
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Master's Theses Graduate School

July 2021

EVALUATING WORD EMBEDDING MODELS FOR TRACEABILITY EVALUATING WORD EMBEDDING MODELS FOR TRACEABILITY

Mahfuza Khatun

Mahfuza Khatun
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Khatun, Mahfuza and Khatun, Mahfuza, "EVALUATING WORD EMBEDDING MODELS FOR TRACEABILITY"
(2021). LSU Master's Theses. 5414.
https://digitalcommons.lsu.edu/gradschool_theses/5414

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has
been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital
Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_theses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F5414&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F5414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/5414?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F5414&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

EVALUATING WORD EMBEDDING MODELS FOR

TRACEABILITY

A Thesis

Submitted to the Graduate Faculty of the

Louisiana State University and

Agricultural and Mechanical College

in partial fulfillment of the

requirements for the degree of

Master’s of Computer Science

in

The Department of Computer Science

by

Mahfuza Khatun

B.S., University of Dhaka, Bangladesh, 2014

M.S. University of Dhaka, Bangladesh, 2016

August 2021

ii

Towards peace and growth

iii

ACKNOWLEDGEMENTS

Life is a continuous process. Process can be standstill or dynamic. I am glad to be in a

dynamic process. I am fortunate to experience new experiences and learn new things every day.

The joy of knowing the unknown, even sometimes knowing properly the very known is the

greatest pleasure and the catalyst of my existence. The good thing about joy and happiness is that

it is contagious, and it increases exponentially through sharing. From this point on, I can only

move forward and put together all the greatness and happiness that I felt, touched, and came

across only to share it with others, so that others can also experience what I experienced and

grow beyond me to elevate the world a few levels up towards peace, love, and greatness.

My humble gratitude to my advisor, Dr. Carver, who provided her invaluable advice,

encouragement, and wisdom with patience. I could not have done this work without her incessant

support and guidance. I thank her for letting me in to her warm shed and teaching me to be

hamble. I wish to carry along some of it within myself as a gift from her.

I am thankful to Dr. Danissa Victaoria Rodriguez Caraballo. It is my great pleasure to

meet her, I admire her positive energy. She helped me through sharing her work, experiences,

and knowledge, provided me the guidance and suggestions whenever I sought for it. Thanks to

the committee members, Dr. Jinhua Chen and Dr. Wang for their positive feedbacks and

valuable suggestions for future improvement of my thesis.

I thank my best friend and better half, Mohammad Imrul Kayes for his endless support

and encouragement in my every step forward. I am forever grateful to him for his unconditional

love. I thank him for making sure that I have everything for progress; in particular, I am thankful

iv

to him for providing the healthy space that was inevitable for my success. Thank you for being

always there for me and listening to my thoughts. Without his continuous support and inspiration

this work may not have been possible. I am greatly in debt to world’s smartest and cutest puppy,

Bruno, who fueled my day-to-day life with his unconditional love! I am immensely grateful to

my parents and siblings who have always been the strength and behind the scenes power source

of my every little success.

My heart felt gratitude to Frédéric Chopin for one of his masterpieces. It is as if that he

knew the song of my soul and tuned the piece exactly for me. Amidst all stressors, it is the

perfect magic wand that can sooth my mind within a blink. I thank all those wonderful minds,

Carl Sagan, Sarah May, Mark Coleman, Michelle Obama, Yuval Noha Harari for blessing me

the perfect companionship that helped me to focus, think, and grow beyond my boundary.

Special thanks to Asha Murphy for being part of my support system, for guiding me towards the

path of finding peace. The mental strength that I have gained in our regular meetings has

changed my life forever. I want you to know that you will always be in my thoughts, I wish you

the best!

I acknowledge the Cox Communication Academic Center for Student-Athletes at

Louisiana State University (LSU) for their uninterrupted support towards my education from

beginning to the end. It is my pleasure to be a part of this organization. It has been a great

opportunity to work with the team, each and everyone in the team has touched my life in some

way and shed some light on my path forward. Specially I am thankful to the Tutorial center

team, with whom I worked in a regular basis and got to learn from each one of them. I cannot

v

thank enough to my supervisor, Bradley R. Jones for being one of the bests! His constant support

and friendly appearance have made it all smooth and easy-going. Thanks to Dr. Louise Bordeaux

for willing to be my mentor, for including me in her busy schedule, for sharing her experiences

with me. Thanks to all those young minds to whom I have had opportunity to work with. I want

to thank them for warming my heart, for giving hope, and letting me be a part of their wonderful

journey ahead. Treasuring all these blessings, I truly feel confident to move forward and serve

the world.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

ABSTRACT .. x

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 4

3. WORD EMBEDDING .. 16

3.1. Word2Vec .. 17

3.2. GloVe ... 19

3.3. FastText.. 19

4. ABC ALGORITHM .. 21

4.1. PARAMETER INITIALIZATION ... 22

4.2. INITIAL POPULATION GENERATION .. 22

4.3. EMPLOYED BEE PHASE.. 23

4.4. ONLOOKER BEE PHASE ... 23

4.5. SCOUT BEE PHASE .. 24

4.6. TERMINATION .. 24

5. DATASETS AND PRETRAINED MODELS .. 25

5.1. DATASETS ... 25

5.2. PRETRAINED MODELS ... 26

6. METHODOLOGY .. 29

6.1. DATA COLLECTION AND PREPROCESSING .. 29

vii

6.2. VECTOR REPRESENTATION .. 29

6.3. SIMILARITY MEASURES .. 30

6.4. ABC IMPLEMENTATION... 31

7. EXPERIMENT .. 35

7.1. Objective Function sim_1 .. 36

7.2. Objective Function sim_2 .. 40

7.3. Objective Function sim_3 .. 43

8. RESULTS AND DISCUSSION .. 49

9. CONCLUSIONS AND FUTURE WORK .. 63

REFERENCES ... 64

VITA……………………………………………………………………………………………..68

viii

LIST OF TABLES

Table 1. Summary of Literature Review ... 15

Table 2. Dataset Description .. 26

Table 3. Pretrained Models ... 28

Table 4. Food Source Representation .. 32

Table 5. EBT with sim_1 result ... 37

Table 6. EasyClinic with sim_1 result ... 38

Table 7. eTour with sim_1 result... 39

Table 8. EBT with sim_2 result ... 40

Table 9. EasyClinic with sim_2 result ... 41

Table 10. eTour with sim_2 result .. 42

Table 11. EBT with sim_3 result... 44

Table 12. EasyClinic with sim_3 result ... 45

Table 13. eTour with sim_3 result .. 46

Table 14. Summary of experiment on three datasets ... 47

Table 15. F1 scores of three datasets.. 49

Table 16. P, R, and F1 scores of EBT dataset ... 57

Table 17. P, R, and F1 scores of EasyClinic dataset ... 59

Table 18. P, R, and F1 scores of eTour dataset ... 61

ix

LIST OF FIGURES

Figure 1. CBOW and SG model architectures .. 18

Figure 2. TLR to ABC mapping .. 33

Figure 3. F1 scores of three datasets based on objective functions ... 50

Figure 4. Comparison of three objective functions on each dataset .. 51

Figure 5. F1 scores of three datasets based on WE models ... 53

Figure 6. Comparison of three pretrained WE models on each dataset ... 54

Figure 7. P, R, and F1 scores of EBT dataset .. 58

Figure 8. P, R, and F1 scores of EasyClinic dataset .. 60

Figure 9. P, R, and F1 scores of eTour dataset .. 62

x

ABSTRACT

Traceability link recovery (TLR) is a software engineering activity that helps to ensure software

quality and assists with keeping track of changes by establishing links between software artifacts

that are a part of the software engineering process, such as requirements, use cases, source code,

test cases, and documentation. Software requirement artifacts are typically written in natural

language. An Information Retrieval process is frequently used in many software activities,

including the TLR activity. Recently, Word Embedding (WE) techniques have been used in

many natural language processing tasks as well as in TLR tasks. We investigate the effectiveness

of WE techniques in conjunction with the ABC algorithm for automating the TLR process

between requirements and source code. The ABC algorithm, which is a metaheuristic search

Swarm Intelligence (SI) algorithm that simulates the behavior of honeybee swarms, is useful for

solving multidimensional optimization problems. We use a modified ABC algorithm in which

the initial population is generated randomly based on the document ID number within the

document set boundaries. We use the algorithm to optimize the objective function and find the

best links between the requirements and the source code. For our investigation we use three open

source pretrained models: Word2Vec, GloVe, and FastText. We experiment with three objective

functions that are optimized by the ABC algorithm to find the best possible links between the

documents. Our experimentation with three datasets indicates that the three objective functions

result in similar success rates. We use precision, recall, and the F1 measure to determine

effectiveness for the TLR task. Our results show that the recall is higher than the precision and

that the resulting F1 value does not indicate promise for combining word embedding, our three

xi

objective functions, and the modified ABC algorithm as a recommended approach for

automating traceability links between requirements and source code.

1

1. INTRODUCTION

Software engineering (SE) is a continuously evolving field; it evolves because of its

built-in nature of incompleteness (Sommerville, 2016). Moreover, it has to fit in with the

demands and needs of consumers. According to Lehman’s Law, “Software systems have to

change if they are to remain useful.” (as cited in Sommerville, 10th ed., p. 271). Requirement

changes to fit customer expectations require SE to be adaptive. It demands modifications

throughout the lifetime of a system. Traceability Link Recovery (TLR) assists software system

evolution as modifications are incorporated into system.

More specifically, TLR is defined as a SE task that establishes a link between different

software artifacts from high-level (HL) documentation to low-level (LL) source code (Rodriguez

& Carver, 2020). It ensures the quality of the product, keep track of changes, and helps to

analyze change impact. It is vital for safety critical products and imperative for bug localization

and feature location tasks. Despite its importance, it can be a very time and labor consuming

task, motivating researchers to invest in studying how to automate the task of evaluating

software links.

Artifacts, including requirements, use cases, test cases, and design documentation are

generally written using natural language; therefore, Information Retrieval (IR) processes are used

in many software engineering tasks including the TLR task (Antoniol, Canfora, Casazza, De

Lucia, & Merlo, 2002). The IR probabilistic, Latent Semantic Indexing (LSI) and Vector Space

Model (VSM) are among the most popular IR techniques that are used for this task. An IR model

is often used as a base model with other machine learning (ML) techniques, such as learning to

2

rank (LtR) or optimization algorithms, in order to improve the overall success in evaluating

links. In such an endeavor, (Rodriguez & Carver, 2020) combine IR with the ABC (Artificial

Bee Colony) algorithm to accomplish link recovery. Their investigation provides an encouraging

result in Precision, Recall, and F1 measure, which they hypothesize could be improved even

more with additional tuning (e.g., experimental set up change, parameter adjustment). They

found that the ABC implementation achieves better Recall when compared to other methods.

