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Figure 5.4. Variational autoencoder (Anwar, 2021). 

Kullback-Leibler Divergence (KL divergence) measures the difference between two probability 

distributions over the same variable x (Kullback, 1997). KL divergence of q(x) from p(x) denoted 

by DKL(p(x), q(x)), is not the same as the KL divergence of p(x) to q(x). This show that KL 

divergence a non-symmetric measure. KL divergence measures the information lost when a 

distribution q(x) is used to approximate a distribution p(x). KL divergence is not literally a distance 

measure between two distributions. Furthermore, it need not satisfy triangular inequality. 

DKL(P||Q) is a non-negative measure.  

DKL(P||Q) ≥ 0 

and 

DKL(P||Q) = 0  

if and only if P = Q. 
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Training VAE  

In the first phase, variational autoencoder was designed in three parts, the embedding, 

encoder, and the decoder. The static embedding was done using GloVe with an embedding size of 

300. We designed the encoder with bidirectional LSTM layers and the output goes to a linear layer 

to produce the mean and log variance of the input. Given the mean and variance, we found the 

Gaussian distribution corresponding to the input data. Samples from the generated distribution was 

taken by the sampler to create latent vectors that are sent to the decoder (see Figure 5.5). The loss 

was computed by finding the KL divergence of the original input from the latent representation. 

The decoder network is similar to the encoder setup, except that the architecture is reversed using 

LSTM as well. The decoder was designed to effectively scale up the input back to its original 

dimension. The sampler generates a low dimension latent variable. The VAE model is shown in 

Figure 5.5.  

 
Figure 5.5. VAE model 
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Tables 5.1 – 5.4 below show the reconstruction errors from each dataset. Enron produce the most 

reconstruction error with a testing reconstruction error of 0.1856. SMS spam had the best testing 

reconstruction error of 0.0232. 

Table 5.1. SMS spam dataset reconstruction 

error using VAE 

Training reconstruction error 0.0118 

Testing reconstruction error 0.0232 

Table 5.2. Ling dataset reconstruction error 

using VAE 

Training reconstruction error 0.0385 

Testing reconstruction error 0.0464 

Table 5.3. Spam Assassin dataset reconstruction Table 5.4. Enron dataset reconstruction error 

error using VAE                                                          using VAE  

Training reconstruction error 0.0394 

Testing reconstruction error 0.0452 

 

Training reconstruction error 0.1778 

Testing reconstruction error 0.1856 

In the second phase, we fed the obtained latent representations that were generated for all 

four datasets to SVC, and the results obtained are shown in Figures 5.6 – 5.9. The SMS spam 

dataset had 3 false positives and 5 false negative with highest accuracy of 99.42% and FPR of 

0.0025. Ling dataset produced 3 false positive and 4 false negatives with a FPR of 0.005. It was 

observed that the lowest reconstruction error produced the highest classification accuracy.  

 

Figure 5.6. VAE + SVC results for SMS spam dataset. 

 

Figure 5.7. VAE + SVC results for Ling dataset. 
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Figure 5.8. VAE + SVC results for Spam Assassin dataset. 

 

Figure 5.9. VAE + SVC results for Enron dataset. 

B. Symmetric Autoencoders 

A symmetric autoencoder or tied weights autoencoder has decoder weights that are the 

transpose of the encoder weights, which decreases the quantity of parameters for the model. Major 

advantages of tied weights autoencoder include increased training speed and reduced risk of 

overfitting, while yielding better performance in many cases when compared with an autoencoder 

whose weights are not tied (Li and Nguyen, 2019). 

Training Symmetric Autoencoder  

In the first phase, we built the autoencoder model to be symmetrical and tied the weights 

of the encoder to the decoder. The latent representation was achieved by creating a bottleneck. 

