1993

"Sequenza VII" by Luciano Berio: Background, Analysis and Performance Suggestions.

Carrie Marie Vecchione
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/5679

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
"Sequenza VII" by Luciano Berio: Background, analysis and performance suggestions

Vecchione, Carrie Marie, D.M.A.
The Louisiana State University and Agricultural and Mechanical Col., 1993

Copyright ©1993 by Vecchione, Carrie Marie. All rights reserved.
SEQUENZA VII BY LUCIANO BERIO:
BACKGROUND, ANALYSIS AND
PERFORMANCE SUGGESTIONS

A Monograph
Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Musical Arts

in

The School of Music

by
Carrie Marie Vecchione
B.M., Louisiana State University, 1983
M.M., The Manhattan School of Music, 1985
December 1993
Acknowledgments

I feel particularly fortunate to have been associated with a fine committee of advising faculty members throughout the writing of this paper. This one page is not large enough to express adequate thanks to those special people. My heartfelt gratitude goes to Richard Kaplan, who, as director of the paper, read every draft and, through his thoughtful comments, encouraged me to re-think and re-write. Jennifer Williams Brown translated many, many pages of scholarly French text which proved to be a valuable source. Her editorial comments have also been most helpful. Bert Boyce, Dean of the Louisiana State University School of Library and Information Science, generously provided me with a comprehensive printout of sources pertaining to Berio. Mark Ostoich, as my major professor and influence, has always been more than generous with his time and allowed me the latitude to pursue the topics that were of interest to me. William Ludwig and Katherine Kemler, as readers of this paper, but also throughout the course of my degree program, have been very helpful and willing to advise me. Thanks also to European American Music who granted permission to reprint the excerpts from Sequenza VII and Chemins IV. And finally, a public word of appreciation to my parents, Frank and Polly, whose support and love allow me to live my dreams.
Preface

In order to follow some of the ideas presented in the body of this paper, it will be necessary to have a score of the piece at one's disposal. The musical examples included are only meant to illustrate specific points. Seeing the score in its entirety will place those ideas in perspective.

As the score is set up in a grid-like fashion, I have found it efficient to refer to the "measures" in relation to graph labelings, with the horizontal line number appearing first and the vertical "measure" number second, thus (3,7) refers to the seventh measure in the third line. This will differ from the pitch class cell designations which will use square brackets []. The score also contains a single treble clef, placed at the beginning of the work, which is assumed for every line of music. For this reason, all musical examples illustrated in the body of this paper lacking a clef designation will be read in treble clef.

When diagramming oboe fingerings, I have always found it cumbersome to continue to refer to some old-fashioned picture of the oboe with numbers representing every single key. This is a system from the turn of the century when there were several different fingering systems available. Since there is a fairly standardized fingering system now there is no need to show a picture of the oboe and assign numbers to each key. While this may be helpful for beginners, I will assume that no beginners will be attempting to play this piece. I learned to press the low B key, not "number 11". Moreover, since the only people reading this paper who will find oboe fingerings useful will be oboists, I will diagram my fingerings with the practical key names most familiar to modern oboists and not the traditionally used numbers.
Register designations will be indicated using the standard system whereby middle C is labeled "c\(^1\)" and each succeeding octave takes on a higher number. Thus the c above middle C is c\(^2\), the next octave is c\(^3\), etc. and all the pitches between the c's adopt the number of the lower c. For example, the g on the top of the treble clef will be called g\(^2\), and the pitch a whole step down from middle C will be b\(^b\).
Table of Contents

Acknowledgments ... iii
Preface .. iv
Abstract .. viii
Introduction ... 1

Chapter One: The Life, Works and Philosophies of Luciano Berio: The Path to
Sequenza VII ... 4
Biographical Sketch ... 4
"The New Virtuosity" and the Composition of *Sequenza VII* 11

Chapter Two: Analytical Discussion ... 19
The Score ... 19
The "b" .. 22
Pitch Structure ... 26
 Pitch Introductions .. 26
 Octave Specificity .. 30
Serialism ... 32
"An Infinite Proliferation" ... 34
"Harmonic Fields" .. 38
Pitch Cells ... 40
Polyphony .. 45
Tristan ... 49
Four Aspects of Tension .. 51
Form .. 55

Chapter Three: Performance Suggestions 60
Technique ... 60
 The *Study to Sequenza VII* .. 61
 The Continuous B .. 62
Fingering ... 64
 Multiple Fingerings ... 64
 Harmonics ... 67
 Multiphonics .. 68
 Overblowing .. 70
 Trills .. 70
Tonguing and Articulation ... 71
 Short Artication .. 71
 Double Tonguing .. 71
 Flutter Tonguing .. 72
The Reed ... 74
Abstract

Sequenza VII by Luciano Berio is regarded as one of the major twentieth-century pieces for the oboe. Its unique sounds and logic make it both fascinating and complex. Great demands are put on the performer, who must produce difficult, unconventional sounds. The listener is likewise challenged to accept this new language. An initial hearing can leave a listener excited though baffled, as a first look at the score can cause trepidation even in a fearless performer.

The purpose of this paper is to find some order to this compelling piece. This comprehensive study is undertaken from three different perspectives, each of these angles providing the topic for a separate chapter. Chapter One is a short biographical sketch of Luciano Berio, including discussion of works and philosophies leading to the composition of Sequenza VII. Also included is a section on the evolution of the entire Sequenza series. Chapter Two is an analytical discussion focusing on such aspects as the omnipresent b; the nature of pitch structure, including pitch introductions and octave specificity; serial considerations; an “infinite proliferation” in the generation of pitch and rhythmic material; “harmonic fields”; pitch cells; polyphony; similarities to the English horn solo from Act Three of Wagner’s Tristan und Isolde; the four aspects of tension; and the form of the work. Chapter Three explores the creation and execution of the “twentieth-century techniques” necessary for the performance of the work, as well as suggestions for interpretation based on the analysis in Chapter Two. The Appendix provides various alternate fingerings compiled from other sources.
Introduction

Sequenza VII is regarded as one of the major twentieth-century pieces for the oboe. Its unique sounds and logic make it both fascinating and complex. Great demands are put on the performer, who must produce difficult, unconventional sounds. The listener is likewise challenged to accept this new language. An initial hearing can leave a listener excited though baffled, as a first look at the score can cause trepidation even in a fearless performer. It is the intention of this paper to find some order to this compelling piece.

It is by design that the nature of this discussion remains focused on the aspects of Berio's life and compositional style that relate directly to *Sequenza VII*. This is a difficult work created by a serious and philosophical man. Many aspects of Berio's compositional style are not explored fully here, including, most notably, his pioneering work in the area of vocal technique, aided by Cathy Berberian. For those desiring more information, an excellent profile of Berio's life and work can be found in David Osmond-Smith's *Berio*.¹

A short biographical sketch is included in Chapter One to highlight the influences and forces that shaped the evolution of Luciano Berio as a composer and led to the development of the *Sequenza* series. An overview of that series follows, placing *Sequenza VII* as a work that grew out of Berio's rejection of strict serialism and electronic experimentation. It is also a piece very much alive, still growing, by evidence of the *Chemins* series. Along the

way a sampling of Berio’s ideas and beliefs extracted from interviews and
writings will shed some light on the man and his thoughts.

Chapter Two is an analytical discussion of the piece. A rather
individual approach has been adopted for this, reflecting the unconventional
nature of the composition. Various aspects are examined individually,
beginning with basic observations and then turning to the other specific
aspects that contribute to the underlying logic of the piece.

Chapter Three discusses the practicalities and problems of the actual
performance of the piece, including suggestions for the execution of the
various “twentieth-century” techniques. While this last chapter, as well as
Sequenza VII itself, could very easily serve simply as a catalogue of the
performance of so-called contemporary techniques, Chapter Two shows that
those devices were integral to the compositional process. Heinz Holliger, for
whom the piece was written, agrees, when he writes of this work (and other
similar pieces) that the “composer proposed to treat technical problems
together with compositional problems, and to show that the expansion of
instrumental technique is a result not of soloistic exhibitionism, but of logical
musical thought.” Chapter Two seeks to identify some of that logic.
Chapter Three ends with some considerations about interpretation based on
the analysis in Chapter Two.

When I first heard Sequenza VII performed in concert I was convinced
it was an important piece. However, I did not know why, and was unable to
discern immediately the “logical musical thought”. Research revealed a few
writings on the Sequenza series as a whole, but specific attention on Sequenza
VII seems to be limited to descriptions of the piece or explanations of the

2Heinz Holliger, ed., Pro Musica Nova: Studies for Playing Avant-garde Music (Wiesbaden:
Breitkopf & Härtel, 1972), appendix, 2.
"new" performance techniques without much analysis. There is not a single document that completely satisfied the curiosity I experienced upon exposure to this composition. Therefore the purpose of this paper is to provide a more comprehensive aid to the study and performance of this piece.
Chapter One
The Life, Works and Philosophies of Luciano Berio: The Path to Sequenza VII

Biographical Sketch

Luciano Berio was born October 24, 1925 in Oneglia, Italy, into a family of musicians. His early musical training in the care of his father and grandfather was very thorough, but limited to the classics of pre-twentieth century Western music. Of his “provincial childhood” he says:

... the cultural horizons of Oneglia were, and still are, limited to two things: oil and pasta. ... The radio, which broadcast mainly opera, was my only link with the outside world. We listened to it a lot, perhaps too much. ... As well as the radio, there was my father who insured that the house was full of opera through his numerous singing students. ... During those years at home in Oneglia there was, however, one oasis of absolute musical happiness: the chamber music that my father often performed at home, with excellent players almost all of whom traded in oil, soap and the like. ... All this music at home gave me the chance to become very familiar with the whole range of chamber music, with and without piano: Mozart, Beethoven, Schubert, Schumann, Mendelssohn, Brahms and even Dvořák.

... My earliest musical education took place at home and I am grateful to my father for this. ... music was the most important and formative feature of the family environment until I was seventeen or eighteen years old.

Berio grew up during a period when Italy was controlled by Mussolini and the Fascists. While he had no sympathy with Fascist beliefs, his father was completely loyal to the regime. The elder Berio (“may God forgive him”) even

1 Osmond-Smith, Berio, 2.
2 Ibid., 3.
4 Ibid., 43.
5 Ibid., 44.
dedicated a symphonic poem to Mussolini, whom he called the "descendant of Augustus".

In 1943, the young Luciano Berio was drafted by Mussolini’s Republic into Liguria’s newly formed army. He had wanted to join the Italian partisans in the mountains but, knowing the fate this might bring to his family, he enlisted in the army. On his first day in the unorganized army he was given a gun but not instructed how to use it. As he tried to fire the weapon, it exploded and badly injured his right hand.

After his recovery in 1945 he deserted from the army and finally joined the partisans to fight against the Germans. Many years later, Berio still resented having been victimized by the Fascist system:

"Of that crucial period let me simply say that among the many thoughts and emotions aroused in me by those encounters, one is still intact and alive within me today: anger—anger at the realization that Fascism had until that moment deprived me of knowledge of the most essential musical achievements of my own culture; further, that it was capable of actually falsifying spiritual reality."

In 1945, when his military days were over, he entered the Milan Conservatory where he intended to become a pianist. He turned to composition, however, when his hand injury made playing the piano too difficult. He studied composition with Ghedini and conducting with Giulini. In the Conservatory he was finally introduced to the music of his era: Milhaud, Hindemith, Schoenberg, Webern and especially the neo-classic style of Stravinsky.

While a student, he supplemented his income by working as an accompanist. One of the singers with whom he worked was an Armenian-

6 Ibid., 44.
7 Osmond-Smith, Berio, 2-3.
10 Osmond-Smith, Berio, 3-4.
American, Cathy Berberian (1929-1983), who was making a tape for a Fulbright application. Her amazing vocal talents included a brilliant technique and an extraordinary range. She became Berio’s wife in 1950. Their long association resulted in some spectacular precedent-setting compositions and Berio’s continuing fascination with the human voice. Their honeymoon brought him to the United States for the first time in 1950.

His second visit to the United States was in 1951, when he attended Luigi Dallapiccola’s class at the Berkshire Music Center on a Koussevitzky Foundation scholarship. Through Dallapiccola, he was introduced to serialism. Berio says,

In those years Dallapiccola was a point of reference that was not just musical, but also spiritual, moral and cultural in the broadest sense of the word. . . . As often happens to me with important encounters, I reacted to Dallapiccola with four works: Due Pezzi, for violin and piano, Cinque Variazioni, for piano. . . Chamber Music and Variazioni, for chamber orchestra. With these pieces I entered into Dallapiccola’s ‘melodic’ world, but they also allowed me to escape from it.

He explains the need to “escape”:

The so-called serial experience, as developed in the work of Webern, has been extremely important and has had an effect on every human being, but to formalize it and settle on it is something else. I feel that I can maintain control without submitting to the label of serialism, and control, of course, is the sine qua non of composition.

Berio’s exposure to serialism accompanied his acquaintance with the American musical community, which he readily embraced as a contrast to his “provincial backwaters”. The most important aspect of his trip to the United States was his

12Osmond-Smith, Berio, 5.
13Berio, Two Interviews, 53.
introduction to electronic music. In 1952 he attended the first public concert of electronic music in the U. S. at New York's Museum of Modern Art; the concert featured tape pieces by Otto Luening and Vladimir Ussachevsky. Berio remembers, "... it was an experience devoid of musical content, entirely innocuous, but I was left with a vivid impression of new sounds, and of what could be done with magnetic tape and scissors."

Back in Milan, in 1953, he set up a concert series, "Incontri Musicali" ("Musical Encounters"), for the performance of contemporary music, and also edited a journal of the same name from 1956-60. He began working for RAI, the Italian national television and radio company. His intention was to set up an electronic music studio in the Milan station of RAI. Finally, in 1955, with Bruno Maderna, he organized the Studio di Fonologia Musicali (The Studio of Musical Phonology). This studio was one of the most important centers of electronic music experimentation during the 1950's. Berio was its director from 1955-1961. Some examples of his electronic pieces from this period are Mutazioni (1955), Perspectives (1956), and Momento (1958).