 Recently, word embedding (WE) has earned popularity in many natural language

processing (NLP) tasks. It is also used in TLR tasks, and it has been shown to perform

significantly better than the traditional IR techniques (Tian, Cao, & Sun, 2019; Zhao, Cao, &

Sun, 2018; Wang et al., 2019; Bella et al., 2019). The success of WE over traditional IR

techniques lies in its ability to carry the semantic meaning of the words. Unlike existing IR

techniques, WE values the order of the words in a context and resolves the lexical gap problems

(Zhao et al., 2018).

Observing the success of the ABC algorithm in the TLR task (Rodriguez & Carver,

2020), we were motivated to further investigate using the WE model along with the ABC

algorithm. In our experiment, we use open source pretrained WE models Word2Vec, GloVe and

FastText models.

We apply the ABC algorithm following the (Rodriguez & Carver, 2020) implementation.

Instead of the TFIDF (term frequency-inverse term frequency) based weighted cosine similarity

function, we use three different similarity functions, which we call sim_1, sim_2, and sim_3.

Using the available pretrained WE models, we learn the term vectors. Then, we learn the

3

document vector representation by taking the average of term vectors contains in that document.

In sim_1, we calculate the cosine similarity between these documents. In addition to the

similarity measure used in sim_1, we find another similarity score that is the value given by the

number of common terms in two documents (HL and LL documents) divided by the total terms

in their combined document (Bella, Creff, Gervais, & Bendraou, 2019). The sim_2 is a linear

combination of these two scores weighted by an empirical parameter. In sim_3 we find the HL

document vectors in the same way as in sim_1, but the LL document vectors are weighted using

their TFIDF score (Cheng, Yan, & Khan, 2020). Finally, the ABC algorithm is used to optimize

these objective functions. We organize our whole investigation around the following research

questions:

RQ1: How does performance vary with each objective function?

RQ2. How does performance vary with different word embedding (WE) pretrained

models?

RQ3. How do a WE based objective function and an ABC combination perform in TLR

task automation?

In Section 2 we review the related literature, Section 3 discusses word embedding,

Section 4 describes the dataset and pretrained models, Section 5 explains the methodology of the

overall experiment, Section 6 includes the experimental setup along with the detail

experimentation process, and Section 7 contains the results and discussions. In Section 8 we

conclude our work and provide future research paths.

4

2. LITERATURE REVIEW

In an endeavor to reduce the lexical gaps between the software artifacts written in natural

language (search queries) and source code, (Ye, Shen, Ma, Bunescu, & Liu, 2016) first use word

embedding in the software engineering text retrieval task. They learn the word embedding using

word2vec Skip-gram model (Mikolov, Chen, Corrado, & Dean, 2013b) on the documents that

contain both high-level and low-level languages, such as API documents, tutorials, and bug

reports. Then they measure the semantic similarity between word vectors learned from the

embedding using the cosine similarity measure. To measure the document similarity, they use a

slightly modified version of the Mihalcea et al.’s (Mihalcea, Corley, & Strapparava, 2006)

approach, where they first calculate the similarity between each word w in a document S (bag-of-

words) to any word 𝑤′ in another document T (in bag-of-words representation) and use the

maximum value. This relation is expressed in the following Equation (1):

 𝑠𝑖𝑚(𝑤, 𝑇) = 𝑚𝑎𝑥
𝑤′𝜖 𝑇

𝑠𝑖𝑚(𝑤, 𝑤′) (1)

where the word-to-word similarity is simply the inner product of their learned vectors shown in

Equation (2):

 𝑠𝑖𝑚(𝑤𝑠, 𝑤𝑡) = 𝑐𝑜𝑠(𝑤𝑠, 𝑤𝑡) =
𝑤𝑠

𝑇 𝑤𝑡

||𝑤𝑠||||𝑤𝑡||
 (2)

To achieve a better result, they first define a set of words with positive similarity:

𝑃(𝑇 → 𝑆) = {𝑤 𝜖 𝑇|𝑠𝑖𝑚(𝑤, 𝑆) ≠ 0}

5

excluding words with no embedding or that simply do not appear in the target document. They

name these modified similarities as asymmetric similarities, which are calculated by taking the

sum of similarities between words in a document and the entire bag-of-words in another

document divided by the number of words in the previously defined set of words with positive

similarity. These computations are given in Equations (3) and (4):

 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑇 → 𝑆) =
∑ 𝑠𝑖𝑚(𝑤, 𝑆)𝑤𝜖𝑃(𝑇→𝑆)

|𝑃(𝑇 → 𝑆)|
 (3)

 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑆 → 𝑇) =
∑ 𝑠𝑖𝑚(𝑤, 𝑇)𝑤𝜖𝑃(𝑆→𝑇)

|𝑃(𝑆 → 𝑇)|
 (4)

Finally, the symmetric similarity is computed by summing the two asymmetric similarities as

defined in Equation (5):

 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑇, 𝑆) = 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑆 → 𝑇) + 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑇 → 𝑆) (5)

They improve the performance of bug localization tasks, as well as for API code retrieval tasks

(Ye et al., 2016).

In another API code retrieval task improvement method proposed by (Nguyen, Nguyen,

Phan, Nguyen, & Nguyen, 2017), they combine traditional IR with Word2Vec to achieve better

accuracy in code retrieval compared to the simple IR or simple Word2Vec approach. They first

find the two similarity scores using the Word2Vec model used in (Ye et al., 2016) Equation (5)

and the rVSM (revised Vector Space Model) model proposed in (Zhou, Zhang, & Lo, 2012). The

rVSM model presented in Equation (8) differs from the classical VSM model by providing

6

higher preference to larger documents than smaller ones. To increase the ranking score of larger

documents, rVSM model includes a logistic function Equation (9) in the VSM model. In this

investigation, the final similarity is computed using Equation (7), which is measured by taking

the linear combination of the similarity scores (rVSM score and Word2Vec score) weighted by a

parameter (α) that is calculated based on the Jaccard similarity of the two documents (HL and LL

documents). Jaccard similarity is calculated using Equation (6):

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑇, 𝑆) =
|𝑇 ∩ 𝑆|

|𝑇| + |𝑆| − |𝑇 ∩ 𝑆|
 (6)

where 𝛼 = {
0, 𝑖𝑓 𝑛𝑜𝑟𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑇,𝑆) ≤ 𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, which means that α is 0 when the

Jaccard similarity is less than or equal to an empirically chosen threshold value, otherwise it is 1.

 𝑠𝑖𝑚(𝑇, 𝑆) = 𝛼 ∗ 𝑛𝑜𝑟𝑚_𝑟𝑉𝑆𝑀(𝑇, 𝑆) + (1 − 𝛼) ∗ 𝑛𝑜𝑟𝑚_𝑊𝑜𝑟𝑑2𝑉𝑒𝑐(𝑇, 𝑆) (7)

where the rVSM score and Word2Vce score are the normalized value calculated using Equation

(8) and Equation (5) respectively.

 𝑟𝑉𝑆𝑀(𝑇, 𝑆) = 𝑔(#𝑡𝑒𝑟𝑚) ∗ 𝑐𝑜𝑠(𝑇, 𝑆) (8)

The function g(#terms) in Equation (8) is defined by Equation (9):

 𝑔(#𝑡𝑒𝑟𝑚) =
1

1 + 𝑒−𝑁(#𝑡𝑒𝑟𝑚𝑠)
 (9)

7

where #term represents the number of terms in a given document. In Equation (9), N is a

normalization factor calculated by using Equation (10).

 𝑁 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (10)

where x is any data in a dataset, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum data in that

dataset, respectively.

In a TLR task, (Tian et al., 2019) adopt pre-trained word embedding. They consider the

out of vocabulary (OOV) words; OOV words are those words that are not found in the pretrained

embedding model. They argue that OOV words are important factors for TLR tasks, as they are

usually the named entities, technical terms or compound words in the source code. They define a

set of OOV words, 𝑜𝑜𝑣_𝑠𝑒𝑡 along with the Word2Vec word set, 𝑤2𝑣_𝑠𝑒𝑡 (words with

embedding) where

𝑜𝑜𝑣_𝑠𝑒𝑡 = {𝑤𝑜𝑟𝑑|𝑤𝑜𝑟𝑑 𝜖 𝑉 ∩ 𝑤𝑜𝑟𝑑 ∉ 𝑤2𝑣_𝑠𝑒𝑡}

𝑤2𝑣_𝑠𝑒𝑡 = {𝑤𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔}

where V represents the Vocabulary. Then they map each document into the VSM model based on

the OOV set, which is build using the term-frequency (TF) and inverse document frequency

(IDF) as defined by Equation (11), (12), and (13), respectively.

 𝑇𝐹𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘
 (11)

 𝐼𝐷𝐹𝑖 = 𝑙𝑜𝑔
𝐷

1 + |{𝑗: 𝑖𝜖𝑑𝑗}|
 (12)

8

 𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹𝑖,𝑗 ∗ 𝐼𝐷𝐹𝑖 (13)

where ni,j = number of times ith word appears in document dj, ∑ nk,jk = number of time ith word

appears in D, D is the number of total documents in the dataset, and |{j: iϵdj}| = number of words

contain in the document dj. To calculate the cosine similarity of the documents with the

embedding set, they measure the average of the word vectors in each document to get the

document vectors given by Equation (14).

 𝑇𝑤2𝑣 =
∑ 𝑤𝑖

𝑚
𝑖=1

𝑚
 (14)

where wi is a word in 𝑤2𝑣_𝑠𝑒𝑡. Then the final similarity is computed using Equation (15):

 𝑠𝑖𝑚(𝑇, 𝑆) = 𝛼 ∗ 𝑐𝑜𝑠(𝑆𝑤2𝑣, 𝑇𝑤2𝑣) + (1 − 𝛼) ∗ 𝑐𝑜𝑠 (𝑆𝑜𝑜𝑣, 𝑇𝑜𝑜𝑣) (15)

In Equation (15), the cosine similarity of the words in oov_set and w2v_set are adjusted with a

parameter α which ranges between 0 and 1, (0 < α < 1). The value of α is empirically chosen

to achieve higher precision. Additionally, they use the machine learning technique, LtR

(Learning to Rank), for better accuracy. Their results indicate that this integration of word

embedding with LtR works better in their TLR task compared to the single word embedding

implementation.

