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For example, in ancient Greece the documents were written in a space-efficient form by 

removing all spaces between words. This conserved the costly papyrus and allowed for 

more economical storage of knowledge. In addition, Greeks used to appraise 

succinctness as a virtue; from early age, children were taught to speak “lakonika”, 

meaning “concise” in the Greek language.

The value of data compression is evident when either the data-handling 

resources for storage or communication are scarce, or when the amount o f data becomes 

overwhelmingly large. Unfortunately, people always tend to produce more data than 

they can efficiently handle, no matter how much data-handling capability they have. In 

the early days of personal computers, 10 MB of disk space were thought to be enough 

for most applications. Nowadays, 1,000 MB is often not enough; users request 2 GB or 

more in a standard PC configuration. In the communications arena the situation is 

similar. A few years ago, 300 baud rate was considered sufficient; today, a modem 

must be capable of at least 28,800 baud rate to compensate for data-hungry applications. 

This situation is the result of a moving target: the changing type of information-delivery 

media. Until quite recently, text was the basis of information delivery. When the 

technology matured for text-based applications, images were added, and the 

requirements increased. As soon as the technology could handle images efficiently, 

information delivery was augmented with video. In a few years, virtual reality 

applications will make the storage and communication requirements to soar again. This 

situation is responsible for the major importance of data compression technology.
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Data compression is also important when electronics replace traditional media. 

For example, only a few years ago, medical imaging was completely film-based, with 

radiologists using exclusively films and viewboxes to make their diagnoses. Digital 

technologies were not part of routine examinations, and data compression was not 

important. However, the computer revolution has radically changed the medical 

environment, which is currently moving toward the goal of “filmless hospital”. Digital 

systems are an integral part of CT, MRI, PET, SPECT, and Ultrasound imaging and 

even traditionally non-digital techniques (e.g., film X-rays) are gradually evolving to 

digitized imaging. All these digital imaging technologies create problems for storing, 

communicating and manipulating large amounts of data. An MRI or CT exam requires 

an average of 5 to 12 Mbytes of storage, and a single digitized X-ray film requires as 

much as 24 Mbytes. When thousands of exams must be stored digitally, the problem 

becomes critical. In this environment, data compression has become an indispensable 

tool.

Data compression techniques are based on the removal of redundant data. In 

monochrome images, three types of data redundancy can be found: interpixel, 

psychovisual, and symbol redundancy. These redundancies exist between the pixel 

values of an individual image. Current compression methods efficiently reduce these 

types of redundancy. However, in sets of similar images, an additional type of 

redundancy exists, which is referred here as “set redundancy”.

This study introduces and investigates the concept of set redundancy (chapter 3), 

and proposes a new theoretical compression model that includes set redundancy

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



reduction: the Enhanced Compression Model (chapter 4). Based on this model, three 

new compression methods are presented (chapters 5 and 6), which collectively are 

referred to as Set Redundancy Compression, or SRC methods. These methods can be 

used to improve compression in sets o f similar images. “Similar images” are defined as 

images with comparable histograms and analogous spatial distributions o f features. 

Based on this definition, many types of image databases store large sets of similar 

images. Medical image databases are an example in which the Enhanced Compression 

Model can be used very effectively. In this dissertation, application of the SRC methods 

on a small medical image database is presented (chapter 7). The experimental results 

show as much as a two-fold improvement in compression over existing image 

compression methods. These results confirm the existence of “set redundancy” in 

similar images, validate the Enhanced Compression Model as an improved theoretical 

model, and demonstrate the practical value of the proposed SRC compression methods.
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C h a p t e r  2

I m a g e  C o m p r e s s i o n

2.1 Introduction

Data compression is defined as the process o f encoding the data using a 

representation that reduces the overall size of the data. This reduction is possible when 

the original dataset contains some type of redundancy. Digital image compression is a 

field that studies methods for reducing the total number o f bits required to represent an 

image. This can be achieved by eliminating various types of redundancy that exist in 

the pixel values.

