
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

1999

A Transformational Reengineering System That Supports A Transformational Reengineering System That Supports

Software Maintenance Using a Graph Representation for the Software Maintenance Using a Graph Representation for the

Identification of an Object-Oriented Software Architecture. Identification of an Object-Oriented Software Architecture.

Ramachenga Reddy Valasareddi
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Valasareddi, Ramachenga Reddy, "A Transformational Reengineering System That Supports Software
Maintenance Using a Graph Representation for the Identification of an Object-Oriented Software
Architecture." (1999). LSU Historical Dissertations and Theses. 6927.
https://repository.lsu.edu/gradschool_disstheses/6927

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F6927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/6927?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F6927&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter free, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A TRANSFORMATIONAL REENGINEERING SYSTEM
THAT SUPPORTS SOFTWARE MAINTENANCE

USING A GRAPH REPRESENTATION FOR THE IDENTIFICATION
OF AN OBJECT-ORIENTED SOFTWARE ARCHITECTURE

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Ramachenga Reddy Valasareddi

B.Tech., Sri Venkateswara University, India, 1986
M.Tech., Hyderabad Central University, India, 1988
M.S., University of Southwestern Louisiana, 1991

May 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9926428

Copyright 1999 by
Valasareddi, Ramachenga Reddy

All rights reserved.

UMI Microform 9926428
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©Copyright 1999
Ramachenga Valasaieddi

All rights reserved

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To
Saumya

Leelavathi
Siddarami Reddy

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Doris Carver, for her

support and guidance during my stay at LSU. I particularly appreciate her patience. I

also thank her for providing the facilities of the Software Engineering Laboratory.

I owe special thanks to Dr. Iyengar for his kind words and assistance during

early stages of my graduate studies. I would like to thank all the members of my

doctoral committee, Dr. Sitarama Iyengar, Dr. Donald Kraft, Dr. Debashish Gosh, and

Dr. David Mukai for taking the time to review my dissertation and for their suggestions.

I would like to thank Dr. Lalit Verma of Agriculture Engineering and Dr. Kevin

Robbins of Southern Regional Climatic Center for the financial assistance. Special

thanks to Joyce Robertson of River City medical, Inc. for the job and for allowing me to

pursue my studies.

Thanks to Samuel Harries, Tim Ottinger, and Michael Siff for their inputs to my

research.

I appreciate the support and encouragement of the Indian families in Baton

Rouge, especially those from my home state Andhra Pradesh. Because of them I moved

to Baton Rouge and was subsequently introduced to LSU. They truly made my stay here

worthwhile.

Special thanks to Rama, Subba Rao, Venkat, Siva Ram, Ravi, Prasad, Raju,

Niranjan, and Carlos for being good friends. I thank those many others not mentioned

here who provided encouragement and assistance during my graduate studies.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I thank my parents and my brothers for their guidance and support Without their

encouragement I couldn’t have made it through the program.

I am especially thankful to my daughter Saumya and wife Lalasa for their patient

cooperation and unconditional support

Finally, I am thankful to God for granting me the skills and opportunities that

made this possible.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

List of Kgures..........

Abstract xiii

Chapter 1: Introduction
1.1 hitroduction... 1
1.2 Background...2

0 .1 Maintenance..2
1.2.2 Program understanding..2
1.2.3 Current status of legacy software systems... 3
1.2.4 Object-oriented paradigm..4
1.2.5 Reengineering...5

1.3 Overview of the Research..6
1.3.1 Objective...6
1.3.2 Reengineering process.. 7
1.3.3 Implementation considerations... 9

1.4 Outline of the Dissertation...9

Chapter 2s h^otivation and Related Researchi.....«..................ww w m w . . ^ w II
2.1 Motivation for the Research... 11
2.2 Related Research.. 13

Chapter 3: Static Analysis of Source C ode ------------------------------------ 18
3.1 hitroduction... 18
3.2 Dependence Analysis...19

3.2.1 Issues in static analysis.. 21
3.2.2 Approaches to static analysis...23

3.3 Program Representation.. 25
3.3.1 Multiple representations.. 25
3.3.2 Unified representations... 28

3.4 Program Restructuring Transformations..30
3.5 Statement Dependence Graph..32

3.5.1 Terminology... 34
3.5.2 Semantics of StDG..37
3.5.3 Construction of StDG... 41
3.5.4 Representation of alias information in the graph..................................... 45

3.6 Summary.. 47

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4: Restructuring StDG..48
4.1 hitroduction..48
4J2 Merging Sites...49

4.2.1 Notations and definitions... 49
4.2.2 Site connections...53

4.3 Compaction..58
4.3.1 Structural compaction.. 59
4.3.2 Data compaction..60
4.3.3 Edge compaction..62

4.4 Compaction Algorithm.. 64
4.5 Restructured StDG (RSG).. 66
4.6 Summary... 67

Chapter 5: Application of RSG to Slicing and Maintenance68
5.1 Introduction... -68
5.2 Slicing... 68

5.2.1 Formalization of modular slicing... 70
5.2.2 RSG for slicing (RSGS)...73
5.2.3 Modular slicing..78
5.2.4 Comparison of slicing techniques...81

5.3 Maintenance.. 81
5.3.1 Maintenance model..82
53.2 RSG for maintenance...84
53.3 Maintenance activities...86

5.4 Summary..92

Chapter (2 Iceversc Ifengmccring 94
6.1 hitroduction... 94
6.2 CodetoLDF... 95

6.2.1 Language independent format (LIF).. 95
6.2.2 Language independent representation.. 96

6.3 UF to StDG.. 101
63.1 Definitions... 103
6.3.2 Ports.. 103
6.3.3 Internal edges...105
6.3.4 Control and flow dependence edges...105
6.3.5 Data dependence edges..107
6.3.6 Algorithm for deriving data dependence edges...................................... 108
6.3.7 Summary site... 112

6.4 Visual Representation of Design.. 112
6.4.1 Control flow and dataflow graphs...1132
6.4.2 Call graph.. 113
6.4.3 Structure charts... 114

6.5 Summary... 114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7; Design Change 115
7.1 hitroduction..115
7.2 Object Identification Approaches...117

7.2.1 Liu and Wilde approach... 119
7.2.2 Dunn and Knight approach.. 120
7.23 SifF and Reps approach.. 121
7.2.4 Canfora, Cimitile and Munro (CCM) approach...................................... 123

7.3 The RSG Approach... 126
7.3.1 Code localization.. 127
7.3.2 Plan identification... 128
7.3.3 RSG for object identification... 129
7.3.4 Restructured program design...130

7.4 Summary... 131

Chapter 8* Forward Rn^mccrmg 133
8.1 hitroduction... 133
8.2 Object Identification Process... 133
8.3 Examples for Object Identification.. 142

8.3.1 Example 1...142
8.3.2 Example 2 ...147

8.4 Object Extraction.. 147
8.5 Case Studies..150

8.5.1 Bash.. 150
8.5.2 Chull... 154

8.6 Summary...156

Chapter 9* Jfctê r̂cln tect ... 157
9.1 Overview...157
9.2 Design.. 160
9.3 Implementation... 163
9.4 Discussion.. 164

Chapter 10* (Conclusions imwwwmwmmwmh.hwmmmhmii.www —............. 168
10.1 Summary..168
10.2 Contributions...170
10.3 Future Research... 172

Bibliography 174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table 3.1. Algorithm for constructing the StDG... 43

Table 5.1. Comparison of slicing methods.. 80

Table 6.1. LIF codes used to specify declarations and expressions.............................. 97

Table 6.2. LIF codes used to specify the flow-graph..98

Table 6.3. LEF codes to specify procedures...100

Table 6.4. LIF codes to specify structure fields.. 100

Table 6.5. StDG codes.. 102

Table 6.6. Determination of use ports from the LIF... 104

Table 6.7. Determination of def ports from the LIF.. 105

Table 6.8. Determination of internal edges from the LEF... 106

Table 6.9. Determination of external edges from the LEF... 107

Table 6.10. Algorithm for computing summary site... 112

Table 8.1. C Code to implement a queue with two stacks...135

Table 8.2. Sites and other definitions for the example in table 8.1..............................138

Table 8.3. Sample program for object identification.. 142

Table 8.4. Sites in the modified RSG... 144

Table 8.5. Sample program 2 for object identification.. 146

Table 8.6. Operations in the objects identified... 148

Table 8.7. Analyses of sbash..151

Table 8.8. Analyses of Chull.c...155

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1.1. Reengineering process... 8

Figure 3.1. (a) Sample C program.. 39

Figure 3.2. StDG with alias information...46

Figure 4.1. (a) Sites before merging (b) Port Tj replaced by T i..................................... 54

Figure 4.2. (a) The sites before merging... 55

Figure 4.3. (a) The sites before merging...56

Figure 4.4. (a) The sites before merging... 57

Figure 4.5. (a) The sites before merging... 58

Figure 4.6. Candidate sites for structure compaction.. 60

Figure 4.7.A11 def edges from Si reach S2 ..61

Figure 4.8. Sites Si and S2 are interdependent..61

Figure 4.9. Sites reachable from Si are also reachable from S262

Figure 4.10. (a) Candidate sites for edge compaction (b) Edge compacted sites........... 63

Figure 4.11. Restructured StDG... 67

Figure 5.1. Type 1 RSGS... 75

Figure 5.2. Type 2 RSGS... 77

Figure 5.3. Type 3 RSGS... 78

Figure 5.4. The maintenance model... 82

Figure 5.5. RSG for maintenance (RSGM)...85

Figure 5.6. The StDG of the changes..89

Figure 5.7. The modified program RSG...90

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1. i f statement flow-graph... 98

Figure 6.2. CFG and DFG.. 113

Figure 6.3. Call Graph.. 113

Figure 6.4. Structure chart representation of call graph.. 114

Figure 7.1 A sample C program for Liu and Wilde approach......................................120

Figure 7.2. Strongly connected sub-graphs in Liu and Wilde approach...................... 120

Figure 7.3. Strongly connected sub-graphs in Dunn and Knight approach................. 121

Figure 7.4 A sample C program for Siff and Reps approach.......................................122

Figure 73 A sample C program for CCM approach... 123

Figure 7.6. Connected components in the CCM approach.. 124

Figure 7.7. Sample C program for RSG approach.. 126

Figure 7.8. RSG of the program in figure 7.7... 129

Figure 7.9. Statements in the sites of RSG in figure 7.8..130

Figure 7.10. (a) RSG of figure 3.1(b). (b) RSG of figure 3.1(c).................................131

Figure 7.11. The structure chart representation of RSG..131

Figure 8.1. State reference graph..140

Figure 8.2. RSG of the program in table 8.3..143

Figure 8.3. (a). SRG of the program, (b) Partially merged SRG..................................145

Figure 8.4. State reference graph of the sbash...153

Figure 9.1. ReArchitect components and interactions.. 158

Figure 9.2. (a) ReArchitect class aggregation diagram... 161

Figure 9.3. (a) ReArchitect object aggregation diagram (b) association diagram 162

Figure 9.4. ReArchitect interface..163

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 93 . Summary site of procedure w ordC ount.. 164

Figure 9.6. A forward slice on nw and inw ord at enter site......................................164

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The process of maintenance and enhancement of legacy software systems is a

laborious and unavoidable task. Often these systems lack structure or modularity, as

they were developed using programming languages and paradigms that do not

incorporate object-oriented features and sound design principles. The software

engineer’s task can be simplified if tools are available to identify object like features in

the code. These tools can help transform the non-object-oriented code to object oriented

code. This research describes a comprehensive and systematic process for

transformational reengineering of legacy systems.

Research in reengineering is mainly focused on clustering techniques that group

procedures present in the legacy system into candidate objects. These clustering

approaches are limited to systems with well-defined data structures and procedures.

Several of these approaches are either not comprehensive, limited to certain types of

systems, or depend extensively on engineer knowledge of the system. Unlike these

approaches that analyze legacy systems at the procedural level, the reengineering

process we present analyzes systems at the statement level.

This process results in the identification of object operations. These operations,

along with the state variables and the user defined data structures, are arranged in a

hierarchy that represents the object structure of the reengineered variant of the legacy

system. From this system hierarchy, objects are identified and encapsulated by

streamlining the interfaces. The reengineering process is incorporated in a tool,

ReArchitect

xiii

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Programs are statically analyzed and represented as a statement dependence

graph (StDG) for further processing. The StDG is a fine-grained representation with

modular representation for functions and program slices. It can adapt to program

changes, unlike other representations. The StDG is restructured by merging cohesive

components in the graph. The restructured graph is used to build the object structure,

which is used to identify the objects.

The StDG is a theoretically sound framework that provides support for many

problems found in the reengineering domain. We show the value of the StDG in two

such domains: program slicing and maintenance. The StDG is restructured differently

for different requirements (space/time), and for different types of applications.

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Introduction

Industrial-strength software is complex. This complexity makes it difficult to

comprehend all the subtleties of its design. Regardless, complexity is an essential

property of the software which we need to master. Causes for this complexity include:

complexity of the problem domain, difficulty of managing the development process, the

flexibility possible through the software, and the evolutionary nature of the software

[Booc 94].

A software system should evolve if it is to be useful over time. Continual

satisfaction demands continuing change. During the life of a system, its environment

changes, user needs change, and developing concepts and technologies advance.

Systems failing to adopt to these changes become increasingly less useful in the new

environment [Lehm 85]. Evolution of software is also known as software maintenance.

The understanding and adaptation of systems to advanced technologies is the

topic of this research. Reengineering is the process of examination, understanding, and

altering a system with the intent to implement it in a new form to make it more

maintainable. In this research, we present a methodology for reengineering procedural

systems to object-oriented systems. The remainder of the chapter presents an overview

of the maintenance problem, the objectives of this research, and finally a description of

the organization of this dissertation.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Background

1.2.1 Maintenance

The life span of a system consists of specification, design, implementation and

maintenance phases. The maintenance phase requires the greatest effort and resources.

On an average, maintenance costs constitute 70-90% of the total system costs (Thom

84]. The American National Standards Institute defines software maintenance as the

“modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adopt the product to changed environments” [Chik

90].

One reason for high maintenance costs is that the structure of the systems which

have to be modified may not be obvious to the maintainer. As systems evolve, their

structure degrades and the complexity of the structure increases, unless specific

complexity control effort is applied [Lehm 85]. Complexity control actions are rarely

carried out in the real world due to lack of time and/or cost considerations. Further,

system structure is also corrupted when changes are made without regard to the overall

architecture of the system. As changes are made, these changes introduce new system

faults which then require more changes to correct them. Gradually the system

approaches a limit where it is no longer cost-efficient or even technically motivating to

continue the maintenance.

1.2.2 Program understanding

A system and its components need to be understood before changes can be

made. Program understanding is the task of extracting information about a program’s

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behavior (what the program does and how it does it) from the source code. The

understanding process occupies 50-90% of maintenance cost [Thom 84]. Program

understanding is a conceptually complex process of making sense of a complex system.

One reason for this complexity is lack of system documentation. Often changes are

made only to the source code of the system because of time and high costs involved in

updating the documentation, resulting in inconsistencies between the source code and its

documentation. Due to inaccurate and/or incomplete documentation, the source code

becomes the only dependable source of information for maintenance.

Maintenance costs are also governed by the approaches adopted for system

development Systems developed using information hiding principles are better suited

for maintenance [Booc 94]. If support from the software development methodology,

documentation, and the structure of the system are absent maintenance becomes a

technically challenging process.

13,3 Current status of legacy software systems

Many systems in use today have evolved for several years, with modification

after modification layered upon the original implementation by several generations of

programmers. These systems were developed using a procedural paradigm, which uses

algorithmic decomposition methods and imperative languages such as C, for

implementation.

Maintenance of software developed with a procedural paradigm presents many

problems. In procedural programs, it is difficult to define well-delimited components

and their relationships because often they are not visible. Algorithmic decomposition

highlights the ordering of events, and each module in the system denotes a major step in

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the overall process. Further, imperative languages do not generally provide facilities for

expressing system structure information.

Additionally, many of the modifications that have been made were not

anticipated in the original design of these systems, resulting in global modifications to

incorporate the changes. A global change distributes design information over the entire

system, corrupting the existing system structure. It is advantageous to hide these

modifications in one module and still achieve the same functionality. Furthermore, the

development documentation of these systems is often out of date or nonexistent. The

result is that understanding and maintaining these systems is difficult and time

consuming.

1.2.4 Object-oriented paradigm

The object-oriented paradigm has entered the mainstream of computing and has

matured over the past decade [Booc 94]. This paradigm has proven to be advantageous

over the procedural paradigm in all phases of software development, from analysis and

design to implementation and maintenance. The expressive power of object-based and

object-oriented programming languages is one reason for their rise in popularity.

An object-oriented system is decomposed according to the key abstractions in

the problem domain. It emphasizes the agents that either cause action or are the subjects

upon which these operations act. It directly addresses the inherent complexity of the

software by facilitating intelligent decisions regarding the separation of concerns and

information hiding. Object-oriented decomposition has a number of advantages over

algorithmic decomposition. It yields smaller systems through the reuse of common

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mechanisms [Booc 94]. Also, these systems are more resilient to change and thus evolve

more easily over time.

The ability to comprehend different kinds of information at once is limited. The

object-oriented concepts of abstraction, encapsulation, modularity and hierarchy, help

overcome this limitation. An abstraction denotes the essential characteristics of an

object that distinguish it from all other kinds of objects and thus provide crisply defined

conceptual boundaries, relative to the perspective of the viewer [Booc 94].

Encapsulation is the technique of combining data and operations needed to process the

data under one entity. Modularity is the property of a system that has been decomposed

into a set of cohesive, loosely coupled modules. Hierarchy is the ordering of

abstractions.

1.2.5 Reengineering

Software developers, both new system developers and system maintainers, are

slowly moving to the object-oriented paradigm- Maintainers of procedural systems face

many problems in the process of moving the systems. Technological advances have

provided little help with the process.

When a procedural system needs to be migrated to an object-oriented

architecture, two basic options are available. One option is to discard the old system and

build a new one. The other option is to encapsulate or wrap the old system and then

communicate with it via a standard application program interface. The former option is

unlikely to happen due to cost considerations. In some cases, it is impractical. The latter

option results in a system that will continue to have all the drawbacks of the old system.

Current research is focusing on a third option, reengineering.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The field of reengineering is growing rapidly in response to the need to support

legacy system maintenance. Reengineering of procedural systems to object-oriented

systems requires a radical restructuring of the systems. So far, this restructuring has

been an impractical, highly risky, and costly undertaking because of the lack of a

reliable and automated translation process [Wood 98].

We use the following reengineering model proposed by [Jaco 91] for this work:

Reengineering = Reverse engineering + A + Forward Engineering

Reverse engineering is the process of analyzing a subject system to understand and

represent the system at a higher level of abstraction. The “A” represents changes to be

made to the system. Change can be in the functionality, in the implementation

technique, or in the design of the system. Forward engineering is the re-implementation

of the system.

13 Overview of the Research

13.1 Objective

The goal of this research is to define a reengineering methodology for

transforming procedural systems into an object-oriented architecture. In particular, this

research extracts a procedural design from an existing system (reverse engineering),

makes changes to the design (A), and identifies and extracts objects in the procedural

code for use in implementing the system with the object-oriented paradigm (forward

engineering). The methodology is supported by a tool to assist the reverse engineering

process. The tool is called ReArchitect.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reengineering reflects a design decision that is inherently subjective. Hence, it is

unlikely that the reengineering can ever be fully automated. The assistance of the

software engineer is crucial to any tool [Wood 98]. The tool should be able to help the

engineer understand the program and the process, and also be able to incorporate the

knowledge of the engineer into the process. In particular, the tool should be capable of

program slicing (for understanding) and restructuring (for understanding program and

improving the quality of results obtained), in addition to reengineering.

U 2 Reengineering process

We propose the reengineering methodology presented in figure 1.1. The

reengineering process along with the roles of the ReArchitect and the software engineer

are indicated in the figure. Four important steps are involved in the reengineering

process.

i. Reverse engineering. The program code is analyzed statically. The design of the

program is extracted and represented in the form of a graph known as a

Statement Dependence Graph (StDG).

ii. Design change. The StDG is restructured, which results in identification of

cohesive components in the program. The restructured graph is known as a

Restructured StDG (VRG).

iii. Design optimization. The VRG is optimized for object identification.

iv. Object identification. A potential objects chart known as a State Reference graph

(SRG) is built from the VRG and call graph. The code and the SRG are used for

object identification and extraction from the code.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

StDG

Design
change

r Reverse
engineering

Software
Engineer RSGCode

ReAfchiti

Object
identification jo O code

f Design
optimization

SRG

Legend: > ^ Transformation process
^ ReArchitect interaction

 ^ Engineer interaction

Figure 1.1. Reengineering process

Role of the software engineer. The software engineer develops new software specific

knowledge with the help of the ReArchitect This knowledge is used in the

reengineering process for further processing of the program and for obtaining optimal

results.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Role of the ReArchitect. ReArchitect helps in extraction of information, model

creation, visualization and slicing for program understanding, and program restructuring

transformations. It incorporates the input of the software engineer in the process. Each

step in the process is automatic. The results of each step are presented to the software

engineer for understanding and for feedback.

13 3 Implementation considerations

A prototype of the ReArchitect is implemented in Java. It has three key phases:

i. Extraction. Extraction and representation of the program dependences in the

form of Statement Dependence Graph (StDG).

ii. Transformation. Transformation of the StDG to VRG.

iii. Application. Use of the VRG for finding slices of the program and for applying

modifications to the program (maintenance activities).

1.4 Outline of the Dissertation

The dissertation is organized as follows:

Chapter 1 discusses the maintenance problem and the objectives of this research.

The new reengineering process model is briefly introduced.

Chapter 2 presents the motivation for the research and reviews reengineering

approaches available in the literature.

Chapter 3 discusses the issues in program analysis and representation, along

with approaches available in the literature. The chapter summarizes the requirements for

a program representation, and describes a new program representation, known as the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Statement Dependence Graph (StDG). A representation of alias information and

construction of the StDG are also presented in the chapter.

Chapter 4 describes techniques to restructure the StDG. The restructured StDG

is known as the Restructured StDG (VRG). The VRG can be used for program slicing,

program maintenance, and for reengineering.

Chapter S presents the application of the VRG to program slicing and program

maintenance. Program slices are used to understand programs. A new slicing technique,

known as modular slicing, is introduced in the chapter. Program restructuring is used for

understanding and for improving the quality of reengineering processing. The chapter

also describes how the VRG can be used for program maintenance.

Chapter 6 describes the reverse engineering process. The language independent

format (LIF) is an intermediate representation for programs. The chapter describes a

process for the translation of LIF to the StDG. The StDG and other design views of the

program are represented graphically.

Chapter 7 discusses various approaches available for object identification and

describes a new approach using the VRG. It also presents how the new design of the

program is represented.

Chapter 8 describes a forward engineering process that involves identification

and extraction of objects. Examples designed to demonstrate the process and a case

study are also included.

Chapter 9 presents the conclusions and contributions of the dissertation.

Implementation details of the ReArchitect are also described in the chapter.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Motivation and Related Research

2.1 Motivation for the Research

Roughly 75 billion dollars were spent on maintenance in 1990 alone [Wood 98].

Reliable help to partially automate the maintenance activities or to reduce the

complexity of the underlying software system could have a staggering economic impact

Reengineering is the ultimate step in the maintenance process. Moreover, it is the only

recourse available for migrating systems to different architectures or environments.

Reengineering software is not normally effective unless some automated tool support

can be deployed to support the process [Wood 98][Some 96].

Unfortunately software engineers have little or no tool support available to them

[Wood 98]. Existing tools are limited to automatically extracting and analyzing program

structure. They extract features such as relationships between functions or relationships

between functions and variables. Unfortunately, structural information alone is not

sufficient for performing meaningful operations on programs [Some 96]. The

“semantic” or “conceptual” understanding required can only be provided through human

assistance. Human interactions are crucial because of the technical complexities and the

lack of validated methodologies for reengineering. Moreover, reengineering from a

procedural paradigm to an object-oriented paradigm reflects a design decision that is

inherently subjective, and thus human interaction is unavoidable [Siff 99]. For instance,

static analysis of programs is one area where human interaction is known to be

beneficial.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Static analysis is the process of extracting semantic information about a program

at compile time. Static analysis of programs is hard - hence several simplifying

assumptions are made [Land 92]. The results thus obtained are approximate, therefore,

input from the software engineer can improve the analysis. The input is also crucial in

other stages of the reengineering process. As a result, complete automation of the

reengineering process is not feasible [Gall 95][Snee 98]. A reengineering tool should be

capable of not only helping the software engineer but also incorporating the engineer’s

knowledge into the reengineering process.

For an engineer to provide help, understanding of the program is crucial. One

way to help the human better understand the code is by simplifying the program

structure. Ongoing maintenance of software systems tends to destroy program structure,

complicating efforts to gain a deeper understanding of the code [Some 96]. When code

is restructured, it is often easier to understand. Program slicing is known to help in

understanding code [Weis 84][Gall 91].

Other reasons for reengineering procedural systems to object-oriented

architectures are:

• Object-oriented development methods can be used to gradually modernize an

old system [Newc 95].

• There is a need to integrate object-oriented programming into an existing system

that is not implemented using modem programming techniques. A technique

such as information hiding, for example, can help reduce the complexity of the

system.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Object-oriented programming in general, and inheritance in particular makes it

possible to define and use modules that are functionally incomplete. It then

allows extension of the modules without upsetting the operation of other

modules or their clients. This feature makes the system more flexible, more

easily extensible, and simpler to maintain.

• Finding objects within procedural programs has become a promising approach to

reduce the effort in program understanding and maintenance cost Object

identification constitutes a basis for a complete re-architecting of the system

from the conventional procedural program to an object-oriented program.

• Identification of object like features in a program, including the support for

testing and debugging, helps avoid the degradation of the original design during

maintenance and facilitates reuse [Liva 92].

• Even though it is generally unrealistic to replace an old system by a completely

new system, there is a need for methods to gradually replace older system parts.

2J2 Related Research

The reverse engineering of a program involves program understanding and design

abstraction. Program understanding is a process of relating program artifacts to the

conceptual model of the human observer. [Bigg 94] discusses issues that relate program

artifacts to domain knowledge. A generic reverse engineering tool for program

understanding is described in [Jarz 95]. [Chen 90][Plat 91] describe a means for C

program representation and a toolkit for extracting different views of the program. A

process of automatically exacting design knowledge from the source code for program

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

understanding is presented in [Quil 94] [S nee 95]. [Snee 95] proposes seven types of

objects such as user interface objects, information objects, and FILE objects. Programs

are searched for these specific objects and are used in new object-oriented software

development

One purpose of reengineering is to extract system parts for reuse. Reuse may be

at the level of artifacts, sub-system, or the entire system. Program artifacts are in the

form of components, abstract data types (ADT), or objects. Various researchers use

terms such as functions [Lanu 93], segments [Ning 94], slices [Weis 84], plans [John

85], and concepts [Quil 94] to refer to program components.

A practical approach to components recovery is described in [Ning 94] [Lanu

93]. A reengineering process for extracting ADTs is presented in [Conf 93]. Automatic

extraction of objects from existing code may result in spurious or misleading groupings.

To prevent the undesirable groupings, [Gall 95] discusses a mapping process from

extracted objects to domain knowledge. An interactive approach to recovering ADTs

and object instances is given in [Yeh 95]. Strategies for gradually transforming a system

composed of procedural programs to object-oriented system are described in [Newc

95][Jaco 91]. Reengineering of legacy systems using Fusion/RE and Draco-puc

transformation system is presented in [Pent 98]. Reengineering techniques have

significant market value for vendors, thus much of the literature provides more details

about the results of applying these techniques than to the techniques themselves.

To date, research in object identification has been focused mainly on developing

techniques for extracting objects from data that has already been aggregated in

programmer-defined data structures [Ruga 95]. Concept analysis is applied in [Siff 99]

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Lind 97][Sahr 97] to identify potential modules. The concept analysis approach

generates a variety of possible partitions from which a user can select an appropriate

decomposition. The optimality of this approach depends on how well the attributes of

functions are formulated for the concept analysis. This method requires that the user

have a good knowledge of the system, as the process requires manual selection of

appropriate attributes for the system under consideration and a suitable partition.

Moreover, the number of partitions obtained is too large for manual inspection (one of

the examples given in the paper has over 4000 partitions), and the process provides little

help to the software engineer.

A clustering technique is used in [Wigg 97][Yeh 95][Canf 96][Liu 90][Dunn 93]

to identify objects. Cohesion-based object identification approaches are presented in

[Ache 95][Chu 92]. Gall and Klosch [Gall 93] generate data flow diagrams (DFDs)

from the source code and use the data structures used in the data stores as potential

object-candidates. Other user-defined data structures that are either declared in or

related to the data structures that are already identified as potential object-candidates are

also considered as potential object-candidates. This approach is suitable only to

programs with user-defined data structures.

hi most of the approaches mentioned above, two types of undesired links are

identified among sub-graphs - coincidental and spurious connections. Coincidental

connections are due to routines that implement more than one function, each function

logically belonging to a different object Spurious connections are related to routines

that access more than one data structure. [Canf 96] proposes slicing to separate routines

contributing to coincidental connections, and routines that introduce spurious

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connections are discarded from the graph. Several techniques do not mention how to

identify the spurious or coincidental connections and others specify that it is the role of

the software engineer [Liu 90] [Dunn 93].

[Canf 96] presents a statistical approach to identify these unwanted connections.

[Canf 96] computes an index value for each procedure in the system that measures the

internal connectivity of the sub-graph identified through the procedure. If the index

value of a procedure is less than a step value, the connections due to the procedure are

assumed to be either spurious or coincidental; these procedures are either discarded or

eliminated with the help of a human expert This approach seems to work fine for

certain type of systems with a limited number of unwanted connections. However,

computation of the step value is subjective and also changes from iteration to iteration

for the same system.

Non-code sources, such as documentation and manuals, are also used to find

candidate variables for objects [Jaco 91][Gal 95]. This set of variables is further

extended based on their relationship with other variables in the system. Processing

elements that access these variables are extracted and grouped along with the variables

to form object instances. These object instances are normalized to correct the

inaccuracies, typically through human interaction, and their classes are abstracted by

merging object instances.

The approach we use in this research avoids undesired links by separating the

uses from definitions and by replacing direct uses of state variables by selector

operations. Automatic identification [Canf 96] [Siff 99] of these connections invariably

requires human participation. Moreover, the results thus obtained through a laborious

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process are not always reliable. We solve this problem by first separating a procedure

which defines several state variables, which reduces the number of unwanted

connections. The remaining unwanted connections are taken care of with the help of the

software engineer by providing the engineer with supporting information. The

engineer’s task is simplified by the definition of heuristics and general guidelines.

Several of the research initiatives discussed above represent the system as a

graph, with functions, global variables, or function attributes as nodes, and references by

the procedures to the variables as edges. Each isolated sub-graph contained in the graph

is a candidate for an object The approach we present follows a similar approach, but it

extends the graph nodes by including key local variables and program slices.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Static Analysis of Source Code

3.1 Introduction

Software is difficult and costly to modify. Automating tiresome mechanical

tasks, such as program restructuring, reduce the burden of software maintenance.

Several restructuring tools have been proposed, all centered on the concept of meaning-

preserving transformations that are similar in spirit to compiler optimizations. Like

optimizing compilers, these tools rely on static analysis to reason about the correctness

of program changes.

Static analysis of programs is indispensable to any software tool, environment,

or system that requires compile-time information about the semantics of programs.

Static analysis has been used successfully in program maintenance [Gall 91], program

integration [Horw 8 8], transformation [Opdy 92] [Gris 95], reverse engineering [Erra

96], and slicing [Jack 94]. Over time, static analysis techniques have been improved.

Still, they can only conservatively approximate the control and data flow dependences

between different program components. Fortunately, these approximate dependences are

generally sufficient for the purpose of program understanding and restructuring;

however, the quality of results depends on the quality of the analysis.

