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Abstract

This dissertation broadly deals with two areas of probability theory and investi-

gates how methods from nonstandard analysis may provide new perspectives in these top-

ics. In particular, we use nonstandard analysis to prove new results in the topics of limit-

ing spherical integrals and of exchangeability.

In the former area, our methods allow us to represent finite dimensional Gaussian

measures in terms of marginals of measures on hyperfinite-dimensional spheres in a cer-

tain strong sense, thus generalizing some previously known results on Gaussian Radon

transforms as limits of spherical integrals. This first area has roots in the kinetic theory

of gases, which is also described.

In the latter area, we prove a new generalization of de Finetti’s theorem for ex-

changeable random variables, a theorem important for the foundations of Bayesian statis-

tics. In particular, we extend the de Finetti–Hewitt–Savage theorem to certain general

sequences of exchangeable random variables taking values in any Hausdorff space. Under

mild distributional conditions, our work expresses a sequence of exchangeable random vari-

ables taking values in any Hausdorff space as a mixture of sequences of iid random vari-

ables. Prior to this work, this result was known for random variables taking values in a

Polish space. Hence, the current work has removed the need to have any assumptions on

the state space, and shown that it is the underlying distribution of the random variables

that is important. We prove several preparatory results in nonstandard and topological

measure theory along the way, a highlight being a new generalization of Prokhorov’s theo-

rem.
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Chapter 1. Introduction

1.1. Brief overview of the dissertation

This dissertation is focused on two applications of nonstandard analysis in prob-

ability and measure theory—the first application concerns the connections between

high-dimensional spherical integrals and Gaussian measures (which was originally covered

in Alam [4, 2]), while the second application is a new generalization of a theorem of de

Finetti–Hewitt–Savage on exchangeable random variables (which was originally covered in

Alam [5, 3]).

In very broad terms, nonstandard analysis is a powerful framework in which for any

structure on a set S (consisting of atoms or urelements; that is, we view each element of

S as an “individual” without any structure, set-theoretic or otherwise), we have a superset

∗S that has the same first-order structural properties (this is called the transfer principle,

or just transfer for brevity), but has more “ideal” elements. The set ∗S is called a nonstan-

dard extension of S. Focusing on the nonstandard extension of R, this allows a rigorous

way to work with infinitesimals and infinite numbers, which provides firm foundations to

several intuitive arguments in analysis that can be understood in such a language.

To give an example from combinatorial number theory, one can take a hyperfinite

natural number N (that is, N is an element of the nonstandard extension ∗N of N but not

of N itself; we denote this by writing N > N), and work with the so-called Loeb measure

corresponding to the natural counting measure on the hyperfinite set {1, 2, . . . , N}. This

set contains N but still behaves like a finite set in certain ways (hence the term “hyperfi-

nite”). This allows one to use measure-theoretic arguments to infer number theoretic state-
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ments in the nonstandard universe, which are logically equivalent to corresponding state-

ments in the standard universe.

Historically, nonstandard methods have been especially fruitful in probability the-

ory where many results in discrete and continuous probability can be understood using the

same intuition via a hyperfinite construction. The following excerpt from Albeverio et al.

succinctly highlights this general philosophy:

In this field hyperfinite structures play a particularly interesting and important
role, combining in the same model the combinatorial aspects of the discrete theory
and the analytic character of the continuous one. (Albeverio et al. [6, p. 107])

The aforementioned synthesis of combinatorial and analytic ideas is an important

feature of the applications of nonstandard analysis that are presented in this dissertation.

We briefly give an overview of these applications next. In our overview, we will only de-

scribe some key concepts from each chapter; refer to the introduction sections within each

individual chapter to get more precise references to the results in that chapter. As stated

earlier, the applications being presented in this dissertation can be roughly classified into

two parts.

The first part uses properties of hyperfinite-dimensional spheres to generalize cer-

tain results on limits of spherical integrals and their connections with Gaussian measures.

Aside from obtaining new standard results, this provides a new perspective in this field.

More concretely, it is well-known that for any k ∈ N, the joint distribution of the

first k coordinates of the sphere Sn−1(
√
n) in Rn with center at origin and radius

√
n, con-

verges to the standard Gaussian on Rk as n → ∞. This result has roots in physics and

goes back to Poincaré [80], Maxwell [74], and Boltzmann [21]. In Chapter 2, we provide a
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new proof by working with hyperfinite dimensional spheres.

The main machinery in Chapter 2 is a nonstandard theory for the asymptotic be-

havior of integrals over varying domains in general (which we also use to give a new proof

of the Riemann–Lebesgue lemma as a by-product). In nonstandard terminology, we then

show that for any function f : Rk → R with finite Gaussian moment of an order larger

than one, its expectation is given by a Loeb integral over a hyperfinite dimensional sphere.

Some useful inequalities between high-dimensional spherical means of f and its Gaussian

mean are obtained in order to complete the above proof.

In Chapter 3, we use the theory developed in the previous chapter to tackle a

generalization of the above asymptotic result that has origins in the works of Holmes–

Sengupta [52], Sengupta [90], and Peterson–Sengupta [79, 78] on Gaussian Radon trans-

forms. More concretely, Peterson and Sengupta proved that if a Gaussian measure has full

support on a finite-dimensional Euclidean space, then the expected value of a bounded

measurable function on that domain can be expressed as a limit of integrals over spheres

Sn−1(
√
n) intersected with certain affine subspaces of Rn. This allows one to realize the

Gaussian Radon transform of such functions as a limit of spherical integrals. We study

such limits in terms of Loeb integrals over a single hyperfinite dimensional sphere. This

nonstandard geometric approach generalizes the known limiting result for bounded contin-

uous functions to the case when the Gaussian measure is not necessarily fully supported.

The other part of this dissertation relates to exchangeability and de Finetti’s theo-

rem, a topic important for the foundations of Bayesian statistics (see, for example, Savage

[88, Section 3.7], and Orbanz–Roy [76]). The original formulation of de Finetti’s theorem
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says that an exchangeable sequence of Bernoulli random variables is a mixture of indepen-

dent and identically distributed (iid) sequences of random variables. In Chapter 4, we use

combinatorial arguments to show that this probability distribution is induced by a hyper-

finite sample mean. In Chapter 5, we provide a historical discussion on how de Finetti’s

theorem has been generalized in the literature and we set up the idea of our generaliza-

tion. In Chapter 6, we prove various preparatory results from nonstandard and topological

measure theory, before finally fitting together all the pieces of our generalization in Chap-

ter 7.

Very briefly, following the work of Hewitt and Savage, de Finetti’s theorem was

previously known for several classes of exchangeable random variables (for instance, for

Baire measurable random variables taking values in a compact Hausdorff space, and for

Borel measurable random variables taking values in a Polish space). Under an assump-

tion of the underlying common distribution being Radon, we show in Chapter 7 that de

Finetti’s theorem holds for a sequence of Borel measurable exchangeable random variables

taking values in any Hausdorff space. This includes and generalizes the currently known

versions of de Finetti’s theorem. Indeed, we are now able to remove the need to have any

assumptions on the state space, and show that it is the underlying distribution of the ran-

dom variables that is important. We use nonstandard analysis to first study the empirical

measures induced by hyperfinitely many identically distributed random variables, which

leads to a proof of de Finetti’s theorem in great generality while retaining the combinato-

rial intuition of the proof for Bernoulli random variables from Chapter 4.

The tools required in the above proof lie at the intersection of topological measure
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theory and nonstandard analysis, which we present in Chapter 5. While some of this ma-

terial can be viewed as a review of known results in topological measure theory (for which,

Topsøe [93] is our main reference), we provide a self-contained exposition that is aided by

perspectives provided from nonstandard analysis. This leads to both new proofs of known

results as well as some new results. An example of a classical technique benefitting from

this joint perspective is the technique of pushing down Loeb measures, which we are able

to interpret as the topological operation of finding a standard measure that an internal

measure is nearstandard to (with respect to the A-topology on the space of all Borel prob-

ability measures on a given topological space). This generalizes similar results obtained

in the context of the topology of weak convergence by Anderson [13, Proposition 8.4(ii),

p. 684], and by Anderson–Rashid [15, Lemma 2, p. 329] (see also Loeb [69]). This the-

ory is useful in proving a generalization of Prokhorov’s theorem as an intermediate conse-

quence. Our generalization of Prokhorov’s theorem postulates the sufficiency of uniform

tightness for relative compactness of a subset of the space of Borel probability measures on

any topological space (such a result was previously known for the space of Radon proba-

bility measures on any Hausdorff space). This version of Prokhorov’s theorem is used in

Chapter 6 as a key tool that allows pushing down certain internal measures on the space

of all Radon probability measures on a Hausdorff space.

At the heart of our argument for the generalization of de Finetti–Hewitt–Savage

theorem is a combinatorial result analogous to the approximate, finite version of de

Finetti’s theorem obtained by Diaconis and Freedman [32]. We establish a hyperfinite

version of such a result as a part of our proof. This hyperfinite version of the result of
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Diaconis and Freedman has a salient interpretation in terms of Bayes’ theorem (this inter-

pretation being fully and rigorously developed in Appendix E), which ties in nicely with

the relevance of de Finetti’s theorem in Bayesian statistics .

In the next section, we record some general topology and measure theory notation

and conventions that will be used in the rest of the dissertation. The remainder of the

present chapter provides a self-contained review of basic nonstandard methods (a signifi-

cant part of this discussion is borrowed from a similar introduction in the arXiv version of

Alam [4] and in Alam [5]) that will be used and referenced in the sequel.

1.2. General topology and measure theory notation

All measures considered in this dissertation are countably additive, and unless oth-

erwise specified, probability measures. We will usually work with probability measures on

the Borel sigma algebra B(T ) of a topological space T (thus B(T ) is the smallest sigma

algebra that contains all open subsets of T ).

Definition 1.2.1. A subset of a topological space is called a Gδ set if it is a countable

intersection of open sets. A topological space is called a Gδ space if all of its closed subsets

are Gδ sets.

Let us recall the various notions of separation in topological spaces (for further

topological background, we refer the interested reader to Kelley [60]):

(T1) A space T is called Fréchet if any singleton subset of T is closed.

(T2) A space T is called Hausdorff if any two points in it can be separated via open
sets. That is, given any two distinct points x and y in T , there exist disjoint open
sets G1 and G2 such that x ∈ G1 and y ∈ G2.

(T3) A space T is called regular if any closed set and a point outside that closed set can
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be separated via open sets. That is, given a closed set F ⊆ T and given x ∈ T\F ,
there exist disjoint open sets G1 and G2 such that x ∈ G1 and F ⊆ G2.

(T3 1
2
) A space T is called completely regular if any closed set and a point outside that
closed set can be separated via some bounded real-valued function. That is, given a
closed set F ⊆ T and x ∈ T\F , there is a continuous function f : T → [0, 1] such
that f(x) = 0 and f(y) = 1 for all y ∈ F .

(T4) A space T is called normal if any two disjoint subsets of T can be separated by
open sets. That is, given closed sets F1, F2 ⊆ T such that F1 ∩ F2 = ∅, there ex-
ist disjoint open sets G1 and G2 such that F1 ⊆ G1 and F2 ⊆ G2.

(T5) A space T is called hereditarily normal if all subsets of T (under the subspace
topology) are normal.

(T6) A space T is called perfectly normal if it is a normal Gδ space.

We now recall the definitions of some important classes of probability measures.

Definition 1.2.2. For a Hausdorff space T , a Borel probability measure µ is called tight if

given any ε ∈ R>0, there is a compact subset Kε such that the following holds:

µ(Kε) > 1− ε. (1.1)

An alternative way to write the above condition for tightness is the following:

µ(T ) = sup{µ(K) : K is a compact subset of T}. (1.2)

If a measure µ satisfies (1.2) with the occurrence of T replaced by any Borel sub-

set of T , then we call it a Radon measure. More formally we make the following definition

(the second line in the equality following from the fact that we are only considering proba-

bility, and in particular finite, measures).

Definition 1.2.3. For a Hausdorff space T , a Borel probability measure µ is called Radon

7



if for each Borel set B ∈ B(T ), the following holds:

µ(B) = sup{µ(K) : K ⊆ B and K is compact}

= inf{µ(G) : B ⊆ G and G is open}.

Note that the Hausdorffness of the topological space T was assumed in the previ-

ous definitions so as to ensure that the compact sets appearing in them were Borel mea-

surable (as a compact subset of any Hausdorff space is automatically closed). While not

typically done (as many results do not generalize to those settings), these definitions can

be made for arbitrary topological spaces if we replace the word “compact” by “closed and

compact”. See Schwarz [89, pp. 82-88] for more details on this generalization (Schwarz

uses the phrase ‘quasi-compact’ instead of ‘compact’ in this discussion). In this disserta-

tion, we will always have an underlying assumption of Hausdorffness of T during any dis-

cussions involving tight or Radon measures.

Remark 1.2.4. It is clear that all Radon measures are tight. Note that any Borel prob-

ability measure on a σ-compact Hausdorff space (that is, a Hausdorff space that can be

written as a countable union of compact spaces) is tight. Vakhania–Tarladze–Chobanyan

[96, Proposition 3.5, p. 32] constructs a non-Radon Borel probability measure on a partic-

ular compact Hausdorff space (the construction being attributed to Dieudonné). Thus, not

all tight measures are Radon.

Definition 1.2.5. Let T be a topological space and let K ⊆ B(T ). We say that a Borel

probability measure µ is outer regular on K if we have the following:

µ(B) = inf{µ(G) : B ⊆ G and G is open} for all B ∈ K.
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1.3. Nonstandard background

1.3.1. Basics of nonstandard extensions

There are many approaches to nonstandard analysis, eight of which were described

in Benci–Forti–di Nasso [17]. We follow the superstructure approach, as done in Albeverio

et al. [6].

In very broad terms, nonstandard analysis is a powerful framework in which for any

structure on a set S, we have a superset ∗S that has the same first-order structural prop-

erties (this is called the transfer principle), but has more “ideal” elements. For instance,

the set ∗R has the same first-order theory as R in a certain model-theoretic sense, but

it contains elements that are larger than all real numbers and positive elements that are

smaller than all positive real numbers. More generally, a property which is expressible us-

ing finitely many symbols without quantifying over any collections of subsets of S is true if

and only if the same property is true of ∗S. This is called the transfer principle (or just

transfer for brevity). The set ∗S should contain, as a subset, ∗T for each T ⊆ S.

Like subsets, other mathematical objects defined on S also have extensions. So, a

function f : S → T extends to a map ∗f : ∗S → ∗T , and relations on S extend to relations

on ∗S. Hence, there is a binary relation ∗ < on ∗R, which we still denote by < (an abuse

of notation that we frequently make), and which is the same as the usual order when re-

stricted to R. Thus, ∗R is an ordered field. Indeed all the axioms for ordered fields hold

for it by transfer. The symbols in a sentence such as “∀x > 0 ∃y(x = y2)” (which is ex-

pressing the proposition that each positive number has a square root) have new meanings

in the nonstandard universe: by “ < ”, we are now interpreting the extension of the order
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on R. Yet the sentence is true in ∗R by transfer!

We shall soon see (cf. Proposition 1.3.2) that any “non-trivial” extension of R con-

tains infinite elements (that is, those that are larger than all real numbers in absolute

value), as well as infinitesimal elements (that is, those that are smaller than all positive

real numbers in absolute value). Thus, ∗R is not Archimedean. The set of finite nonstan-

dard real numbers, denoted by ∗Rfin, is a subring of the non-Archimedean field ∗R. To

see what went wrong, note that the following sentences formally express the Archimedean

property for R and its transfer, respectively:

∀x ∈ R ∃ n ∈ N (n > x). (1.3)

∀x ∈ ∗R ∃ n ∈ ∗N (n > x). (1.4)

The transferred sentence (1.4) no longer expresses the Archimedean property

(though it still expresses an interesting fact about ∗R). The issue is that we are only able

to quantify over ∗N (and not over N) after transfer. To keep quantifying over N, we would

have to transfer an “infinite statement” (saying that for every x, either 1 > x, or 2 > x, or

3 > x, or . . .), which is not a valid first-order sentence.

A non-first-order property may not transfer. An example is the least upper bound

principle—the set N, viewed as a subset of ∗R, is bounded (by any positive infinite ele-

ment), yet has no least upper bound (as any upper bound minus one is also an upper

bound). The issue here is that the least upper bound property for R is expressed via the
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second-order statement:

∀A ⊆ R

〈 [∃x ∈ R(∀y ∈ R{(y ∈ A)→ (y ≤ x)})]→

∃z ∈ R

{(∀y ∈ R [(y ∈ A)→ (y ≤ z)])

∧ [∀w ∈ R(∀y ∈ R{[(y ∈ A)→ (y ≤ w)]→ (z ≤ w)})]} 〉.

One way to express this as a first-order statement is to quantify over the power-

set, P(R), of R. If our nonstandard map ∗ was able to extend sets of subsets of X as well,

then the above would transfer to the following *-least upper bound property :

∀A ∈ ∗P(R)

〈 [∃x ∈ ∗R(∀y ∈ ∗R{(y ∈ A)→ (y ≤ x)})]→

∃z ∈ ∗R

{(∀y ∈ ∗R [(y ∈ A)→ (y ≤ z)])

∧ [∀w ∈ ∗R(∀y ∈ ∗R{[(y ∈ A)→ (y ≤ w)]→ (z ≤ w)})]} 〉.

Notice that any quantification over a standard set was “transferred” to a quantifica-

tion over the corresponding nonstandard extension of that set. The non-quantified occur-

rences of ∈ in the original sentence were as relation symbols (that is, ‘a ∈ b’ is true just in

case a is an element of b). Strictly speaking, an occurence of a relation (or function) sym-

bol must be transferred to the nonstandard extension of that relation (function) symbol.
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Thus, the second line of the transferred sentence must technically be

[∃x ∈ ∗R(∀y ∈ ∗R{(y ∗ ∈ A)→ (y ∗ ≤ x)})].

However, as before, we suppress the ∗ on the transferred relation symbols for better read-

ability.

In practice, we often write informal logic sentences as long as it is clear that they

can be made formal. For instance, instead of writing

(∀y ∈ R{(y ∈ A)→ (y ≤ x)}),

one would often write ‘∀y ∈ A(y ≤ x)’.

The above discussion implies that N is not an element of ∗P(R) (as it does not sat-

isfy the ∗-least upper bound property), whatever the latter object is. By the transfer of

the sentence “∀A ∈ P(R) ∀x ∈ A (x ∈ R)”, the object ∗P(R) would in fact be a subset

of P(∗R). The previous example leads to the observation that ∗P(R) is not a superset of

P(R) in the literal sense. It does, however, contain as an element the extension ∗A for any

A ∈ P(R).

In general, we fix a set S consisting of atoms (that is, we view each element of S

as an “individual” without any structure, set-theoretic or otherwise), and extend what is

called the superstructure V (S) of S, which is defined inductively as follows (here, for any

set A, the set P(A) denotes the power set of A):
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V0(S) := S,

Vn+1(S) := P(Vn(S)) for all n ∈ N,

V (S) :=
⋃
n∈N

Vn(S).

(1.5)

Choosing S suitably, the superstructure V (S) can be made to contain all mathe-

matical objects relevant for a given theory. For example, if R ⊆ S, then all collections of

subsets of R live as objects in V2(S) ⊆ V (S). For a finite subset consisting of k objects

from Vm(S), the ordered k-tuple of those objects is an element of Vn(S) for some larger n;

and hence the set of all k-tuples of objects in Vm(S) lies as an object in Vn+1(S). For ex-

ample, if x, y ∈ Vm(S), then the ordered pair (x, y) is just the set {{x}, {x, y}} ∈ Vm+2(S).

Identifying functions and relations with their graphs, V (S) also contains, if R ⊆ S, all

functions from Rn to R, all relations on Rn, etc., for all n ∈ N.

We extend the superstructure V (S) via a nonstandard map,

∗ : V (S)→ V (∗S),

which, by definition, is any map satisfying the following axioms:

(NS1) The transfer principle holds.

(NS2) ∗α = α for all α ∈ S.

(NS3) {∗a : a ∈ A} ( ∗A for any infinite set A ∈ V (S).

A nonstandard map may not be unique. In practice, however, we fix a standard

universe V (S) and a nonstandard map ∗. The reader is referred to Chang–Keisler [24,

Theorem 4.4.5, p. 268] or Albeverio et al. [6, Chapter 1] for a proof of the existence of a

nonstandard map.
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An object that belongs to ∗A for some A ∈ V (S) is called internal. A useful way to

understand this concept is to think that internal objects are those that inherit properties

from their standard counterparts by transfer. For instance, the internal subsets of ∗S are

precisely the elements of ∗P(S)—a (reasonable) property satisfied by all elements of P(S)

(that is, by all subsets of S) will thus transfer to all internal sets. As a consequence, the

class of internal sets is closed under Boolean operations such as finite unions, finite inter-

sections, complements, etc.

Definition 1.3.1. For a cardinal number κ, a nonstandard extension is called κ-saturated

if any collection of internal sets that has cardinality less than κ and that has the finite in-

tersection property has a non-empty intersection.

We will henceforth assume that the nonstandard extension we work with is suffi-

ciently saturated (cf. Chang and Keisler [24, Lemma 5.1.4, p. 294 and Exercise 5.1.21, p.

305]). The next proposition shows that infinite (and infinitesimal) elements do exist in any

sufficiently saturated nonstandard extension.

Proposition 1.3.2. ∗R contains infinite as well as infinitesimal elements.

Proof. By saturation, the set ∩n∈N{x ∈ ∗R : x > n} is non-empty. It is clear that any

element in this set must be infinite. The multiplicative inverse of any infinite element is

infinitesimal.

The following consequence of saturation will be useful in the sequel (see also [6,

Lemma 3.1.1, p. 64]).

Proposition 1.3.3. A countable union of disjoint internal sets is internal if and only if

all but finitely many of them are empty.
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Proof. Suppose {Ai}i∈N is a countable collection of disjoint internal sets. Let A = ∪i∈NAi.

If all but finitely many of the Ai are empty, then A being a finite union of internal sets is

also internal due to transfer.

Conversely, if A is internal, then A\Ai is internal for each i ∈ N by transfer. In that

case, if all but finitely many of the Ai are not empty, then the collection {A\Ai}i∈N would

satisfy the finite intersection property. By saturation, this would lead to ∩i∈N(A\Ai) 6= ∅,

which is absurd. This completes the proof by contradiction.

The next result says that all legitimately nonstandard natural numbers (that is,

those elements of ∗N that are not elements of N) are infinite (this gives an alternative

proof of Proposition 1.3.2 as well).

Proposition 1.3.4. Any N ∈ ∗N\N is infinite. We express this by writing N > N.

Proof. Let N ∈ ∗N\N. Suppose, if possible, that N is finite. In particular, there exist ele-

ments of N that are larger than N . Thus the set {n ∈ N : n > N} is non-empty and hence

has a smallest element, say n0. By transfer of the fact that elements in N are at least one

unit apart, we know that n0−N ≥ 1. If n0−N = 1, then N = n0−1 ∈ N, a contradiction.

Hence, we must have n0 − N ≥ 2 (by transfer of the fact that if the distance between two

natural numbers is larger than one, then it is at least two). But then n0 − 1 ≥ N + 1 and

n0 − 1 ∈ N, contradicting the minimality of n0.

As discussed earlier, the existence of an infinite element in ∗R implies that the set

N has an upper bound in ∗R, but it does not have a least upper bound. Since all bounded

internal subsets of ∗R have a least upper bound in ∗R by transfer, it follows that the set N
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is not internal. The following useful result is a consequence of this fact. See also Albeverio

et al. [6, Proposition 1.2.7, p.21].

Proposition 1.3.5. Let A be an internal set.

(i) [Overflow] If N ⊆ A, then there is an N > N such that

{n ∈ ∗N : n ≤ N} ⊆ A.

(ii) [Underflow] If A contains all hyperfinite natural numbers, then there is an n0 ∈ N
such that ∗N≥n0

:= {n ∈ ∗N : n ≥ n0} ⊆ A.

Proof. To see (i), note that if N ⊆ A, then the internal set B := {m ∈ ∗N : ∀k ∈

∗N((k ≤ m) → (k ∈ A))} contains N. Since N is not internal, there must exist an N ∈

(∗N\N) ∩B, which completes the proof.

The proof of (ii) follows similarly, using the fact that ∗N\N is not internal. Indeed

if ∗N\N ⊆ A, then the internal set C := {m ∈ ∗N : ∀k ∈ ∗N((k ≥ m)→ (k ∈ A))} contains

∗N\N. Since ∗N\N is not internal, there must exist an n0 ∈ [∗N\(∗N\N)] ∩ C = N ∩ C,

which completes the proof.

We have seen several examples of internal sets and functions—∗N, ∗R, ∗f (for any

standard function f), etc. Unlike these examples, (NS3) guarantees the existence of in-

ternal objects that are not ∗α for any α ∈ V (S). For instance, for any N > N, the set

{1, . . . , N} of the “first N nonstandard natural numbers” is internal, yet it does not equal

the nonstandard extension of any standard set. This set is rigorously defined as the initial

segment of N in ∗N. The fact that it is internal follows from the transfer of the following

sentence:
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∀n ∈ N ∃!A ∈ P(N) [∀x ∈ N(x ∈ A↔ x ≤ n)].

For a standard set A, let Pfin(A) denote the collection of finite subsets of A. There

is a function #: Pfin(A) → N ∪ {0} that counts the number of elements in each finite sub-

set. By transfer, we have a corresponding counting function ∗#: ∗Pfin(A) → ∗N ∪ {0}

(which we often still denote by # by an abuse of notation) that satisfies the same first

order properties as the usual counting function (for example, it satisfies the inclusion-

exclusion principle). The elements of ∗Pfin(A) are called the hyperfinite subsets of ∗A. Hy-

perfinite sets behave like finite sets even though they are not finite in the standard sense.

For instance, an internal set H is hyperfinite if and only if there is an N ∈ ∗N and an in-

ternal bijection f : H → {1, . . . , N}.

There is a “sum function” that takes any finite set of real numbers as an input and

produces the sum of those real numbers. By transfer, we can thus abstractly make sense of

“hyperfinite sums” (that is, the sum of hyperfinitely many nonstandard real numbers). For

nonstandard real numbers ai, this is the sense in which we interpret objects such as
N∑
i=1

ai

where N ∈ ∗N (or in general,
∑
i∈H

ai, where H is a hyperfinite set).

The next result says that one can think of a finite nonstandard real number z as

having a real part, and an infinitesimal part (in fact, this real part is just sup{y ∈ R : y ≤

z}). See Cutland [26, Theorem 2.10, p. 55] for a proof.

Proposition 1.3.6. For all z ∈ ∗Rfin, there is a unique x ∈ R (called the standard part of

z) such that (z − x) is infinitesimal. We write st(z) = x or z ≈ x.
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The next result gives a nice characterization of limit points of sequences in terms of

standard parts of terms with hyperfinite indices (see Cutland [26, Theorems 3.1 and 3.3]

for proofs of the two statements):

Proposition 1.3.7. For a sequence of real numbers {an}n∈N, there is an extended se-

quence {an}n∈∗N (by viewing the original sequence as a function on N). A real number L

is an accumulation point of the sequence {an}n∈N ⇐⇒ there is an N > N such that

st(aN) = L. Thus lim an = L ⇐⇒ st(aN) = L for all N > N.

1.3.2. Nonstandard extensions of topological spaces

Note that, more generally, one can define the notion of standard parts for elements

in the nonstandard extension of any Hausdorff space. In general, we will need a point to

be nearstandard, instead of finite, for it to have a standard part. We develop this idea

next.

Let T be a topological space. For a point y ∈ T , we can think of points infinites-

imally close to y in ∗T as the set of points that lie in the nonstandard extensions of all

open neighborhoods of y. More formally, we define:

st−1(y) := {x ∈ ∗T : x ∈ ∗G for any open set G containing y}. (1.6)

The notation in (1.6) is suggestive—given a point x ∈ ∗T , we may be interested in

knowing if it is infinitesimally close to any standard point y ∈ T , in which case it would

be nice to call y as the standard part of x (written y = st(x)). The issue with this is that

for a general topological space T , there is no guarantee that if a nonstandard point x is

nearstandard (that is, if there is a y ∈ T for which x ∈ st−1(y)) then it is also uniquely
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nearstandard to only one point of T . This pathological situation is remedied in Hausdorff

spaces. Indeed, given two standard points x1 and x2 in a Hausdorff space T , one may sep-

arate them by open sets (say) G1 and G2 respectively, so that ∗G1 and ∗G2 are disjoint,

thus making st−1(x1) and st−1(x2) also disjoint.

