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A bstract

This dissertation applies multiresolution methods to two important problems in sig

nal analysis. The problem of fault-tolerant sensor integration in distributed sensor 

networks is addressed, and an efficient multiresolutional algorithm for estimating 

the sensors1 effective output is proposed.

The problem of object/shape recognition in images is addressed in a multires

olutional setting using pyramidal decomposition of images with respect to an or

thonormal wavelet basis. A new approach to efficient template matching to de

tect objects using computational geometric methods is put forward. An efficient 

paradigm for object recognition is described.



C hapter 1

In trod u ction

Several structures and phenomena, natural as well as man made have features 

at several scales in space and time respectively. To describe or understand such 

structures and phenomena, it is fruitful to analyze and study them at different 

resolutions. In particular, this is true for signals and functions of one or several 

dimensions; after all, we use these abstract representations to mathematically cap

ture and characterize structures and phenomena. Multiresolution analysis has been 

exploited as a valuable and powerful tool in the study of physical and mathematical 

phenomena for quite some time. Areas of Physics such as fluid dynamics, quantum 

mechanics, areas in Mathematics such as dynamical systems and fractal geome

try  have pioneered the use of multiscale analysis. In recent times there has been 

renewed interest in a systematic development of multiscale methods for analysis 

of problems. A case in point is the development of wavelet analysis as a power

ful framework for studying problems in signal and image processing and numerical 

analysis, to mention but a few areas.

In this dissertation, two problems are studied using multiscale analysis. The 

first problem (Chapters 2 -  4) is that of fault-tolerant integration of sensor out

puts in Distributed Sensor Networks. This involves the reliable estimation of the 

sensor outputs of a large battery of sensors measuring a single parameter, amidst 

occurrence of faults, noise and perturbations among these sensors.

1
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The second problem (Chapters 5 -  1 1 ) is that of shape/object recognition in 

images. This involves searching for the presence or absence of certain (anticipated) 

objects/shapes in a given image field and recognizing their type, size and position 

in the image.

While these two problems may appear disparate at a glance, they share some 

fundamental features. Both involve the isolation and extraction of a subfeature 

or pattern from a larger and more complex and heterogeneous background. Both 

problems require simplification and analysis of given compound structure, and as 

we shall see, both problems are well suited for a multiresolutional approach to 

solutions.

1.1 M o tiv a tio n

Apart from a common approach to their solutions another strong reason for 

addressing these problems together is tha t both these signal analysis problems are 

of great importance in several practical applications. Sensor integration problems 

are routinely encountered in many mundane as well as esoteric situations and appli

cations. For instance several sensors of a simple type may be employed for studying 

and monitoring a param eter in a power station or grid. A multiplicity of sensors for 

measuring the same param eter is introduced to compensate for sensor faults and 

for robustness of the measurement. In another situation, several tem perature and 

radiation gauges may be distributed spatially inside a nuclear reactor, to monitor 

heat transfer and radiation imbalances. Thus, sensor integration is an im portant 

aspect of many control systems.
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Object and shape recognition is of great value to machine and robotic vision. It 

is crucial to automation of industrial processes as well as vital military and intelli

gence applications such as reconnaissance, remote surveillance, target identification 

etc. Indeed, the importance of both problems in today’s world cannot be overstated.

1.2 O rganization

This dissertation is composed of two parts. The first part addresses the problem 

of signal integration in distributed sensor networks. The second part proposes a 

efficient multiresolutional template matching paradigm for object recognition.

Chapters 2 through 4 discuss the problem of fault tolerant-sensor integration in 

distributed sensor networks, and put forward an efficient algorithm for integrating 

the signal estimates from a network of sensors in a fault-tolerant manner.

Chapter 5 introduces the problem of object recognition with a discussion of 

prior research in this area. Chapters 6  and 7 briefly introduce wavelet analysis in 

the context of orthonormal pyramidal decomposition of images.