The rapid development of imaging technologies has generated great interest in 

efficient compression methods. One reason for this interest is that digital images are 

stored as datasets which are often very large. Some examples of the storage volume 

required for different types of digital images are:

• low resolution color video frame: 0.8 Mbytes (512 x 512 pixels, 3 bytes per pixel)

• electronic or scanned photograph: 18 Mbytes (3000 x 2000 pixels, 3 bytes per 

pixel)

5
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• digital medical X-ray image: 24 Mbytes (4000 x 4000 pixels, 12 bits per pixel)

• LANDS AT image: 216 Mbytes (6000 x 6000 pixels, 6 bytes per pixel)

The large amounts of data required to represent visual information often 

overtaxes the capabilities of current computer systems. Image compression can 

significantly help by reducing these data storage requirements. This in turn enables 

faster transmission of images and it can also provide enhanced data security. Moreover, 

it makes possible the development o f efficient image processing algorithms that need 

less processing time by working directly with the compressed data (for example, Yeo 

and Liu [Yeo95] developed a method for volume rendering of DCT-compressed 3- 

dimensional data).

For these reasons, image compression is an important tool in the imaging 

environment. Furthermore, the role o f image compression becomes increasingly 

important as the amount of imaging data produced per year grows exponentially, the 

number o f imaging applications increases, and the transmission of digital images is 

already the largest portion of data traffic in many computer networks.

There are two basic types o f compression: lossless and lossy. In lossless 

compression no information is lost, and decompressing the data always yields exactly 

the original data. In lossy compression however, the procedure is not reversible and the 

decompressed data only approximately match the original data. Generally, in image 

compression the lossy methods have better compression ratios than the lossless ones. 

However, lossy methods can result in degraded image quality. For some applications
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this tradeoff is appropriate (e.g., digital videoconferencing), but for others it can be 

unacceptable (e.g., applications in Medical Imaging).

In digital images three basic data redundancies can be identified and reduced: the 

coding redundancy, the interpixel (or spatial\ redundancy, and the psychovisual 

redundancy. Color images also contain spectral redundancy, and video signals exhibit 

temporal redundancy.

Because of its importance, intensive research in the last half century has 

produced a large number o f data compression methods. A review of the more well- 

known algorithms will be presented in this chapter, along with a brief description for 

each.

Before describing any compression methods, some terminology must be 

introduced. Every dataset is a sequence of symbols. This sequence can be considered to 

be the output of an information source S, capable of generating symbols taken from the 

source alphabet {ao, fl/, ..., a„). The elements of the source alphabet are called letters 

or simply symbols. For every information source S, there is a probability Pr(q,) that the 

source will produce the symbol a,. Entropy is a measure of information, and it 

represents the minimum size of a dataset necessary to convey a particular amount of 

information (see Appendix A). Note that the terms “information” and “data” are not 

synonymous. Data are used to convey information, but there is one-to-many 

correspondence between a certain piece of information and the datasets that can be used 

to describe it. For example, to describe the number “one”, we can use “1”, or “01”, or 

“001”, etc. Clearly, there is no upper bound on the amount of data that can be used to
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describe the same piece of information. The difference between the size of a dataset and 

its entropy (theoretically its minimum size) gives a measure of the data redundancy 

present in the dataset.

Research in data compression has grown rapidly the last 50 years. This resulted 

in a large number of both lossless and lossy compression methods. It is difficult to 

create an exhaustive list of all techniques and their variations that have been developed 

throughout these years. Review papers (e.g., [Netravali80, Jain81a, Bassiouni85, 

Wong95]) usually provide an overview of the latest developments in this area and the 

major techniques used. In the same spirit, only some of the major image compression 

methods will be reviewed here. These methods are representative o f research directions 

in data compression.

2.2 Lossless Compression Methods

2.2.1 Huffman Coding

Huffman coding is one of the oldest compression methods. It is based on data 

statistics, and it represents the symbols of the alphabet by variable code length, 

depending on their probability of occurrence (the more probable a symbol is, the shorter 

the code it is assigned). It was developed by Huffman [Huffman52] and is very similar 

to a technique developed earlier (1949) by Shannon and Fano. The difference between 

the two techniques is in the way the code for each symbol is constructed. Huffman 

coding constructs the code-generating tree bottom-up, starting from the leaves which 

correspond to symbol probabilities. The Shannon-Fano technique constructs the tree
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top-down, by recursively dividing the symbols into two groups of equal total 

probabilities. Huffman coding performs better than Shannon-Fano’s technique, and 

actually Huffman proved that his technique was optimal under certain assumptions 

(which however do not always hold). There are many variations of Huffman’s 

technique; two examples are the Modified Huffman Encoding [Hankamer79], and the 

Dynamic Huffman Encoding [Knuth85].

