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Abstract

This dissertation seeks to find optimal graphical tree model for low dimensional represen-
tation of vector Gaussian distributions. For a special case we assumed that the population
co-variance matrix Σx has an additional latent graphical constraint, namely, a latent star
topology. We have found the Constrained Minimum Determinant Factor Analysis (CMDFA)
and Constrained Minimum Trace Factor Analysis (CMTFA) decompositions of this special
Σx in connection with the operational meanings of the respective solutions. Characterizing
the CMDFA solution of special Σx, according to the second interpretation of Wyner’s com-
mon information, is equivalent to solving the source coding problem of finding the minimum
rate of information required to synthesize a vector following distribution arbitrarily close
to the observed vector. In search of finding optimal solution to the common information
problem for more general population co-variance matrices where the closed-form solutions
are non existent, we have proposed a novel neural network based approach.

In the theoretical segment of this dissertation, we have shown that for this special Σx

both CMDFA and CMTFA can have either a rank 1 or a rank n− 1 solution and nothing in
between. For both CMDFA and CMTFA, the special case of a rank 1 solution, corresponds to
the case where just one latent variable captures all the dependencies among the observables
giving rise to a star topology. We found explicit conditions for both rank 1 and rank n − 1
solutions for CMDFA as well as CMTFA. We have analytically characterized the common
solution space that CMDFA and CMTFA share with each other despite working with different
objective functions.

In the computational segment of this dissertation, we have proposed a novel variational
approach to solve common information problem for more general data i.e. non-star yet Gaus-
sian data or even non-Gaussian data. Our approach is devoted to searching for a model that
can capture the constraints of the common information problem. We studied the Varia-
tional Auto-encoder (VAE) framework as a potential candidate to capture the constraints of
the common information problem and established some insightful connections between VAE
structure and the common information problem. So far we have designed and implemented
four different neural network based models and all of them incorporates the VAE framework
in their structure. We have formulated a set of metrics to justify the closeness of the ob-
tained results by these models to the desired benchmarks. The theoretical CMDFA solution
obtained for the special cases serves as the benchmark when it comes to testing the efficacy
of the variational models we designed.

Considering the ease of analysis our investigation so far has been limited to 3-dimensional
data. Our investigation has revealed some interesting insights about the trade-off between
model capacity and the intricacy of data distribution. Our next plan is to design a hybrid
model combining the useful properties from different models. We will keep exploring in
pursuit of a variational model capable of finding an optimal common information solution
for higher dimensional data underlying arbitrary structures.

v



Chapter 1
Introduction

The purpose of this chapter is to give an overview of the entire dissertation. Here we discuss
the motivations behind different sections of work and give higher level descriptions of the
processes and results that are elaborated in the forthcoming chapters.

1.1 General Motivation

Speaking in very abstract terms, given a set of observables {X1, . . . , Xn} we seek to find
{Y1, . . . , Yk} that can represent the inter-dependencies among the observables where k < n.
Such dimensionality reduction frameworks have a wide variety of applications including in
deep learning [1], predictive modeling [2], classification [3], facial recognition [4] and image
compression [5]. Though the algorithmic approaches that addressed the problem of assigning
a latent structure to the available data are able to designate sparse structures to the data for
interpretation [6], but they can not guarantee optimality in terms of the number of nodes,
number of latent variables and the weight of individual edges of the graphical structure [7]
[8][6][9]. A potential solution to that dilemma could be Factor Analysis (FA), which is a
commonly used tool in multivariate statistics to represent such correlation structure of a set
of observables in terms of significantly smaller number of variables called “latent factors"
[10][11]. Classical factor analysis models seek to decompose the correlation matrix of an n-
dimensional random vector X ∈ Rn, Σx, as the sum of a diagonal matrix D and a Gramian
matrix Σx−D, where a Gramian matrix G of a set of finite-dimensional real vectors v1, . . . , vn
in an inner product space is defined as G = V TV where matrix V = [v1, . . . , vn].

The literature that approached factor analysis can be classified in three major categories.
Firstly, algebraic approaches [12] and [13], where the principal aim was to give a characteri-
zation of the vanishing ideal of the set of symmetric n × n matrices that decompose as the
sum of a diagonal matrix and a low rank matrix, did not offer scalable algorithms for higher
dimensional statistics. Secondly, factor analysis via heuristic local optimization techniques,
often based on the expectation maximization algorithm, were computationally tractable but
offered no provable performance guarantees. The third and final type of approach, based on
convex optimization methods namely Minimum Trace Factor Analysis (MTFA)[14] and Min-
imum Rank Factor Analysis (MRFA)[15], guaranteed performance and were computationally
tractable. As the name suggests MRFA seeks to minimize the rank of Σx − D and MTFA
minimizes the trace of Σx−D. However, MTFA solution could lead to negative values for the
diagonal entries of the matrix D. To solve this problem Constrained Minimum Trace Factor
Analysis (CMTFA) was proposed [16] which imposes extra constraint of requiring D to be
Gramian. Computational aspects of CMTFA and uniqueness of its solution were discussed
in [17]. Though trace was used as the objective function, the paper set the groundworks
for a broader class of convex optimization problems. Inspired by that groundwork Moharrer
and Wei in [18] added another variety to the same class of problems that uses the determi-
nant of a matrix as the objective function and named the problem Constrained Minimum
Determinant Factor Analysis (CMDFA).

Besides dimension reduction, the aforementioned factor analytic decompositions of Σx has
got a graphical interpretation i.e. given the latent variables {Y1, . . . , Yk} (assuming Σx −D
is a rank k matrix), {X1, . . . , Xn} are uncorrelated random variables. Under the special as-
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sumption that the observed vector is jointly Gaussian, the above decomposition would imply
that, given the latent variables {Y1, . . . , Yk} the observables {X1, . . . , Xn} are conditionally
independent random variables. Such conditional independence makes the analysis of such
structures much more tractable, and thus offer a powerful framework for representing high-
dimensional distributions by capturing the conditional dependencies between the variables of
interest in the form of a network. Gaussian graphical models [19] [20] [21] have enjoyed wide
variety of applications in economics [22], biology [23] [24], image recognition [25] [26], social
networks [27] [28] and many other fields. For example in neuroscience, Gaussian graphical
models are often used to learn the functional connectivity between brain regions or neurons
[29] [30] [31]. Among the Gaussian graphical models, we are particularly interested in the
Gaussian latent tree models [32] where the observables are the leaves of the tree and the
unovserved variables are the interior nodes. A typical Gaussian tree is shown in Figure 1.1,
where the observable random variables Xis are the leaves belonging to different nodes Yjs
and each subset of nodes belong to their parent node forming a tree. Looking at the tree we
can see, the basic building block of a tree are individual nodes. If we single out one of those
nodes we get the the simplest of trees i.e. the star structure given by Figure 1.2.

Figure 1.1. Example of a Gaussian Tree Figure 1.2. A star topology

To recall, given a set of observables, our goal is to seek lower dimensional representation
that captures the dependencies among the dimensions of the observed data. To start with
a simple case we assume that our observed data is jointly Gaussian X⃗ = [X1, . . . , Xn] ∼
N (0,Σx) and we further assume that the data underlies a star topology i.e. the leaf nodes
emerge from one latent node as given by Figure 1.2. The star assumption is for the simplic-
ity of analysis and the Gaussian assumption is to be able to avail all the useful structural
properties as mentioned above. Admittedly, it is highly unlikely that the real data would
follow such special structure, but the insights we gain from analysing such a simple data
structure will pave us the way to explore more general cases. Because, the star structure
is the basic building block of more complex tree structures. Given the above assumptions
i.e. the observables are jointly Gaussian distributed and the co-variance matrix Σx has a
underlying star structure, a pertinent question to ask would be "if this is the optimal way
to generate such data." Our goal is to find a set of optimal nodes (latent variables) that can
best represent the original model that produced the data. With that purpose in mind, in
chapter 2 we presented detailed theoretical analysis of CMDFA and CMTFA decompositions
of our specially assumed Σx. We completely characterized the respective solution spaces with
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necessary and sufficient conditions. Though CMDFA and CMTFA both are convex optimiza-
tion problems, due to the difference between their objective functions they have significantly
different operational meanings. We established connections between the operational meaning
of CMDFA and that of Wyner’s common information problem. Such connections prompted
us to explore the data following more general distributions and structures. In chapter 3 we
proposed a novel approach namely variational approach to solve common information prob-
lem. We designed four different neural network based models and investigated their strengths
and weaknesses in terms of capturing the constraints of the common information problem.
In the next two subsections of this chapter we discuss the detailed motivations behind the
theoretical part of our work and the novel variational approach that we proposed to solve
common information problem.

Figure 1.3. n dimensional version of the second interpretation of common information that Wyner
gave in his work [33]. The dimension of each Y⃗i, 1 ≤ i ≤ L is m, where m < n.

1.2 Discussion on the Theoretical Analysis and Contributions

Since the objectives of CMDFA and CMTFA are determinant and trace of a matrix respec-
tively, their operational meanings are also significantly different. In this subsection we discuss
the detailed motivation behind CMDFA and CMTFA decompositions of Σx in connection
with their operational significance.

Finding CMDFA solution of Σx would equivalently mean to solve the problem of finding the
minimum rate of information required to synthesize a vector that has the same distribution as
the observed vector X⃗ = [X1, . . . , Xn]. This is because of the second interpretation of Wyner’s
common information, which is defined as the minimum rate at which information (Yis) must
be sent to n independent processors given in Figure 1.3, so that the distribution at the
processors’ output is arbitrarily close to the actual distribution of X⃗ = [X1, . . . , Xn]. Though
it is not very clear at the first glance, little more explanation will make such connections
obvious. As we know, if we decompose Σx by CMDFA, we will end up with an optimal set of
latent variables Yis. We mathematically prove in Chapter 2 that those latent variables coming
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out of CMDFA solution minimize the mutual information between latent variables and the
observables I(X⃗; Y⃗ ). Now, because of the conditional independence of observables suggested
by Figure 1.2, this minimum mutual information turns out to be the same as Wyner’s common
information which characterizes the minimum amount of common randomness needed to
approximate the joint density of a set of random variables X1, . . . , Xn as given by (1.1),

C(X1, . . . , Xn) = min
PY

XiXj |Y⃗ ,i ̸=j

I(X1, . . . , Xn;Y ) (1.1)

where XiXj|Y⃗ , i ̸= j indicates the conditional independence among the observables given
Y , and the joint density function is sought to ensure such conditional independence as
well as the given joint density of X1, . . . , Xn [34][35][33][36][37][38] [39]. This definition of
Wyner’s common information is a straightforward extension of the definition given for two
dimensional case given in [33] to general n dimensional case . It is such information theoretic
interpretation of CMDFA solution of Σx , that makes our investigation of CMDFA solution
space particularly special .

On the other hand, the motivation behind CMTFA resides in the merit of trace as an
objective function. Ideally rank minimization approaches would lead to the least number of
latent factors, but they are computationally much more challenging than trace minimization
approaches. Firstly, trace minimization is favored over rank minimization because of the
fact that the trace of a matrix being a continuous function offers more flexibility than the
rank of a matrix which is a discrete function. Secondly, Mitra and Alizahed proved in [40]
that, trace as an objective function is heuristically as effective as the rank of a matrix. For
example in [41], in a tensor completion problem nuclear norm of a matrix, defined as the
sum of the singular values of a tensor, was minimized as an equivalent problem to rank
minimization. This is justified, because in [40] it was shown that nuclear norm is the closest
convex surrogate to the rank of a matrix. For the specific class of symmetric positive definite
matrix that we are dealing with, the nuclear norm of the matrix is same as the sum of the
eigenvalues of the matrix. Which makes trace of the matrix the closest convex surrogate to
the rank of the matrix. So, in our search for the minimum number of latent factors to explain
the origin of a set of observables, trace minimization is the closest feasible technique to rank
minimization.

Here is a list of contributions from the theoretical part of the dissertation.

• Completely characterized the CMDFA solution for a special Σx i.e. underlying latent
star structure. We showed that there can only be two possible solutions namely the
rank 1 and the rank n− 1 solution, and we proved both with necessary and sufficient
conditions.

• Established connections between CMDFA and the Wyner’s common information prob-
lem in terms of their operational meaning.

• Completely characterized the CMTFA solution for a special Σx i.e. underlying latent
star structure. We showed that there can only be two possible solutions namely the
rank 1 and the rank n− 1 solution, and we found closed-forms for both with necessary
and sufficient conditions.
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1.3 Discussion on the Neural Network Based Analysis and Contributions

The co-variance matrix Σx that we have so far discussed is a very special one due to latent
star structure and it is highly unlikely that the real data follows such structure. In Chapter
3 we have discussed some possible situations where the closed form CMDFA solutions of Σx

are not possible. For those cases if we need to find the minimum rate of information required
for the synthesis of the observable vector X⃗, we clearly do not have a closed-form optimal
solution. As a potential candidate to solve those cases we resorted to variational approach.

1.3.1 Overview of the Approach

Variational auto-encoders (VAEs) have launched a new trail of research in representational
learning [42] [43] [44][45][46]. VAEs perform efficient approximate inference and learning with
directed probabilistic models whose continuous latent variables and/or parameters have in-
tractable posterior distributions. Given an observed vector X = {x(i)}Ni=1 consisting of N
i.i.d. samples of some continuous or discrete variable x, VAEs assume that the data was
generated by some generative model pθ(z)pθ(x|z) where z is the unobserved latent vari-
able. Canonical VAEs assume that the prior pθ(z) and the likelihood pθ(x|z) are Gaussian
distributed. VAE-KRnet, a generative model proposed by Wan and Wei in [47], does not as-
sume any distribution for the prior, instead captures the actual distribution by a flow based
generative model called KRnet.

Each of the four models that we investigated as potential candidate to solve common in-
formation problem has a VAE framework in it. We are going to provide the mathematical
details of why we consider VAE framework capable of capturing the constraints of the com-
mon information problem in Chapter 3. In this subsection we are going to give a sketchy
outline of VAE’s connection to common information problem.

