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A bstract

The purpose of this research is to develop an automatically extractable abstract 

representation model of object-oriented (abbreviated as 0 0 )  software systems that 

captures the structure of the system and code dependencies in order to aid mainte­

nance. The research results include the development of two abstract representation 

models -  the low-level design pattern (LLDP) abstract model and the low-level soft­

ware architecture (LLSA) abstract model. The LLDP model is at a higher level of 

abstraction than the LLSA model. The LLSA model acts as an intermediate rep­

resentation between the LLDP model and an 0 0  software system. The design of 

the LLSA and LLDP representation models and the automatic extraction of these 

models from an 0 0  software system are significant contributions of this research.

An LLDP representation is a textual description of common 0 0  strategies. 

Three sets of LLDPs -  polymorphism, decoupling and messages are defined. LLDPs 

describe the structure, the benefits and consequences of a strategy. The design of 

the LLSA model considers the complexities inherent in 0 0  systems and the re­

quirements of a maintainer from such a model. The LLSA model defines software 

components, static and dynamic interfaces of components, and static and dynamic 

interactions between components. Software components are defined in terms of 0 0  

programming language constructs, and interactions between the components are 

defined in terms of 0 0  relationships that exist between the components. Under­

standing the relationships is necessary to understand what code dependencies occur 

and why they occur. The LLSA abstract model in conjunction with the LLDPs pro­

vides a view of software systems that captures the dependency relationships between 

code, the nature of the dependencies and the reasons why the dependencies must 

exist and be preserved. The LLSA model of C ++ software systems in particular

xiv
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are defined. The usefulness of the LLSA and LLDP models from the maintenance 

perspective axe explored.

A prototype CASE tool, pulse, was implemented to demonstrate the feasibility 

of automatic extraction of both models. Reverse engineering and code analysis 

techniques were developed to extract the LLSA relationships and interfaces and to 

recognize the LLDP model.

xv
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C hapter 1

Introduction

1.1 The Problem

Understanding a software system is a difficult problem. To understand some­

thing is to know its meaning. In order to grasp the meaning of something fully, 

one must know the reason for its existence and its nature. The purpose of this re­

search was to design a model which represents the nature of object-oriented software 

systems to aid program understanding from the maintenance point of view.

Every software system has a reason for its existence. User requirements to 

automate some process or activity often results in the development of a software 

system. A user may be a person, a company, a programmer, a hardware device or 

another software system. The requirements of a user are analyzed in the light of 

many factors even before the decision to develop software is made. The objective 

of requirements analysis is to obtain a clear picture of the real needs of the user. 

The requirements are then closely examined to determine if they can be automated 

(called feasibility study) and the effort that would have to be expended in the au­

tomation (called cost analysis). This study of user requirements typically results in 

a collection of documents which contains a precise specification of the user’s needs. 

Software development is the activity of transforming the user’s needs into a soft­

ware system. Therefore, a software system meets the user’s needs and the user’s 

requirements justify the software’s existence. The intent of a software system can

1
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2

be gleaned from the requirements specification documents. Understanding the tech­

niques that were employed in designing the software is a much more complicated 

task.

There are two aspects to the complex nature of software system -  behavior and 

structure. The response of a system to some input is referred to as the behavior 

of the system. The structure of a software system is determined by the logical and 

physical organization of code and the relationships that exist within it. A thorough 

understanding of a software system is possible if the behavior and the structure 

can be explained. The behavior and structure of a system are mutually dependent 

aspects; the structure of the system permits the software to behave in a desired 

way and the behavior that is expected from a software is the reason the software is 

structured (or organized) in a particular way.

1.1.1 Understanding the Behavior of Software System s

A well-behaved software system is one that responds in a predictable manner 

to all conceivable inputs. An ill-behaved system is one that behaves erratically and 

with unpredictable responses on some or all inputs.

Understanding well-behaved systems can be done by perform ing an execution 

trace on various inputs and examining the input, the trace and the output. An 

execution trace of a software system is the complete path of execution that a soft­

ware system follows on a particular input. We perform a trace by starting from a 

particular function (or procedure), examining the functions that it calls, and then 

examining the functions that the called functions themselves call until a point where 

no more functions are called is reached. A trace therefore is a complete sequence
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of function calls and this sequence explains the step-wise response of the software 

system to a particular input. We shall refer to this as a forward trace.