Static analysis is also termed dependence analysis or data flow analysis. In

section 3.2, we further elaborate on this concept Previous approaches to static analysis

are strongly related to the concept of an intermediate program representation. These

representations are the data structures of choice for many types of tools, as their use in

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

static analysis is well understood. Various types of representations used in the literature

are discussed in section 3.3. Section 3.4 discusses meaning preserving transformations.

This research defines an analysis technique based on a new program representation that

can be used in a wide variety of activities including program slicing, maintenance, and

transformation. We present this representation, known as Statement Dependence Graph

(StDG) in section 3.5 and provide a brief summary of this chapter in section 3.6.

3.2 Dependence Analysis

A dependence between two program statements is a conflict that prevents the

statements from executing concurrently. The use of dependence analysis originated in

compiler design for the purposes of optimization and parallelization. The same

principles are now being applied to programs for the purposes of debugging,

maintenance, and restructuring. Dependences among program statements can be broadly

categorized as data dependences, control dependences, and flow dependences.

Data dependences

A data dependence between two program statements indicates that changing the

statement’s order of execution may change the program’s computation. Consider the

following sequence of statements:

SI: A = B + C
S2: D = A -E

The value of the variable A is defined in SI and used in S2. Clearly reversing the order

of execution of SI and 52 changes the semantic nature of the code. The data dependence

that exists between statements SI and 52 is known as a Definition-Use (def-use)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dependence. Another type of dependence is a Use-Dejmition [Horw 8 8] (use-def)

dependence, as illustrated in the following sequence of statements:

SI: D = F + G
S2: F = H - I

The value of variable F is used in SI and defined in S2. Again, reversing the order of

execution of SI and 52 changes the semantic nature of the code fragment. This type of

dependence is also known as anti-dependence. Yet another type of data dependence is

Defimtion-Order [Horw 8 8] (def-order) dependence, as illustrated using the following

statements.

SI: if (J) K = 0;
S2: if (L) K = 1;
S3: M = K;

The value of the variable M in S3 clearly depends on the order of execution of

statements SI and 52. Data dependences are typically viewed as a dependence graph.

Where the nodes represent statements and the directed edges between nodes represent

data dependences.

Control dependences

A control dependence [Horw 8 8][Liva 92] from statement 5,- to statement 5y-

exists when statement Sj should be executed only if statement 5,- produces a certain

value. For example, consider the following sequence of statements:

SI: if (N)
S2: P = Q + R;

Execution of 52 depends on the value of predicate N. In the dependence graph, directed

edges from the statement containing the predicate to the statements depending on the

predicate represent control dependences.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Flow Dependences

A flow dependence exists between statements 5, and Sj, if S,- must be executed

before Sj can be executed. The order of execution of output statements, for instance, is

flow dependent if the order of the output is important Def-order and use-def

dependences can be considered as flow dependences.

3.2.1 Issues in static analysis

Granularity

Dependences are analyzed at the expression level [Jack 94][Ems 94][Kinl 94] or

at the statement level [Horw 90] [Weis 84]. Dependences exists among the variables

that are used or defined in a program statement and not among the statements

themselves. In a single statement more than one variable may be defined or used. A

course-grained analyses, which considers dependences at the statement level, provides

no indication among which variables the dependence exists. A fine-grained analysis

considers the dependences among the variables (or expressions). The loss of

information in coarse-grained analyses fails to answer important questions about the

dependences.

Pointers, aliasing and arrays

Statically finding aliases is a fundamental problem of static analysis. An alias

occurs at some point during execution of a program when two or more names exist for

the same storage location. This situation can occur due to procedure calls, pointer

variables, and array references. For example, the C statement “p = <£v” creates an alias

between *p and v. Aliases are associated with program points, indicating not only that

*p and v refer to the same location during execution but also the location in the program

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at which they refer to the same location. Static analysis of languages with pointers,

dynamic storage, and recursive data structures is hard (probably NP complete [Land

92]). Hence, the static-analysis community has resorted to simplifying assumptions and

approximate solutions, resulting in less precise data flow information which can

adversely affect the effectiveness of analysis that depends on this information.

Each element of an array can be considered as an independent variable, but

determining the subscript of the array statically is nontrivial. Knowledge of when an

array is completely defined is helpful, but this knowledge is not always easy to obtain;

hence, the arrays are usually considered as a scalar unit.

Interprocedural analysis

The analysis of the effects of a call is known as interprocedural analysis.

Analyzing a program or a procedure (function) determines the sets of variables used and

defined by the procedure. Unless these sets can be determined, worst case assumptions

must be made. For example, if the procedure includes a call to another procedure, in the

absence of information about the called procedure it must be assumed that all variables

visible to the called procedure will be used and defined. This assumption, while safe,

prevents many structural manipulations. Better results occur if the effects of a call are

more carefully analyzed.

Programming language issues

Dependences depend on how a language represents computation and the

language constructs used to control the computation. We chose ANSI C to demonstrate

the concepts presented in this research. In some ways, C is an ideal choice as it presents

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

most of the difficulties inherent in existing imperative languages. C is also widely used

in industry and academia.

Constituents in a C program can be broadly identified as expressions and

statements. Statements may contain expressions; expressions cannot contain statements.

Braces, { and }, are used to group statements into a block. A semicolon is a statement

terminator, hi this research, the following symbols are also considered as statement

terminators: ‘{ \ ‘}’ (an exception is a do . . . w h ile loop,

‘}w h ile (e x p re s s io n) ; ’ is placed in one line) , and ‘)’, only if ‘)’ is not followed

by a ‘{ \ One statement per line is allowed in programs. Statements express most of the

control flow semantics of C. Expressions are syntactic constructs that actually represent

program computation, but may also contain embedded control flow. Control in a C

program can be thought of as moving from expression to expression [Kern 90]. C, like

most languages, does not specify the order in which the operands of an operator are

evaluated (including function arguments). Function calls, nested assignment statements,

increment operators and decrement operators cause side effects, hi expressions

involving side effects, there can be subtle dependencies on the order in which variables

taking part in the expressions are updated. C allows local jumps (using c o n tin u e and

b reak) within a block and non-local jumps (using go to), adding to complexity of the

analysis. The support of pointers and aliases poses additional challenges during analysis.

3 ^ 2 Approaches to static analysis

Exhaustive approach

Program analysis approaches can be classified as exhaustive and demand-driven.

An exhaustive approach analyzes all the intra- and interprocedural variable dependences

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and stores them in persistent data structures. That is, exhaustive approaches represent a

portion of the program (often a single function) in its entirety. All facts of the program

appear explicitly in these data structures, usually as an edge between two nodes. [Lyle

95] [Gris 95][Benn 92].

Demand-driven approach

An alternative approach is demand-driven retrieval of data flow information.

This approach has been applied to the construction of complete program representations

in a program slicer using abstract syntax trees (AST) and control flow graph (CFG)

[Atiti 96]. An implementation of the unified interprocedural graph (UIG) in a

maintenance environment incrementally constructs sub-graphs for specified procedures

when needed for a particular tool [Harr 93]. A framework for deriving demand-driven

algorithms for interprocedural data flow analysis of imperative programs is given in

[Dues 95]. A demand for data flow information is modeled as a set of data flow queries,

and the responses to these queries are found through a partial reversal of the respective

data flow analysis. Cstructure, a tool for meaning preserving transformations, performs

an on demand control flow analysis on the AST representation of C programs, using a

technique known as virtual control flow [Morg 97]. The analysis approach we use in

this work is a hybrid one. First, we use the exhaustive approach to build a graph

representation of the program. Then, the graph is restructured to group the nodes in the

graph. Dependences within the grouped nodes are discarded. These discarded internal

dependences among grouped statements are obtained on demand.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 3 Program Representation

The choice of program representation plays a critical role in the analysis and

restructuring of the source code. Any suitable representation must be a data structure

that can be rapidly traversed to determine the dependence information. Program

representations can be broadly divided into two categories [Morg 97]: multiple

representations and unified representations. A multiple representation, as the name

indicates, uses more than one representation for a program. Unified representations

combine several representations into a single, all-purpose representation.

33.1 Multiple representations

Multiple representations can be further divided into discarding type and non­

discarding type. Non-discard types use a different representation for presenting each

view of the code. Discard types use a different representation in each stage of the

translation process from source code to the target program.

Non-discard type

The process of program comprehension is often aided by providing the user with

different views of the code. Some tools use a different program representation for each

view of the code [Gris 95][Plat 91][Unra 95][Choi 94]. [Gris 95] uses abstract syntax

trees (AST), control flow graph (CFG), and program dependency graph (PDG). [Plat 91]

uses abstract syntax graph (ASG), cross reference graph (CRG), CFG, and data flow

graph (DFG). [Choi 94] uses CFG and a static single assignment (SSA) form for

program analysis. The SSA form ensures that each use of a variable is reached by

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exactly one definition. [Benn 95] uses a language independent format (LIF) and PDG

for slicing programs.

Restructuring tools have been built using multiple internal program

representations. Star diagram [Gris 95] uses three representations, the AST, CFG, and

PDG, together with two-way mappings to interrelate them. The mappings become

problematic when the program is being modified, as all representations and the

mappings between them must be updated. Although they provide comprehensive

semantic information, multiple program representations in a software manipulation tool

pose a number of serious drawbacks. First, each individual representation must be

constructed and stored, hi addition, these representations share some redundant

information. Second, some types of mapping functions are required to relate items in

one representation to items in another. The mappings also consume memory resources.

Third, if the tool manipulates the program, some technique is needed to keep all the

representations consistent

Discard type

Discard type representations are built in stages. At each stage, a different

representation is built from the previous representation and the source program.

However, the steady abstraction of the program from one representation to the next

involves a loss of some of the information contained in the previous representations. A

tool may need information readily available in a final representation, but it must relate

this information to the appropriate location in the source. A tool that does not alter the

program could maintain a one-way mapping back to some prior representation. For

example, the slicer in [Atki 96] discards the AST after constructing the more useful

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CFG. Each CFG node records the node number from the associated location in the

original AST. hi order to display a slice once it has been computed, an AST identical to

the original is recreated on demand horn the source code, complete with matching node

numbers. Another way to achieve this result is to update the mapping to the source from

a prior representation to the current representation, similar to a compiler that saves

source file and line number information for debugging purposes. Some of the most

commonly used representations are:

• Abstract syntax trees (AST), or parse trees [Aho 8 6] - This representation,

which is closest to source code, may be easily annotated to allow regeneration

of the original source [Morg 97]. Each node in the AST usually reflects a

production in the context free grammar for the programming language in which

the program is written.

• Control flow graph (CFG) [Aho 8 6] - CFGs form more abstract representation

than an AST. The CFG consists of nodes representing the computations in a

program connected by edges showing the flow of control from node to node. It

can be constructed directly by parsing the source or from an AST. This

representation is used for solving many data flow analysis problems.

• Data flow graphs (DFG) [Ferr 87] - An important component of compilation is

data-flow analysis that computes information about the potential flow of data

throughout a program. Intra-procedural data-flow analysis considers the flow of

data within a procedure, while assuming some approximation about definitions

and uses of reference parameters and global variables at call sites.

Interprocedural data-flow analysis computes information about the flow of data

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

across procedure boundaries caused by reference parameters and global

variables.

• Cross reference graphs (CRGs) [Plat 91] - The CRG provides information on

the definition and uses of objects (i.e. variables, types, functions, and macros).

CRGs can he used to retrieve information such as a list of all the variables and

functions used by a function or all users of a given program object

• Program dependence graph (PDG) [Ferr 87] - The most abstract of all the

representations, the PDG combines data flow and control-flow information into

a single structure that is useful for a variety of program transformations and

optimizations. The PDG is a labeled, directed, multi-graph where each node

represents a program construct such as declarations, assignment statements, and

control predicates. Edges of the PDG represent data values passed from one

expression to another and control conditions that influence the order of

execution. The PDG is useful for compiler optimizations [Ferr 87], program

slicing [Otte 84], and transformation [Bow 95].

Other representations exists which use these representations, either modified or

in combination. The inter-procedural flow graph (IFG) [Harr 94] is one example. The

dependence flow graph, a variant of PDG used in [Ping 90] for analyzing program

dependencies, is another example.

3.3.2 Unified representations

Some representations combine several representations into a single, all-purpose

graph. This approach overcomes some of the mapping and consistency concerns that

arise with the use of multiple representations; however, a single all-purpose

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

representation may fail to capture all aspects of a program. Many different

representations, including the PDG, have been proposed. These representations include:

• System dependence graph (SDG) [Horw 90] - the SDG is an extension to PDG

that is limited to a single procedure. The SDG is a super graph of the PDG,

which captures the calling context of the called procedures.

• Unified interprocedural graph (UIG) [Harr 91] - The UIG combines SDG and

important features of other program representations, while adding new

information, to provide an integrated representation. The UIG combines

relationships found in a call graph, a program summary graph, an

interprocedural flow graph, and a system dependence graph. Data flow

dependencies are explicitly represented. As a result the UIG can be quite large

and costly to compute [Morg 97].

• Combined C graph (CCG) [Kinl 94] - The CCG is a fine-grained representation

for programs written in the C language. The CCG is used for constructing

program slices, call graph, flow-sensitive data flow, def-use and control

dependence views. The CCG is an extension of the UIG that attempts to

overcome some of the UIG’s limitations as applied to C programs. The CCG

allows the representation of embedded side effects, control flows, and value-

retuming functions with value parameters. The effects of pointer parameters are

also modeled.

• Value dependence graph (VDG) [Weis 94] - The VDG is a sparse, parallel,

functional, data flow-like program representation. It is composed of nodes

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which represent computation and arcs which carry values between

computations. The VDG, unlike SDG, is a very fine-grained representation.

• Jackson model [Jack 94] - Like the VDG, this model also addresses the

coarseness of the PDG. In this model each statement is represented as a site and

variables as ports within a site. Variable dependences within a statement are

represented as internal edges; and data and control dependences are represented

as external edges.

A single representation eliminates redundant information and reduces access

times to different representations because an algorithm need only access one

representation. It also helps comprehension by incorporating all program relationships

into one representation [Kinl 94]. Single, all-inclusive representations may create

scalability problems. Since none of these data structures explicitly contains all the

information required by restructuring transformations, the question of how to obtain the

remaining information must still be answered. The StDG representation we present in

this work is a fine-grained, discard type, multiple representation. StDG uses a low-level

intermediate representation known as language independent format (LIF). The LIF is

discarded once the StDG is derived.

3.4 Program Restructuring Transformations

Transformations are the structural (syntactic constructs) changes made to a

program to change its appearance, either to improve its maintainability or its speed.

Meaning-preserving transformations are the transformations carried out in a controlled

environment that allow only those transformations that do not affect the semantics of the

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

program. A major drawback of meaning-preserving transformations is that every step of

the transformation process must ensure that the program semantics remains constant. In

this research, we focus on source to source transformations only.

A meaning-preserving transformation has two parts: checks and modifications.

Checks determine the legality of the modifications. A transformation check can be

divided into four components [Morg 97]: syntactic, scoping, control, and data

dependence checks. Syntactic checks ensure that the grammar of the programming

language in which the program is written is correct Scoping checks make sure that the

variables are within their declared scopes. The control checks make sure that the

dependence of a statement on a test expression is not disturbed. Finally, the data flow

dependences are ensured through data dependence checks.

Examples of meaning-preserving transformations are [Opdy 92]:

• folding and unfolding. Folding replaces a code segment with a function call;

unfolding expands a function call.

• abstraction. Abstraction substitutes a variable for every instance of an expression

and defines the variable to be the value of the expression.

• splitting type. This transformation splits types into subtypes.

• bubble up. This transformation moves a function out of an enclosing module and

expands its scope.

To date, transformations have been carried out using a catalog-based approach

[Benn 92][Morg 97][Opdy 92]. The catalog includes a large set of transformations

covering all aspects of the program development The Maintainer’s Assistant lists over

500 transformations [Benn 92]. This approach is useful for interactive tools where the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user selects a segment of the code and a transformation from the catalog. The tool either

transforms the code segment, if legal, or fails otherwise. Catalogs are prepared for a

particular domain; thus, when the domain changes it becomes less suitable. It is also

time consuming to find the best transformation from a large catalog.

This research defines a cohesion-based transformation approach that can be used

in non-interactive environments. This approach uses the dependence information in the

StDG to ensure that a given transformation does not change the output behavior of the

program. These transformations either check to see that changing the source code does

not affect the StDG’s form or change the StDG in a manner that guarantees semantic

preservation.

3.5 Statement Dependence Graph

In this section, we present a new program representation. Previous works on the

program representations were aimed at addressing the needs of the program slicing

community. Program slicing is a technique for visualizing dependences and restricting

attention to just the components of a program relevant to evaluation of certain

expressions. The representation used in program slicing is not subjected to modification,

and the communications between the representation and the program is straightforward.

However, the representations used for restructuring transformations need to change

along with the program, and the mapping between the representations and the program

must also be updated. We consider the following criteria as important for

representations used in program transformations:

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The representation should be simple to construct and use. It should be like a

PDG based representation where the program is represented as a graph and

dependences are analyzed through graph traversal [Horw 90].

• The representation should be fine-grained; it should indicate the dependences

among the variables that are defined and variables that are used in the

statements [Lyle 95][Jack 94].

• It should allow user input Static analysis can only specify dependences

conservatively [Opdy 92]. The dependences can be more accurately specified

with the help of a maintainer. Therefore, the model should be user

understandable and easily modifiable.

• It should allow statement level manipulation. A vast majority of the statements

in programs are indivisible. A statement as a unit in the model can have a

simple correspondence between the model and the program. All widely used

models use many nodes to represent a single statement. Hence, a reference to a

statement requires identification of all the nodes and edges that represent a

statement, resulting in inefficient and complex algorithms.

• All parts of the program should be represented. Usually, the statements in which

variables are either used or defined have a representation in the model. Other

statements (e.g., library routines that control the environment) can be ignored in

dependence analysis. But, the effect of these statements cannot be ignored in

maintenance activities. Similarly, syntactic constructs that do not use any

variables have no place in dependence analysis models. A change can be

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contemplated and carried out at the model level if it includes all parts of a

program.

• A group of statements should have a modular representation. This group can be

a slice (defined later) or a procedure. Modularly represented slices or

procedures can be analyzed and modified independent of the rest of the

program.

All PDG based models satisfy the first criterion. All fine-grained models meet the

second criterion. The NDM [Jack 94] satisfies the first two criteria and part of the final

criterion (modular representation for a procedure). The representation model developed

in this research, StDG, is a fine-grained, PDG based dependence model that satisfies all

six criteria.

3.5.1 Terminology

In this section, we define terms used to express the semantics of the StDG.

Site. A site represents a statement in the dependence graph. The site is labeled with the

statement number it represents. The site representation concept is taken from

[Jack 94].

Port A port represents a variable. A use port represents a variable used and a defport a

variable defined in a statement The combination of a variable name and the

statement number in which it is used (or defined) is used as a port label. Use

ports are placed at the top in a site and def ports at the bottom of a site in the

dependence graph. In addition to the data variable ports, t , <p, X, Tj, are special

ports used in the graph. The x and q> ports are used as structure variables, and the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X and T) ports are used as temporary variables (the need for these variable is

explained in section 3 .5 .2).

Edge. Ports are connected by edges. An edge represents a dependence among the

variables; the dependence may be a data dependence, control dependence, or

flow dependence. An edge has a source port and a sink port as well as a source

site and a sink site.

Reaching defs. A data variable propagates from its definition sites (defined in section

3.2) to the sites where it is used. Reaching defs at a site are the variables used at

the site that are defined at other sites. A variable definition reaches a site in three

ways; the site is within the scope of the variable’s declaration, the variable is

global, or the variable is a parameter in a procedure call.

Exposed defs. Exposed defs at a site are the data variables defined at this site that are

used at other sites. A variable definition may be exposed to other sites in four

ways: the sites are within the same scope, the variable is global, the variable is a

parameter passed by reference, or the variable is returned from a function.

Summary-site. A summary site is a site in which several statements are represented.

Like other sites, the summary sites use ports are reaching defs, and the def ports

are the exposed defs. Dependences within these statements are summarized and

are indicated as internal edges among the use and def ports. The site label for the

summary site is the smallest statement number among the statements it

represents.

Flnal-use variable. Variable used in statements like output statements and in some

function call statements are termed final-use. Statements using final-use

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variables are sometimes excluded from certain kinds of operations [Gall 94]; the

effects of the use of these variables needs to be evaluated. The effects of a final-

use variable are analyzed using a temporary site known as final-use site.

Enter site. An enter site is one of two special sites used for each function definition in

the dependence graph. It is used to model the calling context of a function call

by representing the context before the call. Since only the exposed defs in a

calling function reach a called function, the enter site has only the def ports.

Exit site. The exit site is the other special site used in a function representation. It

represents the context after the call, thus it has only the use ports.

^.-Statement. A A-statement defines more than one variable. For example, a = b++;,

is a C statement with two variable definitions a and b.

(p-Statement A statement that neither uses nor defines a data variable is a <p-statemenL

These ststements include certain library routines (e.g. p r i n t f (" \ n *) ; ,

e x i t () ;), and language constructs (e.g. c o n tin u e ;, braces, etc.).

Kill def. A kill def assigns a new value to a variable, replacing its previous value. In

other words, the reaching defs of a variable are redefined.

Preserve def. A preserve def redefines a variable conditionally or uses the previous

value to assign a new value.

Block. Iterative, selection, and function definition statements define blocks. These

statements are called blockheads. Statements within a block are block members.

Block members and a blockhead constitute a block.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2 Semantics of StDG

A dependence relates a variable at one program point to a variable at another.

Each statement in the program has two program points, one before and one after the

statement This information can be easily captured by defining a single site for each

statement and separating variable uses and definitions in the statement [Jack 94].

Variables include the special symbols while sites include the entry and exit sites.

Variables = ProgramVariables u {t, A., T|, <{>}
Var £ {Vj | v e Variables a j 6 ProgramStatements}
Site = ProgramStatements u {enter, exit}

A program point is a triple consisting of a variable, a site, and type; where type

indicates whether the variable is used or defined.

Port s ProgramPoint
ProgramPoint = Var X Site X Type
Type = Use | Definition

A dependence is an edge from one program point to the other. There are two

types of edges: internal and external. An internal edge (IntemalEdge) is an edge from a

program point of use type to a program point of definition type. An external edge

(ExternalEdge) is an edge from a program point of definition type to a program point of

use type. An external edge may be a data edge (DataEdge), control edge (ControlEdge),

or a flow edge (FlowEdge) representing data dependence, control dependence, and flow

dependence, respectively. These concepts are defined formally as:

Edge: ProgramPoint«-> ProgramPoint

IntemalEdge c {((v,, si, Use), (wk, sj, Definition)) |
Vj, wke Var a sj e Site }

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ExtemalEdge c {((Vj, si, Definition), (wk, S2, Use)) |
Vj, wkE Var a si, S2 e Site }

DataEdge c {((vj, si, Definition), (Vk, S2 , Use)) | v e ProgramVariables a

j, k e ProgramStatements a si, S2 e Site }

ControlEdge £ {((^, Si, Definition), (Xj, s2, Use)) |
j e ProgramStatements a s i , s2 e Site }

FIowEdge c {((<fe. Si, Definition), (Xk, S2 , Use)) |
j, k e ProgramStatements a sj, S2 e Site }

Figure 3.1 shows a program and its statement dependence graph. The program

counts the number of characters and words in the input stream (please note that the

program is written in its current form to facilitate the explanation of the semantics of the

StDG). The program has two functions: m ain () and w ordC ount () . Each statement

(or a line of code) in the program is given a statement number (Programstatement) and

is represented by a box (Site) in the graph. Each box has ports (ProgramPoint) at the top

and bottom. The top ports represent the variables used and the bottom ports the

variables defined in a statement Representative ports from Figure 3.1(b) are:

Def port: (nc6 , 6, Definition) e Port
Use port: (nc6 , 6 , Use) e Port

Ports are connected by directed edges which connect a use port to a def port Edges

connecting variable ports represent the data dependence (e.g. in Figure 3.1(b), (c^cz) is

a data dependence edge). That is,

((C4 , 4, Definition)(c7 , 7, Use)) e DataEdge

A blockhead defines a temporary variable r (which can be viewed as the result

of a conditional test); it is represented in graph as a rdef port with rand the statement

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 intnw, nc;
2 void wordCount(mt inword) {
3 intc;
4 c = getcfaar 0;
5 while(c != EOF) {
6 nc = nc + 1;
7 if (c = ‘ *|jc = *\n’

8 inword = 0;
9 else if (inword = 0) {
10 inword =1;
11 nw = nw+l;
12 }
13 c = getchar 0;
14 }
15 }

16 mainO {
17 int inw;
18 inw = nc = nw = 0;
19 wordCount(inw);
20 printf (*̂ n”) ;
21 printf (“ %d %d\n”,nc,nw);
22 }

5
enter
inwordin words

x7 [inword^

mwordio

f ■ — T -----
1 2

<Pl2 ----^

(a) (b)

(c)

' nw18 mwig nctg

t nw19 inwia nct9

Figure 3.1. (a) Sample C program
(b) The StDG of function wordCountO
(c) The StDG of function mainQ

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of the blockhead as its label. Block members use the r defined by their

blockhead, with the same label as the blockhead, because the conditional test is the

same for all members of a block. In Figure 3.1(b), site 5 defines rj, which is used by its

member sites: 6 ,7 , 13, and 14. A function depends on a call statement, so the function

name site has a x-use port with no (unknown) label number. Therefore, all the sites in

the dependence graph

have a x-use port The x-def port of the blockhead is connected to x-use ports of

its members with edges. These edges indicate the control dependence of block members

on the blockhead. The edge (Ts, Ts) in Figure 3.1(c) is an instance of control dependence.

That is,

((ts, 5, Definition), (X5 , 6 , use)) e ControlEdge

The dependence of <p-statements among themselves or the dependence of other

statements on <p-statements is indicated as flow dependence. User help may be needed to

identify this dependence. A <p-def port is used in the q>-statement sites for this purpose;

the dependence is indicated as an edge from the <p-port to the x-use port of the statement

that depends on <p-statement The edge (qha, *16) in Figure 3.1(c) is an instance of flow

dependence. That is,

((<|>2o, 20, Definition), (Xi6, 21, Use)) e FlowEdge

A def port rj indicates the presence of final use variables in a site. An edge from

the variable port to a T] port indicates that the variable is a final use variable (e.g.

variable nwz2. of site 22 in Figure 3.1(c)). A X-use port and the edges from the X-port to

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the variables defined in a X-statement represent a X-statement in the graph. Site 19 in

Figure 3.1(c) is a X-statement

Three variables are defined in m ain (): nw, nc (global), and inword

(parameter), reach w ordC ount () . Values of these three variables are used in

wordCount() which is represented in the graph using a enter site. Values of two

variables defined in w ordC ount (): nw, nc (global) reach back to main, which is

indicated using a exit site in w ordC ount () (Figure 3.1(b)). The dependences of the

variables in the exit site on the variables in the enter site of a function can be

summarized into a summary site and used in place of a function call, as in site 2 0 of

Figure 3.1(c).

Construction of StDG

Each statement in the program is given a statement number and is represented by

a site labeled with the statement number in the graph. Each statement has a set of uses,

uses(i), and a set of definitions, defs(i). Consider, for instance, a statement i:

i : a = b + c ;
Uses(i) = (t*, Ci.Tx), and
Defs(i) = (a0 where, a, b, and c are variables. The control variable is % and the

blockhead statement number of which i is a member is x. The site representing

statement i has four ports: two def ports (a, and ^) and two use ports (£, and c,). That is,

Port(i) = {(a», i, Definition), (bi, i, Use), fo, i, Use), (tx, i, Use)}

Internal edges in a site are the summarized dependences between the variables it

defines and the variables it uses. These edges are used as the specification of the site.

The specification for a primitive statement follows from the syntax of the statement For

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a function (or a group of statements), the specification is the dependences in the

summary site of the function (or a group of statements). The specification of statement i

is:

spec(i) = (fa, i, Definition), (bj, i, Use)),
(fa, i. Definition), fa, i. Use)), (fa, i, Definition), (xx, i, Use))

Three internal edges - (buaO, (cuai), ,a0 - are inserted at site i. Another way to write

the specification is:

((fa4),(bi4)),(fa4),fa4)),(fa4),(T*4)))

which is read “a of statement i (or pent a,) at site / is dependent on b of i (and also, c of i

and ro f x) at site A blockhead i using a variable a,- has the specification:

((fa4),fa4)),(fa4),(tx4)))

For each final use variable a, at site i, an edge is added from a, to rju and the following

expression is added to its specification.

(fa4), (rii4))

A (p-statement i includes the following edge in its specification:

((<Pi4), fa4))

A ^.-statement i, defining a,- and has edges (Ai,ad, (Ai,bO, (and (r^bi) in its site

and spec(i) = (fa4),(Xi4)), (fa4), fai4)), (fa4), fa4)), (fa4), (x*4)).

The external edges in the dependence graph represent data, control, and flow

dependences. They are known as data, control, and flow edges, respectively. The

technique used to construct data flow and control dependence edges is the same used to

compute the PDG [Lyle 95][Jack 94]. If data propagates from (bt,k, Definition) to

(biXUse) then a data edge is inserted from (b^KDefinition) to (b^UUse). This procedure

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is carried out for each it in the program. For each block (i) in the program, the following

control edges are inserted in the graph:

((ti, i, Definition), (tj, k, Use)), for each member (it) of the block.

For each <p-statement i, a flow edge ((q^i,Definition), (Use)) is added, where j is the

statement that depends on i. For example, b re a k and c o n tin u e statements within a

loop are represented in the graph as dependent on the loop statement On the other hand,

if i is a library routine, then the statements which depend on i must be specified by the

user.

Library routines are given a surrogate specification in place of code. Site 4, using

the g e t c h a r () routine in the sample program of Figure 3.1, has a specification

Table 3.1. Algorithm for constructing the StDG

//Algorithm for constructing the StDG
// input is a program with statement numbers
// each procedure is analyzed separately
//specification for library routines is taken from the user
currentBlock = 0; // statement number of the blockhead
Site = Exit u Enter; //for each procedure add Enter and Exit sites
while not end of procedure {

j = get next statement;
Site = Site u j; //add j to site’s set
for (each v e variables defined in j){

defs(j) = defs(j) u v,-;
if(v e GlobalVariable v v is a final use variable)

uses (Exit) = uses(Exit) u v ;
}
if(#defs(j) > 1) uses(j) = uses(j) u r\j;

//more than one variable defined in j
for (each v 6 variables used in j){

uses(j) = uses(j) u Vj;
if(v e GlobalVariable v v e Parameter)

table cont’d

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

defs(Enter) = defs(Enter) u v ;
if (v is a final use variable)

defsQ) = defs(j) u Hi I
}

uses(j) = uses(j) U T^mBlcx* >
if (statementType(j) = BLOCKHEAD) {

cunentBlock = j ; //current statement is a blockhead
defs(j) = defs(j) u Tj;

}
if (statementType(j) = ̂ statement) defs(j) = defs(j) u ;

//current statement is a ̂ statement
//add ports to site j

for (each v e defs(j))
Port(j) = Port(j) u (v, j, Definition) ; //Def ports

for (each v e uses(j))
Port(j) = Port(j) u (v, j, use) ; //use ports

//add internal edges
for (each w e uses(j))
for (each v e defs(j))

Edge = Edge u ((w, j, Use), (v, j, Definition));
}

//external edges
for (each j £ Site)
for (each v e defs(j))

if(v propagates to w a w e uses(k))
Edge = Edge u ((v, j, definition), (w, k, use));

((C4,4,Defintion), (Xi.l.Use)). The specification indicates that g e tc h a rO returns a

constant, meaning that it has no specification. The correct specification should be:

((input,4,Definition), (input,4,use)), which in turn results in the specification of

(((c4,4,Definition), (input„Use)), ((C4,4,Definition), (Ti.l.Use))) for site 4. Input has no

label number because it doesn’t change from site to site. We present an algorithm for

constructing the StDG in table 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.4 Representation of alias information in the graph

Intraprocedural algorithms for alias analysis can be classified into two

categories: flow-sensitive and flow-insensitive. Row-sensitive algorithms consider

intraprocedural control flow information during the analysis while flow-insensitive

algorithms do not. Row-sensitive algorithms in general are more precise and less

efficient than flow-insensitive algorithms [Burk 95]. Similarly, interprocedural alias

analysis algorithms are also classified into two categories - context-sensitive and

context-insensitive. Context-sensitive algorithms treat multiple calls to a single

procedure independently. They reanalyze a procedure for each of its calling contexts

while context-insensitive algorithms do not. Context-sensitive algorithms are more

precise and less efficient than context-insensitive algorithms [Hind]. StDG includes

flow-sensitive information only; but, at the interprocedural level, both context-sensitive

and context-insensitive information can be included.

