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Abstract

For microlenses with sufficiently low mass, the angular radius of the source star can be much larger than the
angular Einstein ring radius of the lens. For such extreme finite source effect (EFSE) events, finite source effects
dominate throughout the duration of the event. Here, we demonstrate and explore a continuous degeneracy
between multiple parameters of such EFSE events. The first component in the degeneracy arises from the fact that
the directly observable peak change of the flux depends on both the ratio of the angular source radius to the angular
Einstein ring radius and the fraction of the baseline flux that is attributable to the lensed source star. The second
component arises because the directly observable duration of the event depends on both the impact parameter of
the event and the relative lens-source proper motion. These two pairwise degeneracies become coupled when the
detailed morphology of the light curve is considered, especially when including a limb-darkening profile of the
source star. We derive these degeneracies mathematically through analytic approximations and investigate them
further numerically with no approximations. We explore the likely physical situations in which these mathematical
degeneracies may be realized and potentially broken. As more and more low-mass lensing events (with ever
decreasing Einstein ring radii) are detected with improving precision and increasing cadence from microlensing
surveys, one can expect that more of these EFSE events will be discovered. In particular, the detection of EFSE
microlensing events could increase dramatically with the Roman Space Telescope Galactic Bulge Time Domain
Survey.

Unified Astronomy Thesaurus concepts: Gravitational microlensing (672); Finite-source photometric effect (2142);
Free floating planets (549); Primordial black holes (1292)

1. Introduction

We only have weak constraints on the occurrence rate of
isolated, planetary-mass objects in the Milky Way, particularly
for sub-Jovian-mass objects. As planetary systems form and
host stars evolve, planets may become gravitationally unbound
from their hosts through any number of dynamical processes or
through post-main-sequence evolution (see the Introduction of
Mróz et al. 2018). In such scenarios, it is generally expected
that a larger number of low-mass (i.e., terrestrial) planets or
planetismals will be ejected compared to giant planets (e.g.,
Barclay et al. 2017). Thus, a determination of the mass function
of these free-floating planets (FFPs) could provide important
constraints on models of planet formation. Alternatively,
planetary-mass primordial black holes could compose some
fraction of the mass budget of the Galactic halo (Montero-
Camacho et al. 2019; Niikura et al. 2019a, 2019b). The only
manner in which very low-mass and effectively dark objects
can be detected is through gravitational microlensing (Di
Stefano & Scalzo 1999).

Recently, Mróz et al. (2017) used the ground-based Optical
Gravitational Lensing Experiment (OGLE) microlensing sur-
vey (Udalski et al. 2015) to place an upper limit on the
occurrence rate of roughly Jupiter-mass FFPs. However,
these authors also cautiously report a signal in the
timescale distribution consistent with that of a population of

terrestrial-mass FFPs based on the detection of several events
with extremely short (but highly uncertain) timescales. Since
the analysis of Mróz et al. (2017), a total of seven additional,
robust FFP (or perhaps wide-orbit, see below) candidates have
been discovered by ground-based microlensing surveys (Mróz
et al. 2018; Mróz & Udalski et al. 2019; Mróz et al.
2020a, 2020b; Kim et al. 2021; Ryu et al. 2021) primarily
using data from the OGLE and Korea Microlensing Telescope
Network (KMTNet) collaborations (Henderson et al. 2014;
Kim et al. 2016). These events have denser photometric
coverage than the tentative FFP events reported by Mróz et al.
(2017) and have estimated masses between that of Earth and
Neptune, one of which may have a mass less than that of the
Earth (Mróz et al. 2020b). A key factor in the discovery of
these FFP candidates is the fact that they lens giant stars with
angular radii larger than the angular Einstein ring radius,
allowing for an estimate of the angular Einstein ring radius of
the lens. The masses of these candidate FFPs are only
estimates, as additional measurements are required to break
the mass–distance relationship of the Einstein ring radius and
thus measure the true mass of the lens (e.g., Bachelet &
Penny 2019; Ban 2020; Gould et al. 2021).
Additionally, McDonald et al. (2021) recently reported four

candidate FFP events with extremely short effective timescales
using data from Kepler K2 Campaign 9, the first blind space-
based microlensing survey. Furthermore, the potential for the
Nancy Grace Roman Space Telescope to detect and character-
ize FFP events through its Galactic Bulge Time Domain
Survey will be unprecedented and open new regions of
parameters space not currently accessible by ground-based
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microlensing surveys (Henderson & Shvartzvald 2016; Penny
et al. 2019; Johnson et al. 2020).

It can be difficult to distinguish between a bound planet and
a true FFP if the orbital separation between the bound planet
and its host star is larger than 10 au (Han et al. 2005). In this
case, the host typically does not contribute any significant
magnification to the event except for rare instances when the
source trajectory is parallel to the projected planet–host
separation axis and thus is magnified by both objects. While
wide-orbit exoplanets are common (Poleski et al. 2021), there
are methods of rectifying this situation such as detecting flux
from potential hosts or detailed modeling of the event, as
summarized in Han et al. (2005). The former method is
typically used to place limits on the presence of hosts in
candidate FFP events (e.g., Mróz et al. 2020b) while the latter
was recently used by Han et al. (2020) to identify deviations
from a purely single-lens model and showed that an apparent
FFP was actually bound to a star. We will not explore this
potential ambiguity in this paper, but refer the reader to Han
et al. (2005) and Henderson & Shvartzvald (2016) for a more
thorough discussion. However, we do note that this confusion
between bound planets and true FFPs is an example of a
degeneracy in the interpretation of candidate FFP microlensing
events.

1.1. Degeneracies in Microlensing Events

Microlensing events can be subject to degeneracies, i.e.,
when one event can be described by two or more models
equally well within given photometric measurements. There are
two generic types of degeneracies: “accidental” degeneracies
and “mathematical” degeneracies. In accidental degeneracies,
the similarities between the models are not due to any
fundamental underlying mathematical symmetry but rather just
due to coincidence. Generally, such accidental degeneracies
can be resolved with higher-precision photometric measure-
ments or increased photometric monitoring. On the other hand,
“mathematical” degeneracies exist because of some deeper
underlying symmetries in the lens models. These symmetries
typically appear in some extreme limits in one or more of the
parameters that describe the model. For example, many of these
degeneracies can be derived by expanding the lens equation3 in
some small parameter. By keeping only the lowest-order terms,
the lens equation becomes degenerate with respect to that
parameter or with the lens equation expanded in the same way
with respect to another small parameter (see, e.g.,
Dominik 1999 for examples). Mathematical degeneracies are
more nefarious than accidental ones because the underlying
models for the magnification can become nearly perfectly
degenerate in some extreme limits, and thus such degeneracies
cannot be resolved even with exquisite data.

The nature of a degeneracy can be discrete or continuous.
Discrete degeneracies occur when a finite number of models
can be used to describe a given event. An infamous example is
the s↔ s−1 degeneracy for low mass-ratio binary lenses, where
s is the instantaneous projected semimajor axis of the binary a⊥
in units θE s= (a⊥/DLens)/θE (Griest & Safizadeh 1998;
Dominik 1999; Yee et al. 2021). Here, θE is the angular

Einstein ring radius, given by

( )q k p= M , 1E lens rel

where Mlens is the lens mass, πrel= au (1/DLens− 1/DSource) is
the lens-source relative parallax, and κ= 8.14 mas 

-M 1 is a
constant.
Continuous degeneracies occur for events in which a range

of parameters can be used to model an event. One example is
the degeneracy between the impact parameter normalized to the
Einstein ring radius u0, the microlensing timescale tE, and the
fraction of flux attributed to the source relative to the combined
source and blend flux fS. Here, the microlensing timescale tE is
given by

( )q
m

=t 2E
E

rel

where μrel is the relative lens-source proper motion, the impact
parameter u0≡ θ0/θE is the angular distance of closest
approach between the lens and source on the sky θ0 in units of
θE, and fS= FS/(FS+ FB) where FS and FB are the source flux
and any unresolved flux blended with the source flux,
respectively. This degeneracy was first discussed in detail by
Woźniak & Paczyński (1997), and operates in two regimes:
when u0= 1 and when u0? 1. Another continuous degen-
eracy exists for bound planetary microlensing events between
the lens mass ratio q=Mplanet/Mhost, the angular source size θ*
in units of θE

* ( )r
q
q

º , 3
E

and μrel for a subset of perturbations from a bound planet,
described by Gaudi & Gould (1997). Typically, the source star
in a microlensing event can be well approximated as a point
source. However, if there exists a significant second derivative
of the magnification over the angular area covered by the
source, the normalized angular size of the source star ρ must be
included in the model, i.e., the event exhibits finite source
effects (FSEs). Both of these continuous degeneracies are
similar in nature to the one we report here, but differ in detail.

