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reduced compressive strain in this material, as well as the centrosymmetricity of its perovskite unit 

cell, likely plays a role in why SIO grows in a more uniform fashion than BTO films.   

Understanding the origins of the BTO relaxation in these films became the primary driver 

of this study, and through heterointerfacing between BTO and SIO we were able to elucidate the 

evolution of dislocation centers in strained epitaxial films. Dislocations are known to occur in films 

with large lattice mismatch, and can occur either as misfit dislocations at interfaces or half-loop 

dislocations within the films [161–165]. Misfit dislocations can occur acutely at the interface due 

to poor epitaxial conditions or be induced as the film strain field is increased through threading 

dislocations that penetrate to the interface. Edge dislocations, a form of half-loop dislocation, occur 

at points in the crystal that have either an additional or removed atom in the lattice. A schematic 

of misfit and edge dislocations are pictured in Figure 5.3. The Burgers vector associated with a 

dislocation describes the crystal direction shift needed to compensate for the change, and can have 

a magnitude greater than 1 if multiple crystal sites are involved in the dislocation described. These 

half-loop dislocations are intermediate sites within the films and only affect unit cells grown on 

 

Figure 5.3. Toy model of different types of dislocation cores. Misfit dislocations occur at the 

interface between films and can provide for immediate film relaxation. Edge dislocations are 

a type of point defect within a film that can release elastic energy away from the interface. 
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top of them. Growing thicker strained films increases the probability of these dislocation 

formations, as the strain field may not be enough in thinner films to drive nucleation of these sites. 

Mitigating oxygen vacancies is also effective in limiting dislocations, as these can serve as point 

defects that lower the cost of nucleation. Understanding how these dislocations evolve over 

heterointerfaces is crucial for development of defect engineered devices, yet little is known about 

their development across interfaces [166].  

Toward this end, we grew heterostructures between highly-strained BTO and lightly-

strained SIO on STO(001) and used XRD, STEM, and 4D in-plane (IP) strain mapping to 

investigate the films’ crystalline properties and defect formation. Figure 5.4a) shows a schematic 

of a BTO10uc/SIO2uc/BTO10uc/SIO2uc/BTO10uc heterostructure grown on STO(001). The RHEED 

patterns before and after growth are shown in panel b), and show that this film again has 

 

Figure 5.4. a) Schematic model of BTO10uc/SIO2uc/BTO10uc/SIO2uc/BTO10uc heterostructure to 

provide clarity on nomenclature used throughout chapter. b) Coupled scan around STO (002) 

diffraction peak. c-d) Film and STO substrate rocking curve scans. e) RSM of (-103) 

asymmetric spot partial film relaxation. 
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transitioned to a step-flow growth in a similar fashion to a monolithic BTO film. This film in 

particular was chosen to highlight the role of increasing the number of interfaces in a nominal 

thickness BTO film, and can be compared with the patterns observed in the 30 u.c. film from 

Figure 5.1.  The fact that the SIO layers in this sample are kept comparably low in relation to the 

number of BTO layers isolates the affect of just the interface. We note here that, along with lattice 

mismatch strain, symmetry mismatch can also affect a heteroepitaxial growth. BTO has a cubic 

(albeit noncentrosymmetric) structure with a Glazer notation of a0a0a0, which is the same as the 

STO substrate. SIO however is part of the Pnma crystallographic group with a-a-c+ tilt and rotation 

pattern [92, 160]. This type of symmetry mismatch might also increase the likelihood of 

dislocation formation as the layers attempt to return to bulk symmetries. In this sample however, 

it is evident from the coupled scans and rocking curves shown in Fig 5.4c-e) that the two films 

have a similar crystalline quality with comparable behaviors in both. This similarity extends to the 

 

Figure 5.5. 4D STEM of monolithic BTO film. a-b) color contrasted HAADF images 

showing the interfacial quality and consistent thickness of the grown film. Dotted lines 

highlight the existence of dislocations formed. Inset shows closer view of a dislocation site, 

showing it to be an edge dislocation. Black line denotes substrate interface. c-d) εxx (IP) strain 

maps of same areas imaged in a-b. Shows transition from compressive (green) strain to 

tensile (red) strain after dislocation formation.  
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RSM of the (-103) spot, where both films produce a majority strained film peak encompassed by 

a relaxed lower count region. This is our first indication that increasing the number of interfaces 

in highly compressively strained oxide films does not increase film relaxation or dislocation 

formation, as both the monolithic films and increased interface films behave nearly identically in 

macroscopic XRD measurements.  