The data variables (non-pointer) and the pointer variables are represented

differently in the StDG. A pointer variable has three components: the address of the

object to which it points (reference variable), pointer to the object to which it points

(points-to variable, dereferencing), and the object itself (pointed object). The following

port labeling convention is followed for the pointer variables:

• All aliased variables are included in the label (both pointer and non-pointer),

separated by a comma.

• If de-referencing is involved (indirect assignment by a pointer), the pointed

objects are placed within the parenthesis.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SI: p = &r
S2:if()
S3: q = p;
S4: else
SS: q = &s;
S6 : *p = xl
S7:h = q;
S8 : q = &t;
S9: x2 = *h;

Figure 3.2. StDG with alias information

• If a pointer variable points to more than one variable or more than one pointer

variable points-to a variable, then the list of variables is separated by a comma.

The points-to label includes the points-to variable, followed by V and the

pointed objects.

Figure 3.2 shows the StDG for a sample program which uses pointers.

Depending on the role of a pointer variable usage in the program, its representation

changes in the graph. Uses of reference variables are represented in the normal way.

But, the definitions result in a def port with a label that includes points-to information

(site Si in Figure 3.2). The use of a points-to variable has a use port connected with def

ports in the site of the pointed object (site S9 in Figure 3.2). The definition of a points-to

variable results in the definition to the pointed object, using the pointer (site S6 in figure

46

*h ,7̂

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2). Therefore, this pointer definition results in a use port of points-to variable and a

def port whose label includes both points-to variable and the pointed object

3.6 Summary

In this chapter, we presented an overview of static analysis of programs, related

issues, and the program representations available in the literature. A program analysis

tool may derive all the dependence information and store or derive it on demand. The

choice between the two analysis approaches depends on the space or time constraints.

The representations used for the analysis may be a multiple or a unified representation.

A tool using multiple program representation has to manage the mappings between

various representations. If the program changes, all the representations and the

mappings must be updated. Single, all-inclusive representation may create scalability

problems; it is difficult to store all the dependence information required in a data

structure.

We have presented a new representation known as Statement Dependence Graph

(StDG). The StDG uses discard type multiple representations; it discards the earlier

representation once the next representation is obtained. The analysis approach used in

StDG is exhaustive, but it discards the dependence information among groups of

cohesive statements. The discarded information is not required for most applications;

but, if needed, the discarded information can be obtained on demand. The StDG is a

fine-grained representation with modular representation for functions and slices. In

Chapter 4, we describe algorithms for restructuring the StDG to simplify it and make it

more amenable to changes.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Restructuring StDG

4.1 Introduction

The graph representation of a program is typically large and cumbersome. It is

difficult for a user to manage and expensive for an algorithm to store and traverse all the

ports and edges. These problems can be reduced through graph compaction, hi most

cases, two sites in a graph can be folded into one if they are inseparable. For example,

the braces and a compound statement, or iterative statement and b re a k statements, can

be represented in one site. Further, consider the following code:

1: if(a)
2: b = 10;

These two statements cannot be separated for most practical purposes. Hence, they can

be represented together in one site and manipulated together. If needed, any

interdependencies these two statements may have can be preserved in the new

representation. Restructuring is the process of merging sites in the StDG to simplify the

graph and make it amenable to changes. A restructured graph is known as a

Restructured StDG (RSG). Restructuring retains all the information in the graph, and

any operation that can be performed on the StDG can be performed on the RSG.

We define compaction as the process of identifying and merging sites.

Compaction involves merging sites by moving a site (source site) into another site

(destination site). The source site’s ports can be placed at the top or bottom of the

destination site, depending on how these two sites are connected. The type of edges

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

encountered in the merging sites and how the ports and edges are moved during merging

are discussed in section 4.2. StDG sites with high cohesion can be merged. Section 43

explains cohesion in terms of the graph. Section 4.4 presents an algorithm for merging

the sites. Section 4.5 presents RSG, the restructured graph. Section 4.6 presents the

summary of the chapter.

4 3 Merging Sites

When a source port is moved, we need to decide whether it should be placed at

the top or bottom of the destination site. The ports are moved in such a way that the

dependence information is not lost, at the same time reducing the duplicate ports present

in the StDG. Depending on where the port is moved, its connections (edges) need to be

adjusted. The internal edges of the merging sites and the external edges between the

merging sites become internal edges in the merged site. The remaining external edges of

both the sites become the external edges of the new site. The notations and definitions

needed to define the merging process are presented in section 4.2.1.

43.1 Notations and definitions

Port connections and the merging process is explained using the Z specification

language [Jack 97]. In the following expressions • is a delimiter.

SITE. Set of all sites in the graph

PORT. Set of all ports in the graph

ExtemalEdges. Set of all external edges in the graph

IntemalEdges. Set of all internal edges in the graph

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let pl,p2,p:PORT; sl,s2,s3:SITE; p i = (vi,sl,Use) a Vi e Uses(sl) a i e

ProgramStatements. (pi is a use port in si.); p2 = (wj,s2,Use) a Wj e Defs(s2) a j e

ProgramStatements (p2 is a def port in s2.); p = (yk,s3,Type) a yk e (Defs(s3) u

Uses(s3) a j e ProgramStatements a Type e {Use,Defmtion} (p is a port (use or

def) in s3).

UPS(sl) = {(v,si,Use) | Vv» v e Uses(sl) } - represents all the use ports in site si (the

top ports).

DPS(sl) = {{(v,sl.Definition) | Vv» v e Defs(sl) } - represents all the def ports in site

si (the bottom ports).

DPU(pl) = {p2 | Vp2* (pl,p2) e KntemalEdges}- def ports of a use port p i (i.e., the

ports connected through the def edges of the use port). The DPU of p2 are ports like

pi such that (pl,p 2) is an internal edge.

UPD(p2) = {pi | Vpl» (pl,p2) E IntemalEdges}- use ports of a def port pi (i.e., the

ports connected through the use edges of the def port).

UPU(sl) = {p2 | Vpl,p2* pi e UPS(sl) a (p2,pl) e ExtemalEdges}- the use ports of

use ports of site (si) (i.e., the ports connected through the use edges of the use

ports of si). The notation is read “UPU of si are ports p2 such that for all pi and

p2 , pi is a use port in si and (p2 ,pl) is an external edge.”

UPU(pl) = {p21 Vp2* (p2,pl) e ExtemalEdges}- the use ports of use port pi.

DPD(s2) = {pi | Vp2,pl» p2 E DPS(s2) a (p2,pl) E ExtemalEdges}- the def ports of

def ports of site s2. DPD represents all the def ports connected to def ports of the

site.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEU(pl) = {(pl,p2) | Vp2« p2 6 DPU(pl)} - def edges of a use port(pl) (i.e., the

outgoing edges from the use port pi). DEU of p i are edges (pl,p2) such that for all

p2, p2 is a DPU of p i.

DPD(p2) = {pi | Vpl* (p2,pl) € ExtemalEdges}- def ports of a def port p2.

UEU(pl) = {(p2,pl) | Vp2« p2 e UPU(pl)} - represents the use edges of a use port pi

(i.e., the incoming edges to the use port pi).

UEU(sl) = {(p2,pl) | Vpl,p2« p i e UPS(sl) a (p2,pl) e ExtemalEdges}- represents

the use edges of all use ports of site s i (i.e., the incoming edges to si).

DED(p2) = {(p2,pl) | Vpl» pi e DPD(p2)} - def edges of a def port p2.

DED(s2) = {(p2,pl) | Vp2,pl» p2 e DPS(s2) a (p2,pl) e ExtemalEdges}- def edges of

all def ports of s2 .

UED(p2) = {(pl,p2) | Vpl» pi e UPD(p2)} - use edges of a def port p2.

Site(pl) - returns the site(s) in which the port(s) is present

BLOCKEND(sl) = max Site(UPU(sl)) - block end site number of site (block) si.

p i <=> p2 - indicates that p i and p2 are the same ports. We say that p i and p2 are the

same ports if they have the same label, if variable definition at p2 is used only at p i,

or only one variable definition (that of p2) reaches pi.

3pl,p2» vj = Wj v DPD(p2) = {pi} v {p2} = UPU(pl)

<— - Indicates the action to be taken.

UPS(sl) <— p. UPS(sl) = UPS(sl) u {pi} | Vi = yk - add port p to set of use ports of si.

DPS(s2) <— p. DPS(s2) = DPS(s2) u {p2} | Wj = yk - add port p to set of def ports s2.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pi 4 - p2. Vi = Wj - replace p i by p2. Port replacement is accomplished by replacing

label Vi of pi by Wj of p2 .

E l «— E2. — remove edges E2 and add E l. Edges in E2 are moved because one of the

ports (pi or p2) in it has been moved. Let us assume that the moved port has become

port p in its new location (site s). El and E2 are sets of edges. Depending on the type

of ports present in E l and E2, the following actions are performed.

- If E2 = {(pl,p2)} and p2 moved. Then add E l = {(pl,p) | s3 = s a yk = wj}

- If E2 = {(p2,pl)} and p2 moved. Then add E l = {(p,pl) | s3 = s a yk = wj}

- If E2 = {(p2,pl)} and p i moved. Then add E l = {(p2,p) | s3 = s a yk = Vj}

- If E2 = {(pl,p2)} and p i moved. Then add E l = {(p,p2)}A yk = Vi}. If (p e

UPS(s) a p2 e UPS(s) (if both p2 and p are use ports) then remove E l and add

UEU(p) 4 - UEU(p2) and DEU(p) DEU(p2) or if (p e DPS(s) a p2 e DPS(s) (if

both p2 and p are def ports) then remove E l and add UED(p) 4— UED(p2) and

DED(p) 4— DED(p2).

4 - E2. - delete edges E2 from the graph.

si <— s. merge site s in si, by moving all ports and edges of s to s i as explained in

section 4.2.2.

4- s. SITE = SITE \ {s}. Where SITE \ {s} = {e:SlTE | eg {s} (set difference). - delete

site s from the graph.

G 4— s. SITE = SITE u {s} - add site s to graph G.

The graph can be traversed forward through def edges and def ports or backwards

through use edges and use ports.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 2 2 Site connections

When moving sites, def poets and their edges are moved first, followed by the

use ports and their edges. If the source contains a multi-def port, care should be taken to

move only ports and edges connected to the destination site. In the following cases, it is

assumed that a multi-def port is not present in the source. All ports are given distinctive

labels and are referenced by their labels instead of their specification. The types of ports

and edges that can be encountered in the source site (say j) and destination site (say i).

along with the process of merging, are discussed in the following 1 2 cases.

Case 1: Source def port (Tj) connected to destination use port (Ti). Connected ports are

the same.

(Tj <=> Ti a Ti e DPD(Tj)) a
((UEU(Tj4) <— UED(Tj) a Ti <— Tj) a <— DHD(Tj))

If Ti and Tj are the same ports and port Ti belongs to def ports of a def port (Tj),

then replace use edges of a def port (Tj) (i.e. edge (X2 ,Tj) in figure 4.1(a)) as use edge of

use port (Tj) at site i (i.e. edge (X2 ,Tj)), replace port Ti by port Tj, and remove def edges

of def port Tj (i.e. edge (Tj.TO in figure 4.1(a)).

The first part (line) of this notation indicates the conditions satisfied in the

source and the destination sites, as shown in figure 4.1(a) (i.e., ports are same and

connected). The second part (line) indicates how the sites are merged. The merged sites

are shown in figure 4.1(b).

Case 2: Source def port (Tj) connected to destination use port (TO. Connected ports are

not the same and source def port has only one def edge.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b)(a)

(c) (d)

Figure 4.1. (a) Sites before merging (b) Port Tj replaced by Ti
(c) Port Tj moved to UPS(i) (d) Port Tj moved to DPS(i)

(#DED(Tj) = 1 a Ti e DPD(Tj)) a

(UPS(i) <- Tj a UEUCTj.i) «— UED(Tj j) a DEU(Tj i) <- DED(Ti j))

If the number of def edges at def port Tj is one and port Ti belongs to def ports of

a def port (Tj) (i.e. Ti and Tj are connected), then add port Tj to use ports of site i,

replace use edges of a def port (Tj) (i.e. edge (x2,Tj) in figure 4.1(a)) as use edges of use

port (TO (i.e. edge (x2,Ti) in figure 4.1(c)), and replace def edges of def port (Tj) at site j

(i.e. edge (Tj,T0 in figure 4.1(a)) as def edges of use port (Tj) in site i (i.e. edge (Tj,Ai) in

figure 4.1(c)).

If the number of elements in set DED(Tj) is one and if ports Tj, Ti are connected

(as shown in figure 1 (a)), then the sites are merged by: 1) moving port Tj to use ports of

i, 2) moving use edges of Tj to use edges of Tj in site i, and 3) copying def edges of Ti to

def edges of Tj in site i. The source and the destination sites after the def port and its

edges are moved to the destination are shown in figure 4.1(c).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 3: Source def port (T j) connected to a destination use port (T j). Connected ports

are not the same and source def port has more than one def edge. The moved port and

edges of figure 4.1(a) are shown in figure 4.1(d).

(#DED(Tj) > 1 a DPD(Tj) n UPS(i) * 0) a

(DPS(i) <- Tj a DED(Tj,i) 4— DED(Tj j) a UED(Tj,i) <- UED(Tj j)

Case 4: Source def port (Tj) is not connected to the destination site i.

DPDOj) n UPS(i) * <t> a

DPS(i) 4 - Tj a UED(Tjd) 4 - UED(TjJ) a DED(Tj4)4— DEDOjj)

Case 5: Destination def port (Ti) connected to source use port (Tj). Connected ports are

the same and source def port is already moved to destination def ports. The two sites are

shown in figure 4.2(a), and the merged sites are shown in figure 4.2(b).

(Tj <=> Tj a Tj e UPU(Tj)ADPU(Tj) e DPS(i)) a (UED(DPU((Tj)) 4 - UED(Ti))

i
Tj. bjJ

(a) (b)

" T _ Ti 'I

- w f k
j

(C)

Figure 4.2. (a) The sites before merging.
(b) Sites after replacing port Tj by Ti
(c) Sites after moving port Tj to UPS(i)

Case 6 : Destination def port (TO connected to source use port (Tj). Connected ports are

not the same and the source def port is already moved to the destination def ports. The

ports and edges of the two sites are shown in figure 4.2(a), and the merged sites are

shown in figure 4.2(c).

(Ti e UPU(Tj) a DPUOj) e DPS(i)) a
UPS(i) 4— Tj a UEU(Tj,i) 4 - UEU(Tjo) a DEU(Tjj) 4 - DEU(Tjj))

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J

(a) (c)

Figure 4.3. (a) The sites before merging.
(b) Sites after replacing port Tj by Ti
(c) Sites after moving port Tj to UPS(i)

Case 7: Destination def port (TO connected to source use port (Tj). Connected ports are

the same and the source def port is already moved to the destination use ports. The port

and edges of the two sites are shown in figure 4.3(a), and the merged sites are shown in

figure 4.3(b).

(Tj <=> Ti a Tj e UPU(Tj) a DPU(Tj) e UPS(i)) a
(UEU(DPU((Tj)) «— UEU(Tj))

Case 8: Destination def port (TO connected to source use port (Tj). Connected ports are

not the same and the source def port is already moved to destination use ports. The

merged sites are shown in figure 4.3(c).

(Ti e UPUOj) a DPU(Tj) € UPS(i)) a
UPS(i) <- T, a UEU(Tj4) <- UEUCIjj) a DEU(Tj4) <- DEU(DPU(Tjj)))

Case 9: Source use port (Tj) is connected to destination use port (i.e., def port of source

already moved to destination use ports). There is a use port (A) in destination whose

label is the same as that of the source use port (Tj). No source use port is connected with

the destination def ports. The two sites are shown in figure 4.4(a), and the merged sites

are shown in figure 4.4(b).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(DPUCTj) e UPS(i) a 0A : PORT* A € UPS(i) a A <=> Tj) a
UPU(Tj) n DPS(i) = 0) a
(UEU(A) <- UEU(Tj) a DEU(A) < -DEU(DPU(Tj))

(a) (b)

Figure 4.4. (a) The sites before merging.
(b) Sites after replacing port A by Tj
(c) Sites after moving port Tj to UPS(i)

(c)

Case 10: Source use port (Tj) is connected to a destination use port (i.e., def port of

source already moved to destination use ports). No two use ports in source and

destination have the same label. The source use port is not connected with destination

def ports. The merged sites are shown in figure 4.4(c).

(DPUOj) e UPS(i) a (VA: PORT* A e UPS(i) a A g UPS(j)) a
UPUOj) n DPS(i) = 0) a
(UPS(i) <— Tj a UEU(Tj4) UEU(Tj) a DEU(Tj4) DEU(DPU(Tj))

Case 11: Source use port (Tj) is connected to destination def port (i.e., def port of source

already moved to destination def ports). There is a use port in the destination port with

the same label as the source use port (Tj). The source use port is not connected with the

destination def ports. The port and edges of the two sites are shown in figure 4.5(a), and

the merged sites are shown in figure 4.5(b).

(DPUOj) e DPS(i) a (3A: PORT* A e UPS(i) a A e UPS(j)) a
UPUOj) n DPS(i) = 0) a
(UEU(A) <- UEUOj) a DEU(A) f - DEUOj))

Case 12: Source use port (Tj) is connected to destination def port (i.e., def port of source

already moved to destination def ports). No two use ports in source and destination have

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U r cd5 H
TU f^
M M

rfAĤ K

(a) (b) (c)

Figure 4.5. (a) The sites before merging.
(b) Sites after replacing port A by Tj
(c) Sites after moving port Tj to UPS(i)

the same label. The source use port is not connected with the destination def ports. The

merged sites are shown in figure 4.5(c).

(DPU(Tj) e DPS(i)a (VA: PORT* A e UPS(i) a A 6 UPS(j)) a

UPUOj) r » DPS(i) = 0) a

(UPS(i) <— Tj a UEU(Tj»i) <- UEU(Tj j) a DEU(Tj4) <- DEU(Tj j))

hi section 4.3, we describe which sites in the graph can be merged.

4 3 Compaction

Compaction is based on cohesion. Cohesion indicates the bonding strength

between two elements of a program; binding strength is indicated as edges

(dependences) in the graph. If a variable definition at a site is used at only one other site,

then the cohesion between the variable definition and use sites is high. On the other

hand, if the variable is used at more than one site, the cohesion is divided among all the

sites that share the variable. We consider cohesion among two sites A and B as high if

“A and B are connected, and every site reachable from A is also reachable from B.” In

terms of the graph, two connected sites are considered highly cohesive if they satisfy

any of the three conditions:

i. All the def edges of site A reach only site B,

ii. A group of sites are circularly connected, or

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii.All the sites connected to site A are also connected to site B.

If the cohesion between two statements is high, they can be put together and

used as a unit. Cohesion among statements using structural variables and data variables

is further explored as structural compaction and data compaction.

43.1 Structural compaction

A procedure in a program can be viewed as a block. A block consists of

statements and other blocks (members). In a block, all members are dependent

(dependence includes data, control, and flow dependence) on the blockhead and, in turn,

on all the members on which the blockhead depends. Block members on which the

blockhead depends and the blockhead form a circular chain of sites. Hence, these

member sites can be merged into the blockhead site. By this merging, a block is

separated into a structure part and a data part The structure part includes the blockhead

and a subset of the members (these may include members of a deeper block) which

define variables referenced by the blockhead. The data part consists of the remaining

members of the block.

A block member site is merged in its blockhead site if there is an edge from the

member’s def port to the blockhead’s use port That is, if the site number of the site

from where a use edge of a blockhead originates is between the block begin and block-

end site numbers, then that site can be merged with the blockhead. Let Si be a

blockhead and S2 one of the members of Si (S2 may be a member of a deeper block

within Si). S2 is merged in Si if there is an edge from S2 to Si. That is,

3a: PORT;Si,S2: SITE •
a € UPU(Si) a 1 6 DPS(S2) a S2 > Si a S2 < BLOCKEND(Si) a

Si <— S2

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Id other words, if a port (a) belongs to UPU of site Si and def ports of a site S2 (Si and

S2 are connected), and the site number of S2 is greater than St and less than the site

number of the block end of Si (S2 is a member of Si), merge S2 in Si. In figure 4.6, Sites

S (blockhead), 13 (block member) and 14 (another block member) are candidates for

structural compaction.

(Pul

Figure 4.6. Candidate sites for structure compaction

4.3.2 Data compaction

Data compaction involves a data variable defining site (source) and (sink) sites

that use the variable. Data compaction depends on how many sink sites are present and

how they are connected to the source and among themselves. One of the sinks will be a

destination site. If a sink site has a final use variable as its def port, then a temporary

sink site known as final use site is created. This temporary site is used as the destination

site to combine the source. The temporary site is needed because a final-use site cannot

be merged with any site as it might use variables from different sources.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Site S2 is merged with site Si if the two sites satisfy any of the following three

conditions:

nw

Figure 4.7 A ll def edges from St reach S2

1. All edges from Si reach S2 only (e.g. a definition of a variable is used at one

another statement only). That is,

VS1.S2: SITE*
DPD(Si) C UPS(S2) u UPS(SO a Si <— S2

In other words, if the set of all def ports of def ports (DPD) of Si are either use ports in

Si or S2, then merge Si in S2 . The sites are shown in figure 4.7.

2. There is an edge from Si to S2 and also an edge from S2 to Si (circular dependence),

as shown in figure 4.8. That is,

3a,b: PORT; S1.S2: SHE •
a e DPS(S0 A be DPS(S2) a DPD(a) n UPS(S2) = 0 a
DPD(b) nUPS(Si)=0A Si < -S 2

Figure 4.8. Sites Si and S2 are interdependent

In other words, ‘a’ is a def port in Si, ‘b’ is a def port in S2. DPD of ‘a’ is a use port in

S2 (Si is connected to 8 2). DPD of ‘b’ is a use port in Si. Then merge S2 in Si.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H T k

Figuie 4.9. Sites reachable from Si are also reachable from S2

3. There is an edge from Si to S2 and all the sites connected with Si are also

connected with S2 , as shown in figure 4.9. That is,

3S1, S2: SITE*
S2 e Site(DPD(SO) a (Site(DPD(SO) - S2) £ Site(DPD(S2)) a

S2 <— Si

hi other words, S2 is a site in the set of sites connected to def ports of def ports of Si.

Sites that contain def ports of def ports of Si, excluding S2, are a subset of sites that

contain def ports of def ports of S2. Then merge Si in S2. A special case of this type of

connection is a blockhead (S2) and, Si connected to S2 and one or more of its member

sites.

4 3 3 Edge compaction

Reducing the number of sites connected to a site can increase the possibilities

for compaction. This reduction in site connections can be achieved by changing a direct

edge between two sites into an indirect connection through another connected site. For

example, def edges of a site Si (connected with S2 and S3) can be reduced by changing a

direct edge between Si and S3 into an indirect connection through S2, as shown in figure

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r b - x m
p r o '

a -fe

c R ti
H Jl

(b)(a)

Figure 4.10. (a) Candidate sites for edge compaction (b) Edge compacted sites.

4.10(a). This concept is similar to replacing a global variable by a local variable and

passing it as a parameter. In figure 4.10, the dashed lines indicate that the connection

need not be a direct edge. Sites Si and S2 in figure 4.10(b) can be merged as all def

edges from Si reach S2 . Edge compaction is carried out only to test if two sites can be

merged. That is,

3a,b,c: PORT; Si,S2 ,S3: SITE •
a e DPS(Si) A b e UPS(S2) a c e UPS(S3) a
b e DPD(S0 a c e DPD(Si) a S3 e FSLICE S2

In other words, conditions for edge compaction; ‘a’ is a def port in Si, ‘b’ is a use port

in S2 , and ‘c’ is a use port in S3. ‘b’ is a DPD of Si (i.e. S2 and Si are connected), V is a

DPD of Si (i.e. S3 and Si are connected), and S3 belongs to FSLICE of S2 (i.e. S3 and S2

are connected indirectly). Where,

FSLICE: SITE -» SITE
VSi: SITE*

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FSLICE Si = Site(DPD(Si)) a

FSLICE Si = FSLICE FSLICE Si u FSUCE St

(FSLICE of Si is sites belonging to def ports of def ports of Si or (DPD(Si))+.)

Edges and ports of sites, being edge compacted, are moved as follows:

An algorithm for merging sites using data compaction, structure compaction,

and edge compaction is presented in section 4.4.

4.4 Compaction Algorithm

The compaction algorithm, which follows, includes numerous embedded

comments to help explain the details of the algorithm.

* *

/* Process each site by testing if one of the def ports label is T. If x is present then

the site is a blockhead. If the site is a blockhead, then call STR_COMP else call

DATA_COMP. */

PROCESS JSITE: SITE -» SITE
Vj: SITE*
(Xj e Defs(j) a STR_COMP j) v (x, g Defs(j) a DATA_COMP j)

/* For each blockhead site, call FOLD_STR & DATA_COMP, and for each

member site of the block, call PROCESS_SITK. */

((a <=> b) a

DPS(S2) <— a a
S2 <— (b, a) a
((a, S2),(c, S3» <- ((a, S0,(c, S3)>) v
((a not«=> b) A

DPS(S2> <— a a
UPS(S2) <— a a
S2 (a, a) a
S2 <— ((a, Si),(a, S2))) a
((a, S2),(c, S3» <- ((a, S,),(c, S3)))

a & b same ports
add def port a to S2

add an internal edge
- move edge

a & b not same ports
add def port
add use port
add an internal edge
move edge

- move edge

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STRjCOMP: SITE -» SITE
Vj: SHE*
FOLD_STR j a

DATAjCOMPj a

Vk: SUE* (tjJc,Use) e DPD(Xj) a PROCESSJS1TE k

/* CHANGE is of boolean type. Call FOLD_DATA. If FOLDJDATA results in

site folding, then call DATA_COMP for each site connected to the use ports of

the site. Also, call FOLD_EDGE, if FOLD_EDGE changes edges, then call

DATA_COMP. */

DATA_COMP: SITE -» SITE
Vj: SITE; change: boolean •
FOLDJDATA j a

(change = true a
Vk: SITE* k E site(UPU(j» a DATA_COMP k)
FOLD_EDGE j a

(change = true a

DATA_COMP j)

/* FOLDJDATA uses the cases in data compaction (previous section) for testing

the type site connections and for merging the sites. Input is a site and a boolean

variable, which is set to true if FOLDJDATA merges any sites. For explanation,

see data compaction, in section 4.3.2. */

FOLDJDATA: SITE -> (SITE, boolean)
VSj: SITE; ch: boolean; 3a,b: PORT;S2 : SITE •

(a e UPU(Si) a a e DPS(S2) a S2 > Si a S2 < BLOCKEND(S0 a

Si <— S2 a ch := true) v
- case 1 in data compation.

(a e DPS(S0 a b e DPS(S2) a DPD(a) n UPS(S2) = 0 a

DPD(b) nUPS(Si)=0 a Si <—S2 Ach := true) v
- case 2 in data compation.

(S2 E Site(DFD(SO) a (Site(DPD(Si)) - S 2)C Site(DPD(S2)) a

S2 <— Si a ch := true)
- case 3 in data compation.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/♦ For an explanation see structure compaction, in section 4.3.1. */

FOLD_STR: SITE—» SHE
VSj: SITE; 3a: PORT;S2: SITE •

a £ UPU(SO a a £ DPS(S2) a S2 > Sj a S2 < BLOCKEND(Si) a
Si <— S2

/* For an explanation see edge compaction, in section 4.33. */

FOLDJEDGE: SITE -» SITE
3a,b,c: PORT; Si,S2 ,S3: SITE •

(a e DPS(Sj) a b £ UPS(S2) a c £ UPSCSs) a
b £ DPD(SO a c £ DPD(Si) a S3 € FSLICE S2) a

(((a <=>b) a DPS(S2) <- a a S2 (b, a) a ((a, S^.Cc, S3)) <- ((a, Si),(c, S3))) v
((a not<=> b) a DPS(S2) <— a a UPS(S2) <— a a S2 <— (a, a) a

S2 <- ((a, SO,(a, S2))) a ((a, S2),(c, S3)) 4- ((a, S,),(c, S3))))

FSLICE: SITE -> SITE
VSi: SITE*
FSLICE Si = Site(DPD(SO) a FSLICE Si = FSLICE FSUCE Si u FSLICE Si

f t *

4.5 Restructured StDG (RSG)

The restructured statement dependence graph is known as a Restructured StDG

(RSG). Applying the structure and data compaction to the StDG of figure 3.1(b) results

in the RSG shown in figure 4.11. In figure 4.11, only the statements represented by each

site with reaching defs and exposed defs are shown.

Restructuring has several other advantages apart from graph size reduction. It

helps to understand programs by localizing the slices of code. Program slices can be

easily computed. These slices, unlike the traditional slices [Horw 90] can be closed-

ended [Jack 94]. That is, a slice can have both a beginning and an end. The RSG

depends on the type of compactions applied to the StDG, and the type of compactions

needed depends on the type of application.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 :6
nw„

Figure 4.11. Restructured StDG

4.6 Summary

The StDG can be compacted by merging the sites that exhibit high cohesion.

The StDG is restructured through compaction, and the resulting graph is known as the

Restructured StDG (RSG). In this chapter, we described how cohesive sites in the graph

are identified and merged. The type of restructuring that is required changes from

application to application; however, the fundamental representation graph StDG and the

compacted graph RSG provide a theoretically sound framework that provides support

for many problems found in the reengineering domain, hi Chapters 5 and 7 we present

convincing evidence of the value of StDG and RSG in three such domains.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Application of RSG to Slicing and Maintenance

5.1 Introduction

The RSG can be applied to multiple applications such as program slicing,

maintenance, program understanding, and function extraction. In this chapter, we apply

the RSG to program slicing and maintenance. The application of the RSG to program

slicing is presented in Section 5.2, and the application of the RSG to program

maintenance is presented in Section 5.3. Section 5.4 presents the summary of the

chapter.

5.2 Slicing

The slice (also known as a backward slice) of a program with respect to program

statement p and variable x consists of all statements and predicates of the program that

might affect the value of x at p. A forward slice of a program with respect to program

statement p and variable x consists of all statements and predicates of the program that

might be affected by the value of x at p. S(x, p) is called a slicing criteria. Weiser [Weis

81] introduced slicing. Ottenstein [Otte 84] presented a linear time algorithm to find an

intraprocedural slice using a PDG representation of the program. Horwitz [Horw 90]

improved these algorithms to construct interprocedural slices by using the SDG. Slicing

is used to isolate individual computation threads within a program. Slicing has been

successfully used in a variety of application like, program understanding and debugging

[Weis 82][Lyle 84][Lyle 86], integrating programs (Horw 89], automatic parallelization

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Erra 96], function recovery [Visa 93], program maintenance [Gall 91], and reverse

engineering [Jack 94],

PDG-based slicers reflect statement level dependences but they fail to answer

queries regarding dependences among program variables. For instance consider the

statement:

a = b + c .

