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Abstract

Generation of synthetic computed tomography (sCT) for magnetic resonance imaging (MRI)-only 

radiotherapy is emerging as a promising direction because it can eliminate the registration error 

and simplify clinical workflow. The goal of this study was to generate accurate sCT from standard 

T1-weighted MRI for brain patients. CT and MRI data of twelve patients with brain tumors were 

retrospectively collected. Linear mixed-effects (LME) regression models were fitted between CT 

and T1-weighted MRI intensities for different segments in the brain. The whole brain sCTs were 

generated by combining predicted segments together. Mean absolute error (MAE) between real 

CTs and sCTs across all patients was 71.1 ± 5.5 Hounsfield Unit (HU). Average differences in the 

HU values were 1.7 ± 7.1 HU (GM), 0.9 ± 5.1 HU (WM), −24.7 ± 8.0 HU (CSF), 76.4 ± 17.8 HU 

(bone), 20.9 ± 20.4 HU (fat), −69.4 ± 28.3 HU (air). A simple regression technique has been 

devised that is capable of producing accurate HU maps from standard T1-weighted MRI, and 

exceptionally low MAE values indicate accurate prediction of sCTs. Improvement is needed in 

segmenting MRI using a more automatic approach.
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1. Introduction

Magnetic resonance imaging (MRI) gives better anatomical and functional information 

compared to computed tomography (CT) when dealing with soft tissues, which helps in 

accurate differentiation of tumor from surrounding organs at risk (OAR) during radiotherapy 

treatment planning (RTP) (Mitchell et al., 2006; Devic, 2012). However, CT remains the 

fundamental standard imaging modality for RTP mainly because of the direct relationship 
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between CT Hounsfield Unit (HU) value and electron density that is exploited for dose 

calculations, while such a direct relationship is non-existent for MRI. CT also provides an 

accurate bony anatomy which is necessary for generating digitally reconstructed radiographs 

(DRRs) for patient positioning verification. Using the two imaging modalities together, 

which requires bringing of soft tissue structure contours of MRI images onto the CT scans, 

has its own advantages (Villeirs et al., 2005; Devic, 2012), but may result in systematic 

errors which are inherent in the process of MRI-to-CT co-registration (Roberson et al., 
2005). These systematic errors can potentially result in an increased dose to OAR and a 

substantial miss of the target volume. Moreover, the MRI-CT workflow introduces 

additional ionizing radiation exposure to the patient and puts extra financial and 

infrastructural burden on the health care system.

Lately, interest among researchers has developed in completely replacing CT with MRI 

(Edmund and Nyholm, 2017; Johnstone et al., 2018), which will not only eliminate the co-

registration errors but also reduce the number of scanning sessions for the patient. Broadly 

speaking, five types of techniques have been used to generate synthetic CT (sCT) namely the 

bulk density assignment, the atlas-based, the voxel-based, the hybrid, and the deep learning 

techniques. The bulk density assignment technique is based on assigning bulk electron 

densities to different tissue segments separated manually or automatically from an MRI 

image (Lee et al., 2003; Eilertsen et al., 2008), which may introduce unacceptable dose error 

and cannot generate accurate DRRs (mainly based on bony structures) for patient 

positioning verification. The atlas-based methods largely depend on deformable registration 

of CT/MRI atlas pairs on the MRI image of a new patient (Dowling et al., 2012; Demol et 
al., 2016). Such methods have inherent registration uncertainties due to inter-patient 

anatomical differences. The voxel-based methods aim to characterize tissue properties based 

on MRI voxel intensities (Johansson et al., 2011; Hsu et al., 2013; Korhonen et al., 2014). 

However, these methods often generate ambiguous results because of the absence of a direct 

one-to-one correspondence between MRI voxel intensity and electron density. Moreover, 

lack of difference between bone and air in the conventional MRI sequences also complicates 

the matter further. Some groups have used unconventional MRI sequences like the ultra-

short echo time (UTE) to overcome this problem (Johansson et al., 2011). However, image 

quality of UTE sequence has been reported to be far from satisfactory as blood vessels and 

bone may appear indistinguishable in such images (Hsu et al., 2013), and this 

unconventional MRI sequence adds significant scan time thus increasing the possibility of 

patient movement and discomfort. The hybrid methods that combine atlas-based and voxel-

based methods can still be over reliant on a single or multiple image registrations and only 

improve the accuracy of sCT moderately (Gudur et al., 2014). Approaches using deep 

learning have shown great promise recently (Han, 2017; Emami et al., 2018; Xiang et al., 
2018). However, training of the neural network model itself takes a couple of days even 

though it needs to be done only once, and mean absolute error (MAE) between sCT and real 

CT is still over 80 HU for brain tumor patients.