1.2. The Degeneracy for Extreme Finite Source Events

Here we explore a continuous degeneracy between multiple
parameters that emerges for isolated lenses with ρ? 1, which
we refer to as extreme finite source effect (EFSE) events. Parts
of this degeneracy have been identified in FFP candidate events
(for which ρ is typically 1) reported in Mróz et al. (2018),
Mróz & Udalski et al. (2019), Mróz et al. (2020a), and Mróz
et al. (2020b). Specifically in Mróz et al. (2020a), when fitting a
lensing model to their event, they noted a strong correlation
between four parameters ρ, tE, u0, and fS. As we elucidate here,
the correlations identified by the above authors are due to a
continuous, mathematical degeneracy between the parameters
that describe EFSE microlensing events.
We note that this degeneracy has also been described in the

context of self-lensing binary systems (Kruse & Agol 2014;
Han 2016). Such systems can exhibit periodic brightening
events when the remnant member of the binary passes in front
of its main-sequence companion star. These brightening events
are equivalent to EFSE events. This degeneracy is also
qualitatively similar to the degeneracy between the impact

3 The lens equation describes the relation between the image positions created
by the lens and the positions of the source and lenses.
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parameter, radius ratio, and limb darkening in transit light
curves (e.g., Morris et al. 2020). This is because the geometry
and shapes of transit light curves are very similar to those of
EFSE events, although transit light curves are obviously
inverted related to EFSE events. Thus, strong analogies can be
drawn between the two.

As we will show, in the EFSE regime and assuming no limb
darkening, light curves can be characterized by three gross
observables, but their complete models have four free
parameters. Namely, these observables are the peak flux above
the baseline of the event DFmax (which is approximately
constant for events with ρ? 1 when the center of the lens and
source are separated by less than θ*), the FWHM duration of
the event tFWHM, and the fraction of time spent in the wings/
shoulders of an event fws. We note that there are two other
observables, namely the baseline flux Fbase= FS+ FB, which is
only constraining when multiband photometry is collected
while the source is magnified, and t0, which is time symmetric
and is not a part of this degeneracy. Thus, in the absence of
limb darkening and for single-band photometry, four free
parameters characterize the flux as a function of time F(t) and
there are only three observables, resulting in a degeneracy.
These parameters can be analytically approximated to be
pairwise degenerate. The source size ρ is degenerate with the
source flux FS in such a way that they can be varied in order to
maintain the peak magnification of an event (DFmax). Similarly,
the source star angular radius crossing time

*
* ( )q

m
ºt 4

rel

and the impact parameter scaled to the angular size of the
source star b0= θ0/θ* are degenerate in that they can be varied
to maintain the observed duration (tFWHM) of an event.

When limb darkening is included however, the situation
becomes more complex. A fourth observable becomes
measurable, which is the flux ratio of the event at its peak to
when the lens is centered on the limb of the source fpl. For a
linear limb-darkening profile with coefficient Γ, this introduces
a fifth parameter for four observables, meaning a degeneracy
remains. Furthermore, for nonzero Γ, DFmax now also depends
on b0, which results in the coupling between the four previous
parameters into a larger five-parameter degeneracy through the
variation in the flux during the event due to limb darkening.

1.3. Plan for This Paper

In Section 2 we review the mathematical models, para-
meters, and observables of single-lens microlensing events in
the ρ= 1 regime. In Section 3, we repeat this process and
describe the morphology and observables of EFSE events
without limb darkening. We re-parameterize the canonical set
of single-lens parameters to a new set of parameters that are
more closely tied to the observables. We then derive the
degeneracy for a single-lens event in the EFSE regime without
considering limb darkening. We then add another observable
and extend the degeneracy to include limb darkening in
Section 4. We explore these degeneracies qualitatively and
quantitatively for fixed limb darkening in Section 5, and
explore the full degeneracy including limb darkening as a free
parameter in Section 6. We then discuss physical constraints on
the severity of these mathematical degeneracies in Section 7.
Finally, we consider the implications of our findings and
conclude in Section 8.

This paper is fairly long, and is written in a pedagogical style
in order the provide the full context with which to understand
the EFSE degeneracy. Experts in microlensing and/or readers
that are not interested in the details of the degeneracy may want
to first turn to Section 8 to read the summary and discussion of
the main new results. Then, the reader can decide which
sections of the paper they want to read (or skip). The different
sections are written so that they can be read more or less
independently.
Throughout this paper, we calculate the magnifications using

either the Witt & Mao (1994) or the Lee et al. (2009) method as
implemented in MulensModel (Poleski & Yee 2019).

2. Single-lens Events without EFSE

In this section we review the mathematical model,
parameters, and observables for single-lens events for which
ρ= 1 for context (Sections 2.1 and 2.2). We will then repeat
this exercise for single-lens events for which ρ? 1 (i.,e., EFSE
events), demonstrating that the canonical set of parameters for
the former case are not optimal for the latter case. We will
therefore introduce a new set of parameters that are more
appropriate for EFSE events.

2.1. Single-lens Events with ρ= 1

For the majority of the single-lens microlensing events that
have been observed to date, the size of the source star can be
ignored, as its angular size is much smaller than the angular
Einstein ring radius of the lens (i.e., ρ= 1) and the source does
not pass within ∼1 source radius of the lens. In this
approximation, the point-source point-lens (PSPL) model
magnification Aps(t) is given by the standard formula
(Paczynski 1986)

( ) ( )
( ) ( )

( )=
+

+
A t

u t

u t u t

2

4
, 5ps

2

2

where ( ) ( )t= +u t u t2
0
2

E
2 , and τE(t)≡ (t− t0)/tE is the time

from the peak of the event in units of the microlensing
timescale. Note that, such events reach peak magnification at a
time t0 when u(t) is at its minimum angular separation u0.
The magnification is not a direct observable; rather, one

measures the flux as a function of time

( ) ( ) ( )= +F t F A t F . 6S B

Note that FB can include flux from the lens, any flux from
companions to either or both the lens and source, as well as flux
from unrelated stars that are blended in the point-spread
function (PSF) of the source.
The point-source magnification in Equation (5) diverges as

u→ 0 and in this regime can be approximated by
( ) [ ( )] -A t u tps

1. When u? 1, the magnification can be
approximated as Aps(t); 1+ 2[u(t)]−4. As mentioned pre-
viously, Woźniak & Paczyński (1997) demonstrated that in
these two limits, there is a continuous mathematical degeneracy
between u0, tE, and fS.

2.2. Summary of the Parameters for ρ= 1

A PSPL microlensing event can be described by five
parameters when FSEs are negligible: u0, t0, tE, FS, and FB. To
the extent that there are only four gross observables, namely t0,
the baseline flux Fbase, the difference between the peak flux and

3
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the baseline fluxDFmax, and some measure of the characteristic
timescale of the event (such as FWHM), it is clear that u0, tE,
and fS cannot be uniquely determined, and there is a continuous
degeneracy in these parameters. This is the basic underlying
cause of the degeneracy described by Woźniak & Paczyński
(1997). In reality, when one is not deep in the limits noted
above by Woźniak & Paczyński (1997), there are additional
observables related to the detailed shape of the microlensing
light curve that allow one to break this degeneracy with
sufficiently good light-curve coverage and photometric
precision.

The magnification of a finite source begins to deviate
from Equation (5) when ρ 2u0 (Liebes 1964; Gould &
Gaucherel 1997). In this case, one must include the additional
parameter ρ, as well as the limb-darkening profile of the source,
which is commonly described as a linear limb-darkening profile
with a coefficient Γ (Yoo et al. 2004). Thus, point-lens events
can be described by seven parameters when FSEs are
significant: u0, t0, tE, FS, FB, ρ, and Γ. For completeness,
we note that for stars in the bulge, and typical lenses with
masses in the brown dwarf, stellar, or remnant regimes, ρ= 1.
Thus, FSEs only begin to manifest as deviations from the point-
source magnification (Equation (5)) in high-magnification
events when the source approaches within a few stellar radii
of the lens, i.e., events for which u0 ρ/2. These events are
relatively rare. In this case, the majority of the light curve is
well approximated by the point-source assumption, except for a
deviation within a few source crossing times t* of t0. This
deviation takes the form of a “rounding” of the peak of the
microlensing event. Because the deviations due to FSEs are
localized to a small time window near the peak, the parameters
ρ and Γ do not participate in the single-lens degeneracy
identified in Woźniak & Paczyński (1997).

3. EFSE Events without Limb Darkening

We next consider the opposite extreme when ρ? 1 (EFSE
events), which are typically caused by low-mass lenses. In
these cases, FSEs become important for trajectories in which
the center of the lens passes within θ* of the center of the
source. Indeed, there is no significant magnification if this
condition is not met. As a result, the basic event morphology
for EFSE events changes dramatically (e.g., Gould &
Gaucherel 1997; Agol 2003). This has implications for the
kind of information that can be extracted from such events.