A PDG-based slicer equates three distinct criteria: the definition of a, the use of b and

the use of c. To address this problem, fine-grained dependence models like value

dependence graphs (VDG) [Weis 94] and statement dependence graph based on parse

trees [Liva] have been proposed. However, the utility of slicing for maintenance and

reverse engineering is less obvious. Not all questions can be cast as slice criteria [Jack

94], This situation can be seen in the approach to maintenance (in [Gall 91]), where

dozens of definitions and propositions are used in place of slicing criteria with limited

success. Furthermore, slices often turn out to be too coarse to be useful. One reason for

this coarseness is because slicing cannot discriminate origins; every statement that

affects the given variable is included in the slice, whatever the source of its dependence.

The Jackson [Jack 94] chopshop tool aims to overcome these problems. In place of slice

criterion, this model allows the user to pick a source and a sink. The tool identifies the

statements that cause the source to affect the sink.

The RSG based model we developed is a further improvement over existing

models. These improvements are:

i. Current models include only the statements that contribute to the dependences in

the graph. Hence, these models require some kind of mapping function to

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identify syntactic constructs that do not contribute to the dependences during

slicing. The RSG model requires no such mapping function.

ii. Statements with high cohesion (defined earlier) are either all present or absent in

a traditional slice. Hence, these statements can be put together, and the slicer

can include all these statements in a slice when one of these statements is

reached. The merged graph will have fewer nodes to store and traverse.

iii. A user can select multiple sources and sinks; this feature is useful in function

extraction. The RSG-based slicer can answer queries like - given certain

variables as input (like parameters to a function), what computation is required

to compute certain variable(s).

iv. Statement groups help the user select appropriate sources and sinks.

v. Slicing algorithms of PDG based models compute a slice with two traversals of

the SDG. The cost of each traversal is linear in size of the SDG [Horw 90].

These models have one node in the graph for each statement in the program. In

the RSG model, one node (site) represents several statements and a slice is

performed with one traversal of the RSG.

5.2.1 Formalization of modular slicing

Two sets of variables and statement numbers form a criterion for slicing: source

and sink (a set of ports). A modular slice includes all the statements needed to compute

the variables in the sink, using the variables in the source. That is,

source = Variables X StatementNumber
= {(v,sl) | v e ProgramVariable a si e ProgramStatement}

sink = Variablse X StatementNumber
— {(w,s2) | w e ProgramVariable a s2 e ProgramStatement}.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By translating the variables and statement numbers to ports, we have;

source = {(v,i,sl,T) | sl:SITE»
(v,i e Uses(sl) a T = Use) v (vsl 6 Defs(sl) a T = Definition)}

sink = {(Ws2,s2,T) | s2:SITE*
(wa e Defs(s2) a T = Definition) v (w^ e Uses(s2) a T = Use)}

hi the StDG, site numbers and statement numbers are the same, whereas in the RSG

they differ because a site may represent more than one statement.

The StDG can be traversed forward (from enter to exit site) through the def

edges and the def ports. So, to reach sink from source, we go from source to def ports of

source, from def ports of source to def ports of def ports of source, and so on until we

reach the sink. Def edges and def ports of source are internal edges and def ports in

source sites, if the source has use ports. Def edges of def ports of source are the external

edges connected to source sites. Let P be set of ports in source and S be set of source

sites. The ports and edges in the forward slice are computed as follows:

P = Source ports
Internal edges in S connected to P = EF1 = DEU(P) (if P has use ports)

= Null (if P has no use ports)
Internal ports in S connected to P = PF1 = DPU(P)(if P has use ports)

= P (if P has no use ports)
External edges connected to PF1 = EF2 = DED(PF1)
External ports connected to PF1 = PF2 = DPD(PF1)

Let CS be the sites connected to S through external edges (EF2). PF2 represents use

ports in CS. Then,

CS = Site(PF2)
Internal edges in CS = EF3 = DEU(PF2)
Internal ports in CS connected to PF2 = PF3 = DPU(PF2)
External edges connected to CS = EF4 = DED(PF3)
External ports connected to CS = PF4 = DPD(PF3)

The site connected to CS is Site(PF4). Continuing further, we have:

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EF5 = DEU(PF4)
PF5 = DPU(PF4)
EF6 = DED(PF5)
PF6 = DPD(PF5), and so on.

A forward slice (FS) on a port (or variable) is all the edges (FSE), external edges

(FSEE), internal edges (FSEI), and ports (FSP) that are reached by traversing forward

from the port. Firmally,

FS = Site(PFl) u Site(PF2) u Site(PF3) u Site(PF4) . . .
FSP = P u PF1 u PF2 u PF3 u PF4 . . .
FSE = EF1 u EF2 u EF3 u EF4 u EF5 u . . .
FSEI = EF1 u EF3 u EF5 u EF7 u EF9 V . . .
FSEE = EF2 u EF4 u EF6 u EF8 u EF10 u . . .

Similarly, the StDG can be traversed backward (from exit to enter site) through

the use edges and the use ports. So, to reach source from sink, we go from sink to use

ports of sink, from use ports of sink to use ports of use ports of sink, and so on until we

reach the source. Use edges of sink are internal edges in sink sites and use ports of sink

are ports within sink sites, if sink has def ports. Use edges of use ports of sink are the

external edges connected to sink sites. Let P be the set of ports in sink and S be set of

sink sites. The ports and edges in the backward slice are computed as follows:

Internal edges in S connected to P = EB1 = UED(P) (if P has def ports)
= Null (if P has no def ports)

Internal ports in S connected to P = PB1 = UPD(P)(if P has def ports)
= P (if P has no def ports)

External edges connected to PB1 = EB2 = UEU(PB1)
External ports connected to PB1 = PB2 = UPU(PB1)

Let CS be the sites connected to S through external edges (EB2). PB2 represents def

ports in CS. Then,

CS = Site(PB2)
Internal edges in CS connected to PB2 = EB3 = UED(PB2)
Internal ports in CS connected to PB2 = PB3 = UPD(PB2)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

External edges connected to CS = EB4 = UEU(PB3)
External ports connected to CS = PB4 = UPU(PB3)

The site connected to CS is Site(PB4). Continuing further, we have:

EB5 = UED(PB4)
PB5 = UPD(PB4)
EB6 = UEU(PB5)
PB6 = UPU(PB5), and so on.

A backward slice CBS) on a port (or variable) is all the edges (BSE), external

edges (BSEE), internal edges (BSEI), and ports (BSP) that are reached by traversing

backward from the port Formally,

BS = Site(PBl) u Site(PB2) u Site(PB3) u Site(PB4) . . .
BSP = PB1 u P B 2 u P B 3 u P B 4 . . .
BSE = EB1 u EB2 u EB3 u EB4 u EB5 u . . .
BSEI = EB1 u EB3 u EB5 u EB7 U EB9 u . . .
BSEE = EB2 u EB4 u EB6 EB8 u EB10 u . . .

Finally, a modular slice is computed as follows:

Sites = FS n BS
edges in the slice = FSE n BSE, and
ports = FSP n BSP.

5 ^ 2 RSG for slicing (RSGS)

The sites with high cohesion are merged in the StDG. This merging is achieved

through structure compaction and data compaction. We present three types of RSGs for

slicing from which the user can select the one best suited to the application. These RSGs

differ in the amount of dependence information carried by the merged sites. Slicing

criterion using RSG as a graph is:

source = {(vti,sl,Use) | sl:SlTE»
v sl e Uses(sl) a v e ProgramVariable a t l e Programstatement}

sink = {(Wt2,s2 JDefinition) | s2:SiTE*
Wt2 6 Defs(s2) a w e ProgramVariable a t2 e ProgramStatement}

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Statements represented by a site (S) are:

Statement(sl) = {k | Vk*
k E StatementNumber a ((vk,s 1 ,Use)e UPS(s 1) v
(vk,sl,Definition)eDPS(sl))}

In the StDG, a slice is obtained by traversing and adding each port and edge in

the graph. In the RSG, a slice is obtained by traversing and adding each site in the

graph, where a site represents several statements. Several variants of slice definitions are

available in the literature. One of them is a decomposition slice [Gall 91] that computes

slices with respect to the last statement of a procedure. For decomposition slices, type 3

RSGS is best suited. Another variant of a slice is based on value dependence graphs

[Weis 94] that allow a slice to be computed on a used or defined variables, including

temporary variables (result of conditional expressions); for these type of slices, type 1

RSGS is best suited. Type 2 RSGS is best suited for Weiser’s slice [Weis 84]. We now

present three RSGS types.

5.2.2.1 Type 1 RSGS

This RSGS includes all the dependence information (all ports and edges) from

the StDG. Data and structure compaction is used for merging sites. When a source (S2)

is moved to a destination (Si) site, the use and def ports are moved to use and def ports

of the destination, respectively. Ports and edges of Si are moved to S2 as follows:

Let A = UPS(S2)
B=DPS(S2)
C = ports A after moved to Si
D = ports B after moved to Si
Si < -S2= (UPS(Si) <— A a UEU(C) «- UEU(A) a DEU(C) <- DEU(A) a

DPS(Si) <— B a UED(D) <—UED(B) a DEU(D) <-DEU(B)}

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sites in the type 1 RSGS of the StDG in figure 3.1(b) are shown in figure 5.1. In

the figure, for clarity the ports and edges in the grouped sites are not merged. The dotted

boxes represent the three sites in the RSGS.

1:1,2,4,5,13,14,15

T»

H r,

inwordgXi

v in word]

nw„

<Pl2

Figure 5.1. Type 1 RSGS

To compute a slice using the type 1 RSGS, only the ports and edges in source

sites, sink sites, and multi-def sites are individually tested and added to the slice. The

rest of the graph is tested at the site level, and all the ports and edges in a chosen site are

added to the slice. For a review of the notation, see Section 5.2.1. A forward slice, using

the type 1 RSGS, is computed as follows:

P = slice criteria (ports in the source)

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S = Site(P)
EF1 = DEU(P) or Null — source edges
PF1 = DPU(P) or P - source ports
SF1 = Site(PFl) - source sites
EF2 = DED(PF1) - external edges of source
PF2 = DPD(PF1) - external ports of source
SF2 = Site(PF2) - sites connected to source
EF3 = DEU(SF2) - internal edges in SF2
EF4 = DED(SF2) - external edges to SF2
PF3 = DPD(SF2) - ports connected to SF2
SF3 = Site(PF3) — all sites connected to SF2

EF5 = DEU(SF3) - internal edges in SF2
EF6 = DED(SF3) - external edges to SF2

A forward slice using the above definitions is computed as in section 5.2.1. A

backward slice is computed as follows:

P = slice criteria (ports in the sink)
S = Site(P)
EB1 = UED(P) - sink edges
PB1 = UPD(P) - sink ports
SB1 = Site(PBl) - sink sites
EB2 = UEU(PB1) - external edges of sink
PB2 = UPU(PB1) - external ports
SB2 = Site(PB2) - sites connected to sink
EB3 = UED(SB2) - internal edges in SB2
EB4 = UEU(SB2) - external edges to SB2

PB3 = UPU(SB2) - ports connected to SB2
SB3 = Site(PB3) - all sites connected to SB2
EB5 = UED(SB3) - internal edges in SB2
EB6 = UEU(SB3) - external edges to SB2

The last four steps are repeated until all the sites are exhausted. A backward or modular

slice using the above definitions is computed as explained in Section 5.2.1.

5.2.2.2 Type 2 RSGS

The sites are merged through structure compaction and case 2 of data

compaction. Sites are merged as explained in Chapter 4, depending on the site

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vj . inwords

<Pi2 ' Tt ~{inwordio n
9

’ 9̂
i 4

*9 - nwn
11

- nw„ J

Figure 5.2. Type 2 RSGS

connections. Internal edges and external edges connecting ports within the merged site

are not necessary and can be discarded. The sites in type 2 RSGS of the StDG in figure

3.1(b) are shown in figure 5.2.

Each site in the graph is analyzed as a unit and is either included or excluded

from the slice.

SF1 = Site(P) - source sites
SF2 = Site(DPD(SFl)> - sites connected to source
SF3 = Site(DPD(SF2)), and so on.
SB1 = Site(P) - sink sites
SB2 = Site(UPU(SBl» - external edges of sink

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SB3 = Site(UPU(SB2), and so on.
Modular slice = ((SF1 u SF2 u SF3 u . . .) n (SB1 u SB2 u SB3 u .. .)

5.2.23 Type 3 RSGS

Sites are merged using data compaction and structure compaction. All internal

details of the merged sites are discarded. Only the ports exposed to other sites are

included in the merged sites. When a slice originates or ends within a merged site, the

slicer must derive on demand the internal dependences of the group of statements in the

merged site. This graph is simple and sufficient for most practical purposes. This

program analysis approach is a hybrid of the demand driven and exhaustive approaches

6: 6

nw,i

nw„

Figure 5.3. Type 3 RSGS

to. Figure 5.3 is a type 3 RSGS of the StDG shown in figure 3.1(b). The source and sink

sites are sliced as explained for Type 1, and the rest of the sites are sliced as explained

for Type 2.

5 J23 Modular slicing

A traditional PDG-based slice includes all the sites that contribute to the

variables in a set V just before the execution of a statement p. Consider, for example, a

slice on nw at site 11 (figure 3.1(b), StDG).

Source — {(vs,s,Use)| Vs* s:SlTH} (all use ports), Sink = (nwu, 11 .Definition)

78*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The statements in the slice are:

1 void wordCount (int inword)
2 {
4 c = getchar ();
5 while (c != EOF) {
7 if (c == ' '||c == '\n'||c == '\t')
8 inword = 0;
9 else if (inword == 0) {
10 inword =1;
11 nw = nw + 1;
12 }
13 c = getchar ();
14 }
15 }

Using Type 3 RSGS, the slice includes sites 1 and 7 (statements in sites 1 and 7

are the same as above). Similar results can be obtained using any type of RSGS.

Consider another slice on the use of variable inw ord at site 9 (note that many PDG-

based slicers do not differentiate between a use and def at a site). The slice includes the

following statements (Source = {(vs,s,Use)| Vs* s:SITE} (the entire program), Sink =

(inword9 ,9,Use).

1 void wordCount (int inword)
2 {
4 c = g e tc h a r () ;
5 w h ile (c != EOF) {
7 i f (c == ' ' | | c == ' \ n ' | | c == ' \ t ')
8 inword = 0;
9 e ls e i f (inw ord == 0) {
10 inword = 1;
12 }
13 c = g e tch ar () ;
14 }
15 }

We can obtain the same results using Types 1 and 2. To use type 3, we need to derive

dependencies among statements 7-12 before slicing. A forward slice on uses and defs of

variable at site i:

Source = DPS(i), Sink = {(vs,s,Definition)| Vs* s:SITE} (all def ports)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The advantage of RSGS can be seen when the user selects a set of variable use

sites (source) and a set of variable def sites (sink). The slice includes all the statements

required to compute the variables in die sink using the variables in the source. Consider

a slice with nw (site 11) as sink and c as source. The resulting slice should not include

any def sites of c or any sites in the slice of c at its def port That is,

Source = {(Ci,s,Use)|Vs» s:SITE;Vi* i:ProgramStatement},
Sink= (nwn.lldDefinition)

The statements in the slice are:

7 if (c == ' '||c == '\n'||c == '\t')
8 inword = 0;
9 else if (inword == 0) {
10 inword =1;
11 nw = nw + 1;
12 }

Table 5.1. Comparison of slicing methods

PDG Type 1 Type 2 Type 3
Slice type Forward or

backward
Forward,
backward, and
modular

Forward,
backward, and
modular

Forward,
backward, and
modular

Application General
slicing

General slicing,
extraction, and
understanding

function
extraction and
understanding

Program
understanding

Graph size One node
per
expression

One site per
several statements.
Several nodes
(ports) in a site.
Graph bigger than
PDG.

One site per
several
statements.
Smaller than
PDG.

One site per
several
statements.
Smallest graph.

Slice time linear to
size times 2

Linear to size plus
size of source
or/and sink sites
and multi-def sites
encountered.

Linear to size
plus size of
source or/and
sink sites and
multi-def sites
encountered.

Linear to size

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.24 Comparison of slicing techniques

PDG based slicing and RSG based slicing are compared in table 5.1. In section

5.3, we show the application of RSG to maintenance activities.

5 3 Maintenance

Understanding the system, incorporating the change, and testing the system to

ensure that the change had no unintended effect on the system are the three facets of

software maintenance. Generally, two approaches are followed in dealing with the latter

two facets. One approach is to allow the maintainer to implement the change, and then

provide a tool that will pinpoint any inconsistencies introduced due to change [Gris 95].

The second approach is to “provide the maintainer with a semantically constrained

problem and let him construct the solution which implements the change within these

constraints” [Gall 91][Morg 97].

The former approach allows the maintainer more freedom, but at a cost. If the

tool finds inconsistencies, the changes need to be rolled back. Opdyke [Opdy 92]

suggests that we make changes to a copy of the system. If inconsistencies are found after

the change, the earlier version can be used and the current version discarded. Moreover,

the problem of finding inconsistencies is found to be NP-hard [Gall 91]. The latter

approach, though restrictive, uncovers inconsistencies before the changes are

incorporated. Gallaghar et al. claim that the benefits outweigh the inconvenience that

may be encountered due to the imposition of the constraints [Gall 91].

Representations generally available are used only to reason about the correctness

of program changes. When changes are made to the program, its representation must

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L o c a te a n d isolate S e p a r a te

D e p e n d e n t

I n d e p e n d e n t Weakly Dep. |

Strongly Dep. [j '

R e p la c e

P r o g r a m

N e w c o d e

C h a n g e \ y
M e r g e

M o d ifie d

Figure 5.4. The maintenance model

also be updated, as maintenance is a continuous process. However, the incorporation of

the changes into the programs and subsequently into the representation has not been

adequately addressed. The representations generally must be re-derived from the

program when the program is changed. The RSG based maintenance model is a

semantically constrained maintenance process that allows simultaneous updates to both

the representation model and the program.

5.3.1 Maintenance model

The RSG based maintenance model is a five-step process, as shown in figure

5.4.

i. Understand and locate. Understand and locate the program location where the

change will be introduced. This location may be a procedure or a block within

the procedure or a member of a block.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii. Isolate. Identify and isolate the change dependent statements from the change

independent statements. Change independent statements are that part of the

program that do not reference any variable affected due to the change. This

isolation allows the maintainer to modify the program freely, considering only

the dependent part and not the whole program. An optimal situation is one

where we can identify and isolate the absolute minimum amount of code that

will be affected by the change.

iii. Separate. Separate the dependent statements into strongly dependent and

weakly dependent parts. We consider the statements that will be replaced due to

the change as strongly dependent on the change and the statements that can be

reused as weakly dependent. For example, consider a modification requiring

change in the number of iterations of a loop. Step 2 identifies the entire loop

block as change dependent. But, the loop members may not require any change.

Hence we consider the loop statement as strongly dependent and loop members

as weekly dependent

iv. Change. Introduce the necessary changes. This step involves replacing the

strongly dependent statements, while generally reusing the weakly dependent

statements.

v. Merge. Merge the independent and the modified parts. Make sure that any new

names introduced in the changed part do not conflict with any names in the

independent part of the program.

Steps 2 and 3 break the program into manageable pieces, and automatically

assist the maintainer in ensuring that there are no ripple effects induced by

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modifications in the change dependent part. In the next section we show how the StDG

can be restructured for maintenance activities.

S J J RSG for maintenance

hi the StDG, variable definitions propagate from the definition sites to the

reference sites through the def edges. To delete a site from the graph, we follow the def

edges of the site and remove all the sites encountered. If one of the sites encountered is a

member of a circularly connected chain of sites, we traverse and remove the entire

chain. Similarly, to add new statements we traverse the entire chain of sites to analyze

the effects of the additions. Moreover, it is easy to understand the code if the statements

represented by circular chain of sites are present together. Hence, instead of having

these sites as separate sites, we represent them all in one site in the graph because

maintenance operations must consider them together.

A procedure in a program can be viewed at as a block. A block consists of

statements and other blocks (members), hi a block, all members are dependent

(dependence includes data, control, and flow dependence) on the blockhead and, in turn,

on all the members on which the blockhead depends. Block members on which the

blockhead depends and the blockhead form a circular chain of sites. Hence, these

members’ sites can be merged into the blockhead’s site. By this merging, a block is

separated into a structure part and a data part. The structure part includes the blockhead

and (see section 4.3.1) members (these may include members of a deeper block) in the

block which define variables referenced by the blockhead. The data part consists of the

remaining members of the block. Any changes made to the data part of a block will not

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

affect its structure part and any changes made to structure part affects the constituents of

the data part equally.

Structure compaction is used to merge circularly connected sites. Figure 5.5 is a

RSG for maintenance (RSGM) of the StDG shown in figure 3.1(a). In the next section,

we show how the RSGM can be used for maintenance activities.

- -u

inwordg

nc

Figure 5.5. RSG for maintenance (RSGM)

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 3 3 Maintenance activities

Hie RSGM for a procedure is useful for the modifications such as addition,

deletion, change, and code movement

a. Additions. Addition involves adding new computation (statements) to a procedure, hi

the maintenance model, we skip to the final step, merge. Additions can be made if they

do not result in the addition of new use edges to the sites of the original graph. There are

two ways statements can be added to the program without affecting the program

computation. First, statements that do not define any existing variables can be added.

These statements can be placed in any block.

Second, statements that redefine existing variables can be added if the new

definitions do not reach the statements in the original program. The new definitions will

not reach the original program if the statements redefining an existing variable are

placed between a last use statement and a new def statement of the variable. Or, the new

statements can be added after the final-use statement of the redefined variable. We

define graph parameters for the statements being added to the program as:

AVariables = AProgram Variables u {x, X, T], $}
AVar£ {vj| v e AVariables a j e AProgramStatements}
AS1TH = sites of the added statements

The conditions for addition are:

{Vs: ASITE; Vv: AVar; Vv: Var, Ve^EDGE; Vi j :ProgramStatements;s 1 ,s2:SITE;«
((vs,s,Definition)€DPS(s) a vg {x , X, T |, <)>} a v £ Variable) v

((vs,s JDefinition)€ DPS(s) a ee((vj,sl .Definition),(Vj,s2,Use)) a s < i a s > j}

That is, a variable defined in the added statements is not present in the original program,

or a variable defined in the added statement is not added between a definition statement

and a use statement of the variable.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The addition of new statements in a block results in a def edges from the

blockhead to added statements (control dependence edges). The statement number of

the added statements should lie within the block begin and block end site numbers (i.e.

between x and q> port numbers of the blockhead). If the added statements use any

variables from the original program, additional def edges (data dependence edges) will

result Again, the statement number of the added statement should be greater than the

statements (number) containing the variable references in the added statement

Three cases arise when merging new code:

i. If an addition results in no new data dependence edges from the original graph,

then new statements are added in the chosen block. They become control

dependent on the current block’s blockhead (b). For each statement in the added

statements (AS), add a control edge from b. That is,

{Vj:ASlTK;G:RSG* G <— ((Xb,bJDefinition),(tj j,Use))}

ii. If the new statements use a variable defined both inside (vO and outside (v*) the

block, then new statements are added before the site in which the used variable

(Vj) is defined within the block. For each definition of v reaching AS from

outside the block, external edges are added. An external edge is also added for

each definition of v defined within the block which reaches AS. That is,

(Vvj; Vj:ASITE;Vk:SITE;i,s 1 ,s2:SITE;G:RSG«
G <— ((vk,s 1 .Definition),(vjj ,Use)) a
G «— ((vi,s2,Definition),(vj j ,Use)) a j<i a Vk e Defs(sl) a vj G Defs(s2)}

iii.If the new statements use a variable defined only within the block, then the new

statements are added after the site in which the used variable is defined. An

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

external edge is added from the definition of v within the block (v*) to the use of

v in AS (V j). That is,

{VvjJ:ASrrE;i,s2:SrrE;G:RSG«
G <— ((Vi,s2JDefinition),(Vjj,Use)) a j>i a V| e Defs(s2»

In the merged program the ascending order of the statement numbers is

maintained.

b. Deletions. Any leaf site can be removed. A leaf site has no def edges (i.e., no other

site is using it); hence, it can be removed without affecting the rest of the program. Any

site in the graph can be made a leaf site by merging all the sites in the forward slice of

the site (FSS), as explained in Section 5.2.1. If r is the site that needs to be deleted, then

all the sites in the forward slice of r are merged in r. Then r is removed. That is,

(Vs:SITE» s e FSS(UPS(r)) a r <— s a <— r }

In the final program the ascending order of the statement numbers should be

maintained. Care should be taken when sites are removed to avoid dead code. A non-

final-use site without a def port represents dead code and can be removed. That is,

{3s: SITE* DED(s) = <J> a <— n}

c. Changes. The change may be viewed as a deletion followed by addition. We show

how the changes can be incorporated in the RSGM of the StDG of figure 3.1(b) using

the maintenance model. Statement 6 in figure 3.1(a) computes the number of characters

in the input stream. To change this statement to count only the non-blank characters, the

statement should be removed and the following statements added.

al. if(c != ' ')
a2. nc = nc + 1;

Next we use the 5-step maintenance process to incorporate the change.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i. Locate the sites in the restructured graph that needs to be changed or removed. Ia

our example, site 6 needs changes. Site 6 is a member of block 5.

ii. The change dependent part includes the graph slices of all the sites identified in

C «l

Exit

Figure 5.6. The StDG of the changes.

the first step. The graph slice of site 6 includes site 6 and ‘nc’ port of exit site

(sites r l and Exit in figure 5.6). The rest of the graph is change independent

iii. Separate the dependent part into reusable and replaceable parts by identifying

sub-graph slices from the change dependent part identified in step 2. The sub­

graph slices may be reused. The entire graph slice identified in step 2 can be

reused.

iv. Change involves addition of a new site al and reuse of slice identified in step 3,

as shown in figure 5.6.

v. Merge the change independent part of step 2 and modified part from step 4. This

process involves adding the modified part of the StDG to the restructured graph

with the change dependent part removed. The modified part is to be added in

block 5; hence the modified part can be placed between statements 5 and 14.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The modified part uses variable ‘c’ defined both outside (statement 4) and

inside the block (statement 13), hence it should be placed before statement 13.

Merging results in three data dependence edges from C4, Co, and nc, and one

control dependence edge from T5, as shown in figure S.7 (dotted lines). The

modified program RSG is as shown in figure 5.7.

✓- - - - - - C I < P l i -N
2 1y

V- - - - - - T j — - - - - J

t 7 . inwordg

9i2 ' t? " inwordio

Figure 5.7. The modified program RSG

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d. Code movement A statement redefining an existing variable cannot be added

between the variable definition and use statements in the original program. In a typical

program, any number of statements may be present between the variable definition and

use statements. By moving the variable definition statement closer to the use statement

we can provide more space for adding new statements. Moreover, code movement

increases code readability. Code movement is widely addresses as part of program

restructuring transformations [Morg 97][Gris 95][Bowi 95].

In the RSG, code movement can be accomplished easily. A statement can only

be moved within its block. We consider two scenarios before moving the code.

i. If a definition statement and a use statement of the variable are present in the

same block, then the definition statement can be placed before the use

statement If more than one use statement is present, then the statement is

moved to the use statement closest to i t

ii. If the definition statement and the use statement of the variable are present in

different blocks, then the definition statement can be placed before the

blockhead statement of which the use statement is a member. If the block of

which the use statement is a member and the definition statement are members

of different blocks (i.e. the use statement is in a deeper block), then we find the

block of which the previous block is a member. This process is done repeatedly

until we find a block that is a member of the same block as the definition

statement

Let si be the set of sites in the graph where a set of variables is defined. Then si

can be moved near s2, where s2 = min Site(DPD(sl». If si < s2, then si is moved to a

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

site that is less than si. If si > s2 then si is moved to a site that is greater than si. If s i

and s2 are in different blocks, then either s i can be moved in its block or the entire

block of si can be moved together.

The maintenance model is similar to the one presented in [Gall 91], but the

approaches to implement the models differ. [Gall 91] defines a decomposition slice,

which is obtained using union and complements of traditional slices to isolate the code

that needs change. The decomposition slice has worst-case times of 0(n e log(e», where

n is the number of variables and e is the number of edges in the flowgraph [Gall 91].

The graph slice can be computed from the RSG in time proportional to the size of the

graph. Moreover, formulation of the decomposition slice requires a better understanding

of the program.

5 .4 Sum m ary

hi this chapter, we applied RSG to program slicing and maintenance. A group of

sites with high cohesion will be present (or not present) in every slice, unless the slice

starts or ends in the merged site. The StDG is restructured through compaction that

merges the sites with high cohesion. The type of restructuring required changes from

application to application. We introduced three types of RSGS for slicing. Depending

on the time and space requirements, the software engineer can select the type best suited

to the application. We also showed how forward, backward, and modular slices can be

computed using different types of RSGS.

Generally two approaches are followed when incorporating changes in a

program. One approach allows changes to be made without any constraints and then

checks for inconsistencies introduced. Finding inconsistencies after the changes are

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

made was found to be NP-hard. The second approach constraints the type of changes

that can be made. We present a maintenance process that uses the latter approach. We

show how the restructured graph for maintenance (RSGM) is used in activities like

addition, deletion, changes, and code movement. The restructured graph (RSG) yields

better results than the generally used graphs when used for slicing and maintenance.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Reverse Engineering

6.1 Introduction

The term “reverse engineering” has its roots in the hardware world where the

primary objective is to decipher products whose design is not available. In software

engineering, the term is used to describe the process of examining a software system to

aid maintenance, gain insight, and enhance overall understandability [Chik 90]. The

central theme of reverse engineering research involves the development of tools,

techniques, and methodologies for the analysis, synthesis, and representation of

information about existing software systems. The reverse engineering activities can be

broadly identified as 1) identifying the functionality of an existing system, 2) modeling

it at a physical (or design) level, and then 3) modeling at a logical (or analysis) level

[Scha 96].

This research is applicable to the first two activities; for this purpose we use a

language independent format (LIF) and the statement dependence graph (StDG)

representations. The LDF captures the details of the program from which the StDG and

other design views of the program are derived. In section 6.2, we examine the OF

representation. In section 6.3 we present a synthesis of the StDG from the OF. Various

views of the reverse engineered design are presented in section 6.4. The chapter

summary is presented in section 6.5.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Code to U F

The language independent format was developed as part of the Unravel [Lyle

95] project, developed at the National Institute of Standards and Technology (NIST).

Unravel is a Computer Aided Software Engineering (CASE) tool that can be used to

statically evaluate ANSI C source code using program slicing. For unravel, the LIF is an

intermediate step in obtaining the PDG of a program; in this work we use it to derive the

StDG. Sections 6.2.1 and 6.2.2.present the semantics of the LIF.

6J2.1 Language independent format (LIF)

The LIF represents the program as an annotated flow graph of nodes and edges.

Nodes are generated to represent semantic or syntactic units of the program that

correspond to statements or parts of statements. A flow graph consists of two edge

types: control flow and requires. A control flow edge between two nodes indicates the

flow of control from one node to the other. A requires edge is a general mechanism for

specifying control or syntactic dependence between nodes. A node may have one or

more requires nodes; these nodes are known as the requires set The annotations specify

location of the corresponding source code.

The rules for representing statements as flow-graph nodes and for specifying

requires sets are as follows:

1. An expression is represented as a dataflow node.

2. A statement that is composed of noncontiguous tokens is divided into two or more

dataflow nodes such that each group of contiguous tokens is one or more nodes.

Examples are the matching braces of a compound statement and the do... while.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. An additional dataflow node is used to represent each C prefix (++x), postfix (x++)

or comma (x+y, z) operator in an expression. A conditional operator uses three

additional dataflow nodes.

4. Any compound statement that is represented with more than one dataflow node has

one node designated for inclusion in requires sets. Any node controlled by the

compound statement references the designated node in its requires set The other

nodes of the compound statement are referenced in requires set of the designated

node.