In the present work, a voxel-based linear mixed-effects (LME) regression model is being 

reported and it has been found to be effective in generating an accurate sCT from a patient’s 

conventional T-1 weighted MRI image of the brain. The sCTs were compared geometrically 

with their corresponding real CTs.
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2. Materials and methods

2.1 Image acquisition and processing

Whole head MRI and CT scans were obtained from twelve patients in our institution and 

were anonymized for this research (Newhauser et al., 2014). The criteria of selection are: 

patients undergo radiotherapy for brain tumors in our institution with both CT and MRI 

available; both CT and MR should be free of motion artifacts; CT and MR should be 

acquired on the same day to exclude any anatomical variation. These patients were randomly 

selected from a collection of patients having undergone stereotactic radiosurgery in our 

institute within last 10 years, and should represent the whole brain patient population. 

Standard T1-weighted MRI images were obtained from 1.5 Tesla Phillips Intera scanner 

using 3D GRE sequence with TE/TR= 3.414/7.33 ms, flip angle = 8o, voxel size 0.9833 × 

0.9833 × 1.1 mm3, field of view (FOV) 236 × 236 × 158.4 mm3 and pixel bandwidth 241 

Hz/pixel. CT images were acquired from GE LightSpeed RT 16 CT scanner operating at 140 

kVp and 380 mAs with voxel resolution 0.703125 × 0.703125 × 1.25 mm3 and FOV 360 × 

360 × 190 mm3.

An open source software 3D Slicer (version 4.8) was used for image processing. All the 

MRI and CT images were re-sampled to voxel sizes 1×1×1 mm3 for uniformity and all non-

tissue, background voxels outside the brain were removed through segmentation editor in 

3D-Slicer. MRI bias correction was also applied using the N4itk MRI Bias correction 

module available in 3D-slicer. The MRI-CT image pair of each patient was then co-

registered using affine registration. A single patient was selected randomly as reference and 

all the remaining patients’ MRI and CT images were registered with reference patients’ MRI 

and CT images using affine method in 3D Slicer. Using a combination of volumetric 

segmentation based on density threshold in 3D Slicer and automatic segmentation in another 

open source software volBrain (Manjon and Coupe, 2016), six different regions namely gray 

matter (GM), white matter (WM), fat, cerebrospinal fluid (CSF), air and bone in the CT and 

MRI images of all patients were segmented: bone and air regions were segmented on CT 

images using density threshold option in 3D Slicer while GM, WM and CSF were 

segmented on MRI images using volBrain; because each patient’s MRI and CT images were 

co-registered, the segmentations on one image can be copied over to the other and the 

remaining parts that were not segmented on either side will be segmented as fat using 

morphological operations; to obtain better HU mapping, bone was further divided into low- 

(<800 HU), medium- (800 ~1200 HU) and high-density (>1200 HU) bones.

2.2 sCT generation

MATLAB (Mathworks, Natick, MA) programming was used for fitting an LME regression 

model between a segment’s CT HU values and the corresponding MR intensities with their 

spatial indices (x, y, z) of voxels. Each patient was assigned a numerical number starting 

from 1 for patient one to 12 for patient twelve, and this patient number was used for the 

random effect on the intercept as shown by equation (1):

CT = K 1 + MRI + X + Y + Z + 1 PatientNumber (1)
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where MRI, X, Y, and Z are the predictor variables, PatientNumber is being used for the 

random effect, and K is a matrix of coefficients obtained from the derived LME model. 