Understanding the behavior of an ill-behaved system is difficult because the 

trace of the system on some input is incomplete and provides partial information, 

whereas the trace of a well-behaved system contains complete information. There 

are at least two common situations that allow us to classify a software system as 

unpredictable -  abnormal termination and infinite looping. Abnormal termination 

of a system is the situation when the execution of the system is abruptly and 

externally terminated due to some violation performed by the system or due to 

some abnormal event created by the system. A system is said to be in an infinite 

loop if it performs the same set of instructions over and over again and the condition 

for the system to come out of the loop can never be true. In either event, locating 

the precise point (or function) at which the software started behaving abnormally 

is necessary. The point the software system reached before it started behaving 

erratically becomes the starting point in understanding why the system behaved 

abnormally. The function that is next examined is the function that called the 

function that caused the system to behave unpredictably. Thus, understanding 

of the behavior of ill-behaved software systems progresses in a direction opposite 

to that of understanding the behavior of well-behaved systems. We shall refer to 

this backward process as a backward trace. The starting point for understanding 

well-behaved systems is the starting point of execution, whereas the starting point 

of understanding ill-behaved systems is the termination point of execution or the 

point of endless execution.

Determining whether a software system is well-behaved or not is contingent on 

the inputs to the system and it is entirely possible for a system to be well-behaved
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with respect to some inputs and ill-behaved with respect to others. Determining 

if a software system is well-behaved under all circumstances and with respect to 

all input is virtually impossible. Therefore, any model that attempts to represent 

the behavior of a software system must aid in the understanding of both kinds of 

behavior.

A call graph is an abstract representation model of software that precisely cap­

tures all possible execution paths that exist in the system. The call graph of a 

program can be represented textually as well as graphically; both these represen­

tations are illustrated in figure 1.1. Figure 1.1 shows a program written in C (fig

1.1 (a)), a graphical representation of the call graph of the program (figure 1.1 (b)) 

and the graph-theoretic representation of the call graph of the program (fig 1.1 (c)). 

The program computes the ith number in the Fibonacci series. The call graph does 

not indicate the order in which the calls are made. The number of times a proce­

dure or a function is called is also not indicated in the call graph. For example, the 

function main in figure 1.1 (a) calls printf twice and the function fib calls itself re­

cursively twice but the graph shows one directed edge between main and printf and 

one arrow between fib and itself. In the graphical representation, the starting point 

of execution of a program is indicated as a double circle. A formal graph-theoretic 

definition of a call graph for a software system is defined in Table l . l . 1

In table 1.1, S  denotes a software system, and CG (S) denotes the call graph 

of S. The set of vertices V  is a collection of names of procedures or functions in S. 

E, the set of directed edges consists of tuples (u,-, Vj).  A tuple (u,-, Vj)  represents a 

call from procedure v, to procedure vj.

1 Figure 1.1 (b)adapted from The Study of Programming Languages by Ryan Stansifer [Sta94]
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raainQ { 
inti;
printfCWhich Hbonacd Number 'An"); 
scanf("l3W.&i);

printf(Tbe %dtb Hbonacd is %d\n"ifib(i));

}
imfibOnti) { 

intfibi;
if((i =  l)ll(i =  2)) 

return 1; 
else if 0 =  3) 

return 2; 
fibi = fibO-1) + fibO-2); 
return fibi;

(a) Recursive C program

printf.

scanf

(b) Call graph o f program

CG(S)  = (V .E)

V = {main, printf, scanf, fib }

E = { (main, printf), (main, scanf).
(main.fib). (fibjib))

(c) Graph-theoretic representation o f call graph

Figure 1.1: Call Graph Representation of a Software System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

Table 1.1: Graph-theoretic Definition of a Call Graph

V =  {V\ ,V2,  ...V k }
E =  { ( v i , V j )  | Vi , Vj  € V  and u,- calls v j )

CG {S) =  { V , E }

The call graph of a software system is a graph in which each function or proce­

dure in the system is represented as a node in the graph and each edge in the graph 

corresponds to a function call in the graph. The edge connects the caller function 

with the called function. Forward and backward traces can be easily performed 

on the graph by simply starting at a node and then traversing the edges to reach 

other nodes. Call graphs aid in understanding the behavior of a software system 

by depicting the different execution paths possible by function calls. Other graph 

representations of software systems are described in section 1.1.3.

1.1.2 Understanding the Structure of Software System s

There is no simple definition for describing the structure of a software system. 

Software structure has two aspects to it -  organization and relationships within 

the system. There are two kinds of organization in a software system -  logical and 

physical. The logical organization of code is the outcome of mapping and preserving 

the logical design of the system. The logical design of a system is the representation 

of the solution in terms of interacting logical components. Logical components are 

determined by the overall approach or paradigm adopted for software development. 

Hence, in the object-oriented approach the logical design of a system is expressed in 

terms of interacting objects and classes, key concepts in object orientation. Logical 

organization of code refers to the distribution of behavior over different components
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and the subsequent interaction between the components to realize the original needs 

of a user.

The physical organization of code corresponds to the allocation of code to dif­

ferent files and the organization of the files. Typically, the physical organization 

of code does not correspond to the logical organization of code and determ ining  

the logical structure from the code itself becomes a difficult task. Both logical and 

physical organizations produce logical and physical dependencies between code frag­

ments; alternatively, the logical and physical dependencies respectively determine 

the logical and physical organization embedded in the code.