Chapters 8  through 10 describe a general and efficient paradigm for object 

recognition in a pyramidal scheme using computational geometric methods to reduce 

the computational overhead involved in template matching with a large template 

database.

Chapter 11 presents a short summary of the merits and contributions of the 

object recognition paradigm.



Chapter 2

Fault-Tolerant Sensor Integration U sing  

M ultiresolution D ecom position

2.1 Introduction

Signal integration has been shown to have wide ranging applications in areas 

such as radar tracking and target detection. This includes the problem of fault- 

tolerant integration of information from multiple sensors, mapping and modeling 

the environment space and task level complexity issues of the computational model. 

Further, these techniques have to be robust in the sense that even if some of the 

sensors are faulty, the integrated output should still be as reliable as possible.

In this chapter, a new approach to the problem of sensor integration using 

techniques of multiresolution analysis is discussed. Multiresolution analysis may 

be described as signal analysis in frequency channels of constant bandwidth on a 

logarithmic scale.

The cumulative signal from all the sensors is analyzed at various resolutions, 

starting from a coarse resolution and proceeding to successively finer scales. In a 

coarse-to-fine strategy, a minimum of detail necessary for recognition is processed. 

The approximation of a signal /  at a resolution r  is defined as an estimate of /  

derived by uniformly sampling / ,  r times per unit length. Tanimoto and Pavlidis 

[24] have developed efficient algorithms to compute the approximation of a function 

at different resolutions.

4
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In what follows, the idea of multiresolution analysis is applied to the problem of 

fault-tolerant integration of abstract sensor estimates when the number of sensors 

is very large and a large number of sensor faults are tame. The key idea is the 

construction of a simple function from the outputs of all the sensors and resolution 

of this function at various scales to isolate the region over which the correct sensors 

lie. An optimal algorithm which implements this idea efficiently is described.

2.2 T he Sensor Integration Problem

A Distributed Sensor Network consists of spatially distributed sensors that 

detect and quantify a certain phenomenon via its changing parameters. These 

readings are sent at regular intervals of time to processing units that integrate the 

readings from clusters of sensors and give outputs whose form is much the same as 

the inputs of the individual sensors. Output from processors representing clusters 

of sensors are later integrated to get a complete picture of the spatially distributed 

phenomenon. However, before integration is performed at the processor level, it 

is necessary to have reliable estimates at each processor. Each sensor in a cluster 

measures the same parameter. It is possible that some of these sensors are faulty. 

Hence it is desirable to make use of this redundancy of the readings in the cluster to 

obtain a correct estimate of the parameters being observed. In short, a fault-tolerant 

technique of sensor integration is sought.

Marzullo [26] has addressed the problem of fault-tolerant integration of abstract 

interval estimates and has generalized his estimates to multidimensional sensors [27]. 

An illustration of their method for one dimensional sensors is given in Figure 2.1.



Final O utput Estim ate 

Figure 2.1: Integration of Interval Estimates

at < as < a2 < b3 < bt < b2 < a6 < a$ < a4 < b6 < bs < b4

Prasad et al [28] have proposed a method of obtaining sensor estimates with 

high reliability by considering the problem when the number of sensors is large, and 

most of the faulty sensors are tamely faulty. This method has also been generalized 

to multidimensional sensors [29].

The technique developed in [28] and [29] is a polling technique, which computes 

the intersections of sensor outputs and the associated reliability measures. Since the 

number of these intersections is very large, the method is not useful for real-time 

applications.

In order to obtain a method of fault-tolerant sensor integration that is more fea

sible for real-time applications, a function called the overlap function is introduced 

[28]. The multiresolution analysis approach to one-dimensional sensors discussed 

below generalizes easily to higher dimensions.

2.3 Prelim inaries

The relevant definitions from [28] are reviewed here for completeness.
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Definition 2.1: An Abstract Sensor is a sensor that reads a physical parameter 

and gives out an abstract interval-estimate I, which is a bounded and connected 

subset of the real line R.