Figure 1.4. Outline of a VAE framework Figure 1.5. Outline of a GAN framework

Since the true posterior distribution pθ(z|x) is intractable, let qϕ(z|x) be an approxima-
tion to pθ(z|x). qϕ(z|x) is referred to as probabilistic encoder and pθ(x|z) as probabilis-
tic decoder as can be seen in the VAE model given in Figure 1.4. The goal is to ap-
proximate posterior inference of the latent variable z by learning the set of recognition
model parameters Φ jointly with the set of generative model parameters Θ. Now if we
look back to our common information problem of synthesizing a vector following certain
distribution, our success revolves around finding a set of latent variables that offers the
minimum mutual information between the observed variables and the latent ones. Let us
have a close look the cost function that VAE maximizes i.e. the evidence lower bound
(ELBO) L

(
θ, ϕ;x(i)

)
= −DKL

(
qϕ(z|x(i))||pθ(z)

)
+ Eqϕ(z|x)

[
log pθ(x

(i)|z)
]

where DKL(.) is
the Kullback-Leibler divergence between two distributions. VAE maximizes ELBO which
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means the KL divergence term DKL (qϕ(z|x)||pθ(z)) is minimized and the log-likelihood term
Eqϕ(z|x) [log pθ(x|z) is maximized during the training. In Chapter 3 we mathematically show
that upon the convergence of the VAE objective function the expectation of the KL diver-
gence term over the dataset converges to the mutual information between the observed and
the latent variables Iϕ(X;Z), and the expectation of the log-likelihood term convergences
the the negative of the differential entropy of x given the latent variable −h(x|z). Besides the
VAE decoder network architecture is such that the generated data at the decoder output are
conditionally independent variables given the latent variable at the decoder input, which is
a major requirement when it comes to satisfying the constraints of the common information
problem. Such explicit connections make VAE a potential candidate to be able to capture
the constraints of the common information problem.

1.3.2 Metrics

The constraints of the common information problem requires the model to capture the data
distribution well. Now how to decide if a model has captured the ground truth distribution
perfectly? Inspired by Paul Cuff’s [48] use of Total Variation Distance as metric under similar
circumstances, we consider TVD a reasonable metric to serve our purpose. To justify our
decision in favor of TVD, in Chapter 3 we discuss the connection between our work and Paul
Cuff’s work at length. We also discuss in detail the relation between the average Type I and
Type II error probabilities in a binary hypothesis testing problem and the Total Variation
Distance between two concerned distributions in Appendix D. Such connections prompted us
to use binary hypothesis testing as a metric to measure the closeness between the generated
data by a model and the ground truth distribution.

We consider the correlation coefficients across dimensions as a good measure of how well
has the second order statistics of the data been captured. Hence we used inter-dimensional
correlation coefficients as our second metric to measure how well has the data distribution
been captured by a model.

Since the mutual information between the observables and the latent random variables is
the objective optimized in the common information problem, this by default becomes our
third and final performance metric when it comes to measuring the efficacy of a model. It is
important to mention here that we estimated the variational mutual information from the
data using the technique Mutual Information Neural Estimate (MINE) proposed in [49], we
will give the details of the process in Chapter 3. More often than not it is a big question to
find a gold standard to compare your results to. This is not a problem in our case, because,
to justify the efficacy of variational models we compare the mutual information computed by
MINE with the theoretical optimal value obtained from CMDFA solution. The idea is to gain
confidence in the capability of the model by experimenting the cases where the theoretical
optimal solution is known. Once a certain standard is met then we can start exploring the
uncharted territory.

1.3.3 Summary of Findings and Contributions

In Chapter 3 we have investigated a total of four different neural network based models
namely VAE, β-VAE, β-VAE-GAN and VAE-KRnet as a novel approach to variationally
solve the common information problem. As the names suggest, all four of our models incor-
porate a VAE framework in their structure precisely for its potential ability to capture the
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constraints of the common information problem as explained above. One of the four models
β-VAE-GAN involves a Generative Adversarial Network (GAN) [50]. Figure 1.5 shows the
outline of a traditional GAN. β-VAE-GAN is the only hybrid model that we put together
by replacing the generator network in traditional GAN framework by a β-VAE architecture,
while the other three models we used are directly off the shelf. We measured the performance
of each model in terms of the above mentioned metrics under similar training and testing
conditions. Our investigation has revealed some interesting insights about the capacity of
each model and the intricacy of capturing the underlying features of a given distribution.
We have presented detailed results along with the hypotheses we drew from those in Chapter
3. So far VAE-KRnet has turned out to be the best performing model in capturing the con-
straints of the common information problem closely followed by β-VAE-GAN. Apparently,
VAE-KRnet and β-VAE-GAN models perform best due to their added capacity from the
KRnet and GAN framework respectively. This leads us to the hypothesis that any added
capacity counts in the overall capacity of a model. Another important finding from our work
was that the models face more difficulty in capturing the distributions with richer underlying
structure. Admittedly, we have still not been able to put together a settled neural network
based model that solves the common information problem. Having said that we have had
some encouraging share of success in parts and more notably gained a lot of useful insights
about the problem from the models we investigated so far. With all the insights we got
from our investigation of the models, we are now planning to combine useful properties from
different models to design an effective hybrid model that best captures the constraints of
the common information problem. So far our investigation of the models have been limited
to 3 dimensional data primarily because of the ease of analysis. Once we settle into a model
that performs satisfactory in low dimensional data, we will move forward with the model to
explore higher data dimensions.

The following two points are the major contributions from the numerical part of the
dissertation.

• Proposed a novel numerical approach to solve common information problem and es-
tablished analytical justification for the approach.

• Designed and implemented four different models and acquired insightful results from
their investigation for low dimensional data. The obtained results are promising enough
to keep us interested to investigate the higher dimensional cases.

1.4 Organization of the Rest of the Dissertation

The purpose of this chapter is to give the reader a panoramic view of the entire dissertation.
Chapter II has all the necessary details of CMDFA and CMTFA decompositions of the
special Σx underlying latent star structures. Chapter III has the details and results of all
the four neural network models we have investigated so far in pursuit of solving common
information problem for more general cases. Chapter IV concludes the dissertation with a
brief summary of the work we have done so far and a discussion on future works. At the
end we have bibliographies and appendices with all the necessary proofs of Lemmas and
Theorems.
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Chapter 2
CMDFA and CMTFA Decomposition of Σx Underlying Latent Star

2.1 Introduction

This chapter explicitly documents the theoretical segment of this dissertation. The purpose
of this section is to give a brief overview of the detailed analytical works and their outcomes
to follow. Since in Chapter 1 we provided detailed motivation for the theoretical segment of
our work, we are not repeating that in this chapter to avoid redundancy. Nonetheless for the
sake of clarity and context, in the first subsection of this section, we still provide some high
level motivations for this chapter.

2.1.1 General Motivation

In Chapter 1, we motivated factor analytic decomposition of any given population co-variance
matrix as a convenient and useful method to do dimension reduction. To start with we
assumed that the data is jointly Gaussian distributed and the population co-variance matrix
Σx underlies a star structure. We motivated the constrained minimum determinant factor
analysis (CMDFA) and constrained minimum trace factor analysis (CMTFA) decompositions
for this special Σx in Chapter 1. In this chapter we are going to explicitly present the details
of those decompositions.

The underlying star structure that we assumed for Σx may or may not be the optimal
way of generating such data. When we talk about optimality, it is subject to the operational
meaning of the problem we are solving. For example for CMTFA optimality would be de-
fined in terms of the minimization of trace of the solution matrix. Similarly optimality for
CMDFA would be defined in terms of the minimization of mutual information. For any given
operational goal in mind the star structure we assumed may or may not be optimal. It would
be interesting to see if any or both of CMDFA and CMTFA decompositions of the special
Σx recovers the underlying star structure. We also need to investigate what is the optimal
solution when either CMDFA or CMTFA does not recover the star structure.

Though CMDFA, CMTFA are two different optimization problems with different objective
functions, there are still a lot to appreciate about the commonalities that they share. Our
prime subject of investigation in this chapter is the respective solution spaces of CMDFA
and CMTFA, and the outcome shows that they share a good part of their individual solution
spaces with each other. The mathematics that we employed to study CMDFA and CMTFA
are mostly similar. All these commonalities make the parallel investigation of the two opti-
mization problems interesting as well as convenient. The next two subsections will provide
brief overview of CMDFA and CMTFA, respectively.

2.1.2 Overview on the CMDFA Decomposition of Σx

We already mentioned in Chapter 1 that, [18] derived CMDFA from a broader class of convex
optimization problem defined in [51] and established a connection between the outcome of
CMDFA and the common information problem [33]. In this chapter we find explicit conditions
under which the CMDFA solution of Σx recovers the star structure given by Figure 1.2. For
clarification, the recovery of such star topology means the resulting decomposition of Σx

ends up with rank 1 solution matrix i.e. a single latent variable can interpret the correlation
8



entries in Σx. Form a common information point of view, a rank 1 CMDFA solution of
Σx would mean that, only one latent variable minimizes the mutual information I(X⃗; Y⃗ )

between the latent variables and observed vector i.e. the optimal Y⃗ in the latent space has
just one element. Since star may not always be the optimal solution, we have also shown
the existence and uniqueness of a rank n − 1 CMDFA solution of Σx which is the only
other possible solution. Again from a common information perspective, either just one latent
variable or n− 1 latent variables are required to minimize the mutual information I(X⃗; Y⃗ ).

2.1.3 Overview on the CMTFA Decomposition of Σx

The aforementioned bi-chambered solution space holds for CMTFA as well i.e. the CMTFA
solution of the special Σx is either rank 1 or rank n − 1 but under conditions different
from those of CMDFA. We have found explicit conditions under which CMTFA solution of
Σx recovers the star structure given by Figure 1.2 and also found conditions for the case
when CMTFA does not recover the star structure. In [52] the same necessary and sufficient
condition was found on the subspace of Σx for MTFA that we found for CMTFA solution of
Σx to recover a star structure when Σx is equipped with a latent star graphical constraint.
The main difference between their work [52] and ours is that, we also fully characterized the
CMTFA solution of Σx under a latent star constraint for situations where the recovery of
the latent star fails, an issue which they did not address. In particular, we proved that there
are only two possible solutions to the CMTFA problem under a latent star constraint, one
of which is the recovery of the star (i.e. the optimal number of latent variable is k = 1), and
the other with the optimal number of latent variables k = n − 1. We found sufficient and
necessary conditions for both cases. As discussed above, both CMDFA and CMTFA have
either a rank 1 solution of Σx or a rank n− 1 solution. A good part of their solution spaces
coincide with each other. Which means among all possible Σx underlying the star structure
given in Figure 1.2 there is a particular subset that has a rank 1 CMDFA as well as a rank
1 CMTFA solution. It is very interesting to see that the minimum trace and the minimum
determinant solutions of the same co-variance matrix end up with the same solution. At the
end of this chapter we have presented some mathematical details on the common solution
space of CMDFA and CMTFA.

2.1.4 Contributions from the Theoretical Section of this Dissertation

The major contributions of this chapter are listed below.

• We characterized the solution spaces of CMDFA and CMTFA.

• We found necessary and sufficient conditions under which CMDFA solution of Σx is a
star as well as when it is not a star.

• We found necessary and sufficient conditions under which CMTFA solution of Σx is a
star as well as when it is not a star.

• We have both analytically and numerically shown the optimality of a non-star solution
over the naive adoption of star for both CMTFA and CMDFA.

• We analytically characterized common solution region of the two optimization problems
CMDFA and CMTFA that work with different objective functions.

9



2.1.5 Acknowledgement about Published Works

It is only fair to remark that, parts of the work of this chapter have been published in [53] and
[54]. Because of the space limitations, alongside results we could only accommodate sketchy
proofs to the Theorems and Lemmas of our work in those conference papers. This chapter
has all the proofs of the Theorems and Lemmas of both CMDFA and CMTFA derived with
necessary details and intermediate steps. One very important thing to note that this chapter
is way more than just putting together two different conference papers. This chapter will
help a reader appreciate that those two problems have a common motivating root in that of
solving a classical low rank matrix decomposition problem, nonetheless each having their own
merit. Understanding the coherence between the two problems is paramount, because here
we show that the two problems actually share a common solution space and the techniques
to prove their corresponding parts are mostly similar. Hence, this chapter would help one
appreciate the interconnections and coherence between two seemingly different optimization
problems.

2.1.6 Organization of the Remainder of the Chapter

Section 2.2 has definitions and notations, Section 2.3 has the formulation of the problem
which is a common part for CMDFA and CMTFA, Section 2.4 has the detailed analysis
on the CMDFA decomposition of Σx, Section 2.5 has the detailed analysis on the CMTFA
decomposition of Σx and Section 2.6 has the details of the common solution space between
CMDFA and CMTFA. To support the rigorous analytical work that we have carried out,
in Section 2.7 of this chapter we have presented some numerical data both for CMDFA
and CMTFA. For CMDFA the numerical data demonstrates the advantage that the optimal
solution hands over the star solution in terms of Wyner’s common information when the
optimal solution is not rank 1. For CMTFA the numerical data shows the difference between
the trace of the optimal solution and that of the star solution when the optimal solution is
not a rank 1 matrix. Finally Section 2.8 has the conclusion to the chapter.

2.2 Definitions and Notations

Let b⃗ be a real n dimensional column vector and A be an n × n matrix. As in literature in
general we denote the ith element b⃗ as bi and the (i, j)th element of A as Ai,j. Here we define
all the vector operations and notations in terms of b⃗ and A, that will carry their meaning on
other vectors and matrices throughout this chapter unless stated otherwise. Along with these
general notations there will be some specific notations in the paper which we will define in
the context of the particular cases they appear.

Vectors a⃗i,∗ and a⃗∗,i denote the ith row and ith column vector of matrix A respectively.
Function λmin(A) is defined to be the smallest eigenvalue of matrix A. N(A) stands for the
null space of matrix A.

Vectors 1⃗ and 0⃗ are the n dimensional column vectors with each element equal to 1 and 0
respectively. When we write b⃗ ≥ 0 we mean that each element of the vector b(i) ≥ 0, 1 ≤ i ≤
n. b⃗2 is the Hadamard product of vector b⃗ with itself. ||⃗b|| denotes the L2 norm of vector b⃗.