Conversely, thinking along the same lines, if the standard inverses of any two dis-

tinct points are disjoint, then those points can be separated by disjoint open sets. Thus,

we have the following nonstandard characterization of Haudorffness (see also [6, Proposi-

tion 2.1.6 (i), p. 48]):

Lemma 1.3.8. A topological space T is Hausdorff if and only if for any distinct elements

x, y ∈ T , we have st−1(x) ∩ st−1(y) = ∅.

Regardless of whether T is Hausdorff or not, (1.6) allows us to naturally talk about

st−1(A) for subsets A ⊆ T . That is, we define:

st−1(A) := {y ∈ ∗T : y ∈ st−1(x) for some x ∈ A}. (1.7)

Using this notation, Lemma 1.3.8 can be immediately modified to obtain the fol-

lowing nonstandard characterization of Hausdorffness, which will be useful in the sequel.

Lemma 1.3.9. A topological space T is Hausdorff if and only if for any disjoint collection

(Ai)i∈I of subsets of T (indexed by some set I), we have

st−1

(⊔
i∈I

Ai

)
=
⊔
i∈I

st−1(Ai), (1.8)

where t denotes a disjoint union.

We define the set of nearstandard points of ∗T as follows:

Ns(∗T ) := st−1(T ).
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Thus, by Lemma 1.3.8, if T is Hausdorff then st : Ns(∗T )→ T is a well-defined map.

Using the notation in (1.7), there are succinct nonstandard characterizations of

open, closed, and compact sets, which we note next (see [6, Proposition 2.1.6, p. 48], with

the understanding that Albeverio et al. only use the set function st−1 when the underlying

space is Hausdorff, but that is not needed for these characterizations).

Theorem 1.3.10. Let T be a topological space.

(i) A set G ⊆ T is open if and only if st−1(G) ⊆ ∗G.

(ii) A set F ⊆ T is closed if and only if for all x ∈ ∗F ∩ Ns(∗T ), the condition x ∈
st−1(y) implies that y ∈ F .

(iii) A set K ⊆ T is compact if and only if ∗K ⊆ st−1(K).

Using the standard inverse notation, we also have the following useful characteriza-

tion of continuity (see, for example, Albeverio et al. [6, Proposition 1.3.3, p. 27]):

Proposition 1.3.11. Let S and T be topological spaces, and let f : S → T be a function.

Then f is continuous at x ∈ S if and only if ∗f(st−1(x)) ⊆ st−1(f(x)).

Proof. First suppose that f is continuous at x ∈ S. Let V be any open neighborhood of

f(x) in T . By continuity, there exists an open neighborhood U of x in S such that f(U) ⊆

V . If y ∈ st−1(x), then we have, by definition, y ∈ ∗U , and hence by transfer (of the

sentence ‘∀z ∈ U(f(z) ∈ V )’) we have ∗f(y) ∈ ∗V . Since V was an arbitrary open neigh-

borhood of f(x), this shows that ∗f(y) ∈ st−1(f(x)) for all y ∈ st−1(x), completing the

proof of the “only if” part.

Conversely, suppose that ∗f(st−1(x)) ⊆ st−1(f(x)). Let V be any open neighbor-

hood of f(x) in T . If τ(S) denotes the topology on S and if τ(x) denotes the collection of
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open neighborhoods of x, then the for each U ∈ τ(x), we define GU := {U ∈ ∗τ(S) : U ⊆

∗U}. This is nonempty as we have ∗U ∈ GU , and by the same argument we also have that

the collection {GU : U ∈ τ(x)} satisfies the finite intersection property. By saturation,

we find some U ∈ ∩U∈τ(x)GU . Then, by construction, we have U ⊆ st−1(x). As a conse-

quence, ∗f(U) ⊆ st−1(f(x)) ⊆ ∗V . Thus, given this open neighborhood V of f(x) in T , the

following sentence is true in the nonstandard universe:

∃U ∈ ∗τ(S) ((x ∈ U) ∧ (∀y ∈ U(∗f(y) ∈ ∗V ))).

By transfer, we find an open neighborhood U of x such that f(U) ⊆ V , thus showing that

f is continuous at x. This completes the proof.

The following technical consequence of Theorem 1.3.10 will be useful in Section 7.2.

Lemma 1.3.12. Suppose (Fi)i∈I is a collection of closed subsets of a Hausdorff space T

(where I is an index set). Suppose that K := ∩i∈IFi is compact. Then for any open set G

with K ⊆ G, we have:

∗K ⊆

[(⋂
i∈I

∗Fi

)
∩Ns(∗T )

]
⊆ ∗G. (1.9)

Proof. The first inclusion in (1.9) is true since ∗K ⊆ ∗Fi for all i ∈ I (which follows be-

cause K ⊆ Fi for all i ∈ I), and since K is compact (so that all elements of ∗K are near-

standard by Theorem 1.3.10(iii)). To see the second inclusion in (1.9), suppose we take

x ∈ ∩i∈I (∗Fi ∩Ns(∗T )). Since T is Hausdorff, x ∈ Ns(∗T ) has a unique standard part,

say st(x) = y ∈ T . Since Fi is closed for each i ∈ I, it follows from the nonstandard

characterization of closed sets (Theorem 1.3.10(ii)) that y ∈ Fi for all i ∈ I. As a conse-

quence, y ∈ K ⊆ G. Thus by the nonstandard characterization of open sets (see Theorem
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1.3.10(i)), it follows that x ∈ ∗G, thus completing the proof.

If T is a topological space and T ′ ⊆ T is viewed as a topological space under the

subspace topology (thus a subset G′ ⊆ T ′ is open in T ′ if and only if G′ = T ′ ∩ G for some

open subset G of T ), then there are multiple ways to interpret (1.7). There is a similar

issue in general when we have two topological spaces in which we could be taking stan-

dard inverses. We will generally use ‘st’ and ‘st−1’ for all such usages when the underlying

topological space is clear from context. If it is not clear from context, then we mention the

space in a subscript. Thus in the above situation where T ′ ⊆ T , we denote by st−1
T and

st−1
T ′ the corresponding set functions on subsets of T and T ′ respectively. Thus, for subsets

A ⊆ T and A′ ⊆ T ′, we have:

st−1
T (A) = {x ∈ ∗T :

∃y ∈ A such that x ∈ ∗G for all open neighborhoods G of y in T},

and

st−1
T ′ (A

′) = {x ∈ ∗T :

∃y ∈ A′ such that x ∈ ∗G′ for all open neighborhoods G′ of y in T ′}.

The following useful relation is immediate from the fact that the nonstandard ex-

tension of a finite intersection of sets is the same as the intersection of the nonstandard

extensions.

Lemma 1.3.13. Let T be a topological space and let T ′ ⊆ T be viewed as a topological

space under the subspace topology. For a subset A ⊆ T ′ ⊆ T , we have:

∗T ′ ∩ st−1
T (A) ⊆ st−1

T ′ (A).
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1.3.3. Loeb measures

Let (T,A, ν) be an internal probability space (that is, T is an internal set, A is an

internal algebra of subsets of T, and ν : A → ∗[0, 1] is an internal finitely additive function

with ν(T) = 1). There are multiple equivalent ways to define the so-called Loeb measure

(which is a standard measure on a sigma algebra containing A) induced by ν; see Loeb

[67] for the original exposition. We adopt the definition using inner and outer measures

(see Albeverio et. al. [6, Remark 3.1.5, p. 66]). Formally, we define, for any A ⊆ T,

ν(A) := sup{st(ν(B)) : B ∈ A and B ⊆ A}, and

ν(A) := inf{st(ν(B)) : B ∈ A and A ⊆ B}. (1.10)

The collection of sets for which the inner and outer measures agree form a sigma

algebra called the Loeb sigma algebra L(A). The common value ν(A) = ν(A) in that case

is defined as the Loeb measure of A, written Lν(A). We call (T, L(A), Lν) the Loeb space

of (T,A, ν). More formally, we have:

L(A) := {A ⊆ T : ν(A) = ν(A)}, (1.11)

and

Lν(A) := ν(A) = ν(A) for all A ∈ L(A). (1.12)

When the internal measure ν is clear from context, we will frequently write

‘Loeb measurable’ (in the contexts of both sets and functions) to mean measurable with

respect to the corresponding Loeb space (T, L(A), Lν). Note that the Loeb sigma algebra

L(A), as defined above, depends on the original internal measure ν on (T,A)—we will use

23



appropriate notation such as Lν(A) to indicate this dependence if there is any chance of

confusion regarding the original measure inducing the Loeb sigma algebra. If we use the

notation L(A), then it is understood that a specific internal measure ν has been fixed on

(T,A) during that discussion.

There is a more abstract way of defining the Loeb measure Lν from an internal

probability space (T,A, ν) which is sometimes useful to think in terms of as well. We first

note that st(ν) : A → [0, 1] is a finitely additive probability measure on an algebra. By

Proposition 1.3.3, it follows that st(ν) satisfies the premises of Carathéodory Extension

Theorem. By that theorem, it extends to a standard probability measure on the smallest

sigma algebra containing A (this is denoted by σ(A)). Then the Loeb measure Lν hap-

pens to be the completion of this standard measure on (T, σ(A)), and L(A) is a sigma

algebra containing σ(A) that arises out of this completion. Note that this construction

could have been done with any finite internal measure ν.

In the Loeb integration theory that will be explained next, we will use the following

simplification of Ross [84, Theorem 5.1, p. 105] extensively:

Proposition 1.3.14. Let (T, L(A), Lν) be the Loeb probability space of (T,A, ν). Suppose

F : T → ∗R is an internal function that is measurable in the sense that F−1(B) ∈ A for

all B ∈ ∗B(R) (where B(R) is the Borel σ-algebra on R). If F (x) ∈ ∗Rfin for Lν-almost

all x ∈ T, then st(F ) is Loeb measurable (i.e., measurable as a map from (T, L(A)) to

(R,B(R))).

For any probability measure ν, there is an integral operator
ˆ

that takes certain

functions (those in the space L1(ν) of integrable real-valued functions on the underlying

24



sample space of ν) to their integrals with respect to ν. By transfer, for any internal proba-

bility space (T,A, ν), we also have the associated space ∗L1(T, ν) of ∗-integrable functions,

and a corresponding ∗-integral operator
∗ˆ

. For any ∗-integrable F : T→ ∗R, one then has
∗ˆ

T

Fdν ∈ ∗R, which we call the ∗-integral of F over (T,A, ν).

The ∗-integral on ∗L1(T) inherits many properties (an important one being linear-

ity) from the ordinary integral by transfer. If F is finite almost surely with respect to the

corresponding Loeb measure, then st(F ) is Loeb measurable by Proposition 1.3.14. In

that case, it is interesting to study the relation between the ∗-integral of F and the Loeb

integral of st(F ). The following result covers this for a useful class of functions (see Ross

[84, Theorem 6.2, p.110] for a proof):

Theorem 1.3.15. Suppose (T,A, ν) is an internal probability space and F ∈ ∗L1(T, ν) is

such that Lν(F ∈ ∗Rfin) = 1. Then the following are equivalent:

(1)
∗ˆ

T

|F | dν ∈ ∗Rfin, and

st

(∗ˆ
T

|F | dν
)

= lim
m→∞

st

(∗ˆ
T

|F |1{|F |≤m}dν
)
.

(2) For every M > N, we have st

(∗ˆ
T

|F |1{|F |>M}dν
)

= 0.

(3)
∗ˆ

T

|F | dν ∈ ∗Rfin; and for any A ∈ A we have:

ν(A) ≈ 0⇒
∗ˆ

T

|F |1Adν ≈ 0.

(4) st(F ) is Loeb integrable, and st

(∗ˆ
T

|F | dν
)

=

ˆ
T

|st(F )| dLν.

A function satisfying the conditions in Theorem 1.3.15 is called S -integrable on
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(T,A, ν). The notion of S-integrability, first developed by Anderson [11], is one of the

most ubiquitous concepts in nonstandard measure theory.

Given a Loeb measurable f : T → R, a natural question to ask is whether or not

it occurs as the standard part of an internal function. An internal measurable function

F : T→ ∗R is called a lifting of a Loeb measurable function f if Lν(st(F ) = f) = 1.

The following theorem shows that ∗-integrable functions can be characterized as

those possessing S-integrable liftings (see Ross [84, Theorem 6.4, p.111] for a proof).

Theorem 1.3.16. Let (T,A, ν) be an internal probability space and let (T, L(A), Lν) be

the associated Loeb space. Suppose f : T → R is Loeb measurable. Then f is Loeb inte-

grable if and only if it has an S-integrable lifting.

Using S-integrability, we now obtain a result that we will later use in our proof of

de Finetti’s theorem for Bernoulli random variables. The following result is applicable to

more general situations (refer to the settings in Sections 3.4 and 3.5 of Albeverio et al.

[6]). However, we restrict to compact Hausdorff spaces and real-valued functions on them

for convenience.

Theorem 1.3.17. Let S be a compact Hausdorff space. Suppose ∗B(S) is the internal al-

gebra of ∗-Borel subsets of S. Let ν be an internal (finitely additive) probability measure on

(∗S, ∗B(S)). Let Lν be the associated Loeb measure. Define a map µ : B(S)→ [0, 1] by:

µ(B) := Lν(st−1(B)) for all B ∈ B(S). (1.13)

Then, we have:

(i) µ is a Radon probability measure.
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(ii) For any nonnegative continuous function f : S → R≥0, we have:
∗ˆ

∗S

∗fdν ≈
ˆ
S

fdµ. (1.14)

Proof. Note that since S is a compact space, we have st−1(S) = ∗S. That µ is well-defined

(that is, st−1(B) is Loeb measurable for each B ∈ B(S)) and is a Radon measure then

follow from Proposition 3.4.5 and Corollary 3.4.3 in Albeverio et al. [6, pp. 88-89].

To see (ii), let f : S → R≥0 be a nonnegative function (which is automatically

bounded, as the domain is a compact space). Since f is bounded, it follows that st(∗f)

is Loeb measurable, satisfying the following (see Proposition 1.3.14 and (2) ⇒ (4) of Theo-

rem 1.3.15):

∗ˆ
∗S

∗fdν ≈
ˆ
∗S

st(∗f)dLν. (1.15)

Also, with λ denoting the one-dimensional Lebesgue measure, we have (since st(∗f)

is nonnegative):

ˆ
∗S

st(∗f)dLν =

ˆ
(0,∞)

Lν {x ∈ ∗S : st(∗f(x)) > y} dλ(y)

=

ˆ
(0,∞)

Lν {x ∈ ∗S : f(st(x)) > y} dλ(y). (1.16)

We used the nonstandard characterization of continuity (i.e., that st(∗f(x)) =

∗f(st(x)) for all nearstandard points x ∈ ∗S, which in our case includes all x ∈ ∗S since S

is compact) to obtain (1.16) in the above.

For y ∈ (0,∞), let

Ay := {x ∈ ∗S : f(st(x)) > y}

and By := {x ∈ S : f(x) > y}.
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It is routine to verify that

Ay = st−1(By) for all y ∈ (0,∞). (1.17)

Thus, (1.16) becomes:

ˆ
∗S

st(∗f)dLν =

ˆ
(0,∞)

Lν(Ay)dλ(y)

=

ˆ
(0,∞)

Lν(st−1(By))dλ(y)

=

ˆ
∗S

st(∗f)dLν

=

ˆ
(0,∞)

µ(By)dλ(y)

=

ˆ
S

fdµ. (1.18)

Equations (1.15) and (1.18) complete the proof.

We finish our review of basic nonstandard methods with the following remark

about the nature of the standard universe we are extending in this dissertation.

Remark 1.3.18. Let S be a set of urelements and let V (S) be its superstructure. As

discussed earlier, we fix a sufficiently saturated nonstandard extension of V (S). In Chap-

ters 2 and 3, we work with measures defined on a sequence of measure spaces, and want

to construct a natural Loeb measure on any element in the nonstandard extension of

such a sequence. One issue in doing so could be that the measure spaces might not all

lie in a single iterated power set over S (in which case, we cannot think of the sequence

of measure spaces as an element of V (S)). In particular, this would be an issue if our

measure spaces were the Borel spaces (Rn,B(Rn)) and S was the set of real numbers. To
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get around this difficulty, we take a set S that contains (copies of) Rn for each n ∈ N (or

copies of any other standard sets that may be under consideration).
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Chapter 2. Limiting Probability Measures and Revisiting a
Theorem of Boltzmann–Maxwell–Poincaré

2.1. Introduction

Gaussian measures have been mathematically connected with the uniform surface

area measures on high-dimensional spheres since at least the time of Poincaré, who ob-

served in [80] that if n real numbers are randomly chosen under the constraint that their

sum of squares equals n (this is equivalent to choosing a random vector on Sn−1(
√
n), the

sphere in Rn centered at the origin, of radius
√
n), then as n → ∞, the probability distri-

bution of the first number converges to that of a standard Gaussian random variable (that

is, with zero mean and covariance equaling one). Considering works on the kinetic theory

of gases in Physics, this connection goes back another century (we briefly outline this con-

nection with Physics in Appendix A). We will attribute this result to Poincaré for having

made the connection explicit.

For any sphere S centered at the origin in a Euclidean space, there is a unique or-

thogonal transformation invariant probability measure σ̄S (we will omit the subscript when

the sphere under consideration is clear from context). For each k ∈ N and n ∈ N≥k, let

π
(n)
k : Rn → Rk denote the projection on to the first k coordinates under the standard basis

(we will omit the superscript when the dimension is clear from context). For a Borel set

B ⊆ Rk, we write:

σ̄Sn−1(
√
n)(B) := σ̄Sn−1(

√
n)[S

n−1(
√
n) ∩ (π

(n)
k )−1(B)].

In the same spirit, we identify each measurable function f : Rk → R with a function

on Rn by composing it with the projection π(n)
k . This allows us to talk about integrals of
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such an f over domains in Rn for n ∈ N≥k.

We let µ(k) denote the standard Gaussian measure on Rk (again, omitting the sub-

script when the dimension is clear). With these conventions, we may write Poincaré’s ob-

servation succinctly in terms of the following limit.

lim
n→∞

σ̄Sn−1(
√
n)(B) = µ(B) for all Borel sets B ⊆ R. (2.1)

By standard measure theory, it is not difficult to see that the above can be

rephrased in a more general form as follows. (As discussed above, the integral on the

left side of (2.2) will be understood as that of the function f ◦ π(n)
k for all n ∈ N>k.)

Theorem 2.1.1 (Poincaré, [80]). For all bounded measurable functions f : Rk → R, we

have

lim
n→∞

ˆ
Sn−1(

√
n)

fdσ̄ =

ˆ
Rk
fdµ. (2.2)

Similar ideas were later used by Lévy [64] to do infinite dimensional analysis, and

then by Wiener [100] to construct Brownian motion. McKean [75] surveyed most of the

relevant work from that period. Cutland and Ng explored these themes using nonstandard

analysis (which provides the language of hyperfinite dimensional spheres) in [25]. They

gave a new construction of the Wiener measure using the nonstandard machinery.

The current chapter may be considered a sequel to [25] in some sense. Indeed one

of our aims is to view the above classical result (Theorem 2.1.1) as a statement about

Loeb integrals on hyperfinite dimensional spheres, and obtain the same result for a larger

class of functions. Toward that end, we give a new nonstandard proof of Poincaré’s theo-

rem in Section 2.2.3. A novel feature of this proof is that it does not require any explicit
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integral calculations – it follows from straightforward applications of the weak law of large

numbers and the definition of the uniform surface area measure on a sphere as a pushfor-

ward of a Gaussian measure. In Section 2.3, we also establish a nonstandard approach of

extending such results from bounded measurable functions to other classes of functions.

The general framework described in Sections 2.2 and 2.3 may be thought of as an invi-

tation to apply nonstandard analysis to other asymptotic problems in probability and

measure theory. One such application is carried out in [2] to generalize recent works of

Sengupta [90] and Peterson–Sengupta [79] that connect Gaussian Radon transforms with

limiting spherical integrals. This generalization is the topic of Chapter 3.

We also give a classical standard proof of Theorem 2.1.1 in Section 2.4.1 – it follows

by dominated convergence theorem once the integral over the sphere is “disintegrated”

properly (for example, using Sengupta [90, Proposition 4.1]). As pointed out in Remark

2.4.1, this proof of Theorem 2.1.1 does not immediately generalize to work for an arbitrary

µ–integrable function. The nonstandard framework of Section 3 allows one to get condi-

tions (see Theorems 2.3.1 and 2.3.4) under which a result of the type of Theorem 2.1.1

for bounded measurable functions (over general domains) can be extended to unbounded

functions. Though we do not use this terminology, the framework in Section 2.3 is similar

to the framework of graded probability spaces, as in Hoover [54] and Keisler [59].

Aside from its application to spherical integrals, the approach of Section 2.4 is po-

tentially useful in many other situations in which limits of integrals may be studied. A

new proof of the Riemann-Lebesgue Lemma is provided (see Theorem 2.3.5) as an ex-

ample of its use. Finally, in order to verify the sufficient conditions from Section 4 in the
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case of spherical integrals, we also prove some inequalities between spherical means and

Lp(Rk, µ) norms of functions on Rk (see Theorem 2.4.6 and Corollary 2.4.7). Thus, the

main results of this chapter can be divided into three types:

• Results viewing the limiting behavior of integrals over varying abstract domains as
a single integral over a nonstandard domain.

• Inequalities between spherical integrals and Gaussian integrals.

• Applications of the results of the above types to systematically generalize Theorem
2.1.1 on limiting spherical integrals to a bigger class of functions.

2.1.1. Summary and motivation of our key results

Recall that for a Borel measurable function f : Rk → R, we are interested in

lim
n→∞

ˆ
Sn−1(

√
n)

f(x1, . . . , xk)dσ̄(x1, . . . , xn),

where we view f as a function on Rn by first projecting the input into the first k coordi-

nates. Assuming Theorem 2.1.1, if f is bounded, then we know from (2.2) that this limit

is equal to the expected value of f with respect to the standard Gaussian measure µ on

Rk. Since we are assuming the limiting result (2.2) for bounded functions, we have (us-

ing 1B to denote the indicator function of a set B) the following for a possibly unbounded

Borel measurable function f : Rk → R.

lim
m→∞

lim
n→∞

ˆ
Sn−1(

√
n)

f1|f |≤mdσ̄ = lim
m→∞

ˆ
Rk
f1|f |≤mdµ =

ˆ
Rk
fdµ. (2.3)

However, we wanted to find lim
n→∞

ˆ
Sn−1(

√
n)

fdσ̄, which (assuming that f is inte-

grable over Sn−1(
√
n) for large n ∈ N) is the same as the following:

lim
n→∞

lim
m→∞

ˆ
Sn−1(

√
n)

f1|f |≤mdσ̄.
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Thus, in order to go from a result on bounded functions to a result on more general

functions, we want to be able to switch the order of limits in (2.3). However, there is no

general theory of switching double limits.

From the point of view of nonstandard analysis, the situation is simpler since the

large–n behavior of any sequence is captured in the values attained by the nonstandard

extension of that sequence at hyperfinite indices. For a hyperfinite N > N, the sphere

SN−1(
√
N) inherits a finitely additive internal probability measure from the sequence

(Sn−1(
√
n), σ̄Sn−1(

√
n))n∈N. The N th term in the nonstandard extension of the sequence(ˆ

Sn−1(
√
n)

fdσ̄

)
n∈N

is then the ∗–integral of ∗f with respect to this internal measure.

It turns out that the limiting integral for a general measurable function f : Rk → R

exists (knowing that it exists and is equal to the Gaussian mean for bounded mea-

surable functions) if ∗f is S–integrable over SN−1(
√
N). In a more abstract setting,

Theorem 2.3.1 essentially tells us that we can switch these limits if the tail double-limit

lim
m→∞

lim
n→∞

ˆ
Sn−1(

√
n)

|f |1|f |>mdσ̄ is zero. This condition of the tail double-limit being

zero is just a standard reformulation of one of the equivalent conditions that ensure the

S-integrability of ∗f over SN−1(
√
N) (see (2) of Theorem 1.3.15).

A partial converse of the above result holds for nonnegative functions, which is

covered in Theorem 2.3.4. Thus the set of all nonnegative functions for which the limit

of spherical integrals is equal to the Gaussian integral is precisely the set of nonnegative

functions for which the above tail double-limit is zero. While Theorems 2.3.1 and 2.3.4

come out of nonstandard measure theoretic considerations, we paraphrase a standard ver-

sion for convenience as follows:
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Theorem 2.1.1. Let (E, E) be a measure space. Let k ∈ N and for each n ∈ N>k,

suppose Ωn ⊆ En′ for some n′ ∈ N>k. Suppose that Fn, the given sigma-algebra on

Ωn, is induced by the product sigma-algebra En′ on En′. Let (Ωn,Fn, νn) be a sequence of

Borel probability spaces. Let P be a probability measure on (Ek, Ek) such that lim
n→∞

νn(B) =

P(B) for any B ∈ Ek. Then, for any function f : Ek → R, (1) implies (2) below.

1. The function f is integrable on (Ωn, νn) for all large n ∈ N, and furthermore:

lim
m→∞

lim
n→∞

ˆ
Ωn∩{|f |≥m}

|f | dνn = 0.

2. The function f is P-integrable and lim
n→∞

ˆ
Ωn

fdνn =

ˆ
Ek
fdP.

Furthermore, if f is assumed to be nonnegative, then the above conditions (1) and

(2) are equivalent.

The above theorem can also be interpreted more classically as a statement involv-

ing uniform integrability. While we do not focus on this aspect, it is interesting to em-

phasize that the nonstandard arguments using S–integrability thus encompass standard

uniform integrability techniques.

In the case when Ωn are the spheres Sn−1(
√
n), we verify the above double limit

condition for all functions on Rk with a finite (1 + ε)–Gaussian moment, where ε is any

positive real number. This allows us to extend the result in Theorem 2.1.1 to all such

functions (see Theorem 2.4.8). The main step in this verification is an inequality (see The-

orem 2.4.6 and Corollary 2.4.7) between sufficiently high-dimensional spherical means and

Lp(Rk, µ) norms of functions on Rk, which we summarize as follows:

Theorem 2.1.2. For each p ∈ R>1, there is a constant Cp ∈ R>0 such that the following
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holds.

ˆ
Sn−1(

√
n)

|g| dσ̄n ≤ Cp[Eµ(|g|p)]
1
p for all g ∈ Lp(Rk, µ) and n ∈ N>4(k+1)q, (2.4)

where q ∈ R>0 is such that
1

p
+

1

q
= 1.

Furthermore, we may replace the constant Cp in the above inequality by a real num-

ber as close to 1 as desired if n is taken large enough (this large n depends only on p ∈

R>1 and the desired distance of the constant from 1).

2.1.2. Structure of the chapter

Section 2.2 contains a nonstandard proof of Theorem 2.1.1 (carried out in Section

2.2.3), which is prefaced by some basic nonstandard measure theory that we will use and a

discussion on spherical measures (alongwith their nonstandard counterparts).

Section 2.3 continues the theme by studying sequences of abstract measure spaces

for which a result of the type of Poincaré is known. It gives conditions under which such

results hold for more general functions, allowing us to express the limiting behavior of cer-

tain integrals by a Loeb integral on a single limiting measure space. An application that

yields a new proof of the Riemann-Lebesgue lemma is carried out in Theorem 2.3.5.

In Section 2.4, we apply the results of Section 3 to the case of high-dimensional

spheres, and obtain a generalization of the classical result on limits of spherical integrals

to a large class of Gaussian integrable functions (see Theorem 2.4.8). Toward that end, we

also obtain some useful inequalities between high-dimensional spherical means and Gaus-

sian means (see Theorem 2.4.6 and Corollary 2.4.7).
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2.2. A Quick nonstandard proof of Poincaré’s theorem

Using the nonstandard characterization of limit points, Poincaré’s theorem is es-

sentially a statement about the Loeb measure of the fiber (in the hyperfinite-dimensional

sphere SN−1(
√
N) for N > N) of a finite-dimensional set equaling its Gaussian measure.

In a more general setting, we analyze this type of phenomenon in the next subsection.