2.2.2 Arithmetic Coding

This method approaches very close the theoretical limit of compression 

efficiency. It is based on data statistics like Huffman’s method, but it is usually more 

efficient. Its basic advantage is that unlike Huffman coding, it does not have the 

limitation that each codeword has to be at least one-bit long. However, its 

implementation is complicated and is very computationally intensive. The basic idea in 

arithmetic coding is to divide the interval between 0 and 1 into a number of smaller 

intervals corresponding to the probabilities of the message’s symbols. Then the first 

input symbol selects an interval, which is further divided into smaller intervals. The 

next input symbol selects one of these intervals, and the procedure is repeated. In this 

way, the selected interval narrows with every symbol, and at the end, any number inside 

the final interval can be used to represent the message.

Arithmetic coding has evolved through the work of many researchers. The first 

names associated with it are Elias and Abramson (circa 1960). A theoretical description 

of this method was presented by Rissanen and Langdon [Rissanen79], whereas
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implementation issues can be found in [Langdon84]. A revised version of arithmetic 

coding has been developed recently, and it is based on the work of Moffat, Neal and 

Witten [Moffat95], and Witten, Neal and Cleary [Witten87], A variation of arithmetic 

coding is the Q-coder, developed in IBM in the late 1980’s [Pennebaker88, Mitchell88].

2.2.3 Lempel-Ziv Compression

Lempel-Ziv compression actually refers to two different approaches to 

dictionary-based compression: the LZ77 [Ziv77] and the LZ78 [Ziv78], both developed 

by Ziv and Lempel. In LZ77, the general idea is to have a “sliding window” which 

moves over the data. When a data sequence is encountered which already exists in the 

current window, then it is substituted by the pair {position, length} which points back to 

the existing sequence. LZ78 does not use this “sliding window”. Instead, it constructs 

dynamically a dictionary from the input file and then it replaces data sequences by their 

index in the dictionary.

Several compression methods have been developed based on these ideas, 

differing only on how they manage the dictionary. One of the most well known 

methods, the LZW (Lempel-Ziv-Welch), was designed by Welch in 1984 [Welch84]. 

This method is based on the LZ78 scheme, and it starts with a small dictionary (single 

letters only) expanding it with new strings during compression. The dictionary does not 

need to be stored, since it can be rebuilt during decompression.
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2.2.4 Run Length Encoding

In its simpler implementation, Run-Length Encoding replaces repeated data by a 

{length, value} pair, where “value” is the repeated data value and “length” is the 

number of repetitions. This technique is especially successful in compressing bi-level 

images, and it is widely used in facsimile (FAX) systems. If direct application of Run- 

Length Encoding on a gray-scale image does not produce satisfactory compression, then 

the image can be decomposed into bit planes and every bit-plane can be compressed 

separately. There are many variations of Run-Length Encoding, for example 

[Tanaka82].

2.2.5 Differential Pulse Code Modulation (DPCM)

DPCM is an image compression method that is based on predictive coding. The 

basic idea is to predict the value of each pixel by using the values of its neighboring 

pixels, and then store only the prediction error. Typically, the errors are small, therefore 

fewer bits are required to store them. Depending on how many neighboring pixels are 

used, DPCM is classified as 1st order (1 pixel), 2nd order (2 pixels), 3rd order (3 

pixels), etc. A prediction model that is often used for 3rd order DPCM is the following: 

P(x,y) = r, • P(x -  l,y) -  r, • r, • P{x -  1 , y  -  1) + r2 • P(x,y -  1).

The values used for the coefficients ri and vi can vary, and usually they are image- 

dependent. A set of values that works well for many cases, and can simplify the 

calculations is r\ = r2 = 1. Usually, different regions in the same image have different
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optimal prediction coefficients. To account for this, adaptive prediction can be used, 

which splits the image into blocks and then computes independently the prediction 

coefficients for each block. Netravalli in [Netravali80] presented a review of predictive 

coding techniques.

2.2.6 Hierarchical Interpolation (HINT)

Hierarchical Interpolation [Roos88] is a multi-resolution coding scheme based 

on subsampling. It starts with a low resolution version of the input image, and it 

interpolates the pixel values to generate successively higher resolutions. The errors 

between the interpolation values and the real values are stored, along with the initial 

low-resolution image. Both the low-resolution image and the error values can be stored 

using fewer bits than the original image, therefore compression is achieved. The 

decompressor can reconstruct the original image using the same procedure, and adding 

the error values to the interpolation results.