This was achieved by setting up the model such that the middle layer was smaller than the other 

layers (100-75-50-75-100). We then ensure that the weights were tied by creating a dense_tied 

layer which ensured that the decoder weights are a transpose of the encoder weights (see Figure 

5.11). The loss function was mean squared error (MSE), and the optimizer was Adagrad. Figure 

5.10 shows the architecture of the model. The reconstruction error was derived by taking MSE 

error of the latent representation and the input data (both training and testing).  
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Figure 5.10. Symmetric autoencoder model 

 
Figure 5.11. Symmetric autoencoder tied weights 

Tables 5.5. – 5.8. show the reconstruction error that was obtained for all the datasets. Spam 

Assassin produced the lowest reconstruction error while the Ling dataset had the highest 

reconstruction error.    
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Table 5.5. SMS Spam dataset reconstruction 

error using Sym AE 

Training reconstruction error 0.0067 

Testing reconstruction error 0.0065 

Table 5.6. Ling dataset reconstruction error 

using Sym AE 

Training reconstruction error 0.0289 

Testing reconstruction error 0.0302 

Table 5.7. Spam Assassin dataset 

reconstruction error using Sym AE 

Training reconstruction error 0.0061 

Testing reconstruction error 0.0058 

 

Table 5.8. Enron dataset reconstruction error 

using Sym AE 

Training reconstruction error 0.0178 

Testing reconstruction error 0.0156 

In the second phase of this experiment, we fed in the produced latent representation that 

were generated for all four datasets as an input to SVC. The results obtained are shown in Figure 

5.12 – Figure 5.15. The symmetric autoencoder provided the best result on the Spam Assassin 

dataset with an accuracy of 99.52%, FPR of 0.0041 and a precision of 99.61 (see Figure 5.14).  

Given that Ling dataset had the highest reconstruction error, it produced 7 false positive and 8 false 

negatives with a FPR of 0.0116.  

 

Figure 5.12. Symmetric AE + SVC results for SMS spam dataset. 

 

Figure 5.13. Symmetric AE + SVC results for Ling dataset. 
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used to generate the latent representation. From this stage we added a number of layers to improve 

the overall result. Linear layers were added to create a full connected network. Linear layers use 

matrix multiplication to transform their input features into output features using a weight matrix. 

We also introduced batch normalization layers for faster training of the model while dropout layers 

were introduced to avoid overfitting. The last layer is a neuron with sigmoid activation function 

for classification that outputs between 1 and 0. The model was compiled using ADAM as the 

optimizer and binary cross-entropy as the loss function. Figure 5.21 summarizes the model. 

 

Figure 5.21. BERT model with DL classifier architecture 
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All four datasets were run through this model and the classification results obtained were recorded.  

 

Figure 5.22. Confusion matrix for SMS spam dataset using BERT model. 

We then proceeded to setup the hybrid model (BERT+SVC). We fed the latent representation 

produced by the BERT encoder as an input to SVC classifier.  

 

Figure 5.23. Confusion matrix for SMS spam dataset using BERT+SVC. 

Figure 5.22 illustrates the confusion matrix obtained with the BERT model with DL 

classifier for the SMS spam dataset while Figure 5.23 illustrates the confusion matrix and the 

metrics for the hybrid model. This shows an improvement in recall from 87% to 98% and in 

accuracy from 98% to 99%.  Figure 5.24 illustrates the result of the Bert model with DL classifier 

for Ling dataset with 14 false negatives and perfect precision to give an accuracy of 98% and recall 

of 88.33%.  
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Figure 5.24. Confusion matrix for Ling dataset using BERT model. 

 

Figure 5.25. Confusion matrix for Ling dataset using BERT+SVC. 

Figure 5.25 shows the result for the hybrid model. Again, there was an improvement in the 

accuracy (99.31%) and recall (95.83%).  

 

Figure 5.26. Confusion matrix for Spam Assassin dataset using BERT model. 