These results are routine but essential in setting up later proofs.

2.2.1. When a Loeb measure matches up with a standard measure on a sub-
space

In what follows, there will be a measure space (E, E) such that we assume X to

contain copies of En for all n ∈ N. The corresponding product sigma-algebra on En will

be denoted by En. Recall that we will be working with a sufficiently saturated nonstan-

dard extension of the superstructure V (X) over X. Let k ∈ N. For n ∈ N≥k, if Ω ∈ En and

ν is a measure on the induced sub-sigma-algebra on Ω, then for any B ∈ Ek, we denote

ν(Ω∩ (B×En−k)) by ν(B). Similarly, we can talk about integrating a measurable function

f : Ek → R over Ω by extending f canonically to En.

Proposition 2.2.1. Let Ω ∈ ∗V (X) be such that Ω ⊆ ∗EN for some N ∈ ∗N. Let E be

a sigma-algebra on E, and let Ek denote the corresponding product sigma-algebra on Ek

for each k ∈ N. Let ∗EN denote the corresponding internal algebra on ∗EN (defined by

extension of the sequence {Ek}k∈N, which is an element of V (X) when viewed as a function

on N). Let F be the restriction of ∗EN to Ω.

Fix k ∈ N and suppose P ∈ Prob(Ek, Ek). Let ν ∈ ∗Prob(Ω,F). If Lν is the
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corresponding Loeb measure, and if N ≥ k, then:

ˆ
Ω

st(∗f)dLν =

ˆ
Ek
fdP for all bounded measurable f : Ek → R (2.5)

m

Lν(∗B) = P(B) for all B ∈ Ek. (2.6)

Proof. If f : Ek → R is bounded measurable, then st(∗f) is Loeb measurable on Ω by

Proposition 1.3.14. Hence the left side of equation (2.5) is well-defined.

The forward implication is immediate by taking f = 1B, the indicator function of

B ∈ Ek. For the reverse implication, assume that Lν(∗B) = P(B) for all B ∈ Ek (that is,

indicator functions of measurable sets satisfy (2.5)). The set of functions satisfying (2.5)

is closed under taking finite R-linear combinations, and hence all simple functions satisfy

(2.5). Fix a bounded measurable function f : Ek → R. By standard measure theory (see,

for example, Folland [40, Theorem 2.10]), there is a sequence {fn}n∈N of simple functions

that converges to f uniformly on Ek.

For ε ∈ R>0, find nε ∈ N such that we have the following inequality.

|fn(x)− f(x)| < ε for all x ∈ Ek and n ∈ N≥nε .

By transfer, for all n ∈ N≥nε , we get |∗fn(x)− ∗f(x)| < ε on ∗Ek. Hence,

|st(∗fn(x))− st(∗f(x))| ≤ ε for all n ∈ N≥nε and x ∈ ∗Ek.

As a consequence, we get:∣∣∣∣ˆ
Ω

st(∗f)dLν −
ˆ

Ω

st(∗fn)dLν

∣∣∣∣ ≤ ε for all n ∈ N≥nε ,

that is,
∣∣∣∣ˆ

Ω

st(∗f)dLν −
ˆ
Ek
fndP

∣∣∣∣ ≤ ε for all n ∈ N≥nε .
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But lim
n→∞

ˆ
Ek
fndP =

ˆ
Ek
fdP, by dominated convergence theorem. Since ε ∈ R>0 is arbi-

trary, this implies
ˆ

Ω

st(∗f)dLν =

ˆ
Ek
fdP, completing the proof.

The hypothesis in Proposition 2.2.1 is an abstract rendering of the premise of our

central problem about limits of spherical measures. Indeed, we may think of E as R, the

space Ω as the hyperfinite dimensional sphere SN−1(
√
N) for some N > N, and P as the

standard Gaussian measure µ. Then, (2.6) is the nonstandard characterization of (2.1),

while (2.5) corresponds to (2.2). To strengthen this theme, in the next subsection, we will

take a standard sequence of probability spaces and replace Ω by the N th term (for any

N > N) of the nonstandard extension of that sequence. We first record some useful impli-

cations of Proposition 2.2.1 below.

Corollary 2.2.2. In the setting of Proposition 2.2.1, suppose (2.5), and hence (2.6), hold.

Then

Lν({x ∈ Ω : ∗f(x) ∈ ∗Rfin}) = 1 for all measurable f : Ek → R.

Proof. If Bn := {x ∈ Ek : |f(x)| < n} for n ∈ N, then the required probability is

Lν (∪n∈N∗Bn) = lim
n→∞

Lν(∗Bn)
(2.6)
= lim

n→∞
P(Bn) = 1,

thus completing the proof.

Corollary 2.2.3. In the setting of Proposition 2.2.1, suppose (2.5) holds. Then, for any

P–integrable function f : Ek → R, we have that st(∗f) is Lν–integrable. Furthermore, we

have:
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ˆ
Ω

|st(∗f)| dLν =

ˆ
Ek
|f | dP,

and
ˆ

Ω

st(∗f)dLν =

ˆ
Ek
fdP.

Proof. We see that st(∗f) is Loeb measurable on Ω by Corollary 2.2.2 and Proposition

1.3.14. Also, by Corollary 2.2.2, st(∗f)1{|∗f |<n} ↑ st(∗f) Lν–almost surely. Hence, we have:

ˆ
Ω

|st(∗f)| dLν = lim
n→∞

ˆ
Ω

st(∗ |f |) · 1{∗|f |≤n}dLν

= lim
n→∞

ˆ
Ek
|f | · 1{|f |≤n}dP

=

ˆ
Ek
|f | dP <∞.

The first line follows from the monotone convergence theorem (applied on the Loeb

space (Ω, L(F), Lν)), the second line follows from (2.5), and the third line follows from the

monotone convergence theorem (applied on the probability space (Ek, Ek,P)).

Now, since lim
n→∞

(
st(∗f) · 1{|∗f |<n}

)
= st(∗f) Lν-almost surely (using Corollary

2.2.2), and since
∣∣st(∗f) · 1{|∗f |<n}

∣∣ ≤ |st(∗f)| ∈ L1(Ω, Lν), it follows that:

ˆ
Ω

st(∗f)dLν = lim
n→∞

ˆ
Ω

st(∗f) · 1{|∗f |≤n}dLν

= lim
n→∞

ˆ
Ek
f · 1{|f |≤n}dP

=

ˆ
Ek
fdP.

The first line follows from the dominated convergence theorem (applied on the

Loeb space (Ω, L(F), Lν)), the second line follows from (2.5), and the third line follows

from the dominated convergence theorem (applied on the measure space (Ek, Ek,P)). This

completes the proof.
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Corollary 2.2.4. In the setting of Proposition 2.2.1, the following are equivalent:

(1)
ˆ

Ω

st(∗f)dLν =

ˆ
Ek
fdP for all bounded measurable f : Ek → R.

(2) Lν(∗B) = P(B) for all B ∈ Ek.

(3) Lν(∗B) ≤ P(B) for all B ∈ Ek.

(4) Lν(∗B) ≥ P(B) for all B ∈ Ek.

Proof. (1) ⇔ (2) follows from Proposition 2.2.1. Also, (3) and (4) follow from (2) immedi-

ately. Conversely, assume (3). For any Borel set B ⊆ Ek, we have

Lν(∗B) ≤ P(B), and (2.7)

Lν(∗Ek\∗B) ≤ P(Ek\B)⇒ Lν(∗B) ≥ P(B). (2.8)

Combining (2.7) and (2.8) gives (2). The proof of (4) ⇒ (2) is similar.

We end this subsection with the remark that if E is a Hausdorff topological space

equipped with its Borel sigma-algebra, and if the probability measure P is Radon, then

(2.5) and (2.6) are both equivalent to the Loeb measure Lν agreeing with P on the non-

standard extensions of all open (or all compact) subsets of E.

Proposition 2.2.5. In the setting of Proposition 2.2.1, suppose E is a Hausdorff topo-

logical space and let B(Ek) be the Borel sigma-algebra on Ek. If P is a Radon probability

measure on Ek, then the following are equivalent:

(1)
ˆ

Ω

st(∗f)dLν =

ˆ
Ek
fdP for all bounded Borel measurable f : Ek → R.

(2) Lν(∗B) = P(B) for all B ∈ B(Ek).

(3) Lν(∗B) ≤ P(B) for all B ∈ B(Ek).
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(4) Lν(∗B) ≥ P(B) for all B ∈ B(Ek).

(5) Lν(∗O) = P(O) for all open sets O ⊆ Ek.

(6) Lν(∗C) = P(C) for all compact sets C ⊆ Ek.

Proof. The equivalence of (1), (2), (3), and (4) has been established without any condi-

tions on P in the previous corollary. Also, (2) ⇒ (5) is immediate. To complete the proof,

we will show that (5) ⇒ (6) and (6) ⇒ (4).

To see (5) ⇒ (6), note that if C is a compact subset of the Hausdorff space Ek,

then C is closed, so that the subset O := Ek\C is open. By using the fact that ∗C =

∗Ek\∗O, and then applying (5) to O, we obtain the following:

Lν(∗C) = 1− Lν(∗O) = 1− P(O) = P(C).

We now prove (6) ⇒ (4). To that end, take any B ∈ B(Ek). For any compact sub-

set C ⊆ B, we have ∗C ⊆ ∗B, so that (6) implies the following:

Lν(∗B) ≥ Lν(∗C) = P(C) for all compact subsets C of B.

Taking supremum over all compact subsets of B and using the fact that the measure P is

Radon, we thus obtain the desired inequality as follows:

Lν(∗B) ≥ sup{P(C) : C is a compact subset of B} = P(B).

2.2.2. Basic facts about surface area measures and their nonstandard counter-
parts

In this subsection, we review three different ways to think about the uniform sur-

face area measure on spheres in Euclidean spaces. One aim of our review is to explain the
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corresponding internal probability measures on hyperfinite dimensional spheres that we

obtain by transfer. We refer to Matilla [73, Chapter 3] and Sengupta [90, Section 4] for

basic properties of spherical surface area measures.

For each n ∈ N, we let Bn = B(Rn), the Borel sigma-algebra on Rn, and O(n)

be the set of all orthogonal linear transformations of Rn. Let S0 be the set of all spheres

centered at the origin (in any dimension n ∈ N and of any radius r ∈ R>0). Consider

the function dim: S0 → N that takes each sphere S to the smallest dimension n ∈ N

such that S ⊆ Rn. We are being pedantic about the “smallest dimension” since we have

been identifying (during discussions on measures of sets) a subset S of Rn with the subset

S × Rn′−n ⊆ Rn′ for n′ ∈ N>n′ .

It is known that there is a unique rotation-preserving probability measure on any

sphere centered at origin equipped with its Borel sigma-algebra. More formally:

∀S ∈ S0 ∃!σ̄ ∈ Prob(S,B(S)) ∀n ∈ N

(n = dim(S))→ (∀R ∈ O(n) ∀A ∈ B(S) [σ̄(R(A)) = σ̄(A)]). (2.9)

For any S ∈ ∗S0 in the nonstandard universe, the transfer principle implies

that the set ∗Prob(S, ∗B(S)) consists of a unique finitely additive internal function, say

σ̄S : ∗B(S) → ∗[0, 1], that is ∗–rotation preserving and satisfying σ̄S(S) = 1. By the

usual Loeb measure construction, we get Lσ̄S on L(∗B(S)) (a sigma-algebra containing

σ(∗B(S)), which we call the uniform Loeb surface measure on S. As before, we will often

drop the superscript S in σ̄S when the sphere is clear from context.

In finite dimensions, we also have the notion of surface area. For the sphere S :=
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Sd(R) of radius R ∈ R>0, centered at the origin in Rd+1, one can consider the surface area

map σS : B(S)→ R, which satisfies the following volume-of-cone formula:

λd+1 (∪0≤t≤1tA) =
1

d+ 1
RσS(A),

where λd+1 is the Lebesgue measure on Rd+1, and A ∈ B(S). This surface area
function has the following properties:

• For any d ∈ N and any R ∈ R>0, we have σSd(R)(S
d(R)) = cd · Rd, where cd =

σSd(1)(S
d(1)) = (d+ 1) · π

d+1
2

Γ
(
d+1

2
+ 1
) = 2

π
d+1
2

Γ
(
d+1

2

) .
• For any S ∈ S and any A ∈ B(S), we have σ̄S(A) =

σS(A)

σS(S)
, where σ̄S is the rota-

tion preserving probability measure on S, as in (2.9).

By transfer, we have the notion of ∗-surface area (that is applicable to hyperfinite-

dimensional spheres as well) in the nonstandard universe. This could be used as an alter-

native way to define the uniform Loeb surface measure.

Yet another way to arrive at the uniform surface area measure on a sphere is by

looking at an appropriate pushforward of a Gaussian measure. If µ is the standard Gaus-

sian measure on Rn (here n ∈ N), and Sn−1 is the unit sphere in Rn, then the rotation

invariance of µ implies that µ ◦ g−1 is a rotation invariant probability measure on Sn−1

(and hence is the same as σ̄), where

g : Rn\{0} → Sn−1 defined by g(x) =
x

||x||
.

For spheres centered at origin but having radius R ∈ R>0, we can use the pushforward

through the map Rg (this is scalar multiple by R). For instance, for N > N, if σ̄ is the in-

ternal uniform surface area measure on SN−1(
√
N) and µ(N) is the internal Gaussian mea-
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sure on ∗RN with mean 0 and covariance identity, then for any set B ∈ ∗B(SN−1(
√
N)),

we have:

σ̄(B) = µ(N)

({
x ∈ ∗RN :

√
Nx

||x||
∈ B

})
. (2.10)

This characterization of the uniform surface area measure yields the classical result

of Poincaré (Theorem 2.1.1) without doing any computations. We show that in the next

subsection.

2.2.3. A nonstandard proof of Poincaré’s theorem

Suppose (Ω,F ,P) is a probability space, and (Xn)n∈N is a sequence of iid N (0, 1)

random variables (that is, the Xi are independent Gaussian random variables with mean

0 and variance 1). In that case, (Xn
2 − 1)n∈N is an iid sequence of random variables with

mean zero and finite variance (in fact, the variance is equal to one). Hence the weak law of

large numbers implies the following:

lim
n→∞

P
(∣∣∣∣(X1

2 − 1) + . . .+ (Xn
2 − 1)

n

∣∣∣∣ > ε

)
= 0 for all ε ∈ R>0. (2.11)

Each Xi (where i ∈ N), as a function from Ω to R, has a nonstandard extension

∗Xi, which, by transfer, is a ∗N (0, 1) random variable, that is, ∗P ◦ ∗Xi
−1 is the same as

the internal measure ∗µ(1) (the nonstandard extension of the standard Gaussian measure

µ(1) on R).

Consider the function X : N× Ω→ R defined by:

X(n, ω) := Xn(ω) for all n ∈ N, and ω ∈ Ω. (2.12)
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Considering the nonstandard extension of X, we see that

∗X(n, ω) = ∗Xn(ω) for all n ∈ N, and ω ∈ ∗Ω.

Since ∗X is a function from ∗N × ∗Ω, this allows us to naturally talk about the N th

element of the original sequence of random variables for any N ∈ ∗N (and all those ele-

ments will be independent and internally Gaussian distributed with mean 0 and variance

1). In the sequel, we will often be loose with notation, and use Xi as both a standard and

a nonstandard random variable (when it is considered as a nonstandard random variable,

it is understood to be given by the nonstandard extension of the map X : N × Ω → R),

with the usage being clear from context.

For the rest of this section, fix N > N. Let σ̄ be the internal uniform surface area

measure on SN−1(
√
N). Let Y = (X1)2 + . . .+ (XN)2.

Lemma 2.2.6. There exists an infinitesimal ξ > 0 such that

∗P
(∣∣∣∣YN − 1

∣∣∣∣ > ξ

)
≈ 0. (2.13)

Proof. Consider ε ∈ R such that 0 < ε < 1. Then we have the following:

∗P
(∣∣∣∣YN − 1

∣∣∣∣ > ε

)
= ∗P

(∣∣∣∣(X1
2 − 1) + . . .+ (XN

2 − 1)

N

∣∣∣∣ > ε

)
,

where the right side is infinitesimal by the nonstandard characterization of limits

applied to (2.11). The lemma now follows by underflow applied to the following internal

set. {
ε ∈ ∗R>0 : ∗P

(∣∣∣∣YN − 1

∣∣∣∣ > ε

)
< ε

}
.
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For a set S ⊆ Rk and a real number α ∈ R, the set αS is the set of all scalar prod-

ucts (of elements of S) by α. That is,

αS := {y ∈ Rk : y = αx for some α ∈ A}.

For S ⊆ Rk and A ⊆ R, the set AS is defined as the set of all scalar products of

elements of S with elements in A. That is,

AS := ∪α∈AαS. (2.14)

Scalar products (with elements of ∗R or with internal subsets of ∗R) are analo-

gously defined in the nonstandard universe by transfer. We note the following elementary

fact about small scalings of compact sets that will be useful in the sequel.

Lemma 2.2.7. Let C be a compact subset of Rk. Then we have:

⋂
n∈N>1

[
1− 1

n
, 1 +

1

n

]
C = C. (2.15)

Proof. Let the left side of (2.15) be called C̃ for brevity. It is clear that C ⊆ C̃. To show

the inclusion from the other side, consider x ∈ C̃. Thus for each n ∈ N>1, there exist

αn ∈ R and yn ∈ C such that x = αnyn. By the sequential compactness of C, find a

subsequence (nk)k∈N such that lim
k→∞

ynk exists as an element of C. Say, lim
k→∞

ynk = y ∈ C.

Note that, by construction, we have lim
k→∞

αnk = 1. By continuity of the scalar product

map, we thus have the following:

x = lim
k→∞

αnkynk =
(

lim
k→∞

αnk

)(
lim
k→∞

ynk

)
= y ∈ C, (2.16)

completing the proof.
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We now prove Poincaré’s theorem that we restate here for convenience:

Theorem 2.1.1 (Poincaré, [80]). For all bounded measurable functions f : Rk → R, we

have

lim
n→∞

ˆ
Sn−1(

√
n)

fdσ̄ =

ˆ
Rk
fdµ. (2.2)

Proof. Let B be a Borel subset of Rk and let X = (X1, . . . , XN) be as defined in (2.12).

For k ∈ N, let X(k) be the projection (X1, . . . , Xk) onto ∗Rk. Using (2.10) and taking stan-

dard parts on both sides yields the following:

Lσ̄({(x1 . . . , xN) ∈ SN−1(
√
N) : (x1, . . . , xk) ∈ ∗B}) = L∗P

(√
NX(k)√
Y

∈ ∗B

)

= L∗P

(
X(k) ∈

√
Y

N
∗B

)
. (2.17)

Using Lemma 2.2.6, the last expression is less than or equal to

L∗P

(
X(k) ∈

m⋂
n=2

∗ [
1− 1

n
, 1 +

1

n

]
B

)
= L∗P

(
X(k) ∈

∗( m⋂
n=2

[
1− 1

n
, 1 +

1

n

]
B

))

for all m ∈ N.

Taking limits as m→∞, we obtain:

Lσ̄({(x1 . . . , xN) ∈ SN−1(
√
N) : (x1, . . . , xk) ∈ ∗B})

≤ lim
m→∞

L∗P

(
X(k) ∈

∗ [ m⋂
n=2

[
1− 1

n
, 1 +

1

n

]
B

))

= lim
m→∞

P

(
X(k) ∈

m⋂
n=2

[
1− 1

n
, 1 +

1

n

]
B

)

= P

(
X(k) ∈

⋂
n∈N>1

[
1− 1

n
, 1 +

1

n

]
B

)
. (2.18)
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By (2.18) and Lemma 2.2.7, we have the following inequality:

Lσ̄({(x1 . . . , xN) ∈ SN−1(
√
N) : (x1, . . . , xk) ∈ ∗C}) ≤ P

(
X(k) ∈ C

)
= µ(k)(C)

for all compact subsets C ⊆ Rk.

Since N > N is arbitrary and µ(k) is a Radon measure, Proposition 2.2.5 and the

nonstandard characterization of limits complete the proof.

2.3. On the limiting behavior of a sequence of probability spaces

Toward the proof of Poincaré’s theorem in the previous section, we showed that for

an arbitrary N > N, the surface area measure over SN−1(
√
N) (which may be thought of

as the N th element of the sequence of of spheres (Sn−1(
√
n))n∈N) assigns the same measure

(up to infinitesimals) to fibers of finite dimensional sets as the Gaussian measures of such

sets (in their respective ambient Euclidean spaces). This idea is explored in more abstract

settings in the current section in order to generalize to limiting results for integrals of un-

bounded functions.

2.3.1. Integrating finite dimensional functions along nice sequences of proba-
bility spaces

Let {(Ωn,Fn, νn)}n∈N be a sequence of probability spaces. Viewing the sequence

as a function on N, we get an internal probability space (ΩN ,FN , νN) for each N > N.

Note that we have been dropping the ∗ when it is clear from context that the index N is

hyperfinite. Philosophically, the Loeb space (ΩN , L(FN), LνN) for N > N should capture

the long-term behavior of the sequence {(Ωn,Fn, νn)}n∈N of probability spaces. We will

often omit the sigma-algebra when there is no chance of confusion. Drawing inspiration
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from Theorem 1.3.15(4), we obtain the following theorem in this regard.

Theorem 2.3.1. Let (E, E) be a measure space. Let k ∈ N and for each n ∈ N>k, suppose

Ωn ⊆ En′ for some n′ ∈ N>k. Suppose that Fn, the given sigma-algebra on Ωn, is induced

by the product sigma-algebra En′ on En′. Let (Ωn,Fn, νn) be a sequence of Borel probability

spaces. Let f : Ek → R satisfy

lim
m→∞

lim
n→∞

ˆ
Ωn∩{|f |≥m}

|f | dνn = 0. (2.19)

Then, f is integrable over Ωn for large n, so that the sequence αf,n :=

ˆ
Ωn

fdνn is well-

defined for large n. Furthermore, for any N > N, the function st(∗f) is Loeb integrable

over (ΩN , L(FN), LνN) and satisfies

st(αf,N) =

ˆ
ΩN

st(∗f)dLνN .

Remark 2.3.2. Bounded measurable functions trivially satisfy the hypothesis in (2.19).

Proof. For a fixed ε ∈ R>0, there exists `ε ∈ N such that the following holds: for any

m ≥ `ε, there is an nε,m ∈ N such that for all n ≥ nε,m, we have

ˆ
Ωn∩{|f |≥m}

|f | dνn < ε. (2.20)

In particular, f is integrable on Ωn for all n > nε,`ε , with the integral of the abso-

lute value being at most (`ε + ε). Further, for any M,N > N, transfer yields

∗ˆ
ΩN

|∗f |1{|∗f |>M}dνN ≤
∗ˆ

ΩN

|∗f |1{|∗f |>`ε}dνN < ε for all ε ∈ R>0.

Given N > N, ∗f is S–integrable on ΩN by Theorem 1.3.15(2).

Now, αf,N is the ∗–integral of ∗f over (ΩN , νN) by transfer. Note that

f = f+ − f−,
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where f+ := max{f, 0} and f− := max{−f, 0}. By transfer, we then have:

αf,N = αf+,N − αf−,N . (2.21)

Since ∗f is S–integrable on (ΩN , νN), so are ∗f+ and ∗f− (this is because

|∗f+| and |∗f−| are at most equal to |∗f |). Since ∗f+ and ∗f− are nonnegative functions,

Theorem 1.3.15(4) implies:

αf+,N =

ˆ
ΩN

st(∗f+)dLνN ,

and αf−,N =

ˆ
ΩN

st(∗f−)dLνN . (2.22)

Using this in (2.21) and then using the fact that st(∗f) is Loeb integrable com-

pletes the proof.

Corollary 2.3.3. Let (E, E) be a measure space. Let k ∈ N and for each n ∈ N>k, suppose

Ωn ⊆ En′ for some n′ ∈ N>k. Suppose that Fn, the given sigma-algebra on Ωn, is induced

by the product sigma-algebra En′ on En′. Let (Ωn,Fn, νn) be a sequence of Borel probability

spaces. Let P be a probability measure on (Ek, Ek) such that LνN(∗B) = P(B) for any B ∈

Ek and N > N.

(i) If f : Ek → R is measurable, then

LνN({x ∈ ΩN : ∗f(x) ∈ ∗Rfin}) = 1 for all N > N.

(ii) If f : Ek → R is bounded and measurable, then

lim
n→∞

ˆ
Ωn

fdνn =

ˆ
Ek
fdP =

ˆ
ΩN

st(∗f)dLνN for all N > N.

(iii) If f : Ek → R is P–integrable, then we have that st(∗f) is LνN–integrable for all
N > N. Furthermore, for any N > N, we have:ˆ

Ek
fdP =

ˆ
ΩN

st(∗f)dLνN , and
ˆ
Ek
|f | dP =

ˆ
ΩN

|st(∗f)| dLνN
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Proof. (i) follows from Corollary 2.2.2. (ii) follows from Theorem 2.3.1, Corollary 2.2.3

and the nonstandard characterization of limits. Finally, (iii) follows from Corollary 2.2.3,

completing the proof.

Note that Corollary 2.3.3(iii) allows us to express the expected value of a P–

integrable function f : Ek → R as the Loeb integral of st(∗f) over ΩN for all hyperfinite

N . However, this does not necessarily imply that the sequence αf,n :=

ˆ
Ωn

fdνn converges

to
ˆ
Ek
fdP, as αf,N may not be infinitesimally close to the Loeb integral of st(∗f) over ΩN

in general. To see a counterexample, consider (E, E) = (N0,P(N)) (where N0 = N ∪ {0}),

with Ωn := {0, n} for each n ∈ N. Define P := 1{0}, the probability measure concentrated

at 0. Define νn({0}) = 1 − 1

n
and νn({n}) =

1

n
. Then for any N > N, the Loeb measure

LνN assigns full mass to {0}. Thus the hypotheses of Corollary 2.3.3 are satisfied. Con-

sider the measurable function f : N0 → R defined by f(n) := n for all n ∈ N. It is clear

that αf,N equals 1 while the Loeb integral of st(∗f) equals 0.

In view of Theorem 1.3.15, the correct criterion needed for αf,N to be infinitesi-

mally close to the Loeb integral of st(∗f) over ΩN for nonnegative functions f is the S–

integrability of ∗f over ΩN . This also means that the sufficient criterion (2.19) in Theorem

2.3.1 is necessary if we restrict to nonnegative functions. We record and prove these obser-

vations in the following theorem.

Theorem 2.3.4. In the setting of Corollary 2.3.3, the following are equivalent for a non-

negative function f : Ek → R≥0:

1. f is P–integrable and lim
n→∞

ˆ
Ωn

fdνn =

ˆ
Ek
fdP.
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2. The nonstandard extension ∗f is S–integrable on ΩN for all N > N.

3. The function f is integrable on (Ωn, νn) for all large n ∈ N, and furthermore:

lim
m→∞

lim
n→∞

ˆ
Ωn∩{f≥m}

fdνn = 0.

Proof. (1 ) ⇒ (2 )

Assume that f is P–integrable and lim
n→∞

ˆ
Ωn

fdνn =

ˆ
Ek
fdP. Using the nonstan-

dard characterization of limits, Corollary 2.3.3[(iii)], and Theorem 1.3.15(4) (making use

of the fact that f = |f | since f is assumed to be nonnegative), it follows that ∗f is S–

integrable on ΩN for any N > N.

(2 ) ⇒ (3 )

Now assume that ∗f is S–integrable on ΩN for all N > N. As a consequence (using

either Theorem 1.3.15(2) or Theorem 1.3.15(3)), we have that ∗f1{|∗f |≥m} is S–integrable

on ΩN for any N > N and m ∈ N. Fix N0 > N such that the following is true (existence of

such an N0 is guaranteed by the nonstandard characterization of limit superiors):

lim sup
n→∞

ˆ
Ωn∩{|f |≥m}

|f | dνn = st

(
∗ˆ

ΩN0

∗ |f |1{∗|f |≥m}dνN0

)
.

By Theorem 1.3.15(4), we get:

lim sup
n→∞

ˆ
Ωn∩{|f |≥m}

|f | dνn =

ˆ
ΩN0

st
(∗ |f |1{∗|f |≥m}) dLνN0

⇒ lim
m→∞

lim sup
n→∞

ˆ
Ωn∩{|f |≥m}

|f | dνn = lim
m→∞

ˆ
ΩN0

st
(∗ |f |1{∗|f |≥m}) dLνN0 . (2.23)

Since ∗f is S–integrable on ΩN0 , it follows that st(
∗f) is Loeb integrable on ΩN0 .