The magnification of a uniform, finite source can be found
by integrating the point-source magnification of a lens across
the area of the source star source ,

( ) ( )òpr
=A u A d

1
7fs 2 ps

source




(e.g., Gould 1994; Lee et al. 2009). As ρ→∞ and assuming
no limb darkening of the source, the magnification curve will
take on a “top-hat” or boxcar shape. The maximum
magnification is essentially constant regardless of the angular
separation between the lens relative to the source, provided that
the lens is not near the edge or outside of the source. This
becomes apparent when considering that Afs can be approxi-
mated as

⎜ ⎟
⎛
⎝

⎞
⎠

( )
r r

» + +A 1
2 1

8fs 2 4


(Liebes 1964; Gould & Gaucherel 1997; Agol 2003). In this
case, the flux of the event as a function of time is

( ) [ ( )] ( )= +F t F A b t F , 9S fs B

where (keeping terms to second order in 1/ρ)

[ ( )] [ ( )] ( )
r

» + -A b t H b t1
2

1 , 10
2

H(x) is the Heaviside step function, and b(t)= θ(t)/θ* is the
angular separation θ between the center of the source and lens
in units of the angular size of the source star θ*. This is
explicitly given by

* *( ) ( )t= +b t b t t b; , , . 110 0 0
2 2

Here we define τ*(t)≡ (t− t0)/t* for the source radius crossing
time t* (Equation (4)), and the minimum source-lens angular
separation in units of θ* is b0≡ θ0/θ*. We note that this can
also be written as b0= u0/ρ= (θ0/θE)(θE/θ*).
Note that in this paper we will adopt the convention

⎧
⎨⎩

( ) ( )=
<

H x
x
x

0, 0
1, 0,

12


such that A(b) is defined and equal to 1+ 2ρ−2 when b= 1
(e.g., when the lens is centered on the limb of the source). This
convention is appropriate for ρ→∞ . However, when ρ is
large but finite, the magnification at b= 1 is approximately
A; 1+ ρ−2 because the disk of the source fills roughly
half of the Einstein ring of the lens. This latter situation
corresponds to the half-maximum convention for the Heaviside
step function

⎧

⎨
⎪

⎩⎪
( ) ( )=

<

=

>

H x

x

x

x

0, 0
1

2
, 1

1, 1.

13

Although our mathematical formalism could be derived using
the half-maximum convention, we found that this did not lead
to any qualitatively new insights but did obfuscate some of the
points we make below.
We demonstrate the impact of ρ on EFSE events in Figure 1.

Figure 1 shows the morphology of eight magnification curves
with fixed b0= 0 and various ρ values. The left panel shows a
to-scale depiction of the geometry of these events with different
values of θE such that ρ= (10, 12, 14, K, 24). In each case, all
other parameters are held constant, the flux is normalized to
that of the baseline, and no blending is included. The resulting
light curves in the right panel of Figure 1 show that for smaller
values of ρ, DFmax is larger. As ρ increases, the shape of the
light curve becomes boxier and is more akin to a true top-hat
shape.
Generally, the baseline flux Fbase is a direct (and typically

precisely measured) observable based on observations well
before and after the microlensing event. Thus, a parameteriza-
tion of F(t) that is more directly related to the observables is

4

The Astrophysical Journal, 927:63 (24pp), 2022 March 1 Johnson, Penny, & Gaudi



Fbase plus the difference flux ΔF, which is given by

( ) ( )
[ ( ) ]

( ( )) ( )
r

D º -
= -

-

F t F t F
F A t

F
H b t

1
2

1 . 14

base

S

S
2

Next we consider the duration of EFSE microlensing events.
The source crossing time t* is generally not the actual duration
of the event. The observed duration of an EFSE event is rather
tFWHM, which is well approximated by twice the source half-
chord crossing time

*
* *⎜ ⎟

⎛
⎝

⎞
⎠

( )q
m r

b= - = - =t
u

t b t1 1 , 15c
rel

0
2

0
2

where we have defined

( )b º - b1 160
2

for convenience (see, e.g., Agol 2003; Mróz et al. 2017). In this
approximation for the event duration, there is no dependence
on θE and thus the mass of the lens. With this and the
approximation for ΔF in Equation (14), one would naively
believe the duration and flux of an EFSE event to be
completely decoupled. However, this will turn out to not be
strictly true.

To demonstrate the result of changing impact parameter on
tFWHM and the event morphology, Figure 2 shows a set of eight
light curves with fixed ρ= 10 and increasing values of b0. In
the left panel of Figure 2, we include a to-scale depiction of the
geometry of these events with impact parameters from
b0= (0.0, 0.2, 0.4,K,1.4). In each case, all other parameters
are held constant, the flux is normalized to that of the baseline,
and no blending is included. The resulting light curves in the
right panel of Figure 2 show events with decreasing tFWHM as
b0 increases, with an eventual departure from the top-hat shape

for b0 0.8. Also note that as the impact parameter approaches
the limb of the source, DFmax progressively decreases.
There are several points to note. First, in the EFSE regime,

the magnification of the event is approximated as constant and
depends only on ρ, making the change in flux during the event
constant and proportional to 2FS/ρ

2. Thus, when ρ→∞ , the
characteristic timescale of the event becomes independent of
θE, and the magnification is independent of the duration of the
deviation and depends solely on ρ. Furthermore, because the
duration of the deviation is independent of θE, it is also
independent of the lens mass. Rather, the only observable
parameter that depends on the lens mass is the amplitude of the
deviation, as it depends on ρ, which in turn depends on θE.
However, as we discuss next, when ρ is large but finite, this
independence is only approximate.
We now consider the deviations from the top-hat morph-

ology for finite ρ. For a uniform source but finite ρ, the finite
size of the angular Einstein ring radius compared to the angular
radius of the source is not negligible. As a result, the
morphology of the event deviates from the strict top-hat shape;
in particular, the event exhibits “wings” of magnification just
before the lens enters the source and just after the lens exits the
source, and “shoulders” just after the lens enters the source and
just before it exits the source (see the ρ= 10 light curve in
Figure 1 as an example). The characteristic time tws of each tail
or shoulder deviation from the top-hat form is simply half the
time between first and second contact or third and fourth
contact of the angular Einstein ring and the source limb,

( )
b

ºt
t

. 17ws
E

This corresponds to a fraction of the primary event duration of

( ) ( )b rº = -f
t

t
. 18ws

ws

c

2 1

Thus these wings and shoulders increase in duration relative to
the total event duration with decreasing β (i.e., events with

Figure 1. A demonstration of changing ρ for a fixed angular source size θ*, impact parameter b0, and relative proper motion μrel. Left: the geometry of eight events
with ρ = (10, 12, K, 24), each represented by a separate circle the size of the Einstein ring radius θE. Each event has a trajectory that crosses the center of the source
b0 = 0.0, where the to-scale size of the source is the filled gray circle. Right: the resulting magnification curves for the eight Einstein rings (with corresponding line
color and line thickness) in the left panel. We label four observables for these events: t0,DFmax, tFWHM, and Fbase. As ρ increases (and θE decreases), the peak change
in flux DFmax decreases, but tFWHM remains roughly constant.
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larger impact parameters b0) and decrease in duration relative
to the total event duration with increasing ρ (Agol 2003).

The impacts of ρ and β on fws are apparent in Figures 1 and
2. The right panel of Figure 1 shows that events with smaller
values of ρ have more prominent wings and shoulders for those
events (Equation (18)). As ρ increases,DFmax decreases and the
wing and shoulder features become less prominent as fws
decreases. Thus, as ρ increases the light curves are better
approximated by a top-hat shape. In Figure 2 as b0 increases
(and β decreases), the wing and shoulder features become more
prominent as fws increases following Equation (18). The shared
dependence of the observable fws on ρ and β links the two sets
of parameters that control the amplitude and duration of EFSE
events in the derivation of this EFSE degeneracy.

3.1. The Degeneracy with No Limb Darkening

We now derive the degeneracy for EFSE events for a source
without limb darkening. As discussed previously, in the case of
no limb darkening and ρ→∞, there are two gross observables,
namely DFmax (which is roughly constant during the event),
and tFWHM. Furthermore, these two observables are decoupled
under these assumptions. We therefore first consider the flux
degeneracy and duration degeneracy separately.

