site known as final-use site.

Enter site. An enter site is one of two special sites used for each function definition in 

the dependence graph. It is used to model the calling context of a function call 

by representing the context before the call. Since only the exposed defs in a 

calling function reach a called function, the enter site has only the def ports.

Exit site. The exit site is the other special site used in a function representation. It 

represents the context after the call, thus it has only the use ports.

^.-Statement. A A-statement defines more than one variable. For example, a  = b++;, 

is a C statement with two variable definitions a and b.

(p-Statement A statement that neither uses nor defines a data variable is a <p-statemenL 

These ststements include certain library routines (e.g. p r i n t f  ("  \ n * ) ; ,  

e x i t  () ;), and language constructs (e.g. c o n tin u e ;, braces, etc.).

Kill def. A kill def assigns a new value to a variable, replacing its previous value. In 

other words, the reaching defs of a variable are redefined.

Preserve def. A preserve def redefines a variable conditionally or uses the previous 

value to assign a new value.

Block. Iterative, selection, and function definition statements define blocks. These 

statements are called blockheads. Statements within a block are block members. 

Block members and a blockhead constitute a block.
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3.5.2 Semantics of StDG

A dependence relates a variable at one program point to a variable at another. 

Each statement in the program has two program points, one before and one after the 

statement This information can be easily captured by defining a single site for each 

statement and separating variable uses and definitions in the statement [Jack 94]. 

Variables include the special symbols while sites include the entry and exit sites.

Variables = ProgramVariables u  {t, A., T|, <{>}
Var £  {Vj | v e  Variables a  j 6  ProgramStatements}
Site = ProgramStatements u  {enter, exit}

A program point is a triple consisting of a variable, a site, and type; where type 

indicates whether the variable is used or defined.

Port s  ProgramPoint
ProgramPoint = Var X Site X Type
Type = Use | Definition

A dependence is an edge from one program point to the other. There are two 

types of edges: internal and external. An internal edge (IntemalEdge) is an edge from a 

program point of use type to a program point of definition type. An external edge 

(ExternalEdge) is an edge from a program point of definition type to a program point of 

use type. An external edge may be a data edge (DataEdge), control edge (ControlEdge), 

or a flow edge (FlowEdge) representing data dependence, control dependence, and flow 

dependence, respectively. These concepts are defined formally as:

Edge: ProgramPoint«-> ProgramPoint

IntemalEdge c  {((v,, si, Use), (wk, sj, Definition)) |
Vj, wke Var a sj e  Site }
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ExtemalEdge c  {((Vj, si, Definition), (wk, S2, Use)) |
Vj, wkE Var a  si, S2  e  Site }

DataEdge c  {((vj, si, Definition), (Vk, S2 , Use)) | v e  ProgramVariables a  

j, k e ProgramStatements a  si, S2 e  Site }

ControlEdge £  {((^, Si, Definition), (Xj, s2, Use)) | 
j  e  ProgramStatements a  s i ,  s2 e Site }

FIowEdge c  {((<fe. Si, Definition), (Xk, S2 , Use)) | 
j, k e ProgramStatements a  sj, S2 e Site }

Figure 3.1 shows a program and its statement dependence graph. The program 

counts the number of characters and words in the input stream (please note that the 

program is written in its current form to facilitate the explanation of the semantics of the 

StDG). The program has two functions: m ain () and w ordC ount ( ) . Each statement 

(or a line of code) in the program is given a statement number (Programstatement) and 

is represented by a box (Site) in the graph. Each box has ports (ProgramPoint) at the top 

and bottom. The top ports represent the variables used and the bottom ports the 

variables defined in a statement Representative ports from Figure 3.1(b) are:

Def port: (nc6 , 6, Definition) e Port
Use port: (nc6 , 6 , Use) e  Port

Ports are connected by directed edges which connect a use port to a def port Edges 

connecting variable ports represent the data dependence (e.g. in Figure 3.1(b), (c^cz) is 

a data dependence edge). That is,

((C4 , 4, Definition)(c7 , 7, Use)) e  DataEdge

A blockhead defines a temporary variable r  (which can be viewed as the result 

of a conditional test); it is represented in graph as a rdef port with rand the statement
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1 intnw, nc;
2 void wordCount(mt inword) {
3 intc;
4 c = getcfaar 0;
5 while( c != EOF) {
6 nc = nc + 1;
7 if ( c =  ‘ *|jc =  *\n’

8 inword = 0;
9 else if ( inword =  0 ) {
10 inword =1;
11 nw = nw+l;
12 }
13 c = getchar 0;
14 }
15 }

16 mainO {
17 int inw;
18 inw = nc = nw = 0;
19 wordCount(inw);
20 printf (*̂ n”) ;
21 printf (“ %d %d\n”,nc,nw);
22 }

5
enter
inwordin words

x7 [inword^

mwordio

f  ■ —  T -----
1 2

<Pl2 ----^

(a) (b)

(c)

'  nw18 mwig nctg

t nw19 inwia nct9

Figure 3.1. (a) Sample C program
(b) The StDG of function wordCountO
(c) The StDG of function mainQ
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number of the blockhead as its label. Block members use the r  defined by their 

blockhead, with the same label as the blockhead, because the conditional test is the 

same for all members of a block. In Figure 3.1(b), site 5 defines rj, which is used by its 

member sites: 6 ,7 , 13, and 14. A function depends on a call statement, so the function 

name site has a x-use port with no (unknown) label number. Therefore, all the sites in 

the dependence graph

have a x-use port The x-def port of the blockhead is connected to x-use ports of 

its members with edges. These edges indicate the control dependence of block members 

on the blockhead. The edge (Ts, Ts) in Figure 3.1(c) is an instance of control dependence. 

That is,

((ts, 5, Definition), (X5 , 6 , use)) e  ControlEdge 

The dependence of <p-statements among themselves or the dependence of other 

statements on <p-statements is indicated as flow dependence. User help may be needed to 

identify this dependence. A <p-def port is used in the q>-statement sites for this purpose; 

the dependence is indicated as an edge from the <p-port to the x-use port of the statement 

that depends on <p-statement The edge (qha, *16) in Figure 3.1(c) is an instance of flow 

dependence. That is,

((<|>2o, 20, Definition), (Xi6, 21, Use)) e  FlowEdge

A def port rj indicates the presence of final use variables in a site. An edge from 

the variable port to a T] port indicates that the variable is a final use variable (e.g. 

variable nwz2. of site 22 in Figure 3.1(c)). A X-use port and the edges from the X-port to
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the variables defined in a X-statement represent a X-statement in the graph. Site 19 in 

Figure 3.1(c) is a X-statement

Three variables are defined in m ain (): nw, nc (global), and inword 

(parameter), reach w ordC ount () . Values of these three variables are used in 

wordCount() which is represented in the graph using a enter site. Values of two 

variables defined in w ordC ount (): nw, nc (global) reach back to main, which is 

indicated using a exit site in w ordC ount () (Figure 3.1(b)). The dependences of the 

variables in the exit site on the variables in the enter site of a function can be 

summarized into a summary site and used in place of a function call, as in site 2 0  of 

Figure 3.1(c).

Construction of StDG

Each statement in the program is given a statement number and is represented by 

a site labeled with the statement number in the graph. Each statement has a set of uses, 

uses(i), and a set of definitions, defs(i). Consider, for instance, a statement i:

i :  a  = b  + c ;
Uses(i) = (t*, Ci.Tx), and
Defs(i) = (a0 where, a, b, and c are variables. The control variable is % and the 

blockhead statement number of which i is a member is x. The site representing 

statement i has four ports: two def ports (a, and ^) and two use ports (£, and c,). That is,

Port(i) = {(a», i, Definition), (bi, i, Use), fo, i, Use), (tx, i, Use)}

Internal edges in a site are the summarized dependences between the variables it 

defines and the variables it uses. These edges are used as the specification of the site. 

The specification for a primitive statement follows from the syntax of the statement For
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a function (or a group of statements), the specification is the dependences in the 

summary site of the function (or a group of statements). The specification of statement i 

is:

spec(i) = (fa, i, Definition), (bj, i, Use)),
(fa, i. Definition), fa, i. Use)), (fa, i, Definition), (xx, i, Use))

Three internal edges - (buaO, (cuai), ,a0 -  are inserted at site i. Another way to write

the specification is:

((fa4),(bi4)),(fa4),fa4)),(fa4),(T*4))) 

which is read “a of statement i (or pent a,) at site / is dependent on b of i (and also, c of i 

and ro f x) at site A blockhead i using a variable a,- has the specification:

((fa4),fa4)),(fa4),(tx4)))

For each final use variable a, at site i, an edge is added from a, to rju and the following 

expression is added to its specification.

(fa4), (rii4))

A (p-statement i includes the following edge in its specification:

((<Pi4), fa4))

A ^.-statement i, defining a,- and has edges (Ai,ad, (Ai,bO, ( and (r^bi) in its site 

and spec(i) = (fa4),(Xi4)), (fa4), fai4)), (fa4), fa4)), (fa4), (x*4)).

The external edges in the dependence graph represent data, control, and flow 

dependences. They are known as data, control, and flow edges, respectively. The 

technique used to construct data flow and control dependence edges is the same used to 

compute the PDG [Lyle 95][Jack 94]. If data propagates from (bt,k, Definition) to 

(biXUse) then a data edge is inserted from (b^KDefinition) to (b^UUse). This procedure
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is carried out for each it in the program. For each block (i) in the program, the following 

control edges are inserted in the graph:

((ti, i, Definition), (tj, k, Use)), for each member (it) of the block.

For each <p-statement i, a flow edge ((q^i,Definition), ( Use)) is added, where j  is the 

statement that depends on i. For example, b re a k  and c o n tin u e  statements within a 

loop are represented in the graph as dependent on the loop statement On the other hand, 

if i is a library routine, then the statements which depend on i must be specified by the 

user.

Library routines are given a surrogate specification in place of code. Site 4, using 

the g e t c h a r ( )  routine in the sample program of Figure 3.1, has a specification

Table 3.1. Algorithm for constructing the StDG

//Algorithm for constructing the StDG 
// input is a program with statement numbers 
// each procedure is analyzed separately 
//specification for library routines is taken from the user 
currentBlock = 0; // statement number of the blockhead 
Site = Exit u  Enter; //for each procedure add Enter and Exit sites 
while not end of procedure { 

j = get next statement;
Site = Site u  j; //add j to site’s set 
for (each v e  variables defined in j){ 

defs(j) = defs(j) u  v,-;
if(v e  GlobalVariable v v is a final use variable) 

uses (Exit) = uses(Exit) u  v ;
}
if( #defs(j) > 1 ) uses(j) = uses(j) u  r\j;

//more than one variable defined in j 
for (each v 6  variables used in j){ 

uses(j) = uses(j) u  Vj; 
if(v e  GlobalVariable v v e  Parameter)

table cont’d
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defs(Enter) = defs(Enter) u  v ; 
if (v is a final use variable) 

defsQ) = defs(j) u  Hi I
}

uses(j) = uses(j) U T^mBlcx* > 
if (statementType(j) =  BLOCKHEAD) {

cunentBlock = j ; //current statement is a blockhead 
defs(j) = defs(j) u  Tj;

}
if (statementType(j) =  ̂ statement) defs(j) = defs(j) u  ; 

//current statement is a ̂ statement 
//add ports to site j

for (each v e  defs(j))
Port(j) = Port(j) u  (v, j, Definition) ; //Def ports 

for (each v e  uses(j))
Port(j) = Port(j) u  (v, j, use) ; //use ports 

//add internal edges
for (each w e uses(j)) 
for (each v e  defs(j))

Edge = Edge u  ((w, j, Use), (v, j, Definition));
}

//external edges
for (each j £ Site) 
for (each v e  defs(j))

if(v propagates to w a  w  e uses(k))
Edge = Edge u  ((v, j, definition), (w, k, use));

((C4,4,Defintion), (Xi.l.Use)). The specification indicates that g e tc h a rO  returns a 

constant, meaning that it has no specification. The correct specification should be: 

((input,4,Definition), (input,4,use)), which in turn results in the specification of 

(((c4,4,Definition), (input„Use)), ((C4,4,Definition), (Ti.l.Use))) for site 4. Input has no 

label number because it doesn’t change from site to site. We present an algorithm for 

constructing the StDG in table 3.1.
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3.5.4 Representation of alias information in the graph

Intraprocedural algorithms for alias analysis can be classified into two 

categories: flow-sensitive and flow-insensitive. Row-sensitive algorithms consider 

intraprocedural control flow information during the analysis while flow-insensitive 

algorithms do not. Row-sensitive algorithms in general are more precise and less 

efficient than flow-insensitive algorithms [Burk 95]. Similarly, interprocedural alias 

analysis algorithms are also classified into two categories - context-sensitive and 

context-insensitive. Context-sensitive algorithms treat multiple calls to a single 

procedure independently. They reanalyze a procedure for each of its calling contexts 

while context-insensitive algorithms do not. Context-sensitive algorithms are more 

precise and less efficient than context-insensitive algorithms [Hind]. StDG includes 

flow-sensitive information only; but, at the interprocedural level, both context-sensitive 

and context-insensitive information can be included.

The data variables (non-pointer) and the pointer variables are represented 

differently in the StDG. A pointer variable has three components: the address of the 

object to which it points (reference variable), pointer to the object to which it points 

(points-to variable, dereferencing), and the object itself (pointed object). The following 

port labeling convention is followed for the pointer variables:

• All aliased variables are included in the label (both pointer and non-pointer), 

separated by a comma.

• If de-referencing is involved (indirect assignment by a pointer), the pointed 

objects are placed within the parenthesis.
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SI: p = &r 
S2:if()
S3: q = p;
S4: else 
SS: q = &s;
S6 : *p = xl 
S7:h = q;
S8 : q = &t; 
S9: x2 = *h;

Figure 3.2. StDG with alias information

• If a pointer variable points to more than one variable or more than one pointer 

variable points-to a variable, then the list of variables is separated by a comma. 

The points-to label includes the points-to variable, followed by V and the 

pointed objects.

Figure 3.2 shows the StDG for a sample program which uses pointers. 

Depending on the role of a pointer variable usage in the program, its representation 

changes in the graph. Uses of reference variables are represented in the normal way. 

But, the definitions result in a def port with a label that includes points-to information 

(site Si in Figure 3.2). The use of a points-to variable has a use port connected with def 

ports in the site of the pointed object (site S9 in Figure 3.2). The definition of a points-to 

variable results in the definition to the pointed object, using the pointer (site S6  in figure
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3.2). Therefore, this pointer definition results in a use port of points-to variable and a 

def port whose label includes both points-to variable and the pointed object 

3.6 Summary

In this chapter, we presented an overview of static analysis of programs, related 

issues, and the program representations available in the literature. A program analysis 

tool may derive all the dependence information and store or derive it on demand. The 

choice between the two analysis approaches depends on the space or time constraints. 

The representations used for the analysis may be a multiple or a unified representation. 

A tool using multiple program representation has to manage the mappings between 

various representations. If the program changes, all the representations and the 

mappings must be updated. Single, all-inclusive representation may create scalability 

problems; it is difficult to store all the dependence information required in a data 

structure.

We have presented a new representation known as Statement Dependence Graph 

(StDG). The StDG uses discard type multiple representations; it discards the earlier 

representation once the next representation is obtained. The analysis approach used in 

StDG is exhaustive, but it discards the dependence information among groups of 

cohesive statements. The discarded information is not required for most applications; 

but, if needed, the discarded information can be obtained on demand. The StDG is a 

fine-grained representation with modular representation for functions and slices. In 

Chapter 4, we describe algorithms for restructuring the StDG to simplify it and make it 

more amenable to changes.
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Chapter 4 

Restructuring StDG

4.1 Introduction

The graph representation of a program is typically large and cumbersome. It is 

difficult for a user to manage and expensive for an algorithm to store and traverse all the 

ports and edges. These problems can be reduced through graph compaction, hi most 

cases, two sites in a graph can be folded into one if they are inseparable. For example, 

the braces and a compound statement, or iterative statement and b re a k  statements, can 

be represented in one site. Further, consider the following code:

1: if(a)
2: b = 10;

These two statements cannot be separated for most practical purposes. Hence, they can 

be represented together in one site and manipulated together. If needed, any 

interdependencies these two statements may have can be preserved in the new 

representation. Restructuring is the process of merging sites in the StDG to simplify the 

graph and make it amenable to changes. A restructured graph is known as a 

Restructured StDG (RSG). Restructuring retains all the information in the graph, and 

any operation that can be performed on the StDG can be performed on the RSG.

We define compaction as the process of identifying and merging sites. 

Compaction involves merging sites by moving a site (source site) into another site 

(destination site). The source site’s ports can be placed at the top or bottom of the 

destination site, depending on how these two sites are connected. The type of edges
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encountered in the merging sites and how the ports and edges are moved during merging 

are discussed in section 4.2. StDG sites with high cohesion can be merged. Section 43 

explains cohesion in terms of the graph. Section 4.4 presents an algorithm for merging 

the sites. Section 4.5 presents RSG, the restructured graph. Section 4.6 presents the 

summary of the chapter.

4 3  Merging Sites

When a source port is moved, we need to decide whether it should be placed at 

the top or bottom of the destination site. The ports are moved in such a way that the 

dependence information is not lost, at the same time reducing the duplicate ports present 

in the StDG. Depending on where the port is moved, its connections (edges) need to be 

adjusted. The internal edges of the merging sites and the external edges between the 

merging sites become internal edges in the merged site. The remaining external edges of 

both the sites become the external edges of the new site. The notations and definitions 

needed to define the merging process are presented in section 4.2.1.

43.1 Notations and definitions

Port connections and the merging process is explained using the Z specification 

language [Jack 97]. In the following expressions • is a delimiter.

SITE. Set of all sites in the graph 

PORT. Set of all ports in the graph 

ExtemalEdges. Set of all external edges in the graph 

IntemalEdges. Set of all internal edges in the graph
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Let pl,p2,p:PORT; sl,s2,s3:SITE; p i = (vi,sl,Use) a  Vi e  Uses(sl) a  i e 

ProgramStatements. (pi is a use port in si.); p2 = (wj,s2,Use) a  Wj e  Defs(s2) a  j  e 

ProgramStatements (p2 is a def port in s2.); p = (yk,s3,Type) a  yk e  (Defs(s3) u  

Uses(s3) a  j  e  ProgramStatements a  Type e  {Use,Defmtion} (p is a port (use or 

def) in s3).

UPS(sl) = {(v,si,Use) | Vv» v e Uses(sl) } -  represents all the use ports in site si (the 

top ports).

DPS(sl) = {{(v,sl.Definition) | Vv» v e Defs(sl) } -  represents all the def ports in site 

si (the bottom ports).

DPU(pl) = {p2 | Vp2* (pl,p2) e  KntemalEdges}- def ports of a use port p i (i.e., the 

ports connected through the def edges of the use port). The DPU of p2 are ports like 

pi such that (pl,p 2 ) is an internal edge.

UPD(p2) = {pi | Vpl» (pl,p2) E IntemalEdges}- use ports of a def port pi (i.e., the 

ports connected through the use edges of the def port).

UPU(sl) = {p2 | Vpl,p2* pi e  UPS(sl) a  (p2,pl) e ExtemalEdges}- the use ports of 

use ports of site (si) (i.e., the ports connected through the use edges of the use 

ports of si). The notation is read “UPU of si are ports p2 such that for all pi and 

p2 , pi is a use port in si and (p2 ,pl) is an external edge.”

UPU(pl) = {p21 Vp2* (p2,pl) e  ExtemalEdges}- the use ports of use port pi.

DPD(s2) = {pi | Vp2,pl» p2 E DPS(s2) a  (p2,pl) E ExtemalEdges}- the def ports of 

def ports of site s2. DPD represents all the def ports connected to def ports of the 

site.
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DEU(pl) = {(pl,p2) | Vp2« p2 6  DPU(pl)} - def edges of a use port(pl) (i.e., the 

outgoing edges from the use port pi). DEU of p i are edges (pl,p2) such that for all 

p2, p2 is a DPU of p i.

DPD(p2) = {pi | Vpl* (p2,pl) € ExtemalEdges}- def ports of a def port p2.

UEU(pl) = {(p2,pl) | Vp2« p2 e  UPU(pl)} - represents the use edges of a use port pi 

(i.e., the incoming edges to the use port pi).

UEU(sl) = {(p2,pl) | Vpl,p2« p i e  UPS(sl) a  (p2,pl) e  ExtemalEdges}- represents 

the use edges of all use ports of site s i (i.e., the incoming edges to si).

DED(p2) = {(p2,pl) | Vpl» pi e DPD(p2)} - def edges of a def port p2.

DED(s2) = {(p2,pl) | Vp2,pl» p2 e  DPS(s2) a  (p2,pl) e  ExtemalEdges}- def edges of 

all def ports of s2 .

UED(p2) = {(pl,p2) | Vpl» pi e UPD(p2)} - use edges of a def port p2.

Site(pl) -  returns the site(s) in which the port(s) is present

BLOCKEND(sl) = max Site(UPU(sl)) -  block end site number of site (block) si.

p i <=> p2 -  indicates that p i and p2 are the same ports. We say that p i and p2 are the 

same ports if they have the same label, if variable definition at p2  is used only at p i, 

or only one variable definition (that of p2 ) reaches pi.

3pl,p2» vj =  Wj v  DPD(p2) =  {pi} v  {p2} =  UPU(pl)

<— -  Indicates the action to be taken.

UPS(sl) <— p. UPS(sl) = UPS(sl) u  {pi} | Vi = yk -  add port p to set of use ports of si.

DPS(s2) <— p. DPS(s2) = DPS(s2) u  {p2} | Wj = yk -  add port p to set of def ports s2.
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pi 4 -  p2. Vi = Wj -  replace p i by p2. Port replacement is accomplished by replacing 

label Vi of pi by Wj of p2 .

E l «— E2. — remove edges E2 and add E l. Edges in E2 are moved because one of the 

ports (pi or p2) in it has been moved. Let us assume that the moved port has become 

port p in its new location (site s). El and E2 are sets of edges. Depending on the type 

of ports present in E l and E2, the following actions are performed.

- If E2 =  {(pl,p2)} and p2 moved. Then add E l = {(pl,p) | s3  = s a  yk = wj}

-  If E2 =  {(p2,pl)} and p2 moved. Then add E l =  {(p,pl) | s3 =  s a  yk =  wj}

- If E2 =  {(p2,pl)} and p i moved. Then add E l =  {(p2,p) | s3  =  s a  yk =  Vj}

- If E2 =  {(pl,p2)} and p i moved. Then add E l = {(p,p2)}A yk = Vi}. If (p e 

UPS(s) a  p2 e UPS(s) (if both p2 and p are use ports) then remove E l and add 

UEU(p) 4 -  UEU(p2) and DEU(p) DEU(p2) or if (p e  DPS(s) a  p2 e  DPS(s) (if 

both p2 and p are def ports) then remove E l and add UED(p) 4— UED(p2) and 

DED(p) 4— DED(p2).

4 -  E2. -  delete edges E2 from the graph.

si <— s. merge site s in si, by moving all ports and edges of s to s i as explained in 

section 4.2.2.

4-  s. SITE = SITE \ {s}. Where SITE \ {s} = {e:SlTE | eg {s} (set difference). -  delete 

site s from the graph.

G 4— s. SITE = SITE u  {s} -  add site s to graph G.

The graph can be traversed forward through def edges and def ports or backwards 

through use edges and use ports.
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4 2 2  Site connections

When moving sites, def poets and their edges are moved first, followed by the 

use ports and their edges. If the source contains a multi-def port, care should be taken to 

move only ports and edges connected to the destination site. In the following cases, it is 

assumed that a multi-def port is not present in the source. All ports are given distinctive 

labels and are referenced by their labels instead of their specification. The types of ports 

and edges that can be encountered in the source site (say j)  and destination site (say i). 

along with the process of merging, are discussed in the following 1 2  cases.

Case 1: Source def port (Tj) connected to destination use port (Ti). Connected ports are 

the same.

(Tj <=> Ti a  Ti e  DPD(Tj)) a
((UEU(Tj4) <— UED(Tj) a  Ti <— Tj) a  <— DHD(Tj))

If Ti and Tj are the same ports and port Ti belongs to def ports of a def port (Tj), 

then replace use edges of a def port (Tj) (i.e. edge (X2 ,Tj) in figure 4.1(a)) as use edge of 

use port (Tj) at site i (i.e. edge (X2 ,Tj)), replace port Ti by port Tj, and remove def edges 

of def port Tj (i.e. edge (Tj.TO in figure 4.1(a)).

The first part (line) of this notation indicates the conditions satisfied in the 

source and the destination sites, as shown in figure 4.1(a) (i.e., ports are same and 

connected). The second part (line) indicates how the sites are merged. The merged sites 

are shown in figure 4.1(b).

Case 2: Source def port (Tj) connected to destination use port (TO. Connected ports are 

not the same and source def port has only one def edge.
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(b)(a)

(c) (d)

Figure 4.1. (a) Sites before merging (b) Port Tj replaced by Ti
(c) Port Tj moved to UPS(i) (d) Port Tj moved to DPS(i)

(#DED(Tj) = 1 a  Ti e  DPD(Tj)) a

(UPS(i) <- Tj a  UEUCTj.i) «— UED(Tj j )  a  DEU(Tj i )  <- DED(Ti j ) )

If the number of def edges at def port Tj is one and port Ti belongs to def ports of 

a def port (Tj) (i.e. Ti and Tj are connected), then add port Tj to use ports of site i, 

replace use edges of a def port (Tj) (i.e. edge (x2,Tj) in figure 4.1(a)) as use edges of use 

port (TO (i.e. edge (x2,Ti) in figure 4.1(c)), and replace def edges of def port (Tj) at site j 

(i.e. edge (Tj,T0 in figure 4.1(a)) as def edges of use port (Tj) in site i (i.e. edge (Tj,Ai) in 

figure 4.1(c)).