5.2 STEM and Atomic Strain Maps of BTO Heterostructures 

An atomic picture of the structural evolution across the films is needed to see how these 

dislocations are positioned within. HAADF images using STEM and corresponding IP strain maps 

were obtained for a selection of films that could efficiently encapsulate how both film thickness 

and interface density affected dislocation nucleation. Of primary importance as a baseline was our 

30 u.c. monolithic BTO film, as shown in Figure 5.5. Large areas scans are shown and portray a 

consistent thickness across the film. We can immediately see from a-b) HAADF images that, apart 

from a single interfacial atomic displacement across the 118 nm scanned area, misfit dislocations 

are not forming at the interface between BTO and STO substrate. We do however begin to see 

edge dislocations as the thickness of the film increases, shown clearly from the zoomed inset of 

Fig 5.5a). At these sites, a single Ba atom is removed, allowing the larger lattice constant BTO to 

extend outward toward its preferred in-plane lattice constant.  These sites occur conspicuously at 

similar thicknesses, with an average distance of 6.2 ± 1.7 nm from the STO interface. This 

thickness behavior has been seen in other BTO monolithic films on STO(001) and their location 

has been shown to be affected by growth temperature and oxygen annealing, but always tend to 

occur at thicknesses below 6nm [165, 167]. We use a lower growth temperature, which provides 

a lower energy environment during growth for dislocations to form and thus necessitates a higher 
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driver of dislocation formation in these films is the accumulation of lattice strain through increased 

film thickness. Interfaces seem to merely provide a more likely source of extrinsic crystal 

deformation from epitaxial instability and are not an intrinsic driver of dislocation formation. 

Likewise, symmetry mismatch does not seem to be a motivator in these ultrathin systems either, 

as the thicker m = 2 SIO layer should have driven more dislocation formation than the m = 1 SIO 

layer from Figure 5.6 if symmetry mismatch were a primary source of dislocations. We note that 

after the films are allowed to relax through edge dislocations in Figure 5.7b-c), no further 

dislocations are observed throughout the films, which is indicative of the efficiency of these 

dislocation sites in allowing the grown film to relax toward its desired lattice constants.  

We also imaged STO8uc/SIO1uc/STO8uc films in order to ensure that it was not the TiO2-

SrO2 interfacial layer or SIO symmetry change that was causing dislocation formation. Figure 

5.8a-b) shows the HAADF and strain map images for this film. We see that no dislocation cores 

are found in the entire imaged area. This shows that the simple addition of an interface does not 

increase dislocation formation in titanate - iridate heterostructures and that accumulated elastic 

 

Figure 5.8. STEM image of STO8uc/SIO1uc/STO8uc heterostructure. a) HAADF image of large 

lateral area. Yellow dotted line denotes substrate interface. b) IP strain map of areas imaged 

in a). 
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strain energy is a more important factor. It should be noted that this film is almost entirely 

homoepitaxial, with only a single IrO2 layer substituted for a TiO2 layer.  

Considering our SIO and BTO XRD results in tandem with these observations, we posit 

that BTO thickness is the primary driver of dislocation formation in these strained systems. XRD 

shows that we can grow thick SIO films without relaxation but thinner thicknesses of BTO relax. 

If the two dislocations from the sub-6nm film in Figure 5.6 are discounted as epitaxial errors 

(which is likely given their average lateral spacing of ~3 μm), then that film effectively has no 

dislocation cores.  This means that, for both the BTO8uc/SIO1uc/BTO8uc and [BTO6uc/SIOm] films, 

the only intrinsic factor of whether the films stay strained or lose substrate coherence through edge 

dislocations is the thickness of the BTO film. If the film is too thin, as in BTO8uc/SIO1uc/BTO8uc , 

then no dislocations will be formed, but once the critical thickness is reached either in monolithic 

or heterostructured form, dislocation nucleation begins. The amount of compressive strain imposed 

by the STO (001) substrate is then the most likely driver of dislocation formation in such 

heteroepitxial films. It is also noted that BTO has a lower bulk modulus than SIO (135 and 187.1 

GPa, respectively), and lower bulk moduli have been shown to allow for easier dislocation 

formation  [169–171]. It is also noteworthy that these dislocations do not appear to affect the 

mosaicity of the films (evidenced by the similar rocking curve XRD behavior between films) as 

might be expected, and is explained by their relatively low lateral density and their efficiency 

toward pure relaxation of the films and not domain formation [172].    