The maximum difference flux when Γ= 0 is simply

( ) ( )
r

D = G =F
F2

, 0 . 19max
S

2

It is straightforward to verify that substituting the parameters

( )z r z r¢ = ¢ =F F , 20S S
1 2

into Equation (19), we recover the same observable difference
flux (e.g., D ¢ = DF Fmax max). Therefore, the difference flux is
constant under the transformations z¢ F FS S and r z r¢  1 2

for any arbitrary positive constant ζ. Thus in the limit of
ρ→∞ , there is a perfect degeneracy between FS and ρ such

that

⎜ ⎟
⎛
⎝

⎞
⎠

( )r
r

¢ =
¢

F F . 21S S

2

It is also trivial to show that by dividing both sides of
Equation (21) by Fbase that the relationship holds for two
blending parameters fS and ¢fS such that

⎜ ⎟
⎛
⎝

⎞
⎠

( )r
r

¢ =
¢

f f . 22S S

2

It can be more intuitive to express the degeneracy in terms of fS
rather than FS, as this is a dimensionless parameter.
Now consider the duration of the event as parameterized by

the source half-chord crossing time, which is related to the
model parameters by tc= βt* (Equation (15)). It is trivial to
verify that substituting the following parameters

* * ( )b xb x¢ = ¢ = -t t, 231

into Equation (15) will result in an equal source chord crossing
time ( ¢ =t tc c) for any arbitrary positive constant ξ satisfying
0� ξβ� 1. Thus, in the limit of ρ→∞ , there is a perfect
degeneracy between b0 and t* such that

* * * ( )b
b

¢ =
¢
=

-

- ¢
t t t

b

b

1

1
. 240

2

0
2

Because the duration of the event is decoupled from the flux
during the event, ξ does not need to be equal to ζ (and, in
general, will not be).
The above mathematical degeneracies are only strictly valid

in the limit ρ→∞ , or equivalently in the limit that tE/t*→ 0.
As discussed previously, for values of ρ that are large but finite,
EFSE events deviate from the strict top-hat morphology. In
particular and as illustrated in Figures 1 and 2, events with

Figure 2. A demonstration of changing the impact parameter b0 for a fixed angular source size θ*, angular Einstein ring radius θE, and relative proper motion μrel.
Left: the geometry of eight events with impact parameters b0 = (0.0, 0.2,K,1.4), each represented by a separate lens trajectory. Each event has the same angular
Einstein ring radius (black circle) with ρ = 10, and the to-scale size of the source is the filled gray circle. Right: the resulting magnification curves from the varying
impact parameters (with corresponding line color and line thickness) in the left panel. The highest magnification/longest event corresponds to the b0 = 0.0 event. As
b0 increases, events become shorter and have progressively lower peak magnifications. Note that for sufficiently large impact parameters (b0  0.8), the top-hat shape
disappears and eventually no magnification occurs.
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finite ρ exhibit wings and shoulders near the source limb
crossing point of the event. The duration of these features
relative to the half-chord crossing time is equal to

( )b r= -fws
2 1 (see Equations (17) and (33), and the surround-

ing discussion). Effectively, fws provides another observable
parameter when ρ is large but finite.

The fact that the duration of the wings and shoulders relative
to tc depends on both β and ρ has two important implications.
First, the conclusion that FS and ρ have mathematically
equivalent effects on the peak flux and morphology of EFSE
events provided that they satisfy Equation (21) is not strictly
true. While varying FS does not change the morphology of
EFSE events, varying ρ does as fws is a function of ρ, but not a
function of FS. This is illustrated in Figure 1, which shows how
as ρ increases, the duration of the wings and shoulders relative
to the total duration of EFSE events decreases, and the
morphology of the light curves becomes increasingly well
approximated by a strict top hat.

Second, because fws depends on β and thus the impact
parameter b0, the morphology of events with large but finite ρ
is not strictly independent of b0. In particular, events with
larger impact parameter (smaller β) exhibit more pronounced
wings and shoulders. Thus, for EFSE events with large but
finite values of ρ, the morphology of the event depends on b0,
and thus the flux during the event is coupled to the duration of
the event. In the specific case when Γ= 0 and ρ is large but
finite, there are four parameters (FS, ρ, β, t*) and three
observables (DF t f, ,max c ws). Given the definitions of the
observables, and assuming that the morphology of the wings
and shoulders is directly proportional to their fractional
duration fws, it is straightforward to show that there is a
continuous mathematical one-parameter degeneracy. Specifi-
cally, by substituting the following parameters

* * ( )h r h r b h b h¢ = ¢ = ¢ = ¢ =-F F t t, , , 25S S
1 2 1 4 1 4

into Equations (15), (19), and (18), we recover the same values
for the observables (i.e., D ¢ = D ¢ = ¢ =F F t t f f, ,max max c c ws ws).
Here η is any arbitrary positive constant satisfying
0� η−1/4β� 1.

We illustrate the mathematical severity of the degeneracy
between these four variables in Figure 3. We use fiducial values
of b0= 0.0, μrel= 6.5 mas yr−1, and fS; 0.13 but use ρ= 3.6
in the top panel and ρ= 11.4 in the bottom panel. We then
scale the other parameters by using nine uniformly spaced
values of b0 from 0.0 to 0.8, transforming these to values of β,
and calculating η using Equation (25). In the upper subpanels,
we show the resulting light curves, and in the lower subpanels,
we show their relative residuals compared to the b0= 0.0 event,
which is the lightest gray and backmost light curve. In both the
top and bottom panels, the shading of the light curves and their
residuals goes from lightest to darkest for increasing values of
b0. We see that the light curves are nearly perfectly degenerate,
and in particular the ρ= 11.4 case are noticeably more
degenerate than those for the ρ= 3.6 case. The prominent
departures in the ρ= 3.6 case are due to the difference in the
wing and shoulder shapes of the events due to detailed
differences in the light curve caused by increasing ρ or β
(centered on τc= ±1). Furthermore, there is a “trough”
between the two peaks in the residuals that results from the
slight decrease in flux as the impact parameter approaches the
limb of the source star. However, these residuals decrease
significantly in the ρ= 11.6 case. From this we conclude that

for ρ 10, the morphology of these wings and shoulders does
scale approximately with fws, and the mathematical degeneracy
in Equation (25) is perfectly realized in the limit ρ→∞ .
Although the wings and shoulders of EFSE events due to

finite values of ρ indeed provide a formal constraint on ρ and β,
the magnitude of the differences in the light curves for impact
parameters in the range b0= 0− 0.8 is extremely small, as can

Figure 3. Demonstration of the degeneracy for no limb darkening with a
fiducial value of ρ = 3.6 (top panel) and ρ = 11.4 (bottom panel). Both panels
show nine different light curves that serve to demonstrate the degeneracy
between the parameters FS, ρ, β, and t* for Γ = 0 and ρ ? 1 but finite. We
choose fiducial values for the parameters, and for each of nine values of b0
uniformly spaced between 0.0 and 0.8, we use the transformation in
Equation (25) to scale the event parameters and plot the resulting light curves
in the top subpanels. Here, the line shadings go from lightest to darkest for
increasing values of b0. The bottom subpanels show the fractional residuals,
where F0 is the flux from the event with b0 = 0.0 and ΔF = F − F0.
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be seen in the lower panels of Figure 3. For the ρ= 3.6 case,
the full range of the deviation of the light curves relative to the
fiducial (b0= 0) case is 1× 10−3, whereas for the ρ= 11.4
case, it is 5× 10−5. In both cases, these deviations are a
factor of ∼40 times smaller than the magnitude of the event
itself, and thus if the event is detected with a signal-to-noise
ratio (S/N)= X, the deviations will only be detectable at S/
N X/40. Thus, even for events that are detected at very high
S/N, the deviations will be essentially undetectable, and the
mathematical degeneracy in Equation (25) will hold.

However, we note that Figure 3 may make the degeneracy
appear more pernicious than is likely to be realized in practice.
In particular, and as we discuss in more detail in Section 7,
when determining how deleterious these mathematical degen-
eracies will be for actual detected events, one must also
consider the expected prior distributions for the underlying
parameters. For example, for microlensing events with giant
sources, the fraction of the baseline flux due to the source is
known to be bimodal (Mróz et al. 2020a) such that the source
flux is either very close to the baseline flux (i.e., the blend flux
is very small) or the source flux is much smaller than the
baseline flux (i.e., the majority of the baseline flux is due to the
blend). This is simply because the luminosity function of stars
in the bulge has a local minimum between giants and the main-
sequence turn-off. As a result, EFSE events with giant sources
will generally have FS; Fbase as strongly blended events will
be difficult or impossible to detect. This is important because
events with FS; Fbase and β; 1 (b0; 0) are not strongly
subject to the degeneracy in Equation (25), since the source
flux is bounded such that FS/Fbase 1 and the impact
parameter is bounded such that b0� 0 (β� 1), implying that
there is a narrow range of η that can satisfy Equation (25),
which shrinks to nearly zero as β→ 1 and FS/Fbase→ 1.
Furthermore, events with larger values of b0 (smaller values of
β) are less likely to be detected because they have a shorter
duration and smaller peak difference flux (all else being equal).
Finally, even when the degeneracy is realized, the posterior
distribution of, e.g., FS, will be narrower than the full allowed
range. This is because events occur (although are not
necessarily detected) with uniform values of b0, which leads
to a distribution of η that is not uniform, and in particular is
weighted toward smaller values of η. This also implies that the
distributions of FS, ρ, β, and t* are not uniform, and in
particular are weighted toward smaller, smaller, larger, and
smaller values, respectively.