If the number of elements in set DED(Tj) is one and if ports Tj, Ti are connected 

(as shown in figure 1 (a)), then the sites are merged by: 1 ) moving port Tj to use ports of 

i, 2) moving use edges of Tj to use edges of Tj in site i, and 3) copying def edges of Ti to 

def edges of Tj in site i. The source and the destination sites after the def port and its 

edges are moved to the destination are shown in figure 4.1(c).
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Case 3: Source def port (T j) connected to a destination use port (T j). Connected ports

are not the same and source def port has more than one def edge. The moved port and

edges of figure 4.1(a) are shown in figure 4.1(d).

(#DED(Tj) > 1 a  DPD(Tj) n  UPS(i) * 0 )  a

(DPS(i) <- Tj a  DED(Tj,i) 4— DED(Tj j )  a  UED(Tj,i) <- UED(Tj j )

Case 4: Source def port (Tj) is not connected to the destination site i.

DPDOj) n  UPS(i) * <t> a

DPS(i) 4 -  Tj a  UED(Tjd) 4 -  UED(TjJ ) a  DED(Tj4)4— DEDOjj )

Case 5: Destination def port (Ti) connected to source use port (Tj). Connected ports are

the same and source def port is already moved to destination def ports. The two sites are

shown in figure 4.2(a), and the merged sites are shown in figure 4.2(b).

(Tj <=> Tj a  Tj e  UPU(Tj)ADPU(Tj) e  DPS(i)) a  (UED(DPU((Tj)) 4 - UED(Ti))

i
Tj. bjJ

(a) (b)

" T _ Ti 'I

- w f k
j

(C)

Figure 4.2. (a) The sites before merging.
(b) Sites after replacing port Tj by Ti
(c) Sites after moving port Tj to UPS(i)

Case 6 : Destination def port (TO connected to source use port (Tj). Connected ports are 

not the same and the source def port is already moved to the destination def ports. The 

ports and edges of the two sites are shown in figure 4.2(a), and the merged sites are 

shown in figure 4.2(c).

(Ti e  UPU(Tj) a  DPUOj) e  DPS(i)) a
UPS(i) 4— Tj a  UEU(Tj,i) 4 -  UEU(Tjo) a  DEU(Tjj) 4 -  DEU(Tjj ) )
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J

(a) (c)

Figure 4.3. (a) The sites before merging.
(b) Sites after replacing port Tj by Ti
(c) Sites after moving port Tj to UPS(i)

Case 7: Destination def port (TO connected to source use port (Tj). Connected ports are 

the same and the source def port is already moved to the destination use ports. The port 

and edges of the two sites are shown in figure 4.3(a), and the merged sites are shown in 

figure 4.3(b).

(Tj <=> Ti a  Tj e  UPU(Tj) a  DPU(Tj) e  UPS(i)) a  
(UEU(DPU((Tj)) «— UEU(Tj) )

Case 8: Destination def port (TO connected to source use port (Tj). Connected ports are

not the same and the source def port is already moved to destination use ports. The

merged sites are shown in figure 4.3(c).

(Ti e  UPUOj) a  DPU(Tj) € UPS(i)) a
UPS(i) <- T, a  UEU(Tj4) <- UEUCIjj) a  DEU(Tj4) <- DEU(DPU(Tjj)))

Case 9: Source use port (Tj) is connected to destination use port (i.e., def port of source

already moved to destination use ports). There is a use port (A) in destination whose

label is the same as that of the source use port (Tj). No source use port is connected with

the destination def ports. The two sites are shown in figure 4.4(a), and the merged sites

are shown in figure 4.4(b).
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(DPUCTj) e  UPS(i) a  0A : PORT* A € UPS(i) a  A <=> Tj) a  
UPU(Tj) n  DPS(i) = 0 )  a
(UEU(A) <- UEU(Tj) a  DEU(A) < -DEU(DPU(Tj))

(a) (b)

Figure 4.4. (a) The sites before merging.
(b) Sites after replacing port A by Tj
(c) Sites after moving port Tj to UPS(i)

(c)

Case 10: Source use port (Tj) is connected to a destination use port (i.e., def port of 

source already moved to destination use ports). No two use ports in source and 

destination have the same label. The source use port is not connected with destination 

def ports. The merged sites are shown in figure 4.4(c).

(DPUOj) e  UPS(i) a  (VA: PORT* A e  UPS(i) a  A g UPS(j)) a  
UPUOj) n  DPS(i) = 0 )  a
(UPS(i) <— Tj a  UEU(Tj4) UEU(Tj) a  DEU(Tj4) DEU(DPU(Tj))

Case 11: Source use port (Tj) is connected to destination def port (i.e., def port of source 

already moved to destination def ports). There is a use port in the destination port with 

the same label as the source use port (Tj). The source use port is not connected with the 

destination def ports. The port and edges of the two sites are shown in figure 4.5(a), and 

the merged sites are shown in figure 4.5(b).

(DPUOj) e  DPS(i) a  (3A: PORT* A e UPS(i) a  A e UPS(j)) a  
UPUOj) n  DPS(i) = 0 )  a  
(UEU(A) <- UEUOj) a  DEU(A) f -  DEUOj))

Case 12: Source use port (Tj) is connected to destination def port (i.e., def port of source

already moved to destination def ports). No two use ports in source and destination have
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Figure 4.5. (a) The sites before merging.
(b) Sites after replacing port A by Tj
(c) Sites after moving port Tj to UPS(i)

the same label. The source use port is not connected with the destination def ports. The

merged sites are shown in figure 4.5(c).

(DPU(Tj) e  DPS(i)a (VA: PORT* A e UPS(i) a A 6  UPS(j)) a  

UPUOj) r »  DPS(i) = 0 )  a

(UPS(i) <— Tj a  UEU(Tj»i) <- UEU(Tj j )  a  DEU(Tj4) <- DEU(Tj j ) )  

hi section 4.3, we describe which sites in the graph can be merged.

4 3  Compaction

Compaction is based on cohesion. Cohesion indicates the bonding strength 

between two elements of a program; binding strength is indicated as edges 

(dependences) in the graph. If a variable definition at a site is used at only one other site, 

then the cohesion between the variable definition and use sites is high. On the other 

hand, if the variable is used at more than one site, the cohesion is divided among all the 

sites that share the variable. We consider cohesion among two sites A and B as high if 

“A and B are connected, and every site reachable from A is also reachable from B.” In 

terms of the graph, two connected sites are considered highly cohesive if they satisfy 

any of the three conditions:

i. All the def edges of site A reach only site B,

ii. A group of sites are circularly connected, or
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iii.All the sites connected to site A are also connected to site B.

If the cohesion between two statements is high, they can be put together and 

used as a unit. Cohesion among statements using structural variables and data variables 

is further explored as structural compaction and data compaction.

43.1 Structural compaction

A procedure in a program can be viewed as a block. A block consists of 

statements and other blocks (members). In a block, all members are dependent 

(dependence includes data, control, and flow dependence) on the blockhead and, in turn, 

on all the members on which the blockhead depends. Block members on which the 

blockhead depends and the blockhead form a circular chain of sites. Hence, these 

member sites can be merged into the blockhead site. By this merging, a block is 

separated into a structure part and a data part The structure part includes the blockhead 

and a subset of the members (these may include members of a deeper block) which 

define variables referenced by the blockhead. The data part consists of the remaining 

members of the block.

A block member site is merged in its blockhead site if there is an edge from the 

member’s def port to the blockhead’s use port That is, if the site number of the site 

from where a use edge of a blockhead originates is between the block begin and block- 

end site numbers, then that site can be merged with the blockhead. Let Si be a 

blockhead and S2  one of the members of Si (S2  may be a member of a deeper block 

within Si). S2  is merged in Si if there is an edge from S2  to Si. That is,

3a: PORT;Si,S2: SITE •
a €  UPU(Si) a  1 6  DPS(S2) a  S2  >  Si a  S2  < BLOCKEND(Si) a  

Si <— S2
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Id other words, if a port (a) belongs to UPU of site Si and def ports of a site S2  (Si and 

S2 are connected), and the site number of S2  is greater than St and less than the site 

number of the block end of Si (S2  is a member of Si), merge S2  in Si. In figure 4.6, Sites 

S (blockhead), 13 (block member) and 14 (another block member) are candidates for 

structural compaction.

(Pul

Figure 4.6. Candidate sites for structure compaction

4.3.2 Data compaction

Data compaction involves a data variable defining site (source) and (sink) sites 

that use the variable. Data compaction depends on how many sink sites are present and 

how they are connected to the source and among themselves. One of the sinks will be a 

destination site. If a sink site has a final use variable as its def port, then a temporary 

sink site known as final use site is created. This temporary site is used as the destination 

site to combine the source. The temporary site is needed because a final-use site cannot 

be merged with any site as it might use variables from different sources.
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Site S2  is merged with site Si if the two sites satisfy any of the following three

conditions:

nw

Figure 4.7 A ll def edges from St reach S2

1. All edges from Si reach S2  only (e.g. a definition of a variable is used at one

another statement only). That is,

VS1.S2: SITE*
DPD(Si) C UPS(S2) u  UPS(SO a  Si <— S2

In other words, if the set of all def ports of def ports (DPD) of Si are either use ports in

Si or S2, then merge Si in S2 . The sites are shown in figure 4.7.

2. There is an edge from Si to S2  and also an edge from S2  to Si (circular dependence),

as shown in figure 4.8. That is,

3a,b: PORT; S1.S2: SHE •
a e  DPS(S0 A be DPS(S2) a  DPD(a) n  UPS(S2) = 0  a  
DPD(b) nUPS(Si)=0A Si < -S 2

Figure 4.8. Sites Si and S2  are interdependent

In other words, ‘a’ is a  def port in Si, ‘b’ is a def port in S2. DPD of ‘a’ is a use port in 

S2 (Si is connected to 8 2 ). DPD of ‘b’ is a use port in Si. Then merge S2  in Si.
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Figuie 4.9. Sites reachable from Si are also reachable from S2

3. There is an edge from Si to S2 and all the sites connected with Si are also 

connected with S2 , as shown in figure 4.9. That is,

3S1, S2: SITE*
S2 e  Site(DPD(SO) a  (Site(DPD(SO) -  S2) £  Site(DPD(S2) ) a  

S2 <— Si

hi other words, S2 is a site in the set of sites connected to def ports of def ports of Si. 

Sites that contain def ports of def ports of Si, excluding S2, are a subset of sites that 

contain def ports of def ports of S2. Then merge Si in S2. A special case of this type of 

connection is a blockhead (S2) and, Si connected to S2 and one or more of its member 

sites.

4 3 3  Edge compaction

Reducing the number of sites connected to a site can increase the possibilities 

for compaction. This reduction in site connections can be achieved by changing a direct 

edge between two sites into an indirect connection through another connected site. For 

example, def edges of a site Si (connected with S2 and S3) can be reduced by changing a 

direct edge between Si and S3 into an indirect connection through S2, as shown in figure
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Figure 4.10. (a) Candidate sites for edge compaction (b) Edge compacted sites.

4.10(a). This concept is similar to replacing a global variable by a local variable and

passing it as a parameter. In figure 4.10, the dashed lines indicate that the connection

need not be a direct edge. Sites Si and S2 in figure 4.10(b) can be merged as all def

edges from Si reach S2 . Edge compaction is carried out only to test if two sites can be

merged. That is,

3a,b,c: PORT; Si,S2 ,S3: SITE •
a e  DPS(Si) A b e  UPS(S2) a c  e  UPS(S3) a  
b e DPD(S0 a  c e  DPD(Si) a  S3 e  FSLICE S2

In other words, conditions for edge compaction; ‘a’ is a def port in Si, ‘b’ is a use port

in S2 , and ‘c’ is a use port in S3. ‘b’ is a DPD of Si (i.e. S2 and Si are connected), V  is a

DPD of Si (i.e. S3 and Si are connected), and S3 belongs to FSLICE of S2  (i.e. S3 and S2

are connected indirectly). Where,

FSLICE: SITE -»  SITE 
VSi: SITE*
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FSLICE Si = Site(DPD(Si)) a

FSLICE Si = FSLICE FSLICE Si u  FSUCE St

(FSLICE of Si is sites belonging to def ports of def ports of Si or (DPD(Si))+.)

Edges and ports of sites, being edge compacted, are moved as follows:

An algorithm for merging sites using data compaction, structure compaction, 

and edge compaction is presented in section 4.4.

4.4 Compaction Algorithm

The compaction algorithm, which follows, includes numerous embedded

comments to help explain the details of the algorithm.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/* Process each site by testing if one of the def ports label is T. If x is present then

the site is a blockhead. If the site is a blockhead, then call STR_COMP else call

DATA_COMP. */

PROCESS JSITE: SITE -»  SITE 
Vj: SITE*
(Xj e Defs(j) a  STR_COMP j) v  (x, g Defs(j) a  DATA_COMP j)

/* For each blockhead site, call FOLD_STR & DATA_COMP, and for each

member site of the block, call PROCESS_SITK. */

( (a <=> b) a  

DPS(S2) <— a a  
S2  <— (b, a) a
((a, S2),(c, S3»  <- ((a, S0,(c, S3)>) v
( (a not«=> b ) A

DPS(S2> <— a a
UPS(S2) <— a a
S2  (a, a) a
S2  <— ((a, Si),(a, S2)) ) a
((a, S2),(c, S3»  <- ((a, S,),(c, S3) ) )

a & b same ports 
add def port a to S2 

add an internal edge
- move edge

a & b not same ports 
add def port 
add use port 
add an internal edge 
move edge

- move edge
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STRjCOMP: SITE -» SITE 
Vj: SHE*
FOLD_STR j  a  

DATAjCOMPj a

Vk: SUE* (tjJc,Use) e DPD(Xj) a  PROCESSJS1TE k

/* CHANGE is of boolean type. Call FOLD_DATA. If FOLDJDATA results in

site folding, then call DATA_COMP for each site connected to the use ports of

the site. Also, call FOLD_EDGE, if FOLD_EDGE changes edges, then call

DATA_COMP. */

DATA_COMP: SITE -» SITE
Vj: SITE; change: boolean •
FOLDJDATA j  a  

(change = true a
Vk: SITE* k  E site(UPU(j» a  DATA_COMP k)
FOLD_EDGE j  a  

(change = true a

DATA_COMP j)

/* FOLDJDATA uses the cases in data compaction (previous section) for testing

the type site connections and for merging the sites. Input is a site and a boolean

variable, which is set to true if FOLDJDATA merges any sites. For explanation,

see data compaction, in section 4.3.2. */

FOLDJDATA: SITE -> (SITE, boolean)
VSj: SITE; ch: boolean; 3a,b: PORT;S2 : SITE •

(a e  UPU(Si) a  a e DPS(S2) a  S2  > Si a  S2  < BLOCKEND(S0 a  

Si <— S2 a  ch := true) v 
- case 1 in data compation.

(a e  DPS(S0 a  b e DPS(S2) a  DPD(a) n  UPS(S2) = 0  a  

DPD(b) nUPS(Si)=0 a  Si <—S2  Ach := true) v
- case 2  in data compation.

(S2  E Site(DFD(SO) a  (Site(DPD(Si)) - S 2)C  Site(DPD(S2) ) a  

S2  <— Si a  ch := true)
- case 3 in data compation.
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/♦ For an explanation see structure compaction, in section 4.3.1. */

FOLD_STR: SITE—» SHE
VSj: SITE; 3a: PORT;S2: SITE • 

a £ UPU(SO a  a £ DPS(S2) a  S2  > Sj a  S2  < BLOCKEND(Si) a  
Si <— S2

/* For an explanation see edge compaction, in section 4.33. */

FOLDJEDGE: SITE -»  SITE 
3a,b,c: PORT; Si,S2 ,S3: SITE •

(a e  DPS(Sj) a  b £ UPS(S2) a c  £  UPSCSs) a
b £ DPD(SO a  c £ DPD(Si) a  S3 € FSLICE S2) a  

(((a <=>b) a  DPS(S2) <- a a  S2  (b, a) a  ((a, S^.Cc, S3)) <- ((a, Si),(c, S3))) v 
((a not<=> b) a  DPS(S2) <— a a  UPS(S2) <— a a  S2  <— (a, a) a

S2  <- ((a, SO,(a, S2)) ) a  ((a, S2),(c, S3)) 4-  ((a, S,),(c, S3))))

FSLICE: SITE -> SITE 
VSi: SITE*
FSLICE Si = Site(DPD(SO) a  FSLICE Si = FSLICE FSUCE Si u  FSLICE Si

f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

4.5 Restructured StDG (RSG)

The restructured statement dependence graph is known as a Restructured StDG 

(RSG). Applying the structure and data compaction to the StDG of figure 3.1(b) results 

in the RSG shown in figure 4.11. In figure 4.11, only the statements represented by each 

site with reaching defs and exposed defs are shown.

Restructuring has several other advantages apart from graph size reduction. It 

helps to understand programs by localizing the slices of code. Program slices can be 

easily computed. These slices, unlike the traditional slices [Horw 90] can be closed- 

ended [Jack 94]. That is, a slice can have both a beginning and an end. The RSG 

depends on the type of compactions applied to the StDG, and the type of compactions 

needed depends on the type of application.
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Figure 4.11. Restructured StDG

4.6 Summary

The StDG can be compacted by merging the sites that exhibit high cohesion. 

The StDG is restructured through compaction, and the resulting graph is known as the 

Restructured StDG (RSG). In this chapter, we described how cohesive sites in the graph 

are identified and merged. The type of restructuring that is required changes from 

application to application; however, the fundamental representation graph StDG and the 

compacted graph RSG provide a theoretically sound framework that provides support 

for many problems found in the reengineering domain, hi Chapters 5 and 7 we present 

convincing evidence of the value of StDG and RSG in three such domains.
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Chapter 5 

Application of RSG to Slicing and Maintenance

5.1 Introduction

The RSG can be applied to multiple applications such as program slicing, 

maintenance, program understanding, and function extraction. In this chapter, we apply 

the RSG to program slicing and maintenance. The application of the RSG to program 

slicing is presented in Section 5.2, and the application of the RSG to program 

maintenance is presented in Section 5.3. Section 5.4 presents the summary of the 

chapter.

5.2 Slicing

The slice (also known as a backward slice) of a program with respect to program 

statement p  and variable x  consists of all statements and predicates of the program that 

might affect the value of x  at p. A forward slice of a program with respect to program 

statement p  and variable x  consists of all statements and predicates of the program that 

might be affected by the value of x  at p. S(x, p) is called a slicing criteria. Weiser [Weis 

81] introduced slicing. Ottenstein [Otte 84] presented a linear time algorithm to find an 

intraprocedural slice using a PDG representation of the program. Horwitz [Horw 90] 

improved these algorithms to construct interprocedural slices by using the SDG. Slicing 

is used to isolate individual computation threads within a program. Slicing has been 

successfully used in a variety of application like, program understanding and debugging 

[Weis 82][Lyle 84][Lyle 86], integrating programs (Horw 89], automatic parallelization
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[Erra 96], function recovery [Visa 93], program maintenance [Gall 91], and reverse 

engineering [Jack 94],

PDG-based slicers reflect statement level dependences but they fail to answer 

queries regarding dependences among program variables. For instance consider the 

statement:

a  = b  + c .

A PDG-based slicer equates three distinct criteria: the definition of a, the use of b and 

the use of c. To address this problem, fine-grained dependence models like value 

dependence graphs (VDG) [Weis 94] and statement dependence graph based on parse 

trees [Liva] have been proposed. However, the utility of slicing for maintenance and 

reverse engineering is less obvious. Not all questions can be cast as slice criteria [Jack 

94], This situation can be seen in the approach to maintenance (in [Gall 91]), where 

dozens of definitions and propositions are used in place of slicing criteria with limited 

success. Furthermore, slices often turn out to be too coarse to be useful. One reason for 

this coarseness is because slicing cannot discriminate origins; every statement that 

affects the given variable is included in the slice, whatever the source of its dependence. 

The Jackson [Jack 94] chopshop tool aims to overcome these problems. In place of slice 

criterion, this model allows the user to pick a source and a sink. The tool identifies the 

statements that cause the source to affect the sink.

The RSG based model we developed is a further improvement over existing 

models. These improvements are:

i. Current models include only the statements that contribute to the dependences in 

the graph. Hence, these models require some kind of mapping function to
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identify syntactic constructs that do not contribute to the dependences during 

slicing. The RSG model requires no such mapping function.

ii. Statements with high cohesion (defined earlier) are either all present or absent in 

a traditional slice. Hence, these statements can be put together, and the slicer 

can include all these statements in a slice when one of these statements is 

reached. The merged graph will have fewer nodes to store and traverse.

iii. A user can select multiple sources and sinks; this feature is useful in function 

extraction. The RSG-based slicer can answer queries like -  given certain 

variables as input (like parameters to a function), what computation is required 

to compute certain variable(s).

iv. Statement groups help the user select appropriate sources and sinks.

v. Slicing algorithms of PDG based models compute a slice with two traversals of 

the SDG. The cost of each traversal is linear in size of the SDG [Horw 90]. 

These models have one node in the graph for each statement in the program. In 

the RSG model, one node (site) represents several statements and a slice is 

performed with one traversal of the RSG.

5.2.1 Formalization of modular slicing

Two sets of variables and statement numbers form a criterion for slicing: source

and sink (a set of ports). A modular slice includes all the statements needed to compute

the variables in the sink, using the variables in the source. That is,

source = Variables X  StatementNumber
= {(v,sl) | v e  ProgramVariable a  si e ProgramStatement}

sink = Variablse X StatementNumber
—  {(w,s2) | w e ProgramVariable a  s2 e ProgramStatement}.
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By translating the variables and statement numbers to ports, we have;

source = {(v,i,sl,T) | sl:SITE»
(v,i e  Uses(sl) a T  = Use) v (vsl 6 Defs(sl) a T  = Definition)}

sink = {(Ws2,s2,T) | s2:SITE*
(wa e  Defs(s2) a  T = Definition) v  (w^ e  Uses(s2) a  T = Use)}

hi the StDG, site numbers and statement numbers are the same, whereas in the RSG

they differ because a site may represent more than one statement.

The StDG can be traversed forward (from enter to exit site) through the def

edges and the def ports. So, to reach sink from source, we go from source to def ports of

source, from def ports of source to def ports of def ports of source, and so on until we

reach the sink. Def edges and def ports of source are internal edges and def ports in

source sites, if the source has use ports. Def edges of def ports of source are the external

edges connected to source sites. Let P be set of ports in source and S be set of source

sites. The ports and edges in the forward slice are computed as follows:

P = Source ports
Internal edges in S connected to P = EF1 = DEU(P) (if P has use ports)

= Null (if P has no use ports)
Internal ports in S connected to P = PF1 = DPU(P)(if P has use ports)

= P (if P has no use ports)
External edges connected to PF1 = EF2 = DED(PF1)
External ports connected to PF1 = PF2 = DPD(PF1)

Let CS be the sites connected to S through external edges (EF2). PF2 represents use

ports in CS. Then,

CS = Site(PF2)
Internal edges in CS = EF3 = DEU(PF2)
Internal ports in CS connected to PF2 = PF3 = DPU(PF2)
External edges connected to CS = EF4 = DED(PF3)
External ports connected to CS = PF4 = DPD(PF3)

The site connected to CS is Site(PF4). Continuing further, we have:
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EF5 = DEU(PF4)
PF5 = DPU(PF4)
EF6 = DED(PF5)
PF6 = DPD(PF5), and so on.

A forward slice (FS) on a port (or variable) is all the edges (FSE), external edges

(FSEE), internal edges (FSEI), and ports (FSP) that are reached by traversing forward

from the port. Firmally,

FS = Site(PFl) u  Site(PF2) u  Site(PF3) u  Site(PF4) . . .
FSP = P u  PF1 u  PF2 u  PF3 u  PF4 . . .
FSE = EF1 u  EF2 u  EF3 u  EF4 u  EF5 u . . .
FSEI = EF1 u  EF3 u  EF5 u  EF7 u  EF9 V . . .
FSEE = EF2 u  EF4 u  EF6 u  EF8 u  EF10 u . . .

Similarly, the StDG can be traversed backward (from exit to enter site) through

the use edges and the use ports. So, to reach source from sink, we go from sink to use

ports of sink, from use ports of sink to use ports of use ports of sink, and so on until we

reach the source. Use edges of sink are internal edges in sink sites and use ports of sink

are ports within sink sites, if sink has def ports. Use edges of use ports of sink are the

external edges connected to sink sites. Let P be the set of ports in sink and S be set of

sink sites. The ports and edges in the backward slice are computed as follows:

Internal edges in S connected to P = EB1 = UED(P) (if P has def ports)
= Null (if P has no def ports)

Internal ports in S connected to P = PB1 = UPD(P)(if P has def ports)
= P (if P has no def ports)

External edges connected to PB1 = EB2 = UEU(PB1)
External ports connected to PB1 = PB2 = UPU(PB1)

Let CS be the sites connected to S through external edges (EB2). PB2 represents def

ports in CS. Then,

CS = Site(PB2)
Internal edges in CS connected to PB2 = EB3 = UED(PB2)
Internal ports in CS connected to PB2 = PB3 = UPD(PB2)
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External edges connected to CS = EB4 = UEU(PB3)
External ports connected to CS = PB4 = UPU(PB3)

The site connected to CS is Site(PB4). Continuing further, we have:

EB5 = UED(PB4)
PB5 = UPD(PB4)
EB6 = UEU(PB5)
PB6 = UPU(PB5), and so on.

