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Appendix: Supplementary Data
for Chapter 3

This appendix is used to include those background materials, and derivations
not available in Chapter 3. This section refers to particularly those references on
He control [14, 15, 20, 37, 48, 73].

Al. Inner and Co-inner Functions for Theorem

3.14

. AlB
Corollary 5.1 Suppose V(z) = € RHyo is a conlroller realization, then

¢iD
V(2) is inner if and only if there exists a matrizx X = X~ > 0 such that

(0) “XA=X +CC=0
(b) D°C+BXA=0
(c)(D—CA-'By*D=D"D+B"XB=1

and V(z) is co-inner if and only if there exists a matriz ¥ = Y~ > 0 such that

(d) AY A=Y + BB* =0
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(e) BD* + AYC* =0
(f) D(D — CA-'B)* = DD + CYC" =1
then show that V(z) in Theorem 3.69 can be written as V(2)V(z)* =1+ CYC* .

Proof: By the Theorem 3.14, the transfer function V(z) = [ + aC(2lp4r — A —
L,C)'a"(L, — H). To further simplify,let C = aC, A=A+ L,C and B =
a~'(Ls — H). Then V(z) = I + C(z] — A)"'B. We need to show that V(z) is
co-i.nner. With stabilizing solution ¥ > 0 in Theorem 3.69, it is noted that Riccati

equation (3.61) can be written as

Y = (A+LC)Y(A+ LC) +a"*(Ls— H)( L, — H),

= A"YA+ BB,

where L, = H —a?(A+ HC)Y C*(I +a®CYC")~!. To show the condition (e) above,

we rearrange and multiply Lg by (I + a®CYC*)™'. The result is satisfied as follow.
a Y Ls—H)+ a(A+ LC)YC"=BD+ AY(C" =0
and to show the condition (f), let Vi(z) = C(z1 — A)~'B.
(I =AY (=AY =Y =AYz =2V A" 4+ AY A"
we rearrange the equation above.

Y=(GI-A)Y( " -A)+ AY 27 42V A" - AY AT
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and
BB® = Y - AYA"

= (I=A)Y(z"' - A")+ AYz" 4 Y A" - AY A"

= (/- A)Y(z7' 1 - A")+ AY (27 - A7) + (z] - A)Y A".
Thus,

V.V = C(zI-A)"'BB"(:"'1 - A*)"'C"
= CYC"+C(z1 - A)'AYC* + CY A(z7'1 - A*)"'C~
and
V(z)V(z)" = (D+ V) (D™ + V)

= DD" + VD" + DV + V,V;
= DD* + C(zI - A)™'BD" + DB*(z7'] - A")"'C* + CYC"
+ C(zI-A)TAYC"+CYA(z7' - A)~'(C"
= DD™ 4+ CYC"+C(zI — A)"Y(BD" + AYC*) + (DB"
+ CYA )7 - A7)'C"
= DD* +CYC*
= I1+Cyer
= I+a*cyYCr.
Therefore V(z)V(z)" = I + a*C'Y C* is proved. However, this is not exact co-inner.
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A2, The Derivation of Discrete-time Equation :
The state space solution in[37] yields the following equivalent conditions for J < «:
Let A, R and Q € C"*" with @ and R Hermitian. The symplectic pairs S with

2n x 2n matrices for obtaining the discrete Riccati equation

S ()

We now present some results on the properties of X as well as conditions under

I R
0 AT

which S belongs to dom(Ric).

Definition 5.1 Discrete-time Riccati equation

Suppose that S € dom(Ric) and X = Ric(S). Then

(a) X = XT
(5) X satisfies X = ATX(I + RX) A+ Q.
(c) The matriz (I + RX)™' A is stable.
Lemma 5.1 Suppose that R = BBT and Q = CTC where (A, B) is stabilizable and

(C, A) has no unobservable modes on {z : |z| = 1}. Then S € dom(Ric(S)) = 0,

and ker(X ) belongs to stable unobservable subspace of (C, A).