Salzman observes that the works of the composers of the Studio di Fonologia Musicali originally grew out of serial techniques but quickly evolved into pure experimentation with sound. Berio clarifies this notion:

It is not without reason that electronic music developed through the serial experience, providing a further enlargement of the sound domain and by-passing the dichotomy between harmony and timbre. Dealing with series of quantitative proportions one

\[\text{\footnotesize{16}Osmond-Smith, Berio, 11.} \]
\[\text{\footnotesize{17}Berio, Two Interviews, 117.} \]
\[\text{\footnotesize{19}Annibaldi, New Grove Dictionary of American Music, 192.} \]
\[\text{\footnotesize{21}Eric Salzman, Twentieth Century Music: An Introduction, 2nd ed. (Englewood Cliffs, New Jersey: Prentice-Hall, 1974), 143.} \]
could discover new qualitative aspects; the series became a means of organizing perception, controlling pitches, blocks and constellations of sounds. Involved with that kind of dialectical relation between qualitative and quantitative aspects of musical structure I found it natural to become extremely interested in voice and language, which with its semantic and phonetic levels seems to summarise and illustrate the essence of musical processes. It also seemed natural to me to look at the past, to search for a creative continuity not only between the smallest and largest elements of a form, but also between the present and the past, between the present and a maybe Utopian future.²²

Salzman also notes that the serial composers who experimented with computer and tape music eventually returned to making live music, but with some electronic-inspired modifications. This new music became a mixture of live music with electronic technology. He further states that the human voice, live or pre-taped, became an essential feature of the most important electronic compositions of the 1950’s and 1960’s, and cites Stockhausen’s Gesang der Jünglinge and Berio’s Omaggio a Joyce as among the most significant works.²³

 Thema (Omaggio a Joyce) (1958) was a turning point for Berio, both in terms of vocal composition and electronic composition.²⁴ The basis for the work was a passage from James Joyce’s Ulysses, as read by Cathy Berberian. Berio grouped the words from the text according to their phonetic qualities and then recombined them via tape, which resulted in an “impossible vocalism”.²⁵ Berio’s motive was to transform spoken text into music: “Poetry has always looked at music nostalgically—as though at an unattainable possibility The aim of Thema (Omaggio a Joyce) was to create a genuine composition by making use of the material of words, so that we don’t know any more whether what we hear is

²³ Salzman, Twentieth Century Music, 143.
²⁴ Osmond-Smith, Berio, 14.
²⁵ Ibid., 62-63.
poetry or music.”26 According to Osmond-Smith, “By focusing upon the phonetic borderline that divides sense from sound, and upon relative comprehensibility as a structural component, Themà set the agenda for Berio’s handling of language within music over a long period to come.” 27 Salzman concludes that Berio’s work done at the Studio di Fonologia Musicali resulted in an attitude of improvisation which was later adapted in his return to live music, with an “intense faith” in drama and action as well as new uses for language.28

In 1960 Berio went back to Tanglewood to teach composition at the Berkshire Music Center. He spent the next ten years living mostly in the United States as a composition teacher, teaching at Mills College in Oakland, CA (1962-1963), Harvard University (1966-1967) and the Juilliard School (1965-1966 and 1967-1971). While at Juilliard he created the Juilliard Ensemble, which he conducted, for the purpose of performing contemporary music.29

These years spent in the United States were also fruitful for Berio as a composer. Annibaldi calls the 60’s Berio’s “American period”. Some of his important works from this time are “archetypal” compositions whose titles simply indicate a genre. Examples of these works are Opera (1969), Recital I (for Cathy) (1972), and probably his most famous piece, Sinfonia (1968). Also composed during this period were six of the solo pieces titled Sequenza.30

According to Poissenot, prior to 1962 Berio’s compositional style was influenced by the three major trends of contemporary music: serialism, electronic experimentation, and indeterminacy.31 Through his personal and musical

26Berio, Two Interviews, 143.
27Osmond-Smith, Berio, 63.
28Salzman, Twentieth Century Music, 180.
30Ibid., 192.
growth, however, as he gradually became dissatisfied with one process he moved on to another.

Serialism was not only too confining for him as an artist (see p. 6, above), but it also seemed to represent to him the repression of his youth:

I would go so far to say (as my anger comes back) that any attempt to codify musical reality into a kind of imitation grammar (I refer mainly to the efforts associated with the Twelve-Tone system) is a brand of fetishism which shares with Fascism and racism the tendency to reduce live processes to immobile, labeled objects, the tendency to deal with formalities rather than substance.32

Berio recalls that his disillusionment with electronic music was a result of his love of traditional instruments and the voice:

The experiences gained in electronic music during the ‘50’s were evidently of fundamental importance, but it quickly became apparent how futile and inane was, amongst many others, the notion that loudspeakers had to be used principally to produce ‘new sounds’ in the concert hall—whereas instruments and voices were there to produce ‘old sounds’.33

Despite Berio’s strong opinions about serialism and electronic music, he has adopted certain aspects of them in his search for musical truth.

The third process, indeterminacy, was used in pieces like Differences (1959) and Sequenza I (1958), where Berio used proportional notation to simulate approximate durations; despite the parameters that Berio established for pieces such as these, it is ultimately the choices the performer makes that determine the success of the piece. Indeterminacy lead to what Poissenot characterizes as an important compositional factor for Berio after 1962: “performer choice”.34

32Berio, “The Composer on his work”, 8.
33Berio, Two Interviews, 122.
34Poissenot, Dictionary of Contemporary Music, 78.
Watkins labels this concept of close collaboration between composer and performer "The New Virtuosity".35

"The New Virtuosity" and the Composition of Sequenza VII

A piece such as Sequenza VII could not be written without the direct participation of a virtuoso who could execute the difficult demands and even suggest further developments. The need for close composer-performer relationships in the creation of woodwind pieces is described and practically solicited by Bruno Bartolozzi in his famous book New Sounds for Woodwind:

The evolution of instrumental music has always been brought about by reciprocal collaboration between composers and performers, so the statement that composers should avoid working in a vacuum is neither new or unusual. It has always been an essential condition for every real evolution of instrumental music. That composers and performers have sometimes in the past been one and the same person does not alter the problem in the least. Indeed, it would be more to the point if we asked ourselves just how much certain limitations in the development of woodwind technique do not depend directly on the fact that no composer-performer has ever done for woodwind what Paganini, Liszt, and Busoni did for their own instruments. The fact remains that true instrumental conquests have never been the fruit of abstract conceptions, but of toilsome direct experience.36

The most obvious performer for Berio to work with was Cathy Berberian, who was "willing and able to sing his most excruciating soprano parts."37 Of three important works he composed for her, Thema, Circles (1960) and Visage (1961), Berio says,

All of these pieces are linked to Cathy Berberian's voice, which was almost a second "studio di fonologia" for me... I have

always been very sensitive, perhaps overly so, to the excess of connotations that the voice carries, whatever it is doing. From the grossest of noises to the most delicate of singing, the voice always means something, always refers beyond itself and creates a huge range of associations: cultural, musical, emotive, physiological, or drawn from everyday life. ...the voice of a great 'classical' singer is a bit like a stringed instrument which, as soon as you have finished playing, you put away in a case. It has nothing to do with the voice that the great singer uses to communicate in everyday life.38

Even after their divorce in 196439 their fruitful collaboration continued. Sequenza III (1966), for example, is a tour-de-force of Berberian's techniques employing such "everyday" vocal effects as coughing, laughing etc.

By the 1960's Berio had already written works in the orchestral and electronic media. At that time, it was increasingly difficult to have a full orchestra agree to and then rehearse a large orchestral work.40 Returning to traditional instruments and collaborating with willing virtuosos he began writing solo pieces each for a specific artist. A benefit of the "New Virtuoso" trend was that it ensured the performances and hearings of his music, as it was much easier for an individual performer to program a solo work on a recital. The resulting group of solo pieces gave birth to the Sequenza series. Watkins considers these works "classics of their kind."41

The series began with Sequenza for flute in 1958. This was written for Severino Gazzelloni, whom Berio met during his sessions at Darmstadt (1954-59).42 Sequenza II came about almost accidentally. Commissioned to write a harp concerto in 1962 for Francis Pierre, Berio first wrote a practice piece for solo harp,

38Berio, Two Interviews, 94.
40Osmond-Smith, Berio, 30.
41Watkins, Soundings, 630.
42Berio, Two Interviews, 90.
and upon realizing its similarities with the *Sequenza* for flute decided to call it *Sequenza II*. 43

This has been an enduring series for Berio, spanning over thirty years.

There are eleven Sequenzas published to date. They are:

Sequenza for flute (1958) dedicated to Severino Gazzelloni

Sequenza II for harp (1963) dedicated to Francis Pierre

Sequenza III for female voice (1966) dedicated to Cathy Berberian

Sequenza IV for piano (1966) commissioned by “Mr. May”

Sequenza V for trombone (1966) commissioned by Stuart Dempster

Sequenza VI for viola (1967) dedicated to Walter Trampler

Sequenza VII for oboe (1969) dedicated to Heinz Holliger

Sequenza VIII for violin (1977) dedicated to Carlo Chiarappa

Sequenza IX for clarinet (1980) dedicated to Michel Arrignon

(transcribed for saxophone as *Sequenza IXb* (1981) and dedicated to Iwan Roth and John Harle)

Sequenza X for trumpet (1984) dedicated to Thomas Stevens

Sequenza XI for guitar (1988) dedicated to Elliot Fisk. 44

Berio explains the kind of virtuoso performer he has in mind in composing the *Sequenzas* when he says:

In the *Sequenzas* as a whole there are various unifying elements, some planned, others not. The most obvious and external one is virtuosity. . . . Virtuosity often arises out of a conflict, a tension between the musical idea and the instrument, between concept and musical substance. The most obvious and elementary example in painting occurs when an artist uses oil paints and brushes to produce a painting that looks like a photograph. In music things are more complicated because there’s the familiar problem of performance and re-interpretation. . . . Another instance where tension arises is when the novelty and the complexity of

43 Osmond-Smith, *Berio*, 42.

44 Ibid., 123.
musical thought - with its equally complex and diverse expressive dimensions - imposes changes in the relationship with the instrument, often necessitating a novel technical solution (as in Bach’s Violin Partitas, Beethoven’s last piano works, Debussy, Stravinsky, Boulez, Stockhausen, etc.) where the interpreter is required to perform at an extremely high level of technical and intellectual virtuosity. Finally, as I’ve often emphasized, anyone worth calling a virtuoso these days has to be a musician capable of moving within a broad historical perspective and of resolving the tension between the creativity of yesterday and today. My own Sequenzas are always written with this sort of interpreter in mind, whose virtuosity is, above all, a virtuosity of knowledge.\footnote{Berio, \textit{Two Interviews}, 90-91.}

\textit{Sequenza VII} for oboe solo has, in its dedicatee Heinz Holliger, a formidable virtuoso. In a review of his recording \textit{The Spectacular Heinz Holliger}, (which includes a performance of \textit{Sequenza VII}), Robert P. Morgan says, “Holliger has mastered his instrument, in both traditional and contemporary terms, in a consummate manner, and he is gifted with an unusual degree of musical sensitivity and understanding.”\footnote{Robert P. Morgan, “Heinz Holliger - Spectacular Indeed”, \textit{High Fidelity}, 24/5 (April 1974), 98.} Berio agrees that Holliger defines his concept of the virtuoso:

\begin{quote}
Today the modern soloist—like every modern researcher in every field—both needs and is able to have an extremely broad angle of vision over historical time. He can interpret the experiences of the past as well as those of the immediate present. In contrast to the virtuoso, he can master extensive historical perspectives, since he uses his instrument not only as a means of pleasure, but of insight (of intellectual analysis). So he is in a position to collaborate in the music and contribute to it, instead of ‘serving it’ with false humility. By this I simply mean to say that my piece \textit{Sequenza VII} was written with this kind of interpreter—Heinz Holliger—in mind.\footnote{Luciano Berio quoted on record jacket of \textit{The Spectacular Heinz Holliger}, Philips 6500 202, 1971.}
\end{quote}

Berio’s deep respect for the traditions and techniques of orchestral instruments is an important consideration for the \textit{Sequenza} series. Placing his ideas of instrumental development in perspective, he says:

\begin{quote}
\end{quote}
Another unifying element in the *Sequenzas* is my own awareness that musical instruments can't really be changed, destroyed or invented. . . . It would be, to say the least, naive to suggest that Beethoven, in his last piano works, effectively *invented* the modern piano without taking into account the place that these deeply impressive pieces had in a world where music, in search of bigger spaces and audiences, was in any case becoming louder and more 'noisy'. It was only when *everybody* wanted a more resonant piano, that the manufacturers replaced the wood inside the instrument with steel. . . . I think it's very important to understand—which is why I'm insistent about it—that a musical instrument is in itself a piece of musical language. To try and invent a new one would be as futile and pathetic as trying to invent a new grammatical rule for our language. . . . I am very much attracted by this slow and dignified transformation of instruments and techniques across the centuries. This is perhaps why, in all of my *Sequenzas*, I have never tried to alter the nature of the instrument, nor use it 'against' its own nature. In fact, I have never been able to insert screws and rubbers between the strings of a piano, nor even to attach a contact microphone to a violin, although I am totally committed to extending instrumental performance by using new digital techniques. At IRCAM over the past few years, some musicians have been trying to change and 'improve' the flute: they have moved the holes and given it different keys, and indeed, once it has been manipulated in this way, the flute is able to produce chords and some very unusual effects. But the wretches have had to forget about Bach, Mozart, Debussy and even my *Sequenza*. They couldn't even play a scale of C major in tune anymore.\(^48\)

A preliminary draft of *Sequenza VII* is Berio's *Study to Sequenza VII*. This piece appears in *Pro Musica Nova: Studies for Playing Avant-garde Music*, of which Heinz Holliger is the editor.\(^49\) In the appendix of this volume, Holliger writes, "This is the first version of *Sequenza VII*. Since the piece is based on almost the same compositional material as the final version, but presents it in a much simpler manner, it becomes an ideal preparatory study to one of the most important works in contemporary oboe literature."\(^50\) Holliger was generous to

\(^48\)Berio, *Two Interviews*, 91-92.
\(^50\)Ibid.
publish this work, as it was probably an original score given to him for his own use.

Growing out of the *Sequenza* series is another group of pieces with the title *Chemins* ("paths"). The first *Chemins* was the result of *Sequenza II* for harp. While working on the solo piece, Berio realized that it could serve as the basis for an accompanied piece, whose orchestral parts were generated by the solo material of the harp. The title *Chemins* was to refer to those developing orchestral lines which follow specific paths. This series includes:

- **Chemins I** (1964) for harp and orchestra based on *Sequenza II*
- **Chemins II** (1967) for viola and nine instrumentalists based on *Sequenza VI*
- **Chemins III** (1968) (revised in 1973) for viola and orchestra based on *Chemins II*
- **Chemins IIb** (1970) for large ensemble based on *Chemins II*
- **Chemins IIc** (1971) for bass clarinet and large ensemble based on *Chemins IIb*
- **Chemins IV** (1975) for oboe and eleven strings based on *Sequenza VII*
- **Chemins V** (1980) for clarinet and digital system. This piece was later withdrawn by the composer and was transformed into *Sequenza IX* for clarinet.51

As this list demonstrates, the chains of relationships between these works seem to be never-ending. Poisset believes Berio has found a unique procedure: "Since 1962 Berio's thinking has been more eclectic and more personal. One is now aware of a large 'work in progress' of the reuse and further development from one piece to another of schemes, concepts, sound patterns and the like. This

51 Osmond-Smith, *Berio*, 123.
process can be likened to human memory in its ability to enlarge on an immediate fact of life."52

Berio justifies his fondness for re-examining musical materials in his works:

In the course of realizing a global project and defining its details... it may happen that the discovery and proliferation of unforeseen elements becomes so important that it effectively alters the project. When this happens I follow the opposite path: from details that I had worked out and put together I move on to a different project. Like a good Ligurian, I never throw anything away.

It's a bit like deciding to go on a journey, say to China... If the journey hasn't been arranged beforehand in Peking by a group of bureaucrats, and I'm free to go there as I please, then the journey can become a source of interesting discoveries. On the way I can decide to stay in one place longer than I had envisaged and I might even plan to return there by a completely different route. And then, absurd as it may sound, I'll walk home from China or at most cycle back. I don't want to miss the details of the countryside and the cities that I'd flown over on the way out. I don't like stochastic journeys which pay attention only to the general form, the wrapping, but not to the concrete relations that may responsibly be realized within it.53

This technique of using previously composed material—both his own and that of others—is one that Berio favors. The most obvious example is his \textit{Sinfonia}, which uses an entire movement from Mahler's Symphony No. 2 as a foundation for applying other voices and textures. Remarking on \textit{Chemins I} and this idea of re-use Berio says, "A thing done is never finished. The 'completed' work is the ritual and the commentary of another work which preceded it, of another work which will follow it. The question does not provoke a response but rather a commentary and new questions..."54

52Poissenot, \textit{Dictionary of Contemporary Music}, 78.
53Berio, \textit{Two Interviews}, 89-90.
This examination of Luciano Berio's life, evolution and thinking enables us to put *Sequenza VII* in perspective. Composed in 1969, it falls in the period after Berio moved away from each of the three contemporary trends in composition and was discovering new sounds and playing techniques. As will be seen in the next chapter, however, "trace" elements of serialism and indeterminacy still exist in this work.
Chapter Two
Analytical Discussion

An analysis of *Sequenza VII* will be a difficult task as this is a unique composition that must be considered on its own terms. The approach adopted in the following analytical discussion is to explore specific aspects of the piece, beginning with the most basic observations regarding the score, and continuing with the other issues involved in the underlying logic of the piece. The various elements to be considered are: the omnipresent b; the nature of pitch structure, including pitch introductions and octave specificity; Berio’s individual use of serialism; the application of an “infinite proliferation” in the generation of material; the definition and use of “harmonic fields”; the recurrence of specific pitch cells; the idea of polyphony expressed by a monophonic instrument; the relationship of *Sequenza VII* to the English horn solo in Wagner’s *Tristan und Isolde*; the four aspects of tension which in varying degrees sustain the interest of the piece; and finally a discussion of the form. In the end, it becomes the combination of all the individually explored elements that defines the whole.

