
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1993

Squared Law Algorithms: Theory and Applications. Squared Law Algorithms: Theory and Applications.

Poornachandra Bellamkonda Rao
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Rao, Poornachandra Bellamkonda, "Squared Law Algorithms: Theory and Applications." (1993). LSU
Historical Dissertations and Theses. 5591.
https://digitalcommons.lsu.edu/gradschool_disstheses/5591

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Digital Commons. For more information, please contact gradetd@lsu.edu.

List of Tables

Table 2.1 Comparison of the number of multiplications
versus squaring operations... 36

Table 3.1 Hardware cost in 2-input gates for cyclic convolution
of 4, 8, and 16 points.. 92

Table 3.2 Time delay of cyclic convolution of 4, 8, and 16 points 95

Table 3.3 Hardware and speed comparison of various
look-up table techniques.. 105

Table 3.4 Cost comparison in ROM bits of the various techniques
for computing <A x B>2n . \ 110

Table 3.5 Cost comparison in ROM bits for integrated multiplier,
based on techniques of this section........................... I l l

Table 4.1 Values of <AH2AL22n^>211... H8

Table 4.2 Values of <AH3AL32n"2>2n.. 121

Table 4.3 Results when n is even. AH = an.jan.2 ... an/2,
A L = a(n/2)-la(n/2)-2 - and
QS = 2n/2-1{(AH + Al)2 -(Ah - Al 2)) 125

Table 4.4 Results when n is odd. AH = an l an 2 ... â n+1y2,
A L = a(n-l)/2 - a l a0’ and
QS = 2(n-1)/2{(AH + Al)2 -(Ah - Al 2)}.................... 126

Table 4.5 Cost comparison in 2-input gates of techniques
of section 4.1 with 4.2... 137

Table 4.6 Speed comparison in 2-input gate delays of techniques
of section 4.1 with 4.2... 139

Table 4.7 Values of <2n'4 A ^2 + a 144

List of Figures

Figure 3.1 CSA implementation of an 8 x 8 multiplier........................... 53

Figure 3.2 Array of summands for an 8 bit squarer.................................. 57

Figure 3.3 CSA implementation of an 8 bit squarer................................. 59

Figure 3.4 Intuitive CSA implementation of an 8 bit squarer.................. 60

Figure 3.5 Reduced and regular array of summands for an 8
bit squarer.. 62

Figure 3.6 CSA implementation of reduced 8 bit squarer...................... 63

Figure 3.7 Pictorial representation of a 4-point cyclic convolution..........68

Figure 3.8 8-point cyclic convolution-module 1... 81

Figure 3.9 8-point cyclic convoiutiori-module 2... 82

Figure 3.10 8-point cyclic convolution-module 3... 83

Figure 3.11 Hardware architecture to implement equation (3.2) using
traditional techniques... 106

Figure 3.12 Hardware architecture for implementing equation (3.2)
using the quarter squared algorithm 107

Figure 3.13 Hardware architecture to realize equations
(3.26) and (3.28)...108

/■»
Figure 4.1 The direct computation of <A >2n, ROM size 2n x n 115

Figure 4.2 The computation of <A >2n based on equation (4.3),
ROM size 2n_1 x n.. 117

2
Figure 4.3 The computation of <A >2n based on equation (4.9),

ROM size 2n"2 x n.. 120

Figure 4.4 The computation of <A2>2n based on equation (4.16),
ROM size 2n' 3 x n..124

2
Figure 4.5 The computation of <A >2n based on equations

(4.23)-(4.24), total ROM bits = 5 x 2072 x n................. 128

Figure 4.6 Basic scheme for techniques of section 4.1.......................... 132

viii

Abstract

This dissertation focuses on a new approach for a hardware implementation of

the cyclic convolution operation. The cyclic convolution operation is the core of

several functions used in applications related to digital signal processing and error

control. Since the operation is multiplication intensive and the cost of a multiplication

operation is very high, most of the present research effort attempts to reduce the

number of multiplications.