Similar models were fitted for all eight different segments (GM, WM, CSF, fat, air, low-

density bone, medium-density bone and high-density bone). It is to be noted here that for all 

three bone segments, reciprocal values of the MRI intensities were used for the MRI variable 

so as to establish an inversely proportional relationship between HU values and MR 

intensities (Yu et al., 2014). The function fitlme from MATLAB was used with the following 

parameters: CovariancePattern: FullCholesky, FitMethod: Maximum likelihood estimation, 

Maximum number of iterations allowed: 10000. Performance of the LME model was 

evaluated using leave-one-out cross validation (LOOCV) approach: LME models were fitted 

based on the data of any eleven patients (training) and these models were used to predict the 

segments for the remaining twelfth patient (validation) in the study dataset, and this 

procedure is repeated for all possible combinations of training and validation data. The eight 

different segments (with their HU maps) thus predicted for a patient were then simply 

combined together to generate the sCT of that patient. Figure 1 shows a schematic of sCT 

generation.

2.3 Image evaluation

Differences in HU values between sCT and real CT of each patient for the six different 

segments (with a combination of low-, medium- and high-density bones taken as a single 

segment) as well as the full FOV (within the head region) were analyzed. MAE was 

calculated using equation (2):

MAE =
∑i = 1

N | CT i − sCT i |
N (2)

where N is the total number of image voxels, i corresponds to the voxel number in CT or 

sCT.

3. Results

Figure 2 (a) shows axial views of CT and MRI scans of a typical patient in this study along 

with the binary mask images corresponding to the six different segments, and the three sub-

segments of bone are shown separately in figure 2 (b). Figure 3 shows the real CT and sCT 

of a typical patient (number 12) along with the difference map. It can be seen that over- and 

under-predictions are prominent at air-tissue or bone-tissue interface regions, which is 

consistent with the literature (Johansson et al., 2012; Andreasen et al., 2015). On a 

workstation with a dual 2.6 GHz Intel Xenon E5–2670 processor and 64 GB Intel RAM, 

LME model training (required only once) takes around 50 minutes, image segmentations 

take less than 3 minutes for each patient, and sCT prediction takes 4–5 minutes for each 

patient. Table 1 shows the MAE values for all the patients and the average MAE was 71.1 

± 5.5 HU within patients’ head region. The main reason for the highest MAE value for 

patient 10 is the metal artifacts caused by dental filling materials. As shown in figure 4, the 

CT for patient 10 shows streak artifacts while the MRI on the same slice shows void signal 
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in the same area. The artifacts create uncertainties in tissue segmentation and HU value 

prediction. Differences in the average HU values of the six segments between real CT and 

sCT of all twelve patients were: 1.7 ± 7.1 HU (GM), 0.9 ± 5.1 HU (WM), −24.7 ± 8.0 HU 

(CSF), 76.4 ± 17.8 HU (bone), 20.9 ± 20.4 HU (fat), −69.4 ± 28.3 HU (air). Table 2 

compares our study with previous sCT studies using brain tumor patients.

4. Discussion

A LME regression method was developed to generate sCT for MRI-only RTP. Compared 

with previous studies, our research is innovative: (1) it utilizes a novel and simple LME 

model which consists of both conventional linear regression and the random effects. The 

model is much simpler than the Bayesian framework used in the literature (Gudur et al., 
2014) and superior to other statistical models that do not integrate intensity and geometry 

information (Johansson et al., 2011; Hsu et al., 2013); (2) it only needs standard T1-

weighted MRI, which makes our methods easy to implement and avoids the issues 

associated with specialized sequences; (3) it does not require deformable registration 

between training and new patients like previous studies (Dowling et al., 2012; Gudur et al., 
2014; Uh et al., 2014; Demol et al., 2016), which avoids the possible uncertainties or errors 

associated with deformable image registration.

Even though radiological and dosimetric evaluations still need to be completed, excellent 

HU value agreement between real CT and sCT as found in the geometric evaluation suggests 

that our method has a good potential for MRI-only RTP workflow. The MAE value observed 

with this method was lower than those obtained by others ranging between 80 HU to 200 

HU for the brain as shown in Table 2. Moreover, some of the techniques in other studies 

were much more complex than our method. A major limitation of the present method of 

generating sCT is its dependence on a semi-automatic segmentation of MRI which relies on 

the availability of CT images for bone and air segmentation, while CT images will not be 

available for a new patient in MRI-only RTP. We are working towards making the 

segmentation process completely automatic and removing any dependence on the 

availability of CT images. It is anticipated that an exhaustive work using the present LME 

regression technique along with automatic segmentation based on MRI only and radiological 

and dosimetric assessment of sCTs will be shortly communicated as a full-length paper.