 In a similar approach to (Tian et al., 2019), (Xinye Wang, Cao, & Sun, 2019) receive a

comparable outcome. In this TLR task they both improve their overall result by introducing LtR.

9

However, (Xinye Wang et al., 2019) follow a varied similarity method. Instead of defining a

OOV word set, they define a set for key words, called IPTs. IPTs are the top n% words in the

whole corpus, which is measured using the same TFIDF method as in (Tian et al., 2019). For the

final similarity measurement, they consider the (Ye et al., 2016) similarity method with a

weighted word-to-word similarity measurement. They first measure the cosine similarity

between word vector pairs learned from pretrained-embedding and then weight the similarity

result with a harmonic parameter, r (>1), and a set of two thresholds, 𝛿l (0 < 𝛿l < 0.5) and 𝛿h (0.5

< 𝛿h < 1) using the Equation (16):

 𝑠𝑖𝑚𝑚𝑜𝑑 = 𝑐𝑜𝑠(𝑤, 𝑤′) − [
(0.5 − 𝑐𝑜𝑠(𝑤, 𝑤′))

𝑟
] (16)

where both words 𝑤 and 𝑤′ belongs to IPTs and 𝑐𝑜𝑠(𝑤, 𝑤′) < 𝛿𝑙 , 𝛿ℎ < 𝑐𝑜𝑠(𝑤, 𝑤′). The rest of

the similarity measurement process is similar to (Ye et al., 2016).

A novel approach called WELR is introduced by (Zhao et al., 2018) in their TLR task.

This method is based on the combination of word embedding and LtR methods. Motivated by the

success of query expansion (QE) in IR tasks, they implement QE in this experiment along with

the IDF weighting strategy. They use IDF instead of TFIDF to focus only on the common terms

and to minimize the process time. Initially they form an expansion word set with top (topn%)

words based on their IDF weight from document S. Then the set is expanded with similar words

(synonyms) as represented in Equation (17):

 𝑄𝐸_𝑆𝐸𝑇𝑤 = {𝑤𝑜𝑟𝑑|𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑤𝑜𝑟𝑑) > 𝑎} (17)

10

where {𝑤 𝜖 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑠𝑒𝑡} and parameter a is the similarity threshold used to remove less

important words. Both topn% words in the expansion set and parameter a are obtained

empirically, depending on the dataset. Next, they calculate the asymmetric document similarity

with a modified version of (Ye et al., 2016). Similarity between a word w and a document T is

calculated somewhat differently than Equation (3) (Ye et al., 2016). They add an additional term

defined in Equation (18) that gives the average term similarity for words belonging to the query

expansion set:

 𝑔(𝑤, 𝑤′) =
∑ 𝑙𝑘 ∗ 𝑠𝑖𝑚𝑤2𝑤(𝑤𝑘, 𝑤′)𝑤𝑘 𝜖 𝑄𝐸_𝑆𝐸𝑇𝑤

|𝑄𝐸_𝑆𝐸𝑇𝑤|
 (18)

where , 𝑙𝑘 = 𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑤𝑘). The modified equation is illustrated in Equation (19):

 𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑇) = max
𝑤′𝜖 𝑇

{𝛼 ∗ 𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑤′) + (1 − 𝛼) ∗ 𝑔(𝑤, 𝑤′)} (19)

In Equation (19) the parameter 𝛼 is empirically chosen and tuned with a step of 0.01 to achieve

an optimal result. If a word is not in the 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑠𝑒𝑡 then Equation (3) is used to calculate

the word-to-document similarity. These values are then used to calculate the asymmetric

similarity. Finally, another threshold is analytically defined to filter the ranked list with most

similar documents followed by the LtR implementation.

With an aim to reduce false positive link generation in their TLR task, (Bella et al., 2019)

present a different approach. Their model is called Aggregation Trace Links Support (ATLaS),

11

which is based on the clustering hypothesis that combines various methods of IR and NLP

techniques (such as word and sentence embeddings). They present an empirical evaluation of the

model based on an industrial case study. The inputs of this framework are HL requirements

documents and LL models in XML Metadata Interchange (XMI) format, which outputs a list of

traceability links along with their confidence measures. The inputs are preprocessed using basic

NLP techniques to prepare for the syntactic and semantic measure computation. The syntactic

measure is computed using LSI (Xiaobo Wang, Lai, & Liu, 2009), LDA (Panichella et al., 2013)

and VSM (Niu & Mahmoud, 2012) scores, and for the semantic measure they use three

similarity measures. In these similarity scores they use Word2Vec and GloVe pretrained models

to learn word vectors and to build a dictionary of synonymous words and phrases. These three

similarity scores are based on the Naïve Satisfaction Method (Holbrook, Hayes, Dekhtyar, & Li,

2013) presented in Equations (20), (21), and (22). The first similarity score, S1 is obtained by

direct implementation of the Naïve Satisfaction Method. In the second similarity score, S2 verbal

phrases and nouns are considered to obtain the score, instead of words. Finally, the third score,

S3 is a variation of the S1, and obtained after excluding the less impactful words. They assume

that some frequently appearing words such as, “shall”, “system” are less useful, the same as stop

words; hence, they filtered out those non-impactful words based on an empirically defined

frequency threshold.

 𝑆1 =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑒𝑟𝑚𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
 (20)

12

 𝑆2 =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑛𝑜𝑢𝑛 𝑝ℎ𝑟𝑎𝑠𝑒𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
 (21)

 𝑆3 =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑖𝑚𝑝𝑎𝑐𝑡𝑓𝑢𝑙 𝑡𝑒𝑟𝑚𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
 (22)

Finally, a confidence matrix is build using all these syntactic and semantic scores. A weight is

assigned to each of the semantic similarity scores to overcome the lower performance of

syntactic measures. Based on the matrix associated with each requirement model pair, the true

links are generated.

 In bug localization performance improvement research, (Cheng et al., 2020) combine IR

techniques, rVSM and WE to find similar documents. They use DNN (deep neural network), a

machine learning technique to integrate these two similarity matrices (rVSM and WE). They

compare their result with five existing methods BugLocator (Zhou et al., 2012), LtR (Ye,

Bunescu, & Liu, 2014), LtR based on Word Embedding (Ye et al., 2016), and two deep neural

network learning based methods DNNLoc (Lam, Nguyen, Nguyen, & Nguyen, 2017) and

DeepLoc (Xiao, Keung, Mi, & Bennin, 2018). They indicate that their method improved upon

the existing ones and achieved better statistical significance. This method calculates surface

lexical similarity and semantic similarity between bug report and source code. To calculate the

surface similarity, they redefine the well-known VSM into rVSM, which is weighted cosine

similarity times the length factor, presented in Equation (8). The length factor is added to reduce

the noise in larger source code files, same as in (Nguyen et al., 2017). Semantic similarity is

calculated separately for bug report T and source code S. For bug report files, each document

13

vector is the mean of all word vectors (vector learned from the embedding) in the document, and

the source code document vector is the sum of all words in the document multiplied by their

TFIDF weight, divided by the length of document given by Equations (23) and (24):

 𝑆′ =
1

|𝑆|
∑ 𝑤𝑖,𝑆 ∗ 𝑇𝐹𝐼𝐷𝐹𝑖,𝑆

𝑖𝜖𝑆

 (23)

 𝑇′ =
1

|𝑇|
∑ 𝑤𝑖,𝑇

𝑖𝜖𝑇

 (24)

They do the same measurement for each method in the source code document. Next, the

similarity results are calculated by taking the maximum from each set computed by Equations

(25) and (26):

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑆𝑖𝑚(𝑇, 𝑆) = 𝑚𝑎𝑥 ({𝑟𝑉𝑆𝑀(𝑇, 𝑆)}𝑈{𝑟𝑉𝑆𝑀(𝑇, 𝑚)|𝑚𝜖𝑆}) (25)

 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝑇′, 𝑆′) = 𝑚𝑎𝑥 ({𝑐𝑜𝑠(𝑇′, 𝑆′)}𝑈{𝑐𝑜𝑠(𝑇′, 𝑚′)|𝑚𝜖𝑆}) (26)

where m and 𝑚′are the methods in S. Finally, they integrate the similarity measures using a DNN

(deep neural network) method.

The TLR task is considered as a combinational problem by (Rodriguez & Carver, 2020);

hence, they applied the ABC optimization algorithm. The search space for this problem is

defined by the set of document pairs (T, S). Then the ABC algorithm is used to find the best

solution from that search space that optimizes an objective function. They define their objective

function as the weighted (by TFIDF) cosine similarity measure between the documents,

presented in Equation (27):

14

 𝑆𝑒𝑚𝑆𝑖𝑚(𝑇, 𝑆) =
1

𝑚
(∑ 𝑐𝑜𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡(𝑇, 𝑆))

𝑚

𝑖=1

) (27)

They first preprocess the requirements and source codes separately. The TFIDF model is used to

find the document vectors. Then, they measure the cosine similarity of each document pair. The

final similarity score is a value obtained by taking the sum of all the cosine similarity scores

divided by the total number of document pairs in a dataset, as shown in Equation (27). Following

this method, they achieve a high Precision and Recall values.

We summarize our literature review in Table 1. This Table 1 presents the various research

methods involved in the literature to perform code retrieval, bug localization and TLR tasks. We

include methods applied to our current research on TLR. Motivated by the literature review, we

use WE based models in conjunction with an ABC model in our investigation to perform a TLR

task. Instead of the weighted TFIDF based model as used in (Rodriguez & Carver, 2020) we use

WE based models to investigate the effectiveness for the TLR task.

15

Table 1. Summary of Literature Review

Literature Task Method

Ye et al. (2016) Bug localization and

API Code retrieval

WE based model

Nguyan et al. (2017) API Code retrieval Combined rVSM model and WE based model

Cheng et al. (2020) Bug localization Integrated rVSM and WE based DNN model

Tian et al. (2019) TLR Combined WE and TFIDF based model

Wang et al. (2019) TLR WE based model weighted by a harmonic

parameter

Zhao et al. (2018) TLR WELR: Weighted (by IDF) WE based model

and LtR model

Bella et al. (2019) TLR ATLaS: Clustering hypothesis-based model

Rodriguez & Carver

(2020)

TLR Weighted TFIDF based model and ABC

model

Khatun & Carver

(2021)

TLR WE based models and ABC model

16

3. WORD EMBEDDING

The simplest way to achieve word to vector representation is the one-hot representation. The

vector of a given word type (a distinct word) is encoded by setting that element as 1 and the rest

of the elements in the vocabulary as 0. The dimension of these vectors is equal to the corresponding

vocabulary size. With this increased dimension, the word to vector transformation becomes very

challenging and costly. Another drawback of this representation is that it does not carry any

semantic meaning of the words. Each word is embedded in isolation and contains the same number

of 0’s and a single 1; hence, the resultant vectors neither provide any information about each other

nor about themselves.