Now we define two terms i.e. dominance and non-dominance of a vector which will repeat-
edly appear throughout the paper. When we talk about the dominance or non-dominance
of any vector b⃗ we assume that the elements of the vector are sorted in a way such that
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|b1| ≥ |b2| ≥ · · · ≥ |bn|. We call vector b⃗ dominant and b1 the dominant element if for the
above sorted vector |b1| >

∑
j ̸=1 |bj| holds. Otherwise b⃗ is non-dominant.

2.3 Formulation of the Problem

Traditional factor analysis problems seeks to decompose a population co-variance matrix Σx

as the sum of a low rank (rank < n ) component and a diagonal matrix. We are interested in
finding the decomposition for a Σx that has a very specific underlying structure as explained
in first subsection of this section.

2.3.1 The Co-variance Matrix of Interest

We are interested in the particular case, where the observables {X1, ..., Xn} are jointly Gaus-
sian random variables forming the jointly Gaussian random vector X⃗ ∼ N (0,Σx) and the
co-variance matrix Σx is given by (2.1).

Σx =


1 α1α2 . . . α1αn

α2α1 1 . . . α2αn
...

... . . . ...
αnα1 αnα2 . . . 1

 (2.1)

where 0 < |αj| < 1, j = 1, 2, . . . , n form the real column vector α⃗, α⃗ = [α1, . . . , αn]
′ ∈ Rn

and

|α1| ≥ |α2| ≥ · · · ≥ |αn| (2.2)

The above Σx is equipped with the latent star topology given by Figure 1.2 which suggests
the following conditional independence among the observables X1, . . . , Xn.

p(X1X2, . . . , Xn|Y ) = Πn
i=1p(Xi|Y ) (2.3)

The generation of Σx given by (2.1) could be attributed to the following graphical model.X1
...
Xn

 =

α1
...
αn

Y +

Z1
...
Zn

 (2.4)

⇒X⃗ = α⃗Y + Z⃗ (2.5)

where

• {X1, ..., Xn} are conditionally independent Gaussian random variables given Y , forming
the jointly Gaussian random vector X⃗ ∼ N (0,Σx) where Y ∼ N (0, 1).

• {Z1, ..., Zn} are independent Gaussian random variables with Zj ∼ N (0, 1− α2
j ) 1 ≤

j ≤ n forming the Gaussian random vector Z⃗.

It is important to note that the potential graphical model to have generated Σx given by
(2.4) and (2.5) are consistent with the conditional independence among observables given by
equation (2.3) suggested by Figure 1.2.

Our goal is to find both CMDFA and CMTFA decomposition of the above Σx and diagnose
the respective solutions spaces. In the next subsection we formally define the problem at our
hand.
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2.3.2 Formulation of the Low Rank Decomposition of Σx

The problem of finding a low rank solution for the decomposition of Σx given by (2.6)

Σx = (Σx −D) +D (2.6)

has equivalently been formulated in [51] as a particular class of convex optimization problem
called CMTFA given by (2.7).

min
D

−tr(D) s.t.− λmin(D) ≤ 0 and−Di,i ≤ 0, i = 1, . . . , n (2.7)

To put in words, CMTFA solves the decomposition problem given by (2.6) such that the
trace of Σt (defined as Σt = Σx −D) is minimized or equivalently the trace of the diagonal
matrix D is maximized under the constraint that both Σt and D are Gramian matrices.

Moharrer and Wei in [18] solved the same decomposition problem given by (2.6) under the
same optimization framework as (2.7) but with a different objective as given by (2.8). Their
approach was aptly named CMDFA, and the main motivation behind making determinant
of a matrix the objective function of the optimization problem was the information theoretic
interpretations that the new solution suggested.

max
D

|D| s.t.− λmin(D) ≤ 0 and−Di,i ≤ 0, i = 1, . . . , n (2.8)

As we can see, CMDFA solves the decomposition problem given by (2.6) such that the
determinant of D is maximized under the constraint that both Σt and D are Gramian
matrices.

The above optimization problem given by (2.8) has an insightful information theoretic
interpretation. Seeking a solution to (2.6) for our specially designed Σx is equivalent to
seeking a low dimensional representation of the observable vector X⃗. For X⃗ = AY⃗ + Z⃗ we
have Σx = AE

[
Y⃗ Y⃗ T

]
AT + Σz, where E(.) is the expected value function, An×k is a real

matrix, Y⃗k×1, k < n is the vector of independent latent variables and Z⃗n×1 is a Gaussian
vector of zero mean and co-variance matrix Σz. Hence we have,

I(X⃗; Y⃗ ) = h(X⃗)− h(X⃗|Y⃗ ) = h(X⃗)− h(Z⃗) (2.9)

where I(X⃗; Y⃗ ) is the mutual information between X⃗ and Y⃗ , h(X⃗), h(Z⃗) are entropies of X⃗
and Z⃗ respectively, and h(X⃗|Y⃗ ) is the conditional entropy of X⃗ given Y⃗ .

Now characterizing the common information between X⃗ and Y⃗ would be the same as
minA,Σz I(X⃗; Y⃗ ) which is an equivalent problem to maxΣz h(Z⃗) hence equivalent to minΣz − log |Σz|
or maxΣz |Σz| making it essentially the same problem as given by (2.8).

Operationally speaking, the minimum mutual information calculated above between the
observed random vector X⃗ and the latent vector Y⃗ determined by the solution to (2.8), gives
us the Wyner’s common information C(X1, . . . Xn). In other words solving (2.8) gives us the
amount of randomness required to synthesize a vector that follows the distribution of the
observed vector X⃗.

To this end, we have formally introduced the problems of our interest i.e. CMDFA and
CMTFA decomposition of Σx with a latent star interpretation. Since the Σx that we are
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working with has got a underlying star structure, it would be very interesting to see if the
decompositions of Σx by CMDFA and CMTFA recover that star structure. When CMDFA
and CMTFA recover the star structure i.e. we have just one latent variable producing n
observables as in Figure 1.2, which corresponds to matrix Σt in equation (2.6) having the
rank 1 solution given by,

Σt,ND =


α2
1 α1α2 . . . α1αn

α2α1 α2
2 . . . α2αn

...
... . . . ...

αnα1 αnα2 . . . α2
n

 (2.10)

The above rank 1 solution to either of the optimization problems i.e. CMDFA or CMTFA
equivalently attributes the generation of Σx to the graphical model given by (2.4). However,
since the solution to (2.6) may not always be rank 1, the exact solutions to both optimization
problems when they fail to recover the underlying star topology remain to be investigated.
One of the major contributions of this chapter is that, the approach we adopted allows us
to find explicit necessary and sufficient conditions for every possible scenario i.e. when the
CMTFA and CMDFA solutions to Σx recover the star structure as well as when they fail
to do so. We have analytically shown that the solutions to both CMDFA and CMTFA can
either be rank 1 or rank n− 1, nothing in between.

In the next two sections, we will present both sufficient and necessary conditions in terms
of the entries of α⃗, under which the rank of the optimal Σt and the values of D’s entries are
determined for both CMDFA and CMTFA.

2.4 CMDFA

In this section we present the detailed analysis of the CMDFA solution space of Σx. We
define the real column vector θ⃗ ∈ Rn as θ⃗ = [θ1, . . . , θn]

′ where θi = |αi|√
1−α2

i

, 1 ≤ i ≤ n.

As we can see, each elements in θ⃗ is equal to the square root of the signal to noise ratio
(
√

SNR) of the corresponding element of vector α⃗. The following order of the elements of θ⃗
is a necessary consequence of our assumption given by equation (2.2),

θ1 ≥ θ2 ≥ · · · ≥ θn (2.11)

As we mentioned before, we are interested to find out if CMDFA low rank decomposition of
Σx produces a rank 1 matrix. Next we analyze the solution space of CMDFA and find explicit
conditions for both when the solution is rank 1 and when it is not. To start the proceedings
we state Theorem 2.1 given in [18] that gives the necessary and sufficient condition for D∗

to be the CMDFA solution of the decomposition given in (2.6).

Theorem 2.1. The matrix D∗ is the CMDFA solution of Σx if and only if λmin(Σx−D∗) = 0,
and there exists n × r matrix T such that t⃗∗,i ∈ N(Σx − D∗), 1 ≤ i ≤ r and the ||⃗ti,∗||2 =
1
D∗
i,i
, 1 ≤ i ≤ n.

The theorem clearly specifies the requirements both for a matrix to be a candidate for the
CMDFA solution of Σx, as well as the null space matrix of that solution matrix.
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Figure 2.1. Vectors on the surface of concentric spheres. (dimension n = 3)

In the first of the two subsections of this section, we find the conditions under which
CMDFA solution of Σx recovers the model given by (2.4) or equivalently speaking, find
conditions under which CMDFA solution of Σx is the rank 1 matrix given by (2.10). In
the other subsection, we show the detailed analysis on the existence and uniqueness of the
CMDFA solution of Σx, when the solution is not a rank 1 matrix.

2.4.1 CMDFA Non-dominant Case

Here we analyze the conditions under which the CMDFA solution of Σx recovers a star
structure. Lemma 2.2 sets the groundwork for the Theorem to follow. The Lemma also
has a geometric interpretation that enriches our overall understanding of the CMDFA non-
dominance case.

Lemma 2.2. Non-dominance of vector θ⃗ given by (2.12) is a necessary condition for the
existence of such n× r matrix T that t⃗∗,i ∈ N(Σt,ND), 1 ≤ i ≤ r and ||⃗tj,∗||2 = 1

1−α2
j
, 1 ≤

j ≤ n.

θ1 ≤
n∑
i=2

θi (2.12)

Proof of Lemma 2.2: Let t⃗i,∗, 1 ≤ i ≤ n be the ith row vector of the matrix T and 0⃗
denote the zero column vector. We need,

Σt,NDT = 0⃗ ⇒ α⃗T = 0⃗

⇒
n∑
i=1

αit⃗i,∗ = 0⃗ ⇒ α1t⃗1,∗ = −
n∑
i=2

αit⃗i,∗

⇒||α1t⃗1,∗||2 = || −
n∑
i=2

αit⃗i,∗||2

⇒||α1t⃗1,∗||2 ≤
n∑
i=2

||αit⃗i,∗||2, [using triangular inequality] (2.13)

⇒|α1|||⃗t1,∗|| ≤
n∑
i=2

|αi|||⃗ti,∗||
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⇒ |α1|√
1− α2

1

≤
n∑
i=2

|αi|√
1− α2

i

⇒θ1 ≤
n∑
i=2

θi

That completes the proof of the Lemma.

For a 3 dimensional geometric interpretation of the above necessary condition, let us
consider that the matrix T has 3 row vectors. Since we require ||αit⃗i,∗||2 = θ2i , 1 ≤ i ≤ n,
we can consider α1t⃗1,∗, α2t⃗2,∗, α2t⃗3,∗ to be three different points on the surfaces of 3 different
concentric hemispheres in the 3 dimensional space of radii θ1, θ2 and θ3 as represented by the
vectors O⃗A, O⃗P and O⃗Q respectively as in Figure 2.1. Now, if θ1 > θ2+θ3, it is impossible to
find any vector on the outer most sphere that can be expressed as the vector sum of vectors
O⃗P and O⃗Q. On the other hand if θ1 ≤ θ2 + θ3 proper selection of angles σ2 and σ3 can
always ensure O⃗A be a vector sum of O⃗P and O⃗Q, which is necessary for the orthogonality
between the vector [α1, α2, α3] and matrix T in this particular case.

Having proved Lemma 2.2 we are now well equipped to state and prove the statement of
Theorem 2.3 that has the main result of this subsection.

Theorem 2.3. CMDFA solution of Σx is Σt,ND if and only if θ⃗ is non-dominant.

The Theorem states that the CMDFA solution to a star connected network is a star itself,
if and only if there is no dominant element in the vector θ⃗.

Proof of Theorem 2.3: Now we refer back to the necessary and sufficient condition for
CMDFA solution set by Theorem 2.1. Since, Σt,ND in rank 1, its minimum eigenvalue is 0,
and it is straightforward to see that for rank 1 solution the diagonal entries of the matrix
D∗, D∗

i,i = 1− α2
i , 1 ≤ i ≤ n. To complete the proof of the theorem, we only need to show

the existence of rank n− 1 matrix T such that the column vectors of T are in the null space
of Σt,ND and the L2-norm square of the ith row of T is 1

1−α2
i
, 1 ≤ i ≤ n.

Lemma 2.2 has already shown that, for the existence of such T non-dominance given by
equation (2.12) is a necessary condition. Next we show, by constructing such a matrix T under
the assumption of non-dominance of θ⃗, that non-dominance is also a sufficient condition. And
that should complete the proof of Theorem 2.3.

Its trivial to find the following basis vectors for the null space of Σt,ND,

v1 =


−α2

α1

1
0
...
0

 , v2 =

−α3

α1

0
1
...
0

 , . . . , vn−1 =


−αn
α1

0
0
...
1

 (2.14)

We define matrix V so that its columns span the null space of Σt,ND,
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V =


−α2

α1
. . . −αn

α1
−
(
c2
α2

α1
+ · · ·+ cn

αn
α1

)
1 . . . 0 c2
0 . . . 0 c3
... . . . ...

...
0 . . . 1 cn

 (2.15)

where ci = c̃i√
1−α2

i

and c̃i ∈ {1,−1}, i = 2, . . . , n.

To construct our desired matrix T , under the assumption of non-dominance of θ⃗, it will
suffice for us to show the existance of c̃i ∈ {1,−1}, i = 2, . . . , n and a diagonal matrix B
such that the following holds.