A backward slice CBS) on a port (or variable) is all the edges (BSE), external

edges (BSEE), internal edges (BSEI), and ports (BSP) that are reached by traversing

backward from the port Formally,

BS = Site(PBl) u  Site(PB2) u  Site(PB3) u  Site(PB4) . . .
BSP = PB1 u P B 2 u P B 3 u P B 4  . . .
BSE = EB1 u  EB2 u  EB3 u  EB4 u  EB5 u . . .
BSEI = EB1 u  EB3 u  EB5 u  EB7 U EB9 u . . .
BSEE = EB2 u  EB4 u  EB6 EB8 u  EB10 u . . .

Finally, a modular slice is computed as follows:

Sites = FS n  BS
edges in the slice = FSE n  BSE, and 
ports = FSP n  BSP.

5 ^ 2  RSG for slicing (RSGS)

The sites with high cohesion are merged in the StDG. This merging is achieved

through structure compaction and data compaction. We present three types of RSGs for

slicing from which the user can select the one best suited to the application. These RSGs

differ in the amount of dependence information carried by the merged sites. Slicing

criterion using RSG as a graph is:

source = {(vti,sl,Use) | sl:SlTE»
v sl e Uses(sl) a  v  e  ProgramVariable a  t l  e  Programstatement} 

sink = {(Wt2,s2 JDefinition) | s2:SiTE*
Wt2 6 Defs(s2) a w e  ProgramVariable a  t2 e  ProgramStatement}
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Statements represented by a site (S) are:

Statement(sl) = {k | Vk*
k E StatementNumber a  ((vk,s 1 ,Use)e UPS(s 1) v 
(vk,sl,Definition)eDPS(sl))}

In the StDG, a slice is obtained by traversing and adding each port and edge in 

the graph. In the RSG, a slice is obtained by traversing and adding each site in the 

graph, where a site represents several statements. Several variants of slice definitions are 

available in the literature. One of them is a decomposition slice [Gall 91] that computes 

slices with respect to the last statement of a procedure. For decomposition slices, type 3 

RSGS is best suited. Another variant of a slice is based on value dependence graphs 

[Weis 94] that allow a slice to be computed on a used or defined variables, including 

temporary variables (result of conditional expressions); for these type of slices, type 1 

RSGS is best suited. Type 2 RSGS is best suited for Weiser’s slice [Weis 84]. We now 

present three RSGS types.

5.2.2.1 Type 1 RSGS

This RSGS includes all the dependence information (all ports and edges) from 

the StDG. Data and structure compaction is used for merging sites. When a source (S2) 

is moved to a destination (Si) site, the use and def ports are moved to use and def ports 

of the destination, respectively. Ports and edges of Si are moved to S2 as follows:

Let A = UPS(S2)
B=DPS(S2)
C = ports A after moved to Si
D = ports B after moved to Si
Si < -S2= (UPS(Si) <— A a  UEU(C) «- UEU(A) a  DEU(C) <- DEU(A) a  

DPS(Si) <— B a  UED(D) <—UED(B) a  DEU(D) <-DEU(B)}
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Sites in the type 1 RSGS of the StDG in figure 3.1(b) are shown in figure 5.1. In 

the figure, for clarity the ports and edges in the grouped sites are not merged. The dotted 

boxes represent the three sites in the RSGS.

1:1,2,4,5,13,14,15

T»

H r,

inwordgXi

v in word]

nw„

<Pl2

Figure 5.1. Type 1 RSGS

To compute a slice using the type 1 RSGS, only the ports and edges in source 

sites, sink sites, and multi-def sites are individually tested and added to the slice. The 

rest of the graph is tested at the site level, and all the ports and edges in a chosen site are 

added to the slice. For a review of the notation, see Section 5.2.1. A forward slice, using 

the type 1 RSGS, is computed as follows:

P = slice criteria (ports in the source)
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S = Site(P)
EF1 = DEU(P) or Null — source edges 
PF1 = DPU(P) or P -  source ports 
SF1 = Site(PFl) -  source sites 
EF2 = DED(PF1) -  external edges of source 
PF2 = DPD(PF1) -  external ports of source 
SF2 = Site(PF2) -  sites connected to source 
EF3 = DEU(SF2) -  internal edges in SF2 
EF4 = DED(SF2) -  external edges to SF2 
PF3 = DPD(SF2) -  ports connected to SF2 
SF3 = Site(PF3) — all sites connected to SF2

EF5 = DEU(SF3) -  internal edges in SF2 
EF6 = DED(SF3) -  external edges to SF2

A forward slice using the above definitions is computed as in section 5.2.1. A

backward slice is computed as follows:

P = slice criteria (ports in the sink)
S = Site(P)
EB1 = UED(P) -  sink edges
PB1 = UPD(P) -  sink ports
SB1 = Site(PBl) -  sink sites
EB2 = UEU(PB1) -  external edges of sink
PB2 = UPU(PB1) -  external ports
SB2 = Site(PB2) -  sites connected to sink
EB3 = UED(SB2) -  internal edges in SB2
EB4 = UEU(SB2) -  external edges to SB2

PB3 = UPU(SB2) -  ports connected to SB2 
SB3 = Site(PB3) -  all sites connected to SB2 
EB5 = UED(SB3) -  internal edges in SB2 
EB6 = UEU(SB3) -  external edges to SB2

The last four steps are repeated until all the sites are exhausted. A backward or modular

slice using the above definitions is computed as explained in Section 5.2.1.

5.2.2.2 Type 2 RSGS

The sites are merged through structure compaction and case 2 of data

compaction. Sites are merged as explained in Chapter 4, depending on the site
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Figure 5.2. Type 2 RSGS

connections. Internal edges and external edges connecting ports within the merged site

are not necessary and can be discarded. The sites in type 2 RSGS of the StDG in figure

3.1(b) are shown in figure 5.2.

Each site in the graph is analyzed as a unit and is either included or excluded

from the slice.

SF1 = Site(P) -  source sites
SF2 = Site(DPD(SFl)> -  sites connected to source
SF3 = Site(DPD(SF2)), and so on.
SB1 = Site(P) -  sink sites
SB2 = Site(UPU(SBl» -  external edges of sink
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SB3 = Site(UPU(SB2), and so on.
Modular slice = ((SF1 u  SF2 u  SF3 u . . . )  n  (SB1 u  SB2 u  SB3 u .. .)

5.2.23 Type 3 RSGS

Sites are merged using data compaction and structure compaction. All internal 

details of the merged sites are discarded. Only the ports exposed to other sites are 

included in the merged sites. When a slice originates or ends within a merged site, the 

slicer must derive on demand the internal dependences of the group of statements in the 

merged site. This graph is simple and sufficient for most practical purposes. This 

program analysis approach is a hybrid of the demand driven and exhaustive approaches

6: 6

nw,i

nw„

Figure 5.3. Type 3 RSGS

to. Figure 5.3 is a type 3 RSGS of the StDG shown in figure 3.1(b). The source and sink 

sites are sliced as explained for Type 1, and the rest of the sites are sliced as explained 

for Type 2.

5 J23 Modular slicing

A traditional PDG-based slice includes all the sites that contribute to the 

variables in a set V just before the execution of a statement p. Consider, for example, a 

slice on nw at site 11 (figure 3.1(b), StDG).

Source — {(vs,s,Use)| Vs* s:SlTH} (all use ports), Sink = (nwu, 11 .Definition)
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The statements in the slice are:

1 void wordCount (int inword)
2 {
4 c = getchar ();
5 while ( c != EOF ) {
7 if ( c == ' '||c == '\n'||c == '\t' )
8 inword = 0;
9 else if ( inword == 0 ) {
10 inword =1;
11 nw = nw + 1;
12 }
13 c = getchar ();
14 }
15 }

Using Type 3 RSGS, the slice includes sites 1 and 7 (statements in sites 1 and 7 

are the same as above). Similar results can be obtained using any type of RSGS. 

Consider another slice on the use of variable inw ord  at site 9 (note that many PDG- 

based slicers do not differentiate between a use and def at a site). The slice includes the 

following statements (Source = {(vs,s,Use)| Vs* s:SITE} (the entire program), Sink = 

(inword9 ,9,Use).

1 void wordCount (int inword)
2 {
4 c = g e tc h a r () ;
5 w h ile  ( c != EOF ) {
7 i f  ( c == ' ' | | c  == ' \ n ' | | c  == ' \ t '  )
8 inword = 0;
9 e ls e  i f  ( inw ord == 0 ) {
10 inword = 1;
12 }
13 c = g e tch ar ( ) ;
14 }
15 }

We can obtain the same results using Types 1 and 2. To use type 3, we need to derive 

dependencies among statements 7-12 before slicing. A forward slice on uses and defs of 

variable at site i:

Source = DPS(i), Sink = {(vs,s,Definition)| Vs* s:SITE} (all def ports)
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The advantage of RSGS can be seen when the user selects a set of variable use

sites (source) and a set of variable def sites (sink). The slice includes all the statements

required to compute the variables in die sink using the variables in the source. Consider

a slice with nw (site 11) as sink and c as source. The resulting slice should not include

any def sites of c or any sites in the slice of c  at its def port That is,

Source = {(Ci,s,Use)|Vs» s:SITE;Vi* i:ProgramStatement},
Sink= (nwn.lldDefinition)

The statements in the slice are:

7 if ( c == ' '||c == '\n'||c == '\t' )
8 inword = 0;
9 else if ( inword == 0 ) {
10 inword =1;
11 nw = nw + 1;
12 }

Table 5.1. Comparison of slicing methods

PDG Type 1 Type 2 Type 3
Slice type Forward or 

backward
Forward, 
backward, and 
modular

Forward, 
backward, and 
modular

Forward, 
backward, and 
modular

Application General
slicing

General slicing, 
extraction, and 
understanding

function 
extraction and 
understanding

Program
understanding

Graph size One node 
per
expression

One site per 
several statements. 
Several nodes 
(ports) in a site. 
Graph bigger than 
PDG.

One site per 
several 
statements. 
Smaller than 
PDG.

One site per 
several 
statements. 
Smallest graph.

Slice time linear to 
size times 2

Linear to size plus 
size of source 
or/and sink sites 
and multi-def sites 
encountered.

Linear to size 
plus size of 
source or/and 
sink sites and 
multi-def sites 
encountered.

Linear to size
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5.24 Comparison of slicing techniques

PDG based slicing and RSG based slicing are compared in table 5.1. In section

5.3, we show the application of RSG to maintenance activities.

5 3  Maintenance

Understanding the system, incorporating the change, and testing the system to 

ensure that the change had no unintended effect on the system are the three facets of 

software maintenance. Generally, two approaches are followed in dealing with the latter 

two facets. One approach is to allow the maintainer to implement the change, and then 

provide a tool that will pinpoint any inconsistencies introduced due to change [Gris 95]. 

The second approach is to “provide the maintainer  with a semantically constrained 

problem and let him construct the solution which implements the change within these 

constraints” [Gall 91][Morg 97].

The former approach allows the maintainer more freedom, but at a cost. If the 

tool finds inconsistencies, the changes need to be rolled back. Opdyke [Opdy 92] 

suggests that we make changes to a copy of the system. If inconsistencies are found after 

the change, the earlier version can be used and the current version discarded. Moreover, 

the problem of finding inconsistencies is found to be NP-hard [Gall 91]. The latter 

approach, though restrictive, uncovers inconsistencies before the changes are 

incorporated. Gallaghar et al. claim that the benefits outweigh the inconvenience that 

may be encountered due to the imposition of the constraints [Gall 91].

Representations generally available are used only to reason about the correctness 

of program changes. When changes are made to the program, its representation must
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Figure 5.4. The maintenance model

also be updated, as maintenance is a continuous process. However, the incorporation of 

the changes into the programs and subsequently into the representation has not been 

adequately addressed. The representations generally must be re-derived from the 

program when the program is changed. The RSG based maintenance model is a 

semantically constrained maintenance process that allows simultaneous updates to both 

the representation model and the program.

5.3.1 Maintenance model

The RSG based maintenance model is a five-step process, as shown in figure

5.4.

i. Understand and locate. Understand and locate the program location where the 

change will be introduced. This location may be a procedure or a block within 

the procedure or a member of a block.
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ii. Isolate. Identify and isolate the change dependent statements from the change 

independent statements. Change independent statements are that part of the 

program that do not reference any variable affected due to the change. This 

isolation allows the maintainer to modify the program freely, considering only 

the dependent part and not the whole program. An optimal situation is one 

where we can identify and isolate the absolute minimum amount of code that 

will be affected by the change.

iii. Separate. Separate the dependent statements into strongly dependent and 

weakly dependent parts. We consider the statements that will be replaced due to 

the change as strongly dependent on the change and the statements that can be 

reused as weakly dependent. For example, consider a modification requiring 

change in the number of iterations of a loop. Step 2 identifies the entire loop 

block as change dependent. But, the loop members may not require any change. 

Hence we consider the loop statement as strongly dependent and loop members 

as weekly dependent

iv. Change. Introduce the necessary changes. This step involves replacing the 

strongly dependent statements, while generally reusing the weakly dependent 

statements.

v. Merge. Merge the independent and the modified parts. Make sure that any new 

names introduced in the changed part do not conflict with any names in the 

independent part of the program.

Steps 2 and 3 break the program into manageable pieces, and automatically 

assist the maintainer in ensuring that there are no ripple effects induced by
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modifications in the change dependent part. In the next section we show how the StDG 

can be restructured for maintenance activities.

S J J  RSG for maintenance

hi the StDG, variable definitions propagate from the definition sites to the 

reference sites through the def edges. To delete a site from the graph, we follow the def 

edges of the site and remove all the sites encountered. If one of the sites encountered is a 

member of a circularly connected chain of sites, we traverse and remove the entire 

chain. Similarly, to add new statements we traverse the entire chain of sites to analyze 

the effects of the additions. Moreover, it is easy to understand the code if the statements 

represented by circular chain of sites are present together. Hence, instead of having 

these sites as separate sites, we represent them all in one site in the graph because 

maintenance operations must consider them together.

A procedure in a program can be viewed at as a block. A block consists of 

statements and other blocks (members), hi a block, all members are dependent 

(dependence includes data, control, and flow dependence) on the blockhead and, in turn, 

on all the members on which the blockhead depends. Block members on which the 

blockhead depends and the blockhead form a circular chain of sites. Hence, these 

members’ sites can be merged into the blockhead’s site. By this merging, a block is 

separated into a structure part and a data part. The structure part includes the blockhead 

and (see section 4.3.1) members (these may include members of a deeper block) in the 

block which define variables referenced by the blockhead. The data part consists of the 

remaining members of the block. Any changes made to the data part of a block will not
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affect its structure part and any changes made to structure part affects the constituents of 

the data part equally.

Structure compaction is used to merge circularly connected sites. Figure 5.5 is a 

RSG for maintenance (RSGM) of the StDG shown in figure 3.1(a). In the next section, 

we show how the RSGM can be used for maintenance activities.

-  -u

inwordg

nc

Figure 5.5. RSG for maintenance (RSGM)
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5 3 3  Maintenance activities

Hie RSGM for a procedure is useful for the modifications such as addition, 

deletion, change, and code movement

a. Additions. Addition involves adding new computation (statements) to a procedure, hi

the maintenance model, we skip to the final step, merge. Additions can be made if they

do not result in the addition of new use edges to the sites of the original graph. There are

two ways statements can be added to the program without affecting the program

computation. First, statements that do not define any existing variables can be added.

These statements can be placed in any block.

Second, statements that redefine existing variables can be added if the new

definitions do not reach the statements in the original program. The new definitions will

not reach the original program if the statements redefining an existing variable are

placed between a last use statement and a new def statement of the variable. Or, the new

statements can be added after the final-use statement of the redefined variable. We

define graph parameters for the statements being added to the program as:

AVariables = AProgram Variables u  {x, X, T], $}
AVar£  {vj| v e  AVariables a j  e AProgramStatements}
AS1TH = sites of the added statements

The conditions for addition are:

{Vs: ASITE; Vv: AVar; Vv: Var, Ve^EDGE; Vi j  :ProgramStatements;s 1 ,s2:SITE;« 
((vs,s,Definition)€DPS(s) a  vg {x , X, T |, <)>} a  v £  Variable) v  

((vs,s JDefinition)€ DPS(s) a  ee((vj,sl .Definition),(Vj,s2,Use)) a  s < i a  s > j}

That is, a variable defined in the added statements is not present in the original program,

or a variable defined in the added statement is not added between a definition statement

and a use statement of the variable.
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The addition of new statements in a block results in a def edges from the 

blockhead to added statements (control dependence edges). The statement number of 

the added statements should lie within the block begin and block end site numbers (i.e. 

between x and q> port numbers of the blockhead). If the added statements use any 

variables from the original program, additional def edges (data dependence edges) will 

result Again, the statement number of the added statement should be greater than the 

statements (number) containing the variable references in the added statement 

Three cases arise when merging new code:

i. If an addition results in no new data dependence edges from the original graph, 

then new statements are added in the chosen block. They become control 

dependent on the current block’s blockhead (b). For each statement in the added 

statements (AS), add a control edge from b. That is,

{Vj:ASlTK;G:RSG* G <— ((Xb,bJDefinition),(tj j,Use))}

ii. If the new statements use a variable defined both inside (vO and outside (v*) the

block, then new statements are added before the site in which the used variable

(Vj) is defined within the block. For each definition of v reaching AS from

outside the block, external edges are added. An external edge is also added for

each definition of v defined within the block which reaches AS. That is,

(Vvj; Vj:ASITE;Vk:SITE;i,s 1 ,s2:SITE;G:RSG«
G <— ((vk,s 1 .Definition),(vjj ,Use)) a
G «— ((vi,s2,Definition),(vj j  ,Use)) a  j<i a  Vk e  Defs(sl) a  vj G Defs(s2)}

iii.If the new statements use a variable defined only within the block, then the new 

statements are added after the site in which the used variable is defined. An
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external edge is added from the definition of v within the block (v*) to the use of

v in AS (V j). That is,

{VvjJ:ASrrE;i,s2:SrrE;G:RSG«
G <— ((Vi,s2JDefinition),(Vjj,Use)) a  j>i a  V| e  Defs(s2»

In the merged program the ascending order of the statement numbers is

maintained.

b. Deletions. Any leaf site can be removed. A leaf site has no def edges (i.e., no other 

site is using it); hence, it can be removed without affecting the rest of the program. Any 

site in the graph can be made a leaf site by merging all the sites in the forward slice of 

the site (FSS), as explained in Section 5.2.1. If r  is the site that needs to be deleted, then 

all the sites in the forward slice of r  are merged in r. Then r  is removed. That is,

(Vs:SITE» s e  FSS(UPS(r)) a  r <— s a  <— r }

In the final program the ascending order of the statement numbers should be 

maintained. Care should be taken when sites are removed to avoid dead code. A non- 

final-use site without a def port represents dead code and can be removed. That is,

{3s: SITE* DED(s) = <J> a  <— n}

c. Changes. The change may be viewed as a deletion followed by addition. We show 

how the changes can be incorporated in the RSGM of the StDG of figure 3.1(b) using 

the maintenance model. Statement 6  in figure 3.1(a) computes the number of characters 

in the input stream. To change this statement to count only the non-blank characters, the 

statement should be removed and the following statements added.

al. if( c != ' ' ) 
a2. nc = nc + 1;

Next we use the 5-step maintenance process to incorporate the change.
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i. Locate the sites in the restructured graph that needs to be changed or removed. Ia 

our example, site 6  needs changes. Site 6  is a member of block 5.

ii. The change dependent part includes the graph slices of all the sites identified in

C «l

Exit

Figure 5.6. The StDG of the changes.

the first step. The graph slice of site 6  includes site 6  and ‘nc’ port of exit site 

(sites r l and Exit in figure 5.6). The rest of the graph is change independent

iii. Separate the dependent part into reusable and replaceable parts by identifying 

sub-graph slices from the change dependent part identified in step 2. The sub­

graph slices may be reused. The entire graph slice identified in step 2 can be 

reused.

iv. Change involves addition of a new site al and reuse of slice identified in step 3, 

as shown in figure 5.6.

v. Merge the change independent part of step 2 and modified part from step 4. This 

process involves adding the modified part of the StDG to the restructured graph 

with the change dependent part removed. The modified part is to be added in 

block 5; hence the modified part can be placed between statements 5 and 14.
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The modified part uses variable ‘c’ defined both outside (statement 4) and 

inside the block (statement 13), hence it should be placed before statement 13. 

Merging results in three data dependence edges from C4, Co, and nc, and one 

control dependence edge from T5, as shown in figure S.7 (dotted lines). The 

modified program RSG is as shown in figure 5.7.

✓- - - - - - C I  < P l i  -N
2 1y

V- - - - - -  T j  — - - - - J

t 7 . inwordg

9i2 ' t? " inwordio

Figure 5.7. The modified program RSG
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d. Code movement A statement redefining an existing variable cannot be added 

between the variable definition and use statements in the original program. In a typical 

program, any number of statements may be present between the variable definition and 

use statements. By moving the variable definition statement closer to the use statement 

we can provide more space for adding new statements. Moreover, code movement 

increases code readability. Code movement is widely addresses as part of program 

restructuring transformations [Morg 97][Gris 95][Bowi 95].

In the RSG, code movement can be accomplished easily. A statement can only 

be moved within its block. We consider two scenarios before moving the code.

i. If a definition statement and a use statement of the variable are present in the 

same block, then the definition statement can be placed before the use 

statement If more than one use statement is present, then the statement is 

moved to the use statement closest to i t

ii. If the definition statement and the use statement of the variable are present in 

different blocks, then the definition statement can be placed before the 

blockhead statement of which the use statement is a member. If the block of 

which the use statement is a member and the definition statement are members 

of different blocks (i.e. the use statement is in a deeper block), then we find the 

block of which the previous block is a member. This process is done repeatedly 

until we find a block that is a member of the same block as the definition 

statement

Let si be the set of sites in the graph where a set of variables is defined. Then si 

can be moved near s2, where s2 = min Site(DPD(sl». If si < s2, then si is moved to a
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site that is less than si. If si > s2 then si is moved to a site that is greater than si. If s i 

and s2  are in different blocks, then either s i can be moved in its block or the entire 

block of si can be moved together.

The maintenance model is similar to the one presented in [Gall 91], but the 

approaches to implement the models differ. [Gall 91] defines a decomposition slice, 

which is obtained using union and complements of traditional slices to isolate the code 

that needs change. The decomposition slice has worst-case times of 0(n e log(e», where 

n is the number of variables and e is the number of edges in the flowgraph [Gall 91]. 

The graph slice can be computed from the RSG in time proportional to the size of the 

graph. Moreover, formulation of the decomposition slice requires a better understanding 

of the program.

5 .4  Sum m ary

hi this chapter, we applied RSG to program slicing and maintenance. A group of 

sites with high cohesion will be present (or not present) in every slice, unless the slice 

starts or ends in the merged site. The StDG is restructured through compaction that 

merges the sites with high cohesion. The type of restructuring required changes from 

application to application. We introduced three types of RSGS for slicing. Depending 

on the time and space requirements, the software engineer can select the type best suited 

to the application. We also showed how forward, backward, and modular slices can be 

computed using different types of RSGS.

Generally two approaches are followed when incorporating changes in a 

program. One approach allows changes to be made without any constraints and then 

checks for inconsistencies introduced. Finding inconsistencies after the changes are
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made was found to be NP-hard. The second approach constraints the type of changes 

that can be made. We present a maintenance process that uses the latter approach. We 

show how the restructured graph for maintenance (RSGM) is used in activities like 

addition, deletion, changes, and code movement. The restructured graph (RSG) yields 

better results than the generally used graphs when used for slicing and maintenance.
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Chapter 6

Reverse Engineering

6.1 Introduction

The term “reverse engineering” has its roots in the hardware world where the 

primary objective is to decipher products whose design is not available. In software 

engineering, the term is used to describe the process of examining a software system to 

aid maintenance, gain insight, and enhance overall understandability [Chik 90]. The 

central theme of reverse engineering research involves the development of tools, 

techniques, and methodologies for the analysis, synthesis, and representation of 

information about existing software systems. The reverse engineering activities can be 

broadly identified as 1 ) identifying the functionality of an existing system, 2 ) modeling 

it at a physical (or design) level, and then 3) modeling at a logical (or analysis) level 

[Scha 96].

This research is applicable to the first two activities; for this purpose we use a 

language independent format (LIF) and the statement dependence graph (StDG) 

representations. The LDF captures the details of the program from which the StDG and 

other design views of the program are derived. In section 6.2, we examine the OF 

representation. In section 6.3 we present a synthesis of the StDG from the OF. Various 

views of the reverse engineered design are presented in section 6.4. The chapter 

summary is presented in section 6.5.
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6.2 Code to U F

The language independent format was developed as part of the Unravel [Lyle 

95] project, developed at the National Institute of Standards and Technology (NIST). 

Unravel is a Computer Aided Software Engineering (CASE) tool that can be used to 

statically evaluate ANSI C source code using program slicing. For unravel, the LIF is an 

intermediate step in obtaining the PDG of a program; in this work we use it to derive the 

StDG. Sections 6.2.1 and 6.2.2.present the semantics of the LIF.

6J2.1 Language independent format (LIF)

The LIF represents the program as an annotated flow graph of nodes and edges. 

Nodes are generated to represent semantic or syntactic units of the program that 

correspond to statements or parts of statements. A flow graph consists of two edge 

types: control flow and requires. A control flow edge between two nodes indicates the 

flow of control from one node to the other. A requires edge is a general mechanism for 

specifying control or syntactic dependence between nodes. A node may have one or 

more requires nodes; these nodes are known as the requires set The annotations specify 

location of the corresponding source code.

The rules for representing statements as flow-graph nodes and for specifying 

requires sets are as follows:

1. An expression is represented as a dataflow node.

2. A statement that is composed of noncontiguous tokens is divided into two or more 

dataflow nodes such that each group of contiguous tokens is one or more nodes. 

Examples are the matching braces of a compound statement and the do... while.
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3. An additional dataflow node is used to represent each C prefix (++x), postfix (x++) 

or comma (x+y, z) operator in an expression. A conditional operator uses three 

additional dataflow nodes.