The Score

The score of the *Sequenza VII* is a grid consisting of 13 staves each identically divided into 13 segments. These segments are indicated by vertical, parallel, dotted lines that intersect all the staves. There is no explanation from Berio as to why such a grid was chosen, though some have tried to attach some symbolic reason for the choice: “The division . . . of the score into 13 lines with 13 segments, which can be linked to the 13 letters of Holliger’s name, was not something the composer did intentionally (he was in fact amused by the
coincidence . . .)."1 Above each vertical line (also below staff 6 and at the bottom of each line) there is a circle containing a specific timing representing the duration of each segment.

No meter is indicated. The notes in each measure are to be executed within the time-span indicated by the circled numbers. These timings gradually decrease in value through the course of each staff: 3", 2.7", 2", 2", 2", 1.8", 1.5", 1.3", 1.3", 1", 1", 1". This organization, suggesting a general time contraction within each line, is not something readily perceptible to the ear. The effect is particularly difficult to perceive since Berio has placed fermatas of specified lengths at the ends of various phrases within the lines.

Berio uses three types of rhythmic notation in Sequenza VII. First, there are rhythms which are traditionally notated, as seen in (2,3), (3,1) et al. Second, there are various groupings of notes that resemble traditional grace notes; these employ many combinations, from one grace note (1,2) to sixteen (3,7). Third, there are freely notated pitches that consist of spatially placed, stemless note heads (3,2), (7,7).

From the evidence of the traditional notation used, it is clear that Berio intends a pulse of $J = 60$ throughout the piece. For example, in (2,3), the first instance of traditional notation, each beamed group equals a subdivided quarter note. Since Berio calls for that measure to be played in two seconds, each of the note groups then is to be played in one second, making the pulse $J = 60$. A closer examination shows that other measures that are to be played in one, two or three seconds also comply with this procedure (see (3,1), (3,13), (6,4), (9,1) etc.). This is further confirmed by examining Chemins IV (1975), the accompanied version of Sequenza VII, for oboe and eleven strings. The oboe part in the accompanied

1Philippe Albèra, "Introduction aux neuf sequenzas", Contrechamps, vol. 1 (1983), 109. Passages cited from this article have been translated by Jennifer Williams Brown.
version remains completely intact from the Sequenza, the only difference being the transcription of the second and third notation types into traditional meter and rhythm. In the Chemins score, Berio indicates $P = 110-120$, confirming that which can be deduced from the Sequenza VII score, with the composer allowing a small latitude in tempo.

If $J = 60$, then the $3''$, $2''$ and $1''$ measures will be equal to the meter signatures $3/4$, $2/4$ and $1/4$ (or $2/8$, as Berio uses in Chemins IV). The $1.5''$ indication converts to a $3/8$ meter. Again referring to Chemins IV, $2.7''$ is represented by a $5/8$ bar, the $1.8''$ measure becomes a $7/16$ meter, and a $1.3''$ measure turns into a $5/16$ meter. These conversions are mathematically inexact, but they do maintain the approximate proportions.

Since specific pitches and relative timings are indicated for each measure, the free notation (or the performance of the piece) cannot be called improvisatory, but it does suggest the effect of improvisation. Cope justifies Berio’s notational liberties, claiming,

Improvisation is not irresponsibility; in fact, it may produce a result more faithfully representative of the composer’s intentions than that of standard symbols.²

It is . . . plausible that contemporary improvisation sprang from the performer’s inability to realize accurately the complexities of recent music; the composer, perhaps out of frustration, perhaps because the result was the same (or better), chose to allow a certain freedom in the performance of his work. Luciano Berio, for example, in his Tempi Concertati, requires the percussionist to hit everything as fast as possible; exact notation would be impractical or even impossible. The effect is predictable and effective even without a note or rhythm being written.³

The “predictable and effective” result of the notation in Sequenza VII is a degree of flexibility regarding rhythm. This compositional effect would be a remnant of Berio’s experimentation with the mid-century trend of indeterminacy.

³Ibid., 71.
The score also reveals that Berio requires a variety of non-traditional methods of producing different sounds on the oboe. The list of effects commonly called "twentieth-century techniques" includes alternate fingerings for various notes, harmonics, multiphonics, double trills (the alternation, during the execution of a trill, of two possible fingerings for a particular note), trills with microintervals, flutter-tonguing and an effect called over-blowing which involves alternate fingerings and increased air pressure. Berio does not assist the performer with printed instructions for these effects in the score. Instead, the published score includes a page by Heinz Holliger that gives suggested fingerings for the desired effects, evidence of the close collaboration between composer and performer in the writing of the piece. The execution of these effects will be further discussed in Chapter Three.

Technically speaking, Sequenza VII is not strictly a "solo" for oboe: Berio writes a b₁ to be played continuously underneath the oboe line. In the score, he specifies, "The sound-source should preferably not be visible; this can be an oscillator, a clarinet, a pre-taped oboe, or something else. The intensity should be kept to a minimum, with quite small variations. The b should give the impression of lending a slight resonance to the solo oboe."⁴ Additional discussion of this outside sound-source will likewise take place in Chapter Three.

The "b"

Probably the most obvious and persistent characteristic of Sequenza VII is the constant sounding of the note b₁--both through the off-stage source specified by Berio and in the continual return to that pitch in the oboe part. Albèra, in trying to find a possible reason for a single pitch as the focus of the piece, says,

On a purely symbolic level, one can associate this held note with the function the oboe has in the orchestra as the instrument that provides the pitch for tuning (it is the oboe that gives the A). But the idea of the B seems also to be an act of homage to the work's dedicatee, Heinz Holliger, whose initials correspond to B in German nomenclature.5

Albèra might be reaching too far for symbolism here. There is no evidence from Berio on either of those two points. If Berio had wanted to make the reference to the oboe as tuner of the orchestra, he should have based the piece on a1 rather than b1. The fact that the b1 could refer to Holliger by means of the German note labeling seems more plausible. Stoianova also seems to accept the dedicatory idea of the b when she talks about the new techniques used in the piece:

\ldots all these new procedures proposed to Berio by H. Holliger, to whom the piece is dedicated \ldots constitute a modern encyclopedia of oboe virtuosity; one signed by Berio, but also by H. Holliger through the musical dedication that became the foundation of the piece.6

Conceivably, the b1 could just as well symbolize a signature by Berio himself. Regardless of any symbolic or dedicatory reasons, the fact remains that b1 is omnipresent. The first 23 or so seconds of the piece sound only that note. Berio asks for five alternate fingerings which he numbers from 1, being the closest in timbre to the "regular" b1, to 5, being the furthest.7 In total there are 6 distinct b1's in the piece if one counts the traditional fingering, which appears in the score with no number. Roxburgh believes this idea grows out of a new exploitation of the harmonic series and a search for different timbres for the same note. When using an alternate fingerling for a note, a new combination of harmonics is generated from that altered-timbre fundamental. This increases the

\footnotesize
6 Ivanka Stoianova, "Luciano Berio: Chemins en musique", La Revue Musicale 375-376-377 (1985), 439. Passages cited from this article have been translated by Jennifer Williams Brown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
"monophonic possibilities" of the instrument by adding to the spectra of colors, sounds, and dynamics. The note b1 allows for the largest variety of new, alternate, fundamental fingerings on the oboe.8 The standard fingering for b1 on the oboe is simply the left index finger depressing the top key. This leaves the entire length of the instrument available for the addition of keys for changing the timbre. This, as well as the reasons mentioned above, could be a practical, musical explanation for the choice of b1 as the focal point of the work.

Bartolozzi mentions this phenomenon relating to the harmonic series in New Sounds for Woodwind. He says sound production for all of the woodwind instruments is achieved through a "mixed system":

This 'mixed' system comprises a range of fundamental tones in the lower register of instruments and their various harmonics from which higher notes are derived. The upper registers of woodwind instruments are completed by using partial tones from the harmonic series whose wavelengths are integral fractions of those of the various fundamentals (1/2, 1/3, 1/4, 1/5, and 1/6). These partial tones are harmonics at the octave, twelfth, double octave, seventeenth, and nineteenth respectively, and are used in this order to form the upper registers—an order which is pre-established and never altered. Such a procedure, though excellent as regards satisfying the traditional demand for single sounds of homogeneous timbre, is indeed something of an obstacle when we wish to obtain those other effects which these instruments can really produce.

In fact, the use of a single pre-established order of harmonics in the 'mixed' system of sound production has led to the establishment of a single system of fingerings caused by the selection—from a large number of alternative fingerings—of only those which are most suitable to ensure good intonation and the maximum of timbric unity throughout the range of each instrument. Admittedly, a limited number of alternative fingerings have been established with a view to facilitating certain passages or (in the upper register) the emission of difficult notes, but the general intention has been one of standardization and the elimination of alternatives. Similarly, the embouchure and blowing

techniques have also been standardized so as to ensure timbric uniformity, resulting in an unvaried, standard type of performing technique.

These are the causes which have made traditional techniques become a closed system, a system which deliberately excludes any possibility which does not contribute to its own objectives, and thereby eliminates from the outset so many other latent possibilities which we are only now discovering. This situation has been quite satisfactory as long as musical requirements were limited to the purity and 'beauty' of sound obtained through uniformity of timbre. But such ideals have become more and more inadequate to the needs of contemporary music. For while it is legitimate to disregard that maltreatment of instruments which occurs in some kinds of 'artistic' manifestations, it is nevertheless true that contemporary music requires means of expression which can no longer be exclusively provided by 'beauty' of sound or 'tunefulness'. In fact, as there are no longer 'false' notes now that the electronic sound spect[r]ograph has allowed the frequency of any sound to be determined, so there are no longer sounds which are 'ugly', 'unpleasant', 'hard', etc. Rather are there only sound phenomena which are useful in proportion to how much they lend themselves to organized musical usage.9

It is this rediscovery of previously discarded fingering possibilities and the search for sounds lending themselves to Berio’s "organized musical usage" that seem to underlie the emphasis on b1. Bartolozzi claims that through these new, alternate, fundamental note fingerings with their resultant range of tone qualities, a much larger spectrum of possibilities exists than is even possible on stringed instruments. He states, as proof, that on b1 alone there are ninety-eight possible fingerings on the oboe.10 He does not illustrate this many possibilities and it is difficult to believe that the listener can perceive ninety-eight different timbres. Some differences, which may register on sophisticated machinery, are undoubtedly imperceptible to the ear.

Bartolozzi's own Conzertazioni for oboe and eleven other instruments, published in 1965,11 may have been the inspiration for the exploitation of timbres

9 Bartolozzi, New Sounds for Woodwind, 4-5.
10 Ibid., 13.
11 Ibid., 69.
in *Sequenza VII*. His work, written four years prior to Berio's, employed the same effect of alternating timbres, even on the identical pitch, b\(^1\), as Berio did in 1969.

Perhaps in *Sequenza VII*, Berio was experimenting with Schoenberg's prophetic concept of a "melody of tone colors" (*Klangfarbenmelodie*). The evolution of this idea is explained by Schoenberg in his *Theory of Harmony*:

> The distinction between tone color and pitch, as it is usually expressed, I cannot accept without reservations. I think the tone becomes perceptible by virtue of tone color, of which one dimension is pitch. Tone color is, thus, the main topic, pitch a subdivision. Pitch is nothing else but tone color measured in one direction. Now, if it is possible to create patterns out of tone colors that are differentiated according to pitch, patterns we call 'melodies', progressions, whose coherence (*Zusammenhang*) evokes an effect analogous to thought processes, then it must also be possible to make such progressions out of the tone colors of the other dimension, out of that which we call simply 'tone color', progressions whose relations with one another work with a kind of logic entirely equivalent to that logic which satisfies us in the melody of pitches. That has the appearance of a futuristic fantasy and is probably just that. But it is one which, I firmly believe, will be realized. . . .

Tone-color melodies! How acute the senses that would be able to perceive them! How high the development of spirit that could find pleasure in such subtle things!!

Pitch Structure

Pitch Introductions

Berio says, "*Sequenza VII* involves the particular task of articulating each note of the series of 12 . . ."\(^{13}\) There certainly is a process to the succession and method of pitch introductions in this piece. Figure 2.1 illustrates the order and register of first appearances of each of the 12 discrete pitch classes (pc's).

\(^{13}\)Berio quoted in Stoianova, "Chemins en musique", 437.
Figure 2.1 Succession of pitch introductions

The specific method to this task of introducing the 12 pc's in *Sequenza VII* involves the subtle introduction into the texture, i.e. as a staccato note, a grace note or in some other "furtive" manner, of a previously unsounded pitch. Once the pitch has been sounded then it is used regularly and/or prominently as part of the texture. Table 1 maps out the first introduction of each pc, and describes how the pitch is first presented.

Table: Pitch Class Introductions

<table>
<thead>
<tr>
<th>Pitch Class</th>
<th>First Appearance</th>
<th>Type of note at appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>(1,1)</td>
<td>staccato note</td>
</tr>
<tr>
<td>c</td>
<td>(2,1)</td>
<td>staccato note</td>
</tr>
<tr>
<td>b²</td>
<td>(2,1)</td>
<td>staccato note</td>
</tr>
<tr>
<td>a</td>
<td>(2,5)</td>
<td>in a grace note group</td>
</tr>
<tr>
<td>d</td>
<td>(2,5)</td>
<td>in a grace note group</td>
</tr>
<tr>
<td>f♯</td>
<td>(3,7)</td>
<td>in a grace note group</td>
</tr>
<tr>
<td>c♯</td>
<td>(3,8)</td>
<td>in overblown trill</td>
</tr>
<tr>
<td>g♯</td>
<td>(4,1)</td>
<td>in a grace note group</td>
</tr>
<tr>
<td>e</td>
<td>(4,8)</td>
<td>staccato note</td>
</tr>
<tr>
<td>f</td>
<td>(4,8)</td>
<td>in an unmeasured group</td>
</tr>
<tr>
<td>e²</td>
<td>(5,5)</td>
<td>16th note</td>
</tr>
<tr>
<td>g</td>
<td>(9,5)</td>
<td>staccato note</td>
</tr>
</tbody>
</table>
Some interesting patterns emerge from this table. The b^1 of course is the only note sounded at the beginning. It is introduced by two staccato "bursts" and then, once introduced, is the single note played throughout the first line. The next two pitches, c^3 and b^b, as a symmetrical pair—one 13 semitones up from the b^1 and the other 13 semitones down—are both introduced in the same "measure" (2,1) as part of the same grace-note group. The following pair of notes, a^2 and d^1, likewise introduced together (2,5), in effect close that large two-octave gap in a nearly equal way: 10 semitones above the b^1 and 9 semitones below the b^1. This a^2 and d^1 together form interval class (ic) 5: in this instance a twelfth. The five notes mentioned thus far are the only pitches in use for the first two and a half lines.