Hence the limit on the right side of (2.23) is zero, as desired.
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(3 ) ⇒ (1 )

This follows from Theorem 2.3.1, Corollary 2.3.3(iii), and Theorem 1.3.15(4).

2.3.2. Application to a proof of the Riemann-Lebesgue Lemma

The theory of limiting integrals built over the last two subsections may theoreti-

cally be applied to a lot of situations in which the probability spaces are changing. While

we will cover its application to spherical integrals in the next section, we include here a

new proof of the famous Riemann–Lebesgue lemma as an illustration of the versatility of

this theory. We paraphrase the Riemann–Lebesgue lemma below (see, for example, Rudin

[87, 5.14, p. 103]).

Theorem 2.3.5 (Riemann–Lebesgue Lemma). Let λ be the Lebesgue measure on the in-

terval T := [−π, π]. If f ∈ L1(T, λ), then we have:

lim
n→∞

ˆ
T

f(x) cos(nx)dλ(x) = 0 and lim
n→∞

ˆ
T

f(x) sin(nx)dλ(x) = 0.

Proof. For each n ∈ N, define gn : T → R by gn(x) =
1− cos(nx)

2π
. The functions gn are

probability densities on [−π, π]. For each n ∈ N, let Pn denote the probability measure on

T with the density gn. By integrating the densities for n ∈ N, we find that the correspond-

ing probability distribution functions are given by:

Gn(x) := Pn{(−∞, x]} =
1

2π

(
x− sin(x)

n

)
for all x ∈ T.

As n → ∞, the sequence Gn converges pointwise to the distribution function of the

uniform (normalized) Lebesgue measure P on [−π, π]. Thus Pn
weak−→ P, that is,

lim
n→∞

ˆ
T

fdPn =

ˆ
T

fdP for all bounded continuous f : T → R.
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By an equivalent criterion for weak convergence, we obtain:

lim inf
n→∞

Pn(U) ≥ P(U) for all open subsets U ⊆ T. (2.24)

By the nonstandard characterization of limit inferiors, this is equivalent to:

PN(∗U) ≥ P(U) for all open subsets U ⊆ T and N > N. (2.25)

Since the density function gn for Pn is pointwise bounded above by the density

function for P, by transfer we also obtain the other side of the above inequality. That is,

we obtain:

PN(∗U) ≤ P(U) for all open subsets U ⊆ T and N > N. (2.26)

Combining (2.25) and (2.26), we obtain:

PN(∗U) = P(U) for all open subsets U ⊆ T and N > N. (2.27)

By Proposition 2.2.5, we obtain:

ˆ
∗T

st(∗f)dLPN =

ˆ

T

fdP for all bounded measurable f : T → R and N > N. (2.28)

For any f ∈ L1(T, λ), we use the facts that |gn| ≤
1

π
and f ∈ L1(T, λ) to get:

lim
m→∞

lim
n→∞

ˆ
T

|f |1|f |>mdPn(x) ≤ 1

π
lim
m→∞

ˆ
T

|f |1|f |>mdλ(x) = 0. (2.29)
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Using (2.28) and (2.29) in Theorem 2.3.4 (with (T,Pn) playing the role of (Ωn, νn)

in that theorem), we obtain, for each f ∈ L1(T, λ) = L1(T,P):

lim
n→∞

ˆ
T

f(x)dPn(x) =

ˆ
T

f(x)dP(x)

⇒ lim
n→∞

ˆ
T

(
f(x)

2π
− f(x) cos(nx)

2π

)
dλ(x) =

ˆ
T

f(x)

2π
dλ(x)

⇒ lim
n→∞

ˆ
T

f(x) cos(nx)dλ(x) = 0.

The proof for sin(nx) goes exactly the same way if we replace the fn by the proba-

bility density functions gn(x) =
1− sin(nx)

2π
for x ∈ T .

2.3.3. What happens if the finite dimensional function is not nice in the limit-
ing space?

In general, for a function f : Ek → R (not necessarily satisfying the conditions in

Theorem 2.3.4), the following result allows us to still approximate its integral by a suit-

ably modified sequence of integrals over (Ωn, νn). Note that this result is in the spirit of

Littlewood’s three principles from measure theory (see [65, p. 26])—approximating a po-

tentially ill-behaved integrable function by well-behaved bounded functions.

Lemma 2.3.6. In the setting of Corollary 2.3.3, let f : Ek → R be P–integrable. Given

any ε, δ, θ ∈ R>0 there exist an n0 ∈ N and functions gn : Ωn → R for all n ∈ N≥n0 such

that the following hold:

(i) |gn| is bounded by n for all n ∈ N≥n0.

(ii) νn (|gn − f | > δ) < ε for all n ∈ N≥n0.

(iii)
∣∣∣∣ˆ

Ωn

gndνn −
ˆ
Ek
fdP

∣∣∣∣ < θ for all n ∈ N≥n0.

56



Proof. By Corollary 2.3.3(iii), we know that

ˆ
Ek
|f | dµ =

ˆ
ΩN

st(∗ |f |)dLνN for all N > N.

Thus, for any N > N, the map st(∗f) is Loeb integrable on ΩN , and hence has an

S–integrable lifting GN : ΩN → ∗R by Theorem 1.3.16. In particular,

LνN (st(GN) = st(∗f)) = 1, and (2.30)

st

(∗ˆ
ΩN

GNdνN

)
=

ˆ
ΩN

st(GN)dLνN =

ˆ
ΩN

st(∗f)dLνN =

ˆ
Ek
fdP. (2.31)

Equation (2.30) follows from the definition of lifting. The first equality in (2.31)

follows from Theorem 1.3.15(4) applied to the nonnegative S–integrable functions

(GN)+ := max{GN , 0} and (GN)− := max{−GN , 0}. The second equality in (2.31)

follows from equation (2.30), while the last equality in (2.31) follows from Corollary

2.3.3[(iii)].

Without loss of generality, we can assume that |GN | ≤ N for all N > N (as we may

replace GN by the function GN1|GN |≤N , which still satisfies (2.30) and (2.31)). Thus, for

the given ε, δ, θ ∈ R>0, the following internal set contains ∗N\N.

Gε,δ,θ :=

{
n ∈ ∗N : ∃Gn ∈ ∗L1(Ωn, νn) such that |Gn| ≤ n,

∗νn (|Gn − ∗f | > δ) < ε, and
∣∣∣∣∗ˆ

∗Ωn

Gnd
∗νn −

ˆ
Ek
fdP

∣∣∣∣ < θ

}
.

By underflow, we find n0 ∈ N such that N≥n0 ⊆ Gε,δ,θ. Now fix an n ∈ N≥n0 . In the
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nonstandard universe, the following statement is true:

∃Gn ∈ ∗L1(Ωn, νn)(|Gn| ≤ n) ∧ (∗νn (|Gn − ∗f | > δ) < ε)) ∧

∣∣∣∣∣∣
∗ˆ

∗Ωn

Gnd
∗νn −

ˆ

Ek

fdP

∣∣∣∣∣∣ < θ

 .

Transfer of this sentence yields a gn ∈ L1(Ωn, νn) with the desired properties.

We can strengthen Lemma 2.3.6 as follows, by requiring the functions to have the

same domain Ek.

Theorem 2.3.7. In the setting of Corollary 2.3.3, let f : Ek → R be P–integrable. Given

any ε, δ, θ ∈ R>0 there exist an n0 ∈ N and functions gn : Ek → R for all n ∈ N≥n0 such

that the following hold:

(i) |gn| is bounded by n for all n ∈ N≥n0.

(ii) νn (|gn − f | > δ) < ε for all n ∈ N≥n0.

(iii)
∣∣∣∣ˆ

Ωn

gndνn −
ˆ
Ek
fdP

∣∣∣∣ < θ for all n ∈ N≥n0.

Proof. For n ∈ N≥k, define ν ′n : Ek → [0, 1] by ν ′n(B) = νn((B × En−k) ∩ Ωn). For any

bounded measurable g : Ek → R, expressing g as a uniform limit of simple functions yields

ˆ
Ωn

gdνn =

ˆ
Ek
gdν ′n. (2.32)

Let (gn)n∈N be a sequence of functions obtained by applying Lemma 2.3.6 to the sequence

(Ek, ν ′n)n∈N of probability spaces. Then (i), (ii) and (iii) follow from the corresponding re-

sults in Lemma 2.3.6 together with (2.32).
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2.4. Generalizing Poincaré’s theorem

2.4.1. Revisiting a standard proof of Poincaré’s theorem

For the rest of the chapter, we let Sn denote the sphere Sn−1(
√
n) and σ̄n denote

σ̄Sn , for all n ∈ N. Fix k ∈ N and let µ denote the standard k-dimensional Gaussian mea-

sure. Let Bk(a) denote the open ball of radius a in Rk. For a set B ∈ B(Rk) and any n ∈

N≥k, we define σ̄n(B) to be the value of σ̄n({x ∈ Sn : πk(x) ∈ B}) = σ̄n
(
(B × Rn−k) ∩ Sn

)
,

where πk is the projection onto Rk. Similarly, a function f : Rk → R is canonically ex-

tended to Rn by using ‘f(x, y)’ to denote f(x) for all x ∈ Rk and y ∈ Rn−k.

In an attempt to generalize Theorem 2.1.1, we first look at another proof of the

same result using classical analysis. This proof requires directly evaluating the spherical

integrals and using dominated convergence theorem (compare with the less computational

proof of Theorem 2.1.1 in Section 2.2.3). We restate Theorem 2.1.1 below for convenience.

Theorem 2.1.1 (Poincaré, [80]). For all bounded measurable functions f : Rk → R, we

have

lim
n→∞

ˆ
Sn−1(

√
n)

fdσ̄ =

ˆ
Rk
fdµ. (2.2)

Proof. Let λ denote the Lebesgue measure on Rk. By Sengupta’s disintegration formula

(see [90, Proposition 4.1]), we have the following chain of equalities for any bounded mea-

surable f : Rk → R.
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ˆ

Sn−1(
√
n)

fdσ̄n

=
1

σ(Sn)

ˆ

x∈Bk(
√
n)

ˆ
y∈Sn−k−1(

√
n−||x||2)

f(x, y)dσ(y)

√
n√

n− ||x||2
dλ(x)

=
1

σ(Sn)

ˆ
Rk
σ

(
Sn−k−1

(√
n− ||x||2

))
·
1Bk(

√
n)(x)f(x)

√
n√

n− ||x||2
dλ(x)

=
Γ
(
n
2

)
2π

n
2 · (
√
n)n−1

ˆ

Rk

2π
n−k
2 (n− ||x||2)

n−k−1
2

Γ
(
n−k

2

) ·
1Bk(

√
n)(x)f(x)

√
n√

n− ||x||2
dλ(x)

= an,kbn,k

ˆ
Rk

1

(
√

2π)
k

(
1− ||x||

2

n

)n
2
1Bk(

√
n)(x)f(x)(

1− ||x||
2

n

) k+2
2

dλ(x), (2.33)

where an,k =
Γ
(
n
2

)
Γ
(
n−k

2

)
·
(
n−k

2

) k
2

and bn,k =

(
1− k

n

) k
2

.

Note that lim
n→∞

an,k = lim
n→∞

bn,k = 1 for all k ∈ N (the first limit following from

Stirling’s formula, see Rudin [86, equation 103, p. 194]).

Modulo constants, for large values of n, the integrand in (2.33) is bounded by

|f(x)| e−
||x||2

4 , which is integrable on Rk since f is assumed to be bounded. Thus by the

dominated convergence theorem, the integral in (2.33) converges to
ˆ
Rk
fdµ as n → ∞, as

desired.

Remark 2.4.1. Due to the factor of

(
1− ||x||

2

n

) k+2
2

in the denominator of (2.33), domi-

nated convergence theorem does not directly work when we work with an unbounded func-

tion f , as there is no reason for |f(x)| e−
||x||2

4 to be Lebesgue integrable in general. Indeed

for a general Gaussian integrable f , we can bound |f(x)|

(
1− ||x||

2

n

)n
2

by |f(x)| e−
||x||2

2 ,

but there is still no obvious way to bound the whole integrand in (2.33) by a Lebesgue in-

tegrable function due to that extra factor in the denominator.

60



Corollary 2.4.2. For k ∈ N and N > N, almost all points on SN have finite first k

coordinates. That is,

Lσ̄N({(x1, . . . , xN) ∈ SN−1(
√
N) : x1, . . . , xk ∈ ∗Rfin}) = 1.

Proof. Fix k and N as above. If m ∈ N, we have Lσ̄N(∗(−m,m)k) = µ((−m,m)k) by

Theorem 2.1.1. Letting m→∞ on both sides completes the proof.

Corollary 2.4.3. For any t ∈ R>1, we have

lim
n→∞

ˆ
{x∈Rk:n

t
<||x||2<n}

(
1− ||x||

2

n

)n
4

dλ(x) = 0.

Proof. Let t ∈ R>1 and N > N. As a consequence of Corollary 2.4.2, we obtain:

σ̄N

({
x ∈ SN−1(

√
N) :

N

t
< ||πk(x)||2 < N

})
≈ 0.

The nonstandard characterization of limits and equation (2.33) thus yield the fol-

lowing.

lim
n→∞

ˆ
{x∈Rk:n

t
<||x||2<n}

1

(
√

2π)
k

(
1− ||x||

2

n

)n
2

1(
1− ||x||

2

n

) k+2
2

dλ(x) = 0. (2.34)

For all n ∈ N≥2(k+2), the sequence in the statement of the Corollary is bounded above by

(a constant times) the sequence in (2.34), thus completing the proof.

Remark 2.4.4. We can also prove Corollary 2.4.3 directly by noting that(
1− ||x||

2

n

)n
4

1||x||2≤n ≤ e−
||x||2

4 ,

where the right side is Lebesgue integrable over Rk. The proof presented above is still

valuable because it exposes a connection between these integrals and surface area mea-

sures.
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2.4.2. A useful inequality between spherical and Gaussian measures

In this subsection, we derive an inequality comparing the L1 norm (over the sphere

Sn−1(
√
n)) of a function defined on Rk and its pth moment (for any p ∈ R>1) with respect

to the standard Gaussian measure on Rk.

With the foresight provided by the philosophy of spherical integrals being close to a

Gaussian integral, we expect these spherical integrals to be asymptotically bounded by the

Lp(Rk, µ)–norms as the dimensions increase. Theorem 2.4.6 shows that depending on the

value of p ∈ R>1, there is a dimension (namely 4(k + 1)q) beyond which this does happen.

Before we prove that theorem, we need to generalize Sengupta’s disintegration formula to

work for any nonnegative function.

Theorem 2.4.5. Let N and k be positive integers with k < N . Suppose f is either a

bounded measurable or a nonnegative measurable function on SN−1(a), the sphere in RN =

Rk × RN−k of radius a and with center 0. Then, with σ denoting surface measure (non-

normalized) on spheres,

ˆ
z∈SN−1(a)

f(z)dσ(z) =

ˆ
x∈Bk(a)

(ˆ
y∈SN−k−1(ax)

f(x, y)dσ(y)

)
a

ax
dx (2.35)

for any a ∈ R>0, where ax =

√
a2 − ||x||2. The above equality means that either both sides

are finite and equal, or both sides are infinite.

Proof. If f is bounded measurable, then this is just Sengupta’s disintegration formula (see

[90, Proposition 4.1]). Otherwise, if f is nonnegative, then apply Sengupta’s disintegration

formula to the bounded measurable functions fm := f · 1f≤m for each m ∈ N, and then use

monotone convergence theorem on both sides to obtain (2.35).
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Theorem 2.4.6. For each p ∈ R>1, there is a constant Cp ∈ R>0 such that

ˆ
Sn−1(

√
n)

|g| dσ̄n ≤ Cp[Eµ(|g|p)]
1
p for all g ∈ Lp(Rk, µ) and n ∈ N>4(k+2)q, (2.36)

where q ∈ R>0 is such that
1

p
+

1

q
= 1.

Proof. Fix g ∈ Lp(Rk, µ), where p ∈ R>1. Also, let t ∈ N>1. Using Theorem 2.4.5 in-

stead of [90, Proposition 4.1], we can follow the same steps leading up to (2.33) to see thatˆ
Sn−1(

√
n)

|g| dσ̄n is equal to

ˆ
||x||2≤n

t

an,kbn,k |g(x)|
(
√

2π)
k

(
1− ||x||

2

n

)n−k−2
2

dλ(x)

+

ˆ
n
t
<||x||2≤n

an,kbn,k |g(x)|
(
√

2π)
k

(
1− ||x||

2

n

)n
2

1(
1− ||x||

2

n

) k+2
2

dλ(x), (2.37)

where an,k =
Γ
(
n
2

)
Γ
(
n−k

2

)
·
(
n−k

2

) k
2

and bn,k =

(
1− k

n

) k
2

are the same constants that appear

in (2.33).

Note that (
1− ||x||

2

n

)− k+2
2

≤
(

t

t− 1

) k+2
2

whenever ||x||2 ≤ n

t
.

Also,

(
1− ||x||

2

n

)n
2

1||x||2≤n is at most equal to e−
||x||2

2 for all x ∈ Rk. Noting that

bn,k < 1 for all n ∈ N>k, the first summand in (2.37) is at most

(
t

t− 1

) k+2
2 an,k

(2π)
k
2

ˆ
Rk
|g(x)| e−

||x||2
2 dλ(x)

for all n ∈ N>k. Writing this integral as a Gaussian expected value, and then using

Jensen’s inequality, we have:
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I1 ≤ an,k

(
t

t− 1

) k+2
2

||g||Lp(Rk,µ) for all n ∈ N>k, (2.38)

where I1 is the first summand in (2.37), and ||g||Lp(Rk,µ) = (Eµ(|g|p))
1
p .

Let q ∈ R>1 be such that
1

p
+

1

q
= 1. Then we can write the second summand in

(2.37) as follows:

an,kbn,k

ˆ
n
t
<||x||2≤n

|g(x)|

(
√

2π)
k
p

(
1− ||x||

2

n

) n
2p

· 1

(
√

2π)
k
q

(
1− ||x||

2

n

) n
2q
− k+2

2

dλ(x). (2.39)

Note that bn,k < 1 for all n ∈ N>k. By Hölder’s inequality applied to the functions

x 7→ |g(x)|

(
√

2π)
k
p

(
1− ||x||

2

n

) n
2p

and x 7→ 1

(
√

2π)
k
q

(
1− ||x||

2

n

) n
2q
− k+2

2

(on the domain {x ∈

Rk :
n

t
< ||x||2 < n} equipped with its Lebesgue measure), the expression in (2.39) is at

most equal to the following 1:

an,k

ˆ
x∈Rk

n
t
<||x||2≤n

|g(x)|p · 1

(
√

2π)
k

(
1− ||x||

2

n

)n
2

dλ(x)

 1
p

×

ˆ
x∈Rk

n
t
<||x||2≤n

1

(
√

2π)
k

(
1− ||x||

2

n

)( n
2q
− k+2

2 )·q

dλ(x)


1
q

.

The first term in this product is at most an,k(Eµ(|g|p))
1
p . Also, the integrand in the

second term in this product is at most

(
1− ||x||

2

n

)n
4

for all n ∈ N>2(k+2)q. To summarize,

if I2 is the second summand in (2.37), then we have:
1An anonymous referee has pointed out that one could also apply Hölder’s inequality to the func-

tions x 7→ |g(x)| and x 7→

(
1− ||x||

2

n

)− k+2
2

, on the same domain but with the measure given by

dν(x) =
1

(
√
2π)k

(
1− ||x||

2

n

)n
2

dλ(x).
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I2 ≤ an,k ||g||Lp(Rk,µ) · θn,t for all n ∈ N>(k+2)q, (2.40)

where

θn,t =

ˆ
x∈Rk

n
t
<||x||2≤n

1

(
√

2π)
k

(
1− ||x||

2

n

)n
4

dλ(x)

 1
q

. (2.41)

Combining (2.38) and (2.40), we get:

ˆ
Sn−1(

√
n)

|g| dσ̄n ≤an,k

[(
t

t− 1

) k+2
2

+ θn,t

]
||g||Lp(Rk,µ) (2.42)

for all n ∈ N>4(k+2)q and t ∈ N>1.

Here an,k =
Γ
(
n
2

)
Γ
(
n−k

2

)
·
(
n−k

2

) k
2

and θn,t is as in (2.41). Note that lim
n→∞

an,k = 1, and

by Corollary 2.4.3, lim
n→∞

θn,t = 0 for all t ∈ N. Thus, for any t ∈ N, the coefficient of

||g||Lp(Rk,µ) in (2.42) is uniformly bounded above, by (say) Cp. This completes the proof of

the theorem.

Focusing on the coefficient in (2.42), we note that given ε ∈ R>0 we can choose

t ∈ N>1 large enough for which the following inequality holds.

(
t

t− 1

) k+2
2

< 1 +
ε

2
.

For this t, using Corollary 2.4.3, we can choose an np ∈ N large enough such that

θn,t <
ε

2
for all n ∈ N>np . Since lim

n→∞
an,k = 1, we can also ensure that the np we choose is

large enough such that an,k < 1 + ε for all n ∈ N>np . Combining all of this, (2.42) yields

the following useful corollary: we are able to bound the ratio of the spherical integral and
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the Gaussian Lp norm by a constant as close to 1 as we want, with the price of having to

go to a potentially higher dimension to observe this phenomenon.

Corollary 2.4.7. For each p ∈ R>1 and ε ∈ R>0, there is an np ∈ N such that

ˆ
Sn−1(

√
n)

|g| dσ̄n ≤ (1 + ε)[Eµ(|g|p)]
1
p for all g ∈ Lp(Rk, µ) and n ∈ N>np . (2.43)

Using Theorem 2.4.6, the condition (2.19) of Theorem 2.3.1 is easily verified for all

functions in Lp(Rk, µ), where p ∈ Rk. Using that theorem and Theorem 2.1.1, we obtain

our main limiting result for spherical integrals.

Theorem 2.4.8. If µ is the standard Gaussian measure on Rk and f ∈ Lp(Rk, µ) for

some p ∈ R>1, then the nonstandard extension ∗f is S–integrable on SN−1(
√
N) for all

N > N. As a consequence, the function f is integrable on (Sn−1(
√
n), σ̄n) for all large

n ∈ N, and

lim
m→∞

lim
n→∞

ˆ
Sn−1(

√
n)∩{|f |≥m}

|f | dσ̄n = 0.

Furthermore, the spherical integrals of f satisfy the following limiting behavior:

lim
n→∞

ˆ
Sn−1(

√
n)

fdσ̄n =

ˆ
Rk
fdµ.

This limit of spherical integrals can be written as a single spherical integral (over an

infinite sphere)
ˆ
SN−1(

√
N)

st(∗f)dLσ̄N for any hyperfinite N .
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Chapter 3. Limiting Spherical Integrals of Bounded Continuous
Functions

3.1. Introduction

The study of the connection between high-dimensional surface area measures on

spheres and Gaussian measures, in essence, dates back to the works on the kinetic theory

of gas by Boltzmann [21] and Maxwell [74]. We studied this phenomenon from a nonstan-

dard analytic perspective in the previous chapter. A key idea in that work was to express

the limiting behavior of spherical integrals through certain Loeb integrals over spheres of

hyperfinite dimensions.

The aforementioned idea of using a nonstandard measure space as a limiting object

of a sequence of measure spaces is applicable to many situations in which we are studying

asymptotics of marginals along a given direction while the ambient spaces are changing.

Sengupta [90] and Peterson–Sengupta [79] studied the Gaussian Radon transform of finite

dimensional functions as a limit of spherical integrals over certain spheres of increasing

dimension, which is an appropriate setting to work with nonstandard analysis in. This is

the main theme of this chapter. We refer the reader to [48] and [49] for earlier standard

approaches in this context.

In [90], Sengupta fixed a hyperplane H in `2(R) and analyzed the limit of integrals

over Sn−1(
√
n) intersected with an appropriate “truncation” of H to the nth dimension.

More precisely, let H be the set of all square summable real sequences orthogonal to a unit

vector u ∈ `2(R). The integral of a function f : `2(R) → R with respect to the infinite

dimensional Gaussian measure with mean ~0 = (0, 0, . . .) and covariance operator equaling
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the projection PH onto H is the Gaussian–Radon transform of f evaluated at the hyper-

plane H (see also Holmes–Sengupta [52]). In general, one could work with a codimension-1

affine subspace A := pu + H, and integrate f : `2(R) → R with respect to the Gaus-

sian measure with mean pu and covariance PH in order to evaluate the Gaussian Radon

transform at A.

In the case when f : Rk → R (identifying it as a function on `2(R) by composing

it from the right with the projection to the first k coordinates) is bounded measurable,

Sengupta [90] showed that the corresponding Gaussian–Radon transform evaluated at

many codimension-1 affine subspaces (more precisely, at those affine subspaces for which

the marginal onto Rk of the Gaussian measure described above has full support) can

be thought of as limits of spherical integrals of f over the intersection of the spheres

Sn−1(
√
n) with an appropriate finite dimensional approximation (in Rn ⊆ `2(R)) to A.

This generalizes the earlier known results on limiting spherical integrals as we are not

integrating over the full sphere Sn−1(
√
n), but rather on slices of this sphere. In [79],

Peterson and Sengupta generalized the above result further to the case of affine subspaces

of any finite codimension (see also [78]).

To more rigorously state the key results in this context, we first need to set up

some notation and definitions that will be used throughout the rest of the chapter.

3.1.1. Notation and definitions

Let RN be the vector space of sequences of real numbers, with the standard basis

e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), etc. As usual, `2(R) will denote the subspace consisting

of all square summable real sequences. For x = (x1, x2, . . .) ∈ RN and n ∈ N, we define the
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nth truncation/projection by

x(n) := (x1, . . . , xn).

If x := (x1, . . . , xm) ∈ Rm for some m ∈ N, then we will use the same sym-

bol x to denote (x1, . . . , xm, 0, . . . , 0) ∈ Rn for any n ∈ N>m, as well as to denote

(x1, . . . , xm, 0, 0, . . .) ∈ `2(R), with the ambient space being clear from the context.

For k ∈ N, we use π(k) to denote the projection from RN (or from some fixed Rn for

n ∈ N≥k if the dimension n is clear from context) onto the first k coordinates:

π(k)(x1, x2, . . .) = (x1, . . . , xk).

Let u(1), . . . , u(γ) be mutually orthonormal vectors in `2(R). For real numbers

p1, . . . , pγ (with ~p := (p1, p2, . . . , pγ) ∈ Rγ), and n ∈ N, define (see also Figure 3.1):

A(~p) = A := {x ∈ `2(R) : 〈x, u(i)〉 = pi for all i ∈ [γ]},

Hn := {x ∈ Rn : 〈x, (u(i))(n)〉 = 0 for all i ∈ [γ]},

An(~p) = An := {x ∈ Rn : 〈x, (u(i))(n)〉 = pi for all i ∈ [γ]},

SAn(~p) = SAn := Sn−1(
√
n) ∩ An(~p), and

SHn := Sn−1(
√
n) ∩Hn.

We also denote SHn by Sn,u(1),...,u(γ) when it is important to emphasize which vec-

tors in `2(R) we are working with. When the sphere is clear from context, we will use σ̄ to

denote its uniform surface area measure.

The Borel sigma-algebra of a topological space Ω is denoted by B(Ω). Let S0 be

the set of all spheres that are centered at the origin in some real Euclidean space (in any
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An(~p)

Sn−1(
√
n)SAn(~p)

Figure 3.1. Intersecting Sn−1(
√
n) by the affine plane An

dimension n ∈ N and of any radius r ∈ R>0). For any S ∈ S0, we have an orthogonal

transformation preserving map called the surface area σS : B(S) → R, which satisfies the

following (see [73, Chapter 3] for more background):

• For any d ∈ N and any a ∈ R>0, we have σSd(a)(S
d(a)) = cd · ad, where cd =

σSd(1)(S
d(1)) = (d+ 1) · π

d+1
2

Γ
(
d+1

2
+ 1
) = 2

π
d+1
2

Γ
(
d+1

2

) .
• For any S ∈ S and any A ∈ B(S), we have σ̄S(A) =

σS(A)

σS(S)
.