Static and dynamic relationships are the two kinds of relationships that can 

exist between logical components of a system. A static relationship is a fixed, un­

changing relationship that establishes a strong and predictable connection between 

components. A dynamic relationship is indicative of a weak association between 

components. Components associate dynamically with each other in the context of 

some event. An event is some occurrence that causes the system to change its con­

figuration or state. Events cause components to associate dynamically in order to 

effect the change in configuration. Once the configuration has changed, the associa­

tion is no longer necessary and ceases to exist. Thus different events cause different 

dynamic relationships between components and determining dynamic relationships 

is based on understanding the events that can occur in the system. The statically 

related components lay the groundwork for dynamic interactions to occur in a sys­

tem and therefore the dynamic relationships that are possible can be discerned from 

the code itself.
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Experienced programmers develop techniques that combine programming lan­

guage constructs and features in elegant ways so that the software system is well- 

structured and the static and dynamic relations specified in the logical design of 

the system axe realized in the software implementation. An experienced program­

mer often spends long hours devising a technique that will enable the system to 

behave in a specific way as well make the system flexible, reusable and maintain­

able. Programmers are likely to reuse good techniques and therefore maintainers 

should study and understand the existing techniques, the structure, the benefits 

and consequences of the techniques so that any code modification performed as a 

part of the maintenance activity does not destroy the techniques employed by the 

original developers. In order to detect all possible dynamic relations that exist in 

a software system, a maintainer must first be aware of all dynamic relations that 

can exist in a software system and then discover the techniques that develop the 

static frameworks that allow dynamic interaction between components. Static and 

dynamic relationships cause complicated and non-trivial dependencies in the code.

A well-structured software system exhibits a logical design and the physical 

organization of code follows the logical decomposition to the extent possible. A 

well-structured system is a system that is well-designed and properly implemented. 

A well-designed system is a system that possesses desirable design properties. De­

sirable design properties are listed in section 1.2.1. An ill-structured system is one 

that has either an unclear or complicated logical structure, or one in which the 

implementation differs vastly from the original design.

A dependency graph is a representation model of software systems that captures 

static and dynamic code dependencies as well as logical and physical code depen­

dencies. The nodes in a dependency graph represent some program m ing entity (for
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example, a function or a variable) and the edges connecting nodes represent dif­

ferent kinds of dependencies that exist among the connected nodes [WHH89]. The 

call graph model is a special kind of dependency graph.

Notation : Let 5  denote a software system, and DG(S) the dependency graph 

of S. Let the set V N  represent the names of all the variables in S  and the set P N  

represent the names of all procedures and functions in S. Let the set of vertices V 

represent the collection of names of of programming entities (procedure or variable) 

in S. Let Di represent a dependency relationship between program m ing entities. 

Each Di consists of of tuples (u,-, uy). A tuple (vi,vy) represents a dependency from 

entity v, to entity uy. Let the set of directed edges E  be the set of all directed edges 

in the graph. A formal set-theoretic definition of a call graph for a software system  

is defined in table 1.2.

Table 1.2: Graph-theoretic Definition of a Dependency Graph

VN = {Ui,U2,-Ujk}
P N = {Pl,P2,— P*}
V = V N  U P N

Di {(®i:®j) 1 Vi, Vj E V and Vi calls Vj}
d 2 = {(v u v j ) | v h  Vj e V and Vi defines Vj )
D3 — { (Vi , Vj )  | Vh  Vj  € V and Vi m odifies Vj}

Dk { ( v i , v j )  | Vi, v j  e V  and Vi depends on uy}
E = c II M &

DG (S) = { V , E }

A dependency graph is called a directed multigraph due to the multiple kinds 

of dependency edges that connect nodes in a dependency graph.
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1.1.3 Graph Representations of Software System s

There axe two kinds of graph representations of program s -  (i) flow graphs and 

(ii) data-flow graphs. Flow graphs model the control flow structure and dependen­

cies in a software system [ASU86, FOW87, GJM91]. A flow graph consists of nodes 

and directed edges. A node (vertex) in a flow graph is a basic block of statements 

and expressions. A basic block as defined in [ASU86] is

A basic block is a sequence of consecutive statements in which flow of 
control enters at the beginning and leaves at the end without halt or 
possibility of branching except at the end.

A node B1 is connected to another node i?2 by a directed edge if control can 

flow from Bi to i ?2 iQ some execution sequence. Flow of control can be transferred 

by the if-then, if-then-else, while loop, goto, function call statements. In [ASU86], 

algorithms for partitioning a program into basic blocks and constructing flow graphs 

from the partions are found.