The next three notes are introduced in close proximity—in (3,7), (3,8) and (4,1) and likewise form two ic5 relations, $f^#$ to d^b ($c^#$) to $g^#$. The next pair, e^1 and f^2, appear together (4,8) and continue the imprecise symmetry as e^1 is seven semitones below the b^1, another ic5, and f^2 is six semitones above the b^1.

Additionally, and perhaps more significantly, the two notes visually "frame" the middle-line b^1, with f^2 on the top line of the staff and e^1 on the bottom line. E^{b1}, the next pc introduced, forms with the e^1 and f^2 a three-note unit or "cell" of the type [0, 1, 2]; this type of grouping, or cell, will be explored later. The [0,1,2] interval group first appears as the initial three pitches of the piece: b, c, b^b. Figure 2.2 shows the above-mentioned relationships.

14 The analysis assumes enharmonic equivalence.
By the fifth line, 11 of the 12 pc's have been introduced. The final and climactic note, g^3, is withheld until Line 9. Shultz calls this procedure of pitch introduction an "additive technique" and observes that this is a common method for Berio. This process consists of the gradual addition and use of a vocabulary of pitches during the course of a work.\(^{15}\) When g^3, the last of the twelve chromatic pitches, has been introduced, the climax of the piece occurs: not only is it the last of the twelve pitch classes to appear, but it is also the highest note in the practical range of the oboe.\(^{16}\)

An important feature of the arrangement of pitches, as shown in Figure 2.3, is the division of pitches into registral regions: a lower region of four notes is countered by an upper region with seven notes. Both regions are separated from the stable b^1 by at least six semitones.\(^{17}\)

\(^{16}\)Albèra, "Introduction aux neuf sequenzas", 110.

\(^{17}\)Ibid., 110.
Octave Specificity

Each of the 12 pc's has a strong registral identity. Berio says, in referring to *Sequenza VII*, "I have sought out a particular hierarchy of registers, that is to say a premeditated game [built] on the proposition of 12 notes that have their own definite places18 . . . All the sounds have their own defined 'spot': Certain ones are entirely fixed, that is to say tied to a single octave, others distribute themselves over a distance, within a wide ambitus, covering several octaves."19

Figure 2.4 charts out the 12 pc's and their primary registral assignments indicated with an open notehead and secondary use of the other registers indicated with a black notehead.

18Berio quoted in Stoianova, "Chemins en musique", 435.
19Ibid., 437.
pitch used prominently in the two registers indicated. The other pitches are used in two or three different registers, but it can be said that each pitch has a primary “home” in a specific octave. For instance, c3, a2, and d1 are proportionally more prevalent notes. This, coupled with the fact that the instances of a “foreign” octave generally occur in relatively hidden or fast-moving passages, supports the idea of an octave specificity that runs throughout the piece.

Stoianova says that the appearance of pitches in an octave other than the “home” register happens only in the most virtuosic part, i.e. towards the end, of the piece.20 Except for c2, which appears in Line 3, the various secondary octave realizations of the other pitches do not enter until Line 7, starting with d\#2 in (7,5) and continuing with other pitches through the end of the piece. The delay of alternate register use allows for the octave specificity to be well established before it is treated more flexibly. This later use of pitches in foreign registers causes a filling-in of the gaps apparent in Figure 2.1.

Albèra believes the alternate-octave pitches “exist in this piece for their tessitura, not in the absolute.”21 Pitches said to be “in the absolute” would be the ones as seen in Figure 2.1. Their function is to be the “official representatives” of their pc, manifested in the particular register throughout the piece. For instance, two pitches, d2 and a1, in the alternate octaves, are not introduced until (8, 9) and (11,10) respectively. These two pc’s are used in the alternate registers intermittently from those first appearances until (13,3). Compared to the prominent use of the a2 and d1, including the prolonged emphases on d1 from (5,6) through (5,11) and on a2 from (8,3) to (8,6), the appearance of these pc’s in the other octaves seems to have a secondary function, i.e. one not of primary emphasis or focus, but one of creating density. The a2 and d1, considered “in the

20Ibid.
21Albèra, “Introduction aux neuf sequenzas”, 111.
absolute", are distant from the b1 and spaced fairly equally (see p. 28, above). The a1 and d2, being, respectively, 2 semitones below and 3 semitones above the b1, are finally in close proximity to b1 and seem to serve the function, through their appearance mostly in areas of rapid passage work, of at last filling up the chromatic spectrum. Schultz also believes that the increased use of octave transpositions in the latter half of the piece is an important extension of the "additive approach", i.e. the gradual addition and use of pitches.22

Serialism

This piece cannot be considered a serial composition in the classical sense. As noted in Chapter One, Berio studied serialism and then rejected its strict rules. He nevertheless appears to create original methods of musical expression using the twelve tones in an individual way. Osmond-Smith describes a particular type of serial use in Berio’s piece Cinque Variations (1952-3):

\ldots Although much of the material is free from specific serial ordering, it constantly reflects the lessons of the serial experience. For instance, Berio is alert to ways of using up the chromatic gamut. \ldots [Chromatic ascents] confirm a tendency to focus the listener’s ear by working only with a limited choice of pitch materials at any one time that has remained with him ever since. But they also suggest an ambivalence towards highly restrictive ‘pre-compositional’ systems which was to be only temporarily eclipsed by his encounters with Darmstadt radicalism.23

This applies equally well to Sequenza VII. In a very basic plan to the piece, Berio systematically introduces each of the 12 chromatic notes. He “uses up” the chromatic gamut in an original manner. His use of octave-specific pitches seems to parallel a procedure used by Elliott Carter’s in, among other works, String Quartet No. 3 (1973). Carter employs a “registrally fixed twelve-tone set” which

22Schultz, “Sequenze I-VII by Luciano Berio”, 215.
23Osmond-Smith, Berio, 9.
has the effect of “freezing the twelve pitch-classes in certain registers”.24 This allows a unique underlying foundation of ordered pitches in specific octaves, to create a twelve-tone technique based not on order but on register.

Stoianova describes Berio’s use of the twelve tones another way:

The melismatic elaboration of the solo part, that is to say the melodic proliferation at the level of the piece’s microstructure, is defined in Sequenza VII by organizational operations that are almost serial in inspiration.25

The 12 sounds of the chosen sequence do not behave like the notes of a 12-tone series. They only define the horizontal trajectory, that is to say the order of appearance of the sounds in the progressive filling-up of space-time.26

After its ornamental elaboration, each pitch in the series of 12 becomes a relatively stable element of a sound texture that becomes more and more dense.27

This horizontal trajectory shows Berio employing a specific compositional use of the twelve tones. He himself reveals the pre-compositional plan at work in the piece: “Once the last of these 12 notes (“G”) has appeared, the piece is almost over. . . .”28 This particular type of twelve-tone use does not fall into the standard definitions of serialism, but nonetheless can be said to be a specific and personal way of organizing the 12 pc’s.

A further remnant of serial organization can be found in the layout of the score. The time scheme that is repeated in each line, while not discernible, provides a structure probably inherited from Berio’s study of serialism.

24 Andrew W. Mead, “Pitch Structure in Elliott Carter’s String Quartet No. 3”, Perspectives of New Music 22/1 (Fall-Winter 1983), 35.
26 ibid.
27 ibid., 437.
"An Infinite Proliferation"

Stoianova says that *Sequenza VII* develops by means of an "infinite proliferation that generates articulated sounds that are static and open".\(^{29}\) Using that idea, it will be shown that pitches as well as gestures used throughout the piece evolve from the initial b\(^1\).

Concerning the pitch b\(^1\), Berio says, "The permanent presence of B as a stable point of reference makes the tiniest timbral changes perceptible, like those produced by the five different fingerings for the sound B that affect the color and even the pitch of the sound."\(^{30}\) By having this stable reference, Berio can then achieve two results. The first, mentioned above, relating to the sound dimension, is the idea of added resonance. The variety of b\(^1\)'s (as each is compared to the "universal b\(^1\)", the unseen sound-source) creates a separate level of interest and tension. Secondly, other pitches can be developed as derivatives of the b in a variety of manifestations, even if at first they do not appear to be such.

Two gestures appearing throughout the piece have such a derivation, traceable to the early moments of the work. These two gestures are the sustained note which undergoes timbral deviation through alternate fingerings, and the intermittent rapid passage work, characterized by wide leaps.

Regarding the first gesture, with the employment of alternate fingerings, Shultz says Berio achieves a "rhythmically articulated timbral change".\(^{31}\) This is a good way to describe the treatment of b\(^1\) in the first few lines, as the changes in color help create both an aural interest and rhythmic propulsion.

The insistence on the single pitch, b\(^1\), has the listener focus on barely perceptible differences in color, created by alternate fingerings. Attention is thus focused on timbre, not pitch (something Schoenberg would endorse). Figure 2.5

\(^{29}\)Stoianova, "Chemins en musique", 433.
\(^{30}\)Berio quoted in Stoianova, "Chemins en musique", 434.
\(^{31}\)Shultz, "Sequenze I-VII by Luciano Berio", 206.
shows the sustained note from (1,5) and (1,6) transformed through alternate fingerings.

![Timbral transformation of b^1 in (1,5)-(1,6)](image)

Figure 2.5 Timbral transformation of b^1 in (1,5)-(1,6)

Berio SEQUENZA VII

The aural saturation of b^1's makes the listener quite sensitive to this procedure. Any tiny difference, perhaps imperceptible in some other context, now becomes obvious. When Berio employs this procedure elsewhere in the piece on different pitches, the listener, already sensitized, can hear, recognize and distinguish the sounds. Berio achieves this effect on pitches other than b^1 with alternate fingerings, including harmonics. Figure 2.6 is a sampling of a few cases from which can be seen the similarity of the subdivisions and alternation of the traditional fingering with a single alternate fingering.

This application on other notes is not as prolonged nor as insistent as with the b^1. Since the procedure was established and “defined” with the b^1, it would be unnecessary to spend as much time with each other note as with the b^1. Also, b^1 is the focal point of the piece both as a result of the amount of time and emphasis it is given as well as the reinforcing off-stage source throughout the piece. Therefore the temporary focus on pitches other than b^1, while deriving from that pitch, provides brief digressions (and relief) from the insistence of the b^1.
The second type of gesture, that of rapid passage work, develops from the initial grace notes, and serves as a commentary on existing material while setting the precedent for future activity. In the same way that the pitches are introduced in a careful, systematic manner, so are the rhythms and these larger gestures; there is a simultaneous development of the pitches and the rhythm. For example, a single grace note appears, the b in (1,2), which is first slurred and then finally articulated in (1,6). Immediately in (1,7) it expands to two grace notes. The activity of the grace notes intensifies in (2,4)—now we have four articulated notes. In (1,13) the four grace notes are slurred, as they shift between the original b1 and the first alternate fingering for b1. It is easy to see how this idea is transformed into the rhythmically notated effect in (2,3): Berio alternates the same b1’s and subdivides the notated version into two groups of four. Finally, in (2,5), the grace notes have grown in number (6) and Berio uses the developing grace note procedure to introduce other pitches (a2, d1, and c3, the last of which has already been heard). The use of these later pitches is characterized by wide leaps, due to

32 Albèra, “Introduction aux neuf sequenzas”, 111.
the order and registral placement of the pitch introductions. This gesture in turn prepares the appearance of the rapid passage of wide leaps in (3,1), whose notation has likewise been anticipated by the notation in (2,3), which uses the same subdivision of the first and last beats.

Another example of how the material proliferates can be illustrated in Line 3. The first case of an altered-timbre pitch other than b\(^1\) is the harmonic b\(^{\flat}2\) in (3,1). This rhythmically notated passage evolves as explained above; it, in turn, becomes the precedent for the treatment of f\(^\#2\) from (3, 12) to (4, 1) as well as the first case of altered-timbre grace notes (on pitches other than b\(^1\)), in (4,1). To continue the genealogy, (4,1) prepares for the beginning of the first section of extended passage work later in the piece (8,11), which uses the same pitches (by that time an f\(^2\) is added). The b\(^1\) returns after that initial digression, and it becomes re-established in (3,2) and (3,3). In (3,4) the c\(^3\) and b\(^5\) are also reintroduced, and evolve into the grace-note gesture of (3,5). All the grace notes in (3,5) in turn become segments of the ultimate long grace note run in (3,7).

The evolution in Line 3 described above overlaps and alternates with another one in the same line. The trill in (3,5) seems to grow out of a search for one more sound color for the b\(^1\)—a microinterval alternation\(^{33}\)—which is first sounded for probably the equivalent of an eighth note (3,5), then immediately played for two seconds (3,6). In (3,8) the gesture is transposed up to the c\(^3\) now with a different effect—overblowing. This unique sound was previously introduced by way of the original b\(^1\) in (2,12). Finally, in (3,11) the original trill reaches its most extreme sound manifestation, returning to the b\(^1\), but with a maximum effect—overblowing—which simulates the multiphonic sound (aided

\(^{33}\)All trills are notated in the score by a line with waves. Most trills, however, use microintervals. The performer must look in the fingering chart published with the score to decide which fingerings to use.
by a specified fingering). This final trill, in turn, sets the precedent for the multiphonic trill in (4,11) which returns intermittently through the composition.

The piece develops in such a way, demonstrating the relationships and precedents for nearly all events which occur. This proliferation, as especially illustrated above for Line 3, does indeed seem to be "infinite".

"Harmonic Fields"

According to Berio, the title Sequenza "was meant to underline that the piece was built from a sequence of harmonic fields... from which the other, strongly characterized musical functions were derived."34 A "harmonic field" can be defined as a temporary emphasis on a single pitch or, as Osmond-Smith observes, on a group of pitches. Berio appears to use both of these options in Sequenza VII. Osmond-Smith notes that this procedure was influenced by Pousseur:

These fixed pitch fields reflect an approach to harmonic thought common to both Berio and Pousseur, and given theoretical form by the latter (albeit in somewhat elliptical form) in his essay 'Outline of a Method' of 1957. Pousseur had begun work on a series of piano pieces in which he derived his pitch materials from a series of 'harmonic fields'--temporarily fixed pitch groupings characteristically dominated by one or two pitch intervals, and the notes chromatically adjacent to them. Berio was perhaps more interested in the spirit than in the letter of Pousseur's formulations.35

If the definition of a harmonic field is to be the focus on a prominent pitch, then the b^1 undoubtedly qualifies as the first harmonic field. In fact, this piece begins as an exploration of this single pitch. Moreover, the very nature of the piece suggests that the b^1, by virtue of its universality, should be considered the singular harmonic field of the piece. However, while the b^1 remains the

34Berio, Two Interviews, 97.
35Osmond-Smith, Berio, 24.
fundamental pitch, there are a number of temporary foci on pitches other than
the \(b^1 \); these will be discussed later.\(^{36}\) If the original \(b^1 \) is to be called the first, and
primary, harmonic field, then it has been shown above how some of the gestures,
and in turn the remainder of the "infinitely proliferating" piece, derive from that
\(b^1 \). Therefore these "strongly characterized musical functions" evolve from the
first harmonic field. Some of these individual areas of emphasis develop as
reflections of the \(b^1 \) gesture--the \(b^1 \) in (2,3) compared to the \(f#2 \) in (6,4)--and
others come from repetition of a particular note in a conspicuous manner, e.g. the
d\(^1 \) in (5,6) through (5,10). Figure 2.7 charts the extended emphases on pitches
other than \(b^1 \); this chart also illustrates the clean divisions between the upper
and lower regions of emphasis.

\[\text{Figure 2.7 Emphases on pitches other than } b^1\]

The second type of harmonic field, a temporary fixed pitch grouping,
evolves throughout the piece. Initially the harmonic field is determined
according to the pitch introductions. From the beginning to the first fermata (2,6),
the harmonic field is \(b^1 \). Gradually, as more pc's are introduced, the harmonic
fields develop as a constantly shifting process. From (2,7) the field expands to
five notes, through (3,6), to include the \(b^1 \) and the next four pitches introduced
(shown in the Table on page 27, above). In (3,7), \(f#2 \) foreshadows the shift that

\(^{36}\)It should be noted that this type of organization is characteristic of tonal forms as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
takes place in the next few measures: b^2 and d^1 are gone and replaced by $f^#2$ and $g^#2$. That field is in use until (4,8), when two new pc's are introduced: e^1 and f^2, and the field shifts again. It is from this sequence of shifting harmonic fields that the piece inherits its name.