5. Each flow-graph node is annotated to provide a mapping from flow-graph nodes to

source code statements.

6 . The compound statement generates one flow-graph node for the beginning bracket

and another for the ending bracket

The LIF handles the following language features:

• Expression statements
• Compound control statements
• Structure variables
• Indirect assignment by pointer
• Indirect reference by pointer
• Dynamic structures
• References to structure members by pointer
• Assignment to structure members by pointer
• Procedure calls

6 2 2 Language independent representation

In this section, we present the details of the LIF codes used for the

representation. The codes used to specify declarations and expressions are presented in

table 6.1. Declarations do not generate a flow-graph node. They generate a positive id

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for each variable, and each global variable is allocated a unique id. Each procedure has a

separate set of ids for local variables and formal parameters, starting from 1. The

variable attributes, static, pointer, external, and array are indicated by the codes: S, P, X

and A.

Table 6.1. LIF codes used to specify declarations and expressions

Type Code Syntax
LOCAL ID 4 4(id, nameLSlLPlLXILAI)
GLOBAL ID 5 5(id, namer,Sir.Pir.Xir.Al)
REF 7 7(node, idfjevel])
DEF 8 8 (node, id[Jevel])
GREF 9 9(node, idfjevel])
GDEF 1 0 1 0 (node, idfjevel])
AREF 24 24(node, address)
ADDRESS 25 25(address, procedure id, id)

Expressions generate codes for variables referenced and defined. REF code is

used for local variables whose values are used. GREF code is used for global variables

whose values are used. Similarly, DEF and GDEF codes are used for local and global

variables that are assigned new values. The level indicates the level of indirection of the

ref or def. A level of zero, which represents no indirection, is omitted. A level of -1

indicates the address o f operator (&). ADDRESS is used for each object of the address

o f operator, indicating the variable, the procedure where the variable is declared (zero

for global declaration) and a unique address id. Address ids are assigned sequentially

from 1 .

The codes used to specify the flow-graph are presented in table 6.2. Each flow-

graph node produced is annotated by SOURCE MAP to provide a mapping from flow-

graph nodes to source code statements. Flow of control from node-to-node is specified

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with SUCC. An i f statement without an e l s e generates at least two nodes: one node

for the i f , left parenthesis token and the condition expression, and one for the right

parenthesis to serve as an exit point from the statement The nodes for the controlled

statement must exit through the right parenthesis node. The controlled statement

generates a REQUIRES entry for the i f node. The i f node requires the parenthesis

node. An i f statement with an e ls e generates an additional node for the e ls e . Nodes

of the second controlled statement require the e l s e node. The e l s e node requires the

i f node. The flow-graph of an i f statement is presented in Figure 6.1.

Table 6.2. LIF codes used to specify the flow-graph

Type Code Syntax
RETURN 14 14(node,l|0)
GOTO 15 15(node, G|B|C)
SUCC 16 16(from node, to node)
REQUIRES 17 17(node, required node)
SOURCE
MAP

18 18(node, from line, from column, to line, to column)

STMT

IF(EXP STMT

IF(EXP STMT

Figure 6.1. i f statement flow-graph

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A sw itc h statement generates two nodes, one for the s w itc h token and

expression and one for the right parenthesis token. The right parenthesis token is used as

an exit point for each case in the controlled statement The controlled statement

generates a REQUIRES entry for the sw itc h node. A w h ile statement generates two

nodes, one for the w h ile , left parenthesis and expression and one for the right

parenthesis. The right parenthesis node is a successor (SUCC) to the w h ile node and

the last node of the controlled statement The controlled statement generates a

REQUIRES entry for the w h ile node. The w h ile node requires the right parenthesis

node. The do . . w h ile generates three nodes: the do, the w h ile and

condition, and the right parenthesis. The successor of the do node is the first node of the

controlled statement. The w h ile node is the successor of the last node of the controlled

statement The w h ile node has two successors: the do node and the right parenthesis.

The do node is required by the controlled statement and the do node requires the

w h ile node and the right parenthesis. The f o r statement generates three nodes. The

first node contains the f o r , left parenthesis, and the initialization. The second node

encompasses the test expression, and the third node contains the increment and the right

parenthesis. The test is a successor of the f o r and initialization. The statement is a

successor of the test, and the increment is a successor of the statement The f o r and the

initialization expression require the test, the increment and the statement The statement

and increment are both required by the test and the right parenthesis requires the fo r .

Nodes corresponding to r e tu r n statements are identified by RETURN. The second

field of the RETURN indicates a return with expression by 1 and a return without

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expression by 0. The statements g o to , b re a k and c o n tin u e are identified by a

corresponding G, B or C code in a GOTO entry.

Procedure headers and calls use the codes presented in table 6.3. The PROC

END indicates a static declared procedure with an S flag. Procedures that return an

expression are indicated with an R flag. For formal parameters, the variable attributes

pointer and array are indicated by the code: P and A in the FORMAL ID record. All

local variable declarations, (LOCAL ID), and flow graph node related LIF codes appear

between the PROC START and the PROC END.

Table 6 J . LIF codes to specify procedures

Type Code Syntax
PROC START 1 l(node, procedure id, name)
PROC END 2 2(noder,SlLRl)
FORMAL ID 3 3(id, nameLA][,P])
CALLSTART 1 1 ll(node, procedure id)
ACTUALSEP 1 2 1 2

CALLEND 13 13

Procedure calls are handled using CALL START, and the actual parameters are

listed as expressions in order separated by ACTUAL SEP entries. Structure fields are

represented using the codes presented in table 6.4.

Table 6.4. LIF codes to specify structure fields

Type Code Syntax
CHAIN 19 19(node, chain, id)
GCHAIN 20 20(node, chain, id)
FIKFT) 21 21(node, chain, seq, field id, field)
CREF 22 22(node, chain)
CDEF 23 23(node, chain)
STRUCT 26 26(procedure id, id, offset)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At an expression node, each reference or assignment through a pointer to the

fields of a structure generates a chain (CHAIN or GCHAIN). The chains of a node are

given a chain number sequentially from 1. The variable at the head of the chain is

specified in the id field of the CHAIN for local variables and in the id field of the

GCHAIN for global variables. CREF and CDEF indicate if the chain specifies a ref or a

def. FIELD is used to specify each field of a chain by sequence number. The field id is

the sequence number of the field within the data structure and field is the field name.

STRUCT indicates that the variable identified by the procedure id, and id is a structure

with offset members. LIF code FILE, 6(file id, file name) is used to indicate the source

file associated with each procedure. Derivation of the StDG from the LIF codes is

presented in the next section.

63 LIF to StDG

The source code for deriving the StDG has one statement per line. Recall, the

statement terminators in the StDG are: ‘; \ ‘{ \ ‘}’ (an exception is a do . . .

w h ile loop, ‘}w hile (e x p re ss io n) ; ’ is placed in one line) , and *)\ only if ‘)’ is

not followed by a ‘{‘. Each statement in the source is given a sequential number starting

from 1. Figure 3.1(a) is a sample program with statement numbers, hi the StDG the

nodes are represented as sites. The sites representation includes use/def ports,

use/def/intemal edges, four special ports (t, <{>, X, and q), and three special sites for each

procedure (enter, exit, and summary). The aim is to convert the control flow (SUCC)

and control dependence (REQUIRES) information from the LIF to data, control, and

flow dependences while at the same time determining the internal data dependences at

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each node (which variables are used to define a particular variable is lost in LIF). Codes

similar to the O F codes are used to describe the StDG. These codes are shown in table

6.5.

Table 6.5. StDG codes

Type Code Syntax
LOCAL ID 4 4(id, name[,Sl[,P][,X][,A])
GLOBAL ID 5 5(id,namer,SirJ»irjarAl)
FORMAL ID 3 3(id, nameLAHJP])
USE PORT 31 31(site #, id, level, G|L|P, port #)
DEF PORT 32 32(site #, id, level, G|L|P, port #)
INT EDGE 35 35(site #, id, level, G{L|P, port #, id, level, G|L|P, port #)
EXT EDGE 36 36(site #, id, level,G|L|P, port #,site #, id, level, G|L|P, port #)
SUMMARY 37 37(procedure id, site #, name)
FUN CALL 38 38(calling procedure id, called procedure id)

Ports (USE PORT and DEF PORT) are represented using the site number,

variable id from the OF, level of indirection, variable type (global, local, or parameter),

and port number (which is the site number, initially). A level of zero indicates no

indirection, and -1 indicates the address o f operator (&). The external edges (EXT

EDGE) at a site are specified using a from-port and a to-port. The same external edge

acts as a def edge with respect to the first site # in the code and as a use with respect to

the second site #. The internal edges (INT EDGE) are specified with site number (in

which the edge is present) and two ports (from and to). The same ids used in OF for

local variables, global variables, formal parameters, procedures, and array variables are

also used in the StDG. Each procedure’s summary site is specified with SUMMARY,

using the procedure id and a unique site number. A procedure call (FUN CALL) is

identified with ids of calling and called procedures. Section 6.3.1 presents the derivation

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process of StDG codes from the LIF. For variable declarations, the LJF codes (LOCAL

ID, GLOBAL ID, and FORMAL ID) are also used as StDG codes.

63.1 Definitions

This section contains definitions relevant to the StDG extraction.

siteCnodei). Statement to which the nodei belongs. It is found from the SOURCE MAP.

For example, site(nodeO = si is found from LIF code 18(noden sj, .. .).

VT(idi). Variable type of idi, is a P (parameter) if there is a LIF code 3(idz name) such

that idi £ id2. Otherwise, it is an L (local variable).

CP(pidi). Current procedure id and name of pidi found from l(node, pidj, name).

RV(idi). Is idi used in a r e tu r n statement? Yes, if there are pairs of LIF codes

24{nodei,addri) and 25(addrupidMi)» 14(nodej,l\0) and 8(nodei,idi), or

14(node,l\0) and 7(nodei,idj), tested in that order (in r e tu r n a = b+c ; ,

only a is used in the return statement).

63.2 Ports

This section presents the derivation of use ports of the StDG. Table 6.6 contains

extractions of use ports from the LIF. The codes in the LIF column are used to derive

ports as shown in use ports column, if the conditions mentioned in the same column are

satisfied. The comments column indicates the type of variables.

All sites of statements using data variables have use ports. The LIF uses REF

and DEF for both local variable and parameters. Hence, VT is used to identify a local

variable from a parameter. Modified global variables and variables returned from a

procedure are specified as use ports in EXTTpid site. Two different def nodes belonging

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the same statement indicates the presence of multiple definitions in the statement

(multi-def variable). All block members in LIF require a blockhead. This feature is

represented in the StDG with a control variable in all block members (items 8 and 9 in

table 6 .6). Table 6.7 shows how the def ports are obtained from the LIF codes.

Table 6 .6 . Determination of use ports from the LIF

T.TF Use ports Comments
1 7(node,

idfjevel])
31(site(node), id, level, VT(id), site(node))
31(EXrrnid, id, level, VT(id), 0), if RV(id)

Local variable

2 9(nodeJd[Jevel]) 31(site(node), id, level, G, site(node)) Global variable
3 1 0 (node,

idFJevel])
31(EXTTpid, id» level, G, 0) Defined global

variable
4 24(nodei,addri)

25(addri,picUdi)
31(site(node), id, -1, VT(id), site(node)),

VT(id) = G, if pid= 0 above.
31(EXTTtHd, id, -1, VT(id), 0), ifRV(id)

Address ref

5 8 (nodei, idi)
8 (node2 , id2)

If site(node0 = site(node2) then
31(site(nodei), K 0 , 0 , site(node0)

Multi-def

6 1 0 (nodei, idi)
1 0 (node2, id2)

If site(nodeO = site(node2) then
31(site(node0, K 0 , 0 , site(nodei))

Multi-def

7 l(node, pid,
name)

31(site(node), x, 0 , 0 , 0) New procedure

8 17(node, mode) If site(raode) > site(node) then
31(site(raode), x, 0 , 0 , site(node))

Control
variable

9 17(node, model,
mode2)

31(site(mode), x, 0, 0, site(node)), for each
mode satisfying model < mode > mode2

and site(mode) > site(node)

Control
variable

D 17(node, mode) If site(mode) < site(node) then
31(site(node), x, 0 , 0 , site(node))

}, as a member
of block

All sites of statements defining data variables have def ports (items 1-3 in the

table). All parameters and global variables used in a procedure are identified in the

ENTERpid site. The user has to specify if a final-use variable is present in a statement. In

the LIF, a blockhead requires the *}’ and all members (except ‘{‘) require the

blockhead. This feature is exploited by item 7 in table 6.7 to find the blockhead’s *}’

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(blockhead statement number is the smallest of all members and, ‘}* has the highest

number in its block). The next section presents the derivation of internal edges.

Table 6.7. Determination of def ports from the LIF

LIF Def ports Comments
1 8(node,

idfjevel])
32(site(node), id, level, VT(id),
site(node))

Local variable

2 10(node,
idfjevel])

32(site(node), id, level, G, site(node))
32(ENTERDid, id, 0, G, 0)

Global variable

3 3(id, name) 32(ENTERoid, id, 0, P, 0) Parameter
4 User Defined If user specifies that site is a final-use site

32(site), ri, 0,0, sitefnodeO)
Final-use

5 l(node, pid,
name)

32(site(node), t, 0,0, site(node)) New procedure

6 17(node, mode) If site(raode) > site(node) then
32(site(node), t, 0,0, site(node))

Control variable

7 17(node, mode) If site(mode) < site(node) then
32(site(node), 0, 0,0, site(node))

Flow variable,}

8 ll(node, pid) If 7(node, . .) and 8(node, . .) are not
present then
32(site(node), d>, 0,0, site(node))

Function calls
not using or def­
ining a variable

9 15(node, B(C) 32(site(node), 0 ,0 ,0 , site(node)) Break, continue

6 3 3 Internal edges

Table 6.8 shows how the internal edges of sites are obtained from the LIF. At

each site, there are internal edges from x use port to all def ports. There are edges from

data variable use ports and the multi-def port to a data variable def port.

63.4 Control and flow dependence edges

Control dependence edges (external) and part of the flow dependence edges are

obtained from the LIF. The remaining flow dependence edges must be provided by the

user (example, dependence among two output statements). The data dependence edges

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are derived from the already built StDG and the LIF using data flow analysis. Table 6.9

gives the control and flow dependence edges obtained from the LIF. An external edge is

a use edge of one site and also a def edge of another site.

Table 6 .8 . Determination of internal edges from the UF

LIF Internal edges Comments
1 7(node, idi [.level])

8 (node, id2[Jevel])
35(site(node), idi, level, VT(idi),
site(node)4 d2, level, VT(id2),
site(node))

Use and def of
local variables

2 9(node, idi [.level])
1 0 (node4 d2[,level]
)

35(site(node), idi, level, VT(idi),
site(node), id2 , level, G, site(node))

Global variables

3 8 (node, id2[,level])
17(mode, node)

If site<node) > site(mode) then
3S(site(node), x, 0 ,0 , site(mode),
id2Jevel, VT(id2), site(node))

x use to all def
ports, local

4 1 0 (node4 d2 [4 evel]
)
17(mode, node)

If site(node) > site(mode) then
35(site(node), x, 0 ,0 , site(mode), id2,
level, VTfida), site(node))

x use to all def
ports, global

5 l(node, pid, name) 35(site(node), x, 0 ,0 ,0 , x, 0,0,
site(node))

New procedure

6 User identified An edge from each of the use ports to
final use port.

Final-use

7 8 (nodei,
idi [.level])
8 (node2 ,
id2[Jevel])

If site(nodei) = site(node2) then
35(site(nodei), A., 0 , 0 , site(node04di,
level, VT(idi), site(nodei)), and
35(site(nodei), A., 0 , 0 , site(node04d2,
level, VT(id2), site(node2))

Multi-def
Local variable

8 1 0 (nodei,
idi [.level])

1 0 (node2,
id2 [,level])

If site(node0 = site(node2) then
3S(site(nodei), A., 0 ,0 , site(node04dt,
level, VT(idi), site(node0), and
3S(site(nodei), A., 0 , 0 , site(node04d2,
level, VT(id2), site(node2))

Multi-def
Global variable

9 ll(node, pid) If 7(node, . .) and 8 (node, . .) are not
present then 35(site(node), x, 0 , 0 ,
site(node), d>, 0 , 0 , site(node))

Function calls
using/defining
no variables

1 0 15(node, B|C) 35(site(node), x, 0, 0, site(node), <j>, 0,
0 , site(node))

Break, continue

1 1 17(node, mode) If site(mode) < site(node) then
35(site(node), x, 0 ,0 , site(node), <j>, 0,
0 , site(node))

Flow variable,}

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The z, def port of a site (blockhead) is connected to t* use ports in all sites

(members), shown as items 1-3 in table 6.9. In items 4 and 5, $bode def ports are

connected to T̂ node use port; mode is a member of r2node, and node is a member of

mode (flow edges).

Table 6.9. Determination of external edges from the LIF

LIF External edges Comments
1 17(node, model,

mode2)
If site(mode) > site(node) then
36(site(node), x, 0,0, site(node),
site(mode), x, 0,0, site(node)) for each
model < mode > mode2

Blockhead
(node) to
members
(mode)

2 17(node, mode) If site(mode) > site(node) then
36(site(node), x, 0,0, site(node),
site(mode), x, 0 ,0 , site(node))

Blockhead
(node) to a
member (mode)

3 17(node, mode) if site(mode) < site(node) then
36(site(mode), x, 0,0, site(mode),
site(node), x, 0 ,0 , site(mode))

Blockhead
(mode) to *}’
(node)

4 17(node, mode)
17(r2node, mode)

if site(mode) < site(node) then
36(site(node), <b, 0,0, site(node),
site(mode), x, 0,0, site(r2node))

*}’ (node) to
blockhead
(mode)

5 ll(node,pid)
17(mode, node)
17(r2node, mode)

If 7(node,..) and 8(node,..) are not
present and site(mode) < site(node)
then 36(site(node), 0 ,0 ,0 , site(node),
site(mode), x, 0,0, site(r2node))

Function calls
using/defining
no variables.

6 3 i Data dependence edges

To add data dependence edges to the StDG, we need variables deffuse

information and the control flow information. The control flow information is

represented (SUCC) in the LEF as the flow of program execution from node to node. A

def to a variable can be preserving or killing (section 3.5.1). A preserving or a killing

def is always with respect to a previous def of the same variable; a def may be

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preserving with respect to some and killing with respect to other defs. A def of variable

V in block B is a killing def of all previous defs of V within B or within a deeper block

of B, and is a preserving def of all previous defs in the outer blocks of B. Different types

of def types include:

Block B1 // all defs in the following lines are to a same variable
defl // defl is killing def
Block B2

de€2 //def 2 is preserving of defl and defl is not visible in this block
def3 //def 3 kills def2 and preserves defl

Blockend B2
def4 //def4 kills both defl and def3

Blockend B1

A node in the LDF may have one or more successor nodes. A node with two

successor nodes indicates the beginning of a new block. An algorithm for obtaining the

data dependence edges is given in section 6.3.6. Each user-defined procedure is

analyzed for data dependence edges separately. The summary site of an analyzed

procedure is obtained (as explained later) and used in place of its call statement during

the analysis. The summary sites of the library functions are taken from the user. A loop

block is analyzed twice and so is a recursive procedure; the summary site obtained in

the first analysis (by ignoring the recursive calls) of a recursive procedure is used in the

second analysis.

63.6 Algorithm for deriving data dependence edges

In this section, we present an algorithm for deriving data dependence edges in

the StDG of a procedure.

I* Variable def and use information is used in deriving the data dependence edges.

Variable def and use information is obtained from the ports of the StDG. Each

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure is analyzed separately. Each loop block is analyzed twice. A call to a

procedure is replaced by the summary site of die procedure. See section 6.3.7 for

an algorithm for obtaining the summary site of a procedure. */

struct PORT{
variable_id; // each variable is given a unique id
variable_level; //pointer or address information of the variable
variablejtype;// use or def
variable_scope;//local or global
variable_port_num; // number of the statement in which the variable is present
variable _site; // site in which the port is present

};

/* The port of each variable defined is added to the active ports list. Ports of

variables whose def is a killing def are removed from the list. The block depth of

each port in the list is also stored along with the port. Initially block depth is

zero. The block depth counter is increased when a block begin is encountered,

and it is decreased when a block begin is reached. */

struct ACnVE_PORT { live ports (variables)
PORT ports;
bdepth; //block depth of the port

};

ACITVE_PORT active_port_list[];
PORT PI, P2;
HEADR block_headerO;
block_depth = 0,//cunent block depth
required.node = 0; //require information from the LIF codes

I* Find the PROC START LIF code of the procedure under consideration. The

code is in the form l(nodei, pidi, aamet) where node/ is the graph node number,

pid/ is current procedure id and name/ is the procedure name. Enter site includes

def ports of formal parameters and global variables. These ports are add to the

active ports list with block depth = 0. */

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

current_node = nodei;
current_pid = pidi; //
For each port P I in ENTER(current_pid) site {

Add PI and block_depth of 0 to active_port_list[]
}
call process_sites(curTent_node)

/* The successor of a node is obtained from the LIF. It is in the form - 16(nodei,

nodeO where node2 is the successor node to nodej. The site number of a node is

obtained from the LIF code, it is in the form — 18(node, number, .) where,

number is the statement number of node. */

process_sites(node)
{

loop forever{ // loop till the proc end is reached
if node has more than one successor then
{

for each successor S call process_sites(S) and
exit

}
next_node = successorfnode);
Site_no = get_S ite_number(next_node) // see comments above
Call process_use_def(site_no)
switch(site_no){ // site type
case PROC END: //end of the procedure s ite . Add edges to ports in the exit site,

for each P2 in use ports of EXIT(current_pid) site
for each i, 0<= i < L if (P2.id = active_port_list[i] .active_ports.id)

add an egde from active_port_Iist[i] to P2;
end of analysis for the procedure
break out of the loop;

case BLOCK BEGIN: // new block beginning
exit if site_no is a loop and was visited twice already
block_depth = blockjdepth + 1
break;

case BLOCK END: // block end site
bIock_depth = block_depth -1
break;

case CALL START: IIsite is a call to a procedure
replace current site by the summary site of the called procedure and

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

replace formal parameters by actual parameters, and
call process_use_def(summary_site)
break;

}// end of switch
}//end process_sitesO

I* Fen: each use port (PI) of variable V in the site, edges are added from the ports

(P2) of variable V in the active ports list to PI if block depth of P2 >= block

depth of PI. For each def port (PI) of variable V in the site, PI and block depth

of PI are added to the active ports list. Ports (P2) of variable V in the active

ports list with block depth >= block depth of PI are removed from the active

ports list */

process_use_def(site)
{

for each use port PI in site
{

for each port p2 in active_port_list[] .ports
if (P2.id = pi.id && P2.bdepth >= block_depth) add an egde from p2 to PI

}
for each def port PI in site
{

for each port p2 in active_port_list[] .ports
if (P2.id = pi. id && P2.bdepth >= block_depth)
{

remove P2 from active_port_list[]
add PI and blockjdepth to active_port_list[]

}
}
}

63.7 Summary site

An algorithm for computing the summary sites of procedures is presented in

table 6.10. A sum m ary site of a procedure can be computed only after its StDG is

completely derived.

I ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6.10. Algorithm for computing summary site

For each port PI in Enter site of the procedure
add PI to use ports of the summary site

For each port PI in Exit site of the procedure
add PI to def ports of the summary site

For each port PI in Enter site of the procedure
{

find FSP(P1) // see section 5.2.1 of Chapter 5 (forward slice ports)
for each port P2 in FSP(P1) and Exit site

add an edge from PI to P2 in summary site
}

6.4 Visual Representation of Design

The software design is presented in the form of an architectural design and a

detailed design. The architectural design or the high-level design consists of procedures

and their interconnections. The detailed design or the low-level design includes the

design associated with the individual procedures [Scha 96]. The reverse engineered

architectural design, in the form of a call graph, and the detailed design, in the form of

the StDG, is represented in the StDG codes. The overall program understandability and

maintainability can be improved by generating graphical representations of different

views of the program.

6.4.1 Control flow and dataflow graphs

Control flow and dataflow graphs (CFG and DFG) are obtained from the StDG

by considering each site as a node. Each external edge between t ports of the sites is

made a control flow edge in the CFG. For each loop site s, a control flow edge is added

from the last member of s (site with highest site number within block s) to s. Similarly,

each external edge joining data variable ports in the StDG is made a data flow edge in

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Legend: Data *
Control ----►

Figure 6.2. CFG and DFG

the DFG. The CFG and DFG of the function wordCountO of figure 3.1(a) is shown in

figure 6.2.

6.4.2 Call graph

The StDG code FUN CALL lists the calling and called procedures, including the

library routines. The FUN CALL and SUMMARY codes, 38(calling procedure id,

called procedure id) and 37(procedure id, site #, name), can be used to obtain the call

graph. The library routines can be excluded from the call graph by excluding the

procedures with zero procedure ids. The call graph of wc program of figure 3.1(a) is

presented in figure 6.3.

—►IwordCount------

main

i getchar

printf

Figure 6.3. Call Graph

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Main

I

 ►IwordCount * *—I getchar

Legend: Control

Data
printf

Figure 6.4. Structure chart representation of call graph

6.43 Structure charts

The structure chart of the modules and their hierarchical relationships of the wc

program of figure 3.1(a) is shown in figure 6.4. The structure chart also identifies the

data passed between the modules.

6 i Summary

Reverse engineering is the process of analyzing a subject system to understand

and represent it at a higher level of abstraction. The subject system can be in the form of

code or design documents. A process for reverse engineering the source code is

presented in this chapter. The language independent format (LIF) is an intermediate

representation for C programs. The LIF was developed as part of Unravel CASE tool,

available in the public domain. We use the Unravel for generating the LIF, and use the

LIF for generating the design of the system. The design obtained is represented in the

form of statement dependence graphs (StDG). From the StDG, different views of the

system are generated. These graphical representations aid overall comprehensibility and

improve the maintainability of the source system.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Design Change

7.1 Introduction

An object-oriented system uses the principles of abstraction, encapsulation,

modularity, and hierarchy together in a synergistic manner [Booc 94] unlike a

procedural system which may encompass one or more of these principles. However, the

meaning of these principles as used in a procedure-oriented system differs vastly from

an object-oriented system. To convert a procedure-oriented system to an object-oriented

system, we need to either identify these principles (if present in procedural systems) or

introduce them.

An object has a state, exhibits some well-defined behavior, and has a unique

identity [Booc 94]. Behavior is how an object acts and reacts in terms of its state

changes. Object behavior is expressed through operations (methods) like, modifiers,

selectors, constructors and destructors. A modifier alters, a selector accesses, a

constructor initializes, and a destructor frees the state of an object. However, in a

procedural system, no distinction is made between state and behavior. Also, different

types of operations exist as interleaved code.

Rugaber [Ruga 95] defines interleaving as merging of two or more distinct

plans within some contiguous textual area of a system. A plan denotes a group of

statements present in a system to achieve some purpose or goal. In terms of objects, a

plan may consist of one or more operations. Interleaving may occur for several reasons

such as efficiency considerations and the sequential nature of procedural programming.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, it is more efficient to compute two related values at one place rather than

separately. Also, constructors and modifiers of data structures are typically interleaved

throughout a procedure.

To convert a procedure-oriented system to an object-oriented system, the norm

has been to identify state from user-defined data structures and/or global variables, and

then identify procedures as behavior. The procedures may be fine-tuned by removing

extraneous code. The scope of these techniques is limited in two ways. First, it limits the

object identification to user-defined data structures (and global variables) and to

procedures that access these data structures. Second, it uses traditional program slicing

[Horw 90] for splitting large procedures. Program slicing is a focusing technique based

on dependences. A slice includes every statement that affects the slice (whatever the

source may be). This approach may result in large slices with a broad focus [Jack 94].

Moreover, the objects obtained using these techniques are usually coarse-grained.

To narrow the focus of a slice, a decomposition slicing for function extraction by

duplicating certain statements to be shared by a slice and its complement is given in

[Gall 91][Lanu 93]. However, these decomposition slices are still large and also require

a criterion for slicing, which is not always easy to formulate. Furthermore, slicing is

more tuned to function extraction than to transformational reengineering [Gall 91][Lanu

93]. In section 7.2, we present approaches available in the literature for object

identification. Section 7.3 describes a new approach to object identification. In section

7.4, a brief summary of the chapter is presented.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Object Identificatioii Approaches

Research in object identification has been mainly focused on developing

techniques for extracting objects from data that has already been aggregated in

programmer-defined data structures [Ruga 95]. Concept analysis is applied in [SifF

97] [Liu 90] to identify potential modules. Concept analysis uses functions (or a slice)

and attributes of functions to identify potential objects. The attributes of functions may

include parameter and return types of functions, global variable usage information, and

slice criteria. The concept analysis approach generates a variety of possible

decompositions from which a user can select an appropriate decomposition. The

optimality of this approach depends on how well the attributes of functions are

formulated for the concept analysis, which requires that the user have a good

understanding of the system.

In [Wigg 97][Canf 96][Yeh 95], a clustering technique is used to identify

objects. The technique uses a graph with procedures and external (and global) variables

as nodes and references by the procedures to the variables as edges. Each isolated sub­

graph contained in the graph is a candidate to implement an object. For these techniques

to apply, either the state variables must be identified by some mechanism or they must

be declared as global variables. Moreover, these techniques use traditional slicing to

extract relevant functionality from the functions.

Cohesion-based object identification approaches are presented in [Ache 95][Chu

92]. The usage information of pairs of global or parameter variables is used to arrive at

different decompositions of a system in [Ache 95]. In [Chu 92], functions that refer to

the same group of global variables are grouped into packages. These approaches use

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functions as operations of objects, but techniques can only be applied to programs that

are already divided into operations.

Several automatic object identification approaches are based on graphs and their

properties. The most common approach consists of defining a model of the subject

system as a graph on which notable sub-graphs and/or patterns are identified. Each sub­

graph or pattern is a potential object [Canf 96].

Generally these approaches follow 4 steps to identify object like features. These

steps are:

i. Identify target variables as candidates for object state. [Gall 95] uses

programmer-defined data structures while [Ache 95] uses actual parameters,

common variables and array variables as target variables. [Liu 90] [Dunn

93][[Yeh 95][Canf 96][Siff 97] use global or external variables as target

variables.

ii. Establish a relationship between the target variables and the procedures

(functions) in the system. The most commonly used relationship is ‘uses’. [Liu

90] [Dunn 93][[Yeh 95] [Canf 96] use - procedure ‘p’ uses variable V - type of

relationship. [Siff 97] uses both ‘uses’ (positive information) and ‘doesn’t use’

(negative information) relationships. [Ache 95] uses ‘pairs of variables used

together’ relationship. This usually results in a graph or a matrix, with both

target variables and procedures as nodes and the relationship as edges.

iii.Identify clusters or sub-graphs or patterns within the graph or matrix. Each of

these sub-graphs or clusters is a candidate object

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv. Fine tune the sub-graphs or clusters. A procedure may belong to more than one

sub-graph. It may need to be sliced or removed from some or all sub-graphs.

[Canf 96] calls these undesired links as coincidental and spurious connections.

Coincidental connections are due to routines that implement more than one

function, each function logically belonging to a different object Spurious

connections are related to routines that access more than one data structure.

Slicing is proposed to separate objects connected by coincidental connection,

and routines resulting in spurious connections are discarded from the graph.

[Yeh 95] follows a similar approach. [Siff 97] overcomes this obstacle using a

language feature ‘friend’ available in C++, which provides access to state

variables of other objects.

hi section 7.2.1, we discuss how different methods identify object-like features

in the source code.