N-gram is another popular language model based on the Markov Model (Peter F. Brown,

DeSouza, Mercer, Pietra, & Lai, 1992). It takes a probabilistic approach in language modeling,

where words are the atomic units of the model (Mikolov et al., 2013b). The concept is to

consider a sequence of N-1 words to predict the next possible word in that sequence. Therefore,

the N-gram model is built by counting the occurrences of a sequence of N words in a given

corpus and assessing the related probabilities of the words. If a model counts the number of

occurrences of a single word without looking into any previous words, then it is called a unigram

model. Likewise, a bigram model predicts a word based on the word right before it; whereas a

trigram model looks into the previous two words then predict the third possible word in that

sequence. Again, this process does not carry any information about the words or their order;

because words are represented as the indices in a vocabulary (Mikolov et al., 2013b). Moreover,

N-gram is known as a sparse model since the word prediction depends largely on the training

17

dataset. If a certain word is not in the training set, it gets a zero-probability score. Consequently,

the training requires a large number of data to build a quality model, which increases

computational overhead.

Word embedding (WE) handles the ‘curse of dimensionality’ (refers to all the problems

that come with oversized dimension) by utilizing a neural network-based language model

(NNLM) (Bengio, Ducharme, & Vincent, 2001). WE also outperforms the N-gram model in a

larger context (greater than trigram) (Bengio et al., 2001). It replaces the discrete vector

representation (as in one-hot) with distributional vector representation of words. It is developed

based on the hypothesis that words with similar context have similar meaning (Zheng, Shi, Guo,

Li, & Zhu, 2017). Each word vector is learned by considering that each element in the vector

space (represented by the vocabulary) takes part in forming that vector.

3.1. Word2Vec

The Word2Vec WE method is presented by Mikolov et al. (Mikolov, Chen, Corrado, &

Dean, 2013a). They indicate that the model can learn a word vector with better dimensionality at

significantly lower computational costs than N-gram. This cost optimization is achieved by

removing the non-linear hidden layers, leaving only the projection layer in the neural network.

The architecture is based on two separate steps, consisting of a continuous word vector learning

step (here they use one-hot method) and a training step (objective is to maximize the conditional

probability) that trains the N-gram NNLM on that learned vector. They propose two models,

Continuous Bag-of-Words (CBOW) and continuous Skip-gram (SG) models. These models are

elaborately explained in (Goldberg & Levy, 2014) and (Rong, 2014). The concept is that the

18

CBOW predicts the current word vector based on the input context vectors (like bigram model),

whereas SG predict the context vectors of an input word vector. Figure 1 represents these two

architectures.

Figure 1. CBOW and SG model architectures

In their extended work with the SG model (Mikolov et al., 2013b), they replace the hierarchical

SoftMax with Negative Sampling method, and introduce the subsampling of frequent words.

They find that these changes improve the obtained vector (both word and phrase vectors) quality

and speed up the overall process. They find that compared to other concurrent neural network-

based models, Skip-gram outperforms in word analogy tasks. Additionally, they find that the

time complexity remains significantly low even with their implementation of larger (two to three

times) training datasets. With these improvements, the Skip-gram model achieved state-of-the-art

recognition in word embedding. Later, they publish this trained model as Word2Vec model for

public use. Since then, researchers have implemented the Word2Vec model in many SE tasks,

w(t-2)

 w(t-1)

w(t+1)

SUM

w(t+2)

 INPUT PROJECTION

CBOW

w(t) w(t) SUM

w(t-2)

 w(t-1)

w(t+1)

 w(t+2)

 PROJECTION INPUT

SG

OUTPUT OUTPUT

19

including the TLR task (Guo, Cheng, & Cleland-Huang, 2017; Nguyen et al., 2017; Tian et al.,

2019; Xinye Wang et al., 2019; Zhao et al., 2018).

3.2. GloVe

 Global Vector (GloVe) for word representation captures a global corpus statistic, based on

the word-to-word cooccurrence (Pennington, Socher, & Manning, 2014). Pennington et al.

(Pennington et al., 2014) claim that this model performs better in analogy tasks, by combining

two popular methods, the global matrix factorization method and Word2Vec model. It starts with

building the word-word cooccurrence matrices, which tabulates the number of times a word 𝑤𝑗

occurs in a given context of word 𝑤𝑖, and the sum of the number of times any other word appears

in that same context of word 𝑤𝑖. Next the probability of a word 𝑤𝑗 appearing in the context of a

word 𝑤𝑖 is measured by taking their ratio. Then the ratio of the probabilities is used instead of

the probabilities as the base for learning word vectors. They argue that the probability ratio

performs better not only in separating the relevant words from the irrelevant ones, but also in

separating two relevant words. The cooccurrence matrix is then factorized following the LSA

model (Scott, T, W, K, & Richard, 1990) and used as a baseline model. They assert that this

model does a better job for the following tasks: word similarity, named entity recognition, and

word analogy tasks. They also compare this model with the Word2Vec model and assert that

GloVe consistently outperforms Word2Vec.

3.3. FastText

 According to (Bojanowski, Grave, Joulin, & Mikolov, 2017), many popular continuous

word representations lack morphological meaning by assigning distinct vectors to each word.

20

They propose the FastText model incorporating the N-gram in the SG model (Mikolov et al.,

2013b). They represent each word as a bag of character N-grams (instead of one-hot

representation). Hence, each word vector becomes the sum of these character N-gram vectors

comprising that word. They start by building a set of character N-gram. They assign a special

boundary symbol “< >” representing the character N-grams of a word. This boundary symbol

separates the suffixes and prefixes of a word from other character sequences. They also consider

each word as a special sequence and wrap them with the same boundary symbol. The final set of

N-grams includes all these character N-grams as well as the special sequences. This N-gram

representation includes 3 ≤ 𝑁 ≤ 6. Using the Fowler-Noll-Vo (FNV-1a variant) hashing

function, they minimize the memory requirement of the model, where they map N-grams to

integers, limiting it from1 to 2x106. Therefore, words are described by their specific indices in

the dictionary along with the set of hashed N-grams they consist of. They state that this model is

capable of learning reliable representations for rare words through its shared representation

across words (an out of vocabulary word can be represented by summing up the character N-

grams consisting of that word). Consequently, they assert that the consideration of the subword

information has significantly improved their model, and it achieved state-of-the-art performance

in word analogy and similarity tasks. Furthermore, they indicate the model as a simple and fast

model, requiring no additional preprocessing step.

21

4. ABC ALGORITHM

The ABC algorithm was developed by observing the social behavior of honeybee swarms

(Karaboga & Basturk, 2007). The artificial bee colony model simulates the behavior of the real

bee swarms, and it is used for solving multidimensional optimization problems. In this model

there are three groups of bees: employed bees, onlooker bees, and scout bees. Half of the total

population in a colony are employed bees and the rest are onlookers. The number of food sources

around the hive is equal to the number of assigned employed bees, which means that each

employed bee is assigned to exactly one food source. Once a food source is abandoned by the

bees, the associated employed bee becomes a scout bee. The scout bee then randomly searches

for new potential food sources and memorizes their locations to share with other bees in the hive.

The information sharing takes place in a dance area in the hive via waggle dancing of the bees.

The onlooker bee on the dance floor carefully observes the dances and employs herself to a

profitable food source.

The position of a food source represents a possible solution of the optimization problem, and

the quality of the solution is determined by the nectar amount of the source. Therefore, the

number of solutions in a population is equal to the number of employed bees or onlooker bees.

The algorithm first generates a randomly distributed initial population based on the food source

positions. Then the employed, onlooker, and scout bees initiate their repetitive search cycle. An

employed bee memorizes the position of a new food source only if it provides a better nectar

amount (fitness) than the existing source in her memory; otherwise, she keeps the information of

the old source. Once all the employed bees in a hive complete their search process, they gather in

22

the waggle dance area and share their knowledge about the source position and the

corresponding nectar value through waggle dancing. An onlooker bee observes their dance and

finds a food source based on a probability value associated to its nectar amount. The employed

bee modifies the source position in her memory and checks its nectar value. If the nectar value of

the new one is higher than the previous one, then the bee forgets the old one and memorizes the

new one. A more detail explanation of the steps involved in the ABC algorithm is provided

below.

4.1. PARAMETER INITIALIZATION

The ABC algorithm has four control parameters that need to be initialized in the

beginning: the solution number (SN), the maximum cycle number (MCN), and the value of limit.

The number of solutions (SN) is equal to the number of employed bees or onlooker bees in a

hive. The parameter MCN controls the maximum number of food generation. The parameter

limit, called the limit for abandonment (Karaboga & Basturk, 2007), is the maximum number of

attempts that an employed bee gets to find an improved food source before abandoning the

current food source.

4.2. INITIAL POPULATION GENERATION

An initial population of size SN is generated following Equation (28). Each solution

vector Xi,j is D-dimensional; dimension D is equal to the number of optimization parameters:

 𝑋𝑖,𝑗 = 𝐿𝐵𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑈𝐵𝑗 − 𝐿𝐵𝑗) (28)

23

where 𝑖 ∈ {1, 2, … , SN}, 𝑗 ∈ {1, 2, … , D}, rand (0, 1) generates random numbers between 0 and 1,

and LBj, UBj are lower and upper values of the decision variable Xi,j.

4.3. EMPLOYED BEE PHASE

Each employed bee visits its assigned food source and memorizes its position and nectar

value. After the waggle dance phase, she modifies the information in her memory using Equation

(29) to produce a new potential food source. She applies a greedy selection method to find the

best possible source at the time. If the old source has a higher nectar value than the new one, then

she keeps the old source information in the memory without any change; otherwise, the new

source has a high nectar value. She then forgets the old food source and memorizes the new

source information.

 𝑉𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑(−1, 1) ∗ (𝑋𝑖,𝑗 − 𝑋𝑘,𝑗) (29)

where 𝑘 ∈ {1, 2, … , SN} is randomly determined and has to be different than i, and rand (-1, 1) is

a random number between -1 to 1. This candidate food source generation is controlled by the

parameter MCN so that the food sources are limited to the neighboring area of the hive.