4. Any compound statement that is represented with more than one dataflow node has 

one node designated for inclusion in requires sets. Any node controlled by the 

compound statement references the designated node in its requires set The other 

nodes of the compound statement are referenced in requires set of the designated 

node.

5. Each flow-graph node is annotated to provide a mapping from flow-graph nodes to 

source code statements.

6 . The compound statement generates one flow-graph node for the beginning bracket 

and another for the ending bracket

The LIF handles the following language features:

• Expression statements
• Compound control statements
• Structure variables
• Indirect assignment by pointer
• Indirect reference by pointer
• Dynamic structures
• References to structure members by pointer
• Assignment to structure members by pointer
• Procedure calls

6 2 2  Language independent representation

In this section, we present the details of the LIF codes used for the 

representation. The codes used to specify declarations and expressions are presented in 

table 6.1. Declarations do not generate a flow-graph node. They generate a positive id
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for each variable, and each global variable is allocated a unique id. Each procedure has a 

separate set of ids for local variables and formal parameters, starting from 1. The 

variable attributes, static, pointer, external, and array are indicated by the codes: S, P, X 

and A.

Table 6.1. LIF codes used to specify declarations and expressions

Type Code Syntax
LOCAL ID 4 4(id, nameLSlLPlLXILAI)
GLOBAL ID 5 5(id, namer,Sir.Pir.Xir.Al)
REF 7 7(node, idfjevel])
DEF 8 8 (node, id[Jevel])
GREF 9 9(node, idfjevel])
GDEF 1 0 1 0 (node, idfjevel])
AREF 24 24(node, address)
ADDRESS 25 25(address, procedure id, id)

Expressions generate codes for variables referenced and defined. REF code is 

used for local variables whose values are used. GREF code is used for global variables 

whose values are used. Similarly, DEF and GDEF codes are used for local and global 

variables that are assigned new values. The level indicates the level of indirection of the 

ref or def. A level of zero, which represents no indirection, is omitted. A level of -1 

indicates the address o f operator (&). ADDRESS is used for each object of the address 

o f operator, indicating the variable, the procedure where the variable is declared (zero 

for global declaration) and a unique address id. Address ids are assigned sequentially 

from 1 .

The codes used to specify the flow-graph are presented in table 6.2. Each flow- 

graph node produced is annotated by SOURCE MAP to provide a mapping from flow- 

graph nodes to source code statements. Flow of control from node-to-node is specified
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with SUCC. An i f  statement without an e l s e  generates at least two nodes: one node 

for the i f ,  left parenthesis token and the condition expression, and one for the right 

parenthesis to serve as an exit point from the statement The nodes for the controlled 

statement must exit through the right parenthesis node. The controlled statement 

generates a REQUIRES entry for the i f  node. The i f  node requires the parenthesis 

node. An i f  statement with an e ls e  generates an additional node for the e ls e . Nodes 

of the second controlled statement require the e l s e  node. The e l s e  node requires the 

i f  node. The flow-graph of an i f  statement is presented in Figure 6.1.

Table 6.2. LIF codes used to specify the flow-graph

Type Code Syntax
RETURN 14 14(node,l|0)
GOTO 15 15(node, G|B|C)
SUCC 16 16(from node, to node)
REQUIRES 17 17(node, required node)
SOURCE
MAP

18 18(node, from line, from column, to line, to column)

STMT

IF(EXP STMT

IF(EXP STMT

Figure 6.1. i f  statement flow-graph
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A sw itc h  statement generates two nodes, one for the s w itc h  token and 

expression and one for the right parenthesis token. The right parenthesis token is used as 

an exit point for each case in the controlled statement The controlled statement 

generates a REQUIRES entry for the sw itc h  node. A w h ile  statement generates two 

nodes, one for the w h ile , left parenthesis and expression and one for the right 

parenthesis. The right parenthesis node is a successor (SUCC) to the w h ile  node and 

the last node of the controlled statement The controlled statement generates a 

REQUIRES entry for the w h ile  node. The w h ile  node requires the right parenthesis 

node. The do . . w h ile  generates three nodes: the do, the w h ile  and

condition, and the right parenthesis. The successor of the do node is the first node of the 

controlled statement. The w h ile  node is the successor of the last node of the controlled 

statement The w h ile  node has two successors: the do node and the right parenthesis. 

The do node is required by the controlled statement and the do node requires the 

w h ile  node and the right parenthesis. The f o r  statement generates three nodes. The 

first node contains the f o r ,  left parenthesis, and the initialization. The second node 

encompasses the test expression, and the third node contains the increment and the right 

parenthesis. The test is a successor of the f o r  and initialization. The statement is a 

successor of the test, and the increment is a successor of the statement The f o r  and the 

initialization expression require the test, the increment and the statement The statement 

and increment are both required by the test and the right parenthesis requires the fo r .  

Nodes corresponding to r e tu r n  statements are identified by RETURN. The second 

field of the RETURN indicates a return with expression by 1 and a return without
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expression by 0. The statements g o to , b re a k  and c o n tin u e  are identified by a 

corresponding G, B or C code in a GOTO entry.

Procedure headers and calls use the codes presented in table 6.3. The PROC 

END indicates a static declared procedure with an S flag. Procedures that return an 

expression are indicated with an R flag. For formal parameters, the variable attributes 

pointer and array are indicated by the code: P and A in the FORMAL ID record. All 

local variable declarations, (LOCAL ID), and flow graph node related LIF codes appear 

between the PROC START and the PROC END.

Table 6  J . LIF codes to specify procedures

Type Code Syntax
PROC START 1 l(node, procedure id, name)
PROC END 2 2(noder,SlLRl)
FORMAL ID 3 3(id, nameLA][,P])
CALLSTART 1 1 ll(node, procedure id)
ACTUALSEP 1 2 1 2

CALLEND 13 13

Procedure calls are handled using CALL START, and the actual parameters are 

listed as expressions in order separated by ACTUAL SEP entries. Structure fields are 

represented using the codes presented in table 6.4.

Table 6.4. LIF codes to specify structure fields

Type Code Syntax
CHAIN 19 19(node, chain, id)
GCHAIN 20 20(node, chain, id)
FIKFT) 21 21(node, chain, seq, field id, field)
CREF 22 22(node, chain)
CDEF 23 23(node, chain)
STRUCT 26 26(procedure id, id, offset)
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At an expression node, each reference or assignment through a pointer to the 

fields of a structure generates a chain (CHAIN or GCHAIN). The chains of a node are 

given a chain number sequentially from 1. The variable at the head of the chain is 

specified in the id field of the CHAIN for local variables and in the id field of the 

GCHAIN for global variables. CREF and CDEF indicate if the chain specifies a ref or a 

def. FIELD is used to specify each field of a chain by sequence number. The field id is 

the sequence number of the field within the data structure and field is the field name. 

STRUCT indicates that the variable identified by the procedure id, and id is a structure 

with offset members. LIF code FILE, 6(file id, file name) is used to indicate the source 

file associated with each procedure. Derivation of the StDG from the LIF codes is 

presented in the next section.

63  LIF to StDG

The source code for deriving the StDG has one statement per line. Recall, the 

statement terminators in the StDG are: ‘; \  ‘{ \ ‘}’ (an exception is a do . . .

w h ile  loop, ‘}w hile  (e x p re ss io n ) ; ’ is placed in one line) , and *)\ only if ‘)’ is 

not followed by a ‘{‘. Each statement in the source is given a sequential number starting 

from 1. Figure 3.1(a) is a sample program with statement numbers, hi the StDG the 

nodes are represented as sites. The sites representation includes use/def ports, 

use/def/intemal edges, four special ports (t, <{>, X, and q), and three special sites for each 

procedure (enter, exit, and summary). The aim is to convert the control flow (SUCC) 

and control dependence (REQUIRES) information from the LIF to data, control, and 

flow dependences while at the same time determining the internal data dependences at
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each node (which variables are used to define a particular variable is lost in LIF). Codes 

similar to the O F codes are used to describe the StDG. These codes are shown in table

6.5.

Table 6.5. StDG codes

Type Code Syntax
LOCAL ID 4 4(id, name[,Sl[,P][,X][,A])
GLOBAL ID 5 5(id,namer,SirJ»irjarAl)
FORMAL ID 3 3(id, nameLAHJP])
USE PORT 31 31(site #, id, level, G|L|P, port #)
DEF PORT 32 32(site #, id, level, G|L|P, port #)
INT EDGE 35 35(site #, id, level, G{L|P, port #, id, level, G|L|P, port #)
EXT EDGE 36 36(site #, id, level,G|L|P, port #,site #, id, level, G|L|P, port #)
SUMMARY 37 37(procedure id, site #, name)
FUN CALL 38 38(calling procedure id, called procedure id)

Ports (USE PORT and DEF PORT) are represented using the site number, 

variable id from the OF, level of indirection, variable type (global, local, or parameter), 

and port number (which is the site number, initially). A level of zero indicates no 

indirection, and -1 indicates the address o f operator (&). The external edges (EXT 

EDGE) at a site are specified using a from-port and a to-port. The same external edge 

acts as a def edge with respect to the first site # in the code and as a use with respect to 

the second site #. The internal edges (INT EDGE) are specified with site number (in 

which the edge is present) and two ports (from and to). The same ids used in OF for 

local variables, global variables, formal parameters, procedures, and array variables are 

also used in the StDG. Each procedure’s summary site is specified with SUMMARY, 

using the procedure id and a unique site number. A procedure call (FUN CALL) is 

identified with ids of calling and called procedures. Section 6.3.1 presents the derivation
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process of StDG codes from the LIF. For variable declarations, the LJF codes (LOCAL 

ID, GLOBAL ID, and FORMAL ID) are also used as StDG codes.

63.1 Definitions

This section contains definitions relevant to the StDG extraction. 

siteCnodei). Statement to which the nodei belongs. It is found from the SOURCE MAP.

For example, site(nodeO = si is found from LIF code 18(noden sj, .. .).

VT(idi). Variable type of idi, is a P (parameter) if there is a LIF code 3(idz name) such 

that idi £  id2. Otherwise, it is an L (local variable).

CP(pidi). Current procedure id and name of pidi found from l(node, pidj, name). 

RV(idi). Is idi used in a r e tu r n  statement? Yes, if there are pairs of LIF codes 

24{nodei,addri) and 25(addrupidMi)» 14(nodej,l\0) and 8(nodei,idi), or 

14(node,l\0) and 7(nodei,idj), tested in that order (in r e tu r n  a  = b+c ; ,  

only a  is used in the return statement).

63.2 Ports

This section presents the derivation of use ports of the StDG. Table 6.6 contains 

extractions of use ports from the LIF. The codes in the LIF column are used to derive 

ports as shown in use ports column, if the conditions mentioned in the same column are 

satisfied. The comments column indicates the type of variables.

All sites of statements using data variables have use ports. The LIF uses REF 

and DEF for both local variable and parameters. Hence, VT is used to identify a local 

variable from a parameter. Modified global variables and variables returned from a 

procedure are specified as use ports in EXTTpid site. Two different def nodes belonging
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to the same statement indicates the presence of multiple definitions in the statement 

(multi-def variable). All block members in LIF require a blockhead. This feature is 

represented in the StDG with a control variable in all block members (items 8  and 9 in 

table 6 .6 ). Table 6.7 shows how the def ports are obtained from the LIF codes.

Table 6 .6 . Determination of use ports from the LIF

# T.TF Use ports Comments
1 7(node,

idfjevel])
31(site(node), id, level, VT(id), site(node)) 
31(EXrrnid, id, level, VT(id), 0), if RV(id)

Local variable

2 9(nodeJd[Jevel]) 31(site(node), id, level, G, site(node)) Global variable
3 1 0 (node,

idFJevel])
31(EXTTpid, id» level, G, 0) Defined global 

variable
4 24(nodei,addri)

25(addri,picUdi)
31(site(node), id, -1, VT(id), site(node)), 

VT(id) = G, if pid= 0  above. 
31(EXTTtHd, id, -1, VT(id), 0), ifRV(id)

Address ref

5 8 (nodei, idi) 
8 (node2 , id2)

If site(node0 = site(node2) then 
31(site(nodei), K  0 , 0 , site(node0 )

Multi-def

6 1 0 (nodei, idi) 
1 0 (node2, id2)

If site(nodeO = site(node2) then 
31(site(node0, K  0 , 0 , site(nodei))

Multi-def

7 l(node, pid, 
name)

31(site(node), x, 0 , 0 , 0 ) New procedure

8 17(node, mode) If site(raode) > site(node) then 
31(site(raode), x, 0 , 0 , site(node))

Control
variable

9 17(node, model, 
mode2 )

31(site(mode), x, 0, 0, site(node)), for each 
mode satisfying model < mode > mode2  

and site(mode) > site(node)

Control
variable

D 17(node, mode) If site(mode) < site(node) then 
31(site(node), x, 0 , 0 , site(node))

}, as a member 
of block

All sites of statements defining data variables have def ports (items 1-3 in the 

table). All parameters and global variables used in a procedure are identified in the 

ENTERpid site. The user has to specify if a final-use variable is present in a statement. In 

the LIF, a blockhead requires the *}’ and all members (except ‘{‘) require the 

blockhead. This feature is exploited by item 7 in table 6.7 to find the blockhead’s *}’
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(blockhead statement number is the smallest of all members and, ‘}* has the highest 

number in its block). The next section presents the derivation of internal edges.

Table 6.7. Determination of def ports from the LIF

# LIF Def ports Comments
1 8(node,

idfjevel])
32(site(node), id, level, VT(id), 
site(node))

Local variable

2 10(node,
idfjevel])

32(site(node), id, level, G, site(node)) 
32(ENTERDid, id, 0, G, 0)

Global variable

3 3(id, name) 32(ENTERoid, id, 0, P, 0) Parameter
4 User Defined If user specifies that site is a final-use site 

32(site), ri, 0,0, sitefnodeO)
Final-use

5 l(node, pid, 
name)

32(site(node), t, 0,0, site(node)) New procedure

6 17(node, mode) If site(raode) > site(node) then 
32(site(node), t, 0,0, site(node))

Control variable

7 17(node, mode) If site(mode) < site(node) then 
32(site(node), 0, 0,0, site(node))

Flow variable,}

8 ll(node, pid) If 7(node, . .) and 8(node, . .) are not 
present then
32(site(node), d>, 0,0, site(node))

Function calls 
not using or def­
ining a variable

9 15(node, B(C) 32(site(node), 0 ,0 ,0 , site(node)) Break, continue

6 3 3  Internal edges

Table 6.8 shows how the internal edges of sites are obtained from the LIF. At 

each site, there are internal edges from x use port to all def ports. There are edges from 

data variable use ports and the multi-def port to a data variable def port.

63.4 Control and flow dependence edges

Control dependence edges (external) and part of the flow dependence edges are 

obtained from the LIF. The remaining flow dependence edges must be provided by the 

user (example, dependence among two output statements). The data dependence edges
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are derived from the already built StDG and the LIF using data flow analysis. Table 6.9 

gives the control and flow dependence edges obtained from the LIF. An external edge is 

a use edge of one site and also a def edge of another site.

Table 6 .8 . Determination of internal edges from the UF

# LIF Internal edges Comments
1 7(node, idi [.level]) 

8 (node, id2[Jevel])
35(site(node), idi, level, VT(idi), 
site(node)4 d2, level, VT(id2), 
site(node))

Use and def of 
local variables

2 9(node, idi [.level]) 
1 0 (node4 d2[,level] 
)

35(site(node), idi, level, VT(idi), 
site(node), id2 , level, G, site(node))

Global variables

3 8 (node, id2[,level]) 
17(mode, node)

If site<node) > site(mode) then 
3S(site(node), x, 0 ,0 , site(mode), 
id2Jevel, VT(id2), site(node))

x use to all def 
ports, local

4 1 0 (node4 d2 [4 evel]
)
17(mode, node)

If site(node) > site(mode) then 
35(site(node), x, 0 ,0 , site(mode), id2, 
level, VTfida), site(node))

x use to all def 
ports, global

5 l(node, pid, name) 35(site(node), x, 0 ,0 ,0 , x, 0,0, 
site(node))

New procedure

6 User identified An edge from each of the use ports to 
final use port.

Final-use

7 8 (nodei, 
idi [.level]) 
8 (node2 , 
id2[Jevel])

If site(nodei) = site(node2) then 
35(site(nodei), A., 0 , 0 , site(node04di, 
level, VT(idi), site(nodei)), and 
35(site(nodei), A., 0 , 0 , site(node04d2, 
level, VT(id2), site(node2))

Multi-def 
Local variable

8 1 0 (nodei, 
idi [.level]) 

1 0 (node2, 
id2 [,level])

If site(node0 = site(node2) then 
3S(site(nodei), A., 0 ,0 , site(node04dt, 
level, VT(idi), site(node0), and 
3S(site(nodei), A., 0 , 0 , site(node04d2, 
level, VT(id2), site(node2))

Multi-def 
Global variable

9 ll(node, pid) If 7(node, . .) and 8 (node, . .) are not 
present then 35(site(node), x, 0 , 0 , 
site(node), d>, 0 , 0 , site(node))

Function calls 
using/defining 
no variables

1 0 15(node, B|C) 35(site(node), x, 0, 0, site(node), <j>, 0, 
0 , site(node))

Break, continue

1 1 17(node, mode) If site(mode) < site(node) then 
35(site(node), x, 0 ,0 , site(node), <j>, 0, 
0 , site(node))

Flow variable,}
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The z, def port of a site (blockhead) is connected to t* use ports in all sites 

(members), shown as items 1-3 in table 6.9. In items 4 and 5, $bode def ports are 

connected to T̂ node use port; mode is a member of r2node, and node is a member of 

mode (flow edges).

Table 6.9. Determination of external edges from the LIF

# LIF External edges Comments
1 17(node, model, 

mode2)
If site(mode) > site(node) then 
36(site(node), x, 0,0, site(node), 
site(mode), x, 0,0, site(node)) for each 
model < mode > mode2

Blockhead 
(node) to 
members 
(mode)

2 17(node, mode) If site(mode) > site(node) then 
36(site(node), x, 0,0, site(node), 
site(mode), x, 0 ,0 , site(node))

Blockhead 
(node) to a 
member (mode)

3 17(node, mode) if site(mode) < site(node) then 
36(site(mode), x, 0,0, site(mode), 
site(node), x, 0 ,0 , site(mode))

Blockhead 
(mode) to *}’ 
(node)

4 17(node, mode) 
17(r2node, mode)

if site(mode) < site(node) then 
36(site(node), <b, 0,0, site(node), 
site(mode), x, 0,0, site(r2node))

*}’ (node) to
blockhead
(mode)

5 ll(node,pid) 
17(mode, node) 
17(r2node, mode)

If 7(node,..)  and 8(node,..)  are not 
present and site(mode) < site(node) 
then 36(site(node), 0 ,0 ,0 , site(node), 
site(mode), x, 0,0, site(r2node))

Function calls 
using/defining 
no variables.

6 3 i  Data dependence edges

To add data dependence edges to the StDG, we need variables deffuse 

information and the control flow information. The control flow information is 

represented (SUCC) in the LEF as the flow of program execution from node to node. A 

def to a variable can be preserving or killing (section 3.5.1). A preserving or a killing 

def is always with respect to a previous def of the same variable; a def may be

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



preserving with respect to some and killing with respect to other defs. A def of variable 

V  in block B is a killing def of all previous defs of V  within B or within a deeper block 

of B, and is a preserving def of all previous defs in the outer blocks of B. Different types 

of def types include:

Block B1 // all defs in the following lines are to a same variable 
defl // defl is killing def 
Block B2

de€2 //def 2 is preserving of defl and defl is not visible in this block 
def3 //def 3 kills def2 and preserves defl 

Blockend B2
def4 //def4 kills both defl and def3

Blockend B1

A node in the LDF may have one or more successor nodes. A node with two 

successor nodes indicates the beginning of a new block. An algorithm for obtaining the 

data dependence edges is given in section 6.3.6. Each user-defined procedure is 

analyzed for data dependence edges separately. The summary site of an analyzed 

procedure is obtained (as explained later) and used in place of its call statement during 

the analysis. The summary sites of the library functions are taken from the user. A loop 

block is analyzed twice and so is a recursive procedure; the summary site obtained in 

the first analysis (by ignoring the recursive calls) of a recursive procedure is used in the 

second analysis.

63.6  Algorithm for deriving data dependence edges

In this section, we present an algorithm for deriving data dependence edges in 

the StDG of a procedure.

I* Variable def and use information is used in deriving the data dependence edges.

Variable def and use information is obtained from the ports of the StDG. Each
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procedure is analyzed separately. Each loop block is analyzed twice. A call to a 

procedure is replaced by the summary site of die procedure. See section 6.3.7 for 

an algorithm for obtaining the summary site of a procedure. */

struct PORT{ 
variable_id; // each variable is given a unique id 
variable_level; //pointer or address information of the variable 
variablejtype;// use or def 
variable_scope;//local or global
variable_port_num; // number of the statement in which the variable is present 
variable _site; // site in which the port is present

};

/* The port of each variable defined is added to the active ports list. Ports of 

variables whose def is a killing def are removed from the list. The block depth of 

each port in the list is also stored along with the port. Initially block depth is 

zero. The block depth counter is increased when a block begin is encountered, 

and it is decreased when a block begin is reached. */

struct ACnVE_PORT { live ports (variables)
PORT ports;
bdepth; //block depth of the port

};

ACITVE_PORT active_port_list[];
PORT PI, P2;
HEADR block_headerO;
block_depth = 0,//cunent block depth
required.node = 0; //require information from the LIF codes

I* Find the PROC START LIF code of the procedure under consideration. The 

code is in the form l(nodei, pidi, aamet) where node/ is the graph node number, 

pid/ is current procedure id and name/ is the procedure name. Enter site includes 

def ports of formal parameters and global variables. These ports are add to the 

active ports list with block depth = 0. */
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current_node = nodei;
current_pid = pidi; //
For each port P I in ENTER(current_pid) site {

Add PI and block_depth of 0 to active_port_list[]
}
call process_sites(curTent_node)

/* The successor of a node is obtained from the LIF. It is in the form - 16(nodei, 

nodeO where node2 is the successor node to nodej. The site number of a node is 

obtained from the LIF code, it is in the form — 18(node, number, . ) where, 

number is the statement number of node. */

process_sites(node)
{

loop forever{ // loop till the proc end is reached 
if node has more than one successor then 
{

for each successor S call process_sites(S) and 
exit

}
next_node = successorfnode);
Site_no = get_S ite_number(next_node) // see comments above 
Call process_use_def(site_no) 
switch(site_no){ // site type
case PROC END: //end of the procedure s ite . Add edges to ports in the exit site, 

for each P2 in use ports of EXIT(current_pid) site
for each i, 0<= i < L if (P2.id = active_port_list[i] .active_ports.id) 

add an egde from active_port_Iist[i] to P2; 
end of analysis for the procedure 
break out of the loop;

case BLOCK BEGIN: // new block beginning 
exit if site_no is a loop and was visited twice already 
block_depth = blockjdepth + 1 
break;

case BLOCK END: // block end site 
bIock_depth = block_depth -1  
break;

case CALL START: IIsite is a call to a procedure 
replace current site by the summary site of the called procedure and
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replace formal parameters by actual parameters, and
call process_use_def(summary_site)
break;

}// end of switch 
}//end process_sitesO

I* Fen: each use port (PI) of variable V in the site, edges are added from the ports

(P2) of variable V in the active ports list to PI if block depth of P2 >= block

depth of PI. For each def port (PI) of variable V in the site, PI and block depth

of PI are added to the active ports list. Ports (P2) of variable V in the active

ports list with block depth >= block depth of PI are removed from the active

ports list */

process_use_def(site)
{

for each use port PI in site 
{

for each port p2 in active_port_list[] .ports
if (P2.id = pi.id && P2.bdepth >= block_depth) add an egde from p2 to PI

}
for each def port PI in site 
{

for each port p2 in active_port_list[] .ports 
if (P2.id = pi. id && P2.bdepth >= block_depth)
{

remove P2 from active_port_list[]
add PI and blockjdepth to active_port_list[]

}
}
}

63.7 Summary site

An algorithm for computing the summary sites of procedures is presented in 

table 6.10. A sum m ary  site of a procedure can be computed only after its StDG is 

completely derived.
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Table 6.10. Algorithm for computing summary site

For each port PI in Enter site of the procedure 
add PI to use ports of the summary site 

For each port PI in Exit site of the procedure 
add PI to def ports of the summary site 

For each port PI in Enter site of the procedure 
{

find FSP(P1) // see section 5.2.1 of Chapter 5 (forward slice ports) 
for each port P2 in FSP(P1) and Exit site

add an edge from PI to P2 in summary site
}

6.4 Visual Representation of Design

The software design is presented in the form of an architectural design and a 

detailed design. The architectural design or the high-level design consists of procedures 

and their interconnections. The detailed design or the low-level design includes the 

design associated with the individual procedures [Scha 96]. The reverse engineered 

architectural design, in the form of a call graph, and the detailed design, in the form of 

the StDG, is represented in the StDG codes. The overall program understandability and 

maintainability can be improved by generating graphical representations of different 

views of the program.

6.4.1 Control flow and dataflow graphs

Control flow and dataflow graphs (CFG and DFG) are obtained from the StDG 

by considering each site as a node. Each external edge between t  ports of the sites is 

made a control flow edge in the CFG. For each loop site s, a control flow edge is added 

from the last member of s (site with highest site number within block s) to s. Similarly, 

each external edge joining data variable ports in the StDG is made a data flow edge in
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Legend: Data *
Control ----►

Figure 6.2. CFG and DFG

the DFG. The CFG and DFG of the function wordCountO of figure 3.1(a) is shown in 

figure 6.2.