7.2.1 Liu and Wilde approach

For each global variable V , a set F(v) of procedures that directly reference V is

computed. A graph is constructed with each F(v) as a node. For each pair of nodes

(F(vi) and F(V2», an edge connecting the two is added if there is a common procedure in

the sets, F(vi) and F(V2>. Figure 7.2 is a graph built using the Liu and Wilde approach

for the program in figure 7.1. Each of the two strongly connected sub-graphs recognized

in the graph is a candidate for object Objects stack and queue are easily identified from

figure 7.1.

•

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

long stackltems [MAX];
int stackPoint;
int queueItems[MAX];
int queueHead queueTail, numQueueElm;
void stacklhitO {/* rcferencess stackPoint */}
void stackPush(elm) {/* references stackltems and stackPoint */}
int stackPopO {/* references stackltems and stackPoint*/
int stackTopO {/* references stackltems and stackPoint */
int stackEmptyO {/* references stackPoint */
void queuelnitO {/* references queueHead queueTail, numQueueElm */}
void queueEnq(elm) {/*ieferences queueltems, queueHead,

numQueueElm*/}
int queueDeqO {/* references queueltems, queueTail, numQueueElm */
int queueEmptyO {/* references numQueueElm */

Figure 7.1 A sample C program for Liu and Wilde approach

Ffqueueltems! FfqueueHead! FfstackPoint! Ffstackltems!
queueEnq <------►queuelnit stacklnit ^ ^ stackPush
queueDeq queueEnq stackPush stackPop

stackPop stackTop
I stackTop

\ stackEmpty

xjr
FfnumOueueElml FfqueueTail!
queuelnit queuelnit
queueEnq queueDeq
queueDeq
queueEmpty

Figure 7.2. Strongly connected sub-graphs in Liu and Wilde approach

7.22 Dunn and Knight approach

In the Dunn and Knight approach, a program is represented as a graph with

global variables and procedures as nodes. Edges, which are directed from procedure

nodes to variable nodes, specify the ‘uses’ relation. The graph is traversed depth-first

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queueEn

queueTail

Figure 7.3. Strongly connected sub-graphs in Dunn and Knight approach

looking for strongly connected components; each component is regarded as a candidate

object Figure 7.3 shows the graph for the sample program given in Figure 7.1. The

results are essentially equivalent to those obtained from the Liu and Wilde approach.

7 1 3 SifF and Reps approach

Approaches based on search for notable sub-graphs or patterns may produce low

quality objects by clustering more than one object within the same candidate. A

procedure using state variables of two different objects creates a link between the

corresponding sub-graphs, thus causing the two objects to be identified as a unique one.

As an example, consider the sample program as shown in Figure 7.4.

Routine ‘queueEnq' references fields of both stack and queue structures. This

routine creates a link between the two objects, thus recognizes the entire program as a

single object.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

struct stack {
long stackltems [MAX];
int stackPoint;

};
struct queue {

struct stack *front *back;
};/* two stacks are used to simulate a queue */

void stacklhitO {/* references stackltems and stackPoint */}
void stackPush(elm) {/* references stackltems and stackPoint */}
int stackPopO U* refemces stackltems and stackPoint*/
int stackTopO {/* refemces stackltems and stackPoint */
int stackEmptyO {I* refemces stackPoint */
void QueuelhitO {/* references front and back */}
void queueEnq(queue *Q, elm) {/* references Q->front->stackPoint, and

Q->front->stackItems */}
/* queueEnq is making changes to stackPoint and stackltems directly */

int queueDeqO {/* references front and back*/
int queueEmptyO {/* references front and back*/

Figure 7.4 A sample C program for Siff and Reps approach

To alleviate this problem, Siff and Reps make use of both positive and negative

information, unlike other approaches which make use of only “positive” information.

For example, knowledge that “function ‘f uses the fields of ‘struct queue* but not the

fields of ‘struct stack’” is sometimes helpful in solving these problems. In addition to

“uses” information, this approach uses the fact that ‘queueEnq’ has argument of type

queue and not of type stack to determine if the routine belongs to a stack or queue

object This approach identifies the routine as belonging to queue object. But one

problem that is not solved completely is that the queue object accesses the state

variables of a different object

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

long stackltems [MAX];
int stackPoint;
int queueltems [MAX];
int queueHead, queueTail, numQueueElm;

void globallnitO {/^references stackPoint,
queueHead, queueTail, numQueueElm */}

void stackPush(elm) {/* references stackltems and stackPoint */}
int stackPopO {/* references stackltems and stackPoint*/
int stackTopO {/* references stackltems and stackPoint */
int stackEmptyO {/* references stackPoint */
void queueEnq(elm) {/* references queueltems, queueHead, numQueueElm
*/>
int queueDeqO {/* references queueltems, queueTail, numQueueElm */
int queueEmptyO {/* references numQueueElm */
void stackToQueueO {/* references stackltems, stackPoint, queueltems,

queueltems, queueHead, numQueueElm */}

Figure 7.5 A sample C program for CCM approach

7.2.4 Canfora, Cimitile and Monro (CCM) approach

Another problem with Siff and Reps approach is that it is not always the case

that every procedure in the system can be identified with one group or the other. As an

example, suppose that the program in Figure 7.4 initializes both a stack and a queue in

one routine, hi this case the routines ‘stacklnit’ and ‘queuelnit’ are substituted with a

single routine, ‘globallnit’ (figure 7.5), which accesses the state of both the objects;

void globallnitO {/* references stackltems, stackPoint, front, and back */}

Consider another example in which we have another routine stackToQueue that

accesses ‘stackltems’ and ‘queueltems’ to copy items from the stack to the queue:

void stackToQueueO {/* references stackltems and queueltems, etc. */}

The two routines create links between the objects, thus forcing their clustering into the

same candidate object [Canf 96] calls these types of links as coincidental and spurious

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^stackPus^) ^stackPojT^ (^stackTbp^

C^stackToQueue^> stackPoint

queueEn
queueHead

queuelt^sj C^queueEmpty^) >■ numQueueElm-f-(^globallnit

queueTail
queueDeq

Figure 7.6. Connected components in the CCM approach.

links, respectively. Routines creating coincidental links, like globallnit, are sliced and

used in different objects. In the CCM approach, routines that create spurious links, like

stackToQueue, are assumed to exist to implement system specific operations and to

access several objects (e.g. main function in C programs). These routines do not belong

to any object and are removed from the identification process.

The CCM graph and the Dunn and Knight graph are built in a similar fashion.

The graph, known as the variable-reference graph, records the usage of global

variables. If GV is the set of global variables in a software system and F is the set of

routines, a variable reference graph is a bipartite graph G(NJE) with nodes N h GV u F

and edges E = {(f,d) | f e F a d e GV a ‘f references d’} [Canf 96]. The variable-

reference graph for the program in Figure 7.5 is shown in Figure 7.6.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The CCM approach attempts to identify the relevant, internally connected, sub-

graphs through an iterative process, hi each iteration, every routine / i n the system is

associated with an index f x. fx measures the variation in the internal connectivity of the

graph using/, to generate a new cluster. Such a cluster would include all the data items

referenced by/(say, set d), and all the routines that reference the data items in set d. fx

of/measures the difference between the internal connectivity of the cluster generated by

/ and the internal connectivity of the clustered sub-graphs. This index (fx) is used to

discriminate the routines that implement the operations of an object (high index) from

the routines that access data items that belong to different objects (spurious/coincidental

connections - low index). Routines with low index are either sliced or deleted with the

programmer’s help. Data items (set d) referenced by routines with high index are

merged into one node, and the clustering process is repeated till the graph is in the form

of a set of isolated sub-graphs each consisting of a single GV node and one or more F

nodes.

The CCM approach can identify the two objects in the program in Figure 7.5 and

also identify that routines ‘globallnit’ and ‘stackToQueue’ need to be sliced or deleted.

Though the scope of this approach is wider than previous approaches, the CCM

approach has several limitations. The determination of low or high indexes is subjective.

It varies from program to program and also from iteration to iteration. Another

limitation is that it is not always possible to decide if a particular procedure belongs to

an object by simply looking at the number of data variables it references since a

procedure may access object state of several potential objects.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. int mainO
2. {
3. long items [MAX];
4. intsp;
5. longi,j;
6. sp = -l;
7. • • •

8. items [++sp] = j;
9. . . .

10. i = items [sp];
11. • • •

12. items [++sp] = j;
13. . . •

14. items[++sp] = j;
15. • • •

16. i = items [sp—];
17. • • •

18. items [++sp] = j;
19. • • ••

20. }

Figure 7.7. Sample C program for RSG approach

73 The RSG Approach

Implicit assumptions common in the approaches in section 7.2 are that the

system under consideration is built around well-defined data structures and that the

procedures are well-designed, hi reality these assumptions do not always hold.

Moreover, the approaches fail to identify objects that may be present within a procedure,

as in figure 7.7. Further, they make no distinction between a use and a definition of

variables. Consider as an example a procedure using a variable (vj) and defining another

variable (V2). Assume that v; and V2 belong to two different potential objects. Previous

approaches create two equally weighed links, therefore failing to identify the procedure

with one object or the other. A procedure (p) using a state variable (vj) need not

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

necessarily be part of the object belonging to die state variable. There are three choices

for p and vj:

i. Make p and vj part of the same object.

ii. Make p and v? part of different objects, and provide access to v? through

language features (e.g. ‘friend’ in C++).

iii.Make p and vj part of different objects, and introduce a selector operation for vj.

If p and vj belong to different objects, then we have only the latter two choices. The

second choice can only be applied in limited cases; we cannot declare every object in

the system as a friend of every other object The third choice is not explored by any of

the approaches presented in section 7.2.

73.1 Code localization

The opposite of interleaving is localization. In a procedural program, code for

the individual plans is interleaved due to the following reasons:

i. Programming style. Procedural programming does not prevent a programmer

from mixing the code of different plans in some textual area of the program.

ii. Sharing of intermediate results. If two plans share some code, then instead of

duplicating the common code the result of common code is shared by the two

plans, resulting in interleaving of the two plans.

iii.Sharing of variable names. The same variable name can be used for two different

purposes (plans) resulting in some kind of relationship between the two plans.

iv. Sharing of resources. Plans also result in interleaving by sharing loop or

conditional structures.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While interleaving is introduced to take advantage of commonalties, in contrast,

the interleaved plans have a distinct purpose (Ruga 95]. These plans may belong to

different objects in an object-oriented decomposition of the program. To identify these

objects, first we need to identify these plans, localize the delocalized code belonging to

individual plans, and finally group these plans into objets.

Traditionally, slicing is proposed for code localization and for extracting

individual plans. A traditional backward slice on ‘items’ at the end of the sample

program (Figure 7.7) includes all the statements in the program. Slicing requires a

criterion, a begin statement, an end statement, and variable (s). For the sample program,

it is not obvious where to start and end slicing for identifying a plan.

133. Plan identification

Plans are interleaved to share:

i. Name space. To identify name sharing we need to separate a definition of a

variable and its uses from other definitions of the variable. Each definition-uses

combination may belong to different plans.

ii. Intermediate results. A value shared by two plans is identified by identifying a

variable definition that is used in more than one context. Statements computing

the intermediate value (sub-plan) are duplicated if the two contexts where the

intermediate value is used are grouped into different objects.

iii. Resources. Resources like loops, control structures, or flags, can be identified by

the values they compute and the contexts where the values are used. For

example, a loop initializing two arrays can be identified by how the two array

variables are used. If they are used for two different purposes, then they do not

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Is 1,2,20
 ̂ /

6:6,8
t

✓ / items - sp

' items
17,: 17 14

| items

items }

sp j

items
16:1618:18

i 7
Figure 7.8. RSG of the program in figure 7.7

belong together. The two initializations (or plans) are separated by duplicating

the resource (code).

Bom the above discussion, we can see that plans can be identified by using variable(s)

definitions and their use contexts, hi this work, code is localized and program plans are

identified through restructuring of the graph representation of the program (StDG), as

explained in section 7.3.3.

7 3 3 RSG for object identification

The RSG of the StDG of the program in figure 7.7 is shown in figure 7.8. hi

figure 7.8, only the statements represented by each site and reaching defs and exposed

defs are shown. Code is localized by bringing together all statements with high cohesion

which are scattered throughout the program. The sites of statements with high cohesion

are merged through graph restructuring, as explained in Chapter 4, using data

compaction, structure compaction, and edge compaction.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

site 6:
6. sp = -1;
8. items[++sp] = j;

site: 10
10: i = itemsfsp];

site 12:
12. items[++sp] = j;
14. items[++sp] = j;

site 16:
16. i = itemsfsp—];

site 18:
18. items[++sp] = j;

Figure 7.9. Statements in the sites of RSG in figure 7.8

The statements in sites of the RSG (figure 7.8) are shown in figure 7.9. Each of

these sites is a potential module. One or more sites in the RSG constitutes a plan. A site

defining a control variable (e.g. site 1) is a sub-plan shared by two or more other sub­

plans (sites connected by a control dependence edge, e.g. (xi, Ti». As shown in figure

7.8, several plans (sites 1 and 6, and sites 1 and 10) are interleaved to take advantage of

the common computation present in site 1. To make these plans independent, we need to

duplicate the computation in site 1.

73.4 Restructured program design

The RSG of the program in figure 3.1 is shown in figure 7.10. In figure 7.10,

two sub-plans (sites 6 and 7) share the resources (site 1). The structure chart

representation of the RSG is shown in figure 7.11. Typically, modules or group of

modules are represented within structure charts. The granularity of the call graph node

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nwnc

7:7.8.9.10.11.13
' n w ---------

6:6
nc

a

16:16,18,19,20,21,22

Figure 7.10. (a) RSG of figure 3.1(b). (b) RSG of figure 3.1(c)

malnO
Display results

1: 1,2,4,5,13,14
Read input till
end of file

6: 6
Count characters

7:7,8,9,10,11,13
Count words

Legend: Control

Data

Figure 7.11. The structure chart representation of RSG

(procedure) as a module is too coarse, and a site of StDG (statement) as a module is too

fine for understanding a program. The nodes in figure 7.11 are annotated with the help

of the programmer.

7.4 Summary

Code and program plans are interleaved in procedural programs. In this chapter

we discuss how the code is localized and plans are identified, using the RSG of the

program. Usually, slicing is used for this purpose, but slicing is not always feasible to

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identify plans because specifying criterion for a plan is difficult. The plans identified are

potential candidates for object operations. These object operations are grouped into

objects, as explained in Chapter 8. We use the restructured design, call graph (figure

6.3), and the program code (figure 3.1(a)) to identify objects. We also discussed object

identification approaches available in the literature.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Forward Engineering

8.1 Introduction

We use the reverse engineered and restructured design of the programs (RSG)

for object identification. The procedural program and the identified objects are used to

translate the program to an object-oriented program. This work is focused on

identification and extraction of objects. In section 8.2, we present the object

identification process. In section 8.3, sample programs are used to show how objects are

identified. Object extraction is presented in section 8.4. In section 8.5, we present a case

study where we apply the object identification process to a commercial program.

Finally, the chapter summary is presented in section 8.5.

8.2 Object Identification Process

An object has state (variables) (SV) and operations (P) in the form of

constructors, modifiers, selectors, and destructor. Each site in the RSG is a potential

operation, and the program variables defined by these sites are potential state variables

of objects. The StDG object identification is a three-step process:

Identification of object state (SV). Variables present in a program (V) are selected as

potential candidates for object state (potential objects state variable) from three sources.

These are:

1. programmer defined data structures, local and global, present in the program

(DV).

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. programmer identified variables (IV). A programmer can choose any variable as

a candidate for SV.

3. exposed defs with more than one def edge in the sites of the RSG are candidates

for SV (PV). That is,

SV C V rProgramVariables
S V = DV u IV u PV
PV = {v:V;3j:ProgramStatement;s:SITE |

(vj.sJDefinition) e DPS(s) a #DPD(Vj,sJDefinition) > 1}

(#ECDP(S) = 1 a (Xj.SJDefinition) e ECDP(S» v (#ECDP(S) > 1 a (Xj.SJDefinition)
e ECDP(S) a (x .̂S .Definition) e ECDP(S) a Vk »j < k).

(Vj is a def port in s and number ports connected to Vj is greater than one). Next we

define terms to explain the object identification process, using the example in figure 8.1.

Exposed def ports (EDP). Exposed def ports are the def ports in a site that are

connected to ports in other sites. These ports can be control (ECDP) or data (EDDP)

ports.

EDP(S:S1TE) = {(vj,S.Definition) | (vj,S.Definition) e DPS(S) a
DPD(Vj.SJDefinition) n UPS(S) * 0» v:Variablesy:StatementNumber. EDP
is a def port in S and def ports of the def port vj are all not use ports in S.

EDDP(S:SITE) = {(vj,S.Definition) | (Vj.SJDefinition) e EDP(S) a v * x
•v:Variables j:StatementNumber}

ECDP(S:SITE) = {(Vj.SJDefinition) | (vj.SJDefinition) € EDP(S) a v = x
•v:Variables j:StatementNumber}

Merged use ports (MUP). Merged use ports are the use ports and non-exposed def

ports in a site.

MUP(S:SITE) = {(vj,S,Use{Definition) | (vj,S,Use) e UPS(S) v ((Vj.SJDefinition) e
DPS(S) a (Vj.SJDefinition) gEDP(S» • v:VariablesjjiStatementNumber}

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Final def variable (FDV). FDV of a site is the variable defined last in the site. FDV of

a site is determined using one of the steps following. The steps are followed in the order

presented. Let S be the site under consideration.

Table 8.1. C Code to implement a queue with two stacks.

struct stack { int *base, *sp, size; };
struct stack { struct stack *front, *back; };
struct queue* q;
struct stack * initStack(struct stack* s, int sz)
{ s = (struct stack*) malloc (sizeof(struct stack)));

s->base = s->sp = (int*) malloc (sz * (sizeof(int»);
s->size = sz ;}

struct queue* initQO
{ q = (struct queue*) malloc (sizeof (struct queue));
initStack(q->front ,10);
initStack(q->back,10}

int isEmptyStack(struct stack* s)
{ return (s->sp = s->base);}

int isEmptyQO
{ return (q->front->sp = q->front-base && q->back->sp = q->back-
>base);}

void push(struct stack* s, int i)
{ *(s->sp) = i;

s->sp++; }

void enq(int i)
{ *(q->fiont->sp) = i;

q->front->sp-M-; }

void pop(struct stack* s)
{ if (isEmptyStack(s)) return-1;

s->sp—;
return (*(s->sp)); }

intdeqO
{ if(isEmptyStack(s)) return-1;

if(!isEmptyStack(q->front)) push(q-back, pop(q->fiont));
return pop(q->back); }

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. If ECDP of S is not null, then one of the ECDP variables is the FDV. The x port

with the least statement number is the FDV. That is,

FDV(S:SITE) = (v •v:VariablesyJc:StatementNumber | v = Tj a (#ECDP(S) =
1 a Ctj,SJDefinition) e ECDP(S)) v (#ECDP(S) > 1 a (tj,S,Definition) e
ECDP(S) a (Tk,S .Definition) e ECDP(S) a Vk *j < k).

FDV of S is Tj if Tj is the only port in ECDP of S or ECDP has more than one port, Tj

and Tk are two ports in ECDP of S, and for all k, j < k.

2. If ECDP(S) is null, then one of the variables in the EDDP(S) is the FDV. The

variable of the port in the EDDP with the highest statement is the FDV. If more than

one port has the same highest statement number, then the variable not used within S

(variable of port with no internal def edges) is the FDV (there will be only one such

variable in a site). That is,

FDV(S:SITE) = (v *v,w: Variables;j,k,l:StatenientNumber,S 1 :S1TE |
(v = Vj a #ECDP(S) = 0 a (EDDP(S) = 1 a (Vj,SJDefinition) e EDDP(S)) v

((EDDP(S) >1 a (vj,S.Definition) e EDDP(S) a (wk,S,Definition) e EDDP(S) a

Vk* j > k) v (Vj.SJDefinition) e EDDP(S) a (Wk.S .Definition) e EDDP(S) a

Vk* j >= k a (vn,Sl,Use) e DPD(Vj,SJDefinition) a S?*S1 a

((Vj,S,Use),(Wj,S JDefinition)) g IntemalEdge(S)).

The FDV of S is Vj if number of ports in ECDP(S) is null and 1) EDDP(S) has one

port (vj), or 2) EDDP has more than one port, Vj and wk are any two ports in EDDP

and j > k always, or 3) EDDP has more than one port, Vj and w* are any two ports in

EDDP and j >= k always, use port vn in SI is one of the DPDs of Vj, S and SI are

different, and edge ((Vj,S,Use),(wj,S,Definition)) is not an internal edge in S.

3. FDV of S is null if EDP of S has no ports. That is,

FDV(S:SITE) = (v *v: Variables | v = 0 a EDP(S) = 4>).

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State variables defined in a site (DSV). DSV represents all the state variables defined

in the site. DSV is formally defined as:

DSV(S:S1TE) = {v» v:Variables;j:StatementNumber|(ve SV a
(vj.sJDefinition) e DPS(S) }

State variables used in a site (USV). USV represents all state variables used in the site.

USV is formally defined as:

USV(S:SITE) = {v« v: Variables yrStatementNumber |
(v € SV a (Vj,S,Use) e UPS(S»

Final def state variable (FDSV). FDSV of a site S is the state variable defined last in

S. If FDV of a site is a control variable or a local variable, then the site may have a

different variable as FDSV than FDV. The FDSV is formally defined as:

FDSV(S:SITE) = (v» v,w,y.VariabIes;j JcStatementNumber |
((ve S V a v e FDV(S))v((yg SV a y 6 FDV(S) a w e SV a

(Vj.SJDefinition) e EDDP(S) a (wk,S JDefinition) e EDDP(S) a Vk» j > k)) v (v
= 0aV w *w 6S V aw «F D V (S))

2. Identification of object operations (P). Each site in the StDG is a potential

operation. A RSG site may define zero or more SVs. If more than one SV is defined in a

site, then that site needs to be separated into different sites, with each site defining

exactly one SV. However, in certain cases where SVs are interdependent, it may not be

possible to separate sites. One simpler way to separate a site defining more than one S V

is to re-restructure the StDG, with the list of SVs (this is referred to as RSG2 in figure

1.1). During sites merging using data compaction (Chapter 4, section 4.3.2), cases one

and two, site si are not merged in s2 if si satisfies the following condition:

((v, si JDefinition) e DPS(sl) a v e SV)

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the remainder of this work, RSG refers to the re-restructured StDG. A site in

the RSG has one or more def ports, representing state variables, control variables, or

local variables. Each of these sites is associated with a variable known as a final def

variable. Sites and other definitions for the example in table 8.1 are presented in table

8.2. Procedure initStack has three sites and initQ has two sites; each of these sites will

be considered as a different operation. All other procedures have one site each in the

StDG of the example.

Table 8.2. Sites and other definitions for the example in table 8.1.

Procedures Sites FDV FDSV DSV USV
initStack 1. base base base {base} 0

2. sp sp sp {sp} 0
3. size size size {size} 0

initQ 1. front front front {front} 0
2. back back back {back} 0

isEmptyStac
k

0 0 0 {sp.base}

isEmptyQ 0 0 0 {sp,base,frontback}
push sp sp {sp} {sp.size}
pop sp sp {sp} {sp}
enq front front (sp,front} {sp .front}
deq back back {frontback} {frontback}

3. Identification of candidate objects. The following steps are followed to identify the

objects. Let,

OV(o) - state of object o (OV(o) c SV).
OP(o) - operations in object o (OP(o) £ P).
O - set of objects in the program (o e O).

Step 1. For each data structure present or group of variables identified by the software

engineer (d), add an object Od to objects set Members (v) of a group (d) are added to

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their respective objects. That is, (d e DV a O = O u Od) a (v:Ved a OV(Od) = OV(Od)

u {v}). If d isaD V then add oa to O and if vis a member of d then add v to OV(Od).

Step 2. For each state variable v, a set P(v) of sites with v as FDSV is defined. P(v) and

v are grouped into a candidate object o. If v belongs to one of the objects (already

grouped), then P(v) is added to the object of v. That is, (v e OV(o) a OP(o) = OP(o) u

P(v» v (V o :0 v £ OV(o) a O = O u o a O V (o) = OV(o) u {v} a OP(o) = OP(o) u

P(v», where P(v:SV) = {s:SITE | Vs» veFDSV(s)}. If v belongs to a candidate object o,

then add P(v) to the object o. If v does not belong to any object, then add a new object

(o), and add v and P(v) to the new object.

Step 3. Add operations with null FDSV as candidate objects. These candidate objects

are: {s:S1TE | FDSV(s) = 0}.

Step 4. State Reference Graph (SRG) is built using candidate objects ({iv} and P(iv),

where {iv} is the set of variables in a candidate object) as nodes and references of

candidate objects of variables of other candidate objects as edges. Nodes in the SRG are

placed in different levels; if a node A references node B (operations in A reference

variables in B), then node B is placed at a lower level than node A. Root nodes at the

bottom of the SRG represent objects that do not reference any variables. If nodes are

circularly connected, then the nodes are merged into one node. SRG is a directed graph

G(NJE) with nodes s candidate objects (O) and edges = {(ci,C2) | ci, C2 € O a v e

OV(cO a P(v) e OP(ci) a w e OV(c2) a P(w) e OP(c2) a w e MUP(P(v))}. The SRG

of the example in table 8.1 is shown in figure 8.1. In figure 8.1, the sp, base, and size

nodes should be represented in one node as they belong to a data structure. Similarly,

the front and back nodes should be represented in one node. However, to explain the

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

back:
initQO
deqO

front:
initQO
enqO

isEmptyStack

sp:popO
initStackO
pushQ

base:
initStackO

Figure 8.1. State reference graph

object identification process let us not consider the presence of data structures. In the

figure, nodes with out-going dotted edges represent the sites with null FDSV

(isEmptyQ, isEmptyStack).

Step S. Connected nodes in the isolated sub-graphs of the SRG are merged with the help

of the software engineer to fine-tune candidate objects. The SRG nodes can only be

merged with the node at the highest level that is connected to it. Nodes of sites with null

FDSV are eliminated from the graph if they are not merged with any other node. These

eliminated nodes are due the presence of procedures that access several objects (e.g.

main function in C programs). A node is merged with a lower level node with the help

of the software engineer and with the use of the information related to the two nodes in

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

table 2, StDG, and SRG. Two groups are identified in the example, as shown with

dotted borders in figure 8.1.

Nodes in each group are merged into one object: ci,C2 6 O a ‘c i and C2 are

grouped’ a P(v) e OP(cj) a P (w) e OP(c2> a v 6 OV(ci) a w e OV(c2) a O P (c O =

OP(cO u OP(c2) a OV(ci) = OV(ci) u OV(c2) a O = 0 \ c2. If ci and c2 are merged,

add operations and variables in c2 to ci and remove c2 from O. We consider candidate

objects in O (stack and queue in the example) as objects in the new system.

Step 6. If an operation of one object uses a variable of another object, then a selector

operation is introduced in the second object A selector operation is introduced in the

object if these conditions are satisfied: (ci,c2) e E a v e OV(ci) a P (v) 6 OP(cO a w e

OV(C2) a P(w) e OP(c2) a w e USV(OP(ci)). That is, i f there is an edge from ci to c2

and an operation in ct uses a variable of c2, a selector operation is introduced. Similarly,

a modifier or an iterator operation is introduced if one object defines a variable of

another. The condition for introducing a modifier (or iterator) operation: (ci,c2) E E a v

e OV(ci) A P(v) e OP(cO A WE OV(c2) a P(w) E OP(c2) a w e DSV(OP(cO).

Step 7. In the StDG, if a site (si) defining a control variable and sites (s2) connected to

si are grouped into different objects, then duplicate s i and add to each object that has a

site connected to si. The condition for site (operation) duplication: (15,si .Definition) E

DPS(sl) a (Tj,s2,Use) e UPS(s2) a FDV(sl) = Tj a s2 e O P (o) a si £ OP(o) a o e O .

That is, s i and s2 are connected by a control edge, and they belong to different objects.

If this step results in site duplication, step 6 is repeated for the duplicated site.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83 Examples for Object Identification

831 Example 1

Table 8.3. Sample program for object identification

1. intmain(){
2. long Rtems[MAX];
3. long Bitems[MAX];
4. int Fsp, Bsp, size=MAXj;
5. long it, jt;
6. Fsp = Bsp = 0;
7. for(j=0y <size;j++) {
8. HtemsQ] = 0;
9. BitemsQ] = 0;
10. }
11.
12. if(Fsp< size)
13. Fitems(Fsp++] = it;
14.
15. if(Fsp< size)
16. Fitems[Fsp++] = it;
17.
18. if(Bsp)
19. jt = Bitems[Bsp-l];
20. else if(Fsp)
21. jt = FitemsfOJ;
22. else jt = 0;
23.
24. if(Bsp)
25. jt = Bitems[—Bsp];
26. else if (Fsp) {
27. while(Fsp)
28. Bitems(Bsp++] = Fitems[—Fsp];
29. jt = Bitems[—Bsp];
30. }
31. elsejt = 0;
32.
33. if(Fsp< size)
34. Fitems[Fsp++] = it;
35

36.}

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To explain the object identification process we use the sample program shown in

table 8.3. The RSG of the program is shown in figure 8.2. In the RSG, internal edges are

not shown. Statements in the sites of the RSG are shown in table 8.4. From the RSG, we

identify variables Fitems, Fsp, Bitems, and Bsp as candidates for state variables. Re-

restructuring the StDG using the state variable information we have a RSG with

statements in sites as shown in table 8.4.

7:77ID

(5̂
Bitems Fsp — Bsp

FspmBsp) '

24:24-31
|Fitems FspjBitemsjBsp [j jt J

Fitems [Fsp it siz

33..32J4 __ ,

Figure 8.2. RSG of the program in table 8.3.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.4. Sites in the modified RSG.

Site 6:
6. Fsp = Bsp = 0;
Site 7:
7. for(j=0*j<sizey'-H-) {
10. }
Site 8:
8. FitemsQ] = 0;
Site 9:
9. Bitems[j] = 0;
Site 12:
12. if(Fsp < size)
13. Fitems [Fsp-n-] = it;
Site 15:
15. if(Fsp< size)
16. Fitems [Fsp-H-] = it;
Site 17:
17.
18. if(Bsp)
19. jt = Bitems[Bsp-l];
20. else if(Fsp)
21. jt = Fitems [0];
22. elsejt = 0;
23.
Site 24
24. if(Bsp)
Site 25:
25. jt = Bitems [—Bsp];
Site 26:
26. else if(Fsp) {
30. }
Site 27:
27. while(Fsp)
28. Bitems [Bsp++] = Rtems[—Fsp];
Site 29:
29. jt = Bitems[—B sp];
Site 31:
31. elsejt = 0;

Site 33:
33. if(Fsp< size)
34. Fitems [Fsp++] = it;

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State variables and operations in the program are:

SV = {Fitems, Fsp, Bitems, Bsp}
P = {6a, 6b, 7,8,9,12,15,17,24,25,26,27,29,31,33}
PCHtems) = {8,12,15,33}
P(Fsp) = {6a}
P(Bitems) = {9,27}
P(Bsp) = {6b, 25 ,29}

SRG of the program is shown in figure 8.3(a). Nodes in the SRG are merged as: {26,

Fsp} (26 is a null FDSV site), {24, Bsp} (24 is a null FDSV site), {Bsp, Bitems}

(connected nodes at the same level), and {Bsp, Bitems, 17} (17 is a null FDSV site).

Nodes in the merged SRG are shown in figure 8.3(b). These nodes are further merged

with the help of the software engineer. Assuming that the engineer merges nodes Fsp

and Fitems, we have two objects. These objects and their operations are:

Fitems:

Bitems:
9,27

Fitems:
8,12,15,

Fsp: Fsp:

Bsp:
6b, 25,

Bsp:
Bitems,
17,24

a b

Figure 8.3. (a). SRG of the program, (b) Partially merged SRG.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.5. Sample program 2 for object identification.