Recall that we follow the superstructure approach to nonstandard extensions, as in

Albeverio et al. [6]. In particular, we fix a sufficiently saturated nonstandard extension of

a superstructure containing all standard mathematical objects under study. The nonstan-

dard extension of a set A is denoted by ∗A. For x, y ∈ ∗X (where X is a normed space),

we will write x ≈ y to denote that ||x− y|| is an infinitesimal. The set of finite nonstan-

dard real numbers will be denoted by ∗Rfin and the standard part map st : ∗Rfin → R takes

a finite nonstandard real to its closest real number. We write N > N (and call such an N

hyperfinite) if N ∈ ∗N\N. Viewing other spheres as translations of spheres in S0, the con-

cept of the surface area measure canonically extends to all finite-dimensional spheres. By

transfer, we have the notion of ∗-surface area in the nonstandard universe. Taking stan-
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dard parts of the uniform ∗-surface area σ̄S leads to the construction of the uniform Loeb

surface measure Lσ̄S on any hyperfinite-dimensional sphere S. When the sphere is clear

from context, we drop the subscript and use σ̄ and Lσ̄ to denote these measures.

Fix k ∈ N. For a set B ∈ B(Rk) and any n ∈ N≥k, if S is a (possibly lower di-

mensional) sphere in Rn, then we use σ̄S(B) to denote σ̄S
(
(B × Rn−k) ∩ S

)
. Similarly, a

function f : Rk → R is canonically extended to Rn by using “f(x, y)” to denote f(x) for all

x ∈ Rk and y ∈ Rn−k.

For an element x in a Hilbert space, Px is the projection operator onto the span of

x. Let η̄ = p1(u(1))(k) + . . . + pγ(u
(γ))(k). With Ik being the identity operator on Rk, let

µ
(k)

η̄,u(1),...,u(γ)
be the Gaussian measure on Rk with mean η̄ and covariance

Ik −
∣∣∣∣(u(1))(k)

∣∣∣∣2P(u(1))(k)
− . . .−

∣∣∣∣(u(γ))(k)

∣∣∣∣2P(u(γ))(k)
. (3.1)

We drop the superscript in µ(k)

η̄,u(1),...,u(γ)
when the dimension k is clear from context.

Also, when the u(i) and pi are clear from context, we denote µη̄,u(1),...,u(γ) by just µ. If the

pi are all zero, then we denote the corresponding measure by µ0.

3.1.2. Description of key results

In the notation set up above, the result of Peterson–Sengupta on limits of inte-

grals on slices of high-dimensional spheres can be summarized as follows (see [79, Theorem

2.1]).

Theorem 3.1.1 (Peterson–Sengupta). Let f : Rk → R be bounded and Borel measurable.

If the Gaussian measure µη̄,u(1),...,u(γ) has full support on Rk, then

lim
n→∞

ˆ
SAn

fdσ̄ =

ˆ
Rk
fdµη̄,u(1),...,u(γ) .
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Nonstandard analysis allows us to view the limit of spherical integrals as (the stan-

dard part of) another “spherical integral” in a hyperfinite dimension. We will use this idea

to generalize Theorem 3.1.1 for bounded continuous functions in the case when µη̄,u(1),...,u(γ)

does not necessarily have full support on Rk. Our proof is done in several steps of increas-

ing complexity:

(i) We first prove Theorem 3.1.1 in the case when the coordinates of the vectors
u(1), . . . , u(γ) are zero after a finite index, and the pi are zero(this is done in the
next section—see Lemma 3.2.4 and Proposition 3.2.6).

(ii) In Section 3, we continue in the case when the pi are zero (we call this the case of
great circles), and use overflow to obtain an approximation result for Loeb integrals
over a hyperfinite dimensional sphere intersected with an internal affine subspace
defined by a hyperfinite truncation of the u(i). Some continuity properties of our
integrals then yield the limiting result for bounded uniformly continuous functions
in the case of great circles.

(iii) We use the scaling and translation properties of the surface area measures to gen-
eralize the result for bounded uniformly continuous functions further to the case of
non-great circles. See Theorem 3.4.1.

(iv) Using Theorem 3.4.1, it follows that almost all points of SAN (where N is hyper-
finite) have finite coordinates along any given direction (this is Theorem 3.4.2).
Using this and the notion of S-integrability, we are able to finally generalize to all
bounded continuous functions (see Theorem 3.4.3).

In our proof, we also use a fact from asymptotic linear algebra with a nonstandard

proof in an appendix (see Lemma B.1).

3.2. Integrating bounded functions on certain great circles

In this section, we prove Theorem 3.1.1 in the case when the following hold:

(i) The function f : Rk → R is bounded measurable.

(ii) All the pi are zero (thus η̄ is the zero vector in Rk in this case).

(iii) The vectors u(i) ∈ `2(R) are finite-dimensional (their sequence representations with
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respect to the standard basis have finitely many nonzero terms).

We will make use of a disintegration formula from [90], which we quote below.

Theorem 3.2.1. [90, Proposition 4.1, p. 19] Let N and k be positive integers with k < N ,

and f any bounded measurable function on SN−1(a), the sphere in RN = Rk × RN−k of

radius a and with center 0. Then, with σ denoting surface measure (non-normalized) on

spheres, we have the following for all a ∈ R>0:

ˆ
z∈SN−1(a)

f(z)dσ(z) =

ˆ
x∈Bk(a)

(ˆ
y∈SN−k−1(ax)

f(x, y)dσ(y)

)
a

ax
dx, (3.2)

where ax =

√
a2 − ||x||2 and Bk(a) is the open ball of radius a in Rk.

The following lemma ensures that the Gaussian measures appearing in this chapter

are well-defined.

Lemma 3.2.2. For orthonormal vectors v(1), . . . , v(γ) in `2(R), the (k × k) matrix I −∣∣∣∣(v(1))(k)

∣∣∣∣2P(v(1))(k)
− . . . −

∣∣∣∣(v(γ))(k)

∣∣∣∣2P(v(γ))(k)
is positive-semidefinite. In particular, it is

the covariance matrix of a Gaussian measure on Rk.

Proof. Let x ∈ Rk. Then,

〈
x,
(
I −

∣∣∣∣(v(1))(k)

∣∣∣∣2P(v(1))(k)
− . . .−

∣∣∣∣(v(γ))(k)

∣∣∣∣2P(v(γ))(k)

)
x
〉

= ||x||2 −
γ∑
i=1

〈
x,
∣∣∣∣(v(i))(k)

∣∣∣∣2〈x, (v(i))(k)∣∣∣∣(v(i))(k)

∣∣∣∣
〉

(v(i))(k)∣∣∣∣(v(i))(k)

∣∣∣∣
〉

= ||x||2 −
γ∑
i=1

〈
x, (v(i))(k)

〉2

≥ ||x||2 −
γ∑
i=1

(〈
x, v(i)

〉
`2

)2

≥ ||x||2 − ||x||2 = 0,

which completes the proof.
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Notation 3.2.3. The Gaussian measure on Rk with the above covariance and mean ρ ∈

Rk will be denoted by µρ;v(1),...,v(γ) . In general, for a positive-semidefinite (k × k)-matrix L,

we will also use µρ,L to denote the Gaussian measure on Rk with mean ρ and covariance L.

We now study the simplest case when the u(i) are all in Rk, the domain of f .

Lemma 3.2.4. Let f : Rk → R be a bounded measurable function. Let u(1), . . . , u(γ) be

mutually orthonormal vectors in Rk (hence, γ ≤ k necessarily). Then we have:

lim
n→∞

ˆ
S
n,u(1),...,u(γ)

fdσ̄ =

ˆ
Rk
fdµ0;u(1),...u(γ) .

Proof. Without loss of generality, let γ < k (if γ = k, then u(1), . . . , u(γ) span Rk,

and hence the above equality is trivial with both sides being identical to zero). Let

{u(1), . . . , u(γ), z(1), . . . z(k−γ)} be an orthonormal basis of Rk. Define g : Rk−γ → R by

g(y1, . . . , yk−γ) = f(y1z
(1) + . . .+ yk−γz

(k−γ)).

The map T : Sn,u(1),...,u(γ) → Sn−γ−1(
√
n) defined as follows is a measure isomor-

phism:

T

(
k−γ∑
i=1

yiz
(i) +

n∑
j=k+1

yjej

)
:=

n−γ∑
i=1

yiei.

It thus follows that for any bounded measurable function f : Rk → R, we have:

ˆ
S
n,u(1),...,u(γ)

f(x1, . . . , xk)dσ̄(x1, . . . , xn)

=

ˆ
Sn−γ−1(

√
n)

g(y1, . . . , yk−γ)dσ̄(y1, . . . , yn−γ)

=
1

σ(Sn−γ−1(
√
n))

ˆ
Sn−γ−1(

√
n)

g(y1, . . . , yk−γ)dσ(y1, . . . , yn−γ)

=
1

cn−γ−1n
n−γ−1

2

ˆ

Bk−γ(
√
n)

g(~y)n
1
2

(n− ||~y||2)
1
2

· σ
(
Sn−γ−1−(k−γ)

(√
n− ||~y||2

))
dλ(~y),
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where ~y = (y1, . . . , yk−γ). We have used Theorem 3.2.1 in the last equality above. Simpli-

fying further, we thus obtain the following:

ˆ
S
n,u(1),...,u(γ)

f(x1, . . . , xk)dσ̄(x1, . . . , xn)

=

(
2π

n−k
2

Γ(n−k2 )

)
(

2π
n−γ
2

Γ(n−γ2 )

) · 1

n
n−γ−2

2

·
ˆ
Bk−γ(

√
n)

g(y1, . . . , yk−γ)(n− ||~y||2)
n−k−2

2 dλ(~y)

=
1

(2π)
k−γ
2

·
Γ
(
n−k

2
+ k−γ

2

)
Γ
(
n−k

2

)
·
(
n−k

2

) k−γ
2

·
ˆ
Bk−γ(

√
n)

g(y1, . . . , yk−γ) ·

(
(n− ||~y||2)

n−k−2
2

)
· (n− k)

k−γ
2

n
n−γ−2

2

dλ(~y)

=
an,kbn,k

(2π)
k−γ
2

·
ˆ
Bk−γ(

√
n)

g(y1, . . . , yk−γ) ·

(
1− ||~y||

2

n

)n−k−2
2

dλ(~y), (3.3)

where an,k =
Γ
(
n−k

2
+ k−γ

2

)
Γ
(
n−k

2

)
·
(
n−k

2

) k−γ
2

and bn,k =

(
1− k

n

) k−γ
2

. Note that

lim
n→∞

an,k = 1 = lim
n→∞

bn,k.

Since f is bounded, therefore for large values of n, the integrand in (3.3) is

bounded by ||f ||∞ · e
− ||y||

2

4 in absolute value, the latter being integrable on Rk−γ. We

thus obtain the following by dominated convergence theorem:

lim
n→∞

ˆ
S
n,u(1),...,u(γ)

f(x1, . . . , xk)dσ̄(x1, . . . , xn)

=
1

(2π)
k−γ
2

·
ˆ
Rk−γ

g(y1, . . . , yk−γ) · e
−||~y||2

2 dλ(~y)

=
1

(2π)
k−γ
2

·
ˆ
Rk−γ

f(y1z
(1) + . . .+ yk−γz

(k−γ)) · e
−||~y||2

2 dλ(~y)

=
1

(2π)
k
2

·
ˆ
Rk
f(y1z

(1) + . . .+ yk−γz
(k−γ)) · e−

y1
2+...+yk

2

2 dλ(ỹ), (3.4)
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where ỹ = (y1, . . . , yk). (3.4) follows from Fubini’s theorem, using the fact that the integral

over the last γ coordinates is (2π)
γ
2 . Rewriting (3.4), we have:

lim
n→∞

ˆ
S
n,u(1),...,u(γ)

fdσ̄ =
1

(2π)
k
2

·
ˆ
Rk
f(Pu(1),...,u(γ) (ỹ)) · e

−||ỹ||2
2 dλ(ỹ)

=

ˆ
Rk
fdµ0;u(1),...,u(γ) , (3.5)

completing the proof.

The following basic fact about Gaussian measures allows us to strengthen Lemma

3.2.4 to the case when the vectors u(1), . . . u(γ) are vectors in `2(R) that are eventually zero

(but not necessarily zero after the kth coordinate)

Lemma 3.2.5. Let u(1), . . . , u(γ) be orthonormal vectors in Rm where m ∈ N>k. Let µ′

be the Gaussian measure on Rm with mean 0 ∈ Rm and covariance I −
γ∑
i=1

Pu(i). Let

µ0;u(1),...,u(γ) be the Gaussian measure on Rk with mean 0 ∈ Rk and covariance as in (3.1).

For any bounded measurable function f : Rk → R, we have:

ˆ
Rm

f(x1, . . . , xm)dµ′ =

ˆ
Rk
f(x1, . . . , xk)dµ0;u(1),...,u(γ) . (3.6)

Proof. The collection of functions satisfying (3.6) is closed under taking R-linear combi-

nations and uniform limits. Hence, it is enough to show that indicator functions of Borel

subsets of Rk satisfy (3.6). If X ∼ N(ρ,Σ) is an m-dimensional Gaussian random vari-

able, then X(k) ∼ N(ρ(k),Σ(k,k)). Let ρ = 0 ∈ Rm and Σ be the matrix of the operator on

Rm given by Im −
γ∑
i=1

Pu(i) . Note that for any i ∈ {1, . . . , γ} and j ∈ {1, . . . , k}, we have
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〈
ej, u

(i)
〉

=
〈
ej, (u

(i))(k)

〉
, which implies

(Pu(i)(ej))(k) = (〈ej, u(i)〉u(i))(k)

=
∣∣∣∣(u(i))(k)

∣∣∣∣2〈ej, (u(i))(k)∣∣∣∣(u(i))(k)

∣∣∣∣
〉

(u(i))(k)∣∣∣∣(u(i))(k)

∣∣∣∣
=
∣∣∣∣(u(i))(k)

∣∣∣∣2 P(u(i))(k)
(ej).

Thus the operator represented by Σ(k,k) is

Ik −
∣∣∣∣(u(1))(k)

∣∣∣∣2P(u(1))(k)
− . . .−

∣∣∣∣(u(γ))(k)

∣∣∣∣2P(u(γ))(k)
,

which completes the proof.

Proposition 3.2.6. If u(1), . . . , u(γ) are orthonormal vectors in Rm and f : Rk → R is a

bounded measurable function, then

lim
n→∞

ˆ
S
n,u(1),...,u(γ)

f(x1, . . . , xk)dσ̄(x1, . . . , xn) =

ˆ
Rk
fdµ0;u(1),...,u(γ) . (3.7)

Proof. In the case when m ≤ k, this follows from Lemma 3.2.4. Now suppose m > k. By

Lemma 3.2.4, the limit on the left side of (3.7) is equal to

ˆ
Rm

f(x1, . . . , xm)dµ′,

where µ′ is the Gaussian measure on Rm with mean 0 and covariance Im −
γ∑
i=1

Pu(i) . The

proof is now completed by Lemma 3.2.5.

3.3. A hyperfinite approximation and integrating on any great circle

Throughout this section, N > N will be a hyperfinite number. The goal of this

section is to generalize Theorem 3.1.1 to the case when the function f : Rk → R is contin-

uous with compact support (we will henceforth write f ∈ Cc(Rk)), while the pi are zero
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(i.e., SAN is a great circle on SN−1(
√
N)), with no restriction on the orthonormal vectors

u(1), . . . , u(γ) ∈ `2(R). The key steps are as follows:

(i) Show that the ∗-integral of ∗f does not change much when SN−1(
√
N) is inter-

sected by two different internal hyperplanes that are infinitesimally close enough
to each other.

(ii) In view of (i) and certain continuity properties of the Gaussian integral (with vary-
ing covariance), prove some continuity results that show that the integrals in Theo-
rem 3.1.1 do not change much when we work with two different hyperfinite trunca-
tions of the u(i).

(iii) Use overflow together with the results of Section 2 to get an approximation result
when the vectors u(i) are zero after a small but hyperfinite index M . Then, use (ii)
to complete the proof.

These three ideas will be pursued in the next three subsections respectively.

3.3.1. Effect of an infinitesimal rotation on the ∗-integral of a bounded uni-
formly continuous function

Proposition 3.3.1. Let N > N and R ∈ ∗R>0 be such that
R√
N
∈ ∗Rfin. Then, almost all

points of SN−1(R) have finite coordinates in any given direction, i.e.,

Lσ̄({(x1, . . . , xN) ∈ SN−1(R) : xi ∈ ∗Rfin}) = 1 for all i ≤ N.

As a consequence, for any v(1), . . . , v(γ) ∈ ∗RN , almost all points on the sphere

SN−1(R) ∩ v(1)⊥ ∩ . . . ∩ v(γ)⊥ have finite coordinates along a given direction (unit) vector

w ∈ ∗RN . That is, given a unit vector w ∈ ∗RN , almost all points x on this sphere have

〈x,w〉 ∈ ∗Rfin.

Proof. The first half of the proposition was proved in [4, Corollary 4.3] for the case R =

√
N (i.e. for the sphere SN−1(

√
N)). The result for SN−1(R) in general then follows from

the (transfer of) scaling property of uniform surface area measures. Indeed, for any B ∈
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∗B(SN−1(
√
N)), we have:

σ̄SN−1(
√
N)(B) = σ̄SN−1(R)

(
R√
N
B

)
.

Now, let

S ′ := SN−1(R) ∩ v(1)⊥ ∩ . . . ∩ v(γ)⊥.

Also, let L be the internal span
(∗Rv(1) + . . .+ ∗Rv(γ)

)
of v(1), . . . , v(γ) in ∗RN .

Consider an arbitrary unit vector w ∈ ∗RN . We want to show that almost all points on

S ′ have finite coordinates along w, i.e., 〈x,w〉 ∈ ∗Rfin for Lσ̄S′-almost all x ∈ S ′. Let w′

and w′′ be the orthogonal projections of w onto L and its orthogonal complement L⊥ (in

∗RN) respectively. Since S ′ ⊆ L⊥, we have:

〈x,w〉 = 〈x,w′〉+ 〈x,w′′〉 = 〈x,w′′〉 for all x ∈ S ′.

If w′′ = 0, then clearly all points of S have the coordinate 0 along w. Otherwise, if w′′ is

not zero, then define

w(1) :=
w′′

||w′′||
.

Let c = ∗ dim(L). It is clear that c ≤ γ. Extend w(1) to an orthonormal basis

{w(1), . . . , w(N−c)} of L⊥ = ∗RN ∩ v(1)⊥ ∩ . . . ∩ v(γ)⊥. Consider the map φ : ∗RN ∩ v(1)⊥ ∩

. . . ∩ v(γ)⊥ → ∗RN−c defined by

φ(w(i)) = ei for all i ∈ [N − c].

The map φ restricted to S ′ is a measure isomorphism onto SN−1−c(R). The first

half of the proposition (applied to SN−1−c(R)) now completes the proof.
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In the following, we use the concept of Separation Property (SP) defined in Ap-

pendix C; see (C.2). Roughly speaking, a set of vectors satisfy SP if they are linearly inde-

pendent in a non-infinitesimal way (this is made precise in Appendix C). The hypothesis

of Theorem 3.3.2 is the same as that of Theorem C.2 (with ∗RN as the ambient internal

vector space).

Theorem 3.3.2. Fix N > N. For each i ∈ {1, . . . , γ}, let v(i), v′(i) ∈ (∗R)N be such that

the following conditions hold:

(i) The collections {v(1), . . . , v(γ)} and {v′(1), . . . , v′(γ)} both satisfy the Separation Prop-
erty (see (C.2)).

(ii)
∣∣∣∣v(i)

∣∣∣∣ , ∣∣∣∣v(i)
∣∣∣∣ ∈ ∗Rfin.

(iii)
∣∣∣∣v(i) − v′(i)

∣∣∣∣ ≈ 0.

Then for any bounded and uniformly continuous f : Rk → R, we have:.

ˆ

S(1)

st(∗f(x))dLσ̄(x) =

ˆ

S(2)

st(∗f(x))dLσ̄(x),

where S(1) = SN−1(
√
N) ∩ v(1)⊥ ∩ . . . ∩ v(γ)⊥ and S(2) = SN−1(

√
N) ∩ v′(1)⊥ ∩ . . . ∩ v′(γ)⊥.

Proof. The idea is to first show that S(1) and S(2) are spheres of the same topological

dimension that are infinitesimally apart (to be made precise below). See also Figure 3.2.

Note that the hypotheses on the sets {v(1), . . . , v(γ)} and {v′(1), . . . , v′(γ)} are the same

as in Theorem C.2. Thus, using Theorem C.2, we obtain orthonormal sets of vectors

{w(1), . . . , w(γ)} and {z(1), . . . , z(γ)} such that the following hold:

1. For any i ∈ {1, . . . , γ}, we have span(v(1), . . . , v(i)) = span(w(1), . . . , w(i)) and
span(v′(1), . . . , v′(i)) = span(z(1), . . . , z(i)).

2. For all i ∈ {1, . . . , γ}, we have
∣∣∣∣w(i) − z(i)

∣∣∣∣ ≈ 0.
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SN−1(
√
N)

H1

H2

S
(1

)

S
(2

)

Figure 3.2. S(1) and S(2) are separated infinitesimally

Define the internal subspaces H1 := {x ∈ ∗RN : 〈x,w(i)〉 = 0 for all i ∈ {1, . . . , γ}} and

H2 := {x ∈ ∗RN : 〈x, z(i)〉 = 0 for all i ∈ {1, . . . , γ}}. Therefore,

S(1) = SN−1(
√
N) ∩ v(1)⊥ ∩ . . . ∩ v(γ)⊥ = SN−1(

√
N) ∩H1, and

S(2) = SN−1(
√
N) ∩ v′(1)⊥ ∩ . . . ∩ v′(γ)⊥ = SN−1(

√
N) ∩H2.

Note that dim(H1 ∩ H2) ≥ N − 2γ. Obtain an internally orthonormal set

{c1, . . . , cN−2γ} in H1 ∩ H2. For i ∈ {1, . . . , N − 2γ}, define w(γ+i) = z(γ+i) = ci. We

thus have internally orthonormal sets {w(1), . . . w(N−γ)} and {z(1), . . . z(N−γ)} such that∣∣∣∣w(i) − z(i)
∣∣∣∣ ≈ 0 for all i ∈ {1, . . . , N − γ}. Now extend to an internal orthonormal basis

{w(1), . . . , w(N−γ), . . . , w(N)} of ∗RN , and inductively define the following for i ∈ {1, . . . , γ}:

z(N−γ+1) :=
w(N−γ+1) −

∑γ
j=1〈z(j), w(N−γ+1)〉z(j)∣∣∣∣∣∣w(N−γ+1) −

∑γ
j=1〈z(j), w(N−γ+1)〉z(j)

∣∣∣∣∣∣ ,
z(N−γ+i+1) :=

z

||z||
, where

z = w(N−γ+i+1) −
γ∑
j=1

〈z(j), w(N−γ+i+1)〉z(j) −
i∑
l=1

〈z(N−γ+l), w(N−γ+i+1)〉z(N−γ+l).
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It is straightforward to verify that {z(1), . . . , z(N)} is also an internal orthonormal

basis of ∗RN (orthonormality follows by construction and we then use the transfer of the

standard fact about Euclidean spaces that says that all orthonormal sets containing as

many elements as the dimension span the space). Furthermore,
∣∣∣∣w(i) − z(i)

∣∣∣∣ ≈ 0 for all

i ∈ {1, . . . , N} by construction.

Define a ∗R-linear map R : ∗RN → ∗RN by R(w(i)) = z(i) for all i ∈ {1, . . . , N}.

Since R takes an internal orthonormal basis to an internal orthonormal basis, it is an in-

ternal orthogonal map. Also, R(S(1)) = S(2). By transfer, it follows that for any A ∈

∗B(S(1)), we have σ̄S(2)(R(A)) = σ̄S(1)(A). Hence, it follows that

Lσ̄S(2)(R(A)) = Lσ̄S(1)(A) for all A ∈ ∗B(S(1)).

By a change of variables argument, we conclude the following for any bounded

measurable function g : Rk → R:

ˆ
S(2)

st(∗g(x))dLσ̄(x) =

ˆ
S(1)

st(∗g(R(x)))dLσ̄(x).

Thus it suffices to prove that the following holds for all bounded and uniformly continuous

functions f : Rk → R.

ˆ
S(1)

st(∗f(x))dLσ̄(x) =

ˆ
S(1)

st(∗f(R(x)))dLσ̄(x) (3.8)

In order to show (3.8), we first need the following claim.

Claim 3.3.3. We have ||x−R(x)|| ≈ 0 for almost all x ∈ S(1).

Proof of Claim 3.3.3. Note that x =
N∑
i=1

〈x,w(i)〉w(i) for any x ∈ ∗RN . Since w(i) = z(i)

for all i ∈ {γ + 1, . . . , N − γ}, the facts that R(w(i)) = z(i) for all i and that 〈x,w(i)〉 = 0
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for all i ∈ {1, . . . , γ} imply that

||x−R(x)|| =

∣∣∣∣∣
∣∣∣∣∣

N∑
i=N−γ+1

〈x,w(i)〉(w(i) − z(i))

∣∣∣∣∣
∣∣∣∣∣ for all x ∈ S(1).

By Proposition 3.3.1, it follows that for each i > γ, almost surely 〈x,w(i)〉 ∈ ∗Rfin.

Thus, being a maximum of finitely many elements of ∗Rfin, we have:

max
N−γ+1≤i≤N

∣∣〈x,w(i)〉
∣∣ = s(x) (say),

where s(x) ∈ ∗Rfin for almost all x ∈ S(1). Hence, for almost all x ∈ S(1), we get:

||x−R(x)|| ≤ s(x) ·
N∑

i=N−γ+1

∣∣∣∣w(i) − z(i)
∣∣∣∣ ≈ 0, as desired.

Using Claim 3.3.3, we have ||∗πk(x)− ∗πk(R(x))|| ≈ 0 for almost all x ∈ S(1).

Thus, by the nonstandard characterization of uniform continuity, we have that st(∗f(x)) =

st(∗f(R(x))) for almost all x ∈ S(1). This completes the proof.

3.3.2. Some integral continuity properties

Definition 3.3.4. Let PSD be the set of all positive-semidefinite (k × k)-matrices with

real entries. For a bounded measurable function f : Rk → R, we define Gf : PSD → R

to be the function that maps L to the expectation of (our fixed function) f with respect to

the Gaussian measure on Rk with mean 0 and covariance L, i.e.,

Gf (L) =

ˆ
Rk
fdµ0,L.

Being a subset of the space of linear operators on Rk, the space PSD inherits the

metric induced by the operator norm.
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Lemma 3.3.5. With respect to the operator norm on PSD, the map Gf is continuous for

all bounded continuous f : Rk → R.

Proof. Let Ln → L in PSD. It suffices to prove that µ0,Ln → µ0,L weakly. Equivalently,

we want to show that Zn → Z in distribution, where Zn ∼ N(0, Ln) and Z ∼ N(0, L).

Since Zn and Z are Rk-valued Gaussian random variables, Zn → Z in distribution if and

only if for any ~x ∈ Rk, the Gaussian random variables 〈~x, Zn〉 converge in distribution to

〈~x, Z〉 (see, for example, [56, Corollary 4.5, p. 64]). Toward that end, fix ~x ∈ Rk. We know

that 〈~x, Zn〉 ∼ N (0, 〈~x, Ln~x〉), while 〈~x, Z〉 ∼ N (0, 〈~x, L~x〉). For real-valued Gaussian

random variables, convergence in distribution is equivalent to the convergence of means

and variances. The proof is thus completed by the observation that Ln~x → L~x (which

follows from the fact that Ln → L in operator norm).

Definition 3.3.6. For an inner product space V and γ ∈ N, let V [γ] be the set of γ-tuples

of orthonormal vectors from V .

Definition 3.3.7. For a bounded measurable function f : Rk → R and m ∈ N≥k, let

θf,m : (Rm)[γ] → R and af,m : (Rm)γ × N≥k → R be defined by

θf,m(v(1), . . . , v(γ)) :=

ˆ
Rk
fdµ0;v(1),...,v(γ) ,

af,m(v(1), . . . , v(γ), n) :=

ˆ
S
n,v(1),...,v(γ)

fdσ̄.