Tn×n = Vn×n ·Bn×n (2.16)

where the L2-norm square of the ith row of T is 1
1−α2

i
. Using (2.16),

TT ′ = V BB′V ′ (2.17)

We define the symmetric matrix β = BB′, and the diagonal matrix β has only non-negative
entries. Since we want the ith diagonal element of TT ′ to be 1

1−α2
i
, we have the following n

equations,

α2
2

α2
1

β11 +
α2
3

α2
1

β22 + · · ·+
α2
n

α2
1

βn−1,n−1 +

(
c2
α2

α1

+ c3
α3

α1

+ · · ·+ cn
αn
α1

)2

βnn =
1

1− α2
1

(2.18)

βii + c2i+1βnn =
1

1− α2
i+1

, i = 1, . . . , n− 1 (2.19)

Solving, (2.18) with the help of (2.19) we get,

βnn =

α2
1

1−α2
1
− α2

2

1−α2
2
− · · · − α2

n

1−α2
n∑

i ̸=j,i̸=1,j ̸=1 cicjαiαj
(2.20)

It is straightforward to see that, to ensure all the βii, 1 ≤ i ≤ n are non-negative, we need
βnn ≤ 1. We select c̃i, 2 ≤ i ≤ n such that,

ciαi =
c̃iαi√
1− α2

i

= θi, i = 2, . . . , n (2.21)

Under such selection of c̃i, 2 ≤ i ≤ n, βnn becomes,

βnn =
θ21 − θ22 − · · · − θ2n∑

i ̸=j,i̸=1,j ̸=1 θiθj
(2.22)
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Now, using the non-dominance assumption given in (2.12), we have

θ21 ≤

(
n∑
i=2

θi

)2

⇒ θ21 −
∑n

i=2 θ
2
i∑

i ̸=j,i̸=1,j ̸=1 θiθj
≤ 1 (2.23)

⇒βnn ≤ 1 (2.24)

Which means non-dominance of vector θ⃗ is a sufficient condition to construct the kind of T
matrix we are looking for. That completes the proof of Theorem 2.3.

CMDFA Boundary Case: We have a special boundary case here. It is obvious that,
there might be numerous ways to construct the matrix T that satisfy the requirements set
by Theorem 2.1. Because of the special way we constructed the matrix T the rank of T
under the non-dominant case is n − 1 except for a very special boundary case. Under the
boundary case i.e. when the inequality (2.12) holds for equality, the rank of T is always 1
irrespective of the way we construct T . For any given n, it is straightforward to see from
equation (2.23) that, for θ1 =

∑n
i=2 θi we have βnn = 1. Plugging βnn = 1 in equation (2.19)

gives us βii = 0, 1 ≤ i ≤ n − 1. Equations (2.16) and (2.17) suggest that, such a β matrix
will produce a rank 1 matrix T . This very special case is explained by the next Lemma.

Lemma 2.4. When the non-dominance condition given in (2.12) holds for equality, any
n× r matrix T such that t⃗∗,i ∈ N(Σt,ND), 1 ≤ i ≤ r and ||⃗tj,∗||2 = 1, 1 ≤ j ≤ n has to be
a rank 1 matrix.

Proof of Lemma 2.4: Using the orthogonality between Σt,ND and its null space matrix
T ,

n∑
i=1

αit⃗i,∗ = 0⃗ (2.25)

Equation (2.62) implies the following two things:

||α1t⃗1,∗|| = ||
n∑
i=2

αit⃗i,∗|| (2.26)

α1t⃗1,∗ = −
n∑
i=2

αit⃗i,∗ (2.27)

Using the triangular inequality,

||
n∑
i=2

αit⃗i,∗|| ≤
n∑
i=2

||αit⃗i,∗|| (2.28)

If all the αit⃗i,∗, 2 ≤ i ≤ n are not in the same direction, the the above inequality becomes

||
n∑
i=2

αit⃗i,∗|| <
n∑
i=2

||αit⃗i,∗|| (2.29)
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Hence, under the boundary condition i.e. θ1 =
∑n

i=2 θi , we have

||
n∑
i=2

αit⃗i,∗|| < ||α1t⃗1,∗|| [because, ||αit⃗i,∗|| = θi]

Which violates (2.26). That means to ensure ||α1t⃗1,∗|| = ||
∑n

i=2 αit⃗i,∗||, all of αit⃗i,∗, 2 ≤ i ≤ n
have to be in the same direction. This along with the second implication of orthogonality
given by equation (2.27), makes matrix T a rank 1 matrix.

2.4.2 CMDFA Dominant Case

Having proved that the non-dominance of vector θ⃗ is a sufficient and necessary condition for
CMDFA solution of Σx to recover a star structure, we are left with only the dominant case
now i.e.

θ1 >
n∑
i=2

θi (2.30)

Under the above dominant condition we want to show the existence of a rank n−1 solution of
Σx. Any solution we find will be unique, because CMDFA is a special type of the broader class
of convex optimization problem defined in [51]. We still have to satisfy the same sufficient
and necessary condition for the CMDFA solution set by Theorem 2.1, that we presented
at the beginning of this section. Like the non-dominant case, for the matrix D∗ to be the
CMDFA solution of Σx under the dominant case, the minimum eigenvalue of Σx − D∗ has
to be λmin(D

∗) = 0 and the L2-norm square of the ith row of the null space matrix T
has to be 1

D∗
i,i

. The only difference with the non-dominant case is that, since our conjecture
for the dominant case is an n − 1 rank solution, the null space matrix T will always be
rank 1 i.e. a column vector. Mathematically speaking, we need to show the existence of
0 < ai < 1, 1 ≤ i ≤ n such that the following orthogonality condition holds.

a1 α1α2 α1α3 . . . α1αn
α2α1 a2 α2α3 . . . α2αn

...
...

... . . . ...
αnα1 αnα2 αnα3 . . . an




c1√
1−a1
...
...
cn√
1−an

 =


0
...
...
0

 (2.31)

where ci ∈ {−1, 1}. Once we have such ai, 1 ≤ i ≤ n the ith diagonal element of the matrix
D∗ under the dominant case will be D∗

i,i = 1−ai, 1 ≤ i ≤ n. The reason we seek the solution
to (2.31) is because it ensures the qualities required by Theorem 2.1 i.e. the orthogonality
between the low rank solution matrix with the null space matrix and the specified length for
each row vector of the null space matrix. The above orthogonality relationship gives us the
following n equations.

aici√
1− ai

+
∑
j ̸=i

αiαjcj√
1− aj

= 0, 1 ≤ i ≤ n (2.32)
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Let (i) denote the ith equation given by (2.32). Using the linear combination αi+1 × (i) −
αi × (i+ 1), 1 ≤ i ≤ n gives us the following n− 1 equations.

αi+1ciηi − αici+1ηi+1 = 0, 1 ≤ i ≤ n− 1 (2.33)

where

ηi =
ai − α2

i√
1− ai

, 1 ≤ i ≤ n (2.34)

Equation (2) implies that for some ratio µ we can write the following,c1η1...
cnηn

 = µ

α1
...
αn

 (2.35)

Now plugging the expressions from (2.34) and (2.35) in any of the n equations given by
(2.32) we get,

n∑
i=1

1

1− ai
α2
i

= 1 (2.36)

It will suffice for us to prove the existence of 0 < ai < 1, 1 ≤ i ≤ n such that (2.36) holds.
From the definition of ηi given in (2.34) we see that, to find each ai, 1 ≤ i ≤ n we need to
solve the following second order polynomial.

a2i + aiα
2
i (µ

2 − 2) + α2
i (α

2
i − µ2) = 0, 1 ≤ i ≤ n (2.37)

If we solve equation (2.37) for each ai we will get a left root and a right root. Our initial
conjecture is that the left root for a1 and right roots for a2, . . . , an that we get solving (2.37)
will give us 0 < ai < 1, 1 ≤ i ≤ n that satisfy (2.36). If we can prove that our conjecture
is true, then that should be the only possible solution to (2.36) because of the uniqueness of
solution to such convex optimization problems proved in [51]. Plugging in the left root for
a1, right roots for a2, . . . , an in (2.36) gives us the following equation.

1 +
1

2

n∑
i=1

α2
i

1− α2
i

=
|α1|√
1− α2

1

√
1

4

α2
1

1− α2
1

+
1

µ2
−

n∑
i=2

|αi|√
1− α2

i

√
1

4

α2
i

1− α2
i

+
1

µ2
(2.38)

We define

Xi =

√√√√1

4
+

1
µ2

α2
i

1−α2
i

=

√
1

4
+

1
µ2

θ2i
, i = 1, 2, . . . , n (2.39)

Under these newly defined Xis (2.38) becomes,

θ21X1 −
n∑
i=2

θ2iXi = 1 +
1

2

n∑
i=1

θ2i (2.40)
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And using the definition of Xi, 1 ≤ i ≤ n given in (2.39), we get the following cylinders of
hyperbolas.

θ21X
2
1 − θ2iX2

i =
1

4
(θ21 − θ2i ), 2 ≤ i ≤ n (2.41)

Equations given by (2.41) imply that for each value of X1 we get a point [X1, X2, . . . , Xn],
in the n dimensional space where each Xi, 2 ≤ i ≤ n is a function of X1. For the range of
values of (1

2
< X1 < ∞) all such points together produce an n dimensional space curve. If

we project this space curve on any of the two dimensional (X1, Xi), 2 ≤ i ≤ n planes we get
a hyperbola.

Another important thing to note is that, each equation given by (2.41) is a cylinder of
hyperbolas originated from (X1, Xi) plane and projected onto n dimensional space. Each
point in the space curve represents an intersection points of all n− 1 cylinders of hyperbolas
originated from (X1, Xi), 2 ≤ i ≤ n planes.

At this point our revised goal is to show the existence of a point in the space curve that
satisfies equation (2.40) under the dominance condition given by (2.30). Becasue of the way
we defined Xis 1 ≤ i ≤ n the solution must satisfy the condition Xi >

1
2
, 1 ≤ i ≤ n. Theorem

2.5 states the main result of this subsection.

Figure 2.2. Trend of the function G(X1) against
X1

Figure 2.3. Trend of the function d
dX1

G(X1)
against X1

Theorem 2.5. There exists an intersection point among the plane given by (2.40) and the
n− 1 cylinders of hypberbolas given by (2.41), that satisfies Xi >

1
2
, 1 ≤ i ≤ n.

Proving the above Theorem would mean that, there exists 0 < ai < 1, 1 ≤ i ≤ n
such that (2.36) holds, which in turn would mean the existance of an n − 1 rank CMDFA
solution under the dominance of vector θ⃗. And as we mentioned already, the uniqueness of
such solution is guaranteed.

Proof of Theorem 2.5: Let us define the function G(.) of X1 as the inner product between
the vectors [X1, . . . , Xn] and [θ21, . . . , θ

2
n]

′ where each Xi, 1 ≤ i ≤ n is a function of X1. Which
means,

G(X1) = θ21X1 −
n∑
i=2

θ2iXi(X1) (2.42)
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So, our revised goal becomes to find the existence of such X1 >
1
2

for which the function
of G(X1) becomes G(X1) = 1+ 1

2

∑n
i=1 θ

2
i . And to achieve that goal some functional analysis

of G(X1) that we present next are of paramount importance.
Equation (2.41) dictates that each Xi(X1), 2 ≤ i ≤ n is a concave function of X1 >

1
2
.

Which makes G(X1) given by (2.42) a convex function of X1 as the sum of convex functions
of X1. Using (2.41) and (2.42) we get,

G

(
1

2

)
=

1

2

(
θ21 −

n∑
i=2

θ2i

)
(2.43)

Using (2.39) we get,

dXi(X1)

dX1

=
dXi(X1)

dν
dX1

dν

=

1
2Xi(X1)

1
θ2i

1
2X1

1
θ21

=
θ21X1

θ2iXi(X1)
(2.44)

where, ν = 1
λ2

. Using (2.42) and (2.44),

dG(X1)

dX1

= θ21

[
1−

n∑
i=2

X1

Xi(X1)

]
(2.45)

Hence,

⇒ dG(X1)

dX1

∣∣∣∣
X1=

1
2

= −θ21(n− 2) (2.46)

which is a negative value. We define X̂1 such that,

⇒ dG(X1)

dX1

∣∣∣∣
X1=X̂1

= 0 (2.47)

Figures 2.2 and 2.3 illustrate our findings from the above functional analysis. As each
Xi(X1), 2 ≤ i ≤ n is an increasing function of X1 the ratios X1

Xi(X1)
, 2 ≤ i ≤ n are decreasing

functions of X1. Hence equation (2.45) suggests that dG(X1)
dX1

is an increasing function of X1.
Given that knowledge, equations (2.46) and (2.47) considered together imply X̂1 >

1
2

as seen
in Figures 2.2 and 2.3. One important to remark is that we see the function dG(X1)

dX1
gets sat-

urated gradually and is upperbounded by a value. This is because the ratio Xi(X1)
X1

, 2 ≤ i ≤ n

is the slope of hyperbola in X1 −Xi plane which is upper bounded by θ1
θi

which is the slope
of the asyptote in the respective plane. Plugging these individual upperbounds in (2.44) we
get the dotted upper bound in Figure 2.3.

We can argue, as we refer to Figure 2.2, since G is a convex function of X1, it must be
an increasing function for the values X1 > X̂1. Equations (2.47) and (2.43) imply that the
convex function value G(X̂1) < G

(
1
2

)
< 1+ 1

2

∑n
i=1 θ

2
i . Hence, there must exist X∗

1 > X̂1 >
1
2

such that G(X∗
1 ) = 1 + 1

2

∑n
i=1 θ

2
i .
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Algorithm 1: Pseudo code to find the value of X∗
1

Input: θi, 1 ≤ i ≤ n and ϵ (This can be arbitrarily small, for example 10−5,
depending on the level of accuracy you want to ensure).

Output: X∗
1

Step 1: Calculate Xup
1 using (2.49)

Step 2: Initialize Xold
1 as Xold

1 = Xup
1 and d = 1

Step 3: while d > ϵ do
Calculate Xi, 2 ≤ i ≤ n Plugging in X1 = Xold from (2.39)
Now using those Xis, 2 ≤ i ≤ n evaluate functions
f(Xold

1 ) = G(Xold
1 )− (1 + 1

2

∑n
i=1 θ

2
i ) and df(Xold

1 )

dX1
=

dG(Xold
1 )

dX1
from equations (2.42)

and (2.45) respectively.
Evaluate Xnew

1 = Xold
1 −

f(Xold
1 )

df(Xold1 )

dX1

calculate d = Xold
1 −Xnew

1

Make Xold
1 = Xnew

1

end
returnX∗

1 = Xnew
1 .