Another example of prior information that is important to
note is that we placed no upper limit on the value of fS,
therefore allowing FS> Fbase. This is commonly known as
negative blending, as FB must be less than zero for
FS= Fbase− FB> Fbase (e.g., Smith et al. 2007). While
seemingly unphysical, in crowded fields such as those toward
that Galactic bulge that are typically monitored by microlen-
sing surveys, it is possible to have some negative blending if
the source happens to be located in a local minimum in the
background that is typically dominated by an inhomogeneous
“sea” of partially resolved faint stars. However, very large
negative blending, i.e., FS? Fbase or fs significantly greater
than unity, is essentially never realized in nature. Therefore, we
will place an upper limit on the value of fS in Section 5 and
beyond.

4. EFSE Events with Limb Darkening

Any surface brightness features on the source can affect the
magnification and thus the morphology of the light curve (e.g.,
Witt & Mao 1994; Gould & Welch 1996; Agol 2003;
Heyrovský 2003). Here we only consider inhomogeneities in
the surface brightness distribution of the source due to limb
darkening. In this case, the shape of the light curve and the
peak magnification depend not only on ρ, but also on the
amount and form of the limb darkening and on the impact
parameter of the source center with respect to the lens, b0.
However, as we will show, the two pairwise degeneracies that
appear for uniform sources remain in the presence of limb
darkening, and indeed become even more linked resulting in a
larger, five-parameter degeneracy when the limb-darkening
parameter is unknown.
For a limb-darkening profile, we adopt a linear limb-

darkening profile of the form

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

[ ( )] ( )= - G - -b t b1 1
3

2
1 , 262

where ( )b is the surface brightness of the source normalized to
the average surface brightness *

˜ pq=S FS
2 as a function of b

(Yoo et al. 2004). Note that F, S , and Γ are all formally
functions of wavelength (or bandpass), and we have not explicitly
noted this for simplicity. Also note that ( ) ( )= + G0 1 2 (the
center of the star) and ( ) ( )= - G1 1 (the limb of the star).
The flux of the event as a function of time including the

limb-darkening profile is

*( ( )) ( ) ( ) ( )r= G +F t b t F b A t b t t F; , ; , , , . 27S 0 0 B

Note that as the position of the lens on the source is a function
of time, so to is the coordinate of the limb-darkening profile b
being sampled.
In analogy to τE and τ*, it is useful to define the time from

the midpoint of the event in units of the half-chord crossing
time

*( ) ( )t
t
b

º
-

=
t t

t
. 28c

c

0

In fact, by recognizing that *t b t= + = +b b b c
2

0
2 2

0
2 2 2, and

( )b t b- = - =b T t1 1 c c
2 2 , where we have further

defined tº -T 1c c
2 , we can rewrite the limb-darkening

profile including the time dependence as

⎡
⎣

⎤
⎦

( ) ( ) ( ) ( ) ( )b b= - G - = - G +
G

t T t T t1 1
3

2
1

3

2
, 29c c

which will be advantageous for later use. A key insight is that
the parameters of Tc(t) are directly constrained by the
observables t0 and tc= tFWHM/2.
The difference flux is given by

*( ) ( ) ( ( )) ( )
r

D G -F t
F

t b t t H b t
2

; , , , 1 . 30S
2 0 0
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Using the re-parameterized version of the surface brightness
profile (Equation (29)), the difference flux can be written as

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

( )
( ) ( ∣ ∣) ( )

r

b
t

D =
- G

´ +
G
- G

-

F t
F

T t H

2 1

1
3

2 1
1 . 31c c

S
2

The form of this equation deserves careful study. Note that
when |τc|� 1, the difference flux is a linear function of Tc,
which has a slope of 3FSΓβ/ρ

2 and an intercept of
2FS(1− Γ)/ρ2. This, combined with the fact that Tc(t) is a
well-constrained function, means that the overall shape of the
event is set by the coefficient of the Tc term in the square
brackets in Equation (31), whereas the overall scale of the
event is set by 2FS(1− Γ)/ρ2. We can use this to define an
observable shape parameter for the light curve

( ) ( )
( )

( )º
D - D

D
f

F t F t

F t
, 32c

pl
0

0

which is the difference between the flux at the peak of the event
(t= t0) and the flux when the lens is positioned on the limb of
the source (t=± tc), relative to the peak difference flux.
Substituting Equation (31) into Equation (32) and simplifying,
we find

( )
( )

b

b
=

G

- G + G
f

1
. 33pl

3

2
3

2

Note that fpl= 0 for Γ= 0 and fpl= 1 for Γ= 1. Also, fpl= 0
for β= 0 (b0= 1) and [( ) ]= G - G + Gf 1pl

3

2

3

2
for β= 1

(b0= 0).
The definition of fpl allows us to write the maximum flux

difference as

⎡

⎣
⎢

⎤

⎦
⎥

( ) ( )
r

D º
- G

+
-

F
F f

f

2 1
1

1
. 34max

S
2

pl

pl

Note then that for Γ= 0, fpl= 0, and we recover the previous
forms for rD =F F2max S

2 and ( ) ( ∣ ∣)tD = D -F t F H 1 cmax ,
and that the magnitude of the event is decoupled from the
duration of the event. In the opposite limit of Γ= 1, fpl= 1, so

b rD =F F3max S
2, and ( ) ( ) ( ∣ ∣)tD = D -F t F T t H 1c cmax .

Thus, in the limit that Γ→ 1, the magnitude and shape of the
event is also decoupled from the duration of the event.

4.1. The Degeneracy for Fixed Limb Darkening

We now consider the degeneracies that exist for a limb-
darkened source (Γ≠ 0), assuming the limb-darkening para-
meter Γ is known a priori and thus is not a free parameter. We
preface this discussion by noting that for a limb-darkened
source, the peak flux and shape of the EFSE event depend not
only on FS and ρ, but also on the impact parameter b0. This is
because the peak flux observed during the event now depends
on the location of the center of the lens with respect to the
center of the source, such that larger lens-source separations
result in smaller peak fluxes (see Equation (30)). On the other
hand, as with the Γ= 0 case, the observed duration tc is related
to t* and b0. Thus the duration and magnitude of the deviation
are no longer decoupled. Nevertheless, as we will show, there

is an approximate degeneracy in the case of fixed limb
darkening that becomes a perfect mathematical degeneracy as
Γ→ 0 and another perfect mathematical degeneracy as Γ→ 1.
As we will show, this approximate degeneracy is actually quite
severe.
We first recall that there are four primary observables4

(DFmax, tc, fws, and fpl), and for fixed limb darkening with
known Γ, there are four free parameters (b0, t*, FS, and ρ).
Thus, given that there are an equal number of observables as
free parameters, we might anticipate that there would not be a
degeneracy. From Equation (33) and assuming fixed Γ≠ 0, a
measurement of fpl yields a constraint on β and thus b0. A
measurement of tc and a constraint on β thus yields a constraint
on t*. A measurement of fws and a constraint on β also yields a
constraint on ρ. Finally, a measurement of DFmax, combined
with a constraint on ρ, yields a constraint on FS. Thus there is
no mathematical degeneracy.
However, the lack of mathematical degeneracy rests on the

fact that fpl depends on b0. Therefore, we next explore how the
observable fpl depends on b0 for various values of Γ in order to
provide a qualitative understanding of how well β can be
constrained with a measurement of fpl of a given precision.
Figure 4 shows fpl as a function of b0 for various values of
Γ= 0.0, 0.1, 0.2,K,1.0, where Γ= 0.0 is the darkest line and
Γ= 1.0 the lightest. There are several points to note. First,
when Γ= 0, fpl= 0 and thus is independent of b0, as noted
previously. Second, for nonzero Γ, fpl is a weak function of b0
over a relatively broad range of b0. Furthermore, the range of b0
for which the difference in fpl is smaller than some fixed value
is larger for larger Γ. Thus the shape of the light curves become
increasingly degenerate as Γ increases.
For Γ= 1, the light curves are completely self-similar. This

is due to the fact that for Γ= 1, fpl= 1, and therefore
b rD =F F3max S

2, and ( ) ( ) ( ∣ ∣)tD = D -F t F T t H 1c cmax (see
Section 4). Thus for Γ= 1, there are only three observables
(DFmax, tc, fws), and four parameters (FS, ρ, β, t*). All four
parameters are therefore degenerate with each other, such that

Figure 4. The fractional peak-to-limb flux difference fpl as a function of the
dimensionless impact parameter b0, for Γ = 0.0, 0.1, 0.2, K1.0 from darkest to
lightest, respectively. As Γ increases, so does the value of fpl(b0 = 0.0). Also,
the dependence of fpl for b0  0.8 becomes weaker for increasing Γ. By
definition, fpl for Γ = 0.0 and 1.0 are flat, as described in Section 4.