The nodes in a flow graph represent a block of sequential computation and 

the edges represent a transfer of flow of control. In essence, a flow graph abstracts 

multiple statements as a single basic block and models transfer of control (irre­

spective of precisely how the transfer was achieved in the software) as an edge 

between the blocks. If the basic blocks are restricted to be procedures or functions 

only, the flow graph is referred to as a call graph. The call graph of a program 

depicts the functional decomposition of the program, and captures the calls/uses 

relationship between functions and the dependencies between the functions. From 

the maintenance point of view, in addition to providing an abstract view of function 

decomposition, call graphs are also useful in d eterm ining the functions that will be 

affected by code modifications.
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Ghezzi et al [GJM91] provide a different definition of control-flow graphs; in 

their definition, the nodes represent entry into and exit from a single statement (for 

example an if-then statement) and the edges between nodes represent the statement 

itself. The conventional view of control-flow graphs is that given in [ASU86] where 

nodes represent a set of statements and edges represent transfer of control-flow.

Besides the computational basic blocks, there axe other entities (such as vari­

ables, data structures) present in a software system which axe not represented in 

a flow graph since the nodes in a flow graph represent computation and not data 

storage. Data-flow graphs model the modification of data in a program and em­

phasize data flow over control flow. A data flow diagram (or data flow graphs) as 

defined by DeMarco [DeM78] is :

A Data Flow Diagram is a network representation of a system. The 
system may be automated, manual or mixed. The Data Flow Diagram 
portrays the system in terms of its component pieces, with all interfaces 
among the components indicated.

A data flow graph has five graphical symbols; a bubble represents a function, an 

arrow represents data flow, a data store is indicated as an open box and I/O boxes 

represent input/output operations that result in data initializations. An arrow 

between two function bubbles indicates data flow between the functions. Ghezzi et 

al [GJM91] give an overview of data flow diagrams.

Data flow diagrams describe the functions that access and modify the data 

in a system. The relationship connecting functions is the data that is exchanged 

between the functions. This graph provides information about the data structures 

in a program, the functions in a program and the relationship between functions 

and data structures. Such information is useful in determining the functions that 

are affected when data structures are modified.
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Program dependence graphs or system dependence graphs [LC93, FOW87] cap­

ture more than one relationship (such as control flow and data flow relationships) 

between the nodes in the graph (see table 1.2 for a formal definition of depen­

dence graphs). A node in a program dependence graph can be any programming 

construct such as declarations, assignment statements, control statements. Edges 

between the nodes represent different kinds of dependencies between the nodes. A 

program dependence graph is referred to as a multigraph since it has more than one 

kind of edge connecting the nodes. Program dependence graphs aid in understand­

ing the system design, exposing dependencies between components in a system, 

aiding maintenance [LR92, LC93].

Yau and Tsai provide a graph-theoretic definition of a software component 

interconnection graph (CIG) in [YT87]. The CIG captures the interconnection be­

havior of the software components of a large-scale software system. The labeled 

nodes in the graph are abstract representations of software components and the 

labeled arcs represent the allowable inter-connection among subsystems. The nodes 

can represent a compilable unit of a procedural program m ing language, a module, 

a file, a procedure, a function, a data file or a com m and procedure. The inter­

connections permitted between the nodes are determined by the implementation 

language.

1.1.4 Understanding Software Systems

Understanding a software system is an activity that includes understanding the 

software system’s overall structure, current design and architecture, behavior, docu­

mentation, maintenance records, implementation language, development paradigm, 

popular strategies and techniques peculiar to its implementation language and its
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Appendix  

Session  L isting

Class Component 0 

[Name] : Person
[Physical .Location] : ../test-suite/peoplereq.h.pulse

[Static Interface]:
Person::Person ()
Person::placeRequest ()
Person::procRequest ()

[Static Interactions]

Descendant Classes :

class Professor 
class OfficeAsst

[Dynamic Interactions]

180
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Class Component 1

[Name] : Professor
[Physical Location] : ../test-suite/peoplereq.h.pulse

[Static Interface]:
Person::Person ( )
Professor::Professor ( )
Professor::placeRequest ( )
Professor::procRequest ( )
Professor::showRequest ( )

[Dynamic Interface]:

Class Person 
Person::Person ( )
Person::placeRequest ( )
Person::procRequest ( )

[Static Interactions]

Ancestor Classes :
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<Person,Public>

[Dynamic Interactions]

Class Component 2

[Name] : OfficeAsst
[Physical Location] : . ./test-suite/peoplereq.h.pulse

[Static Interface]:
OfficeAsst::OfficeAsst ( )
OfficeAsst::placeRequest ( )
OfficeAsst::procRequest ( )
Person::Person ( )

[Dynamic Interface]:

Class Person 
Person::Person ( )
Person::placeRequest ( )
Person::procRequest ( )

[Static Interactions]
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