6.4.2 Call graph

The StDG code FUN CALL lists the calling and called procedures, including the 

library routines. The FUN CALL and SUMMARY codes, 38(calling procedure id, 

called procedure id) and 37(procedure id, site #, name), can be used to obtain the call 

graph. The library routines can be excluded from the call graph by excluding the 

procedures with zero procedure ids. The call graph of wc program of figure 3.1(a) is 

presented in figure 6.3.

—►IwordCount------

main

i getchar

printf

Figure 6.3. Call Graph
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Main

I

 ►IwordCount * *—I getchar

Legend: Control

Data
printf

Figure 6.4. Structure chart representation of call graph 

6.43 Structure charts

The structure chart of the modules and their hierarchical relationships of the wc 

program of figure 3.1(a) is shown in figure 6.4. The structure chart also identifies the 

data passed between the modules.

6 i  Summary

Reverse engineering is the process of analyzing a subject system to understand 

and represent it at a higher level of abstraction. The subject system can be in the form of 

code or design documents. A process for reverse engineering the source code is 

presented in this chapter. The language independent format (LIF) is an intermediate 

representation for C programs. The LIF was developed as part of Unravel CASE tool, 

available in the public domain. We use the Unravel for generating the LIF, and use the 

LIF for generating the design of the system. The design obtained is represented in the 

form of statement dependence graphs (StDG). From the StDG, different views of the 

system are generated. These graphical representations aid overall comprehensibility and 

improve the maintainability of the source system.
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Chapter 7 

Design Change

7.1 Introduction

An object-oriented system uses the principles of abstraction, encapsulation, 

modularity, and hierarchy together in a synergistic manner [Booc 94] unlike a 

procedural system which may encompass one or more of these principles. However, the 

meaning of these principles as used in a procedure-oriented system differs vastly from 

an object-oriented system. To convert a procedure-oriented system to an object-oriented 

system, we need to either identify these principles (if present in procedural systems) or 

introduce them.

An object has a state, exhibits some well-defined behavior, and has a unique 

identity [Booc 94]. Behavior is how an object acts and reacts in terms of its state 

changes. Object behavior is expressed through operations (methods) like, modifiers, 

selectors, constructors and destructors. A modifier alters, a selector accesses, a 

constructor initializes, and a destructor frees the state of an object. However, in a 

procedural system, no distinction is made between state and behavior. Also, different 

types of operations exist as interleaved code.

Rugaber [Ruga 95] defines interleaving as merging of two or more distinct 

plans within some contiguous textual area of a system. A plan denotes a group of 

statements present in a system to achieve some purpose or goal. In terms of objects, a 

plan may consist of one or more operations. Interleaving may occur for several reasons 

such as efficiency considerations and the sequential nature of procedural programming.
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For example, it is more efficient to compute two related values at one place rather than 

separately. Also, constructors and modifiers of data structures are typically interleaved 

throughout a procedure.

To convert a procedure-oriented system to an object-oriented system, the norm 

has been to identify state from user-defined data structures and/or global variables, and 

then identify procedures as behavior. The procedures may be fine-tuned by removing 

extraneous code. The scope of these techniques is limited in two ways. First, it limits the 

object identification to user-defined data structures (and global variables) and to 

procedures that access these data structures. Second, it uses traditional program slicing 

[Horw 90] for splitting large procedures. Program slicing is a focusing technique based 

on dependences. A slice includes every statement that affects the slice (whatever the 

source may be). This approach may result in large slices with a broad focus [Jack 94]. 

Moreover, the objects obtained using these techniques are usually coarse-grained.

To narrow the focus of a slice, a decomposition slicing for function extraction by 

duplicating certain statements to be shared by a slice and its complement is given in 

[Gall 91][Lanu 93]. However, these decomposition slices are still large and also require 

a criterion for slicing, which is not always easy to formulate. Furthermore, slicing is 

more tuned to function extraction than to transformational reengineering [Gall 91][Lanu 

93]. In section 7.2, we present approaches available in the literature for object 

identification. Section 7.3 describes a new approach to object identification. In section 

7.4, a brief summary of the chapter is presented.
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7.2 Object Identificatioii Approaches

Research in object identification has been mainly focused on developing 

techniques for extracting objects from data that has already been aggregated in 

programmer-defined data structures [Ruga 95]. Concept analysis is applied in [SifF 

97] [Liu 90] to identify potential modules. Concept analysis uses functions (or a slice) 

and attributes of functions to identify potential objects. The attributes of functions may 

include parameter and return types of functions, global variable usage information, and 

slice criteria. The concept analysis approach generates a variety of possible 

decompositions from which a user can select an appropriate decomposition. The 

optimality of this approach depends on how well the attributes of functions are 

formulated for the concept analysis, which requires that the user have a good 

understanding of the system.

In [Wigg 97][Canf 96][Yeh 95], a clustering technique is used to identify 

objects. The technique uses a graph with procedures and external (and global) variables 

as nodes and references by the procedures to the variables as edges. Each isolated sub­

graph contained in the graph is a candidate to implement an object. For these techniques 

to apply, either the state variables must be identified by some mechanism or they must 

be declared as global variables. Moreover, these techniques use traditional slicing to 

extract relevant functionality from the functions.

Cohesion-based object identification approaches are presented in [Ache 95][Chu

92]. The usage information of pairs of global or parameter variables is used to arrive at 

different decompositions of a system in [Ache 95]. In [Chu 92], functions that refer to 

the same group of global variables are grouped into packages. These approaches use
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functions as operations of objects, but techniques can only be applied to programs that 

are already divided into operations.

Several automatic  object identification approaches are based on graphs and their 

properties. The most common approach consists of defining a model of the subject 

system as a graph on which notable sub-graphs and/or patterns are identified. Each sub­

graph or pattern is a potential object [Canf 96].

Generally these approaches follow 4 steps to identify object like features. These 

steps are:

i. Identify target variables as candidates for object state. [Gall 95] uses 

programmer-defined data structures while [Ache 95] uses actual parameters, 

common variables and array variables as target variables. [Liu 90] [Dunn

93][[Yeh 95][Canf 96][Siff 97] use global or external variables as target 

variables.

ii. Establish a relationship between the target variables and the procedures 

(functions) in the system. The most commonly used relationship is ‘uses’. [Liu 

90] [Dunn 93][[Yeh 95] [Canf 96] use - procedure ‘p’ uses variable V  - type of 

relationship. [Siff 97] uses both ‘uses’ (positive information) and ‘doesn’t use’ 

(negative information) relationships. [Ache 95] uses ‘pairs of variables used 

together’ relationship. This usually results in a graph or a matrix, with both 

target variables and procedures as nodes and the relationship as edges.

iii.Identify clusters or sub-graphs or patterns within the graph or matrix. Each of 

these sub-graphs or clusters is a candidate object
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iv. Fine tune the sub-graphs or clusters. A procedure may belong to more than one 

sub-graph. It may need to be sliced or removed from some or all sub-graphs. 

[Canf 96] calls these undesired links as coincidental and spurious connections. 

Coincidental connections are due to routines that implement more than one 

function, each function logically belonging to a different object Spurious 

connections are related to routines that access more than one data structure. 

Slicing is proposed to separate objects connected by coincidental connection, 

and routines resulting in spurious connections are discarded from the graph. 

[Yeh 95] follows a similar approach. [Siff 97] overcomes this obstacle using a 

language feature ‘friend’ available in C++, which provides access to state 

variables of other objects.

hi section 7.2.1, we discuss how different methods identify object-like features 

in the source code.

7.2.1 Liu and Wilde approach

For each global variable V , a set F(v) of procedures that directly reference V  is 

computed. A graph is constructed with each F(v) as a node. For each pair of nodes 

(F(vi) and F(V2», an edge connecting the two is added if there is a common procedure in 

the sets, F(vi) and F(V2>. Figure 7.2 is a graph built using the Liu and Wilde approach 

for the program in figure 7.1. Each of the two strongly connected sub-graphs recognized 

in the graph is a candidate for object Objects stack and queue are easily identified from 

figure 7.1.

•
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long stackltems [MAX];
int stackPoint;
int queueItems[MAX];
int queueHead queueTail, numQueueElm;
void stacklhitO {/* rcferencess stackPoint */}
void stackPush(elm) {/* references stackltems and stackPoint */}
int stackPopO {/* references stackltems and stackPoint*/
int stackTopO {/* references stackltems and stackPoint */
int stackEmptyO {/* references stackPoint */
void queuelnitO {/* references queueHead queueTail, numQueueElm */} 
void queueEnq(elm) {/*ieferences queueltems, queueHead, 

numQueueElm*/} 
int queueDeqO {/* references queueltems, queueTail, numQueueElm */ 
int queueEmptyO {/* references numQueueElm */

Figure 7.1 A sample C program for Liu and Wilde approach

Ffqueueltems! FfqueueHead! FfstackPoint! Ffstackltems!
queueEnq <------►queuelnit stacklnit ^ ^ stackPush
queueDeq queueEnq stackPush stackPop

stackPop stackTop
I stackTop

\ stackEmpty

xjr
FfnumOueueElml FfqueueTail!
queuelnit queuelnit
queueEnq queueDeq
queueDeq
queueEmpty

Figure 7.2. Strongly connected sub-graphs in Liu and Wilde approach 

7.22 Dunn and Knight approach

In the Dunn and Knight approach, a program is represented as a graph with 

global variables and procedures as nodes. Edges, which are directed from procedure 

nodes to variable nodes, specify the ‘uses’ relation. The graph is traversed depth-first
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queueEn

queueTail

Figure 7.3. Strongly connected sub-graphs in Dunn and Knight approach

looking for strongly connected components; each component is regarded as a candidate 

object Figure 7.3 shows the graph for the sample program given in Figure 7.1. The 

results are essentially equivalent to those obtained from the Liu and Wilde approach. 

7 1 3  SifF and Reps approach

Approaches based on search for notable sub-graphs or patterns may produce low 

quality objects by clustering more than one object within the same candidate. A 

procedure using state variables of two different objects creates a link between the 

corresponding sub-graphs, thus causing the two objects to be identified as a unique one. 

As an example, consider the sample program as shown in Figure 7.4.

Routine ‘queueEnq' references fields of both stack and queue structures. This 

routine creates a link between the two objects, thus recognizes the entire program as a 

single object.
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struct stack {
long stackltems [MAX]; 
int stackPoint;

};
struct queue {

struct stack *front *back;
};/* two stacks are used to simulate a queue */

void stacklhitO {/* references stackltems and stackPoint */}
void stackPush(elm) {/* references stackltems and stackPoint */}
int stackPopO U* refemces stackltems and stackPoint*/
int stackTopO {/* refemces stackltems and stackPoint */
int stackEmptyO {I* refemces stackPoint */
void QueuelhitO {/* references front and back */}
void queueEnq(queue *Q, elm) {/* references Q->front->stackPoint, and

Q->front->stackItems */}
/* queueEnq is making changes to stackPoint and stackltems directly */ 

int queueDeqO {/* references front and back*/ 
int queueEmptyO {/* references front and back*/

Figure 7.4 A sample C program for Siff and Reps approach

To alleviate this problem, Siff and Reps make use of both positive and negative 

information, unlike other approaches which make use of only “positive” information. 

For example, knowledge that “function ‘f  uses the fields of ‘struct queue* but not the 

fields of ‘struct stack’” is sometimes helpful in solving these problems. In addition to 

“uses” information, this approach uses the fact that ‘queueEnq’ has argument of type 

queue and not of type stack to determine if the routine belongs to a stack or queue 

object This approach identifies the routine as belonging to queue object. But one 

problem that is not solved completely is that the queue object accesses the state 

variables of a different object
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long stackltems [MAX];
int stackPoint;
int queueltems [MAX];
int queueHead, queueTail, numQueueElm;

void globallnitO {/^references stackPoint,
queueHead, queueTail, numQueueElm */} 

void stackPush(elm) {/* references stackltems and stackPoint */} 
int stackPopO {/* references stackltems and stackPoint*/ 
int stackTopO {/* references stackltems and stackPoint */ 
int stackEmptyO {/* references stackPoint */
void queueEnq(elm) {/* references queueltems, queueHead, numQueueElm 
*/>
int queueDeqO {/* references queueltems, queueTail, numQueueElm */
int queueEmptyO {/* references numQueueElm */
void stackToQueueO {/* references stackltems, stackPoint, queueltems,

queueltems, queueHead, numQueueElm */}

Figure 7.5 A sample C program for CCM approach

7.2.4 Canfora, Cimitile and Monro (CCM) approach

Another problem with Siff and Reps approach is that it is not always the case 

that every procedure in the system can be identified with one group or the other. As an 

example, suppose that the program in Figure 7.4 initializes both a stack and a queue in 

one routine, hi this case the routines ‘stacklnit’ and ‘queuelnit’ are substituted with a 

single routine, ‘globallnit’ (figure 7.5), which accesses the state of both the objects; 

void globallnitO {/* references stackltems, stackPoint, front, and back */} 

Consider another example in which we have another routine stackToQueue that 

accesses ‘stackltems’ and ‘queueltems’ to copy items from the stack to the queue: 

void stackToQueueO {/* references stackltems and queueltems, etc. */}

The two routines create links between the objects, thus forcing their clustering into the 

same candidate object [Canf 96] calls these types of links as coincidental and spurious
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^stackPus^) ^stackPojT^ (^stackTbp^

C^stackToQueue^> stackPoint

queueEn
queueHead

queuelt^sj C^queueEmpty^) >■ numQueueElm-f-(^globallnit

queueTail
queueDeq

Figure 7.6. Connected components in the CCM approach.

links, respectively. Routines creating coincidental links, like globallnit, are sliced and 

used in different objects. In the CCM approach, routines that create spurious links, like 

stackToQueue, are assumed to exist to implement system specific operations and to 

access several objects (e.g. main function in C programs). These routines do not belong 

to any object and are removed from the identification process.

The CCM graph and the Dunn and Knight graph are built in a similar fashion. 

The graph, known as the variable-reference graph, records the usage of global 

variables. If GV is the set of global variables in a software system and F is the set of 

routines, a variable reference graph is a bipartite graph G(NJE) with nodes N h GV u  F 

and edges E = {(f,d) | f e  F a  d e GV a  ‘f  references d’} [Canf 96]. The variable- 

reference graph for the program in Figure 7.5 is shown in Figure 7.6.
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The CCM approach attempts to identify the relevant, internally connected, sub- 

graphs through an iterative process, hi each iteration, every routine / i n  the system is 

associated with an index f x. fx measures the variation in the internal connectivity of the 

graph using/, to generate a new cluster. Such a cluster would include all the data items 

referenced by/(say, set d), and all the routines that reference the data items in set d. fx 

of/measures the difference between the internal connectivity of the cluster generated by 

/  and the internal connectivity of the clustered sub-graphs. This index (fx) is used to 

discriminate the routines that implement the operations of an object (high index) from 

the routines that access data items that belong to different objects (spurious/coincidental 

connections -  low index). Routines with low index are either sliced or deleted with the 

programmer’s help. Data items (set d) referenced by routines with high index are 

merged into one node, and the clustering process is repeated till the graph is in the form 

of a set of isolated sub-graphs each consisting of a single GV node and one or more F 

nodes.

The CCM approach can identify the two objects in the program in Figure 7.5 and 

also identify that routines ‘globallnit’ and ‘stackToQueue’ need to be sliced or deleted. 

Though the scope of this approach is wider than previous approaches, the CCM 

approach has several limitations. The determination of low or high indexes is subjective. 

It varies from program to program and also from iteration to iteration. Another 

limitation is that it is not always possible to decide if a particular procedure belongs to 

an object by simply looking at the number of data variables it references since a 

procedure may access object state of several potential objects.
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1. int mainO
2. {
3. long items [MAX];
4. intsp;
5. longi,j;
6. sp = -l;
7. • • •

8. items [++sp] = j;
9. . . .

10. i = items [sp];
11. • • •

12. items [++sp] = j;
13. .  .  •

14. items[++sp] = j;
15. • • •

16. i = items [sp—];
17. • • •

18. items [++sp] = j;
19. • • ••

20. }

Figure 7.7. Sample C program for RSG approach 

73  The RSG Approach

Implicit assumptions common in the approaches in section 7.2 are that the 

system under consideration is built around well-defined data structures and that the 

procedures are well-designed, hi reality these assumptions do not always hold. 

Moreover, the approaches fail to identify objects that may be present within a procedure, 

as in figure 7.7. Further, they make no distinction between a use and a definition of 

variables. Consider as an example a procedure using a variable (vj) and defining another 

variable (V2). Assume that v; and V2  belong to two different potential objects. Previous 

approaches create two equally weighed links, therefore failing to identify the procedure 

with one object or the other. A procedure (p) using a state variable (vj) need not
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necessarily be part of the object belonging to die state variable. There are three choices 

for p  and vj:

i. Make p  and vj part of the same object.

ii. Make p  and v? part of different objects, and provide access to v? through 

language features (e.g. ‘friend’ in C++).

iii.Make p  and vj part of different objects, and introduce a selector operation for vj. 

If p  and vj belong to different objects, then we have only the latter two choices. The 

second choice can only be applied in limited cases; we cannot declare every object in 

the system as a friend of every other object The third choice is not explored by any of 

the approaches presented in section 7.2.

73.1 Code localization

The opposite of interleaving is localization. In a procedural program, code for 

the individual plans is interleaved due to the following reasons:

i. Programming style. Procedural programming does not prevent a programmer 

from mixing the code of different plans in some textual area of the program.

ii. Sharing of intermediate results. If two plans share some code, then instead of 

duplicating the common code the result of common code is shared by the two 

plans, resulting in interleaving of the two plans.

iii.Sharing of variable names. The same variable name can be used for two different 

purposes (plans) resulting in some kind of relationship between the two plans.

iv. Sharing of resources. Plans also result in interleaving by sharing loop or 

conditional structures.
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While interleaving is introduced to take advantage of commonalties, in contrast, 

the interleaved plans have a distinct purpose (Ruga 95]. These plans may belong to 

different objects in an object-oriented decomposition of the program. To identify these 

objects, first we need to identify these plans, localize the delocalized code belonging to 

individual plans, and finally group these plans into objets.

Traditionally, slicing is proposed for code localization and for extracting 

individual plans. A traditional backward slice on ‘items’ at the end of the sample 

program (Figure 7.7) includes all the statements in the program. Slicing requires a 

criterion, a begin statement, an end statement, and variable (s). For the sample program, 

it is not obvious where to start and end slicing for identifying a plan.

133. Plan identification

Plans are interleaved to share:

i. Name space. To identify name sharing we need to separate a definition of a 

variable and its uses from other definitions of the variable. Each definition-uses 

combination may belong to different plans.

ii. Intermediate results. A value shared by two plans is identified by identifying a 

variable definition that is used in more than one context. Statements computing 

the intermediate value (sub-plan) are duplicated if the two contexts where the 

intermediate value is used are grouped into different objects.

iii. Resources. Resources like loops, control structures, or flags, can be identified by 

the values they compute and the contexts where the values are used. For 

example, a loop initializing two arrays can be identified by how the two array 

variables are used. If they are used for two different purposes, then they do not
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Figure 7.8. RSG of the program in figure 7.7

belong together. The two initializations (or plans) are separated by duplicating 

the resource (code).

Bom the above discussion, we can see that plans can be identified by using variable(s) 

definitions and their use contexts, hi this work, code is localized and program plans are 

identified through restructuring of the graph representation of the program (StDG), as 

explained in section 7.3.3.

7 3 3  RSG for object identification

The RSG of the StDG of the program in figure 7.7 is shown in figure 7.8. hi 

figure 7.8, only the statements represented by each site and reaching defs and exposed 

defs are shown. Code is localized by bringing together all statements with high cohesion 

which are scattered throughout the program. The sites of statements with high cohesion 

are merged through graph restructuring, as explained in Chapter 4, using data 

compaction, structure compaction, and edge compaction.
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site 6:
6. sp = -1;
8. items[++sp] = j;

site: 10
10: i = itemsfsp];

site 12:
12. items[++sp] = j;
14. items[++sp] = j;

site 16:
16. i = itemsfsp—];

site 18:
18. items[++sp] = j;

Figure 7.9. Statements in the sites of RSG in figure 7.8

The statements in sites of the RSG (figure 7.8) are shown in figure 7.9. Each of 

these sites is a potential module. One or more sites in the RSG constitutes a plan. A site 

defining a control variable (e.g. site 1) is a sub-plan shared by two or more other sub­

plans (sites connected by a control dependence edge, e.g. (xi, Ti». As shown in figure 

7.8, several plans (sites 1 and 6, and sites 1 and 10) are interleaved to take advantage of 

the common computation present in site 1. To make these plans independent, we need to 

duplicate the computation in site 1.

73.4 Restructured program design

The RSG of the program in figure 3.1 is shown in figure 7.10. In figure 7.10, 

two sub-plans (sites 6 and 7) share the resources (site 1). The structure chart 

representation of the RSG is shown in figure 7.11. Typically, modules or group of 

modules are represented within structure charts. The granularity of the call graph node

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nwnc

7:7.8.9.10.11.13
' n w ---------

6:6
nc

a

16:16,18,19,20,21,22

Figure 7.10. (a) RSG of figure 3.1(b). (b) RSG of figure 3.1(c)

malnO
Display results

1: 1,2,4,5,13,14 
Read input till 
end of file

6: 6
Count characters

7:7,8,9,10,11,13 
Count words

Legend: Control

Data

Figure 7.11. The structure chart representation of RSG

(procedure) as a module is too coarse, and a site of StDG (statement) as a module is too 

fine for understanding a program. The nodes in figure 7.11 are annotated with the help 

of the programmer.

7.4 Summary

Code and program plans are interleaved in procedural programs. In this chapter 

we discuss how the code is localized and plans are identified, using the RSG of the 

program. Usually, slicing is used for this purpose, but slicing is not always feasible to
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identify plans because specifying criterion for a plan is difficult. The plans identified are 

potential candidates for object operations. These object operations are grouped into 

objects, as explained in Chapter 8. We use the restructured design, call graph (figure 

6.3), and the program code (figure 3.1(a)) to identify objects. We also discussed object 

identification approaches available in the literature.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8 

Forward Engineering

8.1 Introduction

We use the reverse engineered and restructured design of the programs (RSG) 

for object identification. The procedural program and the identified objects are used to 

translate the program to an object-oriented program. This work is focused on 

identification and extraction of objects. In section 8.2, we present the object 

identification process. In section 8.3, sample programs are used to show how objects are 

identified. Object extraction is presented in section 8.4. In section 8.5, we present a case 

study where we apply the object identification process to a commercial program. 

Finally, the chapter summary is presented in section 8.5.

8.2 Object Identification Process

An object has state (variables) (SV) and operations (P) in the form of 

constructors, modifiers, selectors, and destructor. Each site in the RSG is a potential 

operation, and the program variables defined by these sites are potential state variables 

of objects. The StDG object identification is a three-step process:

Identification of object state (SV). Variables present in a program (V) are selected as 

potential candidates for object state (potential objects state variable) from three sources. 

These are:

1. programmer defined data structures, local and global, present in the program 

(DV).
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2. programmer identified variables (IV). A programmer can choose any variable as 

a candidate for SV.

3. exposed defs with more than one def edge in the sites of the RSG are candidates

for SV (PV). That is,

SV C V rProgramVariables
S V = DV u  IV u  PV
PV = {v:V;3j:ProgramStatement;s:SITE |

(vj.sJDefinition) e DPS(s) a #DPD(Vj,sJDefinition) > 1}

(#ECDP(S) = 1 a (Xj.SJDefinition) e  ECDP(S» v (#ECDP(S) > 1 a (Xj.SJDefinition) 
e  ECDP(S) a (x .̂S .Definition) e  ECDP(S) a Vk »j < k).

(Vj is a def port in s and number ports connected to Vj is greater than one). Next we

define terms to explain the object identification process, using the example in figure 8.1.

Exposed def ports (EDP). Exposed def ports are the def ports in a site that are

connected to ports in other sites. These ports can be control (ECDP) or data (EDDP)

ports.

EDP(S:S1TE) = {(vj,S.Definition) | (vj,S.Definition) e DPS(S) a
DPD(Vj.SJDefinition) n  UPS(S) * 0»  v:Variablesy:StatementNumber. EDP 
is a def port in S and def ports of the def port vj are all not use ports in S.

EDDP(S:SITE) = {(vj,S.Definition) | (Vj.SJDefinition) e EDP(S) a  v  * x 
•v:Variables j:StatementNumber}

ECDP(S:SITE) = {(Vj.SJDefinition) | (vj.SJDefinition) € EDP(S) a  v = x 
•v:Variables j:StatementNumber}

Merged use ports (MUP). Merged use ports are the use ports and non-exposed def

ports in a site.

MUP(S:SITE) = {(vj,S,Use{Definition) | (vj,S,Use) e UPS(S) v ((Vj.SJDefinition) e 
DPS(S) a (Vj.SJDefinition) gEDP(S» • v:VariablesjjiStatementNumber}
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Final def variable (FDV). FDV of a site is the variable defined last in the site. FDV of 

a site is determined using one of the steps following. The steps are followed in the order 

presented. Let S be the site under consideration.