 

Figure 5.27. Confusion matrix for Spam Assassin dataset using BERT+SVC. 
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Figures 5.26 and 5.27 show the results for the BERT model and BERT+SVC respectively 

using Spam Assassin dataset as input. BERT model produced 2 false positives and 10 false 

negatives. BERT+SVC produced a slight improvement in accuracy, recall and precision with the 

number of false negatives reducing from 10 to 5. Figures 5.28 and 5.29 show the results obtained 

for the Enron dataset suing both the BERT model and BERT+SVC respectively. There was a slight 

improvement using BERT+SVC with a reduction from 3 false negatives to 2. Overall, BERT+SVC 

produced better results than BERT model. 

 

Figure 5.28. Confusion matrix for Enron dataset using BERT model. 

 

Figure 5.29. Confusion matrix for Enron dataset using BERT+SVC. 

In conclusion, we developed the two model structures, static embedding with AE and 

machine learning classification and dynamic embedding with machine learning classification 

(hybrid model). We compared the BERT model with BERT+SVC (hybrid model) and concluded 

that the latter produced better results. In chapter 6, we will analyze the results obtain from 

VAE+SVC, Sym AE+SVC, SWAE+SVC, and BERT+SVC.    
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Chapter 6. Analysis and Conclusion 

This chapter focuses on the analysis of the results obtained in Chapter 5 and discusses the 

conclusion. We also compared our results to previous studies and suggested future work that can 

be done. We analyzed the obtained results to assess performance of the models based on some 

popular metrics. Figure 6.1 shows a list of these metrics.  

 

Figure 6.1. Evaluation measures (Saito et al. 2015) 

Sensitivity is a statistical measure of the actual positives from a pool of probable positives. 

proportion of actual positives that were predicted as positive (true positive), while specificity is 

also a statistical measure of actual negatives from a pool of probable negatives. Most machine 

learning classification models operate with an assumption that samples numbers are equal from 

each data class. For this reason, standard metrics can be unreliable or misleading for a skewed 

dataset. In an imbalanced dataset, there are minority and majority classes. In our datasets, ham is 

the majority class while spam is the minority class. Imbalanced classification problems usually 

rate classification errors with the minority class as more important than those with the majority 
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class. Therefore, we introduce some metrics that are used for imbalanced datasets in addition to 

using the FPR.  

6.1. Performance Analysis of AE models and Hybrid Model 

We consider the FPR of all the models (VAE+SVC, symmetric autoencoder, SWAE+SVC and 

BERT+SVC) on all four datasets. We also included the best result obtained in Chapter 4 (see Table 

4.15), i.e., Word2Vec+SVC in the FPR comparison to test it against the autoencoders and the 

hybrid model. Tables 6.1 - 6.4 shows the FPR result obtained on dataset.  

Table 6.1. FPR for SMS Spam dataset 

SMS spam dataset 
 AC % FNR % FPR % 

 

VAE + SVC 

 

99.42 2.67 0.25 

 

Sym AE + SVC 

 

99.21 3.21 0.41 

 

SWAE + SVC 

 

95.98 16.58 2.07 

 

BERT + SVC 

 

99.71 2.14 0.00 

 

Word2Vec + SVC 

 

98.04 14.29 0.00 

 

 

 

Table 6.2. FPR for Ling dataset 

Ling dataset 
 

ACC % FNR % FPR % 

VAE + SVC 99.03 3.33 0.50 

Sym AE + SVC 97.93 5.08 1.16 

SWAE + SVC 94.34 19.17 2.98 

BERT + SVC 99.31 4.17 0.00 

Word2Vec + SVC 98.97 6.25 0.00 

 

 

 



93 

 

Table 6.3. FPR for Spam Assassin dataset 

Spam Assassin dataset 
 

ACC % FNR % FPR % 

VAE + SVC 98.33 2.69 1.21 

Sym AE + SVC 99.52 1.15 0.17 

SWAE + SVC 96.31 6.54 2.41 

BERT + SVC 99.17 1.92 0.34 

Word2Vec + SVC 96.67 8.21 0.89 

 