Our approach, however, aims at obtaining an efficient implementation by

relying on the properties of the special case of multiplication, namely, the squaring

operation. Due to the properties exhibited by the squaring operation the hardware cost

and time delay of a squarer unit is both cheaper and faster than that of a multiplication

unit. This is true for both memory and non-memory based implementations.

In this dissertation we have developed all the necessary theory required to

express the cyclic convolution of two n-point sequences, where n is a power of 2, in

terms of the elementary arithmetic operations add, square, and subtract. Our

algorithms require fewer squaring operations than multiplication operations required

by a traditional implementation of the cyclic convolution operation, do not introduce

any round-off errors, place no restriction on word length, and are valid when the

number of points to be convolved is a power of two. We then clearly demonstrate that

our algorithms are also more hardware efficient for both memory and non-memory

based implementations. Further, schemes to multiply two numbers based on the cyclic

convolution operation are presented. Finally, efficient ways of computing the squaring

operation when arithmetic is performed in modular rings are developed.

Chapter 1

Introduction

Applications in the fields of digital signal processing (DSP) and error control are

a few of the many interests of a hardware design engineer. Hardware design for these

applications are challenging because of their high computational complexity. The main

computational tasks in these applications are convolutions, Fourier transforms, and the

inversion of Toeplitz systems of equations for spectral estimation [1]. A wealth of

literature already exists in these areas [2]-[6], to name a few. Apart from these books

there are several journals dedicated to research and development in these areas. Much of

the material in these fields is centered around the discrete Fourier transform (DFT). The

DFT has many powerful algebraic properties that are valid in numerous number

systems. Researchers have exploited these properties by exploring several different

alternatives for the field of operations [6]-[ll]. An appropriate selection provides the

designer with a number of tricks that can speed up algorithms and simplify hardware

implementations, for instance, selecting a Galois field of the form GF(2n -1) or GF(2n

+1) simplifies significantly the arithmetic processing. We observe that arithmetic

performed modulo (2n -1) is similar to one's complement arithmetic.

Much of the field of digital signal processing and error control coding is devoted

to the task of removing noise by passing a known signal through a suitable filter [1].

The main computational problem involved in this is the convolution operation. The

convolution operation is used in implementations of finite impulse response filters [12],

infinite impulse response filters [13], auto and cross correlations [14], and polynomial

multiplication and multiplication of very large integers [15],[16]. The large sized

1

2

problems in filtering are broken into smaller linear convolutions or cyclic convolutions

using well known overlap techniques [17],[18]. This dissertation focuses on computing

the convolution operation using a new approach that does not rely on any transforms.

Instead, we focus on this operation from the computer arithmetic point of view by

examining the applicability of other elementary functions in evaluating the convolution

operation.

The rest of the introductory chapter is organized into two sections. The first is a

brief overview of existing approaches for computing convolutions and the second is an

introduction to our approach. The intent of the first section is to impress upon the

reader, some of the difficulties and complexities associated with existing methods and

further, to motivate the need for approaching the problem from a fundamentally different

angle.

1.1 Overview of existing methods

Signals are typically generated whenever things vibrate, pump, pulse, or in any

other way change with time [19]. While such signals or waveforms in real life are

continuous in nature they can, for pragmatic purposes, only be represented with a finite

amount of precision. Further, while the data may be a real or complex number, it can be

temporarily rescaled by shifting the decimal point to the right and treating the number as

an integer. This practice of treating data as integer sequences is common [1], [8] and

does not in any way detract from the quality of the analysis. Based on the application the

designer may choose an appropriate word length to prevent overflow after data

manipulation. We assume without loss of generality that data, also referred to as points

of input and output sequences, are integers. The linear and cyclic convolution operations

are defined as computations on two sets of integers that yields a third set of integers.

More precisely, the linear convolution is defined as

3

n-1
ci = 2 ai-k bk for i = 0, 1. n-1 (1.1)

k=0

and the cyclic convolution as

n-1
Cj = 2 a<i_k>nbk for i = 0, 1, n-1 (1.2)

k=0

where the a4 and bj are the input sets of data and the Ci are the data of the convolved

sequence. The notation <x>m denotes the operation x modulo m. The number of points

in the sequence, 'n', is also known as the block length. We note that the above

computation requires n2 multiplications. Performing the arithmetic in the above two

equations, (1.1) and (1.2), modulo p, where p is prime, changes the entire picture. This

is because, now the computations are being carried out in the Galois field GF(p). This is

very attractive due to the fact that the properties of the convolution theorem can be used

[20],[21], Before we discuss the usefulness of the convolution theorem one must note

that if the choice of p in the above is such that the input data and the computed results

are smaller than p then the modulo p operation is redundant.