D efinition 2 .2 : A Correct Sensor is an abstract sensor where the interval estimate 

contains the actual value of the parameter being measured. If the interval estimate 

does not contain the actual value of the parameter being measured, it is called a 

Faulty sensor.

Definition 2.3: Let sensors 5i,...,Sjv feed into a processor P. Let the abstract 

interval estimate of Sj be /j-; (1  < j  < N),  the closed interval [a,-, 6,*] with endpoints 

a and b. Define the Characteristic Function Xj of the j-th  sensor 1 < j  < N  as 

follows:

{
1 V i e / j

VI  < j < N  (2.1)

0  ' i x i l j

Definition 2.4: Let O(x) =  SjLi Xj(x ) be the ‘overlap function’ of the N  abstract 

sensors. For each i 6 R, 0(x) gives the number of sensor intervals in which x lies; 

that is, the number of intervals overlapping at x.

Definition 2.5: A sensor is tamely faulty if it is a faulty sensor and if its output 

overlaps with that of a correct sensor.

2.4 C om m ents on Tam e Faults

If we tolerate at most /  faults among N  sensors, then by taking all (N — / )  

intersections of the N  sensor interval estimates, we are assured that the correct 

value of the parameter lies in one of these intersections. Marzullo [26] computes 

the integrated output as the smallest connected interval containing all the (N — f )



8

intersections. However, when the number of sensors is large and the number of 

faults cannot be strictly bounded, the (N — f )  intersections tend to be scattered 

wildly over the real line, giving poor output estimates. In order to improve the 

output estimate in these cases, we must be able to further evaluate the (N  — f )  

intersections to choose the ‘best possible’ intersection which contains the correct 

value with high reliability.

In the method proposed here it is assumed, as before [28], that the number of 

sensors is very large, that most faults are tame, and that there is no bound on the 

number of faults.

As the sensors are sampled synchronously at various time intervals, we order 

the sensors a priori by labeling them, dynamically maintain their overlap function 

0(x),  and analyze it at various scales to obtain successively smaller regions which 

contain the correct value of the parameter observed.

The function 0(x)  is the sum of the characteristic functions of the abstract 

interval estimates. The value of 0(x)  at any point x is the number of intervals 

overlapping at the point x. The structure of the function is fairly simple (see fig. 

2 .2 .)

Since there are finitely many sensors and each sensor is represented by an ab

stract interval estimate of bounded length, 0(x)  has compact support. By defini

tion, 0 ( x ) is a non-negative function. It has several ‘crests’ in its profile representing 

regions of maximal overlap of intervals (fig. 2 .2 .)
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3 -

2 -

1 -

0 (x)

Figure 2.2: The Overlap Function O(x) for a set of 7 Sensors



Chapter 3

M ultiresolution D ecom position

3.1 Introduction

Given a sequence of increasing resolutions {rj}jez, the details of a function 

f (x )  at the resolution rj are defined as the difference of information between the 

approximations of f (x )  at the resolution rj +  1 and the approximation at the res

olution rj. A Multiresolutional representation also provides a simple hierarchical 

framework for interpreting the signal content. For instance, it is hard to recognize 

and identify a local feature inside an image, without any information of the global 

context in which it is embedded. It is therefore natural to first analyze image details 

at a coarse resolution and then increase the resolution.

The approximation of a signal f (x )  at a resolution r is defined as an estimate 

of f (x)  derived from r measurements per unit length. These measurements are 

computed by uniformly sampling at a rate r the function f (x)  smoothed by a low- 

pass filter whose bandwidth is proportional to r. In order to be consistent when the 

resolution varies, these low-pass filters are derived from a unique scaling function 

which is dilated by the resolution factor r.