 

Table 6.4. FPR for Enron dataset 
Enron dataset 

 
ACC % FNR % FPR % 

VAE + SVC 98.61 2.67 0.87 

Sym AE + SVC 98.92 1.60 0.87 

SWAE + SVC 91.34 16.00 5.66 

BERT + SVC 99.67 0.53 0.22 

Word2Vec + SVC 97.29 5.33 1.63 

 

BER+SVC produced higher accuracy and lowest FPR on SMS Spam, Ling, and Enron 

dataset.  Symmetric AE + SVC produced the best result on Spam Assassin dataset. BERT+SVC 

was better than Word2Vec+SVC in all the datasets.  

The F1 score takes the harmonic mean of recall and precision. Therefore, this score takes 

both false positives and false negatives into account. F1 is great for imbalanced data because it 

helps to compare models by combining both metrics (precision and recall) to determine the model 

that produces the best result. 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×  
(𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛)

(𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛) 
  

Tables 6.5 – 6.8 show the F1 score of various models for the four datasets with the highest 

F1 score underlined. BERT + SVC produced the highest F1 score on the SMS spam, Ling, and 

Enron datasets. However, symmetric AE + SVC produced the highest F1 score for the Spam 

Assassin dataset.  

Table 6.5. F1 score for SMS spam dataset 

 SMS spam dataset  

Models Test Accuracy (%) Recall (%) Precision (%) F-1 Score 

VAE + SVC 99.42 97.32 98.37 97.84 

Symmetric AE + SVC 99.21 96.79 97.31 97.05 

SWAE + SVC 95.98 83.42 86.19 84.78 

BERT + SVC 99.71 97.86 100 98.92 

 

Table 6.6. F1 score for Ling dataset 

 Ling dataset  

Models Test Accuracy (%) Recall (%) Precision (%) F-1 Score 

VAE + SVC 99.03 96.67 97.48 97.07 

Symmetric AE + SVC 97.93 93.33 94.11 93.72 

SWAE + SVC 94.34 80.83 84.35 82.55 

BERT + SVC 99.31 95.83 100 97.87 
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Table 6.7. F1 score for Spam Assassin dataset 

 Spam Assassin dataset  

Models Test Accuracy (%) Recall (%) Precision (%) F-1 Score 

VAE + SVC 98.33 97.31 97.31 97.31 

Symmetric AE + SVC 99.52 98.85 99.61 99.23 

SWAE + SVC 96.31 93.46 94.55 94.00 

BERT + SVC 99.17 98.08 99.22 98.65 

 

Table 6.8. F1 score for Enron dataset 

 Enron Dataset  

Models Test Accuracy (%) Recall (%) Precision (%) F-1 Score 

VAE + SVC 98.61 97.33 97.86 97.59 

Symmetric AE + SVC 98.92 98.40 97.87 98.13 

SWAE + SVC 91.34 84.00 85.83 84.91 

BERT + SVC 99.67 99.47 99.47 99.47 

 

Misclassification cost (MC) is considered a crucial criterion in the evaluation of spam 

filtering effectiveness (Jia and Shang, 2014). This takes into consideration the cost of 

misclassifying emails. MC combines FPR and FNR (Barushka and Hajek, 2020). Table 6.5 shows 

the confusion matrix used to calculate MC. 

𝑚𝑐 (𝐼) =  
1

1 +  𝜆
 ×  𝐹𝑁𝑅 +  

𝜆

1 +  𝜆
 ×  𝐹𝑃𝑅.  
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where 𝜆 is a misclassification cost ratio comparing the degree of seriousness of false positive rate 

(FPR) compared to false negative rate (FNR). We adopted the values of the misclassification cost 

ratio 𝜆 considered in previous studies of Jia and Shang (2014) and Zhang et al. (2014), resulting 

in three different ratios used, 𝜆 = 1, 𝜆 = 3 and 𝜆 = 7. Note that for 𝜆 = 1 is the average of FNR and 

FPR. We consider the MC at 𝜆 = 7 as the deciding ratio because it puts more weight on FPR. 