The convolution theorem [1] enables the computation of the cyclic convolution

of two vectors A and B by first computing the Fourier transforms of the vectors, then

obtaining a new vector by performing a point by point multiplication of the transformed

vectors, and then finally applying the inverse Fourier transform on the new vector, i.e.

on the vector obtained in the transform domain. If we assume that there are n elements

in each of the input vectors then it is easy to see from the above that only n

multiplications are needed, the multiplications being in the transformed domain. Clearly

the convolution theorem is useful if and only if their exist efficient ways of computing

the Fourier and inverse Fourier transforms. The existence of such transforms is

discussed in [20],[21].

4

The discrete Fourier transform can be applied on a discrete set of points. The

DFT maps a discrete time domain waveform x(n) into a frequency domain X(k) and an

inverse discrete time Fourier transform (IDFT) maps it back into the time domain. The

transforms are symbolically represented as

x(t) - F(lt >X(k) and X(k) —5>x(t)

and defined by

n-1 - j2 n
X (k)= 2 x(t)e— * k = 0, 1, ..., n - 1 (1.3)

t=0

and
i n-1 j2?r

x(t) = - Y X (k) e V t = 0, 1, ..., n - 1 (1.4)
n kT0

From equations (1.3) and (1.4) it can be seen that to obtain c(t) which is the

cyclic convolution of a(t) and b(t), a(t) and b(t) are mapped into the frequency domain,

represented by parameters A(k) and B(k), using n multiplications for each point for a

total of 2n2 multiplications and 2n2 additions. Multiplication of A(k) and B(k) requires

another n multiplications while the inverse mapping requires another n2 multiplications

and n2 additions. We thus have a total of (3n2 + n) multiplications and 3n2 additions.

Thus, when the DFTs are computed directly this approach is not of much practical value

as the direct computation of the cyclic convolution itself requires only n2 multiplications.

However, Cooley and Tukey [6] introduced the fast Fourier transform (FFT)

which is an efficient algorithm to compute the DFT. Other efficient FFT algorithms can

be found in [22]-[24], While these algorithms require only n log2 n multiplications to

map an input sequence of length n into the frequency domain, they have two primary

disadvantages. One is that they produce significant round off errors [25],[26] and the

other is that they are not very well suited for VLSI implementations [27]. Although the

5

FFT reduces the number of multiplications required for evaluating the DFT, the count of

multiplications in itself does not determine the computational efficiency of the algorithm.

With the widespread use of VLSI to build application specific integrated circuits (ASIC)

the architectural details of implementation have gained significant importance. Reference

[28] discusses Fourier transforms in VLSI, [29] discusses architectural issues in DSP

applications, and [30] discusses multiplier policies in DSP applications. Many

researchers have also explored the applicability of systolic array architectures to compute

the DFT [31]-[33]. Some of the other irritants are block lengths and wordlengths [1].

While none of these are insurmountable they do require certain awkward design

choices. The DFT can also be evaluated using number theoretic transforms (NTT)

which are defined over finite fields and rings of integers with all the arithmetic

performed modulo an integer. An evaluation of the various NTT algorithms as applied

to digital filtering applications can be found in [34],[35].

The main focus of the various FFT and NTT algorithms [36] has been on

reducing the number of multiplications. However, in real time applications large

amounts of data have to be processed in relatively small periods of time and thus apart

from reducing the number of computations, it has also become necessary to parallelize

the computations. With the cost of hardware reducing and the acceptance of application

specific integrated circuits (ASICs) increasing, it has become possible to build dedicated

systems in an economical fashion. The inherent properties of the residue number system

(RNS) lends itself as a viable candidate for parallel computations [37]. Implementations

using the RNS and the quadratic residue number system (QRNS) can be found in [38]-

[41]. More recently, the polynomial residue number system (PRNS) has been

developed [42],[43] which combines both features, i.e. reducing the number of

computations while simultaneously increasing the level of parallelism.