Pitch Cells

While it is virtually impossible to speak of a "melody" in this piece, there are intervals and specific collections of notes that recur frequently enough to qualify as perceptible patterns. These patterns will be called cells, not motives. "Cells" are recurring groupings of pitches too small to be considered melodies. The term "motive" implies pitch groupings connected to various rhythmic patterns. The cells in this piece refer to pitch groups with no specific attached rhythms.

Two relationships that occur frequently are interval class (ic) 1 and ic5. The prominence of these two intervals is evident from the order of presentation of the 12 pc's. The first three notes of that original "row" are b, c, bb or [0,1,2], constructed from two ic1 relationships, the c3 and the bb framing the b. Similarly, the e, f, eb group also form an [0,1,2] form but transposed down by a perfect fifth, ic5, from the original version of this cell. Ic5 presents itself in more obvious ways. The a and d which are both presented in the same measure form a perfect fifth as well as the next three notes, which comprise two successive fifths--f$, c^#$ and g$^#$.

Probably the most prominent cell reflecting ic1 is the b1-c3 pair, which occurs in many forms. As c3 is the first note other than b1 to be introduced into the texture, b1-c3 would naturally be a common event in the early moments of the piece, when there are fewer pitches to use. Throughout the second line, every time the c3 (or any other note) is used it is always preceded and followed by the b1; this procedure illustrates Berio's method of introducing other pitches without
abandoning the original b1. The b1-c3 is given much prominence in (2,9); this is the first time that any pitch other than b1 is allowed to sound for an extended length of time. The gesture, a long slur surrounded by short bursts of rhythmic events and indicated by an accented \textit{forte}, is quite conspicuous. Once additional pc's are present in the texture, the b1-c3 cell is replaced by various other events; however, the cell returns near the end of the piece. Lines 11 through 13 contain many instances of this pair, some of which are illustrated in Figure 2.8.

![Figure 2.8 Manifestations of the b1-c3 cell](image)

Near the end of the piece Berio adds other pitches to the b1-c3--e.g. in (12,1), (12,3), (12,6)--probably as a way to have these other pitches make a final appearance. The last three measures sound just b1 and c3 (there is a small f\# produced from multiphonics--a final way to simulate density), and the last two notes of the piece are c3 and b1.

\textit{Ic1} is expressed in other ways reminiscent of the b1-c3 cell. The f2-e1 slurs in (7,2) and (7,4) are especially prominent. The f2 becomes distinct because it is in...
a contrasting register and is a different pitch in the context of e¹'s (played by the oboe) and b¹'s (presented by the off-stage source). These slurs reflect the same gesture as in (2,9), i.e. a legato gesture amidst a texture of short rhythmic energy. In addition, this cell represents an ic5-transposition of the original b¹-c³. The b⁰- b¹, as seen for example in (2,1) or (3,4) likewise express ic1. The low b⁰s conspicuously appearing before the fermata b¹'s in (2,6) and (4,2) perhaps are analogous to cadences.

Another gesture recalling the b¹-c³ legato slur in (2,9) immediately follows the climax on g³ (10,6) - (10,8). This is the slur from g³ to a² in (10,9). While the interval is not the same as the b¹c³—a minor seventh compared to a minor ninth in (2,9)—the other factors are the same. Berio asks for the same forte and accented high note with a decrescendo to piano in both cases. Both events occur in the same vertical column. Also, both notes are rhythmically long compared to the surrounding bursts of short notes. In recalling this gesture, the g³-a² slur re-introduces the b¹-c³ motive, which except for a few instances {(7,6), (8,3), (10,3), (10,4) and (10,5)} has been absent from the texture.

Ic1 is present in other ways also. Of course it happens in trills: (3,8), (3,11), (5,6), (6,1) etc. But the interval is also used in areas of emphasis, i.e. during the "sequences of the harmonic fields" from which the piece gets its name. In (5,6) when the d¹ is emphasized, eᵇ¹ is used in two ways: first, ornamentally, as a double trill (5,6) and a grace note (5,8), and second as the final note of that entire d-emphasis section in (5,12). In Line 6 eᵇ¹ in turn becomes the focus pitch. Ic1 is expressed in two ways as eᵇ¹ alternates with d¹ in (6,9) and (6,10) and with e¹ in (6,8), (6,10), (6,12) and (6,13). The prominence of eᵇ¹ ends in (7,2). Continuing this rise in half-steps, the next pitch to be highlighted for an extended period is e¹. This section of harmonic fields rising in half steps ends in (7,6) with a return to the b¹.
The preceding half-step ascent from d1 to e1 not only reflects ic\textsubscript{1} but also the [0,1,2] cell. By using ic\textsubscript{1}, Berio has also in effect achieved a transition from one area of emphasis to another. Both the sections from (5,6)-(5,10) and (7,2)-(7,5) use the infrequent chromatic upper neighbor, eb1 and f2 respectively, as the sparse additional pitch material (the b is already considered omnipresent). However, the section between these two—from (6,7) to (7,1)—frequently uses both chromatic neighbors to the emphasized pitch eb1 (namely d1 and e1) which represent the prominent pitches of the two sections that frame it.

Another interesting use of ic\textsubscript{1} is seen in Berio’s fondness for alternating between chromatically adjacent neighbors. This was mentioned above as a characteristic of the use of harmonic fields, and examples mentioned in that section apply equally well here. In addition to those cases, other ic\textsubscript{1} alternations become prominent in the rapid passages in the latter half of the piece. Some of these, shown in Figure 2.9, alternate between a2 and ab2, c3 and c#13, and f2 and f#2.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{ic1_alternations.png}
\caption{Ic\textsubscript{1} alternations}
\end{figure}

Berio SEQUENZA VII

Ic\textsubscript{5} is manifested in a variety of ways: as an interval, as multiphonics and through transposition. The use of the fifth in the original “row” of pitch introductions has already been described. There are also many instances of ic\textsubscript{5} as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
a perfect fifth throughout the piece. Some of these occurrences include the fifths in either direction from the b, as f#2, seen in (3,7) (7,7) (9,3) etc. and e¹, seen in (6,8) (7,6) (9,9) etc. There are also many instances of f#2-c#3, seen in (4,8) (5,3) (6,5) (9,1) etc., which in effect continue this succession of fifths. When Berio asks for multiphonics, he always asks for the chord to be a perfect fifth with the single exception of the chord in (13,2), which contains a diminished fifth. Further, transposition by fifth is fairly prominent in Sequenza VII. As mentioned above, the [0,1,2] group stated at the beginning is expressed near the end but transposed down a fifth (see p. 40). The first place where a pitch other than b¹ is emphasized is from (3,12)—(4,1), on f#2—a fifth up from b¹. The pitches f², e¹ and f#2 in (12,6-7) are transposed up a fifth in (13,9-10). It is interesting, and perhaps not accidental, that the multiphonic chord results in the same pitches for both cases.

Some pitch groupings do not occur with great frequency, but they do reappear in the same order and with the same registral identity. The order of pitches in (5,4), starting with the b with alternate fingering ① to the d♭ in (5,5), is identical to the pitches starting in (6,5) continuing to the fermata. This pair is illustrated in Figure 2.10.

![Figure 2.10 Recurrence of pitch groupings](image)

Figure 2.10 Recurrence of pitch groupings

Berio SEQUENZA VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Other examples of this re-use of pitch groups can be found in (11,5) and (12,5). It should be noted that the vertical alignment for both these pairs is virtually identical. This is perhaps another relic of the serialism Berio had rejected earlier in his career.

A number of the ic1 alternations, mentioned on p. 43, involve c\(^3\)-c\(#3\) and f\(^2\)-f\(#2\). Berio combines those two specific ic1 groups that together express ic5 in an interesting way, creating the four-note group: f\(^2\)-f\(#2\)-c\(^3\)-c\(#3\). This group first appears in (4,11) where an f\(^2\)-c\(^3\) multiphonic is trilled with an f\(#2\)-c\(#3\) multiphonic (spelled enharmonically). This is repeated in (4,13), (6,3) and (13,2). In another form of presentation, this four note group appears outright, in (11,12) and (12,5). The f\(^2\)-f\(#2\)-c\(^3\)-c\(#3\) group is an important component of the upper register, or top voice of the three-voice texture. For one extensive passage, from (6,2) to (7,7) all of the "upper-voice" notes consist of one of those four notes. They are likewise prominent in the upper voice in (9,1) and from (11,6)-(11,10) where they are used with b\(^b\) and d\(^1\) (important pitches of the lower region).

One more interesting use of both ic1 and ic5 occurs in (7,7). This measure marks the conclusion of the area of emphasis on the lower-register pitches; in (7,8) the registral focus returns to the upper voices. Measure (7,7) serves as a transition using both ic1 and ic5. The pitches b\(^1\)-e\(^b\)-b\(^1\)-e\(^1\) are mirrored by the pitches b\(^1\)-f\(#2\)-b\(^1\)-f\(^2\). Ic5 is apparent through the fifths on either side of the b\(^1\), and ic1 is reflected in the chromatic neighbors to those fifths. This eight-note group in effect aids the shift, or "pivot", in the registral emphasis.

Polyphony

Berio says that, "All the ... Sequenzas for solo instruments are intended to set out and melodically develop an essentially harmonic discourse and to
suggest, particularly in the case of the monodic instruments, a polyphonic mode of listening . . .” 37

In Sequenza VII, the concept of polyphony is projected through a variety of procedures. Polyphony for this piece will be defined as any implication of two or more voices at one time. The most obvious and literal manner of achieving more than one voice with a monophonic instrument is through multiphonics. A polyphony of parallel motion is achieved in (4,11), (4,13), (6,3) and (13,2) with the alternation of the two fifths. Motion by parallel fifths also occurs in (13,8), but without a trill. These multiphonics are illustrated in Figure 2.11.

Figure 2.11 Multiphonics of parallel fifths

Polyphony can also be achieved in other subtle ways, as Bartolozzi describes: “... the woodwind can not only produce a wide variety of chords but also pass from the emission of a single sound to a group of sounds emitted together and vice versa. In this way monophonic and multiphonic possibilities can be linked in a true instrumental polyphony.” 38 Berio does achieve that

37 Berio, Two Interviews, 97.
38 Bartolozzi, New Sounds for Woodwind, 42.
monophonic-multiphonic linking near the end of *Sequenza VII*, as seen in Figure 2.12. In most cases a single pitch is sustained and the mutiphonic appears out of that note, e.g. (12,7), (13,1), (13,7).

It can be seen in Figure 2.13 that in (13,10) and (13,12) Berio “rounds out” the gesture at the very end of the piece as he asks for the sustained pitch to evolve into the chord and then return to the initial pitch.

Another way to simulate polyphony in a monophonic instrument is to use a type of technique Bach uses in his solo pieces, namely the compound melody. Berio describes his intentions in the flute *Sequenza*:

... I wanted to establish a way of listening so strongly conditioned as to constantly suggest a latent, implicit counterpoint. The ideal was the 'polyphonic' melodies of Bach. An inaccessible ideal, naturally, because what implicitly guided polyphonic listening in a Bach melody was nothing less than the history of baroque musical language, whereas in a "nonlinguistic" melody like my *Sequenza* for flute, history provided no protection, and everything had to be planned out explicitly.\(^\text{39}\)

Sequenza VII, like the flute *Sequenza*, can be said to use the same "non-linguistic", non-traditional type of melody. Following the idea that a constantly sounding \(b^1\) becomes a stable middle voice, Berio can then have a clear separation point of activity between the upper and lower registers. A further practical reason for the use of \(b^1\) is its placement exactly in the center of the treble staff; additionally, it lies near the middle of the oboe range.\(^\text{40}\) Thus, by having three clear regions of pitches (below the \(b^1\), the \(b^1\) itself, and above the \(b^1\)), Berio has defined the parameters of his polyphony in the oboe piece. Through this idea, a three-"voice" texture is created despite the confines of a monophonic instrument.

Bach accomplished this contrapuntal task by having various pitch relationships develop in different registers of the instrument. Berio likewise follows that model. The upper and lower regions in *Sequenza VII* progress independently. The first seven lines of the score illustrate clearly the three regions since all activity occurs on or above the top line, or on or below the bottom line of the staff. The gaps between the \(b^1\) and all other activity make this independence evident. The pitches above the \(b^1\) maintain a high level of activity

\(^{39}\)Berio, *Two Interviews*, 97.

\(^{40}\)The practical oboe range is from \(b^b\) to \(g^3\).
throughout the piece. The lower region remains relatively inactive up to (5,5) with punctuating insertions of b^\flat, d^1 and e^1. From (5,6) the emphasis shifts to the lower region with a focus on d^1 from (5,6)-(5,10), then on e^b^1 from (6,7)-(7,2), and finally to e^1 from (7,2)-(7,6). Then, except for a brief focus on $c^#^1$ in (10,2), the lower region returns to the role of intermittent appearances.

Another way Berio seems to achieve a sort of polyphony is through his use of dynamics. Initially the careful indications, changing for each note, seem to be a way to generate contrast. But further down in the score, even though strict developments of pitch relationships do not occur in each dynamic, an illusion of events developing on different levels is perceived. Example 2.14 shows (11,8), where groups are perceived according to dynamics, not register.

![Figure 2.14 Simulated polyphony through dynamics (11,8)](image)

Berio SEQUENZA VII

Tristan

Berio says, "For me, Sequenza VII is linked to the memory of the English horn in the third act of Tristan, which my father played for me on the piano,
when I was a child. In effect, in *Sequenza VII*, there are, hidden, fragments of this beautiful melody . . .”

At first it is rather difficult to recognize this very famous solo, from the opening of Act Three of Wagner's *Tristan und Isolde*, in Berio's oboe piece. But, as he says, the fragments are hidden, and act, “in effect”, as subtle reminders of the piece. While these two works represent different musical languages, the similarities do include prominent use of ic1, including the [0,1,2] cell and chromatic alternation of a single pitch, use of ic5 and especially implied polyphony.

Ic1 is represented throughout the Wagner solo by means of two prominent features. The first one, also important in the *Sequenza*, is the alternation between chromatic neighbors. The oscillating d^2-db^2, as seen in Figure 2.15a, is a major characteristic of the solo. Those two notes are also associated with eb^2 and all three notes combine to form a [0,1,2] cell. The chromatically descending triplets, illustrated by Figure 2.15b, which also express the [0,1,2] cell, form the other characteristic manifestation of ic1 in the Wagner. In the beginning of the *Tristan* solo, ic5 is immediately expressed by the opening fifth. Ic5 is also repeated for a number of measures, as shown in Figure 2.15c. Such wide leaps, so characteristic in the Berio work, are found throughout the English horn solo. These leaps lend themselves to a simulation of Baroque polyphony—voices in different registers developing independently in a monodic line—especially seen in Figure 2.15b.