4 Again, we ignore the parameters Fbase and t0 as they are well constrained by
the observations and thus do not participate in the degeneracy.
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the impact parameter from crossing the equator of the source
star. We then simply find the absolute value of the impact
parameters and then include those links in the chain in the
Figures.

We show the posterior distributions of these MCMC runs in
Figures 12 and 13. We also include the predicted degeneracy
from Equation (38) as the red/green lines in each subpanel.
These lines agree with the sampling fairly well near the event
parameter values, but as parameters stray from their true values,
the contours truncate the degenerate relationship between many
of these parameters. The contours from the MCMC run with
the lowest assumed photometric uncertainty that tightly trace
the ρ− FS and b0− t* degeneracies are especially notable.
These tight correlations expand as the photometric precision
increases to 0.667%, evident by the neatly nested 1σ contours
in the appropriate subpanels of Figures 12 and 13. As the
photometric precision increases from 0.01% to 0.667%, we see

an increase in the area of the projected posterior distributions of
ρ and fS, although they are still relatively centered on their
fiducial values. We also shade the regions with fS> 1.05
green/red to indicate regions in parameter space that would
require a significant amount of negative blending. This is much
more restrictive for Event 1 (Figure 12) than for Event 2
(Figure 13), as the fiducial value for Event 1 is fS= 1.0.
The contours for b0 and t* are also neatly nested, but the

posterior for b0 is wide with a steep cliff around b0≈ 0.6–0.8.
This is due to that fact that events with b 20  all have very
similar cord lengths and thus similar event durations. Despite
this, t* appears to be well recovered from its posterior
distribution.
We also perform the same MCMC analysis on a third event

akin to Event 1, except the only differences are that b0= 0.5
and fS= 0.75. All other values and priors are identical, and the
difference in fS is negligible. The posteriors for just t* and b0

Figure 12. Three MCMC posterior samples for Event 1 but with differing photometric uncertainties. The black contour is the 1σ boundary for the event with 0.667%
fractional photometric uncertainties, dark gray for 0.333%, and light gray for 0.1%. This is for fiducial Event 1 detailed in Section 5.1.1, with true values marked by
dashed lines. We also included t0 and ¢F Fbase base as free parameters, but excluded them in the plot as they do not contribute to the degeneracies being investigated
here. We include green lines in all of the panels that follow the relations from Equation (38). Green shaded regions denote values of fS > 1.05, which would require a
significant amount of negative blending.
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are shown in Figure 14. Perhaps the most notable difference is
that the posterior of t* systematically underestimates its value.
The shape of the posterior can be understood as a sharp rise
resulting from a firm lower bound on t*, and a long tail to
infinite t* resulting from the chord length approaching zero.
However, as the chord lengths for impact parameters b 20 
are similar and in fact more probable when uniformly
distributed, smaller values of the impact parameter are
preferred. This explanation is corroborated by the fact that
there is a (weak) positive correlation between *tlog and rlog in
Figures 12 and 13. As ρ increases, the change in the
morphology of the light curve decreases, and thus t* becomes
more degenerate.

We identify correlations of varying strengths between nearly
all of the parameters shown in Figures 12 and 13. The weakest
are between b0 and the other parameters, and essentially only
manifest for large impact parameters approaching the limb of
the source star. This not surprising, as the magnification in the
EFSE regime is approximately independent of b0, except when

b0; 1 (Agol 2003). For Event 1, and as noted before, t* has
slight positive correlations with both ρ and fS; however, the fS
correlation occurs mostly for ranges where significant negative
blending is required. The correlations with ρ are restricted (e.g.,
with Γ) as they would require values of fS that are outside of the
prior distribution. We also note that the posterior of fS would
systematically overpredict its value, despite requiring a likely
unphysical value.
We see many of the same patterns for Event 2 in Figure 13.

However, many of the correlations identified for Event 1 are
much more apparent, as the fiducial values for this event are in
regions of parameter space that exacerbate the degeneracy.
Specifically, the correlations between t* and b0 and the other
parameters are all more realized for Event 2. The correlation
between ρ and Γ is also more apparent. And as the value of fS is
lower, the physical regions of parameter space for these
degeneracies are much larger.
Overall, between Events 1 and 2 we observe the correlations

derived and expected in earlier sections. All five parameters

Figure 13. The same as Figure 12 but for Event 2. As this event has parameters that allow for a fuller range of the degeneracy to manifest, the contours demonstrating
the degeneracies increase dramatically. We note that in some cases, the gray contours extend beyond the black contours, as these are independent MCMC runs.
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show correlations with each other with varying severity that
depends on the true values of these parameters in the events.
There is good agreement between our analytical predictions for
the form of the degeneracy, and the shape of the posterior for
each pair of parameters. This shows that our analytic
approximations do lend insight into the nature of this
degeneracy. Next, we discuss in more detail the severity of
this degeneracy with a focus on the aspects that are purely
mathematical and those that could arise physically.

7. Mathematical versus Physical Degeneracy

We have shown there is a strong mathematical degeneracy
for EFSE microlensing events. However, as we noted earlier,
there are values of many of these parameters that, while
mathematically possible, are physically unlikely or even
impossible.

One case to consider is extremely large negative blending
with fS> 1. As described previously, while negative blending
may at first sight appear unphysical, it does occasionally
manifest itself in observed microlensing events. Negative
blending typically occurs in events whose source stars reside in
a local deficit in the mottled, semi-resolved background of
fainter stars that is omnipresent in crowded microlensing fields.
However, even when present, negative blending generally does
not lead to fS? 1. In our investigations, we allow for some
cases of extreme negative blending by placing a prior of fS< 3.
This allows us to further explore the degeneracy, and while
values of fS 1.05 are mathematically capable of satisfying the
ρ− FS degeneracy, they are physically unlikely to become
realized in actual observations. In real world cases, priors on
blending can be placed based on the characteristics of
individual events, in order to constrain the region of
mathematically allowable parameter space to one that is

physical. For example, negative blending for bright clump
giant sources is extremely unlikely, as these sources are much
brighter than the partially resolved stellar background (Mróz
et al. 2020a).
To this effect, almost all EFSE FFP events reported to date

have source stars that are giants or subgiants in the bulge (Mróz
et al. 2018; Mróz & Udalski et al. 2019; Mróz et al.
2020a, 2020b). In these cases, it is a good assumption that
the source flux is essentially the baseline flux (e.g., Mróz et al.
2020b). However, unlike ground-based surveys, some fraction
of EFSE events detected through the Nancy Grace Roman
Space Telescope (Roman) Galactic Bulge Time Domain
Survey will have main-sequence sources for which such an
assumption may not be valid. In these cases, each situation
must be considered individually. Companions to the source or
lens, or potentially undetected stars that are blended with the
source star’s PSF, could lead to FFP candidates in which the
blend flux could be significant (Johnson et al. 2020). As such,
the physically plausible range of the mathematical degeneracy
described here between FS and ρ may be considerably larger
than for the cases of brighter source stars.
We demonstrate this using results from the simulations

presented in Johnson et al. (2020). In Figure 15 we show the
ρ− fs distributions for Roman detected FFP events with only
its primary W146 filter. Here, “detected” means that events
have a Δχ2� 300 compared to a flat baseline and a
consecutive number of data points at least 3σ above Fbase

n3σ� 6 (see Johnson et al. 2020). These results are for three
discrete masses of 1.00, 0.10, and 0.01 M⊕ shown using black,
gray, and light gray contours, respectively. Each contour
contains 95% of the detected events for each discrete mass. We
include the marginalized medians for ρ and fS with squares that
match the colors of their respective contours. We plot the
positions of Event 1 and 2 as green and red circles. The blue
lines are contours of constant DF Fmax base, which is the
predicted maximum fractional deviation from the baseline for
an event. From the leftmost, lightest blue curve with

Figure 14. The same as Figure 12 (including line colors), but the event has a
fiducial value of b0 = 0.5 rather than zero, and fS = 0.75 rather than one. All
other parameters are equal. Here, we can see that the posterior for t*
systematically underestimates its value. This can be potentially mitigated by
using a more informative prior on t*.

Figure 15. The ρ − fS distribution of FFP events detected by Roman (Johnson
et al. 2020). The open contours enclose 95% of events with lens masses of 1.00
M⊕ (black), 0.10 M⊕ (gray), and 0.01 M⊕ (light gray) and a color-matched
square indicates the marginalized medians of these distributions. The blue lines
in the background are contours of constant DF Fmax base in steps of factors of
10, where the lightest (leftmost) is for D =F F 10max base and the darkest
(rightmost) is for D =F F 0.001max base . The green/red circles indicate the
positions of Events 1 and 2. Here, Event 1 could be among the detected events
in all of the discrete masses considered.
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D =F F 10max base , we include contours with steps of
factors of ten to the rightmost, darkest blue line
with D =F F 0.001max base .