6

We have so far described the importance of the cyclic convolution operation in

digital signal processing applications. In our research we propose to develop new

algorithms for computing the cyclic convolution of two n-point sequences by

performing all required operations in a single domain, i.e. we will not map the points

into a frequency domain or for that matter into any other domain. To do this

successfully we will have to use fewer than n2 multiplications. To achieve this reduction

in the multiplication count all existing research has focused on mapping strategies that

result in reduced number of multiplications in the mapped domain. However, our

research effort focuses on using squaring operations instead of multiplication

operations. The next section provides an introduction to our approach.

1.2 Our approach

The vast amount of literature in the DSP area focuses on the convolution

operation by exploiting the properties of the DFT and the algebraic field in which it is

applied. Most of the algorithms therefore have specific properties and perform well in

the environments that they were designed to function in. We have looked at the problem

from a more broader perspective and our approach therefore does not rely on the DFT at

all. Instead we have focused on the definition of cyclic convolution and have attempted

to develop efficient algorithms centered around the elementary arithmetic function, the

squaring operation, and hence the title of the dissertation "Squared Law Algorithms:

Theory and Applications." Our motivation is based on the general underlying theme of

the DFT and FFT algorithms, which has been primarily, to reduce the amount of

hardware required to perform the convolution operation. Since the operation is

multiplication intensive, the emphasis was first to reduce the count on the number of

multiplications and then with the development of integrated circuit technology the

emphasis was to improve the implementation architecture. Similarly, we attempt to

reduce the amount of hardware by zeroing in on the fact that the squaring operation

requires lesser amount of hardware than the multiplication operation. One must also

keep in mind that this reduction in hardware is not at the expense of speed, contrary to

this it is also faster to evaluate the squaring as opposed to the multiplication operation.

Table look-up techniques for performing the multiplication operation using

ROMs have been researched in [44]-[50]. Of these [46] is based on the index calculus

technique which can only be used with prime moduli and [47]-[50] are based on the

quarter squared algorithm technique. These designs offer attractive speed-complexity

trade offs for small word lengths while for large word lengths the ROM size increases to

the point where it becomes unrealistic.

Consider a simple ROM based direct implementation of the multiplication

operation. The two input operands of length, say L bits each, serve as the address to the

ROM. The data stored at this location is the result of the multiplication. Such a ROM

implementation of the multiplication operation would require a ROM of size 22L x 2L.

On the other hand the squaring operation would have only one input operand and a

ROM implementing this would be of size 2L x 2L. The immediate savings in ROM bits

is apparent. The motivation is now clear. The more important question is now therefore:

how does one replace all the multiplication operations in a given application with the

squaring operations? We researched this problem with the convolution operation as our

application and have developed algorithms to compute the convolution operation using

squaring operations as opposed to multiplication operations. While we reduce the

number of squaring operations compared to the number of multiplication operations we

do increase the number of additions. Initial results of our research were published in

[51]. The next natural question is: the squaring operation is a special case of the

multiplication operation which in turn is repetitive additions, thus how does the increase

in the number of additions compare with the decrease in the number of the squarings.

These two issues are addressed in detail in this dissertation.

The rest of the dissertation is organized as follows. Chapter 2 lays the

mathematical foundations for the algorithms to compute the cyclic convolution using

squaring operations. It also provides formulae for the count on the number of squares

and the number of two-operand additions. Chapter 3 discusses various implementation

issues including both non-ROM based and ROM based implementations. In this chapter

the addition-squaring trade-off is also analyzed in detail. Some initial results on this

were published in [52], Since the focus of the research was on the usefulness of the

squaring operation, the behavior with respect to hardware costs of the computation of

this operation in modular rings was also studied. Initial results on this were published in

brief in [53]. Details of these results are presented in chapter 4. Finally, chapter 5

concludes the research effort of this dissertation with some suggestions for future

research.