2.2.7 Laplacian Pyramid

Laplacian Pyramid is a multi-resolution image compression method developed 

by Burt and Adelson [Burt83]. The basic idea is to construct successively lower 

resolution versions of the original image, and then find the differences between 

successive resolution versions. The lowest resolution image together with the 

difference images are sufficient to perfectly reconstruct the original image. Laplacian
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Pyramid has the drawback of increasing the number o f data values by 4/3, therefore it is 

difficult to achieve high compression ratios, although the difference values can be stored 

very economically. On the other hand, this method can be used efficiently for 

progressive transmission of images.

2.2.8 Other Methods

Some other lossless compression methods include Multiplicative Autoregression 

(MAR) [Das93], Bit-plane Encoding, Contour Encoding, etc. Several methods have 

been developed for specific applications. For example, bi-level images (black and 

white) can be compressed by using Constant Area Coding, White Block Skipping (see 

[Gonzalez93] for more details), or Irreducible Covers o f  Maximal Rectangles 

[Cheng88]. Another example is compression in business or scientific databases, which 

includes methods such as Multigroup Compression, Front/rear Compaction, and Null 

Bit-maps [Bassiouni85]. Finally, there are techniques that although rank low in 

compression efficiency, they still have theoretical interest. An example is the binary 

representation of integers using Fibonacci numbers instead of powers of 2. The 

properties of this representation can be used for variable length encoding. However, 

this method compares poorly with other methods [Lelewer87].
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2.3 Lossy Compression Methods

2.3.1 Quantization

Quantization is a many-to-one mapping that replaces a set of values with only 

one representative value. By definition this scheme is lossy, because after this mapping 

the original value cannot be recovered exactly. There are two basic types of 

quantization, the scalar and the vector quantization. Scalar quantization (SQ) performs 

many-to-one mapping on each value, for example, it may store only the 6 most 

significant bits from 8 bit values. Vector quantization (VQ) replaces arrays of values 

(i.e., blocks of pixels) with one value, which is the index from a “codebook”. The same 

index can be used to represent slightly different arrays of values, therefore it results in a 

lossy many-to-one mapping. VQ on images can cause edge distortion since edges 

cannot be reproduced perfectly by a small size codebook. VQ asymptotically 

outperforms SQ, but it is also more difficult to implement. The main implementation 

issues of VQ relate to codebook design, and to codebook search strategy. A widely used 

algorithm for codebook design is the LBG algorithm, developed by Linde, Buzo, and 

Gray [Linde80]. There is no standard algorithm for codebook searching, so different 

schemes are currently in use (for example, Full Search VQ, Tree-Structured VQ, Pruned 

Tree-Structured VQ, Entropy-Pruned Tree-Structured VQ, Entropy-Constrained VQ, 

etc.). A good review on VQ techniques is [Nasrabadi88].
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2.3.2 Transform Coding

Transform coding is a general scheme for lossy image compression. It uses a 

reversible, linear transform (such as the Fourier transform) to map the image into a set 

of coefficients which are then quantized and coded. A good transform packs as much 

information as possible into a small number of transform coefficients. Then 

quantization selectively eliminates the coefficients that carry the least information. To 

simplify the computations, the image is usually divided into a number of small blocks, 

and the transform is applied separately to each of these blocks. There are numerous 

transforms that can be used, including Discrete Fourier (DFT), Discrete Cosine (DCT), 

Karhunen-Loeve (KLT), Waish-Hadamard (WHT), etc. The one that is theoretically 

best, but usually not practical, is the KLT, which is based on the Hotelling Transform. 

The best alternative is the DCT which is used by most practical transform systems. 

Transform coding methods are suitable for progressive transmission of images. A rough 

approximation of the original image can be constructed with only a few coefficients, and 

it can be progressively refined as more coefficients are received. For a review of 

transform coding techniques, see [Wintz72],

2.3.3 Discrete Cosine Transform (DCT)

DCT is one of the most efficient transform coding schemes. It is also the base of 

the JPEG standard for image compression [Wallace91]. For an image block of size 

LxL, the 2-D DCT can be expressed as follows:
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(/./) are coordinates of the pixels in the initial block,

(*,/) are coordinates of the coefficients in the transformed block,

x,j is the value of the pixel in the initial block,

Yk,i is the value of the coefficient in the transformed block,

* = 0 ,1 ,..., L-1,

/ = 0 , 1 , 1 - 1 ,  and

f 1/2 , i f  k = 1 = 0 

CtJ = 1  l / V 2 , i f  k =  0 or 1 =  0 
[l , i f  * * 0 and / *  0.