The overlap function O(x) is analyzed multiresolutionally for a robust peak 

corresponding to the region of overlap of correct sensors, as follows: Starting at 

the coarsest resolution, we select those crests with the highest peaks (wavelet com

ponents with the largest amplitude) and choose the crest with the widest spread.

10
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At the next higher resolution, this crest is again inspected for crests within it with 

highest amplitudes and among these crests, the one with the widest spread is re

tained for similar analysis at the next resolution. This procedure results in isolating 

those regions of the real line over which O(x) has a maximum value, corresponding 

to high overlap degree. Figures 3.3, 3.4, 3.5, 3.6 and 3.7 illustrate this procedure. 

The advantage of this method is significant from the point of view of computational 

speed, since the coarse-to-fine processing leads to elimination of large regions of the 

support of 0(x)  at each resolution.

This heuristic is rigorously formulated in the next section in order to obtain 

a real time algorithm that dynamically maintains 0(x)  and obtains the narrowed 

output estimate. The maintenance of 0(x)  requires O(NlogN)  time where N  is the 

number of sensors. This follows directly from the fact that sensor intervals need to 

be sorted first, according to their beginning and end points; a  process that has a 

computational complexity of fl(NlogN). It is then verified that this method leads 

to results comparable to our earlier results and those of Marzullo, by simulating 

sensor failures and using the algorithm to obtain sensor estimates.

In the model of abstract sensors employed here, it is assumed that i) A large 

number of sensor faults are tame, and that ii) the length of each interval estimate 

is bounded below by I, and above by L, where I < L and are positive real 

numbers.

Figure 3.1 describes the regions about the correct parameter value c where 

the faulty sensors cluster. A very large interval estimate is too inaccurate to be of 

any value and hence may be discarded. On the other hand, a very small interval 

estimate would not be amenable for fault-tolerance analysis. A minimum tolerance 

of ± / / 2  is built into the abstract sensors, and so we may assume that the width of
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I L | | L |

I 1----- 1---------------1 I---------------1----- 1--------- 1
1 1 1  L I I  L 1 1 1  

C

Figure 3.1: The regions about the correct parameter value c where the faulty sensors 
cluster has L = 21

each interval is at least I. These two assumptions imply that the tame faults cluster 

in a bounded neighborhood around the correct value of the measured parameter. 

When the number of faulty sensors are significant, since most faults are tame, this 

results in overlaps of the faulty sensors amongst themselves and boosts the value 

of 0(x)  in the neighborhood of the correct value of the parameter, thus reinforcing 

the (N — f )  intersection containing the correct value.

Let T  be the number of tamely faulty sensors. These may range in width from 

/ to L. A tamely faulty sensor must intersect with a correct sensor. Therefore its 

endpoint nearest to the correct value c must lie within a distance of at most L from 

c. Thus at most (1 +  \Ljl \)  tamely faulty sensors can be accommodated on either 

side of c with no two of them overlapping. That is, at least \T/2(1 +  [L/lJ)] tamely 

faulty sensors overlap over a region of width at least / within a distance of at most 

2 L from c.

When the number of intersections of tamely faulty sensors is \T/2( 1 +  \_L/l\ )], 

the width of this intersection is actually at least 2(1 -F L). When the number 

of intersections is T, then this results in a peak with spread of at least /. This 

clustering reinforces the width and height of the ‘correct’ (N — f ) intersection by 

adding in its neighborhood a peak of area Tl  at least. In general, this results in a 

taller and wider peak in the neighborhood of c. The wildly faulty sensors, on the 

other hand, are random in their location on the real line and being uncorrelated,
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tend not to cluster in any small neighborhood. Thus the (TV — / )  intersections 

resulting from them have shorter and narrower peaks representing them in O(x),

3.2 M ultiresolution  o f th e Overlap Function

If S{ (1 < i < TV) are TV abstract sensors with their interval estimates [a,-, fc;] (1 < 

i <  TV) having characteristic function (1 < i < TV) such that

Xi(s)
1 i f  x € [«., 6 ,j

(3.1)
0  i fxg[a. i ,bi]

then the overlap function O(x) of these TV sensors is given by 0 ( x ) = Xif®)- 

For each j ,  0 ( x ) can be sampled at regular intervals 1/2J to obtain the j-th  

resolution of 0 ( x ) at scale 1 / 2 -* as a linear combination of a set of functions obtained 

by scaling and translating a single function.