![Figure 2.15a Wagner Tristan und Isolde, Chromatic neighbor alternation](image)

41Berio quoted in Stoianova, “Chemins en musique”, 433.
In order to sustain interest in the piece during the first 23 seconds, when just one note sounds, Berio has to use other methods to keep the audience’s attention. These he explains while speaking of the flute *Sequenza*, using the term “morphological” to refer to the exploitation of a new image of the instrument:

The temporal, dynamic, pitch and morphological dimensions of the piece are characterized by maximum, medium and minimum levels of tension. The level of maximum tension (which is also an *exceptional* one relative to the norm of conventional playing) within the temporal dimension is produced by moments of maximum speed in articulation and moments of maximum duration of sounds, the medium level is always established by a neutral distribution of fairly long notes and fairly rapid articulations, and the minimum level entails silence, or a tendency to silence. The pitch dimension is at its maximum level when notes jump about a wide gamut and establish the tensest intervals, or when they insist on extreme registers: the medium and minimum levels follow logically from this. The maximum level of the dynamic dimension is naturally produced by moments of maximum sound energy and maximum dynamic contrast. What I
call the morphological dimension is placed, in certain aspects, at the service of the other three and is, as it were, their rhetorical instrument. It seeks to define degrees of acoustic transformation relative to an inherited model which in this case is the flute with all its historical and acoustic connotations. Thus a level of maximum tension within the morphological dimension is obtained when the image, my image of the flute, is so drastically altered with flutter tongues, key clicks and double stops (two notes at once). I contented myself with very little when you think about it, granted that at the time you couldn’t really change the image of the flute without at least playing it underwater. But the flutter tongues are almost always used as the furthest extension of rapid articulation, the key clicks as the furthest extension of a progressive move towards noise realized by using the lowest register, maximum speed, maximum intervallic tension and flutter tongue: so the key clicks round off a process that is already underway. As for the double stops (those famous g-cs and a-ds that started off the hubbub of multiphonics, which seems finally to be quieting down), their function is more symbolic than actual: to some extent they stand for my desperate search for polyphony with the most monodic instrument in history. Finally, the extreme density of the melodic writing is ensured by the fact that at any one time at least two of the four dimensions that I’ve described are at the maximum level of tension.42

Even though Berio was talking above about the flute Sequenza, the procedures seem almost more apt for the oboe piece. Albera also believes that Berio, in Sequenza VII, is involved in a “search for creating simultaneous events through independent parameters. Berio also maintains here a constant maximum density on several levels at the same time.”43 Figure 2.16 shows two different instances, (8,2) and (11,4), both, as Berio explained above, with “at least two of the four dimensions. . . at the maximum level of tension”. In (8,2-4) the morphological level is high because of alternate fingerings, the flutter-tonguing and overblowing. There is also “maximum sound energy” through the fortissimo indication and also some extreme contrast to the pianississimo. Finally there is also tension on the pitch level with the wide leaps in (8,3). In (11,4-5) the

42Berio, Two Interviews, 97-99.
43Albera, “Introduction aux neuf sequenzas”, 111.
temporal level is at a maximum requiring maximum speed of articulation. The pitch level is at the extreme, using wide leaps, and the dynamics are at a maximum level of tension changing through five different levels in those two measures.

![Sheet Music Image]

Figure 2.16 Simultaneous multiple levels of tension

Berio SEQUENZA VII

There are many more exploitations of the “morphological” dimension in *Sequenza VII* than in the flute piece. In the latter, except for three instances of multiphonics, the devices used do not alter the standard perception of what a flute in 1958 could do. The novelty of the flute piece lies rather in the notation, which uses no meter signature (though Berio does give metronome indications and specify timings for “measures”). The articulations and flutter-tonguing are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
standard flute practices, though perhaps not used in such abundance in earlier compositions. In contrast, the oboe Sequenza, through the use of the non-traditional layout on the page and the unique sounds prescribed, uses these various "image-breaking" techniques as one of the fundamental reasons for the piece. The morphological level of Sequenza VII is achieved through multiphonics, alternate fingerings, double trills, trills with microintervals, overblowing and non-standard articulations such as flutter-tonguing. Much of this, though, could be due to the fact that the oboe piece was written eleven years later, at a time when there was increased interest in such practices and Berio's own compositional style has developed further (especially through writing the Sequenza series).

Multiphonics, which by definition and notation simulate polyphony, also have another function in the piece. Berio says, "Sequenza VII is a sort of kaleidoscope of the sounds made by the oboe. It also attempts [to portray] the gradation of the sound through multiphonics— that is to say the sounds that are, in fact, all around the 'actual' sound." Berio's introduction of multiphonics conforms to his presentation of the other aspects of the piece. The multiphonic trill, first seen in (4,11), uses the four-pitch cell whose prominence has already been discussed. This twentieth-century technique has in effect "sneaked in" by using pitches already part of the texture. Multiphonics on the oboe consist of the pitches called for as well as many of the overtones, some of which are hard to distinguish, created from the fingering. When this "full" sound first appears in (4,11), it foreshadows the inevitable saturation of the chromatic possibilities. Berio remains consistent with this idea because, except for the few recurring instances of the specific cell cited above, the multiphonics do not appear regularly in the texture until the last few lines of the piece.

44Berio quoted in Stoianova, "Chemins en musique", 439.
Form

The final task of this chapter is to identify the formal logic of Sequenza VII. The ideas of the various writers previously mentioned help suggest possible solutions. By combining their thoughts with the previously discussed aspects of the piece, an individual form begins to emerge.

According to Stoianova, "The permanent reference to a stable sound (B) defines the whole piece as a complete moment [in time]... This uninterrupted strand of sound does not define a closed form, but rather denotes the converging towards a foundation [i.e. it measures the extent to which the other notes approach or go away from the b]. It is this foundation [B] that inspires and provides a rationale for the various types of instrumental statements and, thereby, structures and centralizes the space-time of the piece."45 She says the length of the piece is therefore governed by the range of the oboe as well as the process of the culmination of the range on the g3. This, to balance an overall form, is followed by a decrease in the density of the sound and a rediscovery of the b1.46

There is some validity in what she says; but I would disagree with a few points. For one thing, after the climax on g3 in (10,6-9), the sound remains dense through the last line. Not only do the multiphonics contribute to this but also most pitches remain in use in the last line. The piece does slow down in terms of rhythmic energy, especially through the presence of the many fermatas, beginning in (11,5). Moreover, the "rediscovery of the b1" encompasses the inclusion of the c3. Berio never returns to the sustained single pitch procedure of the beginning b1. Besides, the most numerous examples of that two-note cell, as shown above (see p. 41, above), occur after the climactic g3.

45Stoianova, "Chemins en musique", 435.
46Ibid., 436.
Stoianova also erroneously claims the arrival on g³ occurs at the Golden Section. Figuring the Golden Section mathematically in terms of both “measure” numbers and actual time, it does not fall in the area of the accepted climax of the g³. The Golden Section illustrates a mathematical proportion which occurs roughly two-thirds through a piece. This piece, while creating a form all its own, still follows artistic tendencies by having the climax occur roughly in the middle of the latter half of the piece (though not at the Golden Section).

Schultz claims that in this work a simple idea evolves into a more complex statement through a method of “continuous variation”. He says the additive technique and Berio’s treatment of pitch cells support this theory. Furthermore, he claims that the areas of pitch emphasis, or “harmonic fields”, as well as the use of fermatas, suggest a sectionalization of the piece: “[the fermatas] act to punctuate the contiguous sections of the work with each section becoming more complex and intricate than its precursor.”

The fermatas indeed indicate ends of sections, since all activity stops. However, there are additional areas of activity that can be grouped into further sections independent of the fermatas. It is the nature of the evolving motives that each section becomes more complex and intricate. One large subsection, which is independent of the fermatas, has already been discussed in terms of the

47 Ibid.
48 Using the number of measures to figure the Golden Section: 13 measures x 13 lines = 169. Multiply 169 by the number of the Golden Section, and the result is 8.03. The climactic high g happens in Line 10.
Using the indicated timing to figure the Golden Section: There are 22.6 seconds to each line. Multiply that by 13 to get 297.8 seconds. Add the fermata indications to get 121 seconds for a total count of 418.8 seconds. Multiplying 418.8 by the Golden Section number, .618, results in 258.8184 seconds. By adding up the timings of the lines and the fermatas, 258 seconds is reached in Line 11, after the climax.
Using the indicated timings without the fermatas to figure the Golden Section: As above, there are 297.8 total seconds. Multiplying 297.8 by the Golden Section number, .618, equals 184.184 divided by 22.6 yields the line to be 8.14.
harmonic fields. This part starts in (5,6) with the emphasis on the d and continues to the final e which returns to b in (7,6).

Fitzgerald names the form "free fantasia" with a coda. He says, "The sequence of instrumental actions in Sequenza VII is concerned with the development of two relationships. The first is that of the oboe to the pedal note, b, and the second is the mystical progression from relative simplicity in the first part to an extremely complex series of textures in the middle and latter parts of the score. Hints of this complexity and turbulence unfold in a gradually increasing pattern from the first notes, where the rhythmic and dynamic asymmetrical drama is presented and firmly established."50

It is true that the overall effect of Sequenza VII is one of freeness. But as has been shown, most events are systematic developments from previous material. Unfortunately, Fitzgerald never states where he believes the coda starts. As I have explained above (see p. 33), the two relationships mentioned by Fitzgerald—the focus on the pedal note and the gradual evolution of the rhythmic and melodic material—while seemingly unrelated, are in fact outgrowths of the initial moments of the piece.

As illustrated by these writers, it is a difficult task to identify the form of Sequenza VII. In Berio's view, "In tonal music there were predetermined forms; now we must invent form every time. In tonal music there was a hierarchy, with melody first, then harmony and finally rhythm taking their places. Now there are no such components - no melody as such."51 The form here is dependent on the various aspects of the piece discussed in this chapter. Keeping in mind all the examined ideas of "infinite proliferation", the pedal note, the notation, the

51 Ewen, Composers Since 1900, 66. The quote continues, revealing Berio's attitude towards the tonal system, "Tonality can still work, of course, for moments of escapism - when one wants to tickle oneself - like with jazz. But for serious art, absolutely no."
harmonic fields and the pitch cells, the form of Sequenza VII thus becomes a confluence of all these processes.

I hear Sequenza VII as one continuous movement creating a non-symmetrical arch, which develops to achieve a climax (on g^2, in Line 10) and then dissipates to return to the original pitch at the end. On a large level, there are two sections to the piece: the section that systematically introduces the pitches, (1,1) to (10,9), and the section after that, (10,10) to (13,13). There is no discernible break between the two sections, as this would be a distraction to the "infinite proliferation" so characteristic of the piece.

The first section is longer than the second, because as Berio said, once all the pitches are introduced, the piece is almost over. This broad part can be sectionalized further. The breaks at the fermatas are obvious points of rest and reflection. There are also other, smaller phrases, which will be discussed in the next chapter concerning the performance of the piece. However, one section before the middle of the piece, while still "infinitely proliferating", particularly stands out. This section, from (5,6) through (7,7) forms a contrast, an opposite effect, a "negative", as it were, of the total piece. In terms of registral emphasis, up to (5,5) pitch development has stayed in the upper region. The emphasis on the lower region continues up to the exact mid-point of the piece (7,7) (in terms of number of "measures"), then shifts back to the upper voices. In the sub-section from (5,6) to (7,7) the structure is the reverse of the structure of the whole. As a "negative" picture, lower pitches are emphasized; in (5,12) we have a shift to the high pitches, which continue to the half-way point (13 measures), then a return to the lower pitches for the remaining half.

Measure (10,10) could be considered the start of the "coda". Traditionally, a coda begins after the main purpose of a piece has been accomplished. The Harvard Dictionary of Music defines a coda as, "... any concluding passage that
can be understood as occurring after the structural conclusion of a work and that serves as a formal closing gesture . . ."52 Since Berio's individual twelve-tone process involves the systematic introduction of all twelve pc's, all the material following (10, 10) (the measure after the last of the twelve pc's has been introduced) would be classified as a coda. The main part of the piece ends with the g3-a2 slur which recalls the initial c3-b1 gesture, as described earlier. The coda then continues with extensive use of the b1-c3 cell, which refers to the use of those notes in the beginning of the piece, including the big slur in (2,9). Also in this coda, there are no more harmonic fields on single pitches as there were in the first section. The emphasis of the b1-c3 in a variety of ways reflects the other use of a harmonic field, that of emphasis on a group of pitches. The coda ends with a slowing down of rhythmic energy and a final last staccato utterance of the b1. This note, articulated as the ones at the beginning of the piece (though at a lesser dynamic level), reflects the "full-circle" journey of the work.

52Don Randel, ed., \textit{The New Harvard Dictionary of Music}, s.v. "coda".
Chapter Three
Performance Suggestions

As is presumably clear by this point, *Sequenza VII* presents many challenges to the performer. The oboist's most obvious task is to master new techniques including alternate fingerings for the production of timbre, harmonics, multiphonics, “overblowing” effects, and trills, and also to learn new tonguing skills to achieve short articulation, double-tonguing, and flutter-tonguing. In addition, as Chapter Two has shown, *Sequenza VII* is constructed in an individual and highly complex manner, making any interpretive decisions, such as nuances of rhythm and dynamics, difficult to make without a thorough understanding of how the piece works. Chapter Three, therefore, will discuss these problems of technique and interpretation, building on the analytical insights presented in the previous chapter.

Technique

Berio explains, “In my *Sequenzas* I have often tried to develop specific technical aspects of the instrument in greater depth. . . .”¹ As maintained in Chapter One, Berio also believes in the historical integrity of a musical instrument in its relationship to compositional developments. In that light, “technical aspects” of *Sequenza VII* would refer not merely to the passages of rapid notes, but equally to the variety of methods for producing formerly unfamiliar sounds on the oboe. For this reason, performers may easily become discouraged when first attempting to learn this piece, due to the number of new sounds it is necessary to produce. While preparing a performance of *Sequenza

¹ Berio, *Two Interviews*, 92.
VII, it is therefore a useful approach to consider each aspect separately, in a systematic manner. This chapter will explore the logistics of conquering those technical aspects to which Berio refers.

The Study to Sequenza VII

A good way to begin learning this piece is to examine Berio's *Study to Sequenza VII*. The *Study* is certainly simpler than *Sequenza VII*. For one thing, everything is rhythmically notated; the score is also laid out in traditional fashion. There is no meter signature, but Berio does indicate "J=62 (sempre)", and there are definite, continuous measures with a consistent three beats to each measure. Most of the effects demanded by the *Sequenza* are also required here, though notated differently and not in the same order or for as extended a period of time. For example, the initial b, which lasts for over twenty seconds in *Sequenza VII*, is played only for four measures in the *Study*, with much less demand for alternate fingerings, and with much more silence by means of notated rests.