Some of the advantages of DCT over other transform coding methods are the use 

of real arithmetic, less computational complexity, the existence of fast DCT algorithms, 

and the availability of DCT chips. A disadvantage of DCT is the blocking (or tiling) 

artifacts that appear in high compression ratios. The same artifacts may appear in other 

transforms as well, because typically the transforms are implemented on pixel blocks,

rather than the whole image. To avoid these artifacts, full-frame DCT can be used.

However, the tradeoff is the increased computational requirements and the appearance 

of ringing artifacts (periodic patterns due to the quantization of high frequencies).
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2.3.4 Subband Coding

In subband coding the input image is filtered through a set o f operations that 

divide the input into a number of bands. The result is a number of sub-images with 

specific properties; for example, a smoothed version of the original, plus a set of images 

with the horizontal, vertical, and diagonal edges that are missing from the smoothed 

version. These sub-images can be compressed more efficiently than the original image, 

because the restricted type of information in each sub-image allows well-tailored 

encoding. Advantages over other compression methods include the lack of blocking 

artifacts, and the flexibility this scheme offers for adaptive compression. The most 

successful subband coding method is the wavelet decomposition, which is reviewed 

next.

2.3.5 Wavelet Decomposition

The theory of wavelets was developed in the mid-eighties and since then it has

evolved into a valuable mathematical tool not only for image compression, but also for

many other applications in signal processing. A simple definition of wavelets was given

by Strang [Strang93]:

“A function W(x) is a wavelet i f  the translations and dilations ofW(x) 
are mutually orthogonal

The function W(x) is called mother wavelet. The set of translations and dilations of

W(x) forms an orthomormal basis, with good localization properties in both spatial and

frequency domains. This basis can be used to approximate any function, in the same
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way Fourier series can approximate continuous signals. The advantage of wavelets over 

Fourier analysis is that wavelets have short duration, unlike the infinite duration of sines 

and cosines used in Fourier series. Consequently, wavelets are more efficient in 

representing local functions appearing in images.

There are many different wavelet functions. Perhaps the simplest one is the 

Haar wavelet, which is simply a square-shaped function. Because of its simplicity, the 

Haar wavelet has a poor approximation to most signals. More complicated wavelet 

functions provide better performance. For example, the Daubechies wavelets are highly 

irregular and resemble fractals. This irregularity allows them (by shifting and scaling) 

to represent even complex signals [Strang94].

The theory of wavelets was first developed by Morlet, Grossmann, and Meyer; 

Daubechies and Mallat are two other researchers with major contributions. The 

research is ongoing, and the number of papers published on wavelets grows at a fast 

rate. Some survey or tutorial papers on this subject are [Mallat89], [Rioul91], 

[Strang93], [Strang94].

2.3.6 Fractal Compression

Fractal compression is based on the theory of fractal geometry, developed in the 

seventies by Mandelbrot [Mandelbrot77]. Fractal objects have very complicated 

structures (in fact, infinitely complicated) which result from the recursive application of 

simple geometrical transformations. This property of fractals when applied to 2- 

dimensions can create realistic synthetic images using only a few rules and parameters.
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Barnsley [Bamsley89] was the first to propose the use of fractals in the inverse 

direction; that is, given a natural image, to find a set of rules and parameters that can 

create an approximation to this image. This can potentially lead to significant 

compression, because fractal-generating rules (called Iterated Function Systems or IFS) 

typically require only a fraction of the storage space of the original image. However, 

finding these rules is an inverse problem, which requires very large computational 

effort. The first practical fractal image compression method was presented by Jacquin 

[Jacquin92], and currently most of the fractal compression methods are based on his 

technique.

Fractal compression is one of the newest image compression methods with 

promising initial results. The theory of fractals has also inspired the development of 

methods that do not directly use IFS, but use the self-similarity of images under 

different scales to improve compression (for example, [Pentland93]).