5. Conclusions

Using a LME model, accurate relationships have been established between CT HU values 

and MRI intensities for different segments within the brain. This should be exploited to 

generate reliable sCT for MRI-only RTP.
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Figure 1. 
A schematic of the sCT generation procedure used in this work.
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Figure 2. 
(a) Axial views of CT, MRI, segmentations of GM, WM, CSF, bone, fat, and air on the same 

slice for a typical patient in this study. (b) Axial view of bone segment which is further 

subdivided into low-, medium- and high-density bones.
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Figure 3. 
Axial (first row), coronal (second row) and sagittal (third row) slices of real CT, sCT, and 

their difference map for a typical patient (number 12).

Pandey et al. Page 10

Biomed Phys Eng Express. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
CT and MRI images for patient 10.
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Table 1.

The individual MAE (HU) values for all 12 patients, the mean MAE and standard deviation (STD).

Patient number

1 2 3 4 5 6 7 8 9 10 11 12 Mean STD

MAE 68.0 70.9 66.4 76.7 69.9 69.5 74.7 66.5 72.4 80.4 60.7 76.6 71.1 5.5
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Table 2.

Comparison with previous sCT studies using brain tumor patients.

Authors Technique used to generate 
sCT

Num of 
patients

Computation time Mean difference between sCT 
and real CT (HU)

Johansson et al., 
(2011)

Voxel-based, UTE and T2-
weighted SPACE MRI sequences

5 Model training time N/A. 110 s 
for sCT generation

137 mean MAE (for voxels 
inside the binary mask)

Rank et al., (2013) Voxel-based, TSE, UTE MRI 
sequences

3 N/A 140.7~165.2 MAE (for masked 
voxels)

Uh et al., (2014) Atlas-based, standard T2-
weighted MRI

26 271.4 minutes for the best 
method

207 ± 33 root mean square 
difference (for the best method)

Gudur et al., (2014) Hybrid technique, standard T1-
weighted MRI

9 N/A 126 ± 25 MAE (within the head 
region)

Zheng et al., (2015) Voxel-based, UTE/Dixon, T1-
FFE, T2-TSE, FLAIR MRI

10 N/A 147.5 ± 8.3 MAE (for full FOV)

Su et al., (2015) Voxel-based, unsupervised 
clustering, UTE MRI

9 Average clustering time per 
patient is 67.3 s for 
FCMCOMKAT and 123.1 s for 
FCMtoolbox

130±16 mean absolute prediction 
deviation (for the entire volume)

Andreasen et al., 
(2015)

Atlas-based (patch) method, 
standard T1-weighted MRI

5 15 hours 85 ± 14 MAE (within the head 
region)

Price et al., (2016) Voxel-based, UTE/Dixon, T1-
FFE, T2-TSE, FLAIR MRI

12 N/A 149.2 ± 8.7 MAE (for full FOV)

Koivula et al., 
(2016)

Voxel-based, intensity-based dual 
model, standard MRI sequences

10 Conversion time from MRI to 
sCT 30 s per patient

34 MAE (excluding air cavities 
in the head. Not comparable with 
other studies)

Han et al., (2017) Deep learning convolutional 
neural network, standard T1-
weighted MRI

18 2.5 days for model training, 9 s 
for sCT generation

84.8 ± 17.3 MAE (within the 
head region)

Emami et al., 
(2018)

Deep learning generative 
adversarial networks, standard 
T1-weighted MRI

15 11 hours for GAN training, 5.7 
± 0.6 s for sCT generation

89.3 ± 10.3 MAE (within the 
head region)

Xiang et al., (2018) Deep learning embedding 
convolutional neural network, 
standard T1-weighted MRI

16 2–3 days for model training, 46 
s for sCT generation

85.4 ± 9.24 MAE (within the 
head region)

Our study Voxel-based, LME regression 
model, standard T1-weighted 
MRI

12 50 minutes for model training, 3 
minutes for segmentation, 4–5 
minutes for sCT generation

71.1 ± 5.5 MAE (within the head 
region)
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