It should be said that the preparation of a work such as *Sequenza VII* is tremendously time-consuming and painstaking. To spend the time required to learn the *Study* would be beneficial in order to gain a fluency in the new effects. Learning the timings and placements of the effects for both pieces may be a bit unnecessary in terms of time spent by the performer. And perhaps even the layout of the two pieces (one being more "traditional"-looking than the other) is different enough to cause reluctance to learn both pieces. Therefore, *Study to Sequenza VII* seems to be most useful as a comparison to the final version.
The Continuous B

The question of the unseen sound source continuously generating the b is a performance aspect of the piece that must be addressed by the performer. Berio says in the score, "A B must sound throughout the piece. The sound-source should preferably not be visible; this can be an oscillator, a clarinet, a pre-taped oboe, or something else. The intensity should be kept to a minimum, with quite small variations. The B should give the impression of lending a slight resonance to the solo oboe."²

The performer has two choices for the production of the b: have a person create it live, or have a machine reproduce it. Berio suggests using a clarinet, but this could be problematic. A clarinetist would have to generate a single tone for approximately ten minutes. Since it is impossible to play continuously on a clarinet for ten minutes the tone would have to be intermittently interrupted. These irregular interruptions could become distracting, and even disconcerting, to an audience member who may have sympathy for the arduous task of playing a long tone for ten minutes. Once aware of the breaths, an audience member might pay attention to how long the clarinetist could play before breathing, or other such matters. Also, it is curious that Berio says the intensity should be kept to a minimum with quite small variations. This could mean that if a person is generating the tone, then Berio has taken into account that it could not be a flawless long tone. It could also mean that Berio actually intends for there to be slight variations caused by human production. On Holliger’s recordings, the tone seems to be electronically generated, and there are certain points where the tone grows or subsides. If a performer were to desire these different intensities, that would be another consideration for the producer of the tone, who would have to know when to vary the volume.

²Luciano Berio, Sequenza VII.
A string player could also serve as a live instrumentalist. It is, of course, quite possible to sustain a tone on a stringed instrument for over ten minutes. One consideration would be that b₃ is not an open string for any of the stringed instruments (unless the player were to re-tune the instrument). The player would then have to decide whether to use vibrato or how much (a method, by the way, to vary intensity) and how to remain in the background without calling attention to him/herself. I think though, that as an audience member I would be very aware of any live person backstage assigned the difficult task of the production of the tone.

The other option—electronically produced tone—could remove all audience distraction, as once produced, it would never change. Berio suggested a pre-taped oboe. But does this mean to simply tape an oboist playing a b₃ for ten minutes, with breaths? Again this is a tiring task for a performer. If Berio meant to tape an oboe tone and then electronically sustain it for the duration, that might be less distracting. It is also possible to record a sine wave at a pitch of b₃. Finally, it is also possible to use a tuner (usually an integral part of an oboist’s equipment). Once the mode of electronic tone production has been chosen, then it is important to enlist an assistant to coordinate the starting and stopping of the tone. A live musician, of course, would be able to begin and end with the oboist.

The method that succeeded for me was to have a tape of a sine wave lasting for fifteen minutes (for ultimate performance time safety). Speakers are placed back-stage (levels, of course, are checked beforehand). As the oboist walks on stage or even as the applause subsides, the tape should start running but with the volume at zero. Once the oboist has played the first b₃, the technician can raise the volume to the agreed-upon level, at first giving the effect of an echo or a resonance. At the conclusion of the piece the technician can lower the volume to zero right before the final b₃ of the oboe.
Fingering

Multiple Fingerings. When beginning to practice Sequenza VII, a central consideration is the alternate fingerings for the b¹. Berio does not aid the oboist with fingerings for any of his desired effects. Instead, Heinz Holliger has contributed a page of suggested fingerings which is included in the score. This is probably a reflection of the close collaboration between the two men and underscores the shared responsibility of both musicians in the creation of the piece. Berio must have relied on Holliger for information about certain possibilities of the oboe as well as suggestions of what was currently being explored--as Holliger is the foremost authority on oboe literature.

In the appended notes to Study to Sequenza VII, Holliger offers many of the same suggestions for fingerings as he does in the score of Sequenza VII.³ A quick comparison reveals some minor differences in the two sets of suggestions. Those slight differences enlarge the possibilities and in turn inspire other suggestions. The Appendix to this paper will contain all the alternate fingerings mentioned in this chapter.

Certain effects using Holliger’s fingerings may not reproduce in the same way for oboists using different equipment.⁴ Therefore, the task of selecting alternate fingerings allows for, and even demands, a degree of responsibility and freedom on the part of the performer. The possibilities become virtually endless: Bartolozzi claimed there are as many as 98 different fingerings for this one note, although all those choices are not documented. In New Sounds for Woodwind, Bartolozzi gives only 11 variants for this note.⁵

³Heinz Holliger, Pro Musica Nova, appendix, 2.
⁵Bartolozzi, New Sounds for Woodwind, 15 and 17.
Another source of ideas for fingerings is Lawrence Singer's *Metodo Per Oboe*. Singer is an oboist and a composer who worked closely with Bartolozzi. His *Method*, as a specialized volume for a single instrument, is able to be a more thorough and detailed elaboration of work done in Bartolozzi's book. In the preface to the *Method*, Singer echoes Berio's attitude about reaching for new techniques while maintaining the integrity of an instrument: "The new techniques... in spite of the novelty of certain playing methods, are really a logical development of tradition. As a confirmation of this, it will be seen that no modification of the present structure of instruments is necessary to obtain the new effects which will be illustrated."

Van Cleve claims Singer offers 100 possibilities of fingerings for the b^1 in his *Method*. In fact Singer only presents 10, ranging in timbre from "closed-dark" to "open-light". He explains that due to the sheer number of available fingering options, he has had to limit his presentation to only ten for each note. Fortunately, since Berio only requests 5 alternate fingerings for b^1, it is possible to find suitable options of differing qualities.

Van Cleve presents some suggestions, including a group where the b-key, played with the left index finger, must be raised by loosening the screw "above [the b key] and to the right when looking down at the instrument in a playing position". It is not certain that Berio would be in favor of such a procedure since he made it clear that he didn't want to require alteration of the traditional instrument. Granted, this adjustment is minor, and players regularly adjust the height of keys to accommodate tunings, but if one has to change

7 Ibid., 1.
8 Van Cleve, "Suggestions for the Performance of Berio's *Sequenza VII*", 45.
10 Ibid., 3.
something about the instrument just to play a specific piece, it seems to go against the original intentions stated by Berio. However, Holliger also introduces the idea that the b key must be raised by a screwdriver in order to play certain notes, so perhaps it is sanctioned by Berio.

Still another source of fingering options is the fingering technique book by Blaine Edlefsen. This book presents alternate fingerings for the purpose of facilitating technique, but any of the seventeen fingerings for b1 could also be used as an option in the Sequenza.

The fingerings in Figure 3.1 have worked well for me in performance on both my Loree and Laubin oboes. They have been adapted from the recommendations Holliger included in the score. Due to the variety of individual preferences regarding oboe brands and reed styles, it would be a good idea for each performer to experiment and find the most suitable fingerings to produce the requested timbres. Holliger suggests that "these timbres should deviate more and more from the timbres of the normal fingerings, in relation to the numeration 1 to 5." In selecting these specific fingerings, I decided to find timbres that sounded progressively less clear and full than the traditionally fingered b1. Fingering 5, for example has quite a small-sounding and diffuse timbre. I have tried to use fingerings that do not require excessive variation in lip pressure or air pressure. For me, all fingerings in Figure 3.1 can be produced easily, except for 5 which needs less air and lip pressure, or else a very high partial will result. Concentration is a necessity for remembering the fingerings as well as maintaining proper intonation.

12Holliger, Pro Musica Nova, appendix, 2.
14Holliger, Pro Musica Nova, appendix, 1.
Figure 3.1 Suggested alternate fingerings for b¹

Once fingering solutions have been found for the b¹, then there are other pitches that require alternate fingerings: f² (two alternate fingerings), f#² (two alternate fingerings), a² (two alternate fingerings), c³ (two alternate fingerings), c#³ (one alternate fingering). Happily, Holliger’s suggestions work fairly well for these other pitches. However the sources listed above also provide options for fingering these other pitches if the performer needs other alternatives (see Appendix).

Harmonics. In Sequenza VII Berio also requires the harmonic fingerings of pitches from f² through c³ (f² is the lowest harmonic possible, and c³ is the highest one used—after that, the very high notes on the oboe use harmonics as the regular fingerings). While not frequently encountered, harmonics are well-known to most oboists. Harmonics on the oboe sound as twelfths above the fingered pitches, using an additional octave key. For instance, the harmonic f² is achieved by playing the note a twelfth below it, b⁵, and adding the next highest octave key for that fingering—in this specific case, since no octave key is ever used for that fingering, the thumb octave key. In the case of the harmonic for c³,
the fingering would be an f\(^1\), but since the thumb octave key is used to produce f\(^2\), the next highest octave key is used—the left index finger octave key.

Interestingly, two harmonics possible on the oboe are not used by Berio in this piece: g\(^2\) and b\(^2\). The g\(^2\), due to the octave specificity, is not primarily identified in that register (though there are fleeting cases that octave being used) and so would not be subjected to timbral investigations such as harmonics. Likewise, due to octave specificity and the universal emphasis of the piece, b is not presented in any other register in the piece, so the b\(^2\) harmonic would not be required.

Multiphonics. Regarding the production of multiphonics, Bartolozzi says, "It must be immediately stressed that woodwind[s] are not able to produce chords composed entirely of fundamentals, as string instruments can, for example, but groups of sounds of differing quality, which we shall therefore call sound amalgams."\(^{15}\) He explains that a woodwind sound amalgam has an "original and fascinating timbre" because of its harmonic complexity. A sound amalgam consists of a fundamental tone and a number of partials. Many tones are heard at once by the ear, but only a small number of them can be audibly identified. A sophisticated machine could register all the pitches at once but the ear is unable to discern them. It is the presence of the many pitches of varying timbres, some audible, some not, that creates the quality of the sound amalgam.\(^{16}\) It is possibly for this reason that Berio, at the end of the piece, uses multiphonics to symbolize density of sound. Most of the multiphonics specified in the piece are indicated as double harmonics.

Bartolozzi places the sound amalgam into three distinct categories: 1) the linking of monophonic and multiphonic sounds (achieved in *Sequenza VII*); 2) a

\(^{15}\) Bartolozzi, *New Sounds for Woodwind*, 42.

\(^{16}\) Ibid., 44.
homogeneous sound amalgam, composed of a fundamental, accompanied by pitches of equal tone and color (his only use of the term “multiphonic”); and 3) amalgams of sounds of different timbre, especially when two of the sounds produced are a semitone apart.\(^\text{17}\) For recognition’s sake and to avoid confusion, for the duration of this chapter, the term multiphonic will be used to refer to “sound amalgams” of any type.

As is the case with the selection of alternate fingerings, various oboe brands and reed-making styles are incompatible with certain fingering suggestions. Therefore a performer may have to experiment with fingering combinations that achieve the complex multiphonic effect. Figure 3.2 illustrates some multiphonic solutions to add to the suggestions by Holliger:

![Figure 3.2 Suggested fingerings for multiphonics](image)

\(\text{Figure 3.2 Suggested fingerings for multiphonics}\)

\(^{17}\)Ibid., 45.
Overblowing. The letter Z with a vertical line down the middle of it indicates the effect that Berio calls “overblowing”. This is a curious effect. In some places there is a fingering to accompany the overblowing, such as in (2,12-13) and (11,11), which results in a rather multiphonic sound. In other places, such as (8,3) and (12,1), overblowing is required for a group of notes with no alternate fingering required. So it seems there are two ways to achieve the overblowing effect. In the fingering chart of the score of *Sequenza VII*, Holliger makes note of how much lip pressure to apply when blowing. Eventually that becomes a subjective factor, because everyone plays differently and uses different equipment. It seems easiest, when deciding how to produce these sounds, to listen to the recordings and then use Holliger's fingerings which obtain similar effects. These sounds are fairly easy to re-create.

Trills. The last set of fingerings to learn involves the trills; both the double trills and those with microintervals. Double trills, notated by two parallel trill lines with the accidental placed before the top trill line, involve the alternation between the possible left and right fingerings for a specified note. In the d\(^1\) trills in (5,1) and (5,6), the effect is achieved simply by playing the e\(^{b1}\) first with the right fifth finger, then with the left fifth finger, etc. In the case of the f\(^{#2}\) (13,3), the index and middle fingers of the right hand alternate pushing down the F# key. This is an especially awkward effect to achieve because the fingers of the right hand must reposition themselves in a split second. Once the fingers are adjusted, the timing of the alternations is quite difficult. Much practice is required for this particular effect. Van Cleve suggests placing the index finger on the screw above the F# key and the middle finger on the F# key. This way the
two fingers, each positioned in a separate location, do not get in each other's way during the course of the trill.\\(^{18}\)

Tonguing and Articulation

Up to this point, the technical problems of playing the piece have concerned the creation and memorization of fingerings for effects that are unfamiliar to most oboists. This task is quite an obstacle to the process of learning this piece and requires the largest portion of practice time. However, once those technical difficulties have been solved, then another aspect of the piece—contemporary tonguing technique—must be explored. The problems of tonguing can be separated into three categories: short articulations, double tonguing and flutter tonguing.

Short Articulation. Berio notates a short articulation as a stemless notehead with a bisecting vertical line. Berio indicates that this marking means "as short as possible". Holliger also writes, "It is advisable to play all repeated notes (but not the marcato 32nd notes!) with a double staccato." For most oboists, who are trained to play all notes as long as possible, this concept of a very short note is difficult to obtain. Van Cleve suggests, "It may be helpful for the oboist to think of the articulation of a single note as 'tut' or 'hut' rather than the more typical 'tee' or 'tah'. This approach cuts off the sound abruptly." This seems to be a good way to achieve the very short note.

Double Tonguing. Learning to double tongue is a challenging experience for any oboist. This is becoming a more common practice among oboists because it makes certain technical passages much easier (*La Scala di Seta* is

\(^{19}\)Berio, *Sequenza VII* score.

\(^{21}\)Van Cleve, "Suggestions for the Performance of Berio's *Sequenza VII*, 45.
a common excerpt to try to double-tongue22). However, it is still a very difficult process to learn. Holliger outlines a method for learning how to master this procedure:

- With only a very strong articulated k, practice attacks on single notes in the middle register until it is no longer possible to notice a difference between the k attack and the normal t attack, and until there are no fluctuations in intonation.
- Then slowly alternate t and k attacks. Both must be equally strong.
- Increase the tempo. Later add different rhythmic patterns.
- Practice groups of 2, 3, 4 and more different notes with a double-tongue attack. (Start with small intervals, then make them progressively larger)
- Now move to the upper and lower registers.
- The last note of a group should be attacked with a t, whenever possible. Thus, you should begin a group of 4, 6, 8, etc., notes either with a well-articulated k attack or with two successive tt (then $tttt$) attacks.23

This is a complete method for learning the double tongue procedure. Certainly the most difficult aspect of this technique is to obtain a clear articulation initiated with a k syllable. The mastery of this articulation will allow greater speed in execution as well as greater facility in performing repeated notes or grace note passages.

Flutter Tonguing. The final articulation to learn is the flutter tongue. This effect is the most rare of the three articulations required in this piece, and perhaps is the most difficult. There are two ways to achieve this effect: the palatal (uvular) r and the tongued r. Holliger instructs oboists to practice the palatal r:

Play a note while articulating a palatal r (the tongued r is unfavorable, since the reed obstructs the tongue). The palate should be as relaxed as possible, so that the r does not change to a fricative ch (x): you should position your mouth as for the pronunciation of an O sound. In order to facilitate the production of the r, it is recommended, while practicing, to first press the reed against the upper lip, and then exhale some air (over a loose lower lip). Begin

22Gioacchino Rossini, Overture to La Scala di Seta, mm. 37-53.
23Holliger, *Pro Musica Nova*, appendix, 1.
by practicing flutter tonguing on single notes in the middle register (mf / later, pp-ff, cresc.-dim.), then move on to the upper and lower registers. Later, practice flutter tonguing figures of several notes, scales, arpeggios, trills, etc.