Here, Sn,v(1),...,v(γ) is equal to the intersection of Sn−1(
√
n) with ∩i≤γ(v(i))⊥. Note

that θf,m is defined only on (Rm)[γ] (instead of on (Rm)γ) since µ0;v(1),...,v(γ) is well-defined

for (v(1), . . . , v(γ)) ∈ (Rm)[γ] by Lemma 3.2.2 while it may not be defined in general for

an arbitrary set of vectors in Rm. On the other hand, af,m(·, n) is defined on all of (Rm)γ,
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though we will usually only be interested in the case when v(1), . . . , v(γ) are truncations of

orthonormal vectors in `2(R).

The space (Rm)[γ] inherits a metric from (Rm)γ. The next two lemmas respectively

prove that under the topology of that metric, the function θf,m is continuous and that

af,m(·, N) : ∗(Rm)[γ] → ∗R is S-continuous (an internal function is called S-continuous if it

maps points that are infinitesimally close in the domain to points that are infinitesimally

close in the range).

Lemma 3.3.8. For each bounded continuous function f : Rk → R and m ∈ N, the map

θf,m is continuous. In other words, if (v(1), . . . , v(γ)) ∈ (Rm)[γ] and (v′(1), . . . , v′(γ)) ∈

(∗Rm)[γ] are such that
∣∣∣∣v(i) − v′(i)

∣∣∣∣ ≈ 0 for each i ∈ {1, . . . , γ}, then we have

θf,m(v(1), . . . , v(γ)) ≈ ∗θf,m(v′(1), . . . , v′(γ)).

Proof. The two statements in the lemma are equivalent by the nonstandard char-

acterization of continuity. We will prove the latter statement. Toward that end, fix

(v(1), . . . , v(γ)) ∈ (Rm)[γ] and (v′(1), . . . , v′(γ)) ∈ (∗Rm)[γ] such that

∣∣∣∣v(i) − v′(i)
∣∣∣∣ ≈ 0 for each i ∈ {1, . . . , γ}.

Let

L = I −
∣∣∣∣(v(1))(k)

∣∣∣∣2P(v(1))(k)
− . . .−

∣∣∣∣(v(γ))(k)

∣∣∣∣2P(v(γ))(k)
, and

L′ = I −
∣∣∣∣(v′(1))(k)

∣∣∣∣2P(v′(1))(k)
− . . .−

∣∣∣∣(v(γ))(k)

∣∣∣∣2P(v′(γ))(k)
.

By Definition 3.3.4 and transfer, we have

θf,m(v(1), . . . , v(γ)) = Gf (L), and ∗θf,m(v′(1), . . . , v′(γ)) = ∗Gf (L
′).
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By Lemma 3.3.5, the map Gf is continuous. Hence, by nonstandard characteriza-

tion of continuity, it suffices to show that ||L− L′||op ≈ 0. This is straightforward if one

uses the representation of the projection operator as given by the inner product in the di-

rection of the projection.

Lemma 3.3.9. Let N > N. If f : Rk → R is bounded and uniformly continuous, then the

map af,m(·, N) : ∗(Rm)[γ] → ∗R is S-continuous.

Equivalently, if (v(1), . . . , v(γ)) and (v′(1), . . . , v′(γ)) ∈ (∗Rm)[γ] are such that∣∣∣∣v(i) − v′(i)
∣∣∣∣ ≈ 0 for each i ∈ {1, . . . , γ}, then

∗af,m(v(1), . . . , v(γ), N) ≈ ∗af,m(v′(1), . . . , v′(γ), N) for all N > N.

Proof. This is immediate from Theorem 3.3.2 followed by applications of the transfer prin-

ciple and the S-integrability of finitely bounded internal functions.

3.3.3. A hyperfinite approximation via overflow

Theorem 3.3.10. With u(1), . . . , u(γ) orthonormal in `2(R), for any bounded and uni-

formly continuous f : Rk → R, we have

lim
n→∞

ˆ
Sn−1(

√
n)∩u(1)⊥∩...∩u(γ)⊥

f(x)dσ̄(x) =

ˆ
Rk
f(x)dµ0;u(1),...,u(γ)(x).

Proof. Fix f as above. Since the limit of a sequence, if it exists, is the same as the stan-

dard part of any element with a hyperfinite index in the nonstandard extension of the se-

quence, it suffices to show that st
(
∗af,N

(
u

(1)
(N), . . . , u

(γ)
(N), N

))
equals

ˆ
Rk
f(x)dµ0(x). Con-
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sider the following internal set:

G :=

{
m ∈ ∗N : m ≤ N, and ∀(v(1), . . . , v(γ)) ∈ (∗Rm)[γ]

(∣∣∗af,m(v(1), . . . , v(γ), N)− ∗θf,m(v(1), . . . , v(γ))
∣∣ < 1

m

)}
.

By Lemma 3.3.8, Lemma 3.3.9 and Corollary 3.2.4, it follows that N ⊆ G. By over-

flow, there exists M > N such that {1, . . . ,M} ⊆ G. Fix this M . By Lemma B.1, the vec-

tors (u(1))(M), . . . , (u
(γ))(M) are ∗R-linearly independent. Use the Gram-Schmidt algorithm

to get orthonormal vectors with the same linear span:

w(1) :=
(u(1))(M)∣∣∣∣(u(1))(M)

∣∣∣∣ , (3.9)

w(2) :=
(u(2))(M) − 〈(u(2))(M), w

(1)〉w(1)∣∣∣∣(u(2))(M) − 〈(u(2))(M), w(1)〉w(1)
∣∣∣∣ ,

w(3) :=
(u(3))(M) − 〈(u(3))(M), w

(1)〉w(1) − 〈(u(3))(M), w
(2)〉w(2)∣∣∣∣(u(3))(M) − 〈(u(3))(M), w(1)〉w(1) − 〈(u(3))(M), w(2)〉w(2)

∣∣∣∣ ,
...

w(γ) :=
(u(γ))(M) − 〈(u(γ))(M), w

(1)〉w(1) − . . .− 〈(u(γ))(M), w
(γ−1)〉w(γ−1)∣∣∣∣(u(γ))(M) − 〈(u(γ))(M), w(1)〉w(1) − . . .− 〈(u(γ))(M), w(γ−1)〉w(γ−1)

∣∣∣∣ .
Since M ∈ G, we have

∣∣∗af,M(w(1), . . . , w(γ), N)− ∗θf,M(w(1), . . . , w(γ))
∣∣ < 1

M
≈ 0. (3.10)

Since 〈u(i), u(j)〉`2(R) = lim
m→∞

〈(u(i))(m), (u
(j))(m)〉 = 0 if i 6= j, the nonstandard

characterization of limits implies that

〈(u(i))(M), (u
(j))(M)〉 ≈ 0 for i 6= j. (3.11)

Similarly,
∣∣∣∣(u(i))(M)

∣∣∣∣ ≈ lim
m→∞

∣∣∣∣(u(i))(M)

∣∣∣∣ = 1, and 〈(u(i))(M), w
(j)〉 ≈ 0 for all

j ∈ {1, . . . , γ}\{i} (for a given i ∈ {1, . . . , j}, this follows by induction on j using (3.11)).

87



Truncating to the first k coordinates, we thus obtain (by induction on i):

∣∣∣∣(w(i))k − (u(i))(k)

∣∣∣∣ ≈ 0 for all i. (3.12)

Hence the covariance matrix defined by (w(1))(k), . . . , (w
(γ))(k) is infinitesimally close

to that defined by (u(1))(k), . . . , (u
(γ))(k) in ∗operator norm, i.e.,∣∣∣∣∣

∣∣∣∣∣ (I − ∣∣∣∣(w(1))(k)

∣∣∣∣2P(w(1))(k)
− . . .−

∣∣∣∣(w(γ))(k)

∣∣∣∣2P(w(γ))(k)

)
−
(
I −

∣∣∣∣(u(1))(k)

∣∣∣∣2P(u(1))(k)
− . . .−

∣∣∣∣(u(γ))(k)

∣∣∣∣2P(u(γ))(k)

) ∣∣∣∣∣
∣∣∣∣∣ ≈ 0. (3.13)

The continuity of Gf thus yields the following:

∗Gf

(
I −

∣∣∣∣(w(1))(k)

∣∣∣∣2P(w(1))(k)
− . . .−

∣∣∣∣(w(γ))(k)

∣∣∣∣2P(w(γ))(k)
)
)
≈
ˆ
Rk
fdµ0

Also, by transfer we have:

∗Gf

(
I −

∣∣∣∣(w(1))(k)

∣∣∣∣2P(w(1))(k)
− . . .−

∣∣∣∣(w(γ))(k)

∣∣∣∣2P(w(γ))(k)

)
= ∗θf,M(w(1), . . . , w(γ)).

Hence, using (3.10), we get ∗af,M(w(1), . . . , w(γ), N) ≈
ˆ
Rk
fdµ0. Thus, it suffices to

show that ∗af,M(w(1), . . . , w(γ), N) ≈ af,N((u(1))(N), . . . , (u
(γ))(N), N). Since f is bounded,

∗f is S-integrable on SN−1(
√
N) ∩ u(1)⊥

(N) ∩ . . . ∩ u(γ)⊥
(N), so that the above is equivalent to

showing the following for any f ∈ Cc(Rk):

ˆ
SN−1(

√
N)∩w(1)⊥∩...∩w(γ)⊥

st(∗f(x))dLσ̄(x)

=

ˆ
SN−1(

√
N)∩u(1)⊥(N)∩...∩u(γ)

⊥
(N)

st(∗f(x))dLσ̄(x). (3.14)

This follows from Proposition C.4 and Theorem 3.3.2, completing the proof.
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3.4. Integrating continuous functions over non-great circles

In this section, we prove Theorem 3.1.1 for all bounded continuous functions. We

recall some notation here for convenience. We fix p1, . . . , pγ ∈ R, and for any n ∈ N, we

consider the sets

A := {x ∈ `2(R) : 〈x, u(i)〉 = pi for all i ∈ {1, . . . , γ}},

Hn := {x ∈ Rn : 〈x, (u(i))(n)〉 = 0 for all i ∈ {1, . . . , γ}},

An := {x ∈ Rn : 〈x, (u(i))(n)〉 = pi for all i ∈ {1, . . . , γ}},

SAn := Sn−1(
√
n) ∩ An, and

SHn := Sn−1(
√
n) ∩Hn.

Let z(1), . . . , z(γ) be the Gram-Schmidt orthonormalization of the ∗R-linearly inde-

pendent vectors (u(1))(N), . . . , (u
(γ))(N) (see Lemma B.1). Define

S := SHN +

(
p1∣∣∣∣(u(1))(N)

∣∣∣∣
)

(u(1))(N)∣∣∣∣(u(1))(N)

∣∣∣∣ + . . .+

(
pγ∣∣∣∣(u(γ))(N)

∣∣∣∣
)

(u(γ))(N)∣∣∣∣(u(γ))(N)

∣∣∣∣ .
It is clear that SAN and S are (N−γ−1)-dimensional spheres contained in AN , and

that they have the same center θN , where

θN :=

(
p1∣∣∣∣(u(1))(N)

∣∣∣∣
)

(u(1))(N)∣∣∣∣(u(1))(N)

∣∣∣∣ + s . . .+

(
pγ∣∣∣∣(u(γ))(N)

∣∣∣∣
)

(u(γ))(N)∣∣∣∣(u(γ))(N)

∣∣∣∣ (3.15)

= q1z
(1) + . . . qγz

(γ) for some q1, . . . , qγ ∈ ∗R. (3.16)

Using the expressions for the z(i) (see (C.11)) and the fact that
∣∣∣∣(u(i))(N)

∣∣∣∣ ≈ 1

for all i ∈ {1, . . . , γ}, it follows by induction on i that qi ≈ pi for all i ∈ {1, . . . , γ}. By
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Figure 3.3. Visualizing SAN in contrast with SHN

truncating onto the first k coordinates in (3.15) and (3.16), we thus get:

q1(z(1))(k) + . . . qγ(z
(γ))(k) ≈ p1(u(1))(k) + . . . pγ(u

(γ))(k). (3.17)

Let rN =
Radius (SAN )

Radius (S)
=

√
N − q1

2 − . . .− qγ2

√
N

≈ 1. Then we have

SAN = rN · SHN + θN . (3.18)

Since the (u(i))(n) are R-linearly independent in Rn for all large n ∈ N, we can carry

out the above construction to define θn for all n ∈ N≥n′ , where n′ ∈ N. By the formula

corresponding to (3.18), we thus have:

∀n ∈ N≥n′ ∀B ∈ B(Rk)

[
σ̄SAn (B) = σ̄SHn

(
1

rn
(B − πk(θn))

)]
, (3.19)

where πk denotes the projection onto the first k coordinates under the standard orthonor-

mal basis. We are now in a position to show that lim
n→∞

ˆ
SAn

fdσ̄ equals the corresponding

Gaussian expectation of f for all f ∈ Cc(Rk).
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Theorem 3.4.1. Let f : Rk → R be continuous with compact support. Then

lim
n→∞

ˆ
SAn

fdσ̄ =

ˆ
Rk
fdµη̄,u(1),...,u(γ) .

Proof. Define h : Rk → R by h(y) = f
(
y + p1(u(1))(k) + . . . pγ(u

(γ))(k)

)
for all y ∈ Rk. Note

the following chain of equations (line 1 follows from transfer of the corresponding expres-

sions for ah,n (as n varies over N) in Definition 3.3.7, line 2 follows from Theorem 3.3.10,

line 3 follows from the definition of h, while line 4 follows from properties of Gaussian dis-

tributions):

ah,n(z(1), . . . , z(γ), N) =
∗ˆ

SN−1(
√
N)∩(u(1))(N)

⊥∩...∩(u(γ))(N)
⊥

∗hd∗σ̄

≈
ˆ
Rk
hdµ0,u(1),...,u(γ)

=

ˆ
Rk
f
(
y + p1(u(1))(k) + . . . pγ(u

(γ))(k)

)
dµ0,u(1),...,u(γ)

=

ˆ
Rk
fdµη̄,u(1),...,u(γ) ,

where η̄ = p1(u(1))(k) + . . . pγ(u
(γ))(k).

The S-integrability of ∗h thus implies that

ˆ
SN−1(

√
N)∩z(1)⊥∩...∩z(γ)⊥

st(∗h)dLσ̄ =

ˆ
Rk
fdµη̄,u(1),...,u(γ) . (3.20)

Using (3.20) and the nonstandard characterization of uniform continuity (which, in

particular, implies that ∗h(x) ≈ ∗h(rx) for all x ∈ ∗RN and r ≈ 1), we obtain:

ˆ
Rk
fdµη̄,u(1),...,u(γ) =

ˆ
SN−1(

√
N)∩z(1)⊥∩...∩z(γ)⊥

st(∗h(x))dLσ̄(x)

=

ˆ
S
N,z(1),...,z(γ)

st(∗h(rx))dLσ̄(x). (3.21)
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Note that the composition of ∗h with the scaling by r is a finitely bounded, and

hence S-integrable, function. This and transfer of the scaling properties of the uniform

surface measures respectively imply the following:

ˆ
Rk
fdµη̄,u(1),...,u(γ) ≈

∗ˆ
S
N,z(1),...,z(γ)

∗h(rx)d∗σ̄

≈
∗ˆ

r·S
N,z(1),...,z(γ)

∗h(x)d∗σ̄(x). (3.22)

The proof is now contained in the following sequence of equations obtained by sim-

plifying (3.22):

ˆ
Rk
fdµη̄,u(1),...,u(γ) ≈

∗ˆ
r·S

N,z(1),...,z(γ)

∗f
(
x+ q1z

(1) + . . .+ qγz
(γ)
)
d∗σ̄(x)

=
∗ˆ

r·S
N,z(1),...,z(γ)

+q1z(1)+...+qγz(γ)

∗f(x)d∗σ̄(x)

=
∗ˆ

SAN

∗f(x)d∗σ̄(x).

The first line follows from the fact that ∗h is bounded by a real number (and is

hence S-integrable) and the following fact that is true for all x ∈ ∗RN (due to the non-

standard characterization of the uniform continuity of f : Rk → R and (3.17)):

∗h(x) = ∗f
(
x+ p1(u(1))(k) + . . . pγ(u

(γ))(k)

)
≈ ∗f

(
x+ q1(z(1))(k) + . . .+ qγ(z

(γ))(k)

)
= ∗f

(
x+ q1z

(1) + . . .+ qγz
(γ)
)
.

The second line follows by transfer of the translation properties of the uniform surface

measures. The third line follows from (3.18).

92



Using Theorem 3.4.1, we immediately deduce that the first k coordinates of almost

any point of SAN are finite.

Theorem 3.4.2. Almost all points of SAN have finite projections to ∗Rk, i.e.,

Lσ̄({x ∈ SAN : x1, . . . , xk ∈ ∗Rfin}) = 1.

Proof. We prove this for k = 1 (the general case follows from the fact that the intersection

of finitely many almost sure events is almost sure). For each m ∈ N, consider the function

fm that is equal to 1 on (−m + 1,m − 1), equal to zero on R\(−m,m), and is linear in

between. We thus have

Lσ̄(x1 ∈ ∗(−m,m)) = ESAN (st(1∗(−m,m)))

= ESAN (st(∗1(−m,m)))

≥ ESAN (st(∗fm))

≥
ˆ
Rk
fmdµ. [using Theorem 3.4.1]

As a consequence, we obtain

1 ≥ Lσ̄(x1 ∈ ∗Rfin) = Lσ̄(∪m∈N{x1 ∈ ∗(−m,m)}) = lim
m→∞

Lσ̄(x1 ∈ ∗(−m,m))

⇒ 1 ≥ Lσ̄(x1 ∈ ∗Rfin) ≥ lim
m→∞

ˆ
Rk
fmdµ = 1

⇒ Lσ̄(x1 ∈ ∗Rfin) = 1,

thus completing the proof.

Using Theorem 3.4.1 and Theorem 3.4.2, we are now able to generalize the limiting

spherical integral result to all bounded continuous functions on Rk.

93



Theorem 3.4.3. Let f : Rk → R be a bounded continuous function. Then

lim
n→∞

ˆ
SAn

fdσ̄ =

ˆ
Rk
fdµη̄,u(1),...,u(γ) .

Proof. Let f : Rk → R be bounded and continuous. For each m ∈ N, let fm be the restric-

tion of f to [−m,m]k, i.e., fm := f · 1[−m,m]k . Fix N > N. Since f is bounded, st(∗f) is

S-integrable. This shows:

∗ˆ
SAN

∗fdσ̄ ≈
ˆ
SAN

st(∗f)dLσ̄. (3.23)

Using Theorem 3.4.2 and applying dominated convergence theorem, we obtain:

ˆ
SAN

st(∗f)dLσ̄ = lim
m→∞

ˆ
SAN

st(∗fm)dLσ̄. (3.24)

The right side of (3.24) equals lim
m→∞

ˆ
Rk
fm(x)dµη̄,u(1),...,u(γ) using Theorem 3.4.1.

Thus dominated convergence theorem and (3.23) now completes the proof.
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Chapter 4. De Finetti’s Theorem for Bernoulli Random Variables

4.1. Introduction

The rest of the dissertation focuses on de Finetti’s theorem, which is a result for

sequences of exchangeable random variables. This chapter presents a nonstandard analytic

treatment of the original formulation of de Finetti’s theorem, which holds for a sequence

of exchangeable Bernoulli random variables. Throughout the chapter, all Bernoulli random

variables take values in {0, 1}. We begin with the definition of exchangeability.

Definition 4.1.1. A finite collection X1, . . . , Xn of random variables is said to be

exchangeable if for any permutation σ ∈ Sn, the random vectors (X1, . . . , Xn) and

(Xσ(1), . . . , Xσ(n)) have the same distribution. An infinite sequence (Xn)n∈N of random

variables is said to be exchangeable if any finite subcollection of the Xi is exchangeable in

the above sense.

See Feller [37, pp. 229-230] for some examples of exchangeable random variables.

A well-known result of de Finetti says that an exchangeable sequence of Bernoulli random

variables (that is, random variables taking values in {0, 1}) is conditionally independent

given the value of a random parameter in [0, 1] (the parameter being sampled through a

unique probability measure on the Borel sigma algebra of the closed interval [0, 1]). In

a more technical language, we say that any exchangeable sequence of Bernoulli random

variables is uniquely representable as a mixture of independent and identically distributed

(iid) sequences of Bernoulli random variables. More precisely, we may write de Finetti’s

theorem in the following form.

Theorem 4.1.2 (de Finetti). Let X1, X2, . . . be a sequence of exchangeable Bernoulli ran-

95



dom variables. There exists a unique measure µ on the interval [0, 1] such that the follow-

ing holds:

P(X1 = e1, . . . , Xk = ek) =

ˆ
[0,1]

p
∑k
j=1 ej(1− p)k−

∑k
j=1 ejdµ(p) (4.1)

for any k ∈ N and e1, . . . , ek ∈ {0, 1}.

The integrand on the right side is the probability that k iid Bernoulli(p) random

variables have the outcomes e1, . . . , ek. In this sense, de Finetti’s theorem expresses an

exchangeable sequence of Bernoulli random variables as a mixture of iid sequences of

Bernoulli random variables.

See de Finetti [28, 29] for the original formulations of this theorem. Aldous [9] and

Kingman [61] are good resources for an introduction to exchangeability and related topics.

See Kirsch [62] for a recent elementary proof of de Finetti’s theorem.

We will give a nonstandard proof of Theorem 4.1.2. In nonstandard analytic lan-

guage, the idea is that the measure µ will be shown to be induced by a hyperfinite sample

mean
X1 + . . .+XN

N
.

For the rest of this chapter, we fix an exchangeable sequence X1, X2, . . . of

Bernoulli random variables. We also fix k ∈ N and e1, . . . , ek ∈ {0, 1}. Taking α =
k∑
j=1

ej

and writing the integral in (4.1) as an expectation in terms of a random variable Y ∼ µ,

de Finetti’s theorem may be restated as follows:

P(X1 = e1, . . . , Xk = ek) = Eµ(Y α(1− Y )k−α). (4.2)

Written this way, it is clear that any measure satisfying the conclusion of de

Finetti’s theorem must be unique. Indeed, taking α = k and varying k through N in
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(4.2) shows that such a measure has a unique sequence of moments, which implies that

they agree on expected values of continuous functions on [0, 1] (using the Weierstrass

approximation theorem).

Hence, it is enough to prove the existence of a probability measure on [0, 1] satisfy-

ing the conclusion of de Finetti’s theorem. Toward that end, we will verify equation (4.2)

for a standard measure µ that is naturally induced by an appropriate Loeb measure. Fix

N > N and define:

YN =
X1 + . . .+XN

N
. (4.3)

Note that we are abusing notation by using (Xi) to denote both the standard

sequence (Xi)i∈N of random variables and the nonstandard extension of this sequence,

with the usage being clear from context. More precisely, if X : Ω × N → S is defined by

X (ω, i) := Xi(ω) for all ω ∈ Ω and n ∈ N, then for any i ∈ ∗N, the internal random

variable Xi :
∗Ω→ ∗S is defined as follows:

Xi(ω) = ∗X (ω, i) for all ω ∈ ∗Ω and i ∈ ∗N.

Let ∗P : ∗F → ∗[0, 1] denote the nonstandard extension of P. Then ∗P is an internal

probability measure. Note that YN takes values in
{

0,
1

N
, . . . ,

N − 1

N
,
N

N
= 1

}
. Naively

conditioning on the value of YN , we obtain the following:
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P(X1 = e1, . . . , Xk = ek)

=
N∑
i=0

∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
∗P
(
YN =

i

N

)
. (4.4)

Note that we could have started the sum in (4.4) at i = α since the conditional

probabilities in this sum are zero for all i < α.

The random variable YN induces an internal finitely additive internal probability

measure PN on ∗[0, 1], which is supported on
{

0,
1

N
, . . . ,

N − 1

N
,
N

N
= 1

}
, in the following

way:

PN(B) = ∗P(YN ∈ B) for all ∗-Borel sets B ⊆ ∗[0, 1]. (4.5)

Consider the associated Loeb measure LPN . With B([0, 1]) denoting the Borel sigma alge-

bra of [0, 1], define µ : B([0, 1])→ [0, 1] by:

µ(A) := LPN(st−1(A)) for all Borel subsets A ⊆ [0, 1]. (4.6)

By Theorem 1.3.17, µ is a well-defined Radon probability measure on [0, 1] such

that the following holds:

∗EPN (∗f) ≈ Eµ(f) for all bounded nonnegative f : [0, 1]→ R≥0. (4.7)

Consider the function f : [0, 1]→ R≥0 defined by
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f(p) = pα(1− p)k−α for all p ∈ [0, 1]. (4.8)

Noting the form of the right side in (4.2), and using (4.4) and (4.7), it is clear that

we need the following to be true:

Theorem 4.1.3. We have

N∑
i=0

∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
∗P
(
YN =

i

N

)

≈
N∑
i=0

(
i

N

)α(
1− i

N

)k−α
∗P
(
YN =

i

N

)
. (4.9)

The rest of this chapter will build toward a proof of Theorem 4.1.3.

4.2. Proving Theorem 4.1.3

Our strategy is to use the following simple fact from nonstandard analysis:

Lemma 4.2.1. If αj, βj ∈ ∗R≥0 (where j ∈ H for some hyperfinite set H) and
αj
βj
≈ 1 for

all j ∈ H, then ∑
j∈H αj∑
j∈H βj

≈ 1. (4.10)

Proof. Let H, αj, and βj be as in the statement of the lemma. Note that αj, βj must all

be strictly positive. For any real number ε ∈ R>0, the condition that
αj
βj
≈ 1 for all j ∈ H

implies that

1− ε < αj
βj

< 1 + ε for all j ∈ H.

Multiplying all sides of the above inequality by βj, we have:

βj(1− ε) < αj < βj(1 + ε) for all j ∈ H.
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Summing as j varies over the hyperfinite set (in this step, we are also using transfer

of a similar inequality for finite sums), we get:

(1− ε)
∑
j∈H

βj <
∑
j∈H

αj < (1 + ε)
∑
j∈H

βj. (4.11)

Dividing all sides of (4.11) by
∑
j∈H

βj and noting that ε ∈ R>0 was arbitrarily chosen com-

pletes the proof.

For brevity in future computations, we define

ai = ∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
(4.12)

and bi =

(
i

N

)α(
1− i

N

)k−α
for all i ∈ {0, 1, 2, . . . , N}. (4.13)

Let us first try to understand the conditional probabilities ai. As explained earlier,

the ai are zero for i < α. By summing over all possible cases, we have:

ai = ∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
=

∑
(u1,...,uN )∈G

∗P
(
X1 = u1, . . . , XN = uN

∣∣∣X1 + . . .+XN = i
)
, (4.14)

where

G :=

{
(u1, . . . uN) ∈ {0, 1}N : uj = ej for all j ∈ {1, . . . , k} and

N∑
j=1

uj = i

}
.

It is clear that the internal cardinality of G is the number of ways of choosing

uk+1, . . . , uN ∈ {0, 1} such that
N∑

j=k+1

uj = i − α. By a simple counting argument, this
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yields:

#(G) =

(
N − k
i− α

)
. (4.15)

Also, by the transfer of exchangeability of the Xi, it is clear that:

∗P
(
X1 = u1, . . . , XN = uN

∣∣∣X1 + . . .+XN = i
)

=
1

Number of ways of writing i as a sum of N zeroes and ones
(4.16)

for all (u1, . . . , uN) ∈ G.

To see (4.16), first define G ′ as the set of those (u1, . . . , uN) such that
N∑
j=1

uj = i.

Then exchangeability implies that

∗P((X1, . . . , XN) = ~u | X1 + . . .+XN = i)

=∗P((X1, . . . , XN) = ~u′|X1 + . . .+XN = i) for all ~u, ~u′ ∈ G ′.

Since the sum of ∗P((X1, . . . , XN) = ~u | X1 + . . . + XN = i) as ~u varies over G ′ is

equal to one, it must be the case that

∗P((X1, . . . , XN) = ~u | X1 + . . .+XN = i) =
1

#(G ′)
for all ~u ∈ G ′. (4.17)

In particular, since G ⊆ G ′, equation (4.17) explains (4.16). Now, another simple

counting argument shows that #(G ′) =

(
N

i

)
. Thus, (4.16) becomes:

∗P
(
X1 = u1, . . . , XN = uN

∣∣∣X1 + . . .+XN = i
)

=
1(
N
i

) (4.18)

for all (u1, . . . , uN) ∈ G.
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Using (4.18) and (4.15) in (4.14), we obtain:

ai =

(
N−k
i−α

)(
N
i

) for all i ∈ {1, . . . N}, (4.19)

where
(
N − k
i− α

)
is understood to be zero when i < α.