If these edge dislocations are driving the film relaxation as we expect, then we should be 

able to see their effect through analysis of the layer-by-layer IP and OOP lattice constants. This 

was undertaken for the STO8uc/SIO1uc/STO8uc, the BTO8uc/SIO1uc/BTO8uc , and the [BTO6uc/SIOm] 

heterostructures to compare as the number of interfaces and film thicknesses were varied, and the 
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results are shown in Figure 5.9. Panels a-c) show a representative (010) cut HAADF image used 

for the averaging analysis, but a total lateral area of 40 unit cells were used for the averaging. 

Figure 5.9d-e) show the respective IP and OOP lattice constants as a function of film thickness 

away from the substrate interface (denoted as 0 distance). Looking at the IP lattice constants (Fig 

5.9d), it is clear that the thin trilayer structures, both STO and BTO dominated films, do not bulk 

relax away from the STO substrate strained value, which is expected given the low number of 

dislocation cores. The large heterostructure does however begin to show a relaxation from the STO 

IP constant (denoted by the lower black dotted line) around 13 unit cells, or 5.58 nm away from 

the substrate, that continues throughout the film until a full relaxation to BTO’s bulk IP value of 4 

Å is achieved. This is the same thickness regime where dislocations begin to form and confirms 

that these sites are responsible for the relaxation of the thick films. We can also surmise from the 

 

Figure 5.9.  IP and OOP lattice constants of multiple films. a-c) representative HAADF 

imaged areas of [BTO6uc/SIOm] (a) , STO8uc/SIO1uc/STO8uc (b), and BTO8uc/SIO1uc/BTO8uc  

(c) heterostructures. d) Laterally averaged IP lattice constants for each film. Yellow line 

denotes STO interface, while the black dashed line denote the STO lattice constant and the 

green dashed line denotes the BTO bulk lattice constant. e) Laterally averaged OOP lattice 

constants of each film. Purple lines denote SIO bulk OOP pseudocubic lattice constant.  
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gradual relaxation observed that while the dislocation cores are an acute source of strain energy 

dispersal, the films need a certain thickness to bulk relax from the abrupt removal of an atomic 

site. It is interesting that every thickness of SIO layer follows the behavior of the BTO layers and 

eventually even become tensile strained to the BTO IP lattice constant as opposed to the STO 

substrates’, showing once again the these films are dominated by the film with larger strain.   

OOP lattice constants for the films are observed in Figure 5.9e). Again, the 

STO8uc/SIO1uc/STO8uc system shows strong adherence to the STO substrate OOP constant as 

expected for a nearly homoepitaxial film. The trilayer BTO8uc/SIO1uc/BTO8uc shows that the BTO 

and SIO layers are well strained IP to STO and as a result increase their OOP lattice constants 

above their bulk values in order to conserve their unit cell volume (compressive strain normally 

induces elongated OOP lattice constants). The middle single unit cell SIO layer shows a reduced 

OOP expansion as a result of its lower strain when adhering to an STO substrate. BTO is elongated 

past its bulk value (green dashed line) in both layers and does not show pattern of relaxation toward 

this value. This however is not the case in the multilayered system, where we see a damped 

oscillatory behavior as the film thickness increases and the IP lattice constant relaxes. Once the 

dislocations near the second SIO layer allow the film to relax, the OOP lattice constant of BTO 

never surpasses its bulk value again and displays complete relaxation. This abrupt change in OOP 

lattice constant behavior while the IP lattice shows a gradual bulk change may be related to tensile 

strain imposed by the dislocation cores on the films above them (red areas of strain maps).  

5.3 Conclusions 

Through high resolution XRD and atomic resolution 4D STEM, we were able to determine 

that in compressively strained heteroepitaxial films, the material with larger strain percentage is 

likely to drive the overall structure of the film and any dislocations that form therein. Neither 
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symmetry mismatch nor interfacial intermixture seemed to play a role in defect nucleation. Studies 

on tensile strained LaAlO3/STO films with a strain of 3% show similar thickness dependence of 

dislocation formation [173].  Further work on the role of symmetry mismatch should be undertaken 

in a more systematic way, perhaps by heterostructuring with films with higher degrees of 

orthorhombic tilt like CaRuO3, but this preliminary work suggests that this type of mismatch is 

not as effective at inducing dislocation formation. We can see from this work that it is possible to 

strategically place dislocations at interfaces between materials, and it is possible that this type of 

defect engineering can be crucial in developing functional electronic wells [174, 175].  
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Chapter 6. Conclusions and Outlook 