Here it is apparent that the average ρ for detected events
increases with decreasing lens mass. As discussed in Johnson
et al. (2020), the detection of lower-mass lenses is actually
facilitated by EFSE, as for large ρ, the chord crossing timescale
can be much longer than the expected microlensing timescale.
If any FFP lenses with masses of 0.10 or 0.01 M⊕ are detected
by Roman, they will likely have ρ> 1 and would be close to
the EFSE regime. However, unless these objects have have a
high occurrence rate, there could potentially be very few
detections of such lenses (see Table 2 of Johnson et al. 2020).

As lens mass decreases, so does the potential peak
magnification of the event, leading to the fact that lower-mass
lenses will be detected in events with smaller amounts of
blending (larger fS). Although a smaller value of ρ for these
extremely low-mass lenses would require a main-sequence
source, main-sequence sources are likely to be significantly
blended in the bulge, in contrast to giant/subgiant sources,
which generally dominate the flux in the source PSF. If these
lenses cause deviations of only a few percent for the source
flux, this could easily pass undetected if the amount of blend
flux is significant. This is one of the reasons that Event 1 could
be among the detectable events in each of these mass bins, but
Event 2 is not, even though they should have the same
fractional maximum flux deviation.

However, even in the case of faint sources, the brightness
and blending distribution of source stars is not arbitrary and can
be estimated. Priors on FS and FB can be placed, thereby
restricting the plausible range of the mathematical degeneracy
(see, e.g., Figures 10 and 11 of Johnson et al. 2020 and the
surrounding discussion). Such priors will be even more
informative with a measurement of the color of the base-
line flux.

Similarly, we note that it is possible to place physical priors
that limit the range of the mathematical t*− b0 degeneracy.
The reasonably well-known proper-motion distributions of
Galactic disk and bulge stars limit the possible range of
plausible values of μrel for microlensing events. For example, if
we assume a range of μrel= [3, 10] mas yr−1, and a giant
source star in the bulge with θ* = 5 μas, the resulting range of
t*≈ [5, 17]. A more detailed prior could be imposed by using a
Galactic model that incorporates kinematics under the
assumption that FFPs share the same kinematics as stars.

As pointed out by Mróz et al. (2020a), even if the source flux
cannot be well constrained, a measurement of the source color
based on observations in multiple filters during an EFSE event
can allow for a tight constraint on θE. At first glance, this is
surprising: for “typical” microlensing events, one measures FS

in a given filter via multiple observations of the time-variable
magnification of the source. The source color can be derived in
a model-independent way by linear regression between
observations taken in multiple filters during the microlensing
event (Gould et al. 2010). With an estimate of extinction to the
source based on, e.g., the color of the red clump
(Dominik 1999; Yoo et al. 2004), the unextinguished source
flux and color can be determined. These, together with
empirical color–surface brightness relations (e.g., Kervella
et al. 2004), allow for an estimate θ*. Combined with a
measurement of ρ from finite source effects in the light curve, it
is possible to measure θE.

As we have shown in the case of EFSE events, it is not
possible to measure FS and ρ separately to high precision with
only single-band photometry, as they are strongly degenerate.
Nevertheless, as identified by Mróz et al. (2020a) and shown
mathematically here in Equation (14), a measurement of the
excess flux ΔF during an EFSE event allows one to measure
the combination 2FS/ρ

2. Noting that *
˜pq=F SS

2 , where S̃ is the
average surface brightness of the source, we have that

˜pqD µF S2 E
2 . The average surface brightness S̃ can be

estimated from multicolor observations during the event
(Gould et al. 2010), and thus it is possible to constrain θE,
despite the fact that neither the source flux nor angular radius
are well constrained (Mróz et al. 2020a).
It may also be possible to constrain the impact parameter

with multiband photometry during the event. As the surface
brightness profile and thus limb-darkening coefficients depend
on the passband, the light curves of an event with a given
impact parameter will differ in the different pass bands in a
manner than depends on the impact parameter. Thus, with
sufficiently dense and precise multiband photometry, the
impact parameter would be more well constrained, thereby
ameliorating the multiparameter degeneracy discussed here.
Prior constraints on the limb-darkening parameters in the
multiple band passes would further improve the ability to break
the degeneracy. We note that a similar method is often used to
more precisely constrain the parameters of transiting planet
systems Knutson et al. (2007).

8. Discussion and Conclusion

We have uncovered and explored a multiparameter degen-
eracy for microlensing events that exhibit EFSEs. This
degeneracy arises fundamentally from the fact that (in the
absence of limb darkening) EFSEs with ρ? 1 have a peak
magnification that is constant and depends only on the flux of
the source FS divided by the dimensionless source size ρ
squared. Furthermore, the duration of an EFSE event is
decoupled from its peak magnification and depends only on the
chord crossing time *= -t t b2 1c 0

2 . For finite ρ, both ρ and
b0 give shape to the light curve through wings and shoulders
during the event, which have a fractional duration of fws. Thus
there are four model parameters (FS, ρ, t*, b0) to describe three
observables (DF t f, ,max FWHM ws). In the presence of limb
darkening, the peak magnification of the event becomes
covariant with the duration of the event, but the degeneracy
remains. In particular, changing the impact parameter b0
changes the maximum flux and shape of the light curve, but
this can be completely compensated for by changing the limb
darkening, the ratio of the angular source radius to the angular
Einstein ring radius, and the source flux.
We have largely explored these as purely mathematical

degeneracies without detailed consideration as to what degree
they will manifest in physically realistic situations, and how
they may be ameliorated by changing the survey parameters.
We encourage detailed consideration of the plausible

severity of these degeneracies in individual events, as has
been done in the seven likely free-floating (or wide-separation)
planet candidates to date (Mróz et al. 2018; Mróz & Udalski
et al. 2019; Mróz et al. 2020a, 2020b; Kim et al. 2021; Ryu
et al. 2021). Regarding the second condition (ameliorating the
degeneracy by changing the survey parameters), the funda-
mental difficultly arises from the fact that the morphologies of
the degenerate light curves appear very similar for different
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values of the parameters. However, the morphologies are not
identical and therefore can be broken with precise and dense
photometry. Unfortunately, “precise” in this context means
relative photometry of=1%, as these deviations will also be of
very low amplitude ( few percent). Furthermore, these events
are short (∼several hours), and thus obtaining both dense and
precise photometry is difficult. Overall, obtaining the required
precision and cadence to break these degeneracies will be
challenging for the relatively faint bulge sources that will be
monitored by, e.g., Roman. Fortunately, many EFSE events
will be due to giant source stars (Mróz et al. 2018; Mróz &
Udalski et al. 2019; Mróz et al. 2020a, 2020b), which are on
the bright end of the magnitude distribution of sources
monitored by Roman. A possible solution to avoid large
sources entirely would be to conduct a microlensing survey
toward the Magellanic Clouds or M31, which have source
distances much larger than the bulge but would be sampling
lenses belonging to the Galactic Halo (Montero-Camacho et al.
2019; Sajadian 2021; R. Slaybaugh et al. 2022, in preparation).

Observations in multiple filters while the source is magnified
will allow for a constraint on θE (Mróz et al. 2020a). The
baseline plan for the Roman Galactic Exoplanet Survey (Penny
et al. 2019; Johnson et al. 2020) is to observe in an alternative
filter once every 12 hr, although this has not been finalized. The
typical ∼10 hr duration of EFSEs means that at most one color
observation will be made during an EFSE event, which is likely
insufficient to break this degeneracy. We concur with Mróz
et al. (2020b) that the cadence of Roman supplemental filters
should be increased, if at all possible, but note that the
achievable cadence may ultimately be limited by engineering
constraints on the lifetime rotations of Roman’s filter wheel. Of
similar concern is the cadence of the primary Roman band,
which must be high enough to sample and thus characterize the
wings and shoulders of EFSE events to mitigate the impact of
this degeneracy. However, the desire to better characterize
EFSE events must be weighted against any potential losses in
the detection rates of other events of interest incurred by
increasing the cadence in the primary filter.