4.4. ONLOOKER BEE PHASE

An onlooker bee carefully observes the waggle dancing of employed bees. Based on the

nectar value associated to each source, the bee calculates the probability of the source applying

Roulette Wheel Selection method presented in Equation (30):

 𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑆𝑁
𝑗=1

 (30)

24

where, Pi is the probability of food source 𝑋𝑖, 𝑓𝑖𝑡𝑖 is the fitness cost (nectar value) of 𝑋𝑖 at ith

position, and ∑ 𝑓𝑖𝑡𝑗
𝑆𝑁
𝑗=1 is the total fitness cost of all the solution pairs at this position.

4.5. SCOUT BEE PHASE

When the food source is not improved within the defined limit (cycle number), the onlooker

bee abandons it. The associated employed bee becomes a scout bee. This scout bee roams around

in search for new resources and follows the same procedure as in the initial population

generation step.

4.6. TERMINATION

The above steps are reiterated until termination condition is met. This condition is expressed

with the parameter MCN, empirically allocated in the initialized stage for convergence.

25

5. DATASETS AND PRETRAINED MODELS

5.1. DATASETS

For our experiment we choose three datasets, EasyClinic, eTour, and EBT. These datasets

are recurrently used in literature for many software engineering tasks, especially in the TLR task

of bug localization. We collect the datasets from the Center of Excellence for Software and

Systems Traceability (CoEST) website (coest.org), an open-source resource for traceability

research. All of our datasets include the requirement/use-cases and source code (represented by

classes) documents along with their trace links, which are needed to validate our results. These

datasets are presented in Table 2.

The eTour project is a tour guide project, EasyClinic is a project for hospital

management, and Event Based Traceability (EBT), a traceability software built upon event-

notification. These systems are developed in Java programming language. The eTour includes 58

use cases, 116 Java source code classes, and 308 trace links between use case to class. EBT has

40 requirements, 50 source code classes, and 98 true links between them. EasyClinic contains 30

use cases, 20 interaction diagrams, 63 test cases, and 47 class description. In total EasyClinic

provides 1388 trace links, which includes 93 trace links between the use case to class

description.

26

Table 2. Dataset Description

Dataset Description True links

eTour • Tour guide project

• 58 use cases

• 116 code classes

• Lines of code 25,011

• 308 trace links from use cases to

code classes

EBT • Event based traceability

software

• 40 requirements

• 50 java source code classes

• Contains 2,773 lines of

code

• 25 test cases

• 98 trace links from requirements to

classes

• 51 trace links from requirements to

test cases

EasyClinic • Hospital management

project

• 30 use cases (UC)

• 47 code classes (CC)

• 63 test cases (TC)

• 20 interaction diagrams

(ID)

• 93 trace links from use cases to code

classes

• 63 UC-TC links, 26 UC-ID links, 69

ID-CC links, 83 ID-TC links, 204

TC-CC links, 59 ID-ID links, 144

UC-UC links, 578 TC-TC links, 69

CC-CC trace links

5.2. PRETRAINED MODELS

In our investigation we consider the following three publicly available pre-rained word

embedding models: Google’s Word2Vec (Mikolov et al., 2013a), GloVe by Stanford

(Pennington et al., 2014), and Facebook produced FastText (Bojanowski et al., 2017).

27

The pretrained Word2Vec model is trained on about 100 billion words and phrases

collected from Google News. It includes 3,000,000 word vectors with dimension 300. The file

size is 1662 MB. Table 3 depicts a brief description of the pretrained models.

Two different GloVe models are available, one based on Twitter and the other trained on

datasets collected from Wikipedia 2014 and Gigaword 5 (6B tokens uncased). They each have a

vocabulary of size 400,000 and come with varied file size and vector dimension. For our

experiment, we use the Wiki-Gigaword combination-based model, which comes in a file of size

376 MB, and the vector dimension is 300. We convert these models into Genism w2v format

before use.

FastText is an extension of Word2Vec created by Facebook’s AI Research (FAIR) lab in

2015 (Liu, Chan, Feng, Fulton, & Wu, 2019). FastText includes 999,999 word vectors of

dimension 300. The model is trained on dataset Wikipedia 2017, UMBC web base corpus and

statmt.org news dataset (16B tokens). The file size is 958MB.

28

Table 3. Pretrained Models

Pretrained Embedding Description

Word2Vec • Trained on about 100 billion words and phrases collected

from Google news

• Vocabulary size 3,000,000

• Vector dimension 300

• File size 1662 MB

GloVe • Trained on dataset collected from Wikipedia 2014 and

Gigaword 5 (6B tokens uncased)

• Vocabulary size 400,000

• Vector dimension 300

• File size 376 MB

FastText • Trained on Wikipedia 2017, UMBC webbase corpus and

statmt.org news dataset (16B tokens)

• Vocabulary size 999,999

• Vector dimension 300

• File size 958 MB

29

6. METHODOLOGY

We provide an overview of the techniques we use from the data preprocessing to the

optimization process. Our method involves four separate steps:

1. Preprocess data.

2. Learn word vectors using pretrained WE models.

3. Choose similarity measures.

4. Run the ABC algorithm using the similarity measures.

6.1. DATA COLLECTION AND PREPROCESSING

 After data collection, we separate the high-level (HL) textual documents (such as

requirements and use cases) and low-level (LL) documents (source code files) for our

experimentation. We preprocess the HL and LL documents separately. First, we remove the

numeric and non-alpha numeric from the documents, leaving only the meaningful words. We

convert those meaningful words into lowercase, remove stop words and tokenize them. In

addition to these steps, the LL document’s preprocessing requires some more steps because of its

varied structure. We strip the multiple white spaces and remove the programming language

keywords that are not relevant for our purpose. These preprocessing steps are performed using

the highly efficient Genism preprocessing tool.

6.2. VECTOR REPRESENTATION

 Once the preprocessing is done, we represent our documents in vector form (feature

extraction) using the pretrained word embedding model. First, we load the pretrained model into

our workspace, which takes about 2 minutes in Jupyter notebook. Once the pretrained model is

30

loaded, it is ready to use for learning word embedding from the preprocessed documents. We use

three different open source pretrained models (Word2Vec, GloVe, FastText) in our experiment.

The goal is to compare the results obtained using each pretrained model.

6.3. SIMILARITY MEASURES

 We use three different similarity measures in our investigation. The first similarity

measure, sim_1 is obtained using the cosine similarity between two document vectors. To

calculate the document vector (Tw2v and Sw2v), we first measure the word vectors in a document,

then take their average as defined in Equation (34). The second similarity measure, sim_2, is a

linear combination of the first similarity measure, sim_1 with another similarity score, S_score

obtained using Equation (35). This sim_2 is tuned by a parameter 𝛼, which varies with the

dataset, and is adjusted empirically to achieve the best results. The third similarity score, sim_3

is also a cosine similarity between two documents; however, in this case, the LL document

vectors are learned differently than the HL ones. The HL document vectors (Tw2v) are learned

using Equation (34). The LL document vectors (Sw2v_tfidf) are learned using Equation (36), where

we include the TFIDF weight of the LL document. These three similarity functions are presented

in Equations (31), (32), and (33), respectively.

 𝑠𝑖𝑚_1(𝑇, 𝑆) = cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣) (31)

 𝑠𝑖𝑚_2(𝑇, 𝑆) = 𝛼 ∗ 𝑠𝑖𝑚_1(𝑇, 𝑆) + (1 − 𝛼) ∗ 𝑆_𝑠𝑐𝑜𝑟𝑒 (32)

 𝑠𝑖𝑚_3(𝑇, 𝑆) = cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣_𝑡𝑓𝑖𝑑𝑓) (33)

where 𝑇𝑤2𝑣 =
1

|𝑇|
∑ 𝑤𝑖

𝑖𝜖𝑇

 (34)

31

 𝑆_𝑠𝑐𝑜𝑟𝑒(𝑇, 𝑆) =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑒𝑟𝑚𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
 (35)

 𝑆𝑤2𝑣_𝑡𝑓𝑖𝑑𝑓 =
1

|𝑆|
∑(𝑤𝑖 ∗ 𝑇𝐹𝐼𝐷𝐹𝑖)

𝑖𝜖𝑆

 (36)

In these similarity functions T and S represent HL and LL documents, respectively. The

document vector, Tw2v is calculated by averaging the word vectors (w) in document T. The Sw2v is

calculated in the same way as Tw2v. The value Sw2v_tfidf represents the modified vector

representation of Sw2v in which each word vector is learned using one of the pretrained models

and is weighted by the TFIDF score of that word. The TFIDF score is calculated using Equation

(13).

6.4. ABC IMPLEMENTATION

 We use the modified ABC algorithm for the TLR purpose as used in (Rodriguez &

Carver, 2020). Their objective function is based on weighted cosine similarity, Equation (27).

We consider three different similarity functions, sim_1, sim_2 and sim_3 defined

correspondingly in Equation (31), (32), and (33) as our objective functions to evaluate the food

sources (solution vectors).

The first step of the ABC implementation involves the generation and initialization of the

initial population and parameters. We assign unique integer ID numbers to our input data,

requirements (HL) and source code (LL). A food source is produced by a list of these integer ID

pairs which belongs to HL and LL documents, respectively. These pairs are generated randomly

and are controlled by a parameter (Max_size_sol), representing the maximum number of pairs in

32

a food source. The parameter Max_size_sol is empirically decided based on the dataset. Since

different datasets have different numbers of HL and LL documents, they will have distinctive

food source sizes. Table 4 is an example of the food source representation, where HL12 is a

requirement document number with an assigned ID number 12, and LL3 is a source code

document number with ID number 3.

Table 4. Food Source Representation

HL12 LL3

HL15 LL31

HL39 LL10

Therefore, the initial population of the modified ABC algorithm is an integer vector consisting of

the list of random pairs (food source/vector solution). A boundary is set up to keep the random

generation inside the domain (the maximum ID numbers of the HL and LL documents). The

lower boundary is set to zero (minimum possible ID value), while the upper boundary depends

on the maximum ID number of the HL and LL documents in the dataset.

An individual food source has a distinctive value (nectar value) associated with it, which

is obtained using the objective function. The solution depends on the quality of this nectar value

of the food source. An employed bee is assigned to a food source to collect the nectar from it.

The parameter SN is defined to properly regulate the number of food sources and employed bees

generated at each iteration.

33

Figure 2. TLR to ABC mapping

The goal is to find a food source that maximizes the nectar value at each iteration. This situation

is depicted in Figure 2.