Algorithm 2: Pseudo code to find ais and cis that solve equation (2.31)
Input: αi, 1 ≤ i ≤ n and X∗

1 .
Output: ais and cis 1 ≤ i ≤ n
Step 1: Pick the first equation given by equation (2.39), substitute X1 by X∗

1 and
solve the equation for µ.

Step 2: Plug in µ in (2.37) and solve the equations to get ais 1 ≤ i ≤ n.
Step 3: Solve (2.34) to get ηis 1 ≤ i ≤ n plugging in the values from the last two steps.
Step 4: Now solve (2.35) to get cis using the values of µ and ηis 1 ≤ i ≤ n.
return ais and cis 1 ≤ i ≤ n.

From Theorem 2.5 and its proof we know that the solution X∗
1 produces a corresponding

n dimensional point X⃗∗ = [X∗
1 , . . . , X

∗
n]

′ in the space curve which is the intersection point
among hyperbolic cylinders and the plane given by (2.41) and (2.40) respectively. If we reflect
on the bigger picture, Algorithm 6 gives us X∗

1 , and in turn Algorithm 2 gives us a set of
ai, 1 ≤ i ≤ n that satisfies (2.31).

Bounds of the Solution: Here we find an upper-bound and a lower-bound to X∗
1 .

Upper-bound to X∗
1 : It is easy to derive that the ith hyperbolic cylinder given by (2.41) has

the following corresponding equation of the cylinder asymptotes (the ones passing through
the origin and the first quadrant of the respective plane).

Xi =
θ1
θi
X1, 2 ≤ i ≤ n (2.48)

Solving (2.48) and (2.40) together we get a value of X1 which we denote as Xup
1 given by

(2.49),
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Xup
1 =

1 + 1
2

∑n
i=1 θ

2
i

θ1(θ1 −
∑n

j=2 θj)
(2.49)

Substituting X1 in (2.48) by Xup
1 gives us a vector X⃗up = [Xup

1 , . . . , Xup
n ]′ in the n dimen-

sional space, which is the intersection of the cylinders of asymptotes in (2.48) and the plane
in (2.40).

Lemma 2.6. The intersection point among the plane in (2.40) and the hyperbolic cylinders
in (2.41) is upper-bounded by the intersection point among the same plane and asymptotes
of the respective hyperbolic cylinders given by (2.48),

The proof of Lemma 2.6 is given in Appendix A. According to the statement of this Lemma
X⃗up > X⃗∗. Which immediately suggests that Xup

1 given by (2.49) is an upper-bound on X∗
1 .

Lower-bound to X∗
1 : We see in Figure 2.2 that the average slope of the curve ABC is

captured by the slope of the line AC. We assume that the dashed line AD in Figure 2.2 has
slope θ1 (θ1 −

∑n
i=2 θi) i.e. the upper-bound of dGX1

dX1
given in Figure 2.3. Figure 2.3 suggests

that, the slope at each point of the curve ABC is strictly less than the slope of AD in Figure
2.2, hence the slope of AC must be less than the slope of AD. Now considering triangles
△ADE and △ACF in Figure 2.2 we have,

DE

AE
>
CF

AF
⇒ DE

AE
>
DE

AF
⇒ AF > AE ⇒ X∗

1 > X∗
1

Which suggests X low
1 a lowerbound of the actual X∗

1 . Next we find the expression for X low
1

using the geometry in Figure 2.2.

X low
1 =

1

2
+ AE =

1

2
+
DE
DE
AE

=
1

2
+

1 + 1
2

∑n
i=2 θ

2
i

θ1 (θ1 −
∑n

i=2 θi)
(2.50)

2.5 CMTFA

In this section we analyze the solution space of CMTFA with all the necessary details. The
problem that we are looking at in this particular section can be stated as follows: we are
aiming to analytically find the CMTFA solution of Σx and gain insights about the underlying
graphical structure. To be more specific our primary focus is to see if the underlying structure
of CMTFA solution to Σx with a star constraint is still a star or mathematically speaking
to see if (Σx−D∗) is a rank one matrix given that D∗ is the solution to (2.6). The following
Theorem given in [51], sets the ground rules for a matrix D∗ to be the CMTFA solution for
(2.6).

Theorem 2.7. The matrix D∗ is a solution of the CMTFA problem if and only if D∗
i,i ≥

0, 1 ≤ i ≤ n, λmin(Σx −D∗) = 0, and there exists n × r matrix T such that t⃗∗,i ∈ N (Σx −
D∗), i = 1, ...., r and the following holds,

1⃗ =
r∑
i=1

t⃗2∗,i −
∑

j∈I(D∗)

µj ξ⃗j (2.51)
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where r ≤ n indicating the number of columns of the matrix T , I(D∗) = {i : D∗
i,i = 0, 1 ≤

i ≤ n}, {µj, j ∈ I(D∗)} are non-negative numbers and {ξ⃗j, j ∈ I(D∗)} are column vectors
in Rn with all the components equal to 0 except for the jth component which is equal to 1.

The theorem clearly specifies the requirements both for a matrix to be a candidate for the
CMTFA solution of Σx, as well as the null space matrix of that solution matrix.

Now we give a brief outline of our findings on CMTFA solution space of Σx. In the first of
the two subsections we explicitly analyze the conditions under which the CMTFA solution
to Σx recovers the graphical model given by (2.4) or equivalently speaking CMTFA solution
becomes the rank 1 matrix given by (2.10).

In the second subsection we show that when CMTFA solution of Σx does not recover a
star structure i.e., if the solution is not a rank 1 solution, then the solution is rank n − 1.
Having set the ground work for the section, we next present the elaborate analysis on the
above two solutions of CMTFA and their proofs in the two subsections of this section.

Figure 2.4. Equal length on the surface of a sphere. (dimension n = 3)

2.5.1 CMTFA Non-dominant Case

In this subsection we analyze the conditions under which the CMTFA solution of Σx recovers
a star structure. Understanding Lemma 2.8 will be a good preparatory work before we
proceed to state and prove Theorem 2.9. The Lemma also provides a geometric interpretation
that helps us view the problem in a broader perspective.

Lemma 2.8. Non-dominance of vector α⃗ given by (2.52) is a necessary condition for the
existence of such n × r matrix T that t⃗∗,i ∈ N(Σt,ND), 1 ≤ i ≤ r and ||⃗tj,∗||2 = 1, 1 ≤
j ≤ n.

|α1| ≤
n∑
i=2

|αi| (2.52)

Proof of Lemma 2.8: Let T be an n× n matrix i.e r = n. We need,

Σt,NDT = 0⃗ ⇒ α⃗T = 0⃗ ⇒
n∑
i=1

αit⃗i,∗ = 0⃗

⇒α1t⃗1,∗ = −
n∑
i=2

αit⃗i,∗
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⇒||α1t⃗1,∗||2 = || −
n∑
i=2

αit⃗i,∗||2

⇒||α1t⃗1,∗||2 ≤
n∑
i=2

||αit⃗i,∗||2

⇒|α1|||⃗t1,∗|| ≤
n∑
i=2

|αi|||⃗ti,∗||

⇒|α1| ≤
n∑
i=2

|αi|, [because, ||⃗ti,∗|| = ||⃗t1,∗||, 2 ≤ i ≤ n

That completes the proof of the Lemma.

For a 3 dimensional geometric interpretation of the above necessary condition, let us
consider that the matrix T has 3 row vectors. Since we require ||⃗t1,∗||2 = ||⃗t2,∗||2 = ||⃗t3,∗||2 = 1,
we can consider t⃗1,∗, t⃗2,∗ and t⃗2,∗ to be three different points on the surface of a 3 dimensional
hemisphere of radius 1 and be represented by the vectors O⃗A, O⃗P and O⃗Q respectively as in
Figure 2.4. Now, if |α1| > |α2|+|α3| it will be impossible to have ||α1O⃗A|| = ||α2O⃗P+α3O⃗Q||.
But if |α1| ≤ |α2|+|α3|, we can always choose angles σ1 and σ2 such that ||α1O⃗A|| = ||α2O⃗P+

α3O⃗Q|| holds, which is necessary for the orthogonality between the vector [α1, α2, α3] and
matrix T in this particular case.

Now we proceed to state and prove the statement of Theorem 2.9, that has the main
outcome of this subsection.

Theorem 2.9. CMTFA solution of Σx is Σt,ND if and only if α⃗ is non-dominant.

According to this theorem the CMTFA solution to a star connected network is a star itself,
if and only if the elements of vector α⃗ satisfy equation (2.52).

Before we move to the proof of the Theorem, it is worthwhile to mention that the statement
of Theorem 2.9 was proven in Theorem 3.4 of [52] for MTFA to recover a star structure,
we prove the Theorem for CMTFA. In addition to that, we go onto find explicit condition
and solution for the case when CMTFA does not recover a star structure, which was not
addressed in [52].

Proof of Theorem 2.9: We recall the necessary and sufficient condition for CMTFA solu-
tion set by Theorem 2.7. Since, Σt,ND in rank 1, its minimum eigenvalue is 0. To complete
the proof of the Theorem, we only need to show the existence of rank n− 1 matrix T such
that the column vectors of T are in the null space of Σt,ND and the L2-norm square of each
row of T is 1.

Lemma 2.8 has already shown that, for the existence of such T non-dominance of vector α⃗
given by equation (2.52) is a necessary condition. Next we show that non-dominance is also a
sufficient condition, by constructing such a matrix T under the assumption of non-dominance
of α⃗. And that should complete the proof of Theorem 2.9.

Since, it is the same Σt,ND as was the solution for CMDFA non-dominant case, the basis
vectors for the null space remain the same v1, v2, . . . , vn. The matrix V remain the same
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except for cis. Here ci ∈ {1,−1}, 2 ≤ i ≤ n. Still the columns of V with the newly defined
cis, span the null space of Σt,ND. To construct our desired matrix T , under the assumption
of non-dominance of α⃗, it will suffice for us to show the existence of {cj}, 2 ≤ j ≤ n and
a diagonal matrix B such that the following holds.

Tn×n = Vn×n ·Bn×n (2.53)

where, L2-norm square of each row of T is 1. Using (2.53),

TT ′ = V BB′V ′ = V βV ′ (2.54)

Like before, we require the diagonal matrix β to have only non-negative entries. Since each
diagonal element of the matrix TT ′ has to be 1, we have the following n equations,

α2
2

α2
1

β11 +
α2
3

α2
1

β22 + · · ·+
α2
n

α2
1

βn−1,n−1 +

(
c2
α2

α1

+ c3
α3

α1

+ · · ·+ cn
αn
α1

)2

βnn = 1 (2.55)

βii + c2i+1βnn = 1, i = 1, . . . , n− 1 (2.56)

Solving (2.55), we get,

βnn =
α2
1 − α2

2 − α2
3 − · · · − α2

n∑
i ̸=j,i̸=1,j ̸=1 cicjαiαj

(2.57)

Equation (2.56) indicates that, to ensure that all the diagonal entries of β are non-negative,
we need βnn ≤ 1. We select ci, 2 ≤ i ≤ n such that,

ciαi = |αi|, i = 2, . . . , n (2.58)

Under such selection of ci, 2 ≤ i ≤ n, we have

βnn =
α2
1 − α2

2 − · · · − α2
n∑

i ̸=j,i̸=1,j ̸=1 |αi||αj|
(2.59)

Using the non-dominance assumption given in (2.52), we have

α2
1 ≤

(
n∑
i=2

|αi|

)2

⇒ α2
1 −

∑n
i=2 α

2
i∑

i ̸=j,i̸=1,j ̸=1 |αi||αj|
≤ 1 (2.60)

⇒βnn ≤ 1 (2.61)

Hence, non-dominance of vector α⃗ is a sufficient condition to construct the kind of T matrix
required by a star structured CMTFA solution of Σx. That completes the proof of Theorem
2.9.
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CMTFA Boundary Case: It is obvious that, there might be numerous ways to construct
the matrix T that satisfy the requirements set by Theorem 2.7. Because of the special way
we constructed the matrix T , the rank of T under the non-dominant case is n− 1 except for
a very special case. Here we talk about that special case of non-dominance i.e. when (2.52)
holds for equality, the rank of T is always 1 irrespective of the way we construct T . For any
given n, it is straightforward to see from equation (2.60) that, for |α1| =

∑n
i=2 |αi| we have

βnn = 1. Plugging βnn = 1 in equation (2.56) gives us βii = 0, 1 ≤ i ≤ n − 1. Equations
(2.53) and (2.54) imply that, such a β matrix will produce a rank 1 matrix T . This very
special case is analytically explained by the next Lemma.

Lemma 2.10. When the non-dominance condition given in (2.52) holds for equality, any
n× r matrix T such that t⃗∗,i ∈ N(Σt,ND), 1 ≤ i ≤ r and ||⃗tj,∗||2 = 1, 1 ≤ j ≤ n has to be
a rank 1 matrix.

Proof of Lemma 2.10: Using the orthogonality between Σt,ND and its null space matrix
T ,

n∑
i=1

αit⃗i,∗ = 0⃗ (2.62)

Equation (2.62) implies the following two things:

||α1t⃗1,∗|| = ||
n∑
i=2

αit⃗i,∗|| (2.63)

α1t⃗1,∗ = −
n∑
i=2

αit⃗i,∗ (2.64)

Using the triangular inequality,

||
n∑
i=2

αit⃗i,∗|| ≤
n∑
i=2

||αit⃗i,∗|| (2.65)

We segregate the inequality in (2.65) in two parts. The first part has,

||
n∑
i=2

αit⃗i,∗|| <
n∑
i=2

||αit⃗i,∗|| = ||⃗t1,∗||
n∑
i=2

|αi| = |α1|||⃗t1,∗|| = ||α1t⃗1,∗||

which violates (2.63) hence orthogonality. And the second part has

||
n∑
i=2

αit⃗i,∗|| =
n∑
i=2

||αit⃗i,∗|| = ||⃗t1,∗||
n∑
i=2

|αi| = |α1|||⃗t1,∗|| = ||α1t⃗1,∗||

which implies that all the αit⃗i,∗, 1 ≤ i ≤ n act in the same line. Equivalently, matrix T
becomes a rank 1 matrix.
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2.5.2 CMTFA Dominant Case

Having proved that CMTFA solution of Σx recovers a star structure only under the non-
dominance of vector α⃗, here we explore the CMTFA solution space under the dominant case
i.e.

|α1| >
n∑
i=2

|αi| (2.66)

We show next that under a dominant vector α⃗ CMTFA solution for Σx is a rank n−1 matrix
given by (2.67). That means, CMTFA solution of Σx can either be rank 1 or rank n − 1,
nothing in between.