2.3.7 Other Methods

There are many other methods for lossy image compression, that employ a wide 

variety of theories and techniques. Some of these methods are very interesting in their 

approach to the problem of compression. Quadtree-based compression recursively 

divides non-uniform image regions into four sub-regions, until satisfactory uniformity is 

reached; its goal is to encode economically large, uniform image regions. Lapped 

Orthogonal Transform performs a transform on overlapping image blocks, in order to 

avoid blocking artifacts. Model-based coding uses a priori models and stores only the
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set of parameters that transform these models into the image to be coded. Block 

Truncation Coding divides an image into blocks of pixels, and then encodes every block

each pixel. Finally, Delta Modulation is a simple technique that uses 1 bit/pixel and a 

step function that follows the direction of the slope in the image signal.

Lossy compression methods result in some loss of quality in the compressed 

images. It is often necessary to use some distortion measure to quantify this quality 

loss. Distortion measures commonly used are the Root Mean Square Error (RMSE), the 

Normalized Mean Square Error (NMSE), and the Peak Signal-to-Noise Ratio (PSNR). 

These measures are defined as follows:

where the images have NxM  pixels (8 bits per pixel), f(i,j) represents the original 

image, and f '( i,j)  the reconstructed image after compression-decompression. Ad-hoc 

measures have also been proposed to measure specific distortions; for example, 

Saipetch et.al. [Saipetch95] used the Normalized Nearest Neighbor Difference to 

measure the intensity of blocking artifacts in DCT compression.

using only two values and a bitmap (1 ’s and 0’s) that indicates which value is used for

2.4 Distortion Measures

RMSE

NMSE = / ( / ,y )  , and

PSNR = 20 • log
RMSE)
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2.5 Conclusion

The list o f data compression methods grows as new algorithms or variations of 

the already existing ones are introduced. All these data compression methods are based 

on the same principles and on the same theoretical compression model, which reduces 

effectively the three types of redundancy present in gray-level images: the interpixel, 

psychovisual, and symbol redundancy. However, sets of similar images contain an 

additional type of redundancy, that is not reduced by the current compression methods. 

In the next chapter this new type of redundancy is presented, and its connection with 

image compression is established.
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C h a p t e r  3

S e t  R e d u n d a n c y

3.1 The Concept of “Set Redundancy”

As stated previously, interpixel, psychovisual, and coding redundancy are the 

three types of redundancy in still monochrome images. However, in a set o f similar 

images, one can observe a significant additional amount of inter-image redundancy. 

“Similar images” are images that have:

(a) similar pixel intensities in the same areas,

(b) comparable histograms,

(c) similar edge distributions,

(d) analogous distributions of features.

For example, consider a set of medical images produced by the same modality (e.g., CT) 

and depicting the same part of the human body (e.g., brain). These images have similar 

histograms, edge distributions, and features; in addition, their pixel intensities over the 

same areas are expected to be statistically similar. Therefore, according to the above 

definition, these images are statistically correlated and “similar” to each other.

22
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The existence of statistical correlation between two images can be verified 

graphically with a scatterplot of pixel values, and numerically by calculating the 

correlation coefficient. The scatterplot can be obtained by plotting the points (x., v.) 

where x, is the value at pixel position P, from image X, and y, is the value at the same 

pixel position from image Y. If the images are correlated, then these points will cluster 

around the 45° degree line passing through the origin. In fact, for perfectly correlated 

images (i.e., for identical images), these points form a perfect line with a 45° slope. On 

the other hand, for two non-correlated images, there is no pattern around the 45° line. 

The correlation coefficient can be used to quantify the statistical correlation. For two 

datasets X  -  (xi, X2 , ... x^) and Y = (yt, y2 , ... yv) with mean values xm and ym, the 

linear correlation coefficient is defined as [Neter89]:

Z(*, - * m)(y, - y J
r ______ i=i_______________________

ijZ ( * ,  ~xm)2JX(y, - y mf

This measure of correlation is also called the product-moment correlation coefficient, or 

Pearson’s r. In order to avoid negative values, r2 is often used instead of r. A value 

of r2 close to 0 indicates that no correlation exists between the two datasets X  and Y. 

A value approaching 1 shows the existence of a strong correlation. If r2 = 1.0 then 

the datasets are perfectly correlated; in the case of images this means that the images are 

identical.
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