Each employed bee visits its assigned food source to collect nectar. The mutation

operator plays a very important role here. It uses a random mutation factor to decide mutation for

a specific pair. Once the employed bee is assigned for a food source, this operator selects three

different pairs from the source and applies Equation (37) for mutation (Rodriguez & Carver,

2020):

 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑃𝑎𝑖𝑟 = [𝑋𝑖] + (𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑛𝑡𝑒𝑔𝑒𝑟) − [𝑋𝑛] (37)

where, Xi is the current food source, and Xn is a neighboring food source randomly selected. This

mutation is regulated by another function to check the boundary conditions of the ID pairs.

Crossover and mutation act together to produce new possible solutions for an employed bee.

 Population regulated by SN

Food Source:

Pairs (HL, LL)

regulated by

Max_size_sol

Nectar:

Objective function

value connected to

each food source

34

With the information gathered from the employed bees, the onlooker bee performs a

selection process. For this purpose, we use Equation (30), as used in the original ABC algorithm.

Using this probability measure, the onlooker bee chooses the quality food source at a given

position. Then, it uses the mutation operator Equation (37) to produce a new set of food sources.

The employed bee becomes a scout bee when the food source is not improved within a

specified cycle number, defined by the parameter limit. This parameter is initialized in the

parameter initialization step. Then the scout bee generates new random food sources using

Equation (28). Eventually, the program terminates when it hits the termination condition, MCN,

which is also predefined to achieve convergence.

35

7. EXPERIMENT

The experiment is developed in Python-3.6.9 and runs on a Jupyter notebook. The first

step of the experimentation is the preprocessing of the datasets. We use Gensim 3.8.3 for

preprocessing and loading the pretrained embeddings. A detailed description of the

preprocessing was provided in Section 5.

We evaluate our results based on the IR metrics precision (P) and recall (R). The P value

is calculated using Equation (38), which measures the correctness of the result based on the

number of true positives (TP) and false positives (FP) obtained. Equation (39) is used to measure

the R value, where FN stands for the number of false positive links found. R represents the

completeness level of the result.

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝜖 [0,1] (38)

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝜖 [0,1] (39)

ABC parameter set up: Based on the dataset we set part of the ABC algorithm’s

parameters initially, which remain unchanged throughout the experimentation. More specifically

the upper and lower boundaries for a specific dataset will remain the same throughout the

experimentation process. The lower boundary is set to 0 for all of the datasets, and the upper

boundaries vary with the dataset. For the EBT dataset we set the upper boundary equal to 40,

representing the number of HL documents in the dataset. Similarly, for EasyClinic the upper

boundary is set to 29, and for eTour it is set to 57.

36

7.1. Objective Function sim_1

 We use sim_1 as the objective function for the ABC algorithm. The function sim_1 was

described in subsection 6.3. For convenience, Equation (31) is presented again here:

𝑠𝑖𝑚_1(𝑇, 𝑆) = cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣) (31)

We run the ABC algorithm at different SN and MCN assignments with objective function

sim_1. The results using the three different datasets follow.

EBT dataset with sim_1: The results for the EBT dataset with sim_1 are listed in Table 5.

The values shown in bold represent the highest values from each embedding model. We use all

three of the pretrained models on EBT. After some experimentation we set the parameter

Max_size_sol equals to 250, which provides the best result. The highest P score of 0.1875 is

obtained using the Word2Vec model, and it is found at 90 MCN and 90 SN assignments. The

corresponding R score is 0.1837. Using GloVe model, we find the highest P of 0.1739 and the

highest R of 0.2449 are found at 100 MCN and 50 SN number. The highest R score for FastText

model was 0.143 with a P score of 0.102 at 50 SN and 100 MCN.

EasyClinic dataset with sim_1: We list the experimentation on the EasyClinic dataset

using sim_1 objective function in Table 6. The highest values obtained from each WE model is

shown in bold. We use all three of the pretrained model for this dataset as well. First, we find the

parameter Max_size_sol that works best for the EasyClinic dataset. We find that 150 provides the

best outputs. With the Word2Vec model, assigning the Max_size_sol to 150 and parameter SN

and MCN to 50, the highest P score obtained is 0.1023 with the corresponding R of 0.0968. The

37

result found with GloVe model has the highest P score of 0.0877 with R score of 0.106, which is

obtained at 50 SN and 100 MCN assignments.

Table 5. EBT with sim_1 result

Embedding Max_size_sol SN MCN P R

Word2vec 250 50 50 0.1243 0.2245

60 60 0.1133 0.1735

70 70 0.1277 0.1837

80 80 0.1129 0.1429

90 90 0.1875 0.1837

100 100 0.1667 0.1837

110 110 0.1494 0.1327

150 150 0.1714 0.1224

GloVe 250 50 50 0.1193 0.2143

90 90 0.152 0.1939

100 100 0.169 0.2449

50 100 0.1739 0.2449

110 110 0.1354 0.1327

FastText 250 50 50 0.073 0.1327

50 100 0.1022 0.1429

100 100 0.1034 0.0918

38

The FastText pretrained model produces lower results than the other two models. The highest P

score is 0.034 and R score is 0.043.

Table 6. EasyClinic with sim_1 result

Embedding Max_size_sol SN MCN P R

Word2Vec 150 40 40 0.0566 0.0645

50 50 0.1023 0.0968

60 60 0.086 0.108

90 90 0.085 0.086

100 100 0.063 0.065

50 100 0.0725 0.0538

GloVe 150 50 50 0.071 0.149

50 100 0.065 0.054

60 60 0.058 0.054

100 100 0.0877 0.106

FastText 150 50 50 0.0213 0.0426

50 100 0.042 0.032

100 100 0.0339 0.0426

eTour dataset with sim_1: The results obtained using sim_1 on the eTour dataset are

listed in Table 7, where the highest values are shown in bold. The best result is obtained using

the GloVe pretrained model at 400 Max_size_sol and 50 SN and 50 MCN, which scored the

39

highest P of 0.1138 and R of 0.1234. Both Word2Vec and FastText models have comparable

results. Word2Vec produces the highest P score of 0.0962 and 0.0909 R score. FastText has the

highest P score of 0.0909 and R score of 0.0974.

Table 7. eTour with sim_1 result

Embedding Max_size_sol SN MCN P R

Word2Vec 400

50 50 0.0696 0.0779

50 100 0.0962 0.0909

60 60 0.0613 0.0617

90 90 0.053 0.042

100 100 0.0882 0.0682

GloVe 400 50 50 0.1138 0.1234

60 60 0.066 0.068

50 100 0.064 0.058

90 90 0.088 0.068

FastText 400 50 50 0.0909 0.0974

60 60 0.0501 0.052

50 100 0.031 0.029

90 90 0.067 0.055

40

7.2. Objective Function sim_2

 We use the sim_2 as the objective function for the ABC algorithm. A detail description

of sim_2 is presented in subsection 6.3, and Equation (32) is repeated here for convenience:

𝑠𝑖𝑚_2(𝑇, 𝑆) = 𝛼 ∗ 𝑠𝑖𝑚_1 + (1 − 𝛼) ∗ 𝑆_𝑠𝑐𝑜𝑟𝑒 (32)

Again, we investigate this objective function based on the three datasets. The

experimentation is described below, and the results of this investigation are presented in Table 8

for EBT dataset, Table 9 for EasyClinic and Table 10 for the eTour dataset, accordingly. The

highest values obtained from each WE model are shown in bold.

Table 8. EBT with sim_2 result

Embedding Max_size_sol SN MCN ALPHA P R

Word2Vec 250 50 50 0.5 0.058 0.102

50 100 0.5 0.045 0.061

100 100 0.5 0.104 0.112

GloVe 250 50 50 0.5 0.056 0.102

50 100 0.5 0.1447 0.1122

100 100 0.5 0.1346 0.143

FastText 250 50 50 0.5 0.08 0.123

50 100 0.5 0.053 0.082

100 100 0.5 0.105 0.122

41

EBT dataset with sim_2: The highest P value is 0.1447 and R value is 0.112 using the

GloVe model by setting the ABC parameter Max_size_sol to 250, MCN to 100, and SN to 50.

The parameter α of sim_2 is assigned to 0.5, chosen empirically. We kept α the same for all three

of the pretrained models. Both Word2Vec and FastText have similar P and R scores. The best

results obtained with the Word2Vec model is at 100 SN and MCN assignment; the highest R

score is 0.112 and R is 0.104. Similarly, the FastText model achieves the highest P score of

0.105 with an R score of 0.122. These results are listed in Table 8.

Table 9. EasyClinic with sim_2 result

Embedding Max_size_sol SN MCN ALPHA P R

Wor2Vec 150

50 50 0.5 0.0947 0.0968

100 0.5 0.065 0.0645

100 100 0.5 0.0714 0.0851

GloVe 150 50 50 0.5 0.0899 0.086

100 0.5 0.0753 0.052

100 100 0.5 0.0735 0.0538

FastText 150 50 50 0.5 0.06 0.0645

100 0.5 0.056 0.055

100 100 0.5 0.06 0.044

42

EasyClinic dataset with sim_2: The highest P and R scores are obtained at the same

parameter setup for all three of the models; the ABC parameter Max_size_sol is set to 150, SN

and MCN both are set to 50, and the sim_2 parameter is set to 0.5, which provides the best result.

The Word2Vec model provides the best scores out of all three, with a high P score of 0.0947 and

an R equal to 0.0968. GloVe gives the highest P score of 0.0899 and R score of 0.086. FastText

provides a P score of 0.06 and R score of 0.0645.

Table 10. eTour with sim_2 result

Embedding Max_size_sol SN MCN ALPHA P R

Wor2Vec 400

50 50 0.5 0.061 0.065

60 60 0.5 0.052 0.052

50 100 0.5 0.073 0.071

100 100 0.5 0.087 0.071

GloVe 400 50 50 0.5 0.067 0.075

60 60 0.5 0.073 0.075

50 100 0.5 0.073 0.071

100 100 0.5 0.062 0.042

FastText 400

50 50 0.5 0.084 0.064

60 60 0.5 0.06 0.062

90 90 0.5 0.0494 0.042

100 100 0.5 0.046 0.036

43

eTour dataset with sim_2: The results obtained using objective function sim_2 with the

eTour dataset and the three models are listed in Table 10. We find that assigning 400 to

Max_size_sol provides the best result. The GloVe model produces the best results, which is

0.073 as the P value and 0.075 as the corresponding R value. The values are found with 60 SN

and 60 MCN assignments. At 100 SN, and MCN with sim_2 parameter set to 0.5, a high P score

of 0.087 with a R score 0.071 is obtained using the Word2Vec model. A similar result is

obtained using the FastText model at 50 SN and MCN, which provides the highest P of 0.084

with a R of 0.064.