 
In this dissertation work, we have explored how interfacing between different materials 

can affect the fundamental structural and magnetic characteristics of thin films. We primarily 

looked at manganite/ruthenate heterostructures between LCMO and SRO in order to elucidate the 

origin of the magnetic revivification in LCMO layers. Multiple causes were considered and ruled 

out. In other manganite/ruthenate systems, novel magnetic effects are usually ascribed to 

interfacial charge transfer, but we found no evidence of this in our EELS analysis of our extremely 

thin trilayer. Magnetic polaron formation also does not seem to be a likely cause, as the resistivity 

tends to follow a VRH model as opposed to polaronic motion in the extremely thin case. Small 

scale FM metallic regions are also unlikely from our MR characteristics. While the DM interaction 

may have a slight effect in moderate SOC ruthenate heterostructures as it is known to favor a 

canted alignment of AFM spins, we also know from the size of the FM saturation that small canting 

of interfacial moments is not sufficient. Structural change does play an important role in the 

saturation moment of films but is not directly correlated with higher onset temperatures, as STO 

buffered samples have high saturation fields but lower Tc than ruthenate buffered samples. Based 

on these results, we come to the conclusion that the primary driver of increased magnetic onset in 

such systems is two-fold, with both the exchange coupling between Ru and Mn at the SrO-MnO2 

interface and small magnetic domains in SRO inducing this effect. We know that the interface 

termination alone is not enough as STO buffered samples also have this same termination and 

similar interfacial exchange coupling energies [115, 176]. SRO is known to have small-scale order 

FM regions, and magnetism in one heterostructure layer can induce pinning effects in interfaced 

layers [30, 63, 177]. CRO buffered samples have a CaO-MnO2 termination, which due to CRO’s 

lowered metallicity and the smaller Ca ionic radius should have a smaller exchange interaction 
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than its isovalent SrO terminated counterpart. These would both show that in the ultrathin limit, 

the incipient FM moments in ruthenates are the most important in pinning the LCMO moments IP 

and allowing them to large scale order at higher temperatures. Exchange coupling between the 

layers aids in this and determines the spin alignment of the different layers. Onset enhancement 

occurs regardless of the metallicity of the system, a result that has been missed in other manganite-

ruthenate studies and shows that manganites can have different FM orderings.  

We confirm that the coupling between the ruthenate and LCMO layers is antiferromagnetic 

through studies of multiple thicknesses of LCMO and SRO layers. Exchange bias behavior and 

downturns in magnetization are observed in thick SRO samples, and MR hysteresis and positive-

 

Figure 6.1. Schematic representation of B-site moments above and below Tc in 

LCMO/SRO/LCMO trilayer. Exchange coupling, small above Tc magnetic domains, and 

reemergent OOP alignment in SRO layers are shown for emphasis of key findings.   
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to-negative crossover is observed in both SRO and CRO buffered thick LCMO trilayers. These 

effects are tied to AFM interfacial alignment, and only appear in samples with sufficient thickness 

for the films to sufficient signal and measurable low-temperature resistivities. We also considered 

the magnetic anisotropy of these systems, and found that sufficiently thick SRO buffered samples 

regained an appreciable OOP moment away from the interface. Overall, this gives a picture of the 

LCMO-SRO system and magnetic character as presented schematically in Figure 6.1. The 

interfacial layers of LCMO and SRO are pinned IP with only slight OOP canting (~4°). Moving 

away from the interface, sufficiently thick SRO layers can regain their preferred OOP alignment. 

Above Tc, there is still pinning of the interfacial moments due to the superexchange coupling and 

SRO magnetic domains, though it is only below Tc that they become large scaled ordered and 

observable in SQUID.  

In our structural work on the BTO/SIO system, we were able to exhibit a strong ability to 

place dislocations at interfaces by varying the thickness of compressively strained BTO layers. 

Dislocation formation appears in the absence of interfaces and depends solely on the thickness of 

the highly strained BTO layer. This can be understood as a release of elastic energy of the system 

with higher Young’s moduli, and becomes important as film thicknesses are increased. The fact 

that interfaces do not drastically affect the formation allows us to formulate below critical 

thickness multi-heterointerface systems that would allow for much lower defect formation. Placing 

deformations might be useful in future studies of functional devices, as we have shown that 

increased localization in our LCMO systems have led to increased magnetic effects and this 

localization may be enhanced by strategically placed defects at the all-important interface.   

Future research into the LCMO/SRO system should attempt to use optical techniques such 

as magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM) to probe whether 
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the small-scale SRO domains extend out into the LCMO layers. This would allow us to know 

whether pinning by SRO moments is a definitive cause of the revived magnetism. We are also 

working with industrial partners who are attempting to directly image moments on an atomic scale 

utilizing innovative 4D-STEM techniques, and this may allow us to look at a cross-section of our 

samples and determine directly if the interfacial alignment is antiferromagnetic. This is exciting 

work that will be published in the future.  
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