Tables 6.9 – 6.12 show the MC result for all four datasets. 

Table 6.9. MC of models for SMS Spam dataset 

SMS spam dataset 

 
AC % FNR % FPR % 

MC% 

(𝜆 =1 

MC% 

(𝜆 =3) 

MC% 

(𝜆 =7) 

VAE + SVC 
 

99.42 2.67 0.25 1.46 0.86 

 

0.55 

Sym AE + SVC 
 

99.21 3.21 0.41 1.81 1.11 

 

0.76 

SWAE + SVC 
 

95.98 16.58 2.07 9.33 5.70 

 

3.89 

BERT + SVC 
 

99.71 2.14 0.00 1.07 0.53 

 

0.27 

 

Table 6.10. MC of models for Ling dataset 

Ling dataset  
ACC % FNR % FPR % MC% 

(𝜆 =1 

MC% 

(𝜆 =3) 

MC% 

(𝜆 =7) 

VAE + SVC 99.03 3.33 0.50 1.92 1.21 0.85 

Sym AE + SVC 97.93 5.08 1.16 3.12 2.14 1.65 

SWAE + SVC 94.34 19.17 2.98 11.07 7.03 5.00 

BERT + SVC 99.31 4.17 0.00 2.08 1.04 0.52 
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Table 6.11. MC of models for Spam Assassin dataset 

Spam Assassin dataset 
 

ACC % FNR % FPR % MC% 

(𝜆 =1) 

MC% 

(𝜆 =3) 

MC% 

(𝜆 =7) 

VAE + SVC 98.33 2.69 1.21 1.95 1.58 1.39 

Sym AE + SVC 99.52 1.15 0.17 0.66 0.42 0.30 

SWAE + SVC 96.31 6.54 2.41 4.48 3.44 2.93 

BERT + SVC 99.17 1.92 0.34 1.13 0.74 0.54 

 

 

Table 6.12. MC of models for Enron dataset 

Enron dataset 
 

ACC % FNR % FPR % MC% 

(𝜆 =1 

MC% 

(𝜆 =3) 

MC% 

(𝜆 =7) 

VAE + SVC 98.61 2.67 0.87 1.77 1.32 1.10 

Sym AE + SVC 98.92 1.60 0.87 1.24 1.05 0.96 

SWAE + SVC 91.34 16.00 5.66 10.83 8.25 6.96 

BERT + SVC 99.67 0.53 0.22 0.38 0.30 0.26 

 

We can see that BERT + SVC outperformed all other models on the SMS Spam, Ling, and 

Enron dataset under the MC measure with 𝜆 = 7. BERT+SVC also had the lowest FPR and highest 

accuracy on the same three datasets. Symmetric AE + SVC performed better on the Spam Assassin 

dataset in accuracy, FPR and MC with 𝜆 = 7. It was observed that MC decreased for larger values 

of 𝜆. This is because FPR < FNR. Figure 6.2 provides a chart that illustrates the MC of all the 

hybrid models on all four datasets.  

The Area Under Receiver Operating Characteristic Curve (AUC) is a good metric for an 

imbalanced dataset because it is a tradeoff between the specificity and sensitivity of a model. It 
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measures the model’s ability to correctly differentiate classes. AUC is 0.5 for random and 1.0 for 

perfect classifiers.  

  

  

Figure 6.2. MC for AEs and hybrid model for all datasets. 