Σt,DM =


(Σt,DM)11 α1α2 . . . α1αn
α2α1 (Σt,DM)22 . . . α2αn

...
... . . . ...

αnα1 αnα2 . . . (Σt,DM)nn

 (2.67)

where

(Σt,DM)11 = |α1|

(∑
i ̸=1

|αi|

)

(Σt,DM)ii = |αi|

(
|α1| −

∑
j ̸=i,1

|αj|

)
, i = 2, . . . , n

Understanding the next two Lemmas will prepare us for the Theorem to follow.

Lemma 2.11. Σt,DM is a rank n− 1 matrix.

Proof of Lemma 2.11: Let γi ∈ {−1, 1} be the sign of αi, i.e. αi = γi|αi|.
For the 1st column of Σt,DM ,

n∑
g=2

γ1γg(Σt,DM)g1 =
n∑
g=2

γ1γgγ1γg|αg||α1| =
n∑
g=2

|αg||α1| = |α1|

(
n∑
g=2

|αg|

)
= (Σt,DM)11

For the hth (h ̸= 1) column of Σt,DM ,

n∑
g=2

γ1γg(Σt,DM)gh =γ1γh|α1||αh| −
∑
m̸=h,1

γ1γh|αh||αm|+
∑
m ̸=h,1

γ1γmγmγh|αh||αm|

=γ1γh|α1||αh| −
∑
m̸=h,1

γ1γh|αh||αm|+
∑
m ̸=h,1

γ1γh|αh||αm|

=γ1γh|α1||αh| = (Σt,DM)1h

Combining the above two results,
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(Σt,DM)1,∗ =
n∑
g=2

γ1γg(Σt,DM)g,∗ ⇒ (Σt,DM)1,∗ −
n∑
g=2

γ1γg(Σt,DM)g,∗ = 0

Since the value of γ1γg ∈ {1,−1}, 2 ≤ g ≤ n, the above equation suggests that there exist
nonzero coefficients Sg ∈ {1,−1} such that

∑n
g=1 Sg(Σt,DM)g,∗ = 0. Hence, we can conclude

that the matrix Σt,DM is rank n− 1.

Lemma 2.12. There exists a column vector Φ = [Φ1,Φ2, ....,Φn]
′ such that Σt,DMΦ = 0,

where Φi ∈ {−1, 1}, 1 ≤ i ≤ n.

This Lemma basically refers to the construction of the one dimensional null space required
by Theorem 2.7 for a rank n− 1 CMTFA solution of Σx.

Proof of Lemma 2.12: It is obvious to see that the following selection of the elements of
vector Φ makes it orthogonal to (Σt,DM)1, i.e. (Σt,DM)1Φ = 0. Where (Σt,DM)1 is the 1st
row of Σt,DM .

Φi =

{
−1, α1αi > 0, i ̸= 1

1, otherwise

Now it will be sufficient to prove that any vector Φ orthogonal to (Σt,DM)1 is also orthogonal
to all the other rows of Σt,DM , i.e. (Σt,DM)iΦ = 0, 2 ≤ i ≤ n.

Let γi ∈ {−1, 1} be the sign of αi, i.e. αi = γi|αi|
Now for any row g, g ̸= 1,

(Σt,DM)gΦ = Φg(Σt,DM)gg +
∑
g ̸=h

Φh(Σt,DM)gh

= Φg|αg|

(
|α1| −

∑
i ̸=g,1

|αi|

)
+
∑
g ̸=h

Φhαgαh

= Φg|αg||α1|+ Φ1αgα1 −
∑

i ̸=g,i̸=1

Φg|αg||αi|+
∑

h̸=g,h̸=1

Φhαgαh

= (Φg + Φ1γgγ1)|αg||α1|+
∑

h̸=g,h̸=1

(γgγhΦh − Φg)|αg||αh| (2.68)

If Φg = Φh ⇒ γ1γg = γ1γh ⇒ γg = γh ⇒ γgγhΦh − Φg = 0.
Else if Φg ̸= Φh ⇒ γ1γg ̸= γ1γh ⇒ γg ̸= γh ⇒ γgγhΦh − Φg = 0.
Similarly, If Φg = Φ1 ⇒ α1αg < 0⇒ γ1 ̸= γg ⇒ Φg + Φ1γgγ1 = 0
Else if Φg ̸= Φ1 ⇒ α1αg > 0⇒ γ1 = γg ⇒ Φg + Φ1γgγ1 = 0
Plugging these results in equation (2.68), we get

(Σt,DM)gΦ = 0

And that completes the proof.

Having proved the two Lemmas, we are now well equipped to state and prove Theorem
2.13.

29



Theorem 2.13. Σt,DM given by equation (2.67) is the CMTFA solution of Σx if and only if
α⃗ is dominant.

Proof of Theorem 2.13. To prove the Theorem we refer to necessary and sufficient condi-
tion set by Theorem 2.7. Lemma 2.11 proves that the rank of Σt,DM is n−1, so its minimum
eigenvalue is λmin(Σt,DM) = 0. Since 0 < |αi| < 1 and 0 < (Σt,DM)ii) < 1, i = 1, . . . , n, all
the diagonal entries D∗

i,i, 1 ≤ i ≤ n of the matrix D∗ are positive. As a result, the set I(D∗)
is empty and the second term in the right hand side of (2.51) vanishes.

The dimension of the null space of Σt,DM is 1. It will suffice for us to prove the existence
of a column vector Φn×1, Φi ∈ {1,−1}, 1 ≤ i ≤ n such that Σt,DMΦ = 0. Lemma 2.12 gives
that proof.

2.6 Common Solution Space for CMDFA and CMTFA

We know by now that each of CMDFA and CMTFA imposes different condition on the
entries of α⃗ to have a rank 1 or a rank n− 1 solution. But a close look on those conditions
will reveal that the duo share a big part of their respective solution spaces with each other.
The next Lemma sheds more light on such commonality.

Lemma 2.14. Dominance in CMTFA implies dominace in CMDFA and non-dominance in
CMDFA implies non-dominance in CMTFA.

The Lemma essentially says that, if α⃗ is dominant then Σx will have a rank n− 1 solution
for both CMTFA and CMDFA and if θ⃗ is non-dominant then both CMDFA and CMDFA
recovers a star solution for Σx. To put things in perspective, for a given set of αi, 2 ≤ i ≤
n, only when |α1| is big enough to satisfy (2.30) but not big enough to satisfy the more
stringent requirement set by (2.66), then CMTFA and CMDFA solutions differ in rank.
Putting together the two conditions we can conclude that for a given set of αi, 2 ≤ i ≤ n,

CMTFA and CMDFA solutions differ in their rank only when |α1| satisfies
∑n

i=2 |αi|
√

1−α2
1√

1−α2
i

<

|α1| ≤
∑n

i=2 |αi| range.

Proof of Lemma 2.14: Using CMTFA dominance condition we get

|α1| >
n∑
i=2

|αi| ⇒
|α1|√
1− α2

1

>

n∑
i=2

|αi|√
1− α2

1

>

n∑
i=2

|αi|√
1− α2

i

⇒ |α1|√
1− α2

1

>

n∑
i=2

|αi|√
1− α2

i

Which proves the first statement of the Lemma. Now using CMDFA non-dominance condition
we have

|α1|√
1− α2

1

≤
n∑
i=2

|αi|√
1− α2

i

⇒ |α1|√
1− α2

1

≤
n∑
i=2

|αi|√
1− α2

1

⇒ |α1| ≤
n∑
i=2

|αi|

Which proves the second statement of the Lemma

2.7 Numerical Data

In the two subsections of this section we present some numerical data to demonstrate the
usefulness of the contribution of our work. We provide some analytical insights to enhance
the understanding of numerical data.
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2.7.1 CMDFA Numerical Data

We motivated CMDFA part of our work in terms common information which is a function
of the minimum mutual information between the observables and the latent factors. It is a
common practice to assume the star topology i.e the assumption that all the observables are
mutually independent given a latent factor. Though star offers a sparse structure and smooth
analysis, it may not be always the optimum solution. Next we show that assumption of star
under CMDFA dominant case does not produce optimum outcome from common information
point of view. We show that under the dominant case CMDFA solution provides lower mutual
information between the observables and the latent variables that the star solution. Which
in turn means lower common randomness required to produce the joint distribution between
the observables and the latent variables and hence lower Wyner common information. In
summary, we are about to demonstrate the additional cost in using more information bits
to synthesize n-dimensional Gaussian vector under a star topology, when we do not use the
solution of CMDFA, under the dominant case.

As mentioned before, each of X low
1 and Xup

1 will produce a corresponding µ from equaion
(2.39) and a set ai, 1 ≤ i ≤ n or equivalently produce a matrix Σz that decomposes (2.6). Let
X low

1 and Xup
1 produce µlow and µup from equaion (2.39), the corresponding sets {alowi }ni=1

and {aupi }ni=1 from (2.37), corresponding matrices Σlow
z and Σup

z that decompose (2.6), and
I low, Iup be the corresponding mutual information between observed variables and the latent
variables respectively. Also let Σstar

z be the solution to (2.6) when the CMDFA solution is
a star and Istar be the corresponding mutual information between the observed variables
and the latent factor . Next Theorem analytically shows that each of I low, Iup produces
better results than Istar considered from common information point of view. We present the
comparative results with respect to the varying magnitude of the dominance of θ⃗. Referring
to equation (2.30), we vary the dominance of vector θ⃗ by changing the value of the first
element θ1 while keeping other elements unchanged.

Figure 2.5. Difference of mutual information against θ1
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information only matters if the constraints of the common information problem given by
(1.1) are captured by the model. In that regard we can say β-VAE-GAN performed much
better than β-VAE on 3 dimensional dominant data.

3.5 VAE-KRnet

VAE-KRnet [47] is a response to the fact that not always the induced distribution of the
VAE encoder network can be captured by a simple white Gaussian prior. KRnet [57] is
a flow based generative model that seeks an invertible mapping W = f(Y ) ∈ Rn, where
f(.) is a bijection, W is a standard Gaussian random variable and Y follows any arbitrary
distribution. Mathematically, the mapping can be written in the composite form given by
equation (3.14). KRnet modifies the data distribution of Y step by step through a large
number of intermediate simple bijections to make it eventually consistent with a prescribed
distribution of W

W = f(Y ) = fm ◦ fm−1 ◦ . . . f1(Y ) (3.14)

3.5.1 Structure

VAE-KRnet has the same outline and the same sample generation model as VAE as shown
in Figures 3.68 and 3.69 except for two KRnet mappings shown in Figures 3.70 and 3.71.

Figure 3.68. VAE-KRnet outline Figure 3.69. VAE-KRnet sample generation

Figure 3.70. KRnet posterior mapping Figure 3.71. KRnet prior mapping

VAE-KRnet uses the following two types of KRnet mapping, where ϵ ∼ N (0, I).
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prior mapping p(z) : z ∼ f−1
pr (ϵ) (3.15)

posterior mapping qϕ(z|x) : z ∼ f−1
en (ϵ|x) (3.16)

How these mappings come into play in calculating the VAE-KRnet cost function will be
clear from the next subsection.

3.5.2 Cost Function

VAE-KRnet has the same corresponding cost parts as VAE namely the KL divergence term
and the log-likelihood term as given by equation (3.17).

Cost :min
ϕ,θ

Eq(x)
[
DKL(qϕ(z|x)||p(z))− Eqϕ(z|x)[log(pθ(x|z)]

]
(3.17)

Like the regular VAE, the KL divergence term in VAE-KRnet gets minimized and the log-
likelihood term gets maximized. (3.15). The difference is that when calculating the KL di-
vergence term for VAE-KRnet the two concerned distributions namely the prior and the
posterior is determined by the two KRnet mappings given by equations (3.15) and (3.16)
respectively. Similarly, when generating samples from VAE-KRnet trained model the struc-
ture given by Figure 3.69 needs to be used, and the input to the trained decoder comes from
the prior mapping given by equation (3.15).

3.5.3 Training Process

The training of VAE-KRnet is no different from that of the regular VAE except for a modified
cost function as explained above. The same pseudo code given by Algorithm 3 is used for
the training of VAE-KRnet and instead of the cost function given by (3.4) VAE-KRnet cost
function given by (3.17) is used. For the implementation details of VAE-KRnet please see
Appendix E.

Figure 3.72. classifier performance of the ground
truth data

Figure 3.73. classifier performance of the VAE
generated data
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3.5.4 Results

We again subdivide the result section in two categories i.e. the non-dominant and the dom-
inant.

The Non-dominant Case: VAE-KRnet performs nicely in non-dominant data in cap-
turing the constraints of the common information problem.

Figure 3.74. Reference dimen-
sion 0

Figure 3.75. Reference dimen-
sion 1

Figure 3.76. Reference dimen-
sion 2

Figure 3.77. Variationally calculated mutual information against the theoretical bound calculated
from the CMDFA solution
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Figures 3.72 and 3.73 show the trained classifier performance on the ground truth non-
dominant data and the data generated by the VAE-KRnet trained model. Figures 3.74 to 3.76
present the correlation coefficients of the ground truth and the VAE-KRnet generated data
across different dimensions. We can see that VAE-KRnet has performed really well in the
binary classifier testing. In addition, the correlation coefficients of corresponding dimensions
of the ground truth data and generated data match neck and neck. Hence it is fair to say that
VAE-KRnet has captured the non-dominant data distribution very well. Now let us look into
the final outcome i.e. the variationally computed mutual information I(X;Z) to see how it
fares against the theoretical mutual information calculated from the CMDFA solution for
the non-dominant data.