Table 8.1. C Code to implement a queue with two stacks.

struct stack { int *base, *sp, size; }; 
struct stack { struct stack *front, *back; }; 
struct queue* q;
struct stack * initStack(struct stack* s, int sz)
{ s = (struct stack*) malloc (sizeof(struct stack))); 

s->base = s->sp = (int*) malloc (sz * (sizeof(int»); 
s->size = sz ;} 

struct queue* initQO
{ q = (struct queue*) malloc (sizeof (struct queue));
initStack(q->front ,10);
initStack(q->back,10}

int isEmptyStack(struct stack* s)
{ return (s->sp =  s->base);}

int isEmptyQO
{ return (q->front->sp =  q->front-base && q->back->sp =  q->back- 
>base);}

void push(struct stack* s, int i)
{ *(s->sp) = i; 

s->sp++; }

void enq(int i)
{ *(q->fiont->sp) = i; 

q->front->sp-M-; }

void pop(struct stack* s)
{ if (isEmptyStack(s)) return-1; 

s->sp—;
return (*(s->sp)); }

intdeqO
{ if(isEmptyStack(s)) return-1; 

if(!isEmptyStack(q->front)) push(q-back, pop(q->fiont)); 
return pop(q->back); }
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1. If ECDP of S is not null, then one of the ECDP variables is the FDV. The x port

with the least statement number is the FDV. That is,

FDV(S:SITE) = (v •v:VariablesyJc:StatementNumber | v = Tj a  (#ECDP(S) = 
1 a  Ctj,SJDefinition) e ECDP(S)) v  (#ECDP(S) > 1 a  (tj,S,Definition) e 
ECDP(S) a  (Tk,S .Definition) e  ECDP(S) a  Vk *j < k).

FDV of S is Tj if Tj is the only port in ECDP of S or ECDP has more than one port, Tj

and Tk are two ports in ECDP of S, and for all k, j < k.

2. If ECDP(S) is null, then one of the variables in the EDDP(S) is the FDV. The

variable of the port in the EDDP with the highest statement is the FDV. If more than

one port has the same highest statement number, then the variable not used within S

(variable of port with no internal def edges) is the FDV (there will be only one such

variable in a site). That is,

FDV(S:SITE) = (v *v,w: Variables;j,k,l:StatenientNumber,S 1 :S1TE |
(v =  Vj a  #ECDP(S) =  0  a  (EDDP(S) =  1 a  (Vj,SJDefinition) e  EDDP(S)) v  

((EDDP(S) >1 a  (vj,S.Definition) e EDDP(S) a  (wk,S,Definition) e EDDP(S) a  

Vk* j > k ) v  (Vj.SJDefinition) e EDDP(S) a  (Wk.S .Definition) e EDDP(S) a  

Vk* j >= k a  (vn,Sl,Use) e DPD(Vj,SJDefinition) a  S?*S1 a  

((Vj,S,Use),(Wj,S JDefinition)) g IntemalEdge(S)).

The FDV of S is Vj if number of ports in ECDP(S) is null and 1) EDDP(S) has one

port (vj), or 2) EDDP has more than one port, Vj and wk are any two ports in EDDP

and j > k always, or 3) EDDP has more than one port, Vj and w* are any two ports in

EDDP and j >= k always, use port vn in SI is one of the DPDs of Vj, S and SI are

different, and edge ((Vj,S,Use),(wj,S,Definition)) is not an internal edge in S.

3. FDV of S is null if EDP of S has no ports. That is,

FDV(S:SITE) = (v *v: Variables | v = 0 a  EDP(S) = 4>).
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State variables defined in a  site (DSV). DSV represents all the state variables defined

in the site. DSV is formally defined as:

DSV(S:S1TE) = {v» v:Variables;j:StatementNumber|(ve SV a 
(vj.sJDefinition) e  DPS(S) }

State variables used in a site (USV). USV represents all state variables used in the site.

USV is formally defined as:

USV(S:SITE) = {v« v: Variables yrStatementNumber |
(v € SV a  (Vj,S,Use) e  UPS(S»

Final def state variable (FDSV). FDSV of a site S is the state variable defined last in

S. If FDV of a site is a control variable or a local variable, then the site may have a

different variable as FDSV than FDV. The FDSV is formally defined as:

FDSV(S:SITE) = (v» v,w,y.VariabIes;j JcStatementNumber |
((ve S V a v e  FDV(S))v((yg SV a  y 6 FDV(S) a  w e SV a  

(Vj.SJDefinition) e  EDDP(S) a  (wk,S JDefinition) e  EDDP(S) a  Vk» j > k )) v (v 
= 0aV w *w 6S V aw «F D V (S ))

2. Identification of object operations (P). Each site in the StDG is a potential

operation. A RSG site may define zero or more SVs. If more than one SV is defined in a

site, then that site needs to be separated into different sites, with each site defining

exactly one SV. However, in certain cases where SVs are interdependent, it may not be

possible to separate sites. One simpler way to separate a site defining more than one S V

is to re-restructure the StDG, with the list of SVs (this is referred to as RSG2 in figure

1.1). During sites merging using data compaction (Chapter 4, section 4.3.2), cases one

and two, site si are not merged in s2 if si satisfies the following condition:

((v, si JDefinition) e  DPS(sl) a  v e  SV)
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In the remainder of this work, RSG refers to the re-restructured StDG. A site in 

the RSG has one or more def ports, representing state variables, control variables, or 

local variables. Each of these sites is associated with a variable known as a final def 

variable. Sites and other definitions for the example in table 8.1 are presented in table 

8.2. Procedure initStack has three sites and initQ has two sites; each of these sites will 

be considered as a different operation. All other procedures have one site each in the 

StDG of the example.

Table 8.2. Sites and other definitions for the example in table 8.1.

Procedures Sites FDV FDSV DSV USV
initStack 1. base base base {base} 0

2. sp sp sp {sp} 0
3. size size size {size} 0

initQ 1. front front front {front} 0
2. back back back {back} 0

isEmptyStac
k

0 0 0 {sp.base}

isEmptyQ 0 0 0 {sp,base,frontback}
push sp sp {sp} {sp.size}
pop sp sp {sp} {sp}
enq front front (sp,front} {sp .front}
deq back back {frontback} {frontback}

3. Identification of candidate objects. The following steps are followed to identify the

objects. Let,

OV(o) - state of object o (OV(o) c  SV).
OP(o) - operations in object o (OP(o) £  P).
O - set of objects in the program (o e  O).

Step 1. For each data structure present or group of variables identified by the software

engineer (d), add an object Od to objects set Members (v) of a group (d) are added to
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their respective objects. That is, (d e  DV a  O =  O u  Od) a  (v:Ved a  OV(Od) = OV(Od) 

u  {v}). If d isaD V  then add oa to O and if vis a member of d then add v to OV(Od). 

Step 2. For each state variable v, a set P(v) of sites with v as FDSV is defined. P(v) and 

v are grouped into a candidate object o. If v belongs to one of the objects (already 

grouped), then P(v) is added to the object of v. That is, (v e  OV(o) a  OP(o) =  OP(o) u  

P(v» v  (V o :0  v £  OV(o) a  O =  O u  o a  O V (o) =  OV(o) u  {v} a  OP(o) =  OP(o) u  

P(v», where P(v:SV) = {s:SITE | Vs» veFDSV(s)}. If v belongs to a candidate object o, 

then add P(v) to the object o. If v does not belong to any object, then add a new object 

(o), and add v and P(v) to the new object.

Step 3. Add operations with null FDSV as candidate objects. These candidate objects 

are: {s:S1TE | FDSV(s) = 0}.

Step 4. State Reference Graph (SRG) is built using candidate objects ({iv} and P(iv), 

where {iv} is the set of variables in a candidate object) as nodes and references of 

candidate objects of variables of other candidate objects as edges. Nodes in the SRG are 

placed in different levels; if a node A references node B (operations in A reference 

variables in B), then node B is placed at a lower level than node A. Root nodes at the 

bottom of the SRG represent objects that do not reference any variables. If nodes are 

circularly connected, then the nodes are merged into one node. SRG is a directed graph 

G(NJE) with nodes s  candidate objects (O) and edges = {(ci,C2) | ci, C2 € O a  v e 

OV(cO a  P(v) e OP(ci) a  w e OV(c2) a  P(w) e OP(c2) a  w e MUP(P(v))}. The SRG 

of the example in table 8.1 is shown in figure 8.1. In figure 8.1, the sp, base, and size 

nodes should be represented in one node as they belong to a data structure. Similarly, 

the front and back nodes should be represented in one node. However, to explain the
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back:
initQO
deqO

front:
initQO
enqO

isEmptyStack

sp:popO
initStackO
pushQ

base:
initStackO

Figure 8.1. State reference graph

object identification process let us not consider the presence of data structures. In the 

figure, nodes with out-going dotted edges represent the sites with null FDSV 

(isEmptyQ, isEmptyStack).

Step S. Connected nodes in the isolated sub-graphs of the SRG are merged with the help 

of the software engineer to fine-tune candidate objects. The SRG nodes can only be 

merged with the node at the highest level that is connected to it. Nodes of sites with null 

FDSV are eliminated from the graph if they are not merged with any other node. These 

eliminated nodes are due the presence of procedures that access several objects (e.g. 

main function in C programs). A node is merged with a lower level node with the help 

of the software engineer and with the use of the information related to the two nodes in
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table 2, StDG, and SRG. Two groups are identified in the example, as shown with 

dotted borders in figure 8.1.

Nodes in each group are merged into one object: ci,C2  6  O a  ‘c i  and C2  are 

grouped’ a  P(v) e  OP(cj) a  P ( w )  e  OP(c2> a  v 6  OV(ci) a w e  OV(c2) a  O P (c O  =  

OP(cO u  OP(c2) a  OV(ci) = OV(ci) u  OV(c2) a  O = 0  \ c2. If ci and c2 are merged, 

add operations and variables in c2 to ci and remove c2 from O. We consider candidate 

objects in O (stack and queue in the example) as objects in the new system.

Step 6. If an operation of one object uses a variable of another object, then a selector 

operation is introduced in the second object A selector operation is introduced in the 

object if these conditions are satisfied: (ci,c2) e E a  v e  OV(ci) a  P ( v )  6 OP(cO a w e  

OV(C2) a  P(w) e  OP(c2) a w e  USV(OP(ci)). That is, i f  there is an edge from ci to c2 

and an operation in ct uses a variable of c2, a selector operation is introduced. Similarly, 

a modifier or an iterator operation is introduced if one object defines a variable of 

another. The condition for introducing a modifier (or iterator) operation: (ci,c2) E E a  v  

e  OV(ci) A P(v) e  OP(cO A WE  OV(c2) a  P(w) E OP(c2) a w e  DSV(OP(cO).

Step 7. In the StDG, if a site (si) defining a control variable and sites (s2) connected to 

si are grouped into different objects, then duplicate s i and add to each object that has a 

site connected to si. The condition for site (operation) duplication: (15,si .Definition) E 

DPS(sl) a  (Tj,s2,Use) e  UPS(s2) a  FDV(sl) = Tj a  s2 e  O P ( o )  a  si £  OP(o) a o e O .  

That is, s i and s2 are connected by a control edge, and they belong to different objects. 

If this step results in site duplication, step 6 is repeated for the duplicated site.
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83 Examples for Object Identification 

831 Example 1

Table 8.3. Sample program for object identification

1. intmain(){
2. long Rtems[MAX];
3. long Bitems[MAX];
4. int Fsp, Bsp, size=MAXj;
5. long it, jt;
6. Fsp = Bsp = 0;
7. for(j=0y <size;j++) {
8. HtemsQ] = 0;
9. BitemsQ] = 0;
10. }
11.
12. if(Fsp< size)
13. Fitems(Fsp++] = it;
14.
15. if(Fsp< size)
16. Fitems[Fsp++] = it;
17.
18. if(Bsp)
19. jt = Bitems[Bsp-l];
20. else if(Fsp)
21. jt = FitemsfOJ;
22. else jt = 0;
23.
24. if(Bsp)
25. jt = Bitems[—Bsp];
26. else if (Fsp) {
27. while(Fsp)
28. Bitems(Bsp++] = Fitems[—Fsp];
29. jt = Bitems[—Bsp];
30. }
31. elsejt = 0;
32.
33. if(Fsp< size)
34. Fitems[Fsp++] = it;
35 ................

36.}
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To explain the object identification process we use the sample program shown in 

table 8.3. The RSG of the program is shown in figure 8.2. In the RSG, internal edges are 

not shown. Statements in the sites of the RSG are shown in table 8.4. From the RSG, we 

identify variables Fitems, Fsp, Bitems, and Bsp as candidates for state variables. Re- 

restructuring the StDG using the state variable information we have a RSG with 

statements in sites as shown in table 8.4.

7:77ID

(5̂
Bitems Fsp — Bsp

FspmBsp) '

24:24-31
|Fitems FspjBitemsjBsp [j jt J

Fitems [Fsp it siz

33..32J4 __ ,

Figure 8.2. RSG of the program in table 8.3.
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Table 8.4. Sites in the modified RSG.

Site 6:
6. Fsp = Bsp = 0;
Site 7:
7. for(j=0*j<sizey'-H-) {
10. }
Site 8:
8. FitemsQ] = 0;
Site 9:
9. Bitems[j] = 0;
Site 12:
12. if(Fsp < size)
13. Fitems [Fsp-n-] = it;
Site 15:
15. if(Fsp< size)
16. Fitems [Fsp-H-] = it;
Site 17:
17.
18. if(Bsp)
19. jt = Bitems[Bsp-l];
20. else if(Fsp)
21. jt = Fitems [0];
22. elsejt = 0;
23.
Site 24
24. if(Bsp)
Site 25:
25. jt = Bitems [—Bsp];
Site 26:
26. else if(Fsp) {
30. }
Site 27:
27. while(Fsp)
28. Bitems [Bsp++] = Rtems[—Fsp];
Site 29:
29. jt = Bitems[—B sp];
Site 31:
31. elsejt = 0;

Site 33:
33. if(Fsp< size)
34. Fitems [Fsp++] = it;
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State variables and operations in the program are:

SV = {Fitems, Fsp, Bitems, Bsp}
P = {6a, 6b, 7,8,9,12,15,17,24,25,26,27,29,31,33}
PCHtems) = {8,12,15,33}
P(Fsp) = {6a}
P(Bitems) = {9,27}
P(Bsp) = {6b, 25 ,29}

SRG of the program is shown in figure 8.3(a). Nodes in the SRG are merged as: {26, 

Fsp} (26 is a null FDSV site), {24, Bsp} (24 is a null FDSV site), {Bsp, Bitems} 

(connected nodes at the same level), and {Bsp, Bitems, 17} (17 is a null FDSV site). 

Nodes in the merged SRG are shown in figure 8.3(b). These nodes are further merged 

with the help of the software engineer. Assuming that the engineer merges nodes Fsp 

and Fitems, we have two objects. These objects and their operations are:

Fitems:

Bitems:
9,27

Fitems: 
8,12,15,

Fsp: Fsp:

Bsp: 
6b, 25,

Bsp:
Bitems,
17,24

a b

Figure 8.3. (a). SRG of the program, (b) Partially merged SRG.
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Table 8.5. Sample program 2 for object identification.

1. long Fitems[MAX];
2. long Bitems [MAX];
3. int Fsp, Bsp, size=0;
4. pusiUtemQong it){
5. ifCFsp < size)
6. Fitems[Fsp++] = it;
7. }
8. long next_itemO{
9. lingjt;
10. if(Bsp)
11. jt = Bitems[Bsp-l];
12. else if(Fsp)
13. jt = Fitems[0];
14. else jt = 0;
15. return jt;
16. }
17. long get_next_itemO{
18. longjt;
19. if(Bsp)
20. jt =Bitems[—Bsp];
21. else if(Fsp) {
22. while(Fsp)
23. Bitems[Bsp++] = Fitems[-Fsp];
24. jt = Bitems[—Bsp];
25. }
26. elsejt = 0;
27. retumjt;
28. }

29. intmainOl
30. intj;
31. long it, jt;
32. Fsp = Bsp -  0;
33. for(j=0y<sizey++){
34. Fitems [j] = 0;
35. BitemsQ] = 0;
36. }
37.
38. push_item(it);
39. ...
40. push_item(it);
41. ...
42. jt = next_itemO;
43.
44. jt = get_next_itemO;
45. ...
46. push_item(it);
47.......
48. }
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OV(ol) = {Fitems, Fsp}
OP(ol) = {6a, 8,12,15,26,33}
OV(o2) = {Bitems, Bsp}
OP(o2) = {6b, 9,17,24,27,29}

8 3 2  Example 2

Let us consider the sample program in table 8.3 implemented differently, as 

shown in table 8.5. The RSG similar to the RSG in figure 8.2, with different site 

numbers. Applying the object identification process to the program results in 

identification of objects similar to the objects in example 2. Objects identified are 

shown in table 8.6.

8.4 Object Extraction

State variables and operations identified and grouped into objects are extracted 

by replacing the variables and operations by the objects using the following guidelines:

1. If the FDV of a modifier operation is a local variable, then add a return statement 

after each statement defining the local variable.

2. Operations are given appropriate names with the help of the programmer, and 

duplicate operations in each object are removed.

3. If an operation of one object uses a state variable of another object and the 

operations in the two objects are connected by an edge, then add the variable as a 

formal parameter. Or, if a variable used is defined in the operation, then declare the 

variable as a local variable.

4. For each site selected as an operation of an object, the site is replaced by a call 

statement to the operation.
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Table 8.6. Operations in the objects identified

init_JFO{/*Site 6 is separated into 6a & 6b */
6. Fsp = 0; /*as it has a rmilti-def variable*/
} /* site 6 -  part */ 
initJBOl f* 6 -  part */
6. Bsp = 0;
}
init_Fi(int j){ /*using - j */
7. for(j=0y<sizey++){
8. Fitemsfj] = 0;
10.}
} /* site 8 */ 
init_Bi(intj){
7. for(j=0y<sizey-H-){
9. Bitems(j] = 0;
10. }
} /* site 9 */
push_F(long it){ /* using - it */
12. if(Fsp< size)
13. Fitems [Fsp-M-] = it;
}/* site 12, site 15, site 33*/ 
pop_B0{ /* defining non-SV */

long jt; /* non-SV defined */
25. jt = B items}-Bsp];

return jt;
} /* site 25, site 29 */
F_to_B0{
27. while(topJFO)
28. Bitems[Bsp-H-] = pop_F0;
}
pop^FOf
28. return Fitems [—Fsp];
}
ptr_B0{ /* Bsp -  used in sites not part of the object, also in 24 */
18. return Bsp;
} /* site 18, site 24 */
ptr_F0{ I* Fsp -  used in sites not part of the object, also in 26 */
20. return Fsp;
}/* site 20, site 26*/ 
top_F(){
21. return Fitems[0];
}/* site 21 */
top_B0(
19. return Bitems[bsp-1];

}/* site 19 */
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5. Statements in the operations are sorted in an ascending order.

6. Introduce constructors and destructors in each of the identified objects. Some of the 

modifier operations may initialize state variables; those initializations are separated 

and made constructor operation. For each object, a destructor operation may be 

introduced with the help of the programmer.

7. Sites with null FDSV, USV, and DSV are grouped with the sites that are connected

to the sites under consideration. Site 31, in the example of table 8.4 is an example of

a site with null USV and null DSV. If these sites are connected to sites that are

grouped into several objects, then the sites are duplicated and used in all objects

with connected sites. In table 8.4, site 7 is duplicated and used in both the objects. If

these sites are not connected with any other site, then the sites are grouped with the

sites that call these sites. The objects and their operations for the program in table

8.4 are:

OV(ol) = {Fitems, Fsp}
OP(ol) = {6a, 8,12, 15,26,33,7}
OV(o2) = {Bitems, Bsp}
OP(o2) = {6b, 9,17,24,27,29,31,7}

By applying the above suggestions to the sites in table 8.4 we get the operations shown

in table 8.6. Operations are given appropriate names and duplicate operations are

removed. The sites that an operation represents are indicated as comments in the

operations. Constructors and destructors are not introduced. The objects and their

operations are:

OV(ol) = {Fitems, Fsp}
OP(ol) = {initJF, initJR, push_F, pop_F, top_F, ptrJF}
OV(o2) = {Bitems, Bsp}
OP(o2) = {initJB, init_Bi, F_to_B, pop_B, top_B, ptr_B}
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8.5 Case Studies

In this chapter, we present two case studies in which we apply the StDG to 

object recognition.

85.1 Bash

The legacy system we chose to study is Bourne Again SHell (bash), as it was also 

used by [Siff 99] and [Gira 97] for a similar purpose. It is a GNU project which is an 

interactive shell program with 38K lines of code, hi table 8.7, we present the results of 

the analysis of a sub-system of bash (sbash).

Sbash uses four data structure: HASH_TABLE (HT), BUCKET_CONTENTS 

(BC), ASSOC (AS), and SHELL_VAR (SH). Sbash also declares a global variable ht of 

HT type. HT and BC have an aggregation relationship, and the HT contents are in the 

form of BCs. In the table indicates the access (use or definition) of member 

variables of the type. OT and OT1 stands for other objects that are not part of sbash. The 

‘result’ column indicates the object the procedure belongs to and objects in which a 

selector or modifier operation needs to be introduced. The ‘miscellaneous’ column 

indicates parameter and return types. The column also indicates objects that ‘call’ 

current procedure and the procedures of objects that current procedure ‘called’. The 

SRG of the sbash is presented in figure 8.4. Four objects: HT, BC, AS, and ht are 

identified as part of sbash.

Comparison of results obtained using different approaches

a) Siff and Reps approach. Applying concept analysis approach [Siff 99] to 

sbash will result in identification of the four objects. But, object operations and
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interfaces differ from our results. Object BC will have only 7 as its operation. Several 

objects access a data member of BC, hence they all must be declared as ‘Mend’ in BC. 

AS will have 10, 11, 13, and 17 as operations, though 13 and 17 are call operations of 

HT. Hence, AS has to be a ‘friend’ of HT and HT a ‘friend’ of AS. Also, OT must be a 

‘friend’ of HT.

Table 8.7. Analyses of sbash

File
name

Procu
dure#

Procedures USV DSV Miscellaneous Result

alias.c 1 imtialize_aliases ht ht ht
2 fmd_alias ht,

BC->
ht,
BC->

3 get_alias_value AS-> Call(ht) ht,
AS->

4 add_alias Site
(1)

ht
AS->

AS-> Callfht) ht
AS->

5 Site
(2)

BC BC->
AS->

BC
AS->

6 remove_alias ht->
BC->
AS->

ht,
HT->
BC->
AS->

7 delete_alias_Iist BC->
AS->

BC-
parameter

BC
AS->

8 delete_all_aliases ht-> ht
HT->

9 map_over_aliases ht->
BC->
AS

ht
HT->
BC->

10 sort_aIiases AS AS - parameter 
Call (AS)

AS

11 qsort_alias_compare AS-> AS
12 all_aliases ht,

AS
Call (ht) ht

13 alias_expand_word AS-> Call (ht) ht
AS->

14 skipquotes Called (ht) ht
15 skipws Called (ht) ht
16 rd_token Called (ht) ht
17 alias_expand AS-> Call (ht) ht

AS->
Bashli
ne.c

18 Command word_CO 
mpIetioiLfunction

OT1
AS->

Call, data OT1
AS->
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Table 8.7. Continued

File
name

Procu
dure#

Procedures USV DSV Miscellaneous Result

hashx 19 inrializc Jiash_table HT-> HT-> HT - parameter HT
20 make_hash_table HT-> HT -  parameter 

HT - return
HT

21 xmalloc call HT
22 hash_string HT-> HT
23 find_hash_item HT->

BC->
BC-> HT -  parameter 

BC-return
HT
BC->

24 remove_hash_item HT->
BC->

HT-parameter 
BC-return

HT
BC->

25 add_hash_item HT->
BC->

HT -parameter 
BC-return

HT
BC->

26 get_hash_bucket HT-> HT -parameter 
BC-return

HT

variab
le.c

27 map_over HT->
BC->
SV

HT -  parameter 
SV-return 
call

HT
BC->

28 all_vars OT
HT
SV

HT -  parameter 
SV-return 
call

OT

29 varjookup OT
HT
BC->
SV

HT -parameter 
SV - return 
call

OT
BC->

30 makunbound OT
HT
BC->
SV

HT-parameter 
SV -return 
call

OT
BC->

31 kill_all_local_variab
Ies

OT
HT
SV->

HT-local 
SV -return 
Call, data

OT
SV->

32 delete_all_variables OT
HT->
BC->
SV

BC-> HT -  parameter 
SV-return 
call

OT
BC->

33 make_var_array OT
HT
SV->

HT -parameter 
SV -return 
call

OT
SV->

b) CCM approach. The CCM technique [Canf 96] fails to identify AS, SV, and 

BC. AS and ht are merged into one object, and HT and BC are merged into one. 

Procedures 14,15,16, and 21 are not included in any object.
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0T1BC

AS

OT

SV

Figure 8.4. State reference graph of the sbash

c) Dunn and Knight, Liu and Wikle approaches [Liu 90] [Dunn 93]. These 

approaches merge all procedures into one object Only with the help of the software 

engineer can these approaches identify the objects.

hi the bash sub-system there are seven objects: HT, BC, AS, h t OT, OT1, and 

SV. Of these seven objects, HT, BC, AS, and ht are part of Sbash. As we can see in 

table 8.7, ht references HT, BC, and AS; HT references BC, and OT references HT, BC, 

and SV. If we use ‘references' relationship to identify objects as used in the CCM, Dunn 

and Knight and Liu and Wilde approaches all seven objects will be grouped into one 

object The CCM approach will give better results by not recognizing AS, BC, and SV 

as candidate objects, hi the absence of these objects the internal connectivity of HT and 

ht is greater than the connectivity between HT and ht; hence, HT and ht are recognized.

The Siff and Reps approach works using the information in the ‘Miscellaneous’ 

column. It uses information like has a parameter of type HT, uses HT, has a return type 

HT, and does not have a  parameter of type HT. Information required for this approach 

can only be obtained through trial and error. Once the information is obtained, this
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approach works better for recognizing objects. However, it fails to recognize the correct 

object operations, and the process is not comprehensive.

The objects and their operation identified by the StDG approach are shown in 

the ‘Result’ column of table 8.7. The object names followed by indicate the 

violation of the object encapsulation and require introduction of a selector or a modifier 

operation in the respective objects. Slicing, proposed by several approaches, fails to 

recognize these violations properly. There are some procedures (e.g. 14-17) that do not 

reference any state variables. This problem is not addressed by any other approach. 