The discrete-time Ho, control which is associated with two symplectic pairs:

- ({ A—BRDTC 0} [1 BR-'BT )

~CII =Dy R'DT)Cy 1 0 (A= BR'DIC,)T
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(A= B DTRC)T 0
~BT(I -DITR'D,)BT 1

- | |

Let us consider for the plant size of m > p given by Theorem 3.10. A state-space

I CTR-'C
"l o A-BDTRC

realization of G(z) is given by

(0] o0 (1=XC
Gu | Gz -1
G(z) = = | 0|, |+ 0 (=1~ A) [—HIB/,\]
G2l G’22
| 1,] 0 c
[ 4 | -H|B/N]
_la=-nclo ] o
0 0 | In
¢ || o |

We assume that the system G/(z) is stable and &(D) < 1. First, we define some

matrices:
7. 0 00
R = DiDy - 7o y D1, =[Dy Dyg] = )
0 0 0 7
i 0
. D;‘ 0 - - D]]
DIC = D Cy = 0 y Da=[D5, D3] = =10/,
21
| Y12 I
-2
R = - 0 :
0 !
~2
i 0 0
= -1 0
Bo= | 0 -y |, R= »
0 7
0 0 I




164

(1-A)C

By = B Bil=|-H B/A|, Cr=
C

B;R™'D;Cy =0, Di.R1D; =0

I+ B;R'B}X =1+ (A 2BB*~y"2HH")X, Bi(I - D3R™'D4)B; =0

A-BDiR'C= A+ HC, I1+C;RC,Y =I+[1- (%)210'0}’

1=\
—L,,TIC
R-ICJ = 0
C
-1
I-a*cyc 0| -eye
ZZ=(I+R'Cyep' = 0 I 0

CY(1=-A)C" 0 l I1+CYcCr
The block element(3,3) of matrix (I + R"C/YC,')" can be calculated as Schur

complement as follow: If A~? exists, then
-1

A1+ EA'F —EA-!
AT A

AlD
C|B
where A= B —-CA™'D, E= A"'D,and F =CA™.

-1
Zhpq = (I+C)-"C'+C)~'C"((—1%—A—))2[1_(U_;_A_))t’cy'c-]-*cvc-)

-1
2CY C] )cyo‘)

= (I+cyc'+(—1+[1-(“';”

= [I+(-pcyen)ieye)?

I-(I-/CcYct +cyes)eye:

= I—-(I+a®CYC")~'CYC"
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If S edom(Ric) and T' € dom(Ric), there exist matrix X > 0, and Y > 0. By
the lemma 5.1, and lemma 5.1, there exists a matrix X = Ric(S) > 0. Then we
arrange to give the Riccati equation by the lemma 5.1. The Riccati equation of the

system can be represented as follows:
X = A'X(I+RX)'A+Q
= (A= BsR™'D; Cy)"X(I + ByR™'B}X)"Y(A - B;R™' D} C})

+ C;(I-D\.R7'D;)C

-2 0 -H"
=  AX(I+[-H B/ X) A
o I]|| B/
1-A)C
+ [(1-,\)0- 0][1—0][( ) }
0

AX[I+ (A 2BB" -y 2HH")X]'A+ (1 = M\)2CC.

and also the state feedback matrices [37] is given by

= —(R+ BjXB;)"\(B;XA+ D;C,

= —(R+ BjXB;)"'B;XA
= —(I+R'B;XB;)"'R'B; XA
= —~R'B;X(I+ B;R'B"X)™'A

_ |-t o —H
o 1| B
F=F, = —\*B'X[I+(\ BB -7 HH")X]" A,

X[+ (A\"2BB" — v HH")X]'A
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Similarly, there exists Y = Ric(T) satisfying
Y=A(I+YR)"'YA*+Q
Then the stabilizing solution Riccati equation can be written as

Y = AU+YR)'YA +Q

(A= BiDyR'Cp)I+C;R™'CY) 'Y (A= By Dy R™'Cy)
+ By(I-DyR'D,)B;

(A+ HC)[I + a®Y C*C]"'Y(A + HC)".