1. long Fitems[MAX];
2. long Bitems [MAX];
3. int Fsp, Bsp, size=0;
4. pusiUtemQong it){
5. ifCFsp < size)
6. Fitems[Fsp++] = it;
7. }
8. long next_itemO{
9. lingjt;
10. if(Bsp)
11. jt = Bitems[Bsp-l];
12. else if(Fsp)
13. jt = Fitems[0];
14. else jt = 0;
15. return jt;
16. }
17. long get_next_itemO{
18. longjt;
19. if(Bsp)
20. jt =Bitems[—Bsp];
21. else if(Fsp) {
22. while(Fsp)
23. Bitems[Bsp++] = Fitems[-Fsp];
24. jt = Bitems[—Bsp];
25. }
26. elsejt = 0;
27. retumjt;
28. }

29. intmainOl
30. intj;
31. long it, jt;
32. Fsp = Bsp - 0;
33. for(j=0y<sizey++){
34. Fitems [j] = 0;
35. BitemsQ] = 0;
36. }
37.
38. push_item(it);
39. ...
40. push_item(it);
41. ...
42. jt = next_itemO;
43.
44. jt = get_next_itemO;
45. ...
46. push_item(it);
47.......
48. }

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OV(ol) = {Fitems, Fsp}
OP(ol) = {6a, 8,12,15,26,33}
OV(o2) = {Bitems, Bsp}
OP(o2) = {6b, 9,17,24,27,29}

8 3 2 Example 2

Let us consider the sample program in table 8.3 implemented differently, as

shown in table 8.5. The RSG similar to the RSG in figure 8.2, with different site

numbers. Applying the object identification process to the program results in

identification of objects similar to the objects in example 2. Objects identified are

shown in table 8.6.

8.4 Object Extraction

State variables and operations identified and grouped into objects are extracted

by replacing the variables and operations by the objects using the following guidelines:

1. If the FDV of a modifier operation is a local variable, then add a return statement

after each statement defining the local variable.

2. Operations are given appropriate names with the help of the programmer, and

duplicate operations in each object are removed.

3. If an operation of one object uses a state variable of another object and the

operations in the two objects are connected by an edge, then add the variable as a

formal parameter. Or, if a variable used is defined in the operation, then declare the

variable as a local variable.

4. For each site selected as an operation of an object, the site is replaced by a call

statement to the operation.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.6. Operations in the objects identified

init_JFO{/*Site 6 is separated into 6a & 6b */
6. Fsp = 0; /*as it has a rmilti-def variable*/
} /* site 6 - part */
initJBOl f* 6 - part */
6. Bsp = 0;
}
init_Fi(int j){ /*using - j */
7. for(j=0y<sizey++){
8. Fitemsfj] = 0;
10.}
} /* site 8 */
init_Bi(intj){
7. for(j=0y<sizey-H-){
9. Bitems(j] = 0;
10. }
} /* site 9 */
push_F(long it){ /* using - it */
12. if(Fsp< size)
13. Fitems [Fsp-M-] = it;
}/* site 12, site 15, site 33*/
pop_B0{ /* defining non-SV */

long jt; /* non-SV defined */
25. jt = B items}-Bsp];

return jt;
} /* site 25, site 29 */
F_to_B0{
27. while(topJFO)
28. Bitems[Bsp-H-] = pop_F0;
}
pop^FOf
28. return Fitems [—Fsp];
}
ptr_B0{ /* Bsp - used in sites not part of the object, also in 24 */
18. return Bsp;
} /* site 18, site 24 */
ptr_F0{ I* Fsp - used in sites not part of the object, also in 26 */
20. return Fsp;
}/* site 20, site 26*/
top_F(){
21. return Fitems[0];
}/* site 21 */
top_B0(
19. return Bitems[bsp-1];

}/* site 19 */

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Statements in the operations are sorted in an ascending order.

6. Introduce constructors and destructors in each of the identified objects. Some of the

modifier operations may initialize state variables; those initializations are separated

and made constructor operation. For each object, a destructor operation may be

introduced with the help of the programmer.

7. Sites with null FDSV, USV, and DSV are grouped with the sites that are connected

to the sites under consideration. Site 31, in the example of table 8.4 is an example of

a site with null USV and null DSV. If these sites are connected to sites that are

grouped into several objects, then the sites are duplicated and used in all objects

with connected sites. In table 8.4, site 7 is duplicated and used in both the objects. If

these sites are not connected with any other site, then the sites are grouped with the

sites that call these sites. The objects and their operations for the program in table

8.4 are:

OV(ol) = {Fitems, Fsp}
OP(ol) = {6a, 8,12, 15,26,33,7}
OV(o2) = {Bitems, Bsp}
OP(o2) = {6b, 9,17,24,27,29,31,7}

By applying the above suggestions to the sites in table 8.4 we get the operations shown

in table 8.6. Operations are given appropriate names and duplicate operations are

removed. The sites that an operation represents are indicated as comments in the

operations. Constructors and destructors are not introduced. The objects and their

operations are:

OV(ol) = {Fitems, Fsp}
OP(ol) = {initJF, initJR, push_F, pop_F, top_F, ptrJF}
OV(o2) = {Bitems, Bsp}
OP(o2) = {initJB, init_Bi, F_to_B, pop_B, top_B, ptr_B}

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.5 Case Studies

In this chapter, we present two case studies in which we apply the StDG to

object recognition.

85.1 Bash

The legacy system we chose to study is Bourne Again SHell (bash), as it was also

used by [Siff 99] and [Gira 97] for a similar purpose. It is a GNU project which is an

interactive shell program with 38K lines of code, hi table 8.7, we present the results of

the analysis of a sub-system of bash (sbash).

Sbash uses four data structure: HASH_TABLE (HT), BUCKET_CONTENTS

(BC), ASSOC (AS), and SHELL_VAR (SH). Sbash also declares a global variable ht of

HT type. HT and BC have an aggregation relationship, and the HT contents are in the

form of BCs. In the table indicates the access (use or definition) of member

variables of the type. OT and OT1 stands for other objects that are not part of sbash. The

‘result’ column indicates the object the procedure belongs to and objects in which a

selector or modifier operation needs to be introduced. The ‘miscellaneous’ column

indicates parameter and return types. The column also indicates objects that ‘call’

current procedure and the procedures of objects that current procedure ‘called’. The

SRG of the sbash is presented in figure 8.4. Four objects: HT, BC, AS, and ht are

identified as part of sbash.

Comparison of results obtained using different approaches

a) Siff and Reps approach. Applying concept analysis approach [Siff 99] to

sbash will result in identification of the four objects. But, object operations and

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interfaces differ from our results. Object BC will have only 7 as its operation. Several

objects access a data member of BC, hence they all must be declared as ‘Mend’ in BC.

AS will have 10, 11, 13, and 17 as operations, though 13 and 17 are call operations of

HT. Hence, AS has to be a ‘friend’ of HT and HT a ‘friend’ of AS. Also, OT must be a

‘friend’ of HT.

Table 8.7. Analyses of sbash

File
name

Procu
dure#

Procedures USV DSV Miscellaneous Result

alias.c 1 imtialize_aliases ht ht ht
2 fmd_alias ht,

BC->
ht,
BC->

3 get_alias_value AS-> Call(ht) ht,
AS->

4 add_alias Site
(1)

ht
AS->

AS-> Callfht) ht
AS->

5 Site
(2)

BC BC->
AS->

BC
AS->

6 remove_alias ht->
BC->
AS->

ht,
HT->
BC->
AS->

7 delete_alias_Iist BC->
AS->

BC-
parameter

BC
AS->

8 delete_all_aliases ht-> ht
HT->

9 map_over_aliases ht->
BC->
AS

ht
HT->
BC->

10 sort_aIiases AS AS - parameter
Call (AS)

AS

11 qsort_alias_compare AS-> AS
12 all_aliases ht,

AS
Call (ht) ht

13 alias_expand_word AS-> Call (ht) ht
AS->

14 skipquotes Called (ht) ht
15 skipws Called (ht) ht
16 rd_token Called (ht) ht
17 alias_expand AS-> Call (ht) ht

AS->
Bashli
ne.c

18 Command word_CO
mpIetioiLfunction

OT1
AS->

Call, data OT1
AS->

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8.7. Continued

File
name

Procu
dure#

Procedures USV DSV Miscellaneous Result

hashx 19 inrializc Jiash_table HT-> HT-> HT - parameter HT
20 make_hash_table HT-> HT - parameter

HT - return
HT

21 xmalloc call HT
22 hash_string HT-> HT
23 find_hash_item HT->

BC->
BC-> HT - parameter

BC-return
HT
BC->

24 remove_hash_item HT->
BC->

HT-parameter
BC-return

HT
BC->

25 add_hash_item HT->
BC->

HT -parameter
BC-return

HT
BC->

26 get_hash_bucket HT-> HT -parameter
BC-return

HT

variab
le.c

27 map_over HT->
BC->
SV

HT - parameter
SV-return
call

HT
BC->

28 all_vars OT
HT
SV

HT - parameter
SV-return
call

OT

29 varjookup OT
HT
BC->
SV

HT -parameter
SV - return
call

OT
BC->

30 makunbound OT
HT
BC->
SV

HT-parameter
SV -return
call

OT
BC->

31 kill_all_local_variab
Ies

OT
HT
SV->

HT-local
SV -return
Call, data

OT
SV->

32 delete_all_variables OT
HT->
BC->
SV

BC-> HT - parameter
SV-return
call

OT
BC->

33 make_var_array OT
HT
SV->

HT -parameter
SV -return
call

OT
SV->

b) CCM approach. The CCM technique [Canf 96] fails to identify AS, SV, and

BC. AS and ht are merged into one object, and HT and BC are merged into one.

Procedures 14,15,16, and 21 are not included in any object.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0T1BC

AS

OT

SV

Figure 8.4. State reference graph of the sbash

c) Dunn and Knight, Liu and Wikle approaches [Liu 90] [Dunn 93]. These

approaches merge all procedures into one object Only with the help of the software

engineer can these approaches identify the objects.

hi the bash sub-system there are seven objects: HT, BC, AS, h t OT, OT1, and

SV. Of these seven objects, HT, BC, AS, and ht are part of Sbash. As we can see in

table 8.7, ht references HT, BC, and AS; HT references BC, and OT references HT, BC,

and SV. If we use ‘references' relationship to identify objects as used in the CCM, Dunn

and Knight and Liu and Wilde approaches all seven objects will be grouped into one

object The CCM approach will give better results by not recognizing AS, BC, and SV

as candidate objects, hi the absence of these objects the internal connectivity of HT and

ht is greater than the connectivity between HT and ht; hence, HT and ht are recognized.

The Siff and Reps approach works using the information in the ‘Miscellaneous’

column. It uses information like has a parameter of type HT, uses HT, has a return type

HT, and does not have a parameter of type HT. Information required for this approach

can only be obtained through trial and error. Once the information is obtained, this

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach works better for recognizing objects. However, it fails to recognize the correct

object operations, and the process is not comprehensive.

The objects and their operation identified by the StDG approach are shown in

the ‘Result’ column of table 8.7. The object names followed by indicate the

violation of the object encapsulation and require introduction of a selector or a modifier

operation in the respective objects. Slicing, proposed by several approaches, fails to

recognize these violations properly. There are some procedures (e.g. 14-17) that do not

reference any state variables. This problem is not addressed by any other approach.

Procedure 17 calls a procedure that is grouped with ht, hence it is grouped with ht as

this grouping will not violate any object encapsulation. Procedures 14 - 15 are called by

ht and hence are grouped in it. This grouping may not be the most appropriate thing to

do. A closer look at these procedures reveals that they manipulate strings.

&S.2 Chull

Chull is a program taken from a computational geometry library that computes

the convex hull of a set of vertices in the plane. It has three data structures: tVertex,

tEdge, and tFace. Chull is also used in [Siff 99] for modularization. As in [Siff 99], we

identify three objects, one for each data type. However, we differ with [Siff 99] in three

ways. First, procedures 16 and 17 are identified with tVertex; whereas, we identified

them with tFace. Second, procedure 20 is identified with tEdge, and we identified it

with tFace. The third and most important difference is that [Siff 99] declares every

object a ‘friend’ of every other object Object tFace in [Siff 99] has only two operations,

a constructor and a destructor. And the other two objects are also incomplete. The object

operations we identified are shown in table 8.8. Objects identified in the StDG approach

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

represent true abstractions as all the operations required for the state changes are

identified and encapsulated in the respective objects.

Table 8.8. Analyses of Chull.c

Procu
dure#

Procedures USV DSV Result

34 main main
35 Cleanup main
36 CheckEuler main
37 PrintOut main
38 MakeVertex tVertex-> tVertex->
39 ReadVertices tVertex-> tVertex->
40 Collinear tVertex-> tVertex->
41 Construction tVertex-> tFace tVertex
42 PrintPoint tVertex-> tVertex
43 PrintVertices tVertex-> tVertex
44 MakeEdge tEdge-> tEdge
45 CleanFaces tFace-> tFace
46 MakeFace tFace-> tFace
47 CleanVertices tVertex->

tEdge->
tVertex
tEdge->

48 PrintEdges tEdge->
tVertex->

tEdge

49 Volume6 tVertex->
tFace->

tFace
tVertex->

50 Volumed tVertex->
tFace->

tFace
tVertex->

51 Convexity tvertex->
tEdge->

tvertex->
tEdge->

tVertex
tEdge->

52 PrintFaces tvertex->
tFace->

tFace
tvertex->

53 MakeCcw tEdge-> tFace-> tEdge
tFace->

54 CleanEdges tEdge-> tEdge
55 Consistency tEdge->

tFace->
tEdge tEdge

tFace->
56 Print tVertex->

tEdge->
tFace->

tVertex->
tEdge->
tFace->

57 Tetrahedron tVertex->
tEdge->
tFace->

tvertex
tedge
tFace

58
59

AddOne
MakeStructs

tVertex->
tEdge->
tFace->

tVertex
tEdge->
tFace->

60 Checks tVertex->
tEdge->
tFace->

tVertex
tEdge->
tFace->

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.6 Summary

In this chapter, we presented a new approach to object identification. We use the

RSG for object state selection, the modified RSG for identifying object operations, and

the SRG for identifying the objects. The SRG is a layered graph; nodes in the SRG are

grouped into objects by merging the nodes in adjacent layers. The StDG approach stays

within the system; as opposed to applying ad hoc methods [Siff 97]. The help of an

engineer is necessary to control object granularity. Further, it is generally agreed that the

reengineering process cannot be fully automated as object identification reflects a design

decision that is inherently subjective.

Objects identified by the StDG approach are finer-grained than the approaches

presented in Chapter 7. The work in [Canf 96][Liu 90][Newc 95] [Siff 97][Yeh 95]

represent the system as a graph, with functions, global variables, or function attributes

as nodes. The StDG approach follows a similar approach, but it extends the graph nodes

by including key local variables and program slices. Moreover, other approaches are

only applicable to certain kinds of systems, unlike the StDG approach. The type of

objects identified depends on the information present in the code. Hence the objects that

are identified may require fine-tuning, like other approaches. Programmer knowledge of

the problem can be easily incorporated into the approach.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

ReArchitect

9.1 Overview

Adequate system modifications and extensions depend on our ability to handle the

system properties embedded in the source code. Other artifacts, such as design

documents and users manuals, may be sufficient for a general understanding of the high-

level system concepts; however, they provide insufficient details for actually changing

the code. Instead, engineers rely on various representations and abstractions of the real

system to understand the program, apply modifications, and analyze the effects of the

changes. This research addresses these issues by defining a process based on a graph

representation of the system. The software system ReArchitect was developed to

automate the process. We present an overview of ReArchitect. Important features of

ReArchitect include:

i. Program representation. ReArchitect uses the statement dependence graph

(StDG) representation.

ii. Design extraction. ReArchitect extracts program control flow, data flow, and

flow information. It then represents this information in the StDG. Other details

about the program such as program variables and procedure calls are also

extracted.

iii. Design restructuring. Cohesive components of the program must be considered

in union in any maintenance application. ReArchitect restructures the StDG to

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C Code

Unravel

U F

Engineer

ReArchitect
Architect

StDG/VRG MasnkunerSheer

Modified
program

Program
Shces

Figure 9.1. ReArchitect components and interactions

identify and merge these cohesive components. The restructured graph of the

ReArchitect is similar to a type 2 RSGS.

iv. Design queries. The user can obtain the design information by interacting with

the tool.

v. Applications. ReArchitect can be applied to several maintenance domains such

as slicing, maintenance, and reengineering.

The main components of ReArchitect are shown in figure 9.1. Input to the

ReArchitect is a C program in language independent format (UF). LIF is an

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intermediate representation generated by the Unravel tool (see Chapter 6). Unravel

represents a C program as a flow graph in LJF format An LJF representation of the wc

program (figure 3.1) is presented in Appendix A with explanations of the codes used.

ReAichitect converts the LIF representation of programs to StDG. A site in the StDG

has a set of use ports and a set of def ports. A port has a set of use ports and a set of def

ports connected to i t Sites in the StDG of the wc program, generated by the

ReArchitect, are presented in Appendix A. A site has the following format

Site U:S:11,|
Port(l l,9,0,)TaU U{UPPl:TaU 9;DPPl-nw 11;}
Port(l 1,11,0,)nw U{UPPl:nw 23;DPPl-nw 11;}
Port(ll,ll,0,)nw D{UPPl:nw ll;UPP2:TaU ll;DPPl-nw 24;}

The site number of the site shown above is 11. The type of the site is given after the

number. The type indicates whether the site is a block begin, a block end, a final use, or

a loop statement Sites represented by the site (in RSG) are listed following the ‘S’. Ports

in the site are indicated using the word ‘Port’, followed by the port information and its

connections (use and def ports). Port information includes the site number of the port

the statement number, and level of indirection of a pointer variable (these are presented

within the parenthesis). A use port is indicated with a ‘U’ and a def port with a ‘D’. Use

(UPP) and def (DPP) ports connected to the port are presented within the braces. UPP

and DPP are give sequential numbers, and the variables these ports represent along with

the site number of these ports are also indicated. We present design and implementation

details of the ReArchitect in sections 9.2 and 9.3, respectively.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92 Design

ReArchitect consists of three main components: architect, slicer, and maintainer.

The architect takes the LJF and generates the StDG. This generation involves extraction

of dependence information in the form of control flow, data flow, and flow

dependences. Extracted dependence information is incorporated in the StDG as edges.

Rom the StDG, RSG is computed by restructuring it using structure compaction. The

engineer can interact with the architect to obtain call graphs, lists of local and global

variables, the lists of sites in the procedures, and summary sites of the procedures.

The slicer uses the RSG of the program to compute program slices. The slicer has a

GUI interface for user interaction. The slicer can be used to obtain forward, backward,

or modular slices. Slice criteria is specified as a group of variables and their site

numbers. A forward or a backward slice includes the union of slices of each variable. A

list of statements in the slice is given as output. For a modular slice, a set of ports as

source and a set of ports as sinks form the slice criteria.

The maintainer uses the RSG of the program for maintenance activities such as

code additions, changes, deletions, and code movement. The maintainer has a GUI

interface for user interaction. For deleting a statement, its number is given as input to

the maintainer. A list of statements that need to be deleted is the output. Input for code

movement is a statement number. The maintainer lists the choices for moving the

statement A query for code additions is in the form of a list of variables (existing

variables defined in the new statements) and the statement number where the new

statements will be added. The result will indicate whether the new statements can be

added at that location.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We used the Unified Modeling Language (UML) [Lee 97] for the representation

of the design. An object-oriented analysis resulted in the identification of the objects

and classes as shown in figure 9.2 and figure 9.3. Figure 9.2 includes generalization,

FlowGraph

* * * *

Nodes Varlnfo LKFIeid proclnfo LocalVarlnf StDG

LifFidd

(a)

VarDefStac

I
Port Varlnfo

Si
jk___
te Pc»rt

<>

*

<>

*

Port Varlnfo

Varlnfo

Localvarlnfo

ReArchitect Has MenuBar

Has
MakeStDG

Uses
Maintain

Uses
SUceMenu

Uses
1

Slice

StDG
Usesi DFG

Uses
Uses,

Uses Block

(c)

FlowGraph

Uses
*

Proclnfo

Uses
VarDefStack

Figure 9.2. (a) ReArchitect class aggregation diagram
(b) Class generalization diagram (c) Class association diagram

aggregation, and association diagrams of the classes in ReArchitect. Figure 9.3 shows

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object aggregations and association diagrams. These diagrams give an overview of

ReArchitect system objects and their interaction.

▼ar def stac
def Ports

FlowGraph

lif field

use ports def Portsprocedures

rearchitect

stdg

(al

Invokes

Invokes
J

Create procedures

J Create stdg

Uses

Changes/displ
nujntain m sH ca

Uses

Identify data How
Create/display

Uses

dfg Uses

Identify
block

FlowGraph

Uses procedures

Active var def stac

(b)
Figure 9.3. (a) ReArchitect object aggregation diagram (b) association diagram

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9.4. ReArchitect interface

93 Implementation

ReArchitect was developed on a Pentium machine running under the Windows

NT operating system. The object-oriented programming language Java was used for

coding. Figure 9.4 shows the ReArchitect graphical interface. The figure also shows

the procedures called by the ‘alias_expand’ procedure (procedure selection is shown

with a mark in the ‘Process’ sub-menu). All the procedures in the program are listed in

the ‘Process” sub-menu. Procedure summary sites are displayed as site specifications. In

figure 9.5, the summary site of the procedure w ordCount of wc program is given. It

has three sets of ports, indicating the three internal edges in the summary site. In figure

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I.Edge
2. Port(2310>0Ifalse)inword FD
3. Port(24l0,0,fa!se)nwU
4. Edge
5. PortC23,0l0lfelse)nc D
6. Port(24,0.0.fal8e)nc U
7. Edge
8. Port(23,0>0,felse)mvD
9. Port(24.0tO,false)nwU

Figure 9.5. Summary site of procedure w ordC ount

Sink:
PortC23,0,0,false)inword FD
Port^3l0,0lfiilse)nw D

Slice:
910111224

Figure 9.6. A forward slice on nw and inw ord at enter site

9.6, a forward slice on nw and in w o rd at enter site (site 23) is shown. Site number 24

in the figure is the exit site of the procedure.

9.4 Discussion

In this section, we analyze the ReArchitect with respect to questions of scale, use

in interactive environments, and lim itations of static analysis. Scalability is an important

property for any tool architecture. To be scalable, the internal data structure of the tool

must grow (approximately) linearly with the size of the program being manipulated. A

simple, small data structure enhances the architecture of any software application [Morg

97]. ReArchitect satisfies these conditions.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The data structure used in the StDG is based on the PDG models. Scalability

aspects of these models have been shown in the literature, motivated by their use in

compiler technologies. A comparison of StDG to PDG models is presented in section

5.2.4. StDG is a unified and discard type representation, ft discards the LJF after

building the StDG, thus eliminating the need for mapping functions as required in

multiple and non-discard type representations.

Unlike the tools that use representations such as AST and some PDG models,

StDG analyzes the independently compilable units of a system separately, thus

dramatically reducing the memory requirements. Moreover, StDG uses a modular

representation (summary site) for procedures. Hence, a procedure heeds to be analyzed

only once and can be stored in persistent data. A call to the procedure is replaced by its

summary site. Hence, technically only one procedure StDG needs to be in memory for

slicing and maintenance applications.

An interactive tool needs to conserve memory resources and yet quickly determine

needed information. StDG is more than an all-inclusive representation. All-inclusive

representations include all the dependence information in a representation, as opposed

to the representations (e.g. AST) that derive the information when needed. StDG also

includes the information on cohesive statements thus eliminating the need for

individually analyzing these statements. Furthermore, the summary site representation

eliminates the need for analyzing the procedures at every call statement.

Static analysis can only conservatively approximate data and control flow

dependences between different program components. Though this approximation is not

a major impediment to slicing and restructuring of programs, the quality of results

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obtained can be improved with better analysis. Moreover, these limitations severely

affect reengineering tools based on static analysis. StDG provides several features to

help address this deficiency and to improve the quality of the results obtained. StDG is

editable. Incorrect dependences in the StDG can be corrected manually. StDG can be

tnarip. a component of the deliverable products which are handed off from the

development team to the maintenance team.

Several approaches either assume the effects on data flow of calls to library or

unknown functions, or they require dummy functions. Our approach requires the

summary sites of these functions. Algorithms based on PDG must be modified to handle

the individual language constructs, such as short circuiting in C. ReArchitect achieves

language independence through the use of LJF, an intermediate representation. All

language dependencies are handled during the program to LDF translation.

Some of the important features of the ReArchitect that distinguishes it from other

such tools include:

• We know of no tool that allows constraints based changes to the program using

a representation.

• Maintenance activities require changes to the representation to complete the

process and for further processing. The representations generally must be re­

derived from the program when the program is changed. The RSG based

maintenance model is a semantically constrained maintenance process model

that allows simultaneous updates to both the representation model and the

program.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• General code move queries involve a boolean answer with origin and

destinations of the move specified. In addition, ReArchitect can provide a range

of choices where the code can be moved without changing the program

meaning.

• In addition to the list of maintenance activities presented in section S.3, other

activities such as breaking a compound statement into two or merging two

compound statements into one can be performed. Selected block (compound

statement) members can be moved out of the block by duplicating the structure

part (one site) of the block and by making the selected statements control

dependent on the new site.

• Intelligent use of the statement numbering scheme facilitates the execution of

all maintenance activities and restructuring transformations by comparing the

site and port numbers of the statement under consideration, thus requiring no

further processing.

• The statement numbering eliminates the need for any annotations needed for

mapping the sites to the program, unlike other representations.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Conclusions

10.1 Summary

The process of maintenance and enhancement of legacy software systems is a

laborious and unavoidable task. This research was undertaken to seek systematic

solutions to the maintenance problem and to provide automated support for the

maintenance process. This research encompasses four major areas: program analysis and

representation, program slicing, program maintenance, and reengineering.

We described a new representation known as Statement Dependence Graph

(StDG). The StDG is a fine-grained PDG based discard type multiple representation

with modular representation for functions and slices. The analysis approach used is

exhaustive. Alias information is incorporated in the graph. We also provide algorithm

for building the graph from C programs.

Cohesive components in the graph are merged using compactions. We define

three types of compactions for merging the graph. These are data, structure, and edge

compactions. Algorithms for identifying the candidate components for compaction

using the graph connections and for merging the graph so as to reduce the size of the

graph by eliminating duplicate parts are described.

The restructured graph RSG is useful in several maintenance domains such as

slicing, maintenance and reengineering. Several different versions of slices are

described in the literature. We describe three ways of restructuring the StDG to obtain

different kinds of slices. The benefits of using different types of RSGs are also

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presented. We also presented the application of RSG for maintenance activities using a

constraints based approach. Using the RSG, we separate the program into change

dependent and change independent parts. The change independent part is isolated, thus

restricting the maintainer’s attention to certain parts of the program.

Research in reengineering is mainly focused on clustering techniques that group

procedures in a legacy system into candidate objects. We described a comprehensive

and systematic process for reengineering legacy systems. Reengineering involves

reverse engineering of the design, making changes to the design, and forward

engineering.

An intermediate representation known as the language independent format (LIF)

is used by the Unravel CASE tool for slicing. We use Unravel for converting C

programs to LIF. We presented algorithms for converting LIF to StDG. The conversion

process involves derivation of data, control, and flow dependences from the LIF,

extraction of call graph, and other variable usage information. We also showed how the

reverse engineered design is presented to the user, hi place of a procedure call, its

modular representation (summary site) is used in the representation. We give an

algorithm for computing the summary site.

Code in procedural programs exists as interleaved code. We show how the

interleaved can be localized and used in identifying object operations and state

variables. Candidate operations, state variables, and data structures present in the system

along with a call graph and the RSG are used to build a state reference graph (SRG) for

object identification. Objects are identified and extracted. The procedural code can then

be translated into object-oriented code. The help of the software engineer is elicited

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when necessary during object identification. We described various object identification

techniques available in the literature and discussed the pros and cons of these

techniques. These reengineering techniques were compared using a case study, and the

results were presented.

The reengineering process we presented is incorporated into a tool, ReArchitect

ReArchitect has six key components: static analysis and design extraction, program and

design representation, design change, slicing, maintenance, and engineer interactions.

The tool extracts program design from the LIF representation and represented it as

StDG. StDG is restructured using structure compaction. The restructured graph (RSG) is

used in slicing and maintenance activities. The tool performs favorably to other slicers

as the RSG used by the tool requires no dependence analysis during slicing.

Maintenance activities are unique to the ReArchitect We analyzed the ReArchitect with

respect to questions of scale, use in interactive environments, and how it overcomes the

limitations of static analysis.

10.2 Contributions

This research encompasses four major areas: program analysis and representation,

program slicing, program maintenance, and reengineering. It makes significant

contributions to each of the four areas. This research:

• introduces a new program representation StDG that addresses several issues

neglected to date. Salient features of this representation include:

S Understandability - static analysis can only conservatively

approximate dependences; the engineer can correct the dependences.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ Editability - program changes can be incorporated in the

representation, thus eliminating the need for re-derivation of the

representation whenever the program is changed.

v' Hybrid analysis - dependences among cohesive statements are

discarded and are computed on demand when and if needed. This

feature eliminates the need for caching techniques used by other

algorithms to manage memory resources.

/ Alias information - such information can be incorporated into the

StDG. Other tools use a separate representation for presenting alias

information.

S Modular representation - this representation allows merging of

different components.

• defines algorithms for converting C to StDG and LIF to StDG. The use of LIF as

an intermediate representation gives the StDG applications language

independence, as a program written in any language can be transformed to the

LIF format.

• describes methods for identifying and merging cohesive components of the

graph, simultaneously reducing the graph size. We know of no other analysis

process that employs this innovative idea.

• presents three types of restructurings for obtaining different lands of slices.

Several kinds of slices are defined in the literature, each of these are computed in

a different way. By restructuring the graph differently for different slices we can

improve the slicing process.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• obtains modular slices, where slice criteria can be given as a function signature.

Modular slicing is beneficial in building reuse libraries.

• defines a constraints based maintenance model for efficient program maintenance

and restructuring transformations. The maintenance process is often done in an ad

hoc manner. This research provides a systematic approach to making

maintenance and structural changes to programs. Moreover, the process is

scalable and can be performed at interactive speeds.

• defines a comprehensive method for identifying and extracting objects. The

definition of the processes and the associated algorithms advance the state of

reengineering research. Unlike approaches that group procedures into objects,

this research presents a systematic process that identifies or introduces object-

oriented principles in procedural programs. Systems are analyzed at the statement

level.

• facilitates the derivation of the up to date design documents.

• includes an automated tool, called ReArchitect, that demonstrates the feasibility

of the StDG for slicing and maintenance applications.

103 Future Research

Several extensions can be incorporated into the work. Some of the important areas

are:

• The O F to StDG translation process spends a significant time inferring the

nodes that start a loop in the flow graph. It would be more efficient to change

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Unravel parser YACC grammar to mark the loop nodes for future

identification. Unravel code is freely distributed by the system developers.

• Sometimes it is necessary to build the StDG of a select group of statements, for

instance, to find the internal dependencies among statements that are merged

during compaction. A process for building an StDG selectively is desirable.

Moreover, if such a process were available we could be less conservative during

compaction.

• During object identification, the StDG is re-restructured with the state variable

information. It would be more efficient to selectively restructure the statements

of the sites that are affected by the new information instead of restructuring the

entire StDG.

• ReArchitect can be improved. It needs to be extended to incorporate facilities to

build the state reference graph and to incorporate the object identification

process. We have presented guidelines for object extraction by incorporating

these guidelines. The ReArchitect can be extended to include automatic

translation of code to object-oriented code.