7.3. Objective Function sim_3

 We use the three pretrained models on our datasets with sim_3 as an objective function

for ABC algorithm. This function is presented in subsection 6.3, Equation (33), and is repeated

here for convenience:

𝑠𝑖𝑚_3(𝑇, 𝑆) = cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣_𝑡𝑓𝑖𝑑𝑓) (33)

The investigation on the three datasets is presented in Table 11, Table 12, and Table 13;

where Table 11 represent the EBT dataset, Table 12 is the EasyClinic dataset, and Table 13 is the

eTour dataset. The bold values in the tables represents the highest value found from each WE

model.

44

Table 11. EBT with sim_3 result

Embedding Max_size_sol SN MCN P R

Word2Vec 250 50 50 0.09 0.153

50 100 0.112 0.153

100 100 0.14 0.143

Glove 250 50 50 0.1356 0.2449

50 100 0.1544 0.2347

100 100 0.1869 0.2041

FastText 250 50 50 0.061 0.112

50 100 0.066 0.092

100 100 0.104 0.102

EBT dataset with sim_3: The experiment with the EBT dataset shows that the best R

score is obtained using the GloVe pretrained model where both MCN and SN are set to 100 at

which the highest P score and R scores of 0.1869 and 0.2041 are obtained, respectively. The

Word2Vec and FastText models provide a comparable result. The Word2Vec obtains the highest

P score of 0.14 and a R score of 0.143 at 100 SN and MCN set up. The FastText model provides

the highest P score of 0.104 with a R score of 0.102 at 100 SN and MCN.

45

Table 12. EasyClinic with sim_3 result

Embedding Max_size_sol SN MCN P R

Word2Vec 150 50 50 0.101 0.0968

50 100 0.078 0.0538

70 70 0.057 0.043

GloVe 150 50 50 0.0761 0.075

50 100 0.056 0.043

70 70 0.044 0.032

FastText 150 50 50 0.036 0.032

50 100 0.015 0.011

70 70 0.0299 0.0215

100 100 0.021 0.011

EasyClinic dataset with sim_3: The EasyClinic dataset obtained the best score with

Word2Vec, which is a high P equals 0.1011 and R equals to 0.0968. Using the GloVe model, a

high P of 0.0761 is scored with an R of 0.075. For the FastText model, high P and R scores are

0.036 and 0.032, respectively. These scores are found at 50 SN and MCN.

 eTour dataset with sim_3: We find a high R score of 0.081 and corresponding P score of

0.077. These values are obtained with the GloVe model with the parameter setup of 60 for both

SN and MCN, and 400 for Max_size_sol. With the Word2Vec model a high P value is found to

be 0.0785 and the corresponding R score is 0.0747, which are obtained at 50 SN and 100 MCN

46

set up. With the same SN and MCN assignment, the FastText model obtained a comparable result

as obtained in Word2Vec. For the FastText the highest R score is 0.071 and the corresponding P

score is 0.073.

Table 13. eTour with sim_3 result

Embedding Max_size_sol SN MCN P R

Word2Vec 400 50 50 0.0589 0.065

50 100 0.0785 0.0747

60 60 0.0625 0.0617

GloVe 400 60 60 0.0767 0.0812

50 50 0.063 0.054

50 100 0.059 0.06

FastText 400 60 60 0.0438 0.0455

50 100 0.073 0.071

50 50 0.051 0.068

In Table 14 we summarize the best results obtained applying the three pretrained WE

models on the three datasets using the three objective functions. Along with the P and R sores,

we add the F1 measure in this summary table. F1 score is calculated following Equation (40); it

is obtained by doubling the product of P and R scores divided by their sum.

 𝐹1 = 2
𝑃 ∗ 𝑅

𝑃 + 𝑅
 (40)

47

The EBT dataset obtains the highest F1 score of 0.203 with the sim_1 function with the

GloVe model. A comparable score of 0.195 is recorded from the sim_3 function with the GloVe

model. The sim_1 function with the Word2Vec model obtains 0.186, and with the FastText

model it scores 0.119. The sim_2 function with both the FastText and Word2Vec score

comparable values of 0.108 and 0.113, respectively, whereas with the GloVe model it scores

0.126. The sim_3 with the Word2Vec scores 0.141, the nearest competitive score of 0.103 is

obtained with the FastText model.

Table 14. Summary of experiment on three datasets

Datasets

Pretrained

Model

sim_1 sim_2 sim_3

P R F1 P R F1 P R F1

EBT

Word2Vec 0.188 0.184 0.186 0.104 0.112 0.108 0.140 0.143 0.141

GloVe 0.174 0.245 0.203 0.145 0.112 0.126 0.187 0.204 0.195

FastText 0.102 0.143 0.119 0.105 0.122 0.113 0.104 0.102 0.103

EasyClinic

Word2Vec 0.102 0.097 0.099 0.095 0.097 0.096 0.101 0.097 0.099

GloVe 0.088 0.106 0.096 0.090 0.086 0.088 0.076 0.075 0.076

FastText 0.034 0.043 0.038 0.060 0.065 0.062 0.036 0.032 0.034

eTour

Word2Vec 0.096 0.091 0.093 0.087 0.071 0.078 0.079 0.075 0.077

GloVe 0.114 0.123 0.118 0.073 0.075 0.074 0.077 0.081 0.079

FastText 0.091 0.097 0.094 0.084 0.064 0.073 0.073 0.071 0.072

48

 EasyClinic dataset records the same F1 score of 0.99 from the sim_1 and sim_3 with the

Word2Vec model. The sim_2 with Word2Vec scored 0.096. The sim_1 with the GloVe model

records the same F1 score of 0.96 and with the FastText it obtains 0.038. The sim_2 and sim_3

with the GloVe model are 0.088 and 0.076, respectively. While with the FastText model sim_2

scores 0.062, and sim_3 scores 0.034.

The eTour dataset obtains the highest F1 score of 0.118 with the sim_1 using the GloVe

pretrained model. eTour obtains a comparable F1 score with sim_1 function using Word2Vec

and FastText model; with Word2Vec the score is 0.093 and with FastText it is 0.094. For the

other two objective functions the F1 scores obtained using all three pretrained models have a

similar result. The sim_2 function with Word2Vec records 0.078, with GloVe the score is 0.074,

and with FastText it is 0073. The objective function sim_3 scores 0.077, 0.079, and 0.072 with

Word2Vec, GloVe, and FastText, respectively.

49

8. RESULTS AND DISCUSSION

Based on our experiment, we revisit the three research questions presented in Section 1.

RQ1: How does performance vary with each objective function?

The Table 15 and Figure 3 show the best F1 scores obtained by each dataset using the

three similarity functions that we use with the ABC algorithm in this investigation.

Table 15. F1 scores of three datasets

Datasets Pretrained Model

F1

sim_1 sim_2 sim_3

EBT

Word2Vec 0.186 0.108 0.141

GloVe 0.203 0.126 0.195

FastText 0.119 0.113 0.103

EasyClinic

Word2Vec 0.099 0.096 0.099

GloVe 0.096 0.088 0.076

FastText 0.038 0.062 0.034

eTour

Word2Vec 0.093 0.078 0.077

GloVe 0.118 0.074 0.079

FastText 0.094 0.073 0.072

50

Figure 3. F1 scores of three datasets based on objective functions

The Figure 3 indicates that the objective function sim_1 outperforms the other two

functions. The EBT dataset records the best F1 score of 0.203 with sim_1 function trained on

GloVe model. The eTour dataset also records its highest F1 score of 0.118 with the same GloVe

model-based sim_1 function. The EasyClinic dataset performs the same score of 0.99 with both

the sim_1 and sim_3 functions.

Word2Vec GloVe FastText Word2Vec GloVe FastText Word2Vec GloVe FastText

EBT EasyClinic eTour

F1 sim_1 0.186 0.203 0.119 0.099 0.096 0.038 0.093 0.118 0.094

F1 sim_2 0.108 0.126 0.113 0.096 0.088 0.062 0.078 0.074 0.073

F1 sim_3 0.141 0.195 0.103 0.099 0.076 0.034 0.077 0.079 0.072

0

0.05

0.1

0.15

0.2

0.25

Objective Function based F1 score

51

Figure 4. Comparison of three objective functions on each dataset

A comparison between the three objective functions based on their statistical significance

is presented in Figure 4. The Figure 4 represents the mean, standard deviation, and 95%

confidence level error score of F1 obtained from each dataset using the three objective functions.

The mean in Figure 4 is the sum of the three WE model’s F1 scores from Table 15 under each

similarity function divided by three (the number three represents the three WE models). For

example, the highest mean F1 score of 0.169 is obtained by the EBT dataset with sim_1 function,

and this score is measured by calculating the sum of F1 sim_1 scores (0.186+0.203+0.119), from

Table 15 or Figure 3, and dividing the sum by three. The standard deviation represents the

dispersions of the F1 score, meaning how far the data spreads from the mean. The EBT sim_1

mean 0.169 has a standard deviation of 0.044, which indicates that the sim_3 mean score of

sim_1 sim_2 sim_3 sim_1 sim_2 sim_3 sim_1 sim_2 sim_3

EBT EasyClinic eTour

Mean 0.169 0.116 0.146 0.078 0.082 0.070 0.102 0.075 0.076

Standard Deviation 0.044 0.009 0.046 0.034 0.018 0.033 0.014 0.003 0.004

Confidence Level(95.0%) 0.110 0.023 0.115 0.085 0.044 0.082 0.035 0.007 0.009

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

F1 Analysis on each dataset based on Objective

Functions

52

0.146 exists within one standard deviation of sim_1, but the sim_2 mean of 0.116 does not exist

within one standard deviation of sim_1 mean. The error score of 95% confidence level provides

the lower and upper limit of the F1 score. The EBT sim_1 mean has an error score of 0.11, which

indicates that the lowest F1 score could be 0.059 and the highest could be 0.279.

The EasyClinic dataset achieved its highest mean with sim_2; however, the differences

between the three means are not very significant as they all exist within one standard deviation of

each other. Additionally, the standard deviation of sim_1 mean is higher than the other two

means, which means that the values obtained from sim_1 are more spread out than sim_2. The

95% confidence level suggests that the best F1 score of 0.163 that could be obtained by the

EasyClinic dataset is with the sim_1 function and the lowest score of 0.012 could be obtained

with the sim_3 function.

The eTour dataset also scored the best mean of 0.102 with the sim_1 function. The lower

means with low standard deviations of the other two functions indicates that they are not

competitive enough with the sim_1. With a 95% confidence level, the highest F1 score that could

be achieved by the eTour dataset is 0.137 and the lowest is 0.067.