VanCleve presents an approach for learning the tongued flutter:

To develop a tongued flutter, first roll an r. Next practice rolling the ~ while blowing out. Practice next by rolling and blowing through a drinking straw in water. The next step is to roll while blowing through a very flexible reed. (Try a flexible English horn reed first. The larger size makes the process easier). Finally, try to play with the reed on the instrument, starting with the middle register and working outward. The shortcoming of this type of flutter tonguing is that it requires slight embouchure adjustment which decreases stability in the extreme high and low register, and it produces a relatively more violent sound.

Each person will have to decide whether the palatal or tongued flutter is more satisfactory. Those who are unable to roll the r will have to pursue the flutter of the palate. I have been unable to use the palatal flutter, though Holliger’s mastery of it is enviable. His suggestion to allow some air to escape from the lower lip works well when using the tongued flutter. A reed of good strength and opening performs the flutter (the tongued variety, at least) more easily.

When using the tongued flutter, the option exists of allowing the tongue to touch the reed while fluttering or to flutter the tongue against the roof of the mouth without touching the reed. The natural resistance of the reed makes it difficult to maintain the flutter, which is why Van Cleve suggests using a flexible reed. The flutter is more obvious when the tongue is allowed to touch the reed as it flutters on the roof of the mouth. The positioning of the tongue in the mouth must be adjusted to achieve the desired, raucous effect.

24Ibid., appendix, 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The Reed

One final note about the reed. It is a mistaken assumption on the part of oboists that since a non-standard approach to playing is required, a loud or noisy reed would be appropriate for the performance of this piece. On the contrary, reeds that play with rich, dark tones that would be suitable for the standard Romantic symphonies are the best types to use for the Sequenza. As for most pieces, a reed that can function in all areas of the range for all dynamics is best. In short, it must be able to do everything. Some of the alternate fingerings do not function well, if at all, with less than satisfactory reeds. To achieve the flutter tongue effect as well as the high g\(^3\) (not to mention *fluttering* the high g), one needs a stable and strong reed. The unconventional techniques likewise require a stable reed.

My reed selection was based on two tests. First, the reed had to be able to achieve a flutter on g\(^3\). Since this is the climax of the work, it is a very important effect, and every effort must be made to produce it. It is difficult enough to play a g\(^3\) on many reeds, let alone flutter while playing that note. The second test was that the reed be able to play all five of the alternate fingerings for b\(^1\) in tune. Sometimes certain fingerings sounded perfectly fine while others did not. Since this note with its various fingerings is the most extensively used pitch throughout the piece, and is always heard in comparison with an unchanging tone, it is essential that the performer be careful of pitch placement. If all five fingerings could reproduce the pitch with good intonation, then the reed could be considered satisfactory for the performance.

Interpretation

All the above techniques generally deter oboists from performing this piece. The challenge could be insurmountable to a person without sufficient time
and discipline to learn these effects. However, these techniques are relatively concrete, in that specific fingerings must be learned in order to execute specific sounds. The other type of challenge presented by this piece is more subjective, in terms of the small freedoms allowed to the performer. Moreover, once having analyzed the piece (Chapter Two), the oboist must decide how to convey his/her understanding of how the music is organized.

Rhythm

There is obviously a certain amount of performer freedom allowed in *Sequenza VII*. For one thing, the notation does not provide exact rhythms in many places. For another, Berio's tempo marking in *Chemins IV* ($\Phi = 110-120$) shows that he is allowing even more freedom: he gives a range of a tempos from which the performer is at liberty to choose.

However, the fact that there is a range of freedom does not imply total liberty to do whatever the performer wants. The *Sequenza for flute* likewise has no meter indicated and Berio discusses this:

> The piece is very difficult, and I therefore adopted a notation that was very precise, but allowed a margin of flexibility in order that the player might have the freedom—psychological rather than musical—to adapt the piece here and there to his technical stature. But instead, this notation has allowed many players--none of them by any means shining examples of professional integrity--to perpetrate adaptions that were little short of piratical. In fact, I hope to rewrite *Sequenza I* in rhythmic notation: maybe it will be less 'open' and more authoritarian, but at least it will be reliable.\(^{26}\)

Fortunately, oboists will find Berio's precise notation in the score to *Chemins IV*. Because this oboe part would have to be rhythmically notated in order to co-ordinate the soloist with the orchestra, every note in the *Sequenza* has

\(^{26}\)Berio, *Two Interviews*, 99.
been assigned an exact rhythmic value in the *Chemins*. Figure 3.3 shows the same passage first in the *Sequenza* and then in the *Chemins* version.

![Musical notation](image)

Figure 3.3 The same passage notated in *Sequenza VII* (top) and *Chemins IV* (bottom)

It is a valuable tool to have the accompanied version and check back and forth if there is any confusion. This helps insure the integrity of the performance. It is similar to the Methodical Sonatas of Telemann which present a performance solution by the composer who wrote out possible ornamentations. I prefer the inexact notational method of the *Sequenza*. It does have a better psychological...
effect—fitting the notes into a block of time seems more natural than trying to subdivide and fit a note precisely into an exact spot.

Holliger has recorded this piece twice. Each performance has a different timing even though both could be considered “authentic” as played by the oboist for whom the work was composed. On The Spectacular Heinz Holliger (Philips 6500 202, 1971) the timing for Sequenza VII is 8'22". On a recording of music by Berio (Philips 6500 631, 1970) the performance lasts 7'45". The 37" difference shows that even with the specific timing indications by Berio, different performance durations may still result.

Albèra acknowledges the importance of performer decisions regarding timing:

The sequence of unequal, constantly accelerating measures also tends to avoid all sense of regularity in playing, as well as all symmetry of events, and all subjacent pulsation. Musical time is thus linked to the actions of the instrumentalist; it is only perceived as a succession of moments, where each element assumes an immediate, precise [temporal] value. Form does not determine particular events, according to some norm, but rather it builds itself during the time of performance through the playing of different notes as well as repeated ones.27

The timing and pacing of the gestures which are all part of Sequenza VII becomes an essential performance consideration. The oboist must remember that the listener cannot be made aware of the temporal layout of each line, as Albèra says. It is possible that the mere execution of the non-standard performance technicalities could absorb all the attention of the performer, resulting in very little observation and achievement of the interpretive gestures. Practicing with a metronome at J=60 aids with the flow of certain phrases. For example, every case of rhythmically notated passages must be practiced with the metronome. The

27 Albèra, “Introduction aux neuf sequenzas”, 112.
freely notated sections can be approximated with a metronome. After that, by finding groups that are related by means of common-note use or are isolated by rests, various phrases can be found and a pacing can be developed. For instance, all the b's in (8,2) are a single phrase, isolated in their unity of pitch, the dynamic gesture and their reference to the beginning of the piece. The ending on the final b can be refined as completely as the ending of any Romantic phrase can be completed. The overblown notes in (8,3) make another phrase which finishes with the punctuating b at the end of the measure. The section from (8,4) to (8,6) becomes unified by the insistence of a^2. This phrase ends with a diminuendo. Thus a useful performance tactic is to separate these identifiable sections with slight silences. After the emphasis on a^2, the b^1 returns in (8,7), this time gradually adding more pitches until the passage work from (8,11) to (9,2). The rests in (9,2) become a natural separation point for the whole large section that began in (8,2).

Dynamics

One method of approaching a more complete realization of the piece is to be extremely careful about the execution of dynamics. It is quite possible, while concentrating on the new playing techniques, to overlook the dynamics, which constantly change in extreme ways throughout the piece. Figure 3.4 shows two instances of a high level of dynamic tension, as discussed in Chapter Two.
Figure 3.4 Instances of high dynamic tension (4,6)-(4,8) top, and (7,2)-(7,4) bottom

From (4,6) to (4,8) all the pc’s introduced up to that point in the piece are each sounded in the few seconds before the e¹ and f² at the end of the measure, which marks the first introduction of those two pc’s. The separation of the registers in (4,8) is also apparent. Being careful to execute a full fortissimo on the e¹ with a clear articulation could assist the interpretation by attracting attention to these two pitches. In (7,2) the dynamic exploitation seems to be a reflection of the initial gesture on the b₁. The fortissimo e¹ serves as a final punctuation to the previous section which temporarily focused on that pitch. The f²-e¹ slur certainly is a reminder of the c³-b₁ slur in (2,9), being the same interval (though transposed down a fifth), and using the same dynamics (though “transposed” down one level). The gesture of the slur is reversed dynamically in (7,4). A better interpretation can be realized by truly exploiting of the levels of dynamics and the relationships between the passages cited in this section.
One approach for practicing dynamics is to separate particular notes according to dynamic levels.28 For example, the performer can select every instance of a triple-forte note, including the b’s in the first line and the end of the phrase in (9,2), and practice simply those notes unifying the dynamic balance. By isolating all instances of notes indicated with a given dynamic, one can attempt to achieve a consistently equal level on every note. This procedure should be repeated on all levels descending the dynamic scale down to pianississimo. This thorough but time-consuming method of practice allows the oboist to appreciate the levels of dynamics in an isolated way. Careful attention in this manner will aid the performer, when placing those isolated notes back into the piece, in realizing the indicated dynamics in an accurate way.

28Suggested by Dr. Griffin Campbell of Louisiana State University, December 1992.
Conclusion

The exploration of *Sequenza VII* began with a general look at its chronological placement in Luciano Berio's development as a composer. It was written in 1969 at a time when Berio was discovering new methods of musical expression. Berio's new sounds and experimentations have caused him to be labeled as "avant-garde". But Berio takes exception to this classification: "I object to the term avant-garde, which is too often used in the United States. Anything I do of certain value will be experimental. This is really the only avant-garde aspect of my work." About music in general, Berio says, "... for producers and receivers alike (if that's a valid distinction), music is made up of phenomena occurring on so many different levels of reality and consciousness that capturing it all in a definition is impossible." Then, after discussing trends in music history and culture, he concludes, "... music is everything that one listens to with the intention of listening to music." He continues,

I think that all ways of making, listening to and even talking about music are right in their way. When music has sufficient complexity and semantic depth, it can be approached and understood in different ways.

I don't even think that there is a right and a wrong way of listening to it: just more simple and more complex ones... my ideal public is one with many faces, all bringing different motivations to their encounter with the music.

But the important thing, as far as I am concerned, is not to apply moral judgments to people who listen to music in one way or another.

1 Berio is classified as the "youngest of the trinity of the Italian avant-garde" with Maderna and Nono by Greene's *Biographical Encyclopedia*, p. 1309.
3 Berio, *Two Interviews*, 17.
4 Ibid., 19.
5 Ibid., 22.
6 Ibid., 25.
another. It’s only when you adopt political criteria and try to view musical experiences as an expression of class relations that you can’t avoid moral judgments: and they will of necessity come down heavily on a society that encourages people to listen to melodies and nothing else. That’s one reason why, at a certain point in our history, melodies broke up into little pieces.7

It is because music took such a complicated turn in the twentieth century that it is essential for both performers and listeners to discover the logic inherent in any new piece. Many of these compositions, neither melody-driven nor harmony-driven, must be analyzed in individual ways.

The three chapters in this paper provide a path that traces *Sequenza VII* through three different perspectives. The background on Berio as a man and composer revealed a strong and thoughtful personality, who in expressing his inner self was openly rejecting the repression of his youth, both politically and artistically, in his searching for methods beyond serialism and electronic music. The *Sequenza* series was created at the time when Berio was beginning to allow his personal expression to develop.

The logic of *Sequenza VII* was examined in Chapter Two. It was seen that a serially-derived plan determined the basic form of the work. Once all twelve pc’s had been introduced, the piece was on its way to completion. Material was generated through the idea of “infinite proliferation” of pitches and rhythms. A general arch form of growth-climax-conclusion prevailed. It is interesting to note that this composition’s unique use of serialism reflects both Berio’s rejection and use of his past experiences.

The performance suggestions of Chapter Three were concerned mainly with the creation and execution of difficult twentieth-century techniques, namely alternate fingerings, harmonics, multiphonics, double tonguing and flutter

7Ibid., 26. Berio’s radical political beliefs and resentment towards repression are never far from his work.
tonguing. These effects, it must be emphasized, are not an end in themselves, but are integral to the work. For instance, the flutter is used at times of extreme emphasis, such as the g³ climax, the multiphonics are used to simulate an expansion or density of sound, especially at the end, and the alternate fingerings and harmonics are an exploration of sound—the Klangfarbenmelodie of Schoenberg. Once mastery of the execution of the effects is achieved, then further thoughts of interpretation, based on the findings of Chapter Two, can be explored. Some suggestions of this type concluded the practical application of the analytical work accomplished in Chapter Two.

By evidence of the many quotes included in this paper, it is clear that Luciano Berio is a complex and philosophical man. Certainly his very personal music reflects that inner drive. It would be impossible for any person to claim a complete analysis of any piece, let alone for a work as difficult as Sequenza VII. It is therefore my hope that this paper has brought some understanding to this intriguing composition, which could then open further avenues of discussion for listeners, composers and performers alike.
Bibliography

Music

Literature

Mead, Andrew W. "Pitch Structure in Elliott Carter’s String Quartet No. 3". *Perspectives of New Music*, 22/1 (Fall-Winter 1983), 31-60.

Morgan, Robert P. "Heinz Holliger - Spectacular Indeed". *High Fidelity*, 24/5 (April, 1974), 98.

Recordings

Appendix

Alternate Fingerings

B^1

- \bigcirc = Open key
- \bullet = Closed key
- \bigcirc = Half-closed key
- \bigcirc : Hold key down, keep hole in key uncovered

Sequenza VII score
Heinz Holliger

Pro Musica Nova appendix
Heinz Holliger

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Alternate Fingerings

B¹

The following fingerings require that the b key be raised, by loosening the screw just above the b key and to the right when looking down at the instrument in a playing position:

fingerings by Libby Van Cleve

Bruno Bartolozzi
Alternate Fingerings

Blaine Edlefsen

Lawrence Singer
Alternate Fingerings

\(F^2 \)

Pro Musica Nova appendix

Heinz Holliger

Lawrence Singer

Blaine Edlefsen
Alternate Fingerings

F#2

Pro Musica Nova appendix
Heinz Holliger

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Alternate Fingerings

A²

Sequenza VII score

Pro Musica Nova appendix

Heinz Holliger

Blaine Edlefsen

Lawrence Singer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Alternate Fingerings

\[C^3 \]

Sequenza VII score

Pro Musica Nova appendix

Heinz Holliger

Libby Van Cleve

Lawrence Singer

Blaine Edlefsen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Alternate Fingerings

#3

Sequenza VII score

Pro Musica Nova appendix

Heinz Holliger

Blaine Edlefsen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Alternate Fingerings

C#3

Lawrence Singer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Vita

Carrie Vecchione is active both in performing and teaching music. For six years she played oboe and solo English horn in the Baton Rouge Symphony. She was awarded a fellowship in 1985 to participate in the NOA National Orchestra of New York, a full-time, year-long program presenting regular concerts in Carnegie Hall. Other performing experiences include the Ohio Light Opera, Rome Festival Orchestra, Vineyard Opera, and the Grand Teton Orchestral Seminar. Also active in contemporary music, she was asked to perform the world premiere of Transformations for Oboe and String Orchestra by Dinos Constantinides. Her major teachers include Joseph Robinson, Earnest Harrison and Mark Ostoich.

Currently she is Assistant Professor of Music at Ball State University where she teaches studio oboe, Music Theory and plays in the Musical Arts Quintet. When she can find spare time her interests include quilting and cooking.
DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Carrie Marie Vecchione

Major Field: Music

Title of Dissertation: Sequenza VII by Luciano Berio: Background, Analysis and Performance Suggestions

Approved:

[Signatures]

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

Date of Examination: 18 October 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.