Since A + HC is stable, ¥ can be zero. If Y =0, then L = H. and also the output

injection matrices [37] is given by
L=[L L) = —[BDy+AYC}(R+CsYC)™

= —[BDy+AYC}(I + R7'C,YCy) R

= =[(0 0 —H)+AYC}JI+R7'C,YC))T'R™

0
L=L, = —([0 0 —H]+AYCH)(I+R'C,YC)™ | 0
1
In order to get L, let us separate each step of calculation.
Step 1. consider
0 0

AYC;(I + RT'CYC)™ | 0 | = AT+ YCRTCp)YCy | 0
1 I
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o olla=-nell”
Alr+yvqa-neocy| o —yu o Dl ve
0 o I c
= A(I + @?YC*C)-'YC" = AYC~(I + a?CY C")!

Step 2.

[0 0 —H )I+R'CyYC))™ = —H[I - (I + a*CYC")'CYC"]

o T == B = |

Finally, we combine two equations obtained by each steps. The output injection L

is given by

Ly = =[AYC"(I+a’CYC™)™ - H[I - (I +a’CYC)7'CYC]

—[AYC"(I + o®CYC™)"' = H + HCYC"(I + a*CYC")7!]

H-(A+HC)YC"(I+a*CYC)™!

Suppose that there exist two Riccati solutions, then all rational internally stabilizing
controllers K(z) such that ||F (P, K)|le are given by K = F(K,,®) [37]. The

central controller is given by

Al B B
1"0(3) = C’l Du Dlg
Ca| Dy 0

where

A = A+BF+ B D3¢,
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—~Z2 L, + B, D5} Dy

&
I

B, = ZJ}(B,+ L12)ﬁ12
Ci = R+ Dubz_lléz
Zeo = I-79"%YX

C, = -b21(02+D21F1)

and we note that Z,, = I due to ¥ = 0, and Dy3 = Dy = 1, and Dy = 0. The

observer-based feedback controller

A+BF+LC|—L
r l 0

K(z)=—-F(zI,~A— BF - LC)'L =

This is certainly observer form. If A+ HC is unstable, the Riccati solution is Y # 0.

In this case, the central controller is given by
K(2) = =F [z = A= y"2(H = Zuo L) H"X + A\2BB" = Zoo L,C|” ZooLs.

where F = —A"2B*X[] + (A\2BB* — y"2HH")X]"'A and L, = H — a*(A +
HC)YC*(I + a®CYC")"!. This is not observer form. n
A3. The derivation of dual case in discrete-time

By [37], let us consider for the plant size of m < p given by Theorem 3.12, A

state-space realization of G/(z) is given by

~)

—
2

|
1l

00 II ~H
+
0 1,,| 0 A C

(sI—A)“([(l-A)B olB]).
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First, we define some matrices:

’72-[771 0
R = DD, - ) Dl.=[DllDl2]=[0 0 I],
0
5 0
D;C, = "ley=| o |, BiR'D;C,=—-BH

Di,

—~H

I1+B(R'B;X = I+a*BB"X, Cj(I-D.RD;)C;=0
N [ 21 0 .
k=Rt = |77 , BID R'Cy =0
0o 1]
. (1 0 L .
I-DyR™'D, = , By(I-DyR'D,)B; =(1-\)*BB
[0 0
. Dy 00| . —v721 0
D, = [D},Dy]= = , 7= ’
Dy 0/ 0 I
-2 0 0
R = 0 -2 |, C;RT'C;=—v"2H"H +)7%CC
0 0o I

. -2 0 -H
I+YCiR™'C; = I+Y[-H" \'C7)
0 I ATiC

= [ =97 H"H 4+ A"YC*C

Bi=[B B = [(1-NB 0 B |, I+BRBX =1+a*BBX
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The Riccati equation X and Y, and output injection gain L of the system can be

represented as follows:

X

L=[L1 L2

= AX(I+RX)1'A+Q

(A= B;R™'D;.C,)*X(I + ByR'B;X)™'(A — B;R™'D; Cy)

+C;(I — Dy.R1D:)C

(A+ BH)"X[I + o*BB")X]"'(A + BH).