Chapter 2

Mathematical Foundations

In this chapter we present the mathematical basis to prove the validity of our

algorithms. The material in this chapter has a natural flow in the sense that it is presented

in the order in which it was developed. This chapter also defines the extensive notations

that are used throughout this dissertation.

2.1 Background

The starting point for this research has been reference [50], which described a

novel approach for implementing convolutions with small tables. The algorithm

developed in that paper, titled the one over eight squared algorithm applies the idea of

the quarter squared algorithm to compute a two-point cyclic convolution. The method is

briefly described.

The quarter squared algorithm technique [47]-[50] is based on the fact that the

product of two n-bit numbers x and y can be given as

xy = l/4{(x + y)2 - (x - y)2} (2.1)

Here look up tables can be used to compute the values of (x + y)2 and (x - y)2. If the

result of the operation xy is computed directly by using a ROM then the size of the ROM

required would be 22nx 2n, however, if (2.1) is used then two ROMs each of size 2n+1

x 2(n+l) would be required. Thus the use of (2.1) yields a total ROM bit requirement

of 2n+2 x 2(n+l) bits. Clearly for n > 2 the use of (2.1) requires fewer ROM bits,

however, there is an overhead in terms of adders. In general, it can be said that the use

of the quarter squared technique reduces the ROM bits from the order of 22n to 2n.

9

10

Now consider the problem of obtaining the cyclic convolution of two two-point

sequences. The cyclic convolution of two sequences A = [a0, } and B = [b0, bj} is

by definition given as C = [c0, Cj} where cQ = agb0 + a jb j and Cj = agbj + ajbg.

Define[50]

u = aQ + aj + b0 + bj (2.2)

v = -aQ + aj - b0 + bj (2.3)

w = -&q - aj + b0 + bj (2.4)

x = -ag + aj + b0 - bj (2.5)

Then the two points of the cyclic convolution can be given as

c0 = l/8(u2 + v2 - w2 - x2) (2.6)

Cj = l/8(u2 + x2 - v2 - w2) (2.7)

Equations (2.6) and (2.7) constitute the one-over eight squared algorithm of [50]

and they clearly demonstrate that the cyclic convolution of two two-point sequences can

be obtained solely by the use of additions, subtractions, and squaring operations. A

subtraction can be simply thought of as an addition as the hardware units that perform

subtraction and addition are approximately equal in cost. Thus hereinafter the number of

additions will include the number of subtractions. Also (2.6) and (2.7) show that the

term w2 always appears in the negative and hence the ROM that generates w2 can be

designed to directly generate -w2.

The one over eight squared algorithm can also be applied in modular rings,

provided the multiplicative inverse of 8 exists in the chosen ring. In the case when the

chosen modulus m is odd <8‘1>m always exists, where <x>m is read as x modulo m.

This can easily be shown as follows: when m is odd, m + 1 is even which implies that

(m + l)/2 is an integer. Therefore the multiplicative inverse of 2 modulus m can be

given as < 2 '1>m = (m + l)/2 as 2(m + l)/2 = m + 1 = < l> m [50]. Thus since <2_1>m

11

always exists, <8_1>m also always exists as <8_1>m = <(2_1)3>m. Similarly, the

multiplicative inverses of all numbers that are powers of 2 exist when m is odd.

However, when m is even <2_1>m does not exist. To see this let us assume that it did

exist and its value is k. We then have <2k>m = 1, which implies that 2k = mx + 1 (x is

some integer). But this is impossible as 2k and mx are even (m is even) and the

difference of two even numbers can never be equal to 1. We thus have a problem and

[50] provides some theorems to account for the round-off errors caused by this non

existence of <2_1>m (m even).

2.2 Algorithm for convolution using an exponential
number of squares

The first effort in generalizing the one over eight squared algorithm resulted in

an algorithm for doing convolution using an exponential number of squares. Since the

algorithm used an exponential number of squares, it is impractical from the view point

of the cost of its hardware implementation. However, the insight gained from this

algorithm was that it might be impossible to obtain in an efficient manner each point of

the cyclic convolution directly as a function of a summation of squares. We next present

the algorithm along with an example.

Algorithm 2.1

Input: The points of two n-point sequences {aQ, a j , ..., a ^ } and {bQ, b j , ..., bn_j}.

Output: The cyclic convolution {c0, Cj, ..., cn. j } of the two given input sequences.

Method: The procedure uses only addition and squaring operations.

Procedure: Each term of the cyclic convolution is given by

j 2n- l
CP = 0n+l ULi zpk(~l) » p = 0, 1, ..., n —1

2 k=0

where the z ^ 's are terms of the matrix Zp. Matrix Zp is of size 2n x 1 and is formed as

follows:

1) Zp = Xp x Y where X is a 2n x 2n matrix whose terms are +1 or -1 and Y is a

2n x 1 transpose matrix of {a0, a j , a ^ j , b0, b j , b n_j}.

2) The rows and columns of matrix Xp are represented by subscripts i and j

respectively. Subscript i is in the range 0 to 2n -1 and subscript j is in the range 1

to 2n.

3) The terms of matrix Xq are defined by the following set of rules.

a) Xy = 1 if either i = 0 or j = 1.

b) For i > 0 and 1 < j <= n+1, let rj = 2n/2H

Then

*ij =

1 ifi<r=

i-1
-xi-l j if X X

i=i-ij

xi - l j ot terwise

= ± r j

c) For i > 0 and n+1 < j <= 2n, let rj = 2i'n_1

Then

X jj = x i-lj
- X :li - l j

if i<rj
if i is an integer multiple of rj
otherwise

4) The matrices Xp for p = 1, 2 ,..., n-1 are obtained from matrix Xq by retaining

its columns 1 through n as it is and by rotating right the columns n+1 through 2n

by (p) positions.

13

Example: Suppose we wish to compute the cyclic convolution of two 3-point

sequences {ag, aj, a2} and {b0, bj, b2}.

From the above algorithm matrix Y is the transpose of [a^, aj, a2, b0, bj, b2].

From step 3 we have

X 0=

Thus

Multiplying the above matrix Xq with matrix Y results in ZQ which is a 8 x 1

matrix with terms zQ0, z01, z 07.

ao + at + a2 + bQ + b̂ + b2

+ aj + a2 ~ bg — bj — b2

a0 + ai - a2 + b0 - bi + b2

z _ -uj a0 + a1 - a 2 - b 0 + b1 - b 2

a0 - ai + a2 + bg + bi - b2

a0 - ai + a2 - b0 - bj + b2

a0 - ai - a2 + bp - bi - b2

1 T 2 2 2 2 2 2 2 2 1
c 0 ~ y ^ [z00 “ Z01 + z02 “ z03 + z04 ~ z05 + z06 “ z07j

= aobo + a2bi +ajb2

z00

Z01

z02

z03

z04

z 05

z06

z07

Similarly we have,

Multiplying matrix Zjwith matrix B gives us Zj which is a 8 x 1 matrix whose

terms are z10, Zj j , z 17.

3q + b0 + bj + b2
a0 + ai + a2 - b0 - bi - b2

ao + ai - a2 + bo + bj - b2

a0 + a l “ a2 - bo ~ bi + b2

a0 _ al + a2 “ b0 + bi + b2
a0 - ai + a2 + b0 - bi - b2

ao - ai - a2 ~ b0 + bi - b2

a0 “ al - a2 + bo ~ bi + b2

Thus giving

Z, =

z10

Z11

z12

z 13

z14

z 15

z 16

. z 17.

1 r 2 2 , 2 2 , 2 2 , 2 2 1
c ! = TT[Z10 “ Z11 + z12 “ z 13 + z 14 “ z 15 + z 16 “ z17j16

= albo + aobi + a2b2

and finally,

Multiplying matrix X2 with matrix Y gives us Z2 which is a 8 x 1 matrix whose

terms are z20, z21, z 2?.

z20 a0 + ai + a2 + bo + bi + b2

Z21 ao + ai + a2 - bo - bj - b2

z22 a0 + ai - a2 - bo + bj + b2

z23 a0 + aj - a2 + bo - bi - b2

z24 ao - a i + a 2 + bo - bj + b2

z25 a0 - a 1 + a2 - b 0 + b1- b 2

z26 ao - ai - a2 ~ bo - bj + b2

z27 ao - aj - a2 + bo + bj - b2

Thus giving
1 f 2 2 , 2 2 , 2 2 , 2 2 1

c 2 = ^ [z20 “ Z21 + z 22 “ z 23 + z 24 “ z25 + z 26 “ Z27J

= a2b0 + a1b1 + a0b2

It appears that we are multiplying two matrices for each point. However, this is

not the case as the matrix notation is only a convenient form to represent the several

equations that are developed for each point. Also there is no actual division involved as

the last four bits are zero and by simply ignoring them we achieve the division by 16.

Although this algorithm is well structured from the implementation point of

view, it relies on squaring operations in the order of n2n, plus additions and

subtractions, and thus the cost is prohibitive. Clearly this is far greater than even the n2

multiplications required by the definition of the problem and thus no further work was

done on this algorithm. However this motivated us to look in other directions and our

results are presented in the next section.

16

2.3 Direct extension of the one over eight squared

algorithm

We now try to extend the one over eight squared algorithm to obtain the cyclic

convolution of two 4-point sequences. We first re-write the equations of section 2.1 in a

more nicer form as follows. Equations (2.2) - (2.5) can be re-written as

u = ag + aj + b0 + bj (2.8)

v = ag + aj - b g - b j (2.9)

w = ag - aj + bg - bj (2.10)

x = a g - a j - b g + bj (2.11)

Then the two points of the cyclic convolution can be given as

Now, our objective is to extend this method to obtain the cyclic convolution of

two 4-point sequences. Let the sequences be A = {ag, aj, a2, a3} and B = {bg, bj, b2,

b3} and by definition, the cyclic convolution of the two sequences is given as C = {cQ,

c l ’ c2> c3 ̂ w^ere

Now, re-defining equations u through x based on the pattern of terms and signs

in equations (2.8) - (2.11), we have

Cg = l/8(u2 - v2 + w2 - x2)

Cj = l/8(u2 - v2 - w2 + x2)

(2 .12)

(2.13)

co ~ a0b0 + a3bl + a2b2 + al b3

Cj = a j bg + agbj + a3b2 + a2b3

C2 = a2b0 + al bl + a0b2 + a3b3

c3 = a3bg + a2bj 3- &jb2 3- agb3

(2.14)

(2.15)

(2.16)

(2.17)

u — ag 3- a ̂ 3- a2 3- a3 3- bg 3- b j 3- b2 3- b3

v — ag 3* aj 3- a2 3- a3 - bg - b j - b2 - b 3

(2.18)

(2.19)

141

2) The bulk of the delay in equation (4.35) is due to the adder circuit. By using

better adders such as the carry-look ahead adder the timing can be drastically improved

for section (4.2) while it will make little difference for techniques of section (4.1) as,

referring to equation (4.31), the adder delay here is 0 (n 3). Also in section (4.1) the

number of summands is a function of n while for section (4.2) it is a constant.

3) The ROM delay models used for section (4.2) are very conservative [55] as they

do not take into account the density, regular implementation structure, e.t.c. while the

model used for section (4.1) is very generous as it does not take into effect the delays of

interconnection wiring.

4) A big advantage of section (4.2) is that it is very modular. Thus in a practical

implementation a design change from n = 16 to say n = 32 will require much lesser

design turn around time as only the blocks have to be changed while for techniques of

section (4.1) a complete new set of schematics will have to be created.

4.5 Memory compression schemes for arithmetic in
modulo 2n -1

In this section we present the arithmetic manipulations required to compute the

square of a number modulo 2n -1. Our objective here again is to find ROM based

efficient methods to compute the square of a number modulo 2n -1. Let us consider a

number A belonging to the modular ring Z2n_i = {0, 1,..., 2n -2}. Then A has a n-bit

binary representation as in A = ^ . 1 ^ .2 — ^i^q; e {0,1}. Our task is to compute

<A2>2n_i> where as usual <x>,n denotes the operation x modulo m. Our method is

essentially the same as that outlined in section 4.1. Here we present the analysis for two

different decompositions of the number A.