Tables 6.13 - 6.16 show the AUC scores for all the datasets. It was observed from the results that 

in all four datasets, BERT + SVC produces the highest result. We conclude from the metrics (FPR, 

F1 score, MC, and AUC score) that BERT + SVC consistently produced the best result on 3 of 4 

datasets. In the next section, we compare BERT + SVC to models from previous studies.  
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Table 6.13. AUC of AEs and hybrid model for SMS spam dataset 

SMS spam dataset 
 ACC % FNR % FPR % AUC 

VAE + SVC 
 

99.42 2.67 0.25 0.9857 

Sym AE + SVC 
 

99.21 3.21 0.41 0.9817 

SWAE + SVC 
 

95.98 16.58 2.07 0.9067 

BERT + SVC 
 

99.71 2.14 0.00 0.9912 

 

Table 6.14. AUC of AEs and hybrid model for Ling dataset 

Ling dataset  
ACC % FNR % FPR % AUC 

VAE + SVC 99.03 3.33 0.50 0.9809 

Sym AE + SVC 97.93 5.08 1.16 0.9634 

SWAE + SVC 94.34 19.17 2.98 0.8892 

BERT + SVC 99.31 4.17 0.00 0.9845 

 

Table 6.15. AUC of AEs and hybrid model for Spam Assassin 

Spam Assassin dataset  
ACC % FNR % FPR % AUC 

VAE + SVC 98.33 2.69 1.21 0.9721 

Sym AE + SVC 99.52 1.15 0.17 0.9946 

SWAE + SVC 96.31 6.54 2.41 0.9468 

BERT + SVC 99.17 1.92 0.34 0.9932 

 

Table 6.16. AUC of AEs and hybrid model for Enron dataset 

Enron dataset  
ACC % FNR % FPR % AUC 

VAE + SVC 98.61 2.67 0.87 0.9822 

Sym AE + SVC 98.92 1.60 0.87 0.9876 

SWAE + SVC 91.34 16.00 5.66 0.8974 

BERT + SVC 99.67 0.53 0.22 0.9963 
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6.2. Comparison with Previous Studies 

To further demonstrate the efficiency of the BERT + SVC model, the accuracy obtained was 

compared with previous research studies with the same dataset. The accuracy metric was used as 

the comparison basis because it was the reported metric from the previous studies. Tables 6.17 - 

6.20 show a list of studies with the model employed as well as the accuracy reported.  

Table 6.17. Comparison of BERT+SVC accuracy with previous studies on the SMS spam dataset 

Study  Model ACC (%) 

Sridevi et al. (2021)  LSTM 98.50  

Gupta et al. (2019)  CNN  99.10  

Roy et al. (2020)  CNN  99.44  

Jain et al. (2019)  Word2Vec + LSTM  99.01  

Wei et al. (2020)  WordNet + LGRU  99.04  

Gupta et al. (2019)  Voting classifier  98.29  

Kaliyar et al. (2018)  SVM  88.00  

This study BERT+SVC 99.71 

 

Table 6.18. Comparison of BERT+SVC accuracy with previous studies on the Ling dataset 

Study  Model ACC (%) 

Bansal et al. (2021)  ANN 97.50  

Shams et al. (2013)  Bagged RF  98.60  

Gashti et al. (2017)  Hamonic search algorithm + DT 99.80  

Tida et al. (2022)  BERT 98.00  

Jáñez-Martino et al. (2016)  TF-IDF + NB  99.14  

Palanisamy et al. (2017)  Negative selection and PSO 93.20  

Issac et al. (2009)  Bayesian with multiple keyword 99.02  

This study BERT+SVC 99.31 
 

Table 6.19. Comparison of BERT+SVC accuracy with previous studies on the Spam Assassin 

dataset 

Study Model ACC (%) 

Zitar and Hamdan (2013)  Genetic optimized AIS  98.92  

Trivedi and Dey (2013)  Enhanced genetic programming  98.60  

Trivedi and Dey (2016b)  OneR + NB  96.40  

Fang (2016)  Maximum entropy + incremental 

learning  

97.87  

Shams and Mercer (2016)  Natural language stylometry + AdaBoost  95.70  

Trivedi and Dey (2016a)  Boosted NB + SVM  98.60  

Yu and Xu (2008)  SVM 97.00  

This study BERT+SVC 99.17 
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Table 6.20. Comparison of BERT+SVC accuracy with previous studies on the Enron dataset 