Using (4.19), we first prove Theorem 4.1.3 in a pathological case of zero probability

(see Lemma 4.2.2) that we will avoid afterward. Note that the conclusion of de Finetti’s

theorem implies that this pathological case can never happen, unless all the random vari-

ables Xi are zero almost surely. However, since we are proving de Finetti’s theorem, we

have to take care of this case in a non-circular way, without using de Finetti’s theorem.

Lemma 4.2.2. Suppose P(X1 = e1, . . . , Xk = ek) = 0. Then, (4.9) holds.

Proof. Suppose P(X1 = e1, . . . , Xk = ek) = 0. Suppose i ≥ α and consider the event{
YN =

i

N

}
, which is the same as the event {X1 + . . .+XN = i}.

If the sum of N zero-one random variables is i ≥ α then some subcollection of

k such random variables must have had exactly α ones. Therefore, if C denotes the col-

lection of all k tuples of distinct indices from {1, . . . , N} (so that the internal cardinality

#(C) is
(
N

k

)
), then we have

{X1 + . . . XN = i} ⊆
⋃

(j1,...jk)∈C

{Xj1 = e1, . . . , Xjk = ek}.

By exchangeability, all events in the union on the right have the same probability

as the event {X1 = e1, . . . , Xk = ek}, which is assumed to have probability zero. Since ∗P

is hyperfinitely subadditive, this implies that ∗P(X1 + . . . + XN = i) = 0 whenever i ≥ α.

Thus (using (4.19)), proving (4.9) is equivalent to proving the following:
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α−1∑
i=0

(
N−k
i−α

)(
N
i

) P
(
YN =

i

N

)

≈
α−1∑
i=0

(
i

N

)α(
1− i

N

)k−α
P
(
YN =

i

N

)
. (4.20)

But the left side of (4.20) is zero (as
(
N − k
i− α

)
= 0 for i < α), while the right side

is an infinitesimal (being a finite sum of infinitesimals). This completes the proof.

Also using (4.19), we obtain the following result about the ratio of ai and bi:

Lemma 4.2.3. There exists a constant r ≈ 1, such that for each i ∈ ∗N>k, we have

ai
bi

=
i!

(i− α)!iα

(
1− 1

N − i

)
. . .

(
1− k − α− 1

N − i

)
r ≤ r. (4.21)

Proof. From (4.19) and (4.13), we obtain:

ai
bi

=

(N−k)(N−k−1)...(N−k−(i−α−1))
(i−α)!

N(N−1)...(N−(i−1))
i!

(
i
N

)α (
1− i

N

)k−α
=

i!

(i− α)!iα
Nk

(N − i)k−α
(N − k)(N − k − 1) . . . (N − k − (i− α− 1))

N(N − 1) . . . (N − (i− 1))

=
i!

(i− α)!iα
Nk(N − i)(N − (i+ 1)) . . . N − (i+ k − α− 1)

N(N − 1) . . . (N − (k − 1))(N − i)k−α
.

Let

r :=
Nk

N(N − 1) . . . (N − (k − 1))
=

1

1
(
1− 1

N

)
. . .
(
1− k−1

N

) ≈ 1. (4.22)

Thus the proof is complete because:

(N − i)(N − (i+ 1)) . . . (N − (i+ k − α− 1))

(N − i)k−α

=1

(
1− 1

N − i

)
. . .

(
1− k − α− 1

N − i

)
.
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Lemma 4.2.4. Suppose α ≥ 1. There is an M1 > N such that M1 < N −
√
N and

M1∑
i=0

ai
∗P
(
YN =

i

N

)
≈ 0 and

M1∑
i=0

bi
∗P
(
YN =

i

N

)
≈ 0.

Proof. Fix any M1 > N such that M1 < min{N
1
3 , N −

√
N}.

Note that
k∑
i=0

ai is an infinitesimal. Hence, by (4.21), it suffices to show that
M1∑
i=0

bi

is an infinitesimal. Now,

M1∑
i=0

bi =

M1∑
i=0

(
i

N

)α(
1− i

N

)k−α
≤ M1

1+α

Nα
<
N

1+α
3

Nα
=

1

N
2α−1

3

.

But the right side is an infinitesimal because 2α > 1 (as α ≥ 1 is assumed in the

statement of the lemma). This completes the proof.

For the rest of this chapter, let

M2 := [N −
√
N ] + 1, (4.23)

where [·] is the greatest integer function.

Corollary 4.2.5. For i ∈ ∗N with N < i ≤M2, we have
ai
bi
≈ 1.

Proof. Note that
i!

(i− α)!iα
= 1 when α = 0, 1. And for α ≥ 2, we have

i!

(i− α)!iα
=

(
1− 1

i

)
. . .

(
1− α− 1

i

)
≈ 1 if i > N.

Thus, we have:

i!

(i− α)!iα
≈ 1 for all i > N. (4.24)
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Now let i be as in the statement of the corollary, i.e., N < i ≤ M2. Then, N − i ≥

N −M2 ≥
√
N . Then,

(
1− 1

N − i

)
. . .

(
1− k − α− 1

N − i

)
≈ 1 as well. (4.25)

Using (4.24) and (4.25) in (4.21) completes the proof.

Lemma 4.2.6. Suppose α ≤ (k − 1). Then

N∑
i=M2+1

ai
∗P
(
YN =

i

N

)
≈ 0 and

N∑
i=M2+1

bi
∗P
(
YN =

i

N

)
≈ 0. (4.26)

Proof. By (4.21), it suffices to show that the second sum is an infinitesimal. Since the bi

are all positive, we have the following estimate for the second term:

N∑
i=M2+1

bi
∗P
(
YN =

i

N

)
≤
(

max
M2+1≤i≤N

bi

) N∑
i=M2+1

∗P
(
YN =

i

N

)

≤ max
M2+1≤i≤N

(
i

N

)α(
1− i

N

)k−α
≤ 1 ·

(
1− N −

√
N

N

)k−α

=

(
1√
N

)k−α
,

where the last term is infinitesimal since k − α ≥ 1.

We are now in a position to prove Theorem 4.1.3. We restate it here for conve-

nience.
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Theorem 4.1.3. We have

N∑
i=0

∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
∗P
(
YN =

i

N

)

≈
N∑
i=0

(
i

N

)α(
1− i

N

)k−α
∗P
(
YN =

i

N

)
. (4.9)

Proof. The case when α = 0 is verified directly by plugging in α = 0 to the formulae for ai

and bi and using Lemma 4.2.1.

In the case when α = k, using (4.9) and (4.13), we get:

ai
bi

=

(
N−k
i−k

)(
N
i

)
ik

Nk

=
i!

(i− k)!ik
(N − k)!Nk

N !
.

This expression is infinitesimally close to 1 whenever i > N. Thus, Lemma 4.2.4 and

Lemma 4.2.1 complete the proof in this case.

By Lemma 4.2.2, we may also assume that

P(X1 = e1, . . . , Xk = ek) 6= 0.

Then using (4.4), we obtain

N∑
i=0

∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
∗P
(
YN =

i

N

)
6≈ 0.

Thus, by Lemmas 4.2.4 and 4.2.6, we obtain:

N∑
i=0

∗P
(
X1 = e1, . . . , Xk = ek

∣∣∣YN =
i

N

)
∗P
(
YN =

i

N

)

≈
M2∑

i=M1+1

ai
∗P
(
YN =

i

N

)
,
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and

N∑
i=0

(
i

N

)α(
1− i

N

)k−α
∗P
(
YN =

i

N

)
≈

M2∑
i=M1+1

bi
∗P
(
YN =

i

N

)
.

Corollary 4.2.5 together with Lemma 4.2.1 now complete the proof in this case.

As e1, . . . , ek was an arbitrarily fixed finite sequence of zeros and ones, this proves

de Finetti’s Theorem 4.1.2 using Theorem 1.3.17.

We finish this section with a combinatorial-probabilistic interpretation of the proof.

A main ingredient in the proof was Corollary 4.2.5. It shows that when i is large (in the

sense that it is hyperfinite) but not too large (in the sense that it is less than M2 = [N −
√
N ]+1), then

ai
bi

is infinitesimally close to 1. Looking at the expressions (4.19) and (4.13)

for ai and bi respectively, we can express the ratio as follows:

ai
bi

=

(
N−k
i−α

)(
k
α

)(
N
i

) · 1(
k
α

) (
i
N

)α (
1− i

N

)k−α .
The first term on the right is an expression related to a certain hypergeometric ran-

dom variable, while the second term is related to a certain binomial random variable. We

can thus interpret Corollary 4.2.5 as a statement about asymptotically approximating a

hypergeometric random variable with a binomial random variable. More explicitly, Corol-

lary 4.2.5 says that as long as i is neither too small not too large, then the probabilities P1

and P2 described by the following are very close to each other in the sense that
P1

P2

≈ 1:

(1) Uniformly choose a random subset of size i (here i ≥ α) from {1, . . . , N}—thus all

the
(
N

i

)
subsets are equally likely to be chosen. Then P1 is the probability that

exactly α elements of {1, . . . , k} appear in this random subset of size i.
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(2) Take a coin with a probability of Heads being
i

N
. Then P2 is the probability that

exactly α Heads appear in k independent tosses of this coin.
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Chapter 5. Ideas for Generalizing De Finetti’s Theorem

5.1. The form of possible generalizations

The previous chapter established de Finetti’s theorem for {0, 1}-valued exchange-

able random variables (see Theorem 4.1.2). The work of generalizing de Finetti’s theorem

from {0, 1} to more general state spaces has been an enterprise spanning the better part of

the twentieth century. This chapter provides the history of these generalizations and sets

up an overview of our generalization, which is carried out over the next two chapters.

What counts as a generalization of Theorem 4.1.2? Notice that in equation (4.1),

the variable of integration, p, can be identified with the measure induced on {0, 1} by a

coin toss for which the chance of success (with success identified with the state 1) is p.

Clearly, all probability measures on the discrete set {0, 1} are of this form. Thus, ν in

(4.1) can be thought of as a measure on the set of all probability measures on {0, 1}. The

integrand in (4.1) then represents the probability of getting
k∑
j=1

ej successes in k indepen-

dent coin tosses, while the integral represents the expected value of this probability with

respect to ν.

With S = {0, 1}, we can thus interpret (4.1) as saying that the probability that

the random vector (X1, . . . , Xk) is in the Cartesian product B1 × . . . × Bk of measurable

sets B1, . . . , Bk ⊆ S, is given by the expected value of µ(B1) · . . . · µ(Bk) as µ is sampled

(according to some distribution ν) from the space of all Borel probability measures on S.

Thus, one possible direction in which to generalize Theorem 4.1.2 is to look for a state-

ment of the following type (although we now know this to be incorrect in such generality

following the work of Dubins and Freedman [35], it is still illustrative to explore the kind
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of statement that we are looking for).

A natural guess for a generalization of de Finetti. Let (Ω,F ,P) be a probability

space and let (Xn)n∈N be an exchangeable sequence of random variables taking values in

some measurable space (S,S) (called the state space). If P(S) denotes the set of all proba-

bility measures on (S,S), then there is a unique probability measure P on P(S) such that

the following holds for all k ∈ N:

P(X1 ∈ B1, . . . , Xk ∈ Bk) =

ˆ

P(S)

µ(B1) · . . . · µ(Bk)dP(µ) for all B1, . . . , Bk ∈ S. (5.1)

The above statement is crude since we want a probability measure on the underly-

ing set P(S), yet we have not specified what sigma algebra on P(S) we are working with.

We shall soon see that there are multiple natural sigma algebras on P(S). Since we want

to integrate functions of the type µ 7→ µ(B) on P(S) for all B ∈ S, the smallest sigma

algebra ensuring the measurability of all such functions is appropriate for this discussion.

That minimal sigma algebra, which we denote by C(P(S)), is generated by cylinder sets.

In other words, C(P(S)) is the smallest sigma algebra containing all sets of the type

{µ ∈ P(S) : µ(B1) ∈ A1, . . . , µ(Bk) ∈ Ak},

where k ∈ N; B1, . . . , Bk ∈ S; and A1, . . . , Ak ∈ B(R), the Borel sigma algebra on R.

Hewitt and Savage [51, p. 472] called a measurable space (S,S) presentable (or

in some usages, the sigma algebra S itself is called presentable) if for any exchange-

able sequence of random variables (Xn)n∈N from (Ω,F ,P) to (S,S), the condition (5.1)

holds for some probability measure P on (P(S), C(P(S))). The mixing measure P on

(P(S), C(P(S))) corresponding to an exchangeable sequence of random variables, if it
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exists, is unique—this is shown in Hewitt–Savage [51, Theorem 9.4, p. 489].

Remark 5.1.1. In the situation when S is a topological space, we will end up using the

Borel sigma algebra on P(S) induced by the so-called A-topology. This sigma algebra con-

tains the aforementioned sigma algebra C(P(S)) generated by cylinder sets. While the

integrand in (5.1) only “sees” C(P(S)), using the larger Borel sigma algebra induced by

the A-topology opens up the possibility to use tools from nonstandard topological mea-

sure theory. Thus our main result (Theorem 7.3.7) is stated in terms of measures on this

larger sigma algebra, though it includes a corresponding statement in terms of measures

on C(P(S)). For the sake of historical consistency, we will continue using the sigma alge-

bra C(P(S)) in the context of presentability during this introduction.

In this terminology, the original result of de Finetti [28] thus says that the state

space ({0, 1},P({0, 1})) is presentable (where by P(S) we denote the power set of a set

S). In [29], de Finetti generalized the result to real-valued random variables and showed

that the Borel sigma algebra on R is presentable. Dynkin [36] also solved the case of real-

valued random variables independently.

Hewitt and Savage [51] observed that the methods used so far required some

sense of separability of the state space S in an essential way. They were able to over-

come this requirement by using new ideas from convexity theory—they looked at the

set of exchangeable distributions on the product space S∞ as a convex set, of which the

(coordinate-wise) independent distributions (whose values at B1 × . . . × Bk are being

integrated on the right side of (5.1)) are the extreme points. Using the Krein–Milman–

Choquet theorems, they were thus able to extend de Finetti’s theorem to the case in
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which the state space S is a compact Hausdorff space with the sigma algebra S being the

collection of all Baire subsets of S (see [51, Theorem 7.2, p. 483]). Thus in their termi-

nology, Hewitt and Savage proved that all compact Hausdorff spaces equipped with their

Baire sigma algebra are presentable:

Theorem 5.1.2 (Hewitt–Savage). Let S be a compact Hausdorff space and let Ba(S) de-

note the Baire sigma algebra on S (which is the smallest sigma algebra with respect to

which any continuous function f : S → R is measurable). Then Ba(S) is presentable.

What does the result of Hewitt and Savage say about the presentability of Borel

sigma algebras, as opposed to Baire sigma algebras? As a consequence of their theorem,

they were able to show that the Borel sigma algebra of an arbitrary Borel subset of the

real numbers is presentable (see [51, p. 484]), generalizing the earlier works of de Finetti

[29] and Dynkin [36] (both of whom independently showed the presentability of the Borel

sigma algebra on the space of real numbers).

For a topological space T , we will denote its Borel sigma algebra (that is, the

smallest sigma algebra containing all open subsets) by B(T ). Recall that a Polish space

is a separable topological space that is metrizable with a complete metric. A subset of a

Polish space is called an analytic set if it is representable as a continuous image of a Borel

subset of some (potentially different) Polish space. As pointed out by Varadarajan [98, p.

219], the result of Hewitt and Savage immediately implies that any state space (S,S) that

is analytic is also presentable. Here an analytic space refers to a measurable space that is

isomorphic to (T,B(T )) where T is an analytic subset of a Polish space, equipped with the

subspace topology (see also, Mackey [72, Theorem 4.1, p. 140]). In particular, all Polish
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spaces equipped with their Borel sigma algebras are presentable.

Remark 5.1.3. Note that both Mackey and Varadarajan use the standard conventions in

descriptive set theory of referring to a measurable space as a Borel space (thus, the origi-

nal conclusion of Varadarajan was stated for “Borel analytic spaces”). We will not use de-

scriptive set theoretic considerations in this work, and hence we decided to not use the

adjective ‘Borel’ in quoting Varadarajan above, so as to avoid confusion with Borel subsets

of topological spaces that we will generally consider in this chapter.

The above observation of Varadarajan is the state of the art for modern treatments

of de Finetti’s theorem for Borel sigma algebras on topological state spaces. For example,

Diaconis and Freedman [32, Theorem 14, p. 750] reproved the result of Hewitt and Savage

using their approximate de Finetti’s theorem for finite exchangeable sequences in any state

space (wherein they needed a nice topological structure on the state space to be able to

take the limit to go from their approximate de Finetti’s theorem on finite exchangeable se-

quences to the exact de Finetti’s theorem on infinite exchangeable sequences). They then

concluded (see [32, p. 751]) that de Finetti’s theorem holds for state spaces that are iso-

morphic to Borel subsets of a Polish space. Since any Borel subset of a Polish space is also

analytic, this observation is a special case of Varadarajan’s. In his monograph, Kallenberg

[57, Theorem 1.1] has a proof of de Finetti’s theorem for any state space that is isomor-

phic to a Borel subset of the closed interval [0, 1], a formulation that is contained in the

above.

As is justified from the above discussion, the generalization of de Finetti’s theorem

to more general state spaces is sometimes referred to in the literature as the de Finetti–
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Hewitt–Savage theorem.

Due to a lack of counterexamples at the time, a natural question arising from the

work of Hewitt and Savage [51] was whether de Finetti’s theorem held without any topo-

logical assumptions on the state space S. This was answered in the negative by Dubins

and Freedman [35] who constructed a separable metric space S on which de Finetti’s the-

orem does not hold for some exchangeable sequence of S-valued Borel measurable random

variables. In terms of the (pushforward) measure induced by the sequence on the count-

able product S∞ of the state space, Dubins [34] further showed that the counterexample

in [35] is singular to the measure induced by any presentable sequence. This counterexam-

ple suggests that some topological conditions are typically needed in order to avoid such

pathological cases, though it may be difficult to identify the most general set of conditions

that work.

Let us define the following related concept for individual sequences of exchangeable

random variables.

Definition 5.1.4. Let (Ω,F ,P) be a probability space, and let (Xn)n∈N be an exchange-

able sequence of random variables taking values in some state space (S,S). Then the se-

quence (Xn)n∈N is said to be presentable if it satisfies (5.1) for some unique probability

measure P on (P(S), C(P(S))).

Thus a state space (S,S) is presentable if and only if all exchangeable sequences of

S-valued random variables are presentable. It is interesting to note that any Borel prob-

ability measure on a Polish space (which is the setting for the modern treatments of de

Finetti–Hewitt–Savage theorem) is automatically Radon (see Definition 1.2.3). Curiously
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enough, the counterexample of Dubins and Freedman was for a state space on which non-

Radon measures are theoretically possible. The main result of this chapter shows that the

Radonness of the common distribution of the underlying exchangeable random variables is

actually sufficient for de Finetti’s theorem to hold for any Hausdorff state space (equipped

with its Borel sigma algebra). In particular, this implies that the exchangeable random

variables constructed in the counterexample of Dubins and Freedman do not have a Radon

distribution. Restricting to random variables with Radon distributions (which is actually

not that restrictive as many areas of probability theory work under that assumption in

any case) shows that there does not exist a non-presentable exchangeable sequence of this

type. For brevity of expression, let us make the following definitions.

Definition 5.1.5. An identically distributed sequence (Xn)n∈N of random variables tak-

ing values in a Hausdorff space S equipped with its Borel sigma algebra B(S) is said to

be Radon-distributed if the pushforward probability measure induced on (S,B(S)) by X1

is Radon. It is said to be tightly distributed if this pushforward measure is tight (see also

Definition 1.2.2).

Focusing on Hausdorff state spaces, while the answer to the original question of

whether de Finetti’s theorem holds without topological assumptions is indeed in the neg-

ative (as the counterexample of Dubins and Freedman shows), we are still able to show

that the most commonly studied exchangeable sequences (that is, those that are Radon-

distributed) taking values in any Hausdorff space are presentable, thus establishing an

affirmative answer from a different perspective. Ignoring the various technicalities in the

statement of our main result (Theorem 7.3.7), we can thus briefly summarize our contribu-
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tion to the above question as follows.

Theorem 5.1.6. Any Radon-distributed exchangeable sequence of random variables taking

values in a Hausdorff space (equipped with its Borel sigma algebra) is presentable.

A closer inspection of our proof shows that we will not use the full strength of the

assumption of Radonness of the common distribution of exchangeable random variables—

the theorem is still true for sequences of exchangeable random variables whose common

distribution is tight and outer regular on compact sets (see the discussion following Theo-

rem 7.3.7).

Before we give an overview of our methods, let us first describe a common practice

in statistics that is intimately connected to the reasoning behind a statement like equa-

tion (5.1) that we are trying to generalize for sequences of Radon-distributed exchangeable

random variables.

5.2. A heuristic strategy motivated by statistics

Let S be a sigma algebra on a state space S. Suppose we devise an experiment

to sample values from an identically distributed sequence X1, . . . , Xn (where n ∈ N can

theoretically be as large as we please) of random variables from some underlying probabil-

ity space (Ω,F ,P) to (S,S). Depending on the way the experiment is conducted, within

each iteration of the experiment it might not be justified to assume that the sampled val-

ues are independent, but it might be reasonable to still believe that the distribution of

(X1, . . . , Xn) is invariant under permutations of indices. Depending on the application,

one might be interested in the joint distribution of two (or more) of the Xi, which is diffi-

cult to establish without an assumption of independence. However, only under an assump-
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tion of exchangeability, it is not very difficult to show the following. (Theorem 7.3.1 is a

nonstandard version of this statement, with the standard statement having a proof along

the same lines—replace the step where we use the hyperfiniteness of N in that proof by an

argument about taking limits.)

P(X1 ∈ B1, . . . , Xk ∈ Bk) = lim
n→∞

E(µ·,n(B1) · . . . · µ·,n(Bk)) (5.2)

for all k ∈ N and B1, . . . , Bk ∈ S, where

µω,n(B) =
#{i ∈ [n] : Xi(ω) ∈ B}

n
for all ω ∈ Ω and B ∈ S. (5.3)

Here [n] denotes the initial segment {1, . . . , n} of n ∈ N. In (statistical) practice,

for any k ∈ N and B1, . . . , Bk ∈ S, we do multiple independent iterations of the ex-

periment. For j ∈ N, we calculate the product µ(j)
·,n(B1) · . . . · µ(j)

·,n(Bk) of the “empirical

sample means” in the jth iteration of the experiment. The strong law of large numbers

(which we can use because of the assumption that the experiments generating samples of

(X1, . . . , Xn) are independent) thus implies the following:

lim
m→∞

∑
j∈[m] µ

(j)
·,n(B1) · . . . · µ(j)

·,n(Bk)

m
= E (µ·,n(B1) · . . . · µ·,n(Bk)) almost surely. (5.4)

By (5.4) and (5.2), we thus obtain the following for all k ∈ N and B1, . . . , Bk ∈ S:

P(X1 ∈ B1, . . . , Xk ∈ Bk) = lim
n→∞

lim
m→∞

∑
j∈[m] µ

(j)
·,n(B1) · . . . · µ(j)

·,n(Bk)

m
. (5.5)

Thus, only under an assumption of exchangeability of the values sampled in each

experiment, as long as we have a method to repeat the experiment independently, we have

the following heuristic algorithm to statistically approximate the joint probability P(X1 ∈

B1, . . . , Xk ∈ Bk) for any B1, . . . , Bk ∈ S:
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(i) In each iteration of the experiment, sample a large number (this corresponds to n
in (5.5)) of values.

(ii) Conduct a large number (this corresponds to m in (5.5)) of such independent ex-
periments.

(iii) The average of the empirical sample means µ(j)
·,n(B1)·. . .·µ(j)

·,n(Bk) (as j varies in [m])
is then an approximation to P(X1 ∈ B1, . . . , Xk ∈ Bk).

As hinted earlier, the above heuristic idea is at the heart of the intuition behind de

Finetti’s theorem as well. How do we make this idea more precise to hopefully get a ver-

sion of de Finetti theorem of the form (5.1)? Suppose for the moment that we have fixed

some sigma algebra on P(S) (we will come back to the issue of which sigma algebra to fix)

such that the following natural conditions are met:

(i) For each n ∈ N, the map ω 7→ µω,n is a P(S)-valued random variable on Ω.

(ii) For each B ∈ S, the map µ 7→ µ(B) is a real-valued random variable on P(S).

For each n ∈ N, this would define a pushforward probability measure νn on P(S)

that is supported on {µω,n : ω ∈ Ω} ⊆ P(S), such that

ˆ
P(S)

µ(B1) . . . µ(Bk)dνn(µ) =

ˆ
Ω

µω,n(B1) . . . µω,n(Bk)dP(ω)

for all B1, . . . , Bk ∈ S. (5.6)

Comparing (5.2) and (5.6), it is clear that we are looking for conditions that guar-

antee there to be a measure ν on P(S) such that the following holds:

lim
n→∞

ˆ
P(S)

µ(B1) . . . µ(Bk)dνn(µ) =

ˆ
P(S)

µ(B1) . . . µ(Bk)dν(µ)

for all B1, . . . , Bk ∈ S. (5.7)

Intuitively, equation (5.7) is a statement of convergence (in some sense) of νn to ν.
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A naive candidate for ν could come from (5.6) if the following are true:

1. There exists an almost sure set Ω′ ⊆ Ω such that for each B ∈ S, the limit
lim
n→∞

µω,n(B) exists for all ω ∈ Ω′. Up to null sets in Ω, this would thus define
a map ω 7→ µω from Ω to the space of all real-valued functions on S, where
µω(B) = lim

n→∞
µω,n(B).

2. The function µω : S→ [0, 1] is actually a probability measure on (S,S).

Indeed if these two conditions are true, then one may define ν to be the pushfor-

ward on P(S) of the map ω 7→ µω. A weaker version of (1) is often interpreted as a gen-

eralization of the strong law of large numbers for exchangeable random variables—see, for

instance, Kingman [61, Equation (2.2), p. 185], which can be easily modified to work in

the setting of an arbitrary (S,S) to conclude that lim
n→∞

µω,n(B) exists for all ω in an al-

most sure set that depends on B. Of course, an issue with this idea is that if we have too

many (that is, uncountably many) different choices for B ∈ S, then there is no guarantee

that an almost sure set would exist that works for all B ∈ S simultaneously. The condi-

tion (2) is even more delicate, as showing countable additivity of µω would require some

control on the rates at which the sequences (µω,n(B))n∈N converge for different B ∈ S.

Thus we seem to have reached a dead end in this heuristic strategy in the absence

of having more information about the specific structure of our spaces and measures. We

now describe a generalization of a slightly different type before explaining our method of

proof.

5.3. Ressel’s Radon presentability and the ideas behind our proof

As we describe next, our strategy (motivated by the statistical heuristics from Sec-

tion 5.2) for proving de Finetti’s theorem naturally leads to an investigation into a de
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Finetti style theorem first proved by Ressel in [83]. Ressel studied de Finetti-type theo-

rems using techniques from abstract harmonic analysis. His insight was to look for indirect

generalizations of de Finetti’s theorem; that is, those generalizations which do not prove

(5.1) for a state space in a strict sense, but rather prove an analogous statement applicable

to nicer classes of random variables, with the smaller space of Radon probability measures

being considered (as opposed to the space of all Borel probability measures). Before we

proceed, let us make some of these technicalities more precise.

Definition 5.3.1. Let P(T) and Pr(T) respectively denote the sets of all Borel probabil-

ity measures and Radon probability measures on a Hausdorff space T . The weak topology

(or narrow topology) on either of these sets is the smallest topology under which the maps

µ 7→ Eµ(f) are continuous for each real-valued bounded continuous function f : S → R.

Definition 5.3.2. Let a sequence of random variables (Xn)n∈N taking values in a Haus-

dorff space S be called jointly Radon distributed if the pushforward measure induced by

the sequence on (S∞,B(S∞)) (the product of countably many copies of S, equipped with

its Borel sigma algebra) is Radon.