Let

(
1 i f  0  < x < 1

; (3.2)

0 otherwise 

Let a  € R  and j  € Z. Consider the functions

f •,<» f 1 i f  a  + n/2j < x < a  +  (n + 1 ) / 2 J
{<T(23( x - a ) - n \  er(2 J(x—a )—n) = <

n_ °° j  0  otherwise

Without loss of generality, we may assume 0 < a < 1/2J . Note that

[a +  nf2j , a  + (n +  l)/2 j ) f][a + (n +  1)/2J', a  + (n + 2)/2J) =  0 (3.4)

and

0  [a +  TV/2j ,a  +  (TV +  l)/2 j ] = R  (3.5)
N = -o o

.(3.3)
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The j-th  resolution of O(x) with respect to the functions {er(2J(or — 

denoted by 0 3a(x), and is given by

OO
0 3a{x ) = 0 ( a  +  2-J )£r(2J(a: — a) — n) (3.6)

n = —oo

Since O(x) has compact support, the above summation is actually over finitely 

many n. If the interval estimates of the sensors Si are [a,-, 6 ,] (1  < i < N)  and 

a =  rm’ni<,-<jv{a;} and b = ma:ri<i<jv{&,-}, then 

r2>(fr-or)l

Oi(x ) = ]C 0 (a  + n2~3)a(23(x — a) — n) (3.7)
n= f2J ( a - a ) l

Thus 0 3a(x) is obtained from O(x) by sampling O(x) at the points {a+ n2”J}„. 

0 3a is a function whose features are of size 1/2J or greater. To study the effect of 

sampling in the above manner it is sufficient to study the sampling of the charac

teristic function of an arbitrary interval [a, 6], since 0(x)  is a linear combination of 

characteristic functions.

Consider the test function

(1 i f  x E [a, b]
(3.8)

0  i f  x $  [a, 6]

Case i) b — a > 1/2J, i.e. (s(x) is a feature bigger than the scale width, a E 

[a +  n/2J, a  + (n +  1)/2J) for some n,b E [a +  m/23,a  +  (m + 1)/2J), and n < m. 

Thus
OO

9i {x ) = ]C 9 (a +  r2~3)<r(23(x ~  a) -  r) =
oo

g(a +  n2~3)a(23(x — a) — n) + • •. + g(a + m2~3)cr(23(x — a) — m) i f  a =  a  + n/23 

or

g(a+(n+l)2~3)cr(23(x~~a )— n —1 )+ .. .+g(a+m2~3)(x(23(x—a)—m) i f  a > ct-|-n/2 J
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(i)
g(x) g(j) g(*)

(2 )
g(«)J g(*)J gOO

Figure 3.2: Computational Characterization of Support of g{x)

Therefore we have

9i{x) -  <
1 i f  a  + n / 2 J < x < a + (m + 1 ) / 2 J 

0  otherwise
i f  a = a n f 2J (3.9)

and

1 i f  a +  (n 4 - 1 ) /2 J < a; < a  + (m +  1 ) / 2 J
i f  a > a + n /2J (3.10)

0  otherwise

Thus there are two things which may happen independently to the support of <7(3:):

i) it may shrink on the left by at most 1/ 2  ̂ and

ii) it may extend on the right by at most 1/2J (see 3.2).

It will be seen later that one has to correct for a positive shrinkage of the

support of a feature, so as not to lose any information (correct value of the parameter 

measured). This is done by resolving over a region bigger than the one at hand by 

1/2J on the left. The extension (‘smearing’) of support will decrease with further 

resolution, and does not pose a problem with regard to accuracy of the estimated 

output.