We can see in Figure 3.77 that the mean value of the mutual information after conver-
gence is almost the same as its theoretical counterpart. Admittedly, this result is only for 3
dimensional non-dominant data, and we have to wait to make any comment on the efficacy
of the model until we explore the dominant case.

The Dominant Case: VAE-KRnet performs great in dominant data as well in capturing
the constraints of the common information problem.

Figure 3.78. classifier performance of the ground
truth data

Figure 3.79. classifier performance of the VAE
generated data

Figure 3.80. Reference dimen-
sion 0

Figure 3.81. Reference dimen-
sion 1

Figure 3.82. Reference dimen-
sion 2
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Figures 3.78 and 3.79 show the trained classifier performance on the ground truth domi-
nant data and the data generated by the VAE-KRnet trained model. The sharpness of the
histograms is indicative of the fact that the trained VAE-KRnet model has done an excellent
job in terms of reproducing the dominant data.

Figures 3.80 to 3.82 present the correlation coefficients of the ground truth and the VAE-
KRnet generated data across different dimensions. It is clear that the VAE-KRnet model
has captured the second order statistics of the dominant data very well.

The above two demonstrations i.e. the binary classifier and correlation coefficients results
show that VAE-KRnet has done a fair job in terms of capturing the distribution of the ground
truth dominant data which plays a big role in capturing the constraints of the common
information problem defined in equation (1.1). Now we look into the outcome that matters
the most i.e. the variationally computed mutual information I(X;Z) to see how it fares
against the theoretical mutual information calculated from the CMDFA solution for the
dominant data.

Figure 3.83. Variationally calculated mutual information against the theoretical bound calculated
from the CMDFA solution

We can see in Figure 3.83 that the mean value of the mutual information after convergence
is just a notch higher than its theoretical counterpart. This is the closest we have seen so
far among the models we tried. This result we got for 3 dimensional data using VAE-KRnet
is very promising as far as our final goal is concerned i.e. solving the common information
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problem given by equation (1.1) using neural network based approach. This will keep us
interested in exploring the higher dimensional cases.

3.6 Summary of Findings

The results we presented in this chapter are limited to 3 dimensional Gaussian data. We
started with 3 dimensional data because it is simple to analyse and easy for the models to
capture, hence requires smaller model capacity. The following points are noteworthy.

The intricacy in problem complexity and structure is a major factor that contributes to the
performance of a model. The same model that performs well in capturing the non-dominant
data distribution may fail to do so in the dominant case. This is because, the dominant data
is richer in structure than the non-dominant data which has a rank 1 CMDFA solution.

It is important to note that, the capacity added to a model in any form adds to its ability
to capture data distributions. Most notable example we can cite is that, for β = 1.02 β-VAE
performed poorly in the dominant case but for the same β value β-VAE-GAN did a great
job in capturing the constraints of the common information problem. This indicates that
the GAN framework added extra capacity to the model. Similarly, VAE-KRnet performs
reasonably better than VAE which is indicative of the added capacity due to the KRnet
layers.

On the contrary we also need to be aware of the fact that we can not increase capacity
infinitely. In some of the experiments with 10 dimensional data (part of our future works)
we have seen that higher dimensional latent space adds to the complexity of the model and
hence adding too many neurons to that model makes it too complex to operate. Another
obvious concern is that too much model capacity may lead to over-fitting.

3.7 Conclusion to Chapter 3

In this chapter our main focus was to propose a novel neural network based approach to solve
the common information problem for any arbitrary Σx i.e. not constrained in terms of distri-
bution or structure. We have tried four different models so far each having its own strengths
and weaknesses. At this point it looks promising that understanding more profoundly about
the capacity of these models will potentially lead us towards our goal.
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Chapter 4
Conclusion and Future Works

The main purpose of this dissertation is to seek an optimal Gaussian graphical tree model
representation for a given set of observables. To begin with we assumed that the data has
been generated by the simplest form of a tree i.e. a star topology where the tree has just
one latent node and the observables are the leaf nodes of the tree. To test the optimality of
such data generation model, we found Constrained Minimum Determinant Factor Analysis
(CMDFA) and Constrained Minimum Trace Factor Analysis (CMTFA) decompositions of
the special co-variance matrix Σx underlying star topology. Both CMDFA and CMTFA ended
up with a bi-chambered solution space for Σx i.e. either rank 1 (recovering the star structure)
or rank n − 1. We explicitly characterized and found conditions for both the solutions, for
CMDFA as well as for CMTFA.

The operational meaning of the CMDFA solution of Σx makes it equivalent to solving
Wyner’s common information problem i.e. finding the least amount of common randomness
required to synthesize the observed data. This was a very strong motivation to attempt
solving CMDFA for more general Σx. When it comes to more general Σx, as long as the data
is Gaussian CMDFA remains an equivalent problem to solving common information problem.
For the Gaussian data underlying a non-star structure it is guaranteed that there exists a
unique solution due to the convexity of common information problem under Gaussian data.
To solve the common information problem for those cases we proposed a novel approach
namely neural network based approach. Having solved common information problem for a
special Σx, we had the luxury of having a benchmark to compare our results to in terms
of determining the efficacy of a computational model. Because, we could train our model
with the Gaussian data underlying star structure and compare the solution obtained from
the numerical model to the closed form CMDFA solution. Having justified the efficacy of a
given model against the known theoretical results, it can be used for the more general data
i.e. Gaussian data underlying a non-star structure or even non-Gaussian data.

In quest of finding an efficient model to solve common information problem, we presented
detailed analysis in Chapter 3 explaining why we consider Variational Auto-encoder (VAE) a
potential candidate to be able to capture the constraints of the common information problem.
Along with VAE we investigated three other models namely β-VAE, β-VAE-GAN and VAE-
KRnet. Out of the four models we tried β-VAE-GAN is the only hybrid model that we
designed ourselves putting together network parts from canonical VAE and GAN. We used
the other three models off the shelf but not without making necessary adjustments to be able
to solve the common information problem. We used three different metrics namely binary
classifier performance, correlation co-efficient across different dimensions of the data and
variationally calculated mutual information between data distribution and the distribution
of the latent variable to measure the capacity of each model in terms of capturing the
constraints of the common information problem.

Our investigation of the four models revealed that the capacity of a model and the richness
of data structure are the most important determinants when it comes to the performance
of a model on a given dataset. For example the non-dominant dataset is simple in structure
having rank 1 optimal solution. It requires relatively lower model capacity to capture the
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data distribution, hence even the lower capacity models can produce mutual information
close to the theoretical results. That is why we do not consider non-dominant dataset a
good testing ground for the efficacy of a model. On the other hand dominant dataset has
n−1 dimensional optimal solution indicating the richness of the underlying structure. Hence
the models require to have reasonable capacity to be able to capture the intricacies of the
dominant data distributions. We hypothesize that, when it comes to the capacity of a model
any network component added to the network in the form of a layer or a single neuron adds
to the capacity of the overall model. For example, the β-VAE-GAN performed notably better
than the regular β-VAE model due to the added model capacity by the GAN framework.
Similarly due to the added capacity of the powerful KRnet network VAE-KRnet performs
best among the four models we tried so far. In the models with β factor namely β-VAE
and β-VAE-GAN, the value of β decides which of the terms in the cost function would be
given more weight when it comes to gradient calculation. To satisfy the common information
constraints better, our analysis suggests β > 1 values are expected to optimize the mutual
information with better accuracy. The trade-off is that higher values of β require higher
model capacity. That is why when we trained regular β-VAE, β values much higher than 1.0
were producing very little or no mutual information. Because the model capacity was not
enough to support the higher values of β.

With all the above insights we gained, we now plan to design some more hybrid models
until we find one that serves our purposes. For example, we plan to put a β factor with VAE-
KRnet to make a new hybrid model called β-VAE-KRnet. We anticipate that the powerful
KRnet structure could provide enough capacity to support the higher values of β. We are
also planning to make a model by plugging VAE-KRnet in the generator slot of the GAN
framework giving rise to the hybrid model VAE-KRnet-GAN. Due to the added capacities
from KRnet and GAN frameworks, this could be a very powerful model and potentially
be able to capture the constraints of the common information problem. If we go one step
ahead and put a β factor with it, the new model β-VAE-KRnet-GAN is likely to have ample
capacity to support much higher β values. All our investigations so far have been performed
on three dimensional data. Once we are satisfied with the performance of a given model on
three dimensional data, we plan to continue exploring the higher dimensional cases.
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Appendix A

Proof of Lemma 2.6

Figure 1. Projection of the n dimensional intersection poin on X1 −Xi plane

Proof. Let X⃗∗ = [X∗
1 , . . . , X

∗
n]

′ be the CMDFA solution vector i.e. the intersection point of
(2.41) and (2.40). We refer to Figure 1, the CMDFA dominant case solution vector X⃗∗ =
[X∗

1 , . . . , X
∗
n]

′ has been projected on the (X1, Xi) plane which is shifted in the direction of
Xj, j ̸= 1, j ̸= i by X∗

j . The projection of the n dimensional plane given by (2.40) on this
(X1, Xi) plane is given by the line DPQ which is at a perpendicular distance OD (because
∠ODP = 90◦) from the origin. Here OD is the projection of the vector [θ21,−θ22,− . . . ,−θ2n]′
on (X1, Xi) plane, whose length we can calculate from equation (2.40) as,

OD = 1 +
1

2

n∑
m=1

θ2m −
∑

j ̸=1,j ̸=i

θ2jX
∗
j (1)

Geometrically, we can see in Figure 1 that the line OPQ which is the projection of the
plane cuts the hyperbola at point P and the corresponding asymptote at point Q in the first
quadrant of the (X1, Xi) plane. It is obvious to notice that, because of the higher elevation
and sharper slope of the asymptote compared to the hyperbola, pointQ has higher coordinate
values than point P which is the projection of the CMDFA solution vector X⃗∗ on (X1, Xi)
plane i.e. Xup

1 > X∗
1 and Xup

i > X∗
i . The above conclusion holds true for any projection of

X⃗∗ on any (X1, Xi), 2 ≤ i ≤ n plane. For example, the projection on (X1, X2) plane will give
us Xup

1 > X∗
1 and Xup

2 > X∗
2 . Combining the outcome of all such projection for 2 ≤ i ≤ n we

can conclude that X⃗up > X⃗∗. Which algebraically means, the intersection point among the
hyperbolic cylinders in (2.41) and the plane in (2.40) is upper bounded by the intersection
point among the asymptotes of the respective hyperbolic cylinders given by (2.48) and the
plane in (2.40).
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Appendix B

Proof of Theorem 2.15

Proof. Before we go into the business part of the proof we do some general preparatory
groundwork. Using Equation (2.37) and the fact that we used the right root of a1 we get,

a1 =
1

2

[
α2
1(2− µ2)−

√
α4
1(2− µ2)2 − 4α2

1(α
2
1 − µ2)

]
⇒ 1− a1

1− α2
1

= 1 +
α2
1µ

2

2− 2α2
1

+
1

2

α2
1

1− α2
1

√
(2− µ2)2 − 4 +

4µ2

α2
1

⇒ 1− a1
1− α2

1

= 1 +
µ2θ21
2

+
θ21
2

√
−4µ2 + µ4 +

4µ2

α2
1

⇒ 1− a1
1− α2

1

= 1 +
µ2θ21
2

+
θ21
2

√
µ4 +

4µ2

θ21

⇒ 1− a1
1− α2

1

= 1 +
µ2θ21
2

+
µ2θ21
2

√
1 +

4

µ2θ21

⇒ 1− a1
1− α2

1

= 1 +
µ2θ21
2

+
µ2θ21
2

√
4

µ2θ21
+
µ2θ21
2

(√
1 +

4

µ2θ21
−

√
4

µ2θ21

)

⇒ 1− a1
1− α2

1

= 1 +
µ2θ21
2

+
√
µ2θ21 +

µ2θ21
2

(√
1 +

4

µ2θ21
−

√
4

λ2µ2
1

)
(2)

Similarly, since we are using the right roots for ai, 2 ≤ i ≤ n we get,

⇒ 1− ai
1− α2

i

= 1 +
µ2θ2i
2

+
µ2θ2i
2

√
4

µ2θ2i
− µ2θ2i

2

(√
1 +

4

µ2θ2i
−

√
4

µ2θ2i

)
(3)

Equations (2.50) and (2.49) suggest that both X low
1 and Xup

1 are decreasing functions of θ21.
And in turn equation (2.39) suggests that µθ2i , 1 ≤ i ≤ n are increasing functions of θ21.
Since θi, 2 ≤ i ≤ n are constants, the only thing changing in (3) is µ. But µ can not increase
beyond α2

1 because that would mean equation (2.36) does not have a solution. Hence, in
order to increase θ1 as we keep on increasing the value of α1 and make it closer and closer to
1, the value of µ also gets closer to 1. Thus with the increment of θ21 the parameters given by
(3) asymptotically converge to constants which we get plugging in µ = 1 i.e. for 2 ≤ i ≤ n

⇒ 1− ai
1− α2

i

= 1 + 2θi +
θ2i
2

(
1−

√
1 +

4

θ2i

)
, 2 ≤ i ≤ n (4)
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Now that we have the groundwork done, we can proceed to prove the actual statement of
the theorem.

Istar − I low =
1

2
log |Σlow

z | −
1

2
log |Σstar

z |

=
1

2
log

n∑
i=1

1− alowi
1− α2

i

=
1

2
log

1− alow1

1− α2
1

+
n∑
i=2

1

2
log

1− alowi
1− α2

i

(5)

∑n
i=2

1−alowi
1−α2

i
is asymptotically a constant. Equation (2.39) suggests µlow is an increasing

function of θ1 because X low
1 is a decreasing function of θ1. Hence from (2),

⇒ 1− alow1

1− α2
1

= 1 +
(µlow)2θ21

2
+
√

(µlow)2θ21 +
(µlow)2θ21

2

(√
1 +

4

(µlow)2θ21
−

√
4

(µlow)2θ21

)

Which is an increasing function of θ1. Hence from (5) we see that Istar− I low is an increasing
function of θ1. Similarly,

Istar − Iup = 1

2
log

1− aup1
1− α2

1

+
n∑
i=2

1

2
log

1− aupi
1− α2

i

(6)

Like the previous case we can argue that,
∑n

i=2
1−aupi
1−α2

i
is asymptotically a constant. Equation

(2.39) suggests µup is an increasing function of θ1 because Xup
1 is a decreasing function of θ1.