Procedure 17 calls a procedure that is grouped with ht, hence it is grouped with ht as 

this grouping will not violate any object encapsulation. Procedures 14 -  15 are called by 

ht and hence are grouped in it. This grouping may not be the most appropriate thing to 

do. A closer look at these procedures reveals that they manipulate strings.

&S.2 Chull

Chull is a program taken from a computational geometry library that computes 

the convex hull of a set of vertices in the plane. It has three data structures: tVertex, 

tEdge, and tFace. Chull is also used in [Siff 99] for modularization. As in [Siff 99], we 

identify three objects, one for each data type. However, we differ with [Siff 99] in three 

ways. First, procedures 16 and 17 are identified with tVertex; whereas, we identified 

them with tFace. Second, procedure 20 is identified with tEdge, and we identified it 

with tFace. The third and most important difference is that [Siff 99] declares every 

object a ‘friend’ of every other object Object tFace in [Siff 99] has only two operations, 

a constructor and a destructor. And the other two objects are also incomplete. The object 

operations we identified are shown in table 8.8. Objects identified in the StDG approach
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represent true abstractions as all the operations required for the state changes are 

identified and encapsulated in the respective objects.

Table 8.8. Analyses of Chull.c

Procu
dure#

Procedures USV DSV Result

34 main main
35 Cleanup main
36 CheckEuler main
37 PrintOut main
38 MakeVertex tVertex-> tVertex->
39 ReadVertices tVertex-> tVertex->
40 Collinear tVertex-> tVertex->
41 Construction tVertex-> tFace tVertex
42 PrintPoint tVertex-> tVertex
43 PrintVertices tVertex-> tVertex
44 MakeEdge tEdge-> tEdge
45 CleanFaces tFace-> tFace
46 MakeFace tFace-> tFace
47 CleanVertices tVertex->

tEdge->
tVertex
tEdge->

48 PrintEdges tEdge->
tVertex->

tEdge

49 Volume6 tVertex->
tFace->

tFace
tVertex->

50 Volumed tVertex->
tFace->

tFace
tVertex->

51 Convexity tvertex->
tEdge->

tvertex->
tEdge->

tVertex
tEdge->

52 PrintFaces tvertex->
tFace->

tFace
tvertex->

53 MakeCcw tEdge-> tFace-> tEdge
tFace->

54 CleanEdges tEdge-> tEdge
55 Consistency tEdge->

tFace->
tEdge tEdge

tFace->
56 Print tVertex->

tEdge->
tFace->

tVertex->
tEdge->
tFace->

57 Tetrahedron tVertex->
tEdge->
tFace->

tvertex
tedge
tFace

58
59

AddOne
MakeStructs

tVertex->
tEdge->
tFace->

tVertex
tEdge->
tFace->

60 Checks tVertex->
tEdge->
tFace->

tVertex
tEdge->
tFace->
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8.6 Summary

In this chapter, we presented a new approach to object identification. We use the 

RSG for object state selection, the modified RSG for identifying object operations, and 

the SRG for identifying the objects. The SRG is a layered graph; nodes in the SRG are 

grouped into objects by merging the nodes in adjacent layers. The StDG approach stays 

within the system; as opposed to applying ad hoc methods [Siff 97]. The help of an 

engineer is necessary to control object granularity. Further, it is generally agreed that the 

reengineering process cannot be fully automated as object identification reflects a design 

decision that is inherently subjective.

Objects identified by the StDG approach are finer-grained than the approaches 

presented in Chapter 7. The work in [Canf 96][Liu 90][Newc 95] [Siff 97][Yeh 95] 

represent the system as a graph, with functions, global variables, or function attributes 

as nodes. The StDG approach follows a similar approach, but it extends the graph nodes 

by including key local variables and program slices. Moreover, other approaches are 

only applicable to certain kinds of systems, unlike the StDG approach. The type of 

objects identified depends on the information present in the code. Hence the objects that 

are identified may require fine-tuning, like other approaches. Programmer knowledge of 

the problem can be easily incorporated into the approach.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 9 

ReArchitect

9.1 Overview

Adequate system modifications and extensions depend on our ability to handle the 

system properties embedded in the source code. Other artifacts, such as design 

documents and users manuals, may be sufficient for a general understanding of the high- 

level system concepts; however, they provide insufficient details for actually changing 

the code. Instead, engineers rely on various representations and abstractions of the real 

system to understand the program, apply modifications, and analyze the effects of the 

changes. This research addresses these issues by defining a process based on a graph 

representation of the system. The software system ReArchitect was developed to 

automate the process. We present an overview of ReArchitect. Important features of 

ReArchitect include:

i. Program representation. ReArchitect uses the statement dependence graph 

(StDG) representation.

ii. Design extraction. ReArchitect extracts program control flow, data flow, and 

flow information. It then represents this information in the StDG. Other details 

about the program such as program variables and procedure calls are also 

extracted.

iii. Design restructuring. Cohesive components of the program must be considered 

in union in any maintenance application. ReArchitect restructures the StDG to
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Program
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Figure 9.1. ReArchitect components and interactions

identify and merge these cohesive components. The restructured graph of the 

ReArchitect is similar to a type 2 RSGS.

iv. Design queries. The user can obtain the design information by interacting with 

the tool.

v. Applications. ReArchitect can be applied to several maintenance domains such 

as slicing, maintenance, and reengineering.

The main components of ReArchitect are shown in figure 9.1. Input to the 

ReArchitect is a C program in language independent format (UF). LIF is an
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intermediate representation generated by the Unravel tool (see Chapter 6). Unravel 

represents a C program as a flow graph in LJF format An LJF representation of the wc 

program (figure 3.1) is presented in Appendix A with explanations of the codes used. 

ReAichitect converts the LIF representation of programs to StDG. A site in the StDG 

has a set of use ports and a set of def ports. A port has a set of use ports and a set of def 

ports connected to i t  Sites in the StDG of the wc program, generated by the 

ReArchitect, are presented in Appendix A. A site has the following format 

Site U:S:11,|
Port(l l,9,0,)TaU U{UPPl:TaU 9;DPPl-nw 11;}
Port(l 1,11,0,)nw U{UPPl:nw 23;DPPl-nw 11;}
Port(ll,ll,0,)nw  D{UPPl:nw ll;UPP2:TaU ll;DPPl-nw 24;}

The site number of the site shown above is 11. The type of the site is given after the

number. The type indicates whether the site is a block begin, a block end, a final use, or

a loop statement Sites represented by the site (in RSG) are listed following the ‘S’. Ports

in the site are indicated using the word ‘Port’, followed by the port information and its

connections (use and def ports). Port information includes the site number of the port

the statement number, and level of indirection of a pointer variable (these are presented

within the parenthesis). A use port is indicated with a ‘U’ and a def port with a ‘D’. Use

(UPP) and def (DPP) ports connected to the port are presented within the braces. UPP

and DPP are give sequential numbers, and the variables these ports represent along with

the site number of these ports are also indicated. We present design and implementation

details of the ReArchitect in sections 9.2 and 9.3, respectively.
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92  Design

ReArchitect consists of three main components: architect, slicer, and maintainer. 

The architect takes the LJF and generates the StDG. This generation involves extraction 

of dependence information in the form of control flow, data flow, and flow 

dependences. Extracted dependence information is incorporated in the StDG as edges. 

Rom the StDG, RSG is computed by restructuring it using structure compaction. The 

engineer can interact with the architect to obtain call graphs, lists of local and global 

variables, the lists of sites in the procedures, and summary sites of the procedures.

The slicer uses the RSG of the program to compute program slices. The slicer has a 

GUI interface for user interaction. The slicer can be used to obtain forward, backward, 

or modular slices. Slice criteria is specified as a group of variables and their site 

numbers. A forward or a backward slice includes the union of slices of each variable. A 

list of statements in the slice is given as output. For a modular slice, a set of ports as 

source and a set of ports as sinks form the slice criteria.

The maintainer uses the RSG of the program for maintenance activities such as 

code additions, changes, deletions, and code movement. The maintainer has a GUI 

interface for user interaction. For deleting a statement, its number is given as input to 

the maintainer. A list of statements that need to be deleted is the output. Input for code 

movement is a statement number. The maintainer lists the choices for moving the 

statement A query for code additions is in the form of a list of variables (existing 

variables defined in the new statements) and the statement number where the new 

statements will be added. The result will indicate whether the new statements can be 

added at that location.
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We used the Unified Modeling Language (UML) [Lee 97] for the representation 

of the design. An object-oriented analysis resulted in the identification of the objects 

and classes as shown in figure 9.2 and figure 9.3. Figure 9.2 includes generalization,

FlowGraph

* * * *
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Figure 9.2. (a) ReArchitect class aggregation diagram
(b) Class generalization diagram (c) Class association diagram

aggregation, and association diagrams of the classes in ReArchitect. Figure 9.3 shows
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object aggregations and association diagrams. These diagrams give an overview of 

ReArchitect system objects and their interaction.

▼ar def stac
def Ports

FlowGraph

lif field

use ports def Portsprocedures
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Figure 9.3. (a) ReArchitect object aggregation diagram (b) association diagram
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Figure 9.4. ReArchitect interface 

93  Implementation

ReArchitect was developed on a Pentium machine running under the Windows 

NT operating system. The object-oriented programming language Java was used for 

coding. Figure 9.4 shows the ReArchitect graphical interface. The figure also shows 

the procedures called by the ‘alias_expand’ procedure (procedure selection is shown 

with a mark in the ‘Process’ sub-menu). All the procedures in the program are listed in 

the ‘Process” sub-menu. Procedure summary sites are displayed as site specifications. In 

figure 9.5, the summary site of the procedure w ordCount of wc program is given. It 

has three sets of ports, indicating the three internal edges in the summary site. In figure
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I.Edge
2. Port(2310>0Ifalse)inword FD
3. Port(24l0,0,fa!se)nwU
4. Edge
5. PortC23,0l0lfelse)nc D
6. Port(24,0.0.fal8e)nc U
7. Edge
8. Port(23,0>0,felse)mvD
9. Port(24.0tO,false)nwU

Figure 9.5. Summary site of procedure w ordC ount

Sink:
PortC23,0,0,false)inword FD
Port^3l0,0lfiilse)nw D

Slice:
910111224

Figure 9.6. A forward slice on nw and inw ord  at enter site

9.6, a forward slice on nw and in w o rd  at enter site (site 23) is shown. Site number 24 

in the figure is the exit site of the procedure.

9.4 Discussion

In this section, we analyze the ReArchitect with respect to questions of scale, use 

in interactive environments, and lim itations of static analysis. Scalability is an important 

property for any tool architecture. To be scalable, the internal data structure of the tool 

must grow (approximately) linearly with the size of the program being manipulated. A 

simple, small data structure enhances the architecture of any software application [Morg 

97]. ReArchitect satisfies these conditions.
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The data structure used in the StDG is based on the PDG models. Scalability 

aspects of these models have been shown in the literature, motivated by their use in 

compiler technologies. A comparison of StDG to PDG models is presented in section 

5.2.4. StDG is a unified and discard type representation, ft discards the LJF after 

building the StDG, thus eliminating the need for mapping functions as required in 

multiple and non-discard type representations.

Unlike the tools that use representations such as AST and some PDG models, 

StDG analyzes the independently compilable units of a system separately, thus 

dramatically reducing the memory requirements. Moreover, StDG uses a modular 

representation (summary site) for procedures. Hence, a procedure heeds to be analyzed 

only once and can be stored in persistent data. A call to the procedure is replaced by its 

summary site. Hence, technically only one procedure StDG needs to be in memory for 

slicing and maintenance applications.

An interactive tool needs to conserve memory resources and yet quickly determine 

needed information. StDG is more than an all-inclusive representation. All-inclusive 

representations include all the dependence information in a representation, as opposed 

to the representations (e.g. AST) that derive the information when needed. StDG also 

includes the information on cohesive statements thus eliminating the need for 

individually analyzing these statements. Furthermore, the summary site representation 

eliminates the need for analyzing the procedures at every call statement.

Static analysis can only conservatively approximate data and control flow 

dependences between different program components. Though this approximation is not 

a major impediment to slicing and restructuring of programs, the quality of results
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obtained can be improved with better analysis. Moreover, these limitations severely 

affect reengineering tools based on static analysis. StDG provides several features to 

help address this deficiency and to improve the quality of the results obtained. StDG is 

editable. Incorrect dependences in the StDG can be corrected manually. StDG can be 

tnarip. a component of the deliverable products which are handed off from the 

development team to the maintenance team.

Several approaches either assume the effects on data flow of calls to library or 

unknown functions, or they require dummy functions. Our approach requires the 

summary sites of these functions. Algorithms based on PDG must be modified to handle 

the individual language constructs, such as short circuiting in C. ReArchitect achieves 

language independence through the use of LJF, an intermediate representation. All 

language dependencies are handled during the program to LDF translation.

Some of the important features of the ReArchitect that distinguishes it from other 

such tools include:

• We know of no tool that allows constraints based changes to the program using 

a representation.

• Maintenance activities require changes to the representation to complete the 

process and for further processing. The representations generally must be re­

derived from the program when the program is changed. The RSG based 

maintenance model is a semantically constrained maintenance process model 

that allows simultaneous updates to both the representation model and the 

program.
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• General code move queries involve a boolean answer with origin and 

destinations of the move specified. In addition, ReArchitect can provide a range 

of choices where the code can be moved without changing the program 

meaning.

• In addition to the list of maintenance activities presented in section S.3, other 

activities such as breaking a compound statement into two or merging two 

compound statements into one can be performed. Selected block (compound 

statement) members can be moved out of the block by duplicating the structure 

part (one site) of the block and by making the selected statements control 

dependent on the new site.

• Intelligent use of the statement numbering scheme facilitates the execution of 

all maintenance activities and restructuring transformations by comparing the 

site and port numbers of the statement under consideration, thus requiring no 

further processing.

• The statement numbering eliminates the need for any annotations needed for 

mapping the sites to the program, unlike other representations.
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Chapter 10 

Conclusions

10.1 Summary

The process of maintenance and enhancement of legacy software systems is a 

laborious and unavoidable task. This research was undertaken to seek systematic 

solutions to the maintenance problem and to provide automated support for the 

maintenance process. This research encompasses four major areas: program analysis and 

representation, program slicing, program maintenance, and reengineering.

We described a new representation known as Statement Dependence Graph 

(StDG). The StDG is a fine-grained PDG based discard type multiple representation 

with modular representation for functions and slices. The analysis approach used is 

exhaustive. Alias information is incorporated in the graph. We also provide algorithm 

for building the graph from C programs.

Cohesive components in the graph are merged using compactions. We define 

three types of compactions for merging the graph. These are data, structure, and edge 

compactions. Algorithms for identifying the candidate components for compaction 

using the graph connections and for merging the graph so as to reduce the size of the 

graph by eliminating duplicate parts are described.

The restructured graph RSG is useful in several maintenance domains such as 

slicing, maintenance and reengineering. Several different versions of slices are 

described in the literature. We describe three ways of restructuring the StDG to obtain 

different kinds of slices. The benefits of using different types of RSGs are also
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presented. We also presented the application of RSG for maintenance activities using a 

constraints based approach. Using the RSG, we separate the program into change 

dependent and change independent parts. The change independent part is isolated, thus 

restricting the maintainer’s attention to certain parts of the program.

Research in reengineering is mainly focused on clustering techniques that group 

procedures in a legacy system into candidate objects. We described a comprehensive 

and systematic process for reengineering legacy systems. Reengineering involves 

reverse engineering of the design, making changes to the design, and forward 

engineering.

An intermediate representation known as the language independent format (LIF) 

is used by the Unravel CASE tool for slicing. We use Unravel for converting C 

programs to LIF. We presented algorithms for converting LIF to StDG. The conversion 

process involves derivation of data, control, and flow dependences from the LIF, 

extraction of call graph, and other variable usage information. We also showed how the 

reverse engineered design is presented to the user, hi place of a procedure call, its 

modular representation (summary site) is used in the representation. We give an 

algorithm for computing the summary site.

Code in procedural programs exists as interleaved code. We show how the 

interleaved can be localized and used in identifying object operations and state 

variables. Candidate operations, state variables, and data structures present in the system 

along with a call graph and the RSG are used to build a state reference graph (SRG) for 

object identification. Objects are identified and extracted. The procedural code can then 

be translated into object-oriented code. The help of the software engineer is elicited
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when necessary during object identification. We described various object identification 

techniques available in the literature and discussed the pros and cons of these 

techniques. These reengineering techniques were compared using a case study, and the 

results were presented.

The reengineering process we presented is incorporated into a tool, ReArchitect 

ReArchitect has six key components: static analysis and design extraction, program and 

design representation, design change, slicing, maintenance, and engineer interactions. 

The tool extracts program design from the LIF representation and represented it as 

StDG. StDG is restructured using structure compaction. The restructured graph (RSG) is 

used in slicing and maintenance activities. The tool performs favorably to other slicers 

as the RSG used by the tool requires no dependence analysis during slicing. 

Maintenance activities are unique to the ReArchitect We analyzed the ReArchitect with 

respect to questions of scale, use in interactive environments, and how it overcomes the 

limitations of static analysis.

10.2 Contributions

This research encompasses four major areas: program analysis and representation, 

program slicing, program maintenance, and reengineering. It makes significant 

contributions to each of the four areas. This research:

• introduces a new program representation StDG that addresses several issues 

neglected to date. Salient features of this representation include:

S  Understandability -  static analysis can only conservatively 

approximate dependences; the engineer can correct the dependences.
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/  Editability -  program changes can be incorporated in the 

representation, thus eliminating the need for re-derivation of the 

representation whenever the program is changed.

v' Hybrid analysis -  dependences among cohesive statements are 

discarded and are computed on demand when and if needed. This 

feature eliminates the need for caching techniques used by other 

algorithms to manage memory resources.

/  Alias information -  such information can be incorporated into the 

StDG. Other tools use a separate representation for presenting alias 

information.

S  Modular representation -  this representation allows merging of 

different components.

• defines algorithms for converting C to StDG and LIF to StDG. The use of LIF as 

an intermediate representation gives the StDG applications language 

independence, as a program written in any language can be transformed to the 

LIF format.

• describes methods for identifying and merging cohesive components of the 

graph, simultaneously reducing the graph size. We know of no other analysis 

process that employs this innovative idea.

• presents three types of restructurings for obtaining different lands of slices. 

Several kinds of slices are defined in the literature, each of these are computed in 

a different way. By restructuring the graph differently for different slices we can 

improve the slicing process.
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• obtains modular slices, where slice criteria can be given as a function signature. 

Modular slicing is beneficial in building reuse libraries.

• defines a constraints based maintenance model for efficient program maintenance 

and restructuring transformations. The maintenance process is often done in an ad 

hoc manner. This research provides a systematic approach to making 

maintenance and structural changes to programs. Moreover, the process is 

scalable and can be performed at interactive speeds.

• defines a comprehensive method for identifying and extracting objects. The 

definition of the processes and the associated algorithms advance the state of 

reengineering research. Unlike approaches that group procedures into objects, 

this research presents a systematic process that identifies or introduces object- 

oriented principles in procedural programs. Systems are analyzed at the statement 

level.

• facilitates the derivation of the up to date design documents.

• includes an automated tool, called ReArchitect, that demonstrates the feasibility 

of the StDG for slicing and maintenance applications.

103 Future Research

Several extensions can be incorporated into the work. Some of the important areas

are:

• The O F to StDG translation process spends a significant time inferring the 

nodes that start a loop in the flow graph. It would be more efficient to change
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the Unravel parser YACC grammar to mark the loop nodes for future 

identification. Unravel code is freely distributed by the system developers.

• Sometimes it is necessary to build the StDG of a select group of statements, for 

instance, to find the internal dependencies among statements that are merged 

during compaction. A process for building an StDG selectively is desirable. 

Moreover, if such a process were available we could be less conservative during 

compaction.

• During object identification, the StDG is re-restructured with the state variable 

information. It would be more efficient to selectively restructure the statements 

of the sites that are affected by the new information instead of restructuring the 

entire StDG.

• ReArchitect can be improved. It needs to be extended to incorporate facilities to 

build the state reference graph and to incorporate the object identification 

process. We have presented guidelines for object extraction by incorporating 

these guidelines. The ReArchitect can be extended to include automatic 

translation of code to object-oriented code.

• Finally, an all-inclusive case tool with slicing, maintenance, and reengineering 

capabilities, along with data management and storage facilities would be a 

valuable maintenance aid.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[Ache 95]

[Aho86] 

[Atki 96]

[Benn 92]

[Bigg 94] 

[Booc 94] 

[Bran 96] 

[Canf 93]

[Canf 96]

[Chen 90] 

[Chik90]

Achee, B.L, Carver, D.L., “Identification and Extraction of Objects 
from legacy Code,” hi Proceedings of the Conference on Aerospace 
Applications, Colorado, USA (February 1995), pp. 181-190.

Aho, A.V., Sethi, R, Ullman, J.D., Compilers, Principles, Techniques, 
and Tools, Addison-Wesley, Reading, MA (1986).

Atkinson, D.C., Griswold, W., “The Design of Whole-Program 
Analysis Tools,” In Proceedings of the 18th International Conference 
on Software Engineering, (1996), pp. 16-27.

Bennett, K., Bull, T., Yang, H., “A Transformation System for 
Maintenance -  Turning Theory into Practice,” In Proceedings of the 
Conference on Software Maintenance, Orlando, FL (November 1992), 
pp. 146-155.

Biggerstaff, TJ., Mitbander, B.G., Webster, D.E., “Program 
Understanding and the Concept Assignment Problem,” 
Communications of the ACM, Vol. 37, No.5 (May 1994), pp. 72-83.

Booch, G., Object Oriented Analysis and Design with Applications, 
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 
1994.

Brand, M., Klint, P., Verhoef, C., “Re-engineering needs Generic 
Programming Language Technology,” SIGPLAN Notices, Vol. 32, No. 
2 (February 1997), pp. 54-61.

Canfora, G., Cimitile, A., Munro, M., “Extracting Abstract Data Types 
from C Programs: A Case Study,” In Proceedings of the Conference on 
Software Maintenance, Montreal, Canada (September 1993), pp. 200- 
209.

Canfora, G., Cimitile, A., Munro, M., “An Improved Algorithm for 
Identifying Objects in Code,” Software-Practice and Experience, Vol. 
26(1) (January 1996), pp. 25-48.

Chen, Y., Nishimoto, Y., Ramamoorthy, C.V., “The C information 
Abstraction,” IEEE, pp. 325-334.

Chikofsky, EJ., Cross n, JJL, “Reverse Engineering and Design 
Recovery: A Taxonomy,” IKKK Software, Vol. 13, No. 1 (January 
1990), pp. 13-17.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Choi 90]

[Chu 92]

[Dues 95]

[Dunn 93]

[Ferr 87]

[Gall 95]

[Gall 91]

[Glen 92]

[Gris 91]

[Gris 93]

Choi, S.C., Scacchi, W., “Extracting and Restructuring the Design of 
Large Systems,** ikkK Software, Vol. 13, No. 1 (January 1990), pp. 66- 
71.

Chu., W.C., Patel, S., “Software Restructuring by Enforcing 
Localization and Information Hiding,” In Proceedings of the 
Conference on Software Maintenance, Orlando, FL (November 1992), 
pp. 165-171.

Duesterwald., E., Gupta, R., Soffa, M L , ‘Demand-driven 
Computation of Interprocedural Data Low,” Symposium on Principles 
of Programming Languages, San Francisco, California (January 1995).

Dunn, MJP., Knight, J.C., “Automating the Detection of Reusable Parts 
in Existing Software,” In Proceedings of the International Conference 
on Software Engineering, Baltimore, Maryland, (1993), pp. 381-390.

Ferrante, J., Ottenstein, JJC., Warren, JD ., “The Program Dependence 
Graph and its Use in Optimization,” ACM Transactions on 
Programming Languages and Systems, 9(3), (July 1987), pp. 319—349.

Gall, H., Klosch, R., “Finding Objects in Procedural Programs: An 
Alternate Approach,” In Proceedings of the Second Working 
Conference on Reverse Engineering, Toronto, Canada (July 1995), pp. 
208-216.

Gallagher, K.B., Lyle, J.R., “Using Program Slicing in Software 
Maintenance,” iFkK Trans. On Software Engineering, Vol 21, No 4 
(Augustl991), pp. 751-761.

Glenn, O., “Chembench: Redesign of a Large Commercial Application 
Using Object Oriented Techniques,” OOPSLA, Vancouver, Canada 
(October 1992), pp. 13-16.

Griswold, W.G., “Program Restructuring to Aid Software 
Maintenance,” PhD. dissertation, University of Washington, Dept of 
Computer Science & Engineering (1991) Tech. Report No. 91-08-04.

Griswold, W.G., ‘Direct Update of Data Flow Representations for a 
Meaning-Preserving Program Restructuring Tool,” hi ACM SIGSOFT 
Symposium on the Foundations of Software Engineering, Software 
Engineering Notes (December 1993), 18(5), pp. 42—55.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Gris 95]

[Harr 95]

[Hair 93]

[Horw 90]

[Horw 88]

[Huch 85]

[Jack 94]

[Jack 97] 

[Jaco 91] 

[Jarz 95]

[Jian 91]

[John 85]

Griswold, W.G., Notion, D., “Architectural Tradeoffs for a Meaning- 
Preserving Program Restructuring Tool,” IEEE Trans. On Software 
Engineering, Vol 21, No 4 (April 1995), pp. 275-287.

Harrold, M J., Soffa, M L , “Efficient Computation of Interprocedural 
Definition-Use Chains,” ACM Transactions On Programming 
Languages and Systems, Vol. 16, No 2 (March 1994), Pages 175-204.

Harrold, M J., malloy, B., “A Unified Interprocedural Program 
Representation for a Maintenance Environment,” IEEE Transactions 
On Software Engineering, Vol 19, No 6 (June 1993), pp. 584-593.