Case ii) b — a < 1 / 2 J . (5 (3:) is a feature smaller than the scale width). If a,b G 

[a +  n/2J, a  + (n + 1)/2J) for some n, then gi(x)  =  0  V x  i.e., the feature will not 

appear at scale 1/2J. If a < 1/2J < b for some n then

1 i f  a + n / 2 J < x < a +  (n +  1 ) / 2 J 

0  otherwise
(3.11)
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that is, g(x) will appear as a feature of size 1 / 2 J shifted to the right by at most 

b — a. This will diminish in size with further resolution, and g(x) will be recovered 

by correction to the left and resolution.

We note that changing a will not produce any advantage insofar as sampling 

0 ( x ) is concerned since location of the sampling points {a + n / 2 J} with respect to 

O(x) is arbitrary. We may thus conveniently let a = 0 and henceforth sample 0(x)  

at points {n/2 J } to obtain the j-th  resolution. Thus 

T2̂ 1
0 3(x)= 0(n2~3)(r(2}x — n) j £ Z  (3.12)

n =  f2Ja]

While considering resolution of O(x), it is important to choose the scale appro

priately. Too large a scale will provide no useful information about the structure 

of O, while too small a scale would not isolate the features important to us, by 

bringing in unnecessary detail. Further, since each sensor has width at least /, it is 

desirable to start off with a scale smaller than (or the same order as) / i.e., choose 

j  = Thus each sensor will figure as a feature at least as big as 1/2J.

The fluctuations in 0(x)  occur at the points a,-, 6,- (1  < i < N)  which are 

the end points of the interval estimates. If a is the least of the a,- and b is the 

largest of the then the average number of fluctuations per unit length is given 

by 2Nf(b — a). So in order to capture all the fluctuations we would have to resolve 

at least to a level j  > log(2N/(b — a)).

3.3 Selection  o f Robust Peaks

At the j'-th level of resolution 0 3a can be looked upon as a series of juxta

posed peaks. In other words, consider the sequence {0(n(23)}. This sequence is a

16
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concatenation of several bitonic sequences, each of which increases first and then de

creases (for details about bitonic sequences, see [30]). Each bitonic sequence which 

increases first and then decreases corresponds to a peak in 0 Ja. We wish to isolate 

those peaks which are the tallest and have the widest spread, for it is in the region 

over which these peaks lie that the correct value of the parameter being measured 

is most likely to be found. Since the characteristic function of each sensor adds 

an area numerically equal to the sensor’s width to the area under 0 ( x ), a good 

measure of the robustness of a peak is the area under it.

At the j-th  resolution consider the sequence {0 (n f2J)}„. This is a finite se

quence since the support of 0  is finite. Let there be p peaks (or p bitonic sequences) 

in 0 J . Thus the sequence { 0 ( n / 2J)} can be rewritten as

M l) •» (= £ > © ) «(**“ )•«©))• »“>
where the subsequence {0 ((n*;_i + 1 / ) 2J) , . . . ,  0 (njt/2 J )} is the k-th bitonic sequence 

from the left. Therefore the area under this peak is given by 1 /2J 0{n (2J).

Since the factor 1/2J is common to the areas of all peaks at the j-th  resolution, we 

may make the area ‘scale-free’ by dropping this factor and writing the area of the 

fc-th peak at levelj  as

A j ( k )= 0{n / 2 J ). (3.14)
n=nk_ x

We then select the peak with the largest area and ignore the other peaks. The 

function O is further resolved over the regions over which these largest peaks occur, 

and the process is repeated until a satisfactory region of the real line is isolated as 

the most likely candidate for containing the correct value of the parameter being 

measured by the sensors. However, before resolving a certain selected peak further, 

we correct the region over which the resolution is to be carried out by adding a
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