Hence 1−aup1
1−α2

1
and consequently Istar − Iup is an increasing function of θ1.

Using equations (5) and (6),

Iup − I low =
1

2
log

1− alow1

1− α2
1

− 1

2
log

1− aup1
1− α2

1

+ κ =
1

2
log

1− alow1

1− aup1
+ κ (7)

where κ is a constant. Since alow1 and aup1 are increasing functions of µlowθ21 and µupθ21 respec-
tively, to show Iup− I low is an increasing function of θ1 we need to show µlow

µup
is an increasing

function of θ1. Equations (2.50) and (2.49) suggest that Xup
1

Xlow
1

is an increasing function of θ1,

and in turn (2.39) suggests µlow

µup
is an increasing function of θ1. That completes the final part

of the proof.
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Appendix C

Some Special Cases Where the Closed-form CMDFA Solution Does
Not Exist

Case 1: One cluster has rank 1 and the other cluster has rank n− 1 CMDFA
solution

To start with we consider a set of six observables {Xi}6i=1 divided in two clusters {X1, X2, X3}
and {X4, X5, X6}. We define X⃗nd = [X1, X2, X3]

′ and X⃗dom = [X4, X5, X6]
′. We assume

that first cluster has a rank 1 CMDFA solution while the second one has a rank (n − 1)
(rank 2 in this case) CMDFA solution. Let Y1 be the latent factor corresponding to the
rank 1 solution and Y2, Y3 be the latent factors corresponding to the rank 2 solution. We
define Y⃗dom = [Y2, Y3]

′. Figure 2 gives the graphical representation of our problem where the
αi, 1 ≤ i ≤ 6 represents the corresponding weight of the ith observable.

Figure 2. Two correlated clusters, one with a rank 1 and the other with a rank n− 1 local solution

Lemma .1. There does not exist Y1, Y⃗dom, And, Adom such that the following 4 equations
simultaneously hold.

X⃗nd = AndY1 + Z⃗nd (8)

X⃗dom = AdomY⃗dom + Z⃗dom (9)
Σt,nd = AndE

[
Y1Y

T
1

]
ATnd = Y 2

1 AndA
T
nd (10)

Σt,dom = AdomE
[
Y⃗domY⃗

T
dom

]
ATdom (11)

false where, the scalar quantity Y1 is essentially a 1 element vector, Y⃗dom is a column vector
of dimension 2×1, And and Adom are matrices of dimension 3×1 and 3×2 respectively, and

Σt,nd =

 α2
1 α1α2 α1α3

α2α1 α2
2 α2α3

α3α1 α3α2 α2
3

 (12)

Σt,dom =

 a4 α4α5 α4α6

α5α4 a5 α5α6

α6α4 α6α5 a6

 (13)

Z⃗nd and Z⃗dom are vectors of independent Gaussian random variables. 0 < ai < 1, 4 ≤ i ≤ 6.
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Proof. Referring to Figure 2 where β is the correlation between the two clusters, and using
equations (8) and (9) we have,

E
[
XndX

T
dom)

]
= E

[
(AndY1 + Z⃗nd)(AdomY⃗dom + Z⃗dom)

T
]

⇒βα⃗ndα⃗Tdom = E
[
(AndY1)(AdomY⃗dom)

T
]

⇒βα⃗ndα⃗Tdom = E
[
AndY1Y⃗

T
domA

T
dom

]
⇒βα⃗ndα⃗Tdom = AndE

[
Y1Y⃗

T
dom

]
ATdom

⇒βα⃗ndα⃗Tdom = LAdom where L = AndE
[
Y1Y⃗

T
dom

]
is a 3× 2 matrix

Now if we consider the ith column on both sides,

β(α⃗nd)iα⃗
T
dom = Li,1(Adom)

T
;,1 + Li,2(Adom)

T
;,2 (14)

For the above to be true, the vector α⃗dom have to be in the same plane as (Adom);,1 and
(Adom);,2.

But the local CMDFA solution for the second cluster requires the existence of such ci ∈
{−1, 1}, 4 ≤ i ≤ 6 such that the vector

[
c4√
1−a4

, c5√
1−a5

, c6√
1−a6

]T
is in the null space of Σt,dom.

Which means, for equation (14) to hold true vectors (Adom);,1 and (Adom);,2 have to be in the

null space of
[

c4√
1−a4

, c5√
1−a5

, c6√
1−a6

]T
. Which in turn means, for α⃗dom to be in the same plane

as (Adom);,1 and (Adom);,2, it has to be in the null space of
[

c4√
1−a4

, c5√
1−a5

, c6√
1−a6

]T
. Lemma 2

proves that it is impossible and that completes the proof.

Lemma .2. α⃗dom can not be in the null space of the vector
[

c4√
1−a4

, c5√
1−a5

, c6√
1−a6

]T
.

Proof. We know from the CMDFA solution of cluster 2 that,

c4√
1− a4

a4 +
c4√
1− a5

α4α5 +
c6√
1− a6

α4α6 = 0 (15)

Since the cluster has a rank 2 solution there is at least once case such that ai ̸= α2
i . WLOG

let us assume a4 ̸= α2
4. Hence for some ϵ ̸= 0 such that a4 = α2

4 + ϵ we can write,

c4√
1− a4

(α2
4 + ϵ)

c5√
1− a5

α4α5 +
c6√
1− a6

α4α6 = 0

⇒α4

[
c4√
1− a4

α4 +
c5√
1− a5

α5 +
c6√
1− a6

α6

]
+

c4√
1− a4

ϵ = 0

But c4√
1−a4

ϵ ̸= 0, hence c4√
1−a4

α4 +
c5√
1−a5

α5 +
c6√
1−a6

α6 ̸= 0. That completes the proof.
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Case 2: Both the clusters have rank n− 1 CMDFA solution

Again we consider a set of six observables {Xi}6i=1 divided in two clusters {X1, X2, X3} and
{X4, X5, X6}. We define X⃗1 = [X1, X2, X3]

′ and X⃗2 = [X4, X5, X6]
′. We assume that both

the clusters has a rank (n−1) (rank 2 in this case) CMDFA solution. Let Y1, Y2 be the latent
factors corresponding to the first cluster and Y3, Y4 be the latent factors corresponding to
the second cluster. We define Y⃗1 = [Y1, Y2]

′ and Y⃗2 = [Y3, Y4]
′. Figure 3 gives the graphical

representation of case 2.

Figure 3. Two correlated clusters, both with a rank n− 1 local solution

Lemma .3. There does not exist 2×1 dimensional vectors Y⃗1 and Y⃗2, and 3×2 dimensional
matrices A1, A2 such that the following equations hold.

X⃗1 = A1Y⃗1 + Z⃗1 (16)

X⃗2 = A2Y⃗2 + Z⃗2 (17)

Σt,1 = A1E
[
Y⃗1Y⃗

T
1

]
AT1 (18)

Σt,2 = A2

[
Y⃗2Y⃗

T
2

]
AT2 (19)

where,

Σt,1 =

 a1 α1α2 α1α3

α2α1 a2 α2α3

α3α1 α3α2 a3

 (20)

Σt,2 =

 a4 α4α5 α4α6

α5α4 a5 α5α6

α6α4 α6α5 a6

 (21)

Z⃗1 and Z⃗2 are vectors of independent Gaussian random variables. 0 < ai < 1, 1 ≤ i ≤ 6.
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Proof. Refering to Figure 3 where β is still the correlation between the two clusters, and
using equations (16) and (17) we have,

E
[
X1X

T
2 )
]
= E

[
(A1Y⃗1 + Z⃗1)(A2Y⃗2 + Z⃗2)

T
]

⇒βα⃗1α⃗
T
2 = E

[
(A1Y⃗1)(A2Y⃗2)

T
]

⇒βα⃗1α⃗
T
2 = E

[
A1Y⃗1Y⃗

T
2 A

T
2

]
⇒βα⃗1α⃗

T
2 = A1E

[
Y⃗1Y⃗

T
2

]
AT2

⇒ βα⃗1α⃗
T
2 = A1L where L = E

[
Y⃗1Y⃗

T
2

]
AT2 is a 2× 3 matrix

(22)

Now considering the ith column on both sides,

β(α⃗2)iα⃗1 = Li,1(A1);,1 + Li,2(A1);,2 (23)

For the above to be true, the vector α⃗1 have to be in the same plane as (A1);,1 and (A1);,2. But
the local CMDFA solution for the first cluster requires the existence of such ci ∈ {−1, 1}, 1 ≤
i ≤ 3 such that the vector

[
c1√
1−a1

, c2√
1−a2

, c3√
1−a3

]T
is in the null space of Σt,1. Which means,

for equation (23) to hold true vectors (A1);,1 and (A1);,2 have to be in the null space of[
c1√
1−a1

, c2√
1−a2

, c3√
1−a3

]T
. Which in turn means, for α⃗1 to be in the same plane as (A1);,1 and

(A1);,2, it has to be in the null space of
[

c1√
1−a1

, c2√
1−a2

, c3√
1−a3

]T
. Lemma 3 essentially proves

that it is impossible have such orthogonality for a cluster with rank n− 1 CMDFA solution,
and that completes the proof.
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Appendix D

Relation Between Total Variation Distance and Average Error
Probability in Binary Hypothesis Testing

The Total Variation Distance (TVD) between two probability measures P and Q on a sigma-
algebra F of subsets of the sample space Ω is formally defined [58] as

δ(P,Q) = sup
A∈F
|P (A)−Q(A)| (24)

Informally, this is the largest possible difference between the probabilities that the two prob-
ability distributions can assign to the same event. Let us consider a binary hypothesis testing
framework where we have two distributions i.e. the ground truth data distribution qdata(.)
and the generated output distribution of a trained model pgout(.). The null hypothesis is that
a given sample s is from the ground truth data i.e. s belongs to the set Sdata. We reject the
null hypothesis if the sample is actually from the generator output i.e. s belongs to the set
Sgout.

Hence we have,

Type I error + Type I error = qdata(s ∈ Sgout) + pgout(s ∈ Sdata)
= qdata(s ∈ Sgout) + [1− pgout(s ∈ Sgout]
= 1 + [qdata(s ∈ Sgout)− pgout(s ∈ Sgout)]
≥ 1 + inf

s
[qdata(s ∈ Sgout)− pgout(s ∈ Sgout)]

≥ 1− sup
s

[qdata(s ∈ Sgout)− pgout(s ∈ Sgout)]

≥ 1− TV D[qdata, pgout]

∴ TV D[qdata, pgout] ≥ 1− [Type I error + Type I error] (25)

We can see that Type I and Type II error probabilities coming from a binary hypothesis
testing framework help us get a lower-bound on the TVD between the distributions qdata and
pgout.
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Appendix E

Implementation Details of Different Models

Implementation Details for VAE and β-VAE

• input data type: ground truth data (non-dominant or dominant), data dimension: 3,
Latent dimension: 02, data size: 300000.

• number of hidden layers in the encoder: 02, number of hidden layers in the decoder:
02, neurons in each hidden layer: 1024.

• cost function: as given by equation (3.4) for VAE and equation (3.9) for β-VAE, acti-
vation function: ReLU

• batch size: 1000, number of batches: 300, number of Epochs: 1000.

• Optimization algorithm: STOCHASTIC GRADIENT DESCENT, Step-size: 0.001

Implementation Details for β-VAE-GAN

β-VAE-GAN has two major network components namely the generator and the discrimi-
nator. The generator network implementation details are the same as β-VAE as given by
Appendix 4 except for the cost function. The cost function for the generator training of
β-VAE-GAN model is given by equation (3.13).

The implementation details of the discriminator network is given below.

• input data types: ground truth data (non-dominant or dominant), the generated sam-
ples from the generator i.e. the β-VAE decoder. data dim: 3. data size: 300000.

• number of hidden layers: 02, neurons in each hidden layer: 1024.

• cost function: as given by equation (3.12), activation function: ReLU.

• batch size: 1000, number of batches: 300, number of Epochs: 1000.

• Optimization algorithm: STOCHASTIC GRADIENT DESCENT, Step-size: 0.001

Implementation Details for VAE-KRnet

• input data type: ground truth data (non-dominant or dominant), data dimension: 3,
Latent dimension: 02, data size: 300000.

• number of hidden layers in the encoder: 01, number of hidden layers in the decoder:
01, neurons in each hidden layer: 1024.

• number of hidden layers in KRnet prior: 02, number of hidden layers in KRnet posterior:
02, neurons in each hidden layer: 1024.
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• cost function: as given by equation (3.17),

• batch size: 1000, number of batches: 300, number of Epochs: 1000.

• Optimization algorithm: STOCHASTIC GRADIENT DESCENT, Step-size: 0.001

Implementation Details for Binary Classifier

• input data types: ground truth data (non-dominant or dominant), generated samples
by any given model. data dim: 3. training data size: 80000. testing data size: 20000.

• number of hidden layers: 02, neurons in each hidden layer: 1024.

• cost function: that of a typical GAN discriminator as given by (3.10), activation func-
tion: ReLU.

• batch size: 1000, number of batches: 80, number of Epochs: 1000.

• Optimization algorithm: STOCHASTIC GRADIENT DESCENT, Step-size: 0.001

Implementation Details for MINE

• input data type: joint data and marginal data for any given model (the data gener-
ation procedure for MINE training is given in Chapter 3), input dimension: 5 (data
dimension: 3+ latent dimension: 02), output dimension: 1, data size: 200000.

• number of hidden layers: 02, neurons in each hidden layer: 1024.

• cost function: as given in Algorithm 4 by equation (3.7), activation function: ReLU

• batch size: 1000, number of batches: 300, number of Epochs: 500.

• Optimization algorithm: STOCHASTIC GRADIENT DESCENT, Step-size: 0.001
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