Study Model ACC (%) 

Trivedi and Dey (2016b)  Relief + NB  96.30  

Hassan (2016)  k-means + SVM  97.35  

Chhogyal and Nayak (2016)  Natural language toolkit NB  94.70  

Sanghani and Kotecha (2016)  Incremental SVM  96.86  

Trivedi and Dey (2016a)  Boosted NB + SVM  95.60  

Gaurav et al. (2019)  RF  92.30  

Gupta et al. (2019)  Ensemble NB and DT  92.40  

This study BERT+SVC 99.67 

 

For SMS spam, Spam Assassin and Enron datasets, our model BERT+SVC produced the highest 

accuracy. However, for the Ling dataset, the study by Gashti et al. (2017) attained slightly higher 

accuracy than our model.  

6.3. Conclusion  

This thesis has explored both static embedding techniques (Word2Vec and GloVe) and dynamic 

embedding (BERT). We observed that the static approach fails to produce a meaningful 

representation when the text contains a word with different meanings. However, BERT (deep 

learning model) has generated a better linguistic and semantic vector representation of the word 

by capturing the contextual meaning of word in the data. This is achieved because of the 

bidirectional nature of BERT. In machine learning classification, among all the classifiers, SVM 

has produced best results in term of accuracy and precision (see Figure 4.4). Deep learning as a 

classifier did not produce great classification results relative to machine learning. 

In Chapter 5, a hybrid model combining the advantages machine learning and deep learning 

techniques was designed. We built these models to harness the deep learning advantage of feature 

self-extraction of latent representation from the data and combined it with the efficient 

classification of machine learning techniques to produce an automated spam classification model. 

We applied this model to the described datasets (UCI SMS spam collection dataset, Ling-spam 



102 

 

dataset, Spam assassin and Enron dataset). Analysis of the results produced by VAE+SVC, 

Symmetric AE+SVC, SWAE+SVC, and BERT+SVC showed BERT+SVC outperformed other 

models. BERT+SVC ranked high in comparison to previous studies with higher accuracy.  

The contributions of this dissertation are as follows 

• More emphasis was laid on the quality of embeddings in the development of a spam filter. 

This dissertation focused more on the limitation of previous research studies in this area. 

The results obtained confirm this.  

• This dissertation also explored the individual advantage of classification in both machine 

learning and deep learning.  

• We also stressed the importance of information loss due to false positive and based our 

design and metric on this metric. 

• An automated and efficient hybrid system was developed by combining the advantage of 

dynamic embedding with that of machine learning classifier which had not been explored 

before now. This system depended on the quality of the embeddings in terms of capturing 

linguistic and semantic meaning of words. It was also able for account for polysemous 

words in its embedding and classification.   

• Improved accuracy in the current spam filter techniques. The classification result obtained 

and compared with previous studies showed an improvement in the classification accuracy 

of the spam filter.   
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6.4. Future Work 

This dissertation focused on combining deep learning with machine learning for spam 

classification. We achieved this using labeled datasets (supervised learning). Many studies have 

utilized unlabeled datasets successfully. Therefore, developing hybrid models using unlabeled 

datasets for training is an open problem.  

The hybrid model and AE models model follows an approach where the generation of 

latent representation and classification are done separately. We suggest a joint model that generates 

latent representation and trains the machine learning classifier at the same time. This might help 

to fine tune the parameters of the classifier which in turn produces better results.   

Furthermore, spam messages are in many languages. All datasets used for benchmarking 

were in English. We suggest that datasets in other languages be used to train our models to 

investigate whether they show similar performance. We also suggest that data be collected from 

other social media platforms and used as input to test the robustness of our model.    
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