AT+ YR WA +Q

(A= BDyR'CHI +YCR™'C)"'Y (A - BiD3R™'Cy)"
+Bi(I - D3R™'D,)B;

AT+ Y(A"2C*C — 4 2H™H))"'Y A" 4+ (1 — A\)*BB".
—(B1 D7 + AYC™) (R + C,YCy)!

—AYC™(R+ CyYC})!

—AYC"R™Y(I + Cs¥ CFR™Y)™
~A(I+YCIRT'YCy)'Y O R

—A[l+Y(A2C"C -y H*H)]" (=A"'YC7)

AVA[T+ Y(A2CC — 42 HH)Y ¢

In order to get [, let us separate each step of calculation. Consider that

R
I
= —(R+ BjXB;)"(BjXA+ D; C)
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= —RY I+ B})\’B,R”1 )“‘B}XA + D; C,
To simplify the calculation, let us separate the equations as follow:

F = Fy=Fu+4+ Fapg

Fie = RN+ B}XByR™')"'BjXA

0
= | 0 |+ BXB R B}X A+ D;C)
b I -l
[0 ] 0
= | o |U+BXBRY)"B;XA= | o | B;X(I + B;XB;R™)"' A
1 I

= B"X(I+a’BB"X)"'A.

Faa = BRI+ B;XByR™)™'D;C,

0 0
= |0 |U+BXBRY)| 0
I ~H

As the preceding proof, we apply Schur complement matrix. Then, the state feed-

back gain Fy,q is given by
-1

o[ 7-0-A2BxB/? 0| (1-\BXB 0
Pt = |0 0 I 0 0
|| -BXxa-NB/* 0| I+BXB —H
)2 12 -1
- (1+B'XB+B'.>:B(1 72)‘) -4 72’\) B'XB)“B‘XB) (~H)

I+B°XB+(#B°XB-1+1)(I-fBXB)"BXB)" (-H)

I+ B XB+(~1+ (- B*BXB)"'B"XB)™ (~H)

(
(
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= (1+(-pB"XB)'B'XB) " )(-H)
= [[-(I-B*B"XB+B"XB)"'B'XB)(~H)

= —H+(I+o*B"XB)"'B*XBH
Hence, Since F = Fy,; + Fona,

F=F, = —(B"X(I+o*BB"X)"'A~ H+ (I +o*B"XB)"'B"XBH)
= —(B'X(I+a®BB"X)"'A~ H+ B"X(] + o*BB"X)"'BH)

= H-B"X(I+a*BB"X)""(A+ BH).

A4. The Supplement Proof of Theorem 3.14
Let us define L, such that the Riccati equation Y is satisfied. The modified L, is
given by

Ly = H — a*(A + HC)YC*(I + a?CYC")""
where by the matrix equivalent, I + a®*CYC* = (I + o*CYC")" and YC*(I +
?CYC*)IC =YC*C(1+a*YC"C)! = Y(I +a*CYC")~'C*C, and substituting

these into Y the below.

Y = AYA" + BB (5.1)

(A+ LY (A+ L) +a (L, — H(L —s — H)*

I

(A+ HC - o*(A+ HC)YC*(I +a*CYC*)™'C) Y

l

(A + HC - a*(A+ HC)YC(I + o-QCYC")"IC)' nonumber (5.2)
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+a (L, — H)(L, - H)* (5.3)

(A+ HC)Y(A+ HC)" - a*(A+ HC)YC*(I + o*CYC")"ICY(A + HC)"
—(A+ HC)Y[eY(A+ HC)YC*(I + o2CYC™)-'C)
+a}(A+ HC)YC™(I 4 o*CYC*)"'CY[?*(A + HC)Y C*(I + o*CYC*)'C)*
+a?(A+ HC)YC™(I + *CYC")"*CY(A+ HC)"
= (A+ HC)Y(A+ HC)"
—(A+ HC)YC (I +a*CCY) 'a®C"CY(A+ HC)" (5.4)
—(A+ HC)Y[I + *C*CY]'e’C"CY ) A+ HC)" (5.5)
+(A+ HC)Y (I +a*CCY) 'a*C"CY (I + a?C"CY)™!
Q?C*CY(A+ HC)" (5.6)
+(A+ HC)Y(I +*’CYC™)2a®*C"CY(A+ HC)" (5.7)
To simplify equations, we further rearrange and combine as follows.