A separate analysis on each dataset in Figure 4 confirms that the sim_1 function is the

best performer among the three WE based objective functions.

RQ2. How does performance vary with different pretrained models?

We compare the three pretrained models based on the best F1 score obtained from each

dataset. The Table 15 and Figure 5 present the F1 score of each dataset based on the three

53

pretrained WE models. The Figure 5 shows that the GloVe model records the highest F1 score

for both EBT and eTour datasets. For EasyClinic, The Word2Vec model produces the highest

score of 0.99, and with the score of 0.96, the GloVe model is the second highest scorer.

Figure 5. F1 scores of three datasets based on WE models

In Figure 6 we represent a statistical analysis of F1 score on each dataset based on the three

pretrained models. The mean in Figure 6 is calculated by taking the sum of the F1 scores of the

three objective functions on each WE model then divides that sum by three (the number three

represents the number of objective functions).

sim_1 sim_2 sim_3 sim_1 sim_2 sim_3 sim_1 sim_2 sim_3

EBT EasyClinic eTour

F1 Word2Vec 0.186 0.108 0.141 0.099 0.096 0.099 0.093 0.078 0.077

F1 GloVe 0.203 0.126 0.195 0.096 0.088 0.076 0.118 0.074 0.079

F1 FastText 0.119 0.113 0.103 0.038 0.062 0.034 0.094 0.073 0.072

0

0.05

0.1

0.15

0.2

0.25

WE model based F1 score

54

Figure 6. Comparison of three pretrained WE models on each dataset

The EBT dataset records the highest mean F1 score of 0.175 with the GloVe model,

which has a standard deviation of 0.042, and with a 95% confidence level the error recorded is

0.105. The confidence interval is from 0.07 to 0.28. The closest competitor is the Word2Vec

model with a score of 0.145 with a standard deviation of 0.039 and a confidence interval of

(0.048, 0.242). The FastText model scored the lowest of 0.112 with a standard deviation of 0.008

and error score of 0.02, which gives a lower limit of 0.092 and upper limit of 0.132 for F1. This

analysis indicates that the Word2Vec F1 score exists within one standard deviation of GloVe and

vice versa. However, the FastText score does not exist within one standard deviation of the

GloVe model. The FastText mean F1 score exists within one standard deviation of Word2Vec

model score; however, the FastText F1’s standard deviation of 0.008 indicates that the

Word2Vec GloVe FastText Word2Vec GloVe FastText Word2Vec GloVe FastText

EBT EasyClinic eTour

Mean 0.145 0.175 0.112 0.098 0.087 0.045 0.083 0.090 0.080

Standard Deviation 0.039 0.042 0.008 0.002 0.010 0.015 0.009 0.024 0.012

Confidence Level(95.0%) 0.097 0.105 0.020 0.004 0.025 0.038 0.022 0.060 0.031

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

WE model Analysis on each dataset

55

Word2Vec F1 score is not within the three standard deviation range of FastText model. Therefor

the EBT dataset records the GloVe model as the highest, the Word2Vec model as comparable

with the GloVe model, and the FastText model as the lowest performer.

 The EasyClinic dataset scores the highest mean F1 of 0.098 with the Word2vec model,

which has a standard deviation score of 0.002 and an error of 0.004 with 95% confidence level.

This finding indicates that the lower limit of mean F1 is 0.094 and the upper limit is 0.102. The

next highest mean F1 score is obtained by the GloVe model, which is 0.087 with a standard

deviation of 0.01 and an error value of 0.025. The mean score obtained by the GloVe model does

not belong within one standard deviation of the Word2Vec mean and vice versa; however, the

95% confidence interval (0.062, 0.112) of the GloVe model indicates that the GloVe could

achieve a higher F1 score of 0.112, which is greater than the upper limit of Word2Vec model,

0.102. The FastText scored the lowest mean of 0.045 with a standard deviation of 0.015 and an

error score of 0.038. Therefore, for the EasyClinic dataset, both the GloVe and Word2Vec have a

comparable performance.

 The highest mean F1 of the eTour dataset is recorded with GloVe model and the score is

0.09 with a standard deviation of 0.024 and an error of 0.06, which gives the lower limit of 0.03

and the higher limit of 0.15. Both the Word2Vec and FastText model scored a comparable F1

mean of 0.083 and 0.08, respectively. The differences between the three means have low

significance. The Word2Vec and FastText exist within one standard deviation of the GloVe

model and vice versa. However, the 95% confidence level indicates that the highest possible

56

score of 0.15 could be achieved with the GloVe model, which suggests that the GloVe model is

the best performer.

RQ3. How does a WE based objective function and an ABC combination perform in TLR task

automation?

Based on our discussion on the previous two research questions, we can summarize that

the WE based objective function, specifically the GloVe model based sim_1 objective function is

the best performer. The model produces an F1 score of below 20%, which indicates that our

three WE based objective functions and the ABC combination are not efficient for the purpose of

TLR task automation.

The experimental result obtained from the EBT dataset is summarized in Table 16. The P,

R, and F1 scores obtained using the three similarity functions with three pretrained models are

depicted in Figure 7. The Figure 7 shows that the R score achieved is better than the P score.

However, the R score of the EBT dataset resides below 25%, while the P and F1 scores are

below 20%.

57

Table 16. P, R, and F1 scores of EBT dataset

Objective function Pretrained model P R F1

sim_1

Word2Vec

0.124 0.225 0.160

0.113 0.174 0.137

0.128 0.184 0.151

0.113 0.143 0.126

0.188 0.184 0.186

0.167 0.184 0.175

0.149 0.133 0.141

0.171 0.122 0.143

GloVe

0.119 0.214 0.153

0.152 0.194 0.170

0.169 0.245 0.200

0.174 0.245 0.203

0.135 0.133 0.134

FastText

0.073 0.133 0.094

0.102 0.143 0.119

0.103 0.092 0.097

sim_2

Word2Vec

0.058 0.102 0.074

0.045 0.061 0.052

0.104 0.112 0.108

GloVe

0.056 0.102 0.072

0.145 0.112 0.126

0.135 0.143 0.139

FastText

0.080 0.123 0.097

0.053 0.082 0.064

0.105 0.122 0.113

sim_3

Word2Vec

0.090 0.153 0.113

0.112 0.153 0.129

0.140 0.143 0.141

GloVe

0.136 0.245 0.175

0.154 0.235 0.186

0.187 0.204 0.195

FastText

0.061 0.112 0.079

0.066 0.092 0.077

0.104 0.102 0.103

58

Figure 7. P, R, and F1 scores of EBT dataset

A summary of the result obtained by using the WE based model with the EasyClinic

dataset is presented in Table 17. The P, R, and F1 scores of EasyClinic dataset are depicted in

Figure 8. This dataset records a comparable P and R score. The highest R score is in 15% range

and the P and F1 scores are within 10%.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

sim_1 sim_2 sim_3

EBT

EBT P EBT R EBT F1

59

Table 17. P, R, and F1 scores of EasyClinic dataset

Objective

function
Pretrained model P R F1

sim_1

Word2Vec

0.057 0.065 0.060

0.102 0.097 0.099

0.086 0.108 0.096

0.085 0.086 0.085

0.063 0.065 0.064

0.073 0.054 0.062

GloVe

0.071 0.149 0.096

0.065 0.054 0.059

0.058 0.054 0.056

0.088 0.106 0.096

FastText

0.021 0.043 0.028

0.042 0.032 0.036

0.034 0.043 0.038

sim_2

Word2Vec

0.095 0.097 0.096

0.065 0.065 0.065

0.071 0.085 0.078

GloVe

0.090 0.086 0.088

0.075 0.052 0.062

0.074 0.054 0.062

FastText

0.060 0.065 0.062

0.056 0.055 0.055

0.060 0.044 0.051

sim_3

Word2Vec

0.101 0.097 0.099

0.078 0.054 0.064

0.057 0.043 0.049

GloVe

0.076 0.075 0.076

0.056 0.043 0.049

0.044 0.032 0.037

FastText

0.036 0.032 0.034

0.015 0.011 0.013

0.030 0.022 0.025

0.021 0.011 0.014

60

Figure 8. P, R, and F1 scores of EasyClinic dataset

The eTour dataset result is summarized in Table 18 and illustrated in Figure 9. The P and

R score obtained using the WE based model on this dataset are comparable. The highest R is in

the range of 12% and the P and F1 scores are within 11%.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

sim_1 sim_2 sim_3

EasyClinic

EasyClinic P EasyClinic R EasyClinic F1

61

Table 18. P, R, and F1 scores of eTour dataset

Objective function Pretrained model P R F1

sim_1

Word2Vec

0.070 0.078 0.074

0.096 0.091 0.093

0.061 0.062 0.061

0.053 0.042 0.047

0.088 0.068 0.077

GloVe

0.114 0.123 0.118

0.066 0.068 0.067

0.064 0.058 0.061

0.088 0.068 0.077

FastText

0.091 0.097 0.094

0.050 0.052 0.051

0.031 0.029 0.030

0.067 0.055 0.060

sim_2

Wor2Vec

0.061 0.065 0.063

0.052 0.052 0.052

0.073 0.071 0.072

0.087 0.071 0.078

GloVe

0.067 0.075 0.071

0.073 0.075 0.074

0.073 0.071 0.072

0.062 0.042 0.050

FastText

0.084 0.064 0.073

0.060 0.062 0.061

0.049 0.042 0.045

0.046 0.036 0.040

sim_3

Word2Vec

0.059 0.065 0.062

0.079 0.075 0.077

0.063 0.062 0.062

GloVe

0.077 0.081 0.079

0.063 0.054 0.058

0.059 0.060 0.059

FastText

0.044 0.046 0.045

0.073 0.071 0.072

0.051 0.068 0.058

62

Figure 9. P, R, and F1 scores of eTour dataset

Based on the results of the three datasets, we conclude that neither of the three WE based

objective functions and the ABC algorithm applied to the three datasets performs at an

acceptable level for TLR task automation.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

W
o
r2

V
ec

G
lo

V
e

F
as

tT
ex

t

W
o
rd

2
V

ec

G
lo

V
e

F
as

tT
ex

t

sim_1 sim_2 sim_3

eTour

eTour P eTour R eTour F1

63

9. CONCLUSIONS AND FUTURE WORK

We investigate the compatibility of a WE based ABC algorithm applied to TLR. We use

three different WE based objective functions and open source pretrained models: Word2Vec,

GloVe, and FastText to learn the document vectors. We evaluate the performance of these

pretrained WE models combined with the ABC algorithm for automating TLR. Our analysis on

the three datