
Louisiana State University Louisiana State University 

LSU Digital Commons LSU Digital Commons 

Faculty Publications Department of Physics & Astronomy 

7-2-2004 

Non-Fermi-liquid behavior in itinerant antiferromagnets Non-Fermi-liquid behavior in itinerant antiferromagnets 

I. Vekhter 
Los Alamos National Laboratory Theoretical Division 

A. V. Chubukov 
University of Wisconsin-Madison 

Follow this and additional works at: https://digitalcommons.lsu.edu/physics_astronomy_pubs 

Recommended Citation Recommended Citation 
Vekhter, I., & Chubukov, A. (2004). Non-Fermi-liquid behavior in itinerant antiferromagnets. Physical 
Review Letters, 93 (1) https://doi.org/10.1103/PhysRevLett.93.016405 

This Article is brought to you for free and open access by the Department of Physics & Astronomy at LSU Digital 
Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital 
Commons. For more information, please contact ir@lsu.edu. 

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/physics_astronomy_pubs
https://digitalcommons.lsu.edu/physics_astronomy
https://digitalcommons.lsu.edu/physics_astronomy_pubs?utm_source=digitalcommons.lsu.edu%2Fphysics_astronomy_pubs%2F5460&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1103/PhysRevLett.93.016405
mailto:ir@lsu.edu


ar
X

iv
:c

on
d-

m
at

/0
40

13
75

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  2
1 

Ja
n 

20
04

Non-fermi liquid behavior in itinerant antiferromagnets

I. Vekhter
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545∗

A. V. Chubukov
Department of Physics, University of Wisconsin, Madison, WI 53706

(Dated: November 13, 2018)

We consider a two dimensional itinerant antiferromagnet near a quantum critical point. We show
that, contrary to conventional wisdom, fermionic excitations in the ordered state are not the usual
Fermi liquid quasiparticles. Instead, down to very low frequencies, the fermionic self energy varies
as ω

2/3. This non-Fermi liquid behavior originates in the coupling of fermions to the longitudinal
spin susceptibility χ‖(q,Ω) in which the order-induced “gap” in the spectrum at q = 0 dissolves
into the Landau damping term at vF q > Ω. The transverse spin fluctuations obey z = 1 scaling
characteristic of spin waves, but remain overdamped in a finite range near the critical point.

Fermi liquid (FL) theory is a powerful tool to study
properties of interacting electrons. It states that, upon
switching on the electron-electron interaction, elemen-
tary excitations near the Fermi surface remain fermionic,
with well-defined energy and momentum. As a result,
Fermi liquids have a constant uniform spin susceptibility
and a linear in temperature, T , electronic specific heat.

In the last two decades, many new compounds were
found which exhibit thermodynamic and transport prop-
erties dramatically different from those of a Fermi liq-
uid [1]. Understanding the origin of this non-Fermi liquid
(NFL) behavior is one of the most important challenges
in condensed matter physics.

Few avenues leading to the NFL behavior in dimen-
sion D > 1 have been proposed in the theory of in-
teracting electron systems. One of the most widely
studied scenarios ties the destruction of the Fermi liq-
uid to a quantum critical point (QCP) [2]. At a QCP
the fluctuations of the order parameter(OP) are gap-
less, and the effective electron-electron interaction me-
diated by this bosonic mode is long-ranged. Scattering
of electrons by gapless bosons is singular and destroys a
Fermi liquid when the local static bosonic susceptibility
χl =

∫
dD−1q χ(q, ω = 0) diverges [3].

It is generally expected that, away from the QCP, the
Fermi liquid behavior is preserved. On the disordered
side the FL is protected by the gap in the OP fluctuations
due to a finite correlation length. On the ordered side,
where the OP acquires a mean value, the amplitude (lon-
gitudinal) bosonic excitations are gapped, while the gap-
less Goldstone excitations (phase, or transverse modes)
are harmless for fermions due to the Adler’s principle [4]
that states that the fermion-boson vertex vanishes at the
momentum transfer equal to the ordering wave vector Q.

The main conclusion of this Letter is that, contrary
to this general belief, a novel non-Fermi liquid electron
behavior emerges on the ordered side of a QCP whenQ 6=
0. This NFL behavior originates from the interaction
between electrons and longitudinal bosonic excitations.
The key observation is that this mode becomes gapless

and overdamped in the range vF q > Ω due to Landau
damping from the electrons, and gives rise to a strong
electron-electron interaction even at the lowest energies.
The NFL behavior persists down to a frequency ωmin

that vanishes if the fermionic bandwidth is infinite.
Below we consider a SDW transition between a para-

magnet and an itinerant antiferromagnet (AFM) with
Q = (π, π) and the dynamical exponent z = 2 in D = 2.
Such a transition is both one of the most studied and the
most relevant experimentally, as it occurs in many heavy
fermion materials and is believed to be responsible for
their unusual properties.
We first present the results and discuss the physics

and then report the details of the calculations. We mea-
sure the AFM order by the gap in the fermionic spec-
trum, m. Opening of this gap renormalizes the spin sus-
ceptibilities from their form on the paramagnetic side,
χ−1
⊥ (q,Ω) = χ−1

‖ (q,Ω) = (q − Q)2 − iγ|Ω| [3]. Here-

after q denotes the deviation from (π, π), except when
noted. Conventional wisdom holds that, in the AFM
state, at energies smaller than 2m, the transverse spin
excitations are the Goldstone spin waves, while the lon-
gitudinal excitations are gapped at all bosonic q and Ω.
We find, however, that this behavior holds only when
vF q is smaller than the frequency, 2m > Ω > vF q. In
this range, χ−1

⊥ ≈ q2 − aγΩ2/m, has a spin-wave form (a

is a number O(1)), while χ−1
‖ ≈ q2+ aγ

√
m2 − Ω2/4 has

a gap, 2m, for the propagating spin excitations.
In the opposite limit, 2m > vF q > Ω, we find

χ−1
‖ ≈ q2− 2iγm|Ω|/vFq, χ−1

⊥ ≈ q2− iγ|Ω|vF q/m. (1)

The transverse spin excitations become overdamped,
though they still show z = 1 scaling. More importantly,
the constant 2m gap in the longitudinal spin excitations
dissolves into the Landau damping term, and the longi-
tudinal excitations become gapless with the dynamical
exponent z = 3. This implies that at a given vF q ≪ m,
there are two regions of Ω (Ω < vF q and Ω > 2m− vF q),
where χ′′

‖(q,Ω) is nonzero (see Fig. 3).
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FIG. 1: Doubling of the unit cell in an AFM transition. Verti-
cal dotted lines are the boundaries of the magnetic Brillouin
Zone. The Fermi surface at the “hot spots” at the para-
magnetic side of the transition is the dashed red line, the
dash-dotted blue line is its translation by Q. Solid black lines
denote the Fermi surface in the AFM state.

The gapless overdamped form of the longitudinal sus-
ceptibility strongly affects fermionic self-energy as the
interaction vertex for χ‖ is not reduced by Adler’s sym-
metry principle. Critical theories with z = 3 have been
studied extensively [6]. In two dimensions, the electron
self energy due to interaction with such a mode varies as
(iω)2/3, i.e. the Fermi-liquid behavior is violated despite

the presence of the AFM order. This self-energy comes
from vF q ∝ Ω1/3 ≫ Ω where Eq. (1) is valid. Similar
power law for the self energy in the ordered state was
argued to be present in electronic nematic phases [5].

Above results are for an infinite fermionic bandwidth,
W . When W is finite, the longitudinal spin fluctuations
have a gap of the order of m2/W even for Ω < vF q.
This scale sets the lower cutoff for ω2/3 behavior; the
Fermi liquid behavior is restored at lower energies. It is
essential that in itinerant AFM, m ≪ W (see below),
and the cutoff scale is parametrically smaller than m.

The evolution of the spin response with Ω/vF q is re-
lated to the fact that the mass term in χ‖(q,Ω) is propor-

tional to the particle-hole polarization bubble Π̃(q,Ω) =
Π(q,Ω)−Π(q, 0), see below. In a nested antiferromagnet,
the AFM order opens a gap over the entire Fermi sur-
face. In this case, Π̃(q,Ω) is a constant independent on
the ratio Ω/vF q. However, in an itinerant AFM without
nesting, only parts of the Fermi surface close to the “hot
spots” become gapped due to long-range spin ordering.
Elsewhere on the Fermi surface a continuous particle-hole
spectrum still exists. As a result, spin excitations can de-
cay into particle-hole pairs. On the paramagnetic side,
this process involves large momenta near Q, hence the
damping is linear in frequency, ImΠ̃(q,Ω) = γ|Ω|. In
the ordered state, the lattice period is doubled, and the
fermionic momenta k and k+Q become equivalent. As
a result, a bosonic mode at the momentum Q1 ∼ Q scat-
ters a fermion from a point kF into a Fermi surface point
kF+q with small q = Q1−Q, see Fig. . The polarization
bubble then becomes Π̃(q,Ω) ∝ γmΩ/

√
Ω2 − (vF q)2. It

gives rise to a mass term for Ω ≫ vF q, but reduces to
iγmΩ/vF q in the limit Ω ≪ vF q.

We now provide the details of the calculation. To in-
vestigate the properties of an itinerant antiferromagnet
near a QCP we employ the spin fermion model, which
has been widely used to study the properties of param-
agnetic metals close to a magnetic instability [3]. Here
we use it on the ordered side of the transition. The model
Hamiltonian consists of three parts: the electronic band,

H
(0)
f =

∑
k,α ǫ(k)c†k,αck,α, the collective fermionic spin

excitations, H
(0)
s =

∑
q χ

−1
0 (q)SqS−q, and the interac-

tion of electrons with the spin fluctuations,

H
(0)
sf = g

∑

k,q,α,β

c†k,ασαβSqck+q,β + h.c.. (2)

Here ǫ(k) is the bare quasiparticle dispersion, χ0(q) is
the bare static spin susceptibility and g is a coupling
constant that we take to be independent of momentum.
The rationale for this model is that the antiferromagnetic
interactions emerge from the energies up to the fermion
bandwidth. Therefore to analyze the behavior of low-
energy quasiparticles it is sufficient to separate the energy
scales and treat the collective spin degrees of freedom
as a separate bosonic field. This procedure is internally
consistent if the coupling g ≪ W .

Properties of the spin subsystem are determined by the
bare susceptibility, which we take to have the Ornstein-
Zernike form, χ0(q) = χ0/(ξ

−2
0 + (q−Q)2), as in earlier

work [3]. In the paramagnetic phase, the magnetic corre-
lation length, ξ0, is real and controls the separation from
the AFM instability. The full dynamical susceptibility is
χ(q, ω) = χ0/(ξ

−2
0 + (q−Q)2 + Π̃(q, ω)), where Π̃(q, ω)

is the full polarization bubble that has to be evaluated
within the low-energy theory.

On the antiferromagnetic side of the transition ξ0 be-
comes imaginary (ξ−2

0 < 0), so that the susceptibility
diverges near the AFM wave vector, Q, leading to a
staggered magnetic moment, 〈Sz

Q〉. The divergence is
compensated by Π(q, 0) which acquires a finite value in
the ordered phase. Furthermore, for a finite 〈Sz

Q〉, the
longitudinal (zz) and the transverse polarization bub-
bles differ, leading to the anisotropic susceptibility. The
staggered moment, 〈Sz

Q〉, is related to ξ−2
0 < 0, via

the Goldstone requirement that the fully renormalized
χ−1
⊥ (q → 0, 0) = 0.

Following the standard procedure, we introduce m =
g〈Sz

Q〉, include the “condensed” part of the spin fluctu-

ations,
∑

k,α αmc†k+Q,αck,α, into the fermion part of the
hamiltonian, and diagonalize it by Bogoliubov transfor-
mation to find Hf =

∑
n,k,α En(k)a

†
n,k,αan,k,α. The dis-

persion of the fermions in the two new bands is given by
E±1(k) = ǫk ±

√
δ2k +m2 with ǫk = (ǫ(k) + ǫ(k+Q))/2

and δk = (ǫ(k)− ǫ(k+Q))/2. The new and the original
fermion operators are related by a unitary transformation
a†+1,k,α = ukc

†
k,α − αvkc

†
k+Q,α, and a†−1,k,α = αvkc

†
k,α +

ukc
†
k+Q,α, with u2

k(v
2
k) = [1 + (−)δk/

√
δ2k +m2]/2. The
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interaction of fermions with the uncondensed part of the spin excitations now takes the form

Hsf = g
∑

n1,n2,k,q,α,β

Γα,β
n1,n2

(k,k+ q)a†n1,k,α
an2,k+q,βσαβSq−Q + h.c.., (3)

Γα,β
n1,n2

(k,k+ q) =

[
ukuk+q − αβvkvk+q

][
1− δn1,n2

]
− n1δn1,n2

[
αvkuk+q + βukvk+q

]
. (4)

The vertex for the Goldstone transverse mode, Γα,ᾱ
n,n(k,k+ q) ∝ |q| at small q, as required by Adler’s principle. The

spin polarization bubble Π(q,Ω) is given by

Πij(q,Ω) = χ0T
∑

n1,n2

kωn
α,β

σ
(i)
αβσ

(j)
βαΓ

α,β
n1,n2

(k+
q

2
,k− q

2
)Γβ,α

n2,n1
(k− q

2
,k+

q

2
)Gn1

(k− q

2
, ωn − Ω

2
)Gn2

(k +
q

2
, ωn +

Ω

2
),(5)

where Gi(k, ωn) is the Green’s function of the fermion
in band i at the Matsubara frequency, ωn = πT (2n +
1). The tensor Πij is diagonal, and its zz (xx and yy)
component is the longitudinal (transverse) polarization.
The change in the static polarization upon entering

the AFM state, Π(q → 0, 0) − Πm=0(q → 0, 0) extends
over all energies up to the fermionic bandwidth. This is
expected since this difference has to compensate negative
ξ−2
0 that also comes from high energy fermion physics.
The relationship between m and ξ−2

0 then depends on
the regularization chosen for the high energies. We will
simply measure the distance from the QCP on the AFM
side in terms ofm, and use the Goldstone condition ξ−2

0 +

Π⊥(q → 0, 0) = 0. In contrast, Π̃ij(q,Ω) are independent
of the cutoff procedure and are fully accounted for in the
low-energy theory. It is essential that Π‖(q → 0, 0) −

Π⊥(q → 0, 0) = O(1/W ), and hence to this order, ξ−2
0 +

Π‖(q,Ω) = Π̃‖(q,Ω).

Evaluation of Π̃‖ and Π̃⊥ is straightforward. We con-
sider a two-dimensional Fermi surface with tetragonal
symmetry, so that there are four pairs of hot spots which
contribute additively to Π(q,Ω). Without loss of gen-
erality we choose the Fermi velocities at the hot spots
kF and kF + Q along x and y directions, respectively.
It is convenient to introduce k± = (kx ± ky)/2, so that
ǫk = vFk+ and δk = vFk−. These directions are inequiv-
alent as the Fermi surface exists for arbitrary k−, but
only for |k+| > m/vF , see Fig.1. Evaluating the inte-
grals in Eq.(5) we find for a given pair of “hot spots”
(Ω > 0)

Π̃⊥(q,Ω) =
γΩsgn(vF q+ − Ω)

8

[
4m2

(vF q+ − Ω)2 − v2F q
2
−

− 1

]−1/2

, (6)

Π̃‖(q,Ω) =
γΩsgn(Ω− vF q+)

8

[
4m2

(vF q+ − Ω)2 − v2F q
2
−

− 1

]1/2
, (7)

where γ = g2χ0/(2πv
2
F ), and Ω = Ω + iδΩ. The full

Π(q,Ω) are the sums over the pairs of hot spots, i.e. the
sum of contributions from the wave vectors (±q+,±q−)
and (±q−,±q+).

The behavior of the susceptibilities is particularly sim-
ple if we set q+ = 0 in Eqs.(6)-(7). When Ω, vF q− ≫ m,

Π̃⊥(q,Ω) = Π̃‖(q,Ω) ∼ iγ|Ω|, as at the QCP with

z = 2. For m ≫ Ω ≫ vF q−, Π̃⊥ ∝ Ω2/m, i.e.,

χ−1
⊥ ∝ q2− − (γ/m)Ω2. In the same regime Π̃‖ ≈ 2γm,

and therefore longitudinal excitations have a gap. In the
opposite limit m ≫ vF q ≫ Ω, we find Π̃⊥ ∝ i|Ω|(vF q)/m
and Π̃‖ ∝ imΩ/vF q. Consequently, the two spin suscep-
tibilities have the forms given in Eq. (1), i.e., spin exci-
tations are overdamped and gapless, with z = 1 (z = 3)
for the transverse (longitudinal) channel.

That undamped spin waves exist only for Ω > vF q
means that propagating undamped spin waves exist
only above a threshold value of staggered magnetiza-
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FIG. 2: Transverse spin susceptibility at Ω, vF q ≪ m. The
propagating spin wave is manifested as a delta-function peak
at Ω(q) in the top panel.
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FIG. 3: Dissipative part of the longitudinal susceptibility. Be-
low energies ∼ 2m the onset of damping occurs at Ω = vF q.
Notice the break in the horizontal scale. Inset: low energy
behavior of Imχ‖(q,Ω). The maximum is at Ωmax ∝ q

3. No-
tice that in the Landau-damped region Imχ‖(q,Ω) is much
larger than that in the continuum.

tion, mc ∼ γv2F ∼ g (i.e., 〈Sz
Q〉 = O(1)). For m < mc

the spin wave would be at Ω < vF q, but it is damped
there. At m = mc the spin-wave pole first splits from
the upper edge of the low-frequency continuum and a
propagating spin-wave emerges, initially with the residue
Z ∝ m − mmin. This behavior is illustrated in Fig. 2.
For χ‖, there is no distiction between different values of
m – in all cases, for vF q ≪ m, there are two separate
regions where dissipation is present: one is at Ω < vF q−,
and the other at Ω > 2m− vF q−, as shown in Fig. 3.

For a general q, when both q+ and q− are compara-
ble, the details of the momentum and frequency depen-
dence of the susceptibility are somewhat lengthly, but
follow straightforwardly from Eqs.(6)-(7). The Landau
damping is now effective for Ω < vF (|q+| + |q−|) ≪ 2m.

At small frequencies χ−1
‖ ∝ q2 − iγmΩ/(vF

√
|q2+ − q2−|).

The threshold for the spin-wave creation along the direc-

tion q+ = αq− is mc = γv2F (α+ 1)3/2(
√
α+ 1)/(1 + α2),

and the spin-wave pole first appears along the diagonals
of the Brillouin Zone, at m ≥ γv2F .
The regime Ω ≪ vF |q+ − q−| ≪ m is particularly im-

portant for the electron self-energy, Σ(k, ω). To the low-
est order in the interaction,

Σn,α(k, ω) = T
∑

q,Ω

βn1

σ
(i)
αβσ

(j)
βαΓ

αβ
nn1

(k,q)Γβα
n1n(q,k)

×χij(k − q, ω − Ω)Gn1
(q,Ω). (8)

We find that there are two non-trivial contributions
to the self energy. The first comes from the large

momentum transfers vF q ≥ 2m and gives Σ
(1)
1 ≈

(ig2
√
2/vF )(

√
4m2 − iγaω − 2m) ∝ ω/m at small ener-

gies. At QCP this term gave rise to the
√
iω dependence

of the self energy at hot spots [3]. Finite staggered mag-
netization, m, renders it harmless for the fermions.
The second contribution appears for m 6= 0 from

the interaction between the electrons and the Landau
damped longitudinal spin excitations. This contribu-
tion is dominated by vF q ∝ Ω1/3 for which the cri-
terium vF q > Ω is satisfied. In contrast to the trans-
verse Goldstone mode the interaction vertex for χ‖ is
not reduced by Adler’s symmetry principle. As a re-
sult, the corresponding contribution to the self-energy is
Σ2

1 ≈ (π/4
√
3)(g2/vF )(iω)

2/3/(mγ)1/3, as in z = 3 crit-
ical theories [6]. The fractional ω dependence with ex-
ponent 2/3 implies that both ReΣ1 and ImΣ1 are of the
same order, giving rise to a non-Fermi liquid behavior.
Furthermore, as the Landau damping is due to small mo-
mentum transfer, the NFL form of the self-energy persists
everywhere on the Fermi surface, not only at the former
hot spots. This is not surprising since, in the presence
of the long-range AFM order, the entire Fermi surface
becomes “hot” as the points kF and kF + Q become
equivalent. Finally, in complete analogy to z = 3 gauge
and ferromagnetic critical theories [6], vertex corrections
and the momentum-dependent part of the self-energy are
small for m ≤ g ≪ W . Hence the result Σ ∝ (−iω)2/3

remains valid to all orders in the interaction.
We believe that this scenario of Fermi liquid break-

down on the ordered side of QCP is quite general. The
requirement that the gap in the optical mode of the or-
der parameter dissolves into the Landau damping due to
small momentum scattering in the enlarged unit cell is
satisfied not only for AFM, but also for CDW and other
transitions with a finite Q.
The most obvious experimentally observable conse-

quence of this scenario is the existence of the two regions
of Ω where Imχ‖(q,Ω) 6= 0 (see Fig. 3). This can be
probed by inelastic neutron scattering experiments. The
fractional exponent in the self energy also leads to the
non-Fermi liquid, quantum-critical behavior for the tem-
perature dependence of the electronic specific heat and
resistivity [7], which is accessible experimentally.
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