Currently, most large ρ events are consistent with having
source stars that are giants in the bulge. It is a priori more likely
for such sources to dominate the baseline flux of these events,
although at least a subset of clump stars will still be blended.
For low enough lens masses, even main-sequence stars could
be sources for EFSEs. Roman can detect these events (Bennett
& Rhie 2002; Ban et al. 2016; Johnson et al. 2020), but it
would likely be even more challenging to break the
degeneracies using the methods stated above. Detailed

simulations of the event rate of EFSEs, along with detailed
fitting to these simulated events, will be necessary to determine
to what extent these degeneracies will hinder the characteriza-
tion of microlensing events attributable to very low-mass
lenses.
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Appendix
Tables for Figure 10

In this Appendix, we include the parameters for the light
curves in Figure 10 for Event 1 (Table 2) and Event 2
(Table 3). For six values of Γ (Column 1) and for five values of
b0= 0.0, 0.2, 0.4, 0.6, and 0.8 (Column 2), we found values of
t*, ρ, and fS that minimize Δχ2. Column 3 is simply the value
of β for these values of b0 (Equation (15)). From these values
of b0, we calculate the values of η1 and η2 for scaling the other
parameters in Equations (25) and (35), respectively, in
Columns 4 and 5. The values of ρ, fS, and t* that we found
minimize Δχ2 are included in Columns 6, 9, and 12 and have a
subscript “n” for the parameter. The two columns following
each of Columns 6, 9, and 12 are the predicted values from
scaling relations in Equations (25) and (35), with subscripts “1”
and “2,” respectively. Note that the first row for each Γ
contains the fiducial values for Event 1 and 2. For small values
of b0, the predictions of Equation (25) agree better with the
numerical values, and for large b0, the numerical values agree
better with predictions from Equation (35) (see Section 4.1).
However, the values that diverge on the scaling would require
values of fS> 3 and are restricted by our prior. This forces a
lower value of ρ than expected to increase the magnification
(Equation(8)).
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Table 2
Parameters for the Event 1 Light Curves in the Left Panel of Figure 9

Γ b0 β η1 η2 ρn ρ1 ρ2 fS,n fS,1 fS,2 t*,n t*,1 t*,2

0.0 0.0 1.000 1.00 1.00 10.00 10.00 10.00 1.00 1.00 1.00 0.33 0.33 0.33
0.2 0.980 1.09 1.11 10.41 10.42 10.42 1.08 1.09 1.11 0.33 0.33 0.33
0.4 0.917 1.42 1.55 11.89 11.90 11.90 1.41 1.42 1.55 0.36 0.36 0.36
0.6 0.800 2.44 3.05 15.58 15.62 15.62 2.43 2.44 3.05 0.41 0.41 0.41
0.8 0.600 7.72 12.86 17.08 27.78 27.78 3.00 7.72 12.86 0.54 0.54 0.54

0.2 0.0 1.000 1.00 1.00 10.00 10.00 10.00 1.00 1.00 1.00 0.33 0.33 0.33
0.2 0.980 1.09 1.11 10.34 10.42 10.42 1.07 1.09 1.11 0.33 0.33 0.33
0.4 0.917 1.42 1.55 11.60 11.90 11.90 1.37 1.42 1.55 0.36 0.36 0.36
0.6 0.800 2.44 3.05 14.60 15.63 15.63 2.24 2.44 3.05 0.41 0.41 0.41
0.8 0.600 7.72 12.86 16.23 27.78 27.78 3.00 7.72 12.86 0.54 0.54 0.54

0.4 0.0 1.000 1.00 1.00 10.00 10.00 10.00 1.00 1.00 1.00 0.33 0.33 0.33
0.2 0.980 1.09 1.11 10.31 10.42 10.42 1.07 1.09 1.11 0.33 0.33 0.33
0.4 0.917 1.42 1.55 11.39 11.90 11.90 1.35 1.42 1.55 0.36 0.36 0.36
0.6 0.800 2.44 3.05 13.92 15.63 15.63 2.14 2.44 3.05 0.41 0.41 0.41
0.8 0.600 7.72 12.86 15.41 27.78 27.78 3.00 7.72 12.86 0.53 0.54 0.54

0.6 0.0 1.000 1.00 1.00 10.00 10.00 10.00 1.00 1.00 1.00 0.33 0.33 0.33
0.2 0.980 1.09 1.11 10.29 10.42 10.42 1.07 1.09 1.11 0.33 0.33 0.33
0.4 0.917 1.42 1.55 11.47 11.90 11.90 1.39 1.42 1.55 0.36 0.36 0.36
0.6 0.800 2.44 3.05 13.89 15.63 15.63 2.23 2.44 3.05 0.40 0.41 0.41
0.8 0.600 7.72 12.86 14.61 27.78 27.78 3.00 7.72 12.86 0.53 0.54 0.54

0.8 0.0 1.000 1.00 1.00 10.00 10.00 10.00 1.00 1.00 1.00 0.33 0.33 0.33
0.2 0.980 1.09 1.11 10.37 10.42 10.42 1.09 1.09 1.11 0.33 0.33 0.33
0.4 0.917 1.42 1.55 11.65 11.90 11.90 1.46 1.42 1.55 0.36 0.36 0.36
0.6 0.800 2.44 3.05 14.86 15.62 15.62 2.65 2.44 3.05 0.41 0.41 0.41
0.8 0.600 7.72 12.86 13.87 27.78 27.78 3.00 7.72 12.86 0.53 0.54 0.54

1.0 0.0 1.000 1.00 1.00 10.00 10.00 10.00 1.00 1.00 1.00 0.33 0.33 0.33
0.2 0.980 1.09 1.11 10.44 10.42 10.42 1.11 1.09 1.11 0.33 0.33 0.33
0.4 0.917 1.42 1.55 12.03 11.90 11.90 1.57 1.42 1.55 0.36 0.36 0.36
0.6 0.800 2.44 3.05 15.54 15.62 15.62 3.00 2.44 3.05 0.41 0.41 0.41
0.8 0.600 7.72 12.86 13.19 27.78 27.78 3.00 7.72 12.86 0.53 0.54 0.54

Table 3
Parameters for the Event 2 Light Curves in the Right Panel of Figure 9

Γ b0 β η1 η2 ρn ρ1 ρ2 fS,n fS,1 fS,2 t*,n t*,1 t*,2

0.0 0.0 1.000 1.00 1.00 4.47 4.47 4.47 0.20 0.20 0.20 0.33 0.33 0.33
0.2 0.980 1.09 1.11 4.66 4.66 4.66 0.22 0.22 0.22 0.33 0.33 0.33
0.4 0.917 1.42 1.55 5.31 5.32 5.32 0.28 0.28 0.31 0.36 0.36 0.36
0.6 0.800 2.44 3.05 6.96 6.99 6.99 0.48 0.49 0.61 0.41 0.41 0.41
0.8 0.600 7.72 12.86 12.14 12.42 12.42 1.46 1.54 2.57 0.54 0.54 0.54

0.2 0.0 1.000 1.00 1.00 4.47 4.47 4.47 0.20 0.20 0.20 0.33 0.33 0.33
0.2 0.980 1.09 1.11 4.65 4.66 4.66 0.22 0.22 0.22 0.33 0.33 0.33
0.4 0.917 1.42 1.55 5.24 5.32 5.32 0.28 0.28 0.31 0.36 0.36 0.36
0.6 0.800 2.44 3.05 6.76 6.99 6.99 0.48 0.49 0.61 0.40 0.41 0.41
0.8 0.600 7.72 12.86 11.32 12.42 12.42 1.41 1.54 2.57 0.53 0.54 0.54

0.4 0.0 1.000 1.00 1.00 4.47 4.47 4.47 0.20 0.20 0.20 0.33 0.33 0.33
0.2 0.980 1.09 1.11 4.64 4.66 4.66 0.22 0.22 0.22 0.33 0.33 0.33
0.4 0.917 1.42 1.55 5.23 5.32 5.32 0.28 0.28 0.31 0.35 0.36 0.36
0.6 0.800 2.44 3.05 6.71 6.99 6.99 0.49 0.49 0.61 0.40 0.41 0.41
0.8 0.600 7.72 12.86 11.26 12.42 12.42 1.54 1.54 2.57 0.53 0.54 0.54

0.6 0.0 1.000 1.00 1.00 4.47 4.47 4.47 0.20 0.20 0.20 0.33 0.33 0.33
0.2 0.980 1.09 1.11 4.64 4.66 4.66 0.22 0.22 0.22 0.33 0.33 0.33
0.4 0.917 1.42 1.55 5.26 5.32 5.32 0.29 0.28 0.31 0.35 0.36 0.36
0.6 0.800 2.44 3.05 6.77 6.99 6.99 0.52 0.49 0.61 0.40 0.41 0.41
0.8 0.600 7.72 12.86 11.37 12.42 12.42 1.73 1.54 2.57 0.53 0.54 0.54

0.8 0.0 1.000 1.00 1.00 4.47 4.47 4.47 0.20 0.20 0.20 0.33 0.33 0.33
0.2 0.980 1.09 1.11 4.66 4.66 4.66 0.22 0.22 0.22 0.33 0.33 0.33
0.4 0.917 1.42 1.55 5.32 5.32 5.32 0.30 0.28 0.31 0.35 0.36 0.36
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