Horwitz, S., Reps, T., Binkley, D., “Interprocedural Slicing Using 
Dependence Graphs,” ACM Transactions on Programming Languages 
and Systems, Vol. 12, No. 1 (January 1990), pp. 26-60.

Horwitz, S., Prins, J., Reps, T., “Integrating non-interfering Versions of 
Programs,” Fifth ACM Symposium on Principles of Programming 
Languages, San Diego, California, (January 1988), pp. 133-145.

Huchens, DLL, Basili, V.R., “System Structure Analysis: Clustering 
with Data Bindings,” IEEE Trans. On Software Engineering, Vol 11, 
No 8 (August 1985), pp. 749-757.

Jackson, D., Rollins, E J., “A New Model of Program Dependences for 
Reverse Engineering,” Software Engineering Notes, SIGSOFT, ACM 
Press, Vol. 19, No. 5 (December 1994), pp. 2-10.

Jacky, J., The Way o fZ  Practical Programming with Formal Methods, 
Cambridge University Press.

Jacobson, L, Lindstrom, F., “Re-engineering of Old Systems to an 
Object-Oriented Architecture,” OOPSLA, (1991), pp. 340-350.

Jarzabek, S., Keam, TP., “Design of a Generic Reverse Engineering 
Assistant Tool,” Li Proceedings of the Second Working Conference on 
Reverse Engineering, Toronto, Canada (July 1995), pp. 61-70.

Jiang, J., Zhou, X., Robinson, D J., “Program Slicing for C - The 
Problems in Implementation,” IKKK Conference On Software 
Maintenance, Sorrento, Italy, (October 1991), pp. 182-189.

Johnson, W L , Soloway, E., “PROUST: Knowledge-Based Program 
Understanding,” IEEE Trans. On Software Engineering, Vol 11, No 3 
(September 1985).

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Kem 88] 

[Kinl 94 ]

[Land 92]

[Lana 93]

[Lee 97] 

[Lehm 85] 

[Lind 97]

[Liva]

[Liu 90]

[Lyle 84] 

[Lyle 86]

Kemighan, R-, Ritchie, D., The C Programming Language, Englewood 
Cliffs, New Jersey: Prentice hall (1988).

Kinloch, D.A., Munro, M., “Understanding C Program Using 
Combined C Graph Representation,” In Proceedings of the Conference 
on Software Maintenance, Victoria, Canada, (September 1994), pp. 
172-180.

Landi, W., “Undecidability of Static Analysis,” ACM Letters on 
Programming Languages and Systems, Vol. 1, No. 4 (December 1992), 
pp. 323-337.

Lanubile, F., Visaggio, G., “Function Recovery based on Program 
Slicing,” In Proceedings of the Conference on Software Maintenance, 
Montreal, Canada (September 1993), pp. 396-404.

Lee, C.R., UML and C++ a Practical Guide to Object-Oriented 
Development, Prentice Hall, New Jersey, and (1997).

Lehman, M.M., Belady, L., Program Evolution Process o f Software 
Change, Academic Press, London, (1985).

landing, C., Snelting, G., “Assesing Modular Structure of Legacy Code 
Based on Mathematical Concept Analysis,” In Proceedings of the 19th 
International Conference On Software Engineering, (1997), pp. 349- 
359.

Livandas, EX., “System Dependence Graphs Based on Parse Trees and 
their Use in Software Maintenance”, Web site of Univ. of Florida, pp. 
1-24.

Liu, S., Wilde, N., “Identifying objects in a Conventional Procedural 
Language: An Example of Data Design Recovery,” In Proceedings of 
the Conference on Software Maintenance, (November 1990), pp. 266- 
271.

Lyle, J.R., “Evaluating Variations of Program Slicing”, PhD. 
Dissertation, Univ. of Maryland, College Park, (December 1984).

Lyle, JJEL, Weiser, MD., “Automatic Program Bug Location by 
Program Slicing”, In Proceedings of the 2nd International Conference 
On Computers and Applications (Peking, China), June 1987, pp. 877- 
882.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Lyle 95]

[Morg97] 

[Newc 95]

[Newc 95]

[Ning 94]

[Opdy 92]

[Osbo 90] 

[Ott 92]

[Ott 89] 

[Otte 84] 

[Pent 98]

Lyle, J.R., Wallace, D.R., Graham, J.R., Gallagher, KJ3., Poole, J.P., 
Binkley, D.W., “Unravel: A CASE Tool to Assist Evaluation of High 
Integrity Software”, U.S. Deprt. Of Commerce, Technology 
Administration, NUT, (1995).

Morgenthaler, JD., “Static Analysis for a Software Transformation 
Tool”, Ph J>. Dissertation, University of California, San Diego (1997).

Newcomb, P., Kotik, G., “Reengineering Procedural into Object- 
Oriented Systems,” In Proceedings of the Second Working Conference 
on Reverse Engineering, Toronto, Canada (July 1995), pp. 237-249.

Newcomb, P., “Legacy System Cataloging Facility,” In Proceedings of 
the Second Working Conference on Reverse Engineering, Toronto, 
Canada (July 1995), pp. 52-60.

Ning, J. Q., Engberts, A., Kozaczynski, W., “Automated Support for 
Legacy Code Understanding,” Communications of the ACM, Vol. 37, 
No. 5 (May 1994), pp. 50-57.

William F.O., “Refactoring Object-Oriented Frameworks”. PhJD. 
Dissertation, University of Illinois at Urbana-Champaign, Department 
of Computer Science, (1992).

Osborne, W J1, Chikofsky, EJ., “Fitting Pieces to the Maintenance 
Puzzle,” IEEE Software, Vol. 13, No. 1 (January 1990), pp. 11-12.

Linda, M.O., Jeffrey, J.T., “The Relationship between Slices and 
Module Cohesion,” Communications of the ACM, Vol. 37, No. 5 (May 
1989), pp. 198-204.

Ott, MJL, Thuss, K., Wills, LAI., “The Relationship between Slices 
and Module Cohesion.” Proceedings of the 11th International 
Conference on Software Engineering, Singapore, (May 1989), pp. 198- 
204.

Ottenstein, K.J., Ottenstein, LM., “The Program Dependence Graph in 
a Software Development Environment” hi Proceedings of the ACM 
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical 
Software Development Environments, (April 1984) pp. 177-184.

Penteado, R., Masiero, P.C., Padro, A J7., Braga, R.T., “Reengineering 
of Legacy Systems based on Transformation Using the Object-Oriented

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Plat 91]

[Pres 92] 

[Quil 94] 

[Reps 95]

[Rich 90]

[Ruga 90]

[Ruga 95]

[Rumb 91] 

[Sahr97]

[Scha 96] 

[Seba 93]

Paradigm,” In Proceedings of the Fifth Working Conference on Reverse 
Engineering, Honolulu, USA (October 1998), pp. 144-153.

Platff, M., Wagner, M., “An Integrated Program Representation and 
Toolkit for the Maintenance of C programs,” International Conference 
on Software Maintenance, Sorrento, Italy, (October 1991), pp. 129- 
136.

Pressman, R.S., Software Engineering: A  Practitioner’s Approach, 
McGraw-Hill, Inc., Third Edition, (1992).

Quilici, A., “A Memory-Based Approach,” Communications of the 
ACM, Vol. 37, No. 5 (May 1994), pp. 84-93.

Reps, T., Horwitz, S., Sagiv, M., “Precise Interprocedural Dataflow 
Analysis via Graph Reachability”, hi Conference Record of the 22nd 
ACM Symposium on Principles of Programming Languages, (1995) pp. 
49-61.

Rich, C., Wills, LM ., “Recognizing a Program’s Design: A Graph- 
Parsing Approach,” IEEE Software, Vol. 13, No. 1 (January 1990), pp. 
82-89.

Rugaber, S., Ombum, S.B., LeBlanc, Jr., R J., “Recognizing Design 
Decisions in Programs,” IKKK Software, Vol. 13, No. 1 (January 1990), 
pp. 46-54.

Rugaber, S., S tire wait, K., and Wills, L.M., “The Interleaving Problem 
in Program Understanding.” International Conference on Software 
Maintenance, Nice, France (October 1995), pp. 265-274.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy., F., Lorensen, W., 
Object-Oriented Modeling and Design, Prentice-Hall, (1991).

Sahraoui, HA., “Applying Concept Formation Methods to Object 
Identification in Procedural Code,” Technical Report CRIM-97/05-77, 
CRIM, 1997.

Schach, S.R., Classical and Object-Oriented Software Engineering, 3rd 
Edition, Irwin, 1996.

Sebesta, R.W., Concepts o f Programming Languages,
Benjamin/Cummings, Second Edition, 1993.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Siff 96]

[Siff 97] 

[Snee 95]

[Snee 98]

[Stee 96]

[Snel 96]

[Thom 84] 

[Vala 98]

[Vala 99]

[Vane 89]

Siff, M., Reps, T., “Program Generalization for Software Reuse: from 
C to C++,” Proceedings of the Fourth ACM SIGSOFT Symposium on 
the Foundations of Software Engineering, San Francisco, California, 
(October 1996), pp. 135-146.

Siff, M., Reps, T., “Identifying Modules Via Concept Analysis,” 
International Conference on Software Maintenance, Bary, Italy, 
(October 1997)

Sneed, M.S., Nyary, E., “Extracting Object-Oriented Specification from 
Procedurally Oriented Programs” In Proceedings of the Second 
Working Conference on Reverse Engineering, Toronto, Canada (July 
1995), pp. 217-226.

Sneed, M IL, “Architecture and Function of a Commercial Software 
Reengineering Workbench” In Proceedings of the Second Euromicro 
Conference on Software Maintenance and Reengineering, Florence, 
Italy (1998), pp. 2-10.

Steensgaard, B., “Points-to Analysis in Almost Linear Time,” In 
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on 
Principles of Programming Languages (1996), pp. 32-41.

Snelting, G., “Reengineering of Configurations based on Mathematical 
Concept Analysis,” ACM Transactions on Software Engineering and 
Methodology, Vol 5, No 2 (April 1996), pp. 146-189.

Thomas, A.S., “An Essay on Software Reuse,” IEEE Trans. On 
Software Engineering, Vol 10, No 5 (September 1984), pp. 494-497.

Valasareddi, R.R, Carver, DX., “A Graph-Based Object Identification 
Process for Procedural Programs,” In Proceedings of the Fifth Working 
Conference on Reverse Engineering, Honolulu, USA (October 1998), 
pp. 50-58.

Valasareddi, R.R, Carver, DX., “A Representation Model for 
Procedural Program Maintenance,” In Proceedings of the ACM 
Symposium on Applied Computing, San Antonio, USA (February 
1999), pp. 580-585.

Vanek, L.I., “Static Analysis of Program Source Code Using EDS A,” 
In Proceedings of the Conference on Software Maintenance, (1989), pp. 
192-199.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[Venk95] 

[Ward 93]

[Wate 94]

[Weis 84] 

[Weis 94]

[Wigg 97]

[Wood 95] 

[Wood 98] 

[Yeh 95]

Venkatesh, G A , “Experimental Results from Dynamic Slicing of C 
Programs,” ACM Transaction on programming languages and systems, 
Vol. 17, No. 2 (March 1995), pp. 197-216.

Ward, MJ*., Bennett, KJL, “A practical Program Transformation 
System for reverse engineering,” In Proceedings of the Conference on 
Software Maintenance, Montreal, Canada (September 1993), pp. 212- 
221.

Waters, R.C., Chikofsky, E., “Reverse Engineering: Progress Along 
Many Dimensions,” Communications of the ACM, Vol. 37, No. 5 (May 
1994), pp. 22-25.

Weiser, M., “Program Slicing,” ikhK Transactions on Software 
Engineering,” Vol. SE-10 No. 4 (July 1984), pp. 352-357.

Weise, D., Crew, RP., Ernst, M., Steensgaard, B., “Value Dependence 
Graphs: Representation without Taxation.” Technical Report MSR-TR- 
94-03, Microsoft research, Redmond, WA, (April 94).

Wiggerts, T.A., Baxter, L, Quilici, A., Verhoef, C., “Using Clustering 
Algorithms in Legacy Systems Remodularization,” In Proceedings of 
the Fourth Working Conference on Reverse Engineering, Amsterdam, 
Netherlands (October 1997), pp. 33-43.

Woods, S., Yang, Q., “Program Understanding as Constraint 
Satisfaction” hi Proceedings of the Second Working Conference on 
Reverse Engineering, Toronto, Canada (July 1995), pp. 314-323.

Woods, S.G, Quilici, AJ5., Yang, Q., Constraint-Based Design 
Recovery fo r Software Reengineering, Kluwer Academic Publishers, 
Boston (1998).

Yeh, A.S., Harris, D.R., Reubenstein, H.B., “Recovering Abstract Data 
Types and Object Instances horn a Conventional Procedural 
Languages,” In Proceedings of the Second Working Conference on 
Reverse Engineering, Toronto, Canada (July 1995), pp. 227-236.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix

Program Representations In ReArchitect
A.1 wc program formatted for StDG analysis

1 intnw, nc;
2 void wonlCount(mt inword) {
3 intc;
4 c = getchar 0;
5 while (c!=  EOF ){
6 nc = n c+ l;
7 i f ( c = “ | |c = ‘\n’| | c = ‘\t’ )
8 inword = 0;
9 else if ( in word =  0 ) {
10 in word = 1;
11 nw = nw + 1;
12 }
13 c = getchar 0*.
14 }
15 }
16 mainO {
17 int inw;
18 inw = nc = nw = 0;
19 wordCount(inw);
20 printf (“\n”) ;
21 printf (“ %d %d\n”,nc,nw);
22 }

A JL2 LIF representation of the wc program with explanations

18(1,2,6,2,14) source for node 1 line 2 cols 6-14 
l(l,l,wordCount) Function wordCount 1 entry at 1 
8(2,2) local def to c (2) at stmt 2 on line 4 
11(2,2) call to getchar at 2 
13 end call to getchar at 2 
18(2,4,4,4,18) source for node 2 line 4 cols 4-18 
10(3,2) global def to nc (2) at stmt 3 on line 6 
9(3,2) global ref to nc (2) at stmt 3 on line 6 
18(3,6,8,6,19) source for node 3 line 6 cols 8-19 
8(4,1) local def to inword (1) at stmt 4 on line 8 
18(4,8,11,8,21) source for node 4 line 8 cols 11-21 
8(5,1) local def to inword (1) at stmt 5 on line 10 
18(5,10,10,10,20) source for node 5 line 10 cols 10-20
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10(6,1) global def to nw (1) at stmt 6 on line 11
9(6,1) global ref to nw (1) at stmt 6 on line 11
18(6,11,10,11,21) source for node 6 line 11 cols 10-21
16(5,6) connect from 5 to 6
18(7,932,932) source for node 7 line 9 cols 32-32
18(8,12,7,12,7) source for node 8 line 12 cols 7-7
16(7,5) connect from 7 to 5
16(6,8) connect from 6 to 8
17(7,5,6) nodes 5-6 require node 7
17(8,7) nodes 7-7 require node 8
7(9,1) local ref to inword (1) at stmt 9 on line 9
17(9,10) nodes 10-10 require node 9
17(10,8) nodes 8-8 require node 10
17(10,6) nodes 6-6 require node 10
16(8,10) connect from 8 to 10
16(9,7) connect from 9 to 7
16(9,10) connect from 9 to 10
18(9,9,13,930) source for node 9 line 9 cols 13-30
18(10,930,9,30) source for node 10 line 9 cols 30-30
7(113) local ref toe (2) at stmt 11 on line 7
7(113) local ref to c (2) at stmt 11 on line 7
7(113) local ref to c (2) at stmt 11 on line 7
17(11,13) nodes 13-13 require node 11
17(13,4) nodes 4-4 require node 13
16(4,13) connect from 4 to 13
16(11,4) connect from 11 to 4
16(12,9) connect from 12 to 9
16(10,13) connect from 10 to 13
16(11,12) connect from 11 to 12
18(12,9,8,9,11) source for node 12 line 9 cols 8-11
17(13,12) nodes 12-12 require node 13
17(13,9,10) nodes 9-10 require node 13
17(12,9,10) nodes 9-10 require node 12
18(11,7,8,7,44) source for node 11 line 7 cols 8-44
18(13,7,44,7,44) source for node 13 line 7 cols 44-44
16(3,11) connect from 3 to 11
8(14,2) local def to c (2) at stmt 14 on line 13
11(143) call to getchar at 14
13 end call to getchar at 14
18(14,13,5,13,19) source for node 14 line 13 cols 5-19 
16(13,14) connect from 13 to 14 
18(15,5,23,5,23) source for node 15 line 5 cols 23-23 
18(16,14,5,14,5) source for node 16 line 14 cols 5-5 
16(153) connect from 15 to 3 
16(14,16) connect from 14 to 16
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17(153) nodes 3-3 require node 15 
17(15,11.14) nodes 11-14 require node 15 
17(16,15) nodes 15-15 require node 16 
7(173) local ref to c (2) at stmt 17 on line 5 
18(17,5,4,531) source for node 17 line 5 cols 4-21 
18(18331.531) source for node 18 line 5 cols 21-21 
16(17,15) connect from 17 to 15 
16(17,18) connect from 17 to 18 
16(16,17) connect from 16 to 17 
17(17,18) nodes 18-18 require node 17 
17(18,16) nodes 16-16 require node 18 
17(18,11,14) nodes 11-14 require node 18 
16(2,17) connect from 2 to 17 
4(2,c) local id
18(19338338) source for node 19 line 2 cols 28-28
18(20,15,1,15,1) source for node 20 line 15 cols 1-1
16(193) connect from 19 to 2
16(1830) connect from 18 to 20
17(193) nodes 2-2 require node 19
17(19,17,18) nodes 17-18 require node 19
17(20,19) nodes 19-19 require node 20
16(1,19) connect from 1 to 19
17(19,1) nodes 1-1 require node 19
3(14nword) Formal parm
2(20) end function wordCount
18(21,16,1,16,4) source for node 21 line 16 cols 1-4
1(21,3 .main) Function main 3 entry at 21
8(22,1) local def to inw (1) at stmt 22 on line 18
10(223) global def to nc (2) at stmt 22 on line 18
10(22,1) global def to nw (1) at stmt 22 on line 18
18(22,18,5,1832) source for node 22 line 18 cols 5-22
11(23,1) call to wordCount at 23
7(23,1) local ref to inw (1) at stmt 23 on line 19
13 end call to wordCount at 23
18(23,19,5,19,19) source for node 23 line 19 cols 5-19
16(2233) connect from 22 to 23
11(24,4) call to printf at 24
13 end call to printf at 24
18(2430,530,19) source for node 24 line 20 cols 5-19 
16(2334) connect from 23 to 24 
11(25,4) call to printf at 25 
12 Actual seperator
9(253) global ref to nc (2) at stmt 25 on line 21 
12 Actual seperator
9(25,1) global ref to nw (1) at stmt 25 on line 21
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13 end call to printf at 25
18(25,21,5,21,32) source for node 25 line 21 cols 5-32 
16(24,25) connect from 24 to 25 
4(14nw) local id
18(26,16,8,16,8) source for node 26 line 16 cols 8-8
18(27,22,1,22,1) source for node 27 line 22 cols 1-1
16(26,22) connect from 26 to 22
16(25,27) connect from 25 to 27
17(26,22,25) nodes 22-25 require node 26
17(27,26) nodes 26-26 require node 27
16(21,26) connect from 21 to 26
17(26,21) nodes 21-21 require node 26
2(27) end function main
5(2,nc) Global id
5(1,nw) Global id

A.3 StDG representation (Sites) of we program generated by the ReArchitect

Site 2:B S:2,|
Port(2,0,0,)TaU U{UPPl:PhI 15;DPPl-TaU 2;}
Port(2,2,0,)TaU D{UPPl:TaU 2;DPPl-TaU 4;DPP2-TaU 5;DPP3-TaU 15;}

Site 4:F,S:4,|
Port(4,2,0,)TaU U{UPPl:TaU 2;DPP1-Phl 4JDPP2-C 4;}
Port(4,4,0,)PhI D{UPPl:TaU 4;}
Port(4,4,0,)c D{UPPl;TaU 4;DPPl-c 5;DPP2-c 7;}

Site 5:B L S:5,|
Port(5,2,0,)TaU U{UPPl:TaU 2;UPP2:PhI 14;DPPl-TaU 5;}
Port(5,5,0,)c U{UPPl:c 4;UPP2:c 13;DPPl-TaU5;}
Port(5,5,0,)TaU D{UPPl:TaU 5;UPP2:c 5;DPPl-TaU 6;DPP2-TaU 7;DPP3-TaU 

13J)PP4-TaU 14;}
Site 6:S:6,|
Port(6,5,0,)TaU U{UPPl:TaU 5;DPPl-nc 6;}
Port(6,6,0,)nc U{UPPl:nc 23;UPP2:nc 6;DPPl-nc 6;}
Port(6,6,0,)nc D{UPPl:nc 6;UPP2:TaU 6;DPPl-nc 24;DPP2-nc 6;}

Site 7:B S:7,|
Port(7,5,0,)TaU U{UPPl:TaU 5;DPPl-TaU 7;}
Port(7,7,0,)c U{UPPl:c4;UPP2:c 13;DPPl-TaU7;}
Port(7,7,0,)TaUD{UPPl:TaU 7;UPP2:c 7J)PPl-TaU 8f)PP2-TaU 9;}

Site 8:S:8,|
Port(8,7,0,)TaU U{UPPl:TaU 7J)PPl-inword 8;}
Port(8,8,0,)inword FD{UPPl:TaU8;}

Site 9 ^  S:9,|
Port(9,7,0,)TaU U{UPPl:TaU 7;UPP2:PhI 12f)PPl-TaU 9;}
Port(9,9,0,)inword F U{UPPl:inword 230DPPl-TaU 9;}
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Port(9,9,0,)TaU D{UPPl:TaU 9;UPP2:inword 9;DFPl-TaU 10;DPP2-TaU 
ll;DPP3-TaU 12;}
Site 10:S:10,|
Port(10,9,0,)TaU U{UFPl:TaU 9;DPPl-inword 10;}
Port(10,10,0,)inword FD{UPPl:TaU 10;}

Site 11:S:11,|
Port(ll,9,0,)TaU U{UPPl:TaU 9;DPPl-nw 11;}
Port(ll,ll,0,)nw U{UPPl:nw 23;DPPl-nw 11;}
Port(l 1,11,0,)nw D{UPPl:nw ll;UPP2:TaU ll;DPPl-nw 24;}

Site 12:E S:12,|
Port(12,9,0,)TaU U{UPPl:TaU 9;DPP1-Phl 12;}
Port(12,12,0,)PhI D{UPPl:TaU 12;DPPl-TaU 9;}

Site 13:F,S:13,|
Port(13,5,0,)TaU U{UPPl:TaU 5;DPP1-Phl 13;DPP2-c 13;} 
Port(13,13,0,)PhID{UPPl:TaU 13;}
Part(13,13,0,)c D{UPPl:TaU 13;DPPl-c 5;DPP2-c 7;}

Site 14:E S:14,|
Port(14,5,0,)TaU U{UPPl:TaU 5;DPP1-Phl 14;} 
Port(14,14,0,)PhID{UPPl:TaU 14;DPPl-TaU 5;}

Site 15£ S:15,|
Port(15,2,0,)TaU U{UPPl:TaU 2J)PP1-Phl 15;}
Port(15,15,0,)PhI D{UPPl:TaU 15;DPPl-TaU 2;}

Site 23 :B S:-l,|
Port(23,0,0,)inword FD{DPPl-inword9;}
Port(23,0,0,)nc D{DPPl-nc 6;}
Port(23,0,0,)nw D{DPPl-nw 11;}

Site 24:E S:-l,|
Port(24,0,0,)nc U{UPPl:nc 6;}
Port(24,0,0,)nw U{UPPl:nw 11;}

Site 163  S:16,|
Port(16,0,0,)TaU U{UPPl:PhI 22;DPPl-TaU 16;}
Port(16,16,0,)TaUD{UPPl:TaU 16,DPPl-TaU 18;DPP2-TaU 19J)PP3-TaU 

20J>PP4-TaU 21;DPP5-TaU 22;}
Site 18:S:18,|
Port(18,16,0,)TaUU{UPPl:TaU 16;DPPl-nw 18;}
Port(18,18,0,)nw D{UPPl:TaU 18;DPPl-nw 21;DPP2-nw 26;}

Site 19:F,S:19,|
Port(19,16,0,)TaUU{UPPl:TaU 16;DPP1-Phl 19;}
Port(19,19,0,)inw U{DPP1-Phl 19;}
Port(19,19,0,)PhI D{UPPl:TaU 19;UPP2:inw 19;}

Site 20:F,S:20,|
Port(20,16,0,)TaU U{UPPl:TaU 16£>PPl-PhI 20;}
Port(20,20,0,)PhI D{UPPl:TaU 20;}

Site 21:F,S:21,|
Port(21,16,0,)TaUU{UPPl:TaU 16;DPP1-Phl 21;}
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Port(21,21,0,)nc U{UPPlmc 25;DFP1-Phl 21;} 
Port(21^1,0,)nwU{UPPlniw 18;DPPl-PhI21;} 
Port(21,21,0,)PhI D{UPPl:TaU 21;UPP2:nc 21;UPP3:nw 21;} 

Site 22£  S:22,|
Port(22,16,0,)TaU U{UPPl:TaU 16;DPP1-Phl 22;} 
Port(22^2,0,)PhI D{UPPl:TaU 22;DPPl-TaU 16;}

Site 25 :B S:-2,|
Port(25,0,0,)nc D{DPPl-nc 21;DPP2-nc 26;}

Site 26£ S:-2,|
Port(26,0,0,)nw U{UPPl:nw 18;}
Port(26,0,0,)nc U{UPPl:nc 25;}
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