Definition 5.3.3. Let a jointly Radon distributed sequence of exchangeable random vari-

ables (Xn)n∈N be called Radon presentable if there is a unique Radon measure P on the

space Pr(S) of all Radon measures on S (equipped with the Borel sigma algebra induced

by its weak topology) such that the following holds for all k ∈ N:

P(X1 ∈ B1, . . . , Xk ∈ Bk) =

ˆ

Pr(S)

µ(B1) · . . . · µ(Bk)dP(µ)

for all B1, . . . , Bk ∈ B(S). (5.8)
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Note that (5.8) is an analog of (5.1). This terminology of Ressel is inspired from

the similar terminology of presentable spaces introduced by Hewitt and Savage [51].

One of the results that Ressel proved (see [83, Theorem 3, p. 906]) says that all

completely regular Hausdorff spaces are Radon presentable. Ressel’s theorem, in particu-

lar, shows that all Polish spaces and all locally compact Hausdorff spaces are Radon pre-

sentable (see [83, p. 907]). In fact, as we show in Appendix D (see Theorem D.6), there

is a standard measure theoretic argument by which Ressel’s result on completely regular

Hausdorff spaces implies the Hewitt–Savage generalization of de Finetti’s theorem (The-

orem 5.1.2). Thus, although it appears to be in a slightly different form, Ressel’s result

indeed is a generalization of the de Finetti–Hewitt–Savage theorem in a strict sense. Prior

to the statement of his theorem, he remarked the following (see [83, p. 906]):

“It might be true that all Hausdorff spaces have this property.”

This conjecture of Ressel was confirmed by Winkler [101] using ideas from convex-

ity theory (similar in spirit to Hewitt–Savage [51]). Fremlin showed in his treatise [42] that

a stronger statement is actually true. Replacing the requirement of being jointly Radon

distributed with the weaker requirement of being jointly quasi-Radon distributed (this

notion is defined in Fremlin [42, 411H, p. 5]) and marginally Radon distributed (that is,

the individual common distribution of the random variables must be Radon), Fremlin [42,

459H, p. 166] showed that all such exchangeable sequences also satisfy (5.8). One of our

main results generalizes this further to situations where no assumptions on the joint distri-

bution of the sequence of exchangeable random variables are needed:

Theorem 7.3.2. Let S be a Hausdorff topological space, with B(S) denoting its Borel
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sigma algebra. Let Pr(S) be the space of all Radon probability measures on S and

B(Pr(S)) be the Borel sigma algebra on Pr(S) with respect to the A-topology on Pr(S).

Let (Ω,F ,P) be a probability space. Let X1, X2, . . . be a sequence of exchangeable S-

valued random variables such that the common distribution of the Xi is Radon on S. Then

there exists a unique probability measure P on (Pr(S),B(Pr(S))) such that the following

holds for all k ∈ N:

P(X1 ∈ B1, . . . , Xk ∈ Bk) =

ˆ

Pr(S)

µ(B1) · . . . · µ(Bk)dP(µ)

for all B1, . . . , Bk ∈ B(S). (7.63)

We have not yet described the concept of A-topology that appears in the above

theorem. In general, if S is a topological space and S = B(S) is the Borel sigma alge-

bra on S, then there are natural ways to topologize the space P(S) (respectively Pr(S)) of

Borel probability measures (respectively Radon probability measures) on S, which would

thus lead to natural (Borel) sigma algebras on P(S) (respectively Pr(S)). Although we

had already established that any such sigma algebra on P(S) we work with under the aim

of showing (5.1) should be at least as large as the cylinder sigma algebra C(P(S)), a po-

tentially larger Borel sigma algebra on P(S) induced by some topology on P(S) would be

desirable in order to be able to use tools from topological measure theory (an analogous

statement applies for Pr(S) in the context of (5.8)).

For instance, perhaps the most common topology studied in probability theory

is the topology of weak convergence (see Definition 5.3.1). The weak topology on P(S),

however, is interesting only when there are many real-valued continuous functions on S
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to work with. If S is completely regular (which is true of all the settings in the previous

generalizations of de Finetti’s theorem), for instance, then the weak topology on P(S) is

a natural topology to work with. However, if the state space S is not completely regular

then the weak topology may actually be too coarse to be of any interest.

Indeed, as extreme cases, there are regular Hausdorff spaces that do not have any

nonconstant continuous real-valued functions. Identifying the most general conditions

on the topological space S that guarantee the existence of at least one nonconstant con-

tinuous real-valued function was part of Urysohn’s research program (see [95] where he

posed this question). Hewitt [50] and later Herrlich [47] both showed that regularity of the

space S is generally not sufficient. In fact, the result of Herrlich dramatically shows that

given any Frechét space F (see (T1) on p. 15 for a definition of Frechét spaces) containing

at least two points, there exists a regular Hausdorff space S such that the only continu-

ous functions from S to F are constants. If the topology on P(S) (respectively Pr(S)) is

too coarse, we might not be able to make sense of an equation such as (5.1) (respectively

(5.8)), as we would want the induced sigma algebra on P(S) (respectively Pr(S)) to be

large enough such that the evaluation maps µ 7→ µ(B) are measurable for all B ∈ B(S).

Thus, we ideally want something finer than the weak topology when working

with state spaces that are more general than completely regular spaces. A natural finer

topology is the so-called A-topology (named after A.D. Alexandroff [10]) defined through

bounded upper (or lower) semicontinuous functions from S to R, as opposed to through

bounded continuous functions. Thus, the A-topology on P(S) or Pr(S) is the smallest

topology such that the maps µ 7→ Eµ(f) on either space are upper semicontinuous for
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each bounded upper semicontinuous function f : S → R. With respect to the Borel sigma

algebra on P(S) or Pr(S) induced by this topology, the evaluation maps µ 7→ µ(B) are

indeed measurable for all B ∈ B(S) (see Theorem 6.2.7 and Theorem 6.3.2), which is

something we necessarily need in order to even write an equation such as (5.1) or (5.8)

meaningfully. The next section is devoted to a thorough study of this topology.

How is a generalization of Ressel’s theorem in the form of Theorem 7.3.2 connected

to our generalization of the classical de Finetti’s theorem as stated in Theorem 5.1.6 (see

Theorem 7.3.7 for a more precise statement)? The idea is that any sequence of exchange-

able random variables satisfying (5.8) must also satisfy the more classical equation (5.1)

of de Finetti–Hewitt–Savage (see Theorem 7.3.6). This follows from elementary topolog-

ical measure theory arguments that exploit the specific structure of the subspace topol-

ogy induced by the A-topology. Thus, extending Ressel’s theorem to a wider class of ex-

changeable random variables also proves the classical de Finetti’s theorem for that class of

exchangeable random variables. Let us now describe the intuition behind our proof idea,

which will complete the story by showing that such an idea naturally leads to an investiga-

tion into a generalization of Ressel’s theorem in the form of Theorem 7.3.2.

The idea is to carry out the naive strategy from Section 5.2 using hyperfinite num-

bers from nonstandard analysis as tools to model large sample sizes. Fix a hyperfinite

N > N and study the map ω 7→ µω,N from ∗Ω to ∗P(S). This map induces an internal

probability measure (through the pushforward) on the space ∗P(S) of all internal prob-

ability measures on ∗S. That is, this pushforward measure QN (say) lives in the space

∗P(P(S)). In view of (5.7) (and the nonstandard characterization of limits), we want to
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have a standard probability measure Q on P(P(S)) that is close to QN in the sense that

the integral of the function µ 7→ µ(∗B1) · . . . · µ(∗Bk) with respect to QN is infinitesimally

close to its integral with respect to ∗Q for any k ∈ N and B1, . . . , Bk ∈ B(S).

As the space P(S) (and hence the space P(P(S)) has a topology on it (namely, the

A-topology), a natural way to look for a standard element in P(P(S)) close to a given el-

ement of ∗P(P(S)) is to try to see if this given element has a unique standard part (or if

it is at least nearstandard). If T is a Hausdorff space, then there are certain natural suffi-

cient conditions for an element in ∗P(T) to be nearstandard (see Section 2.2, more specifi-

cally Theorem 6.2.15 and Theorem 6.1.2). However, in our case, the Hausdorffness of P(S)

is too much to ask for in general (see Corollary 6.2.18)! We remedy this situation by fo-

cusing on a nicer subspace of P(S)—it is known that if the underlying space S is Haus-

dorff then the space Pr(S) of all Radon probability measures on S is also Hausdorff (see

Topsøe [93], or Theorem 6.3.4 for our proof). The internal measures µω,N are internally

Radon for all ω ∈ ∗Ω (as they are supported on the hyperfinite sets {X1(ω), . . . , XN(ω)}).

Hence, this move from P(S) to Pr(S) does not affect our strategy—the pushforward PN

induced by the map ω 7→ ∗µω,N from Ω to Pr(S) lives in ∗P(Pr(S)), in which we try to

find its standard part P in order to complete our proof.

The main tool in finding a standard part of this pushforward is Theorem 6.2.15,

which is used in conjunction with Theorem 6.1.2 (originally from Albeverio et al. [6,

Proposition 3.4.6, p. 89]). This technique is called “pushing down Loeb measures” and is

well-known in the nonstandard literature (see, for example, Albeverio et al. [6, Chapter

3.4] or Ross [84, Section 3]). It is often used to construct a standard measure that is close
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in some sense to an internal (nonstandard) measure. The way we develop the theory of A-

topology allows us to interpret this classical technique of pushing down Loeb measures as

actually taking a standard part in a legitimate nonstandard space (of internal measures).

See, for example, Theorem 6.2.15, Remark 6.2.16, and Theorem 6.3.5. Similar results were

obtained in the context of the topology of weak convergence by Anderson [13, Proposition

8.4(ii), p. 684], and by Anderson–Rashid [15, Lemma 2, p. 329] (see also Loeb [69]).

Using Theorem 6.1.2 as described above requires us to first show the existence

of large compact sets in Pr(S) in some sense, which is shown to be the case in Theorem

7.2.11 using a version of Prokhorov’s theorem in this setting (see Theorem 6.5.4). It is in

this proof that we need the Radonnes of the underlying distribution of X1, thus explain-

ing how our statistical heuristic naturally leads to an investigation of a generalization of

Ressel’s theorem to sequences of Radon-distributed exchangeable random variables, rather

than the classical presentability of Hewitt and Savage.

After setting up this abstract machinery for pushing down Loeb measures, the

main computational result that is sufficient for Theorem 7.3.2 is Theorem 7.3.1, which,

as mentioned earlier, is the nonstandard version of (5.2) from our statistical heuristic in

Section 5.2. The fact that this is a sufficient condition follows naturally from the general

topological measure theory of hyperfinitely many identically distributed random variables

that is developed in Section 7.2. It should be pointed out that the proof of Theorem 7.3.1

uses a similar combinatorial construction as Diaconis–Freedman’s proof of the finite, ap-

proximate version of de Finetti’s theorem in [32]. In fact, the proof shows that the two

results are different ways to express the same idea (see also the discussion following the
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statement of Theorem 7.3.1). The form of the result presented here can be given an intu-

itive underpinning based on Bayes’ theorem (this is made more precise in Appendix E,

where an alternative proof of Theorem 7.3.1 is provided). This is noteworthy from the

point of view that Theorem 7.3.1 is the key ingredient in our proof of the generalization of

a result (namely de Finetti’s theorem) usually considered foundational for Bayesian statis-

tics (see Savage [88, Section 3.7], and Orbanz–Roy [76]).

In some sense, we prove a highly general de Finetti’s theorem using the same un-

derlying basic idea that works for the simplest versions of de Finetti’s theorem (that being

the idea of approximating using empirical sample means), the technical machinery from

topological measure theory and nonstandard analysis notwithstanding. The next chapter

is devoted to setting up this technical machinery, while our proof is finally fleshed out in

Chapter 7.

For a more thorough introduction to exchangeability, see Aldous [9], Kingman [61],

and Kallenberg [57]. Besides a recent paper of the author on a nonstandard proof of de

Finetti’s theorem for Bernoulli random variables (see Alam [5] which was covered in Chap-

ter 4), there is some precedence in the use of nonstandard analysis in this field, as Hoover

[53, 54] studied the notions of exchangeability for multi-dimensional arrays using nonstan-

dard methods in the guise of ultraproducts. In view of this work, Aldous [9, p. 179] had

also expressed the hope of nonstandard analysis being useful in other topics in exchange-

ability. Another example is Dacunha-Castelle [27] who also used ultraproducts to study

exchangeability in Banach spaces.
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Chapter 6. Some Results from Nonstandard and Topological
Measure Theory

In this chapter, the main object of study is the space of probability measures P(T)

on a topological space T . We develop basic results on the so-called A-topology on P(T).

While some of this material can be viewed as a review of known results in topological

measure theory (for which Topsøe [93] is our main reference), we provide a self-contained

exposition that is aided by perspectives provided from nonstandard analysis. This leads

to both new proofs of known results as well as some new results. A highlight of this chap-

ter is a quick nonstandard proof of a generalization of Prokhorov’s theorem (see Theorem

6.5.2; see also Section 6.5 for a historical discussion on Prokhorov’s theorem).

An overarching goal of this discussion is to describe the method of pushing down

Loeb measures, which is one of the main tools in our work as it allows us to precisely

talk about when a nonstandard measure on the nonstandard extension of a topological

space is, in a reasonable sense, infinitesimally close to a standard measure (this idea will

be made more precise at the end of our discussion on Alexandroff topology in the next

section; see, for example, Theorem 6.2.15 and Remark 6.2.16).

6.1. Pushing down Loeb measures

Recall the construction of the Loeb measure (see Section 1.3.3) corresponding to

an internal probability space (T,A, ν). In this section, we will work in the case when T is

the nonstandard extension of a topological space T (that is, T = ∗T , and A is the algebra

∗B(T ) of internally Borel subsets of ∗T ). Note that both here and in the sequel, we will

use ‘internally’ as an adjective to describe nonstandard counterparts of certain standard
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concepts. For instance, just as the Borel subsets of T are the elements of B(T ), the inter-

nally Borel subsets refer to elements of ∗B(T ). Similarly, an internally finite set will refer

to a hyperfinite set, and an internally Radon probability measure on ∗T will refer to an

element of ∗Pr(T ), where Pr(T) is the space of Radon probability measures on T .

Given an internal probability space (∗T, ∗B(T ), ν), if we know that st−1(B) is Loeb

measurable with respect to the corresponding Loeb space (∗T, L(∗B(T )), Lν) for all Borel

sets B ∈ B(T ), then one can define a Borel measure on (T,B(T )) by defining the measure

of a Borel set B as Lν(st−1(B)). The fact that this defines a Borel measure in this case

is easily checked. This measure is not a probability measure, however, except in the case

that the set of nearstandard points Ns(∗T ) := st−1(T ) is Loeb measurable with Loeb

measure equaling one.

Thus, in the setting of an internal probability space (∗T, ∗B(T ), ν), there are two

things to ensure in order to obtain a natural standard probability measure on (T,B(T ))

corresponding to the internal measure ν:

(i) The set st−1(B) must be Loeb measurable for any Borel set B ∈ B(T ).

(ii) It must be the case that Lν(Ns(∗T )) = 1.

Verifying when st−1(B) is Loeb measurable for all Borel sets B ∈ B(T ) is a tricky

endeavor in general, and has been studied extensively. It is interesting to note that if the

underlying space T is regular, then this condition is equivalent to the Loeb measurabil-

ity of Ns(∗T ) (this was investigated by Landers and Rogge as part of a larger project on

universal Loeb measurability—see [63, Corollary 3, p. 233]; see also Aldaz [7]). Prior to

Landers and Rogge, the same result was proved for locally compact Hausdorff spaces by
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Loeb [69]. Also, Henson [46] gave characterizations for measurability of st−1(B) when

the underlying space is either completely regular or compact. See also the discussion af-

ter Theorem 3.2 in Ross [84] for other relevant results in this context. We will, however,

not assume any additional hypotheses on our spaces, and hence we must study sufficient

conditions for (i) and (ii) that work for any Hausdorff space.

The results in Albeverio et al. [6, Section 3.4] are appropriate in the general set-

ting of Hausdorff spaces. Their discussion is motivated by the works of Loeb [68, 69] and

Anderson [12, 13]. We now outline the key ideas to motivate the main result in this theme

(see Theorem 6.1.2, originally from [6, Theorem 3.4.6, p. 89]), which we will heavily use in

the sequel.

If the underlying space T is Hausdorff, then an application of Lemma 1.3.9 shows

that the collection {B ∈ B(T ) : st−1(B) ∈ L(∗B(T ))} is a sigma algebra if and only if

Ns(∗T ) is Loeb measurable. Thus in that case (that is, when T is Hausdorff), one would

need to show that st−1(F ) is Loeb measurable for all closed subsets F ⊆ T (or the corre-

sponding statement for all open subsets of T ).

Thus, under the assumptions that st−1(F ) is Loeb measurable for all closed subsets

F ⊆ T , and that Lν(Ns(∗T )) = 1, the map Lν ◦ st−1 : B(T ) → [0, 1] does define a proba-

bility measure on (T,B(T )) whenever T is Hausdorff. This is the content of [6, Proposition

3.4.2, p. 87], which further uses the completeness of the Loeb measures and some nonstan-

dard topology to show that Lν ◦ st−1 is actually a regular, complete measure on (T,B(T ))

in this case. Under what conditions can one guarantee that st−1(F ) is Loeb measurable

for all closed subsets F ⊆ T? Note that if we replace F by a compact set, then this is al-
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ways true (for all sufficiently saturated nonstandard extensions):

Lemma 6.1.1. Let T be a topological space and let τ be the topology on T . Then we have,

for any compact subset K ⊆ T :

st−1(K) =
⋂
{∗O : K ⊆ O and O ∈ τ}.

As a consequence, for any compact set K ⊆ T , the set st−1(K) is universally Loeb mea-

surable with respect to (∗T, ∗B(T )). That is, for any internal probability measure ν on

(∗T, ∗B(T )) and any compact K ⊆ T , we have st−1(K) ∈ Lν(
∗B(T )). Furthermore, we

have:

Lν(st−1(K)) = inf{LP (∗O) : K ⊆ O and O ∈ τ} for all compact subsets K ⊆ T.

See [6, Lemma 3.4.4 and Proposition 3.4.5, pp. 88-89] for a proof of Lemma 6.1.1

(note that T is assumed to be Hausdorff in [6] but is not needed for this proof). Thus, if

we require that there are arbitrarily large compact sets with respect to (∗T, ∗B(T ), ν) in

the sense that

sup{Lν(st−1(K)) : K is a compact subset of T} = 1, (6.1)

then the completeness of the Loeb space (∗T, L(∗B(T )), Lν) allows us to conclude that

Lν(Ns(∗T )) = 1 and that st−1(F ) is Loeb measurable for all closed sets F ⊆ T . In

this case, if T is also assumed to be Hausdorff, then Lν ◦ st−1 is thus shown to be a

Radon measure on (T,B(T )) (see [6, Corollary 3.4.3, p. 88] for a formal proof). In view of

Lemma 6.1.1, we thus immediately obtain the following result; see also [6, Theorem 3.4.6,

p. 89] for a detailed proof of a slightly more general form.
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Theorem 6.1.2. Let T be a Hausdorff space with B(T ) denoting the Borel sigma al-

gebra on T . Let (∗T, ∗B(T ), ν) be an internal, finitely additive probability space and let

(∗T, L(∗B(T )), Lν) denote the corresponding Loeb space. Let τ denote the topology on T .

Then st−1(K) ∈ L(∗B(T )) for all compact K ⊆ T .

Assume further that for each ε ∈ R>0, there is a compact set Kε with

inf{Lν(∗O) : Kε ⊆ O and O ∈ τ} ≥ 1− ε. (6.2)

Then Lν ◦ st−1 is a Radon probability measure on T .

Note that Theorem 6.1.2 is a special case of [6, Theorem 3.4.6, p. 89], which we

have chosen to present here in this simplified form because we do not need the full power

of the latter result in our current work. In the next section, we will study a natural topol-

ogy on the space of all Borel probability measures on a topological space T . It will turn

out that under the conditions of Theorem 6.1.2, the measure ν on (∗T, ∗B(T )) is nearstan-

dard to Lν ◦ st−1 in the nonstandard topological sense (see Theorem 6.2.15). Also, the

subspace of Radon probability measures is always Hausdorff (see Theorem 6.3.4), so that

Theorem 6.1.2 will allow us to push down, in a unique way, a natural nonstandard mea-

sure on the space of all (Radon) probability measures in our proof of de Finetti’s theorem.

We finish this section with a corollary that follows from the definition of tightness.

Corollary 6.1.3. Let T be a Hausdorff space and let µ be a tight probability measure on

it. Then L∗µ ◦ st−1 is a Radon probability measure on T .

6.2. The Alexandroff topology on the space of probability measures on a topo-
logical space

For a topological space T and a function f : T → R, we say:
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(i) f is upper semicontinuous at x0 ∈ T if for every α ∈ R with α > f(x0), there is an
open neighborhood U of x0 such that α > f(x) for all x ∈ U .

(ii) f is lower semicontinuous at x0 ∈ T if for every α ∈ R with α < f(x0), there is an
open neighborhood U of x0 such that α < f(x) for all x ∈ U .

A function f : T → R is called upper (respectively lower) semicontinuous if f is up-

per (respectively lower) semicontinuous at every point in T . The following characterization

of upper/lower semicontinuity is immediate from the definition.

Lemma 6.2.1. A function f : T → R is upper semicontinuous if and only if the set {x ∈

T : f(x) < α} is open for every α ∈ R.

A function f : T → R is lower semicontinuous if and only if the set {x ∈ T : f(x) >

α} is open for every α ∈ R.

As a consequence, a function f : T → R is upper semicontinuous if and only if −f

is lower semicontinuous.

For a topological space T , we will denote the set of all bounded upper semicontin-

uous functions on T by USCb(T ). Similarly, LSCb(T ) will denote the set of all bounded

lower semicontinuous functions on T .

Remark 6.2.2. It is immediate from the definition that the indicator function of an open

set is lower semicontinuous, and that the indicator function of a closed set is upper semi-

continuous.

For a topological space T , let B(T ) denote the Borel sigma algebra of T—that is,

B(T ) is the smallest sigma algebra containing all open sets. Consider the set P(T) of all

Borel probability measures on T . For each bounded measurable f : T → R, define the map
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Ef : P(T)→ R by

Ef (µ) := Eµ(f) =

ˆ
T

fdµ. (6.3)

Definition 6.2.3. Let T be a topological space. The A-topology on the space of Borel

probability measures P(T) is the weakest topology for which the maps Ef are upper semi-

continuous for all f ∈ USCb(T ).

The “A” in A-topology refers to A.D. Alexandroff [10], who pioneered the study of

weak convergence of measures and gave many of the results that we will use. In the lit-

erature, the term ‘weak topology’ is sometimes used in place of ‘A-topology’; see, for in-

stance, Topsøe [93, p. 40]. However, following Kallianpur [58], Blau [18], and Bogachev

[20], we will reserve the term weak topology for the smallest topology on P(T) that makes

the maps Ef continuous for every bounded continuous function f : T → R. For a bounded

Borel measurable function f : T → R and α ∈ R, define the following sets:

Uf,α := {µ ∈ P(T) : Eµ(f) < α}, (6.4)

and Lf,α := {µ ∈ P(T) : Eµ(f) > α}. (6.5)

By Definition 6.2.3 and Lemma 6.2.1, the A-topology on P(T) is the smallest

topology under which Uf,α is open for all f ∈ USCb(T ) and α ∈ R. More formally,

the A-topology on P(T) is induced by the subbasis {Uf,α : f ∈ USCb(T ), α ∈ R}.

Also, by the last part of Lemma 6.2.1, this collection is actually equal to the collection

{Lf,α : f ∈ LSCb(T ), α ∈ R}. These observations are summarized in the following useful

description of the A-topology.

Lemma 6.2.4. Let T be a topological space, and P(T) be the set of all Borel probability

134



measures on T . The A-topology on P(T) is generated by the subbasis

{Uf,α : f ∈ USCb(T ), α ∈ R} = {Lf,α : f ∈ LSCb(T ), α ∈ R}. (6.6)

Remark 6.2.5. Note that, by Lemma 6.2.1, a function is continuous if and only if it is

both upper and lower semicontinuous. Thus, by Lemma 6.2.4, the A-topology also makes

the maps Ef continuous for every bounded continuous function f : T → R, thus implying

that the A-topology is, in general, finer than the weak topology on P(T). The two topolo-

gies coincide if T has a rich topological structure. For example, in Kallianpur [58, Theo-

rem 2.1, p. 948], it is proved that the the A-topology and the weak topology on P(T) are

the same if T is a completely regular Hausdorff space such that it can be embedded as a

Borel subset of a compact Hausdorff space. This, in particular, means that the two topolo-

gies are the same if the underlying space T is a Polish space (that is, a complete separable

metric space) or is a locally compact Hausdorff space.

Remark 6.2.6. While we are focusing on Borel probability measures on topological

spaces, we could have analogously defined the A-topology on the space of all finite Borel

measures on a topological space as well. Although we will not work with non-probability

measures, we are not losing too much generality in doing so. In fact, Blau [18, Theo-

rem 1, p. 24] shows that the space of finite Borel measures on a topological space T is

naturally homeomorphic to the product of P(T) and the space of positive reals. Thus,

from a practical point of view, most results that we will obtain for P(T) will also hold

for the A-topology on the space of all finite measures (some results such as Prokhorov’s

theorem that talk about subsets of finite measures will hold in that setting with an added

assumption of uniform boundedness that is inherently satisfied by all sets of probability
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measures).

By Remark 6.2.2, we know that {µ ∈ P(T) : µ(G) > α} is open for any open subset

G ⊆ T and α ∈ R; and similarly, {µ ∈ P(T) : µ(F ) < α} is open for any closed subset

F ⊆ T and α ∈ R. Lemma 6.2.9 will show that the A-topology is generated by either

of these types of subbasic open sets as well. We first use the above facts to show that the

evaluation maps are Borel measurable with respect to the A-topology.

Theorem 6.2.7. Let B be a Borel subset of a topological space T . Let P(T) be the space

of all Borel probability measures on T equipped with the A-topology. Then the evaluation

map eB : P(T)→ [0, 1] defined by eB(µ) := µ(B) is Borel measurable.

Proof. Consider the collection

B = {B ∈ B(T ) : eB is Borel measurable}.

This collection contains T , since fT is the constant function 1, which is continuous.

It is also closed under taking relative complements. That is, if A ⊆ B and A,B ∈ B then

B\A ∈ B as well, since fB\A = fB − fA in that case. Finally, B is closed under countable

increasing unions. That is, if (Bn)n∈N ⊆ B is a sequence of sets such that Bn ⊆ Bn+1 for

all n ∈ N, then B := ∪n∈NBn ∈ B as well (this is because fB = lim
n→∞

fBn is a limit of Borel

measurable functions in that case). Thus, B is a Dynkin system.

Furthermore, B contains all open sets since for any open set G ⊆ T , the set {µ ∈

P(T) : µ(G) > α} is Borel measurable (in fact, open) for all α ∈ R. Thus, by Dynkin’s π-λ

theorem, it contains, and hence is equal to, B(T ), completing the proof.

Lemma 6.2.9 finds other useful subbases for the A-topology. We first need the fol-
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lowing intuitive fact from probability theory as a tool in its proof.

Lemma 6.2.8. Suppose P1 and P2 are probability measures on the same space and X is a

bounded random variable such that

P1(X > x) ≥ P2(X > x) for all x ∈ R. (6.7)

Then, we have EP1(X) ≥ EP2(X).

Proof. With λ denoting the Lebesgue measure on R, we have the following representation

of the expected value of any bounded random variable X (see, for example, Lo [66, Propo-

sition 2.1]):

EP(X) =

ˆ
(0,∞)

P(X > x)dλ(x)−
ˆ

(−∞,0)

P(X < x)dλ(x). (6.8)

Let P1, P2 and X be as in the statement of the lemma. Then, using (6.7), we ob-

tain the following for each x ∈ R:

P1(X < x) = 1− P1(X ≥ x)

= 1− P1

(⋂
n∈N

{
X > x− 1

n

})

= 1− lim
n→∞

P1

(
X > x− 1

n

)
≤ 1− lim

n→∞
P2

(
X > x− 1

n

)
= P2(X < x). (6.9)
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