• Finally, an all-inclusive case tool with slicing, maintenance, and reengineering

capabilities, along with data management and storage facilities would be a

valuable maintenance aid.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[Ache 95]

[Aho86]

[Atki 96]

[Benn 92]

[Bigg 94]

[Booc 94]

[Bran 96]

[Canf 93]

[Canf 96]

[Chen 90]

[Chik90]

Achee, B.L, Carver, D.L., “Identification and Extraction of Objects
from legacy Code,” hi Proceedings of the Conference on Aerospace
Applications, Colorado, USA (February 1995), pp. 181-190.

Aho, A.V., Sethi, R, Ullman, J.D., Compilers, Principles, Techniques,
and Tools, Addison-Wesley, Reading, MA (1986).

Atkinson, D.C., Griswold, W., “The Design of Whole-Program
Analysis Tools,” In Proceedings of the 18th International Conference
on Software Engineering, (1996), pp. 16-27.

Bennett, K., Bull, T., Yang, H., “A Transformation System for
Maintenance - Turning Theory into Practice,” In Proceedings of the
Conference on Software Maintenance, Orlando, FL (November 1992),
pp. 146-155.

Biggerstaff, TJ., Mitbander, B.G., Webster, D.E., “Program
Understanding and the Concept Assignment Problem,”
Communications of the ACM, Vol. 37, No.5 (May 1994), pp. 72-83.

Booch, G., Object Oriented Analysis and Design with Applications,
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA,
1994.

Brand, M., Klint, P., Verhoef, C., “Re-engineering needs Generic
Programming Language Technology,” SIGPLAN Notices, Vol. 32, No.
2 (February 1997), pp. 54-61.

Canfora, G., Cimitile, A., Munro, M., “Extracting Abstract Data Types
from C Programs: A Case Study,” In Proceedings of the Conference on
Software Maintenance, Montreal, Canada (September 1993), pp. 200-
209.

Canfora, G., Cimitile, A., Munro, M., “An Improved Algorithm for
Identifying Objects in Code,” Software-Practice and Experience, Vol.
26(1) (January 1996), pp. 25-48.

Chen, Y., Nishimoto, Y., Ramamoorthy, C.V., “The C information
Abstraction,” IEEE, pp. 325-334.

Chikofsky, EJ., Cross n, JJL, “Reverse Engineering and Design
Recovery: A Taxonomy,” IKKK Software, Vol. 13, No. 1 (January
1990), pp. 13-17.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Choi 90]

[Chu 92]

[Dues 95]

[Dunn 93]

[Ferr 87]

[Gall 95]

[Gall 91]

[Glen 92]

[Gris 91]

[Gris 93]

Choi, S.C., Scacchi, W., “Extracting and Restructuring the Design of
Large Systems,** ikkK Software, Vol. 13, No. 1 (January 1990), pp. 66-
71.

Chu., W.C., Patel, S., “Software Restructuring by Enforcing
Localization and Information Hiding,” In Proceedings of the
Conference on Software Maintenance, Orlando, FL (November 1992),
pp. 165-171.

Duesterwald., E., Gupta, R., Soffa, M L , ‘Demand-driven
Computation of Interprocedural Data Low,” Symposium on Principles
of Programming Languages, San Francisco, California (January 1995).

Dunn, MJP., Knight, J.C., “Automating the Detection of Reusable Parts
in Existing Software,” In Proceedings of the International Conference
on Software Engineering, Baltimore, Maryland, (1993), pp. 381-390.

Ferrante, J., Ottenstein, JJC., Warren, JD ., “The Program Dependence
Graph and its Use in Optimization,” ACM Transactions on
Programming Languages and Systems, 9(3), (July 1987), pp. 319—349.

Gall, H., Klosch, R., “Finding Objects in Procedural Programs: An
Alternate Approach,” In Proceedings of the Second Working
Conference on Reverse Engineering, Toronto, Canada (July 1995), pp.
208-216.

Gallagher, K.B., Lyle, J.R., “Using Program Slicing in Software
Maintenance,” iFkK Trans. On Software Engineering, Vol 21, No 4
(Augustl991), pp. 751-761.

Glenn, O., “Chembench: Redesign of a Large Commercial Application
Using Object Oriented Techniques,” OOPSLA, Vancouver, Canada
(October 1992), pp. 13-16.

Griswold, W.G., “Program Restructuring to Aid Software
Maintenance,” PhD. dissertation, University of Washington, Dept of
Computer Science & Engineering (1991) Tech. Report No. 91-08-04.

Griswold, W.G., ‘Direct Update of Data Flow Representations for a
Meaning-Preserving Program Restructuring Tool,” hi ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Software
Engineering Notes (December 1993), 18(5), pp. 42—55.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Gris 95]

[Harr 95]

[Hair 93]

[Horw 90]

[Horw 88]

[Huch 85]

[Jack 94]

[Jack 97]

[Jaco 91]

[Jarz 95]

[Jian 91]

[John 85]

Griswold, W.G., Notion, D., “Architectural Tradeoffs for a Meaning-
Preserving Program Restructuring Tool,” IEEE Trans. On Software
Engineering, Vol 21, No 4 (April 1995), pp. 275-287.

Harrold, M J., Soffa, M L , “Efficient Computation of Interprocedural
Definition-Use Chains,” ACM Transactions On Programming
Languages and Systems, Vol. 16, No 2 (March 1994), Pages 175-204.

Harrold, M J., malloy, B., “A Unified Interprocedural Program
Representation for a Maintenance Environment,” IEEE Transactions
On Software Engineering, Vol 19, No 6 (June 1993), pp. 584-593.

Horwitz, S., Reps, T., Binkley, D., “Interprocedural Slicing Using
Dependence Graphs,” ACM Transactions on Programming Languages
and Systems, Vol. 12, No. 1 (January 1990), pp. 26-60.

Horwitz, S., Prins, J., Reps, T., “Integrating non-interfering Versions of
Programs,” Fifth ACM Symposium on Principles of Programming
Languages, San Diego, California, (January 1988), pp. 133-145.

Huchens, DLL, Basili, V.R., “System Structure Analysis: Clustering
with Data Bindings,” IEEE Trans. On Software Engineering, Vol 11,
No 8 (August 1985), pp. 749-757.

Jackson, D., Rollins, E J., “A New Model of Program Dependences for
Reverse Engineering,” Software Engineering Notes, SIGSOFT, ACM
Press, Vol. 19, No. 5 (December 1994), pp. 2-10.

Jacky, J., The Way o fZ Practical Programming with Formal Methods,
Cambridge University Press.

Jacobson, L, Lindstrom, F., “Re-engineering of Old Systems to an
Object-Oriented Architecture,” OOPSLA, (1991), pp. 340-350.

Jarzabek, S., Keam, TP., “Design of a Generic Reverse Engineering
Assistant Tool,” Li Proceedings of the Second Working Conference on
Reverse Engineering, Toronto, Canada (July 1995), pp. 61-70.

Jiang, J., Zhou, X., Robinson, D J., “Program Slicing for C - The
Problems in Implementation,” IKKK Conference On Software
Maintenance, Sorrento, Italy, (October 1991), pp. 182-189.

Johnson, W L , Soloway, E., “PROUST: Knowledge-Based Program
Understanding,” IEEE Trans. On Software Engineering, Vol 11, No 3
(September 1985).

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Kem 88]

[Kinl 94]

[Land 92]

[Lana 93]

[Lee 97]

[Lehm 85]

[Lind 97]

[Liva]

[Liu 90]

[Lyle 84]

[Lyle 86]

Kemighan, R-, Ritchie, D., The C Programming Language, Englewood
Cliffs, New Jersey: Prentice hall (1988).

Kinloch, D.A., Munro, M., “Understanding C Program Using
Combined C Graph Representation,” In Proceedings of the Conference
on Software Maintenance, Victoria, Canada, (September 1994), pp.
172-180.

Landi, W., “Undecidability of Static Analysis,” ACM Letters on
Programming Languages and Systems, Vol. 1, No. 4 (December 1992),
pp. 323-337.

Lanubile, F., Visaggio, G., “Function Recovery based on Program
Slicing,” In Proceedings of the Conference on Software Maintenance,
Montreal, Canada (September 1993), pp. 396-404.

Lee, C.R., UML and C++ a Practical Guide to Object-Oriented
Development, Prentice Hall, New Jersey, and (1997).

Lehman, M.M., Belady, L., Program Evolution Process o f Software
Change, Academic Press, London, (1985).

landing, C., Snelting, G., “Assesing Modular Structure of Legacy Code
Based on Mathematical Concept Analysis,” In Proceedings of the 19th
International Conference On Software Engineering, (1997), pp. 349-
359.

Livandas, EX., “System Dependence Graphs Based on Parse Trees and
their Use in Software Maintenance”, Web site of Univ. of Florida, pp.
1-24.

Liu, S., Wilde, N., “Identifying objects in a Conventional Procedural
Language: An Example of Data Design Recovery,” In Proceedings of
the Conference on Software Maintenance, (November 1990), pp. 266-
271.

Lyle, J.R., “Evaluating Variations of Program Slicing”, PhD.
Dissertation, Univ. of Maryland, College Park, (December 1984).

Lyle, JJEL, Weiser, MD., “Automatic Program Bug Location by
Program Slicing”, In Proceedings of the 2nd International Conference
On Computers and Applications (Peking, China), June 1987, pp. 877-
882.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Lyle 95]

[Morg97]

[Newc 95]

[Newc 95]

[Ning 94]

[Opdy 92]

[Osbo 90]

[Ott 92]

[Ott 89]

[Otte 84]

[Pent 98]

Lyle, J.R., Wallace, D.R., Graham, J.R., Gallagher, KJ3., Poole, J.P.,
Binkley, D.W., “Unravel: A CASE Tool to Assist Evaluation of High
Integrity Software”, U.S. Deprt. Of Commerce, Technology
Administration, NUT, (1995).

Morgenthaler, JD., “Static Analysis for a Software Transformation
Tool”, Ph J>. Dissertation, University of California, San Diego (1997).

Newcomb, P., Kotik, G., “Reengineering Procedural into Object-
Oriented Systems,” In Proceedings of the Second Working Conference
on Reverse Engineering, Toronto, Canada (July 1995), pp. 237-249.

Newcomb, P., “Legacy System Cataloging Facility,” In Proceedings of
the Second Working Conference on Reverse Engineering, Toronto,
Canada (July 1995), pp. 52-60.

Ning, J. Q., Engberts, A., Kozaczynski, W., “Automated Support for
Legacy Code Understanding,” Communications of the ACM, Vol. 37,
No. 5 (May 1994), pp. 50-57.

William F.O., “Refactoring Object-Oriented Frameworks”. PhJD.
Dissertation, University of Illinois at Urbana-Champaign, Department
of Computer Science, (1992).

Osborne, W J1, Chikofsky, EJ., “Fitting Pieces to the Maintenance
Puzzle,” IEEE Software, Vol. 13, No. 1 (January 1990), pp. 11-12.

Linda, M.O., Jeffrey, J.T., “The Relationship between Slices and
Module Cohesion,” Communications of the ACM, Vol. 37, No. 5 (May
1989), pp. 198-204.

Ott, MJL, Thuss, K., Wills, LAI., “The Relationship between Slices
and Module Cohesion.” Proceedings of the 11th International
Conference on Software Engineering, Singapore, (May 1989), pp. 198-
204.

Ottenstein, K.J., Ottenstein, LM., “The Program Dependence Graph in
a Software Development Environment” hi Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, (April 1984) pp. 177-184.

Penteado, R., Masiero, P.C., Padro, A J7., Braga, R.T., “Reengineering
of Legacy Systems based on Transformation Using the Object-Oriented

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Plat 91]

[Pres 92]

[Quil 94]

[Reps 95]

[Rich 90]

[Ruga 90]

[Ruga 95]

[Rumb 91]

[Sahr97]

[Scha 96]

[Seba 93]

Paradigm,” In Proceedings of the Fifth Working Conference on Reverse
Engineering, Honolulu, USA (October 1998), pp. 144-153.

Platff, M., Wagner, M., “An Integrated Program Representation and
Toolkit for the Maintenance of C programs,” International Conference
on Software Maintenance, Sorrento, Italy, (October 1991), pp. 129-
136.

Pressman, R.S., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, Inc., Third Edition, (1992).

Quilici, A., “A Memory-Based Approach,” Communications of the
ACM, Vol. 37, No. 5 (May 1994), pp. 84-93.

Reps, T., Horwitz, S., Sagiv, M., “Precise Interprocedural Dataflow
Analysis via Graph Reachability”, hi Conference Record of the 22nd
ACM Symposium on Principles of Programming Languages, (1995) pp.
49-61.

Rich, C., Wills, LM ., “Recognizing a Program’s Design: A Graph-
Parsing Approach,” IEEE Software, Vol. 13, No. 1 (January 1990), pp.
82-89.

Rugaber, S., Ombum, S.B., LeBlanc, Jr., R J., “Recognizing Design
Decisions in Programs,” IKKK Software, Vol. 13, No. 1 (January 1990),
pp. 46-54.

Rugaber, S., S tire wait, K., and Wills, L.M., “The Interleaving Problem
in Program Understanding.” International Conference on Software
Maintenance, Nice, France (October 1995), pp. 265-274.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy., F., Lorensen, W.,
Object-Oriented Modeling and Design, Prentice-Hall, (1991).

Sahraoui, HA., “Applying Concept Formation Methods to Object
Identification in Procedural Code,” Technical Report CRIM-97/05-77,
CRIM, 1997.

Schach, S.R., Classical and Object-Oriented Software Engineering, 3rd
Edition, Irwin, 1996.

Sebesta, R.W., Concepts o f Programming Languages,
Benjamin/Cummings, Second Edition, 1993.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Siff 96]

[Siff 97]

[Snee 95]

[Snee 98]

[Stee 96]

[Snel 96]

[Thom 84]

[Vala 98]

[Vala 99]

[Vane 89]

Siff, M., Reps, T., “Program Generalization for Software Reuse: from
C to C++,” Proceedings of the Fourth ACM SIGSOFT Symposium on
the Foundations of Software Engineering, San Francisco, California,
(October 1996), pp. 135-146.

Siff, M., Reps, T., “Identifying Modules Via Concept Analysis,”
International Conference on Software Maintenance, Bary, Italy,
(October 1997)

Sneed, M.S., Nyary, E., “Extracting Object-Oriented Specification from
Procedurally Oriented Programs” In Proceedings of the Second
Working Conference on Reverse Engineering, Toronto, Canada (July
1995), pp. 217-226.

Sneed, M IL, “Architecture and Function of a Commercial Software
Reengineering Workbench” In Proceedings of the Second Euromicro
Conference on Software Maintenance and Reengineering, Florence,
Italy (1998), pp. 2-10.

Steensgaard, B., “Points-to Analysis in Almost Linear Time,” In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (1996), pp. 32-41.

Snelting, G., “Reengineering of Configurations based on Mathematical
Concept Analysis,” ACM Transactions on Software Engineering and
Methodology, Vol 5, No 2 (April 1996), pp. 146-189.

Thomas, A.S., “An Essay on Software Reuse,” IEEE Trans. On
Software Engineering, Vol 10, No 5 (September 1984), pp. 494-497.

Valasareddi, R.R, Carver, DX., “A Graph-Based Object Identification
Process for Procedural Programs,” In Proceedings of the Fifth Working
Conference on Reverse Engineering, Honolulu, USA (October 1998),
pp. 50-58.

Valasareddi, R.R, Carver, DX., “A Representation Model for
Procedural Program Maintenance,” In Proceedings of the ACM
Symposium on Applied Computing, San Antonio, USA (February
1999), pp. 580-585.

Vanek, L.I., “Static Analysis of Program Source Code Using EDS A,”
In Proceedings of the Conference on Software Maintenance, (1989), pp.
192-199.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Venk95]

[Ward 93]

[Wate 94]

[Weis 84]

[Weis 94]

[Wigg 97]

[Wood 95]

[Wood 98]

[Yeh 95]

Venkatesh, G A , “Experimental Results from Dynamic Slicing of C
Programs,” ACM Transaction on programming languages and systems,
Vol. 17, No. 2 (March 1995), pp. 197-216.

Ward, MJ*., Bennett, KJL, “A practical Program Transformation
System for reverse engineering,” In Proceedings of the Conference on
Software Maintenance, Montreal, Canada (September 1993), pp. 212-
221.

Waters, R.C., Chikofsky, E., “Reverse Engineering: Progress Along
Many Dimensions,” Communications of the ACM, Vol. 37, No. 5 (May
1994), pp. 22-25.

Weiser, M., “Program Slicing,” ikhK Transactions on Software
Engineering,” Vol. SE-10 No. 4 (July 1984), pp. 352-357.

Weise, D., Crew, RP., Ernst, M., Steensgaard, B., “Value Dependence
Graphs: Representation without Taxation.” Technical Report MSR-TR-
94-03, Microsoft research, Redmond, WA, (April 94).

Wiggerts, T.A., Baxter, L, Quilici, A., Verhoef, C., “Using Clustering
Algorithms in Legacy Systems Remodularization,” In Proceedings of
the Fourth Working Conference on Reverse Engineering, Amsterdam,
Netherlands (October 1997), pp. 33-43.

Woods, S., Yang, Q., “Program Understanding as Constraint
Satisfaction” hi Proceedings of the Second Working Conference on
Reverse Engineering, Toronto, Canada (July 1995), pp. 314-323.

Woods, S.G, Quilici, AJ5., Yang, Q., Constraint-Based Design
Recovery fo r Software Reengineering, Kluwer Academic Publishers,
Boston (1998).

Yeh, A.S., Harris, D.R., Reubenstein, H.B., “Recovering Abstract Data
Types and Object Instances horn a Conventional Procedural
Languages,” In Proceedings of the Second Working Conference on
Reverse Engineering, Toronto, Canada (July 1995), pp. 227-236.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix

Program Representations In ReArchitect
A.1 wc program formatted for StDG analysis

1 intnw, nc;
2 void wonlCount(mt inword) {
3 intc;
4 c = getchar 0;
5 while (c!= EOF){
6 nc = n c+ l;
7 i f (c = “ | |c = ‘\n’| | c = ‘\t’)
8 inword = 0;
9 else if (in word = 0) {
10 in word = 1;
11 nw = nw + 1;
12 }
13 c = getchar 0*.
14 }
15 }
16 mainO {
17 int inw;
18 inw = nc = nw = 0;
19 wordCount(inw);
20 printf (“\n”) ;
21 printf (“ %d %d\n”,nc,nw);
22 }

A JL2 LIF representation of the wc program with explanations

18(1,2,6,2,14) source for node 1 line 2 cols 6-14
l(l,l,wordCount) Function wordCount 1 entry at 1
8(2,2) local def to c (2) at stmt 2 on line 4
11(2,2) call to getchar at 2
13 end call to getchar at 2
18(2,4,4,4,18) source for node 2 line 4 cols 4-18
10(3,2) global def to nc (2) at stmt 3 on line 6
9(3,2) global ref to nc (2) at stmt 3 on line 6
18(3,6,8,6,19) source for node 3 line 6 cols 8-19
8(4,1) local def to inword (1) at stmt 4 on line 8
18(4,8,11,8,21) source for node 4 line 8 cols 11-21
8(5,1) local def to inword (1) at stmt 5 on line 10
18(5,10,10,10,20) source for node 5 line 10 cols 10-20

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10(6,1) global def to nw (1) at stmt 6 on line 11
9(6,1) global ref to nw (1) at stmt 6 on line 11
18(6,11,10,11,21) source for node 6 line 11 cols 10-21
16(5,6) connect from 5 to 6
18(7,932,932) source for node 7 line 9 cols 32-32
18(8,12,7,12,7) source for node 8 line 12 cols 7-7
16(7,5) connect from 7 to 5
16(6,8) connect from 6 to 8
17(7,5,6) nodes 5-6 require node 7
17(8,7) nodes 7-7 require node 8
7(9,1) local ref to inword (1) at stmt 9 on line 9
17(9,10) nodes 10-10 require node 9
17(10,8) nodes 8-8 require node 10
17(10,6) nodes 6-6 require node 10
16(8,10) connect from 8 to 10
16(9,7) connect from 9 to 7
16(9,10) connect from 9 to 10
18(9,9,13,930) source for node 9 line 9 cols 13-30
18(10,930,9,30) source for node 10 line 9 cols 30-30
7(113) local ref toe (2) at stmt 11 on line 7
7(113) local ref to c (2) at stmt 11 on line 7
7(113) local ref to c (2) at stmt 11 on line 7
17(11,13) nodes 13-13 require node 11
17(13,4) nodes 4-4 require node 13
16(4,13) connect from 4 to 13
16(11,4) connect from 11 to 4
16(12,9) connect from 12 to 9
16(10,13) connect from 10 to 13
16(11,12) connect from 11 to 12
18(12,9,8,9,11) source for node 12 line 9 cols 8-11
17(13,12) nodes 12-12 require node 13
17(13,9,10) nodes 9-10 require node 13
17(12,9,10) nodes 9-10 require node 12
18(11,7,8,7,44) source for node 11 line 7 cols 8-44
18(13,7,44,7,44) source for node 13 line 7 cols 44-44
16(3,11) connect from 3 to 11
8(14,2) local def to c (2) at stmt 14 on line 13
11(143) call to getchar at 14
13 end call to getchar at 14
18(14,13,5,13,19) source for node 14 line 13 cols 5-19
16(13,14) connect from 13 to 14
18(15,5,23,5,23) source for node 15 line 5 cols 23-23
18(16,14,5,14,5) source for node 16 line 14 cols 5-5
16(153) connect from 15 to 3
16(14,16) connect from 14 to 16

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17(153) nodes 3-3 require node 15
17(15,11.14) nodes 11-14 require node 15
17(16,15) nodes 15-15 require node 16
7(173) local ref to c (2) at stmt 17 on line 5
18(17,5,4,531) source for node 17 line 5 cols 4-21
18(18331.531) source for node 18 line 5 cols 21-21
16(17,15) connect from 17 to 15
16(17,18) connect from 17 to 18
16(16,17) connect from 16 to 17
17(17,18) nodes 18-18 require node 17
17(18,16) nodes 16-16 require node 18
17(18,11,14) nodes 11-14 require node 18
16(2,17) connect from 2 to 17
4(2,c) local id
18(19338338) source for node 19 line 2 cols 28-28
18(20,15,1,15,1) source for node 20 line 15 cols 1-1
16(193) connect from 19 to 2
16(1830) connect from 18 to 20
17(193) nodes 2-2 require node 19
17(19,17,18) nodes 17-18 require node 19
17(20,19) nodes 19-19 require node 20
16(1,19) connect from 1 to 19
17(19,1) nodes 1-1 require node 19
3(14nword) Formal parm
2(20) end function wordCount
18(21,16,1,16,4) source for node 21 line 16 cols 1-4
1(21,3 .main) Function main 3 entry at 21
8(22,1) local def to inw (1) at stmt 22 on line 18
10(223) global def to nc (2) at stmt 22 on line 18
10(22,1) global def to nw (1) at stmt 22 on line 18
18(22,18,5,1832) source for node 22 line 18 cols 5-22
11(23,1) call to wordCount at 23
7(23,1) local ref to inw (1) at stmt 23 on line 19
13 end call to wordCount at 23
18(23,19,5,19,19) source for node 23 line 19 cols 5-19
16(2233) connect from 22 to 23
11(24,4) call to printf at 24
13 end call to printf at 24
18(2430,530,19) source for node 24 line 20 cols 5-19
16(2334) connect from 23 to 24
11(25,4) call to printf at 25
12 Actual seperator
9(253) global ref to nc (2) at stmt 25 on line 21
12 Actual seperator
9(25,1) global ref to nw (1) at stmt 25 on line 21

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13 end call to printf at 25
18(25,21,5,21,32) source for node 25 line 21 cols 5-32
16(24,25) connect from 24 to 25
4(14nw) local id
18(26,16,8,16,8) source for node 26 line 16 cols 8-8
18(27,22,1,22,1) source for node 27 line 22 cols 1-1
16(26,22) connect from 26 to 22
16(25,27) connect from 25 to 27
17(26,22,25) nodes 22-25 require node 26
17(27,26) nodes 26-26 require node 27
16(21,26) connect from 21 to 26
17(26,21) nodes 21-21 require node 26
2(27) end function main
5(2,nc) Global id
5(1,nw) Global id

A.3 StDG representation (Sites) of we program generated by the ReArchitect

Site 2:B S:2,|
Port(2,0,0,)TaU U{UPPl:PhI 15;DPPl-TaU 2;}
Port(2,2,0,)TaU D{UPPl:TaU 2;DPPl-TaU 4;DPP2-TaU 5;DPP3-TaU 15;}

Site 4:F,S:4,|
Port(4,2,0,)TaU U{UPPl:TaU 2;DPP1-Phl 4JDPP2-C 4;}
Port(4,4,0,)PhI D{UPPl:TaU 4;}
Port(4,4,0,)c D{UPPl;TaU 4;DPPl-c 5;DPP2-c 7;}

Site 5:B L S:5,|
Port(5,2,0,)TaU U{UPPl:TaU 2;UPP2:PhI 14;DPPl-TaU 5;}
Port(5,5,0,)c U{UPPl:c 4;UPP2:c 13;DPPl-TaU5;}
Port(5,5,0,)TaU D{UPPl:TaU 5;UPP2:c 5;DPPl-TaU 6;DPP2-TaU 7;DPP3-TaU

13J)PP4-TaU 14;}
Site 6:S:6,|
Port(6,5,0,)TaU U{UPPl:TaU 5;DPPl-nc 6;}
Port(6,6,0,)nc U{UPPl:nc 23;UPP2:nc 6;DPPl-nc 6;}
Port(6,6,0,)nc D{UPPl:nc 6;UPP2:TaU 6;DPPl-nc 24;DPP2-nc 6;}

Site 7:B S:7,|
Port(7,5,0,)TaU U{UPPl:TaU 5;DPPl-TaU 7;}
Port(7,7,0,)c U{UPPl:c4;UPP2:c 13;DPPl-TaU7;}
Port(7,7,0,)TaUD{UPPl:TaU 7;UPP2:c 7J)PPl-TaU 8f)PP2-TaU 9;}

Site 8:S:8,|
Port(8,7,0,)TaU U{UPPl:TaU 7J)PPl-inword 8;}
Port(8,8,0,)inword FD{UPPl:TaU8;}

Site 9 ^ S:9,|
Port(9,7,0,)TaU U{UPPl:TaU 7;UPP2:PhI 12f)PPl-TaU 9;}
Port(9,9,0,)inword F U{UPPl:inword 230DPPl-TaU 9;}

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Port(9,9,0,)TaU D{UPPl:TaU 9;UPP2:inword 9;DFPl-TaU 10;DPP2-TaU
ll;DPP3-TaU 12;}
Site 10:S:10,|
Port(10,9,0,)TaU U{UFPl:TaU 9;DPPl-inword 10;}
Port(10,10,0,)inword FD{UPPl:TaU 10;}

Site 11:S:11,|
Port(ll,9,0,)TaU U{UPPl:TaU 9;DPPl-nw 11;}
Port(ll,ll,0,)nw U{UPPl:nw 23;DPPl-nw 11;}
Port(l 1,11,0,)nw D{UPPl:nw ll;UPP2:TaU ll;DPPl-nw 24;}

Site 12:E S:12,|
Port(12,9,0,)TaU U{UPPl:TaU 9;DPP1-Phl 12;}
Port(12,12,0,)PhI D{UPPl:TaU 12;DPPl-TaU 9;}

Site 13:F,S:13,|
Port(13,5,0,)TaU U{UPPl:TaU 5;DPP1-Phl 13;DPP2-c 13;}
Port(13,13,0,)PhID{UPPl:TaU 13;}
Part(13,13,0,)c D{UPPl:TaU 13;DPPl-c 5;DPP2-c 7;}

Site 14:E S:14,|
Port(14,5,0,)TaU U{UPPl:TaU 5;DPP1-Phl 14;}
Port(14,14,0,)PhID{UPPl:TaU 14;DPPl-TaU 5;}

Site 15£ S:15,|
Port(15,2,0,)TaU U{UPPl:TaU 2J)PP1-Phl 15;}
Port(15,15,0,)PhI D{UPPl:TaU 15;DPPl-TaU 2;}

Site 23 :B S:-l,|
Port(23,0,0,)inword FD{DPPl-inword9;}
Port(23,0,0,)nc D{DPPl-nc 6;}
Port(23,0,0,)nw D{DPPl-nw 11;}

Site 24:E S:-l,|
Port(24,0,0,)nc U{UPPl:nc 6;}
Port(24,0,0,)nw U{UPPl:nw 11;}

Site 163 S:16,|
Port(16,0,0,)TaU U{UPPl:PhI 22;DPPl-TaU 16;}
Port(16,16,0,)TaUD{UPPl:TaU 16,DPPl-TaU 18;DPP2-TaU 19J)PP3-TaU

20J>PP4-TaU 21;DPP5-TaU 22;}
Site 18:S:18,|
Port(18,16,0,)TaUU{UPPl:TaU 16;DPPl-nw 18;}
Port(18,18,0,)nw D{UPPl:TaU 18;DPPl-nw 21;DPP2-nw 26;}

Site 19:F,S:19,|
Port(19,16,0,)TaUU{UPPl:TaU 16;DPP1-Phl 19;}
Port(19,19,0,)inw U{DPP1-Phl 19;}
Port(19,19,0,)PhI D{UPPl:TaU 19;UPP2:inw 19;}

Site 20:F,S:20,|
Port(20,16,0,)TaU U{UPPl:TaU 16£>PPl-PhI 20;}
Port(20,20,0,)PhI D{UPPl:TaU 20;}

Site 21:F,S:21,|
Port(21,16,0,)TaUU{UPPl:TaU 16;DPP1-Phl 21;}

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Port(21,21,0,)nc U{UPPlmc 25;DFP1-Phl 21;}
Port(21^1,0,)nwU{UPPlniw 18;DPPl-PhI21;}
Port(21,21,0,)PhI D{UPPl:TaU 21;UPP2:nc 21;UPP3:nw 21;}

Site 22£ S:22,|
Port(22,16,0,)TaU U{UPPl:TaU 16;DPP1-Phl 22;}
Port(22^2,0,)PhI D{UPPl:TaU 22;DPPl-TaU 16;}

Site 25 :B S:-2,|
Port(25,0,0,)nc D{DPPl-nc 21;DPP2-nc 26;}

Site 26£ S:-2,|
Port(26,0,0,)nw U{UPPl:nw 18;}
Port(26,0,0,)nc U{UPPl:nc 25;}

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita

Ramachenga R. Valasareddi received Bachelor of Technology degree in Civil

Engineering from Sri Venkateswara University, India. He received Master of

Technology in Computer Science from Hyderabad Central University, India. He

worked for Kollpuri Amina Foundries in Bangalore, India before attending the

University of Southwestern Louisiana, where he received Master of Science degree in

Computer Science. He worked for Fontenote Insurance Agency, Lafayette, Louisiana,

and River City Medical, Inc., Baton Rouge, Louisiana, as a software engineer.

Valasareddi pursued his doctoral research under the supervision of Prof. Doris

Carver. He received Doctor of Philosophy degree in May 1999 form the Louisiana

State University. Valasareddi is currently with Chiptrek, Inc., New York. IBs research

interests include software maintenance, restructuring, reengineering, object-oriented

programming, and program models. He is a member of iKKK and ACM.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOCTORAL EXAMINATION AND DISSERTATION REPORT

candidate; Ramachenga Reddy Valasareddi

Major Field: Computer Science

Title of Dissertation:A Transformational Reengineering System that Supports
Software Maintenance using a Graph Representation for
the Id e n t if ic a t io n of an Object-Oriented Software
Architecture

Approved:

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

Î sU7Les(

Date of Examination:

April 7. 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S r

IMAGE EVALUATION
TEST TARGET (Q A -3)

r / * i
<9

150mm

IIW IG E . In c
1653 East Main Street
Rochester. NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A Transformational Reengineering System That Supports Software Maintenance Using a Graph Representation for the Identification of an Object-Oriented Software Architecture.
	Recommended Citation

	tmp.1489519448.pdf.jSg2y