Step 1. Eq.(5.4) is rewritten by

Yi = (A+HC)Y[I - (I +a%C"CY)'a?C-CY)(A+ HC)

(A+ HC)Y (I +a*C*CY) (A + HC)" (5.8)

Step 2. Eq.(5.5) and Eq.(5.6) are combined by
Yo=—(A+ HC)Y[I +a*C*CY] ' a®CCY)[I + a*C*CY] (A + HC)" (5.9)
Step 3. Eq.(5.8) and Eq.(5.9) are combined by

Ya = (A+ HCO)Y[I +a*CCY) I = (I 4+ a®C*CY) 'a®C*CY)(A+ HC)"
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= (A4 HC)Y|I+ o*C*CY]"*(A+ HC)" (5.10)

Finally, Eq.(5.10) and Eq.(5.7) are combined by

Y, = (A+ HC)Y[I+a’CCY] ™[I + o*C*CY]|(A+ HC)"

Y=Y, = (A+HC)Y[+a?C*CY]"\(A+ HC)

Thus, it is verified that the modified output injection gain L, satisfies Riccati equa-

tion Y.

A5. The Supplement Proof of Lemma 2.1

Alternatively, the Lemma 2.1 can be proved by matrix factorization and equiva-

lent fact. Also, P and I given by state space form as (3.1) and (3.2) obtain the

followings equations by matrix equivalent transform:

(I - PK)™ =

(I - PK)'P =
K -PK)" =
(I - PR)"'PK =
(I-KP)™ =
(I-KP)'P =
K(I-KP)" =

(I-KP)'KP =

I+PK(I-PK)y'=I+PI-KP)'K
P+ PK(I = PK)''P=P(I-KP)
(I-KP)'K

PR(I - PK)' = (I - PK)™, similarly,
I+KP(I-KP)'=I1+K(I-PK)'P
P+ KP(l-KP)'P=P(l - PK)™!

(I - PR)'K

KP(I-KP)y'=(I-KP)"' -1



Then, factorization results have

PK

KpP

(I - KP)!

(I - PR)™!

Il

K(I - PK)™

A+BF+LC 0|L

[ 4 0
LC A+BF+IC

c|o

i

0 —F
[ 4 _BF
LC A+ BF+ILC

B
0
0

|0 F

[ A+BF+LC LC
—BF A

0 -C

[ A+ICc 0
LC A+BF

L
L

c L

0 I
by
I -1

C(6T - A— LC)™'L(I - C(6] — A — BF)™'L)

+(I = C(6] — A— BF)"

(I =C(6] = A= BF)'L)(I +C(6] — A— LC)~'L), and

IL)

A+ LC 0 L
= —-BF A+ BF|0
> [

= —(I+F(6]~A—BF)

IB)F(6]— A—LC)™L

—(F+ F(6] = A—-BF)'BF)(6] — A-LC)'L
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= —F(I-A~BF)yY6§]-A—-BF+BF-LC+LC)

(6] — A— LC)-'L

(I- PK)'PK =

KP(I - KP)™!

Otherwise, we omit proof.

~F(8I — A= BF)™\L(I + C(6] — A — LC)"'L).

[ A+BF+ILC IC|-L
—BF Al o
0 —c| 0

[ A+LC 0 |L
BF A+BF|o0
¢ - |o
—C(8] — A= BF)"'BF(§] — A— LC)™", and

~

A -BF
LC A4+ BF+LC
| 0 F

-B
0
| 0

[ A+Lc o |B
LC A+BF|0
0 _F |0
—F(8] = A= BF)'LC(§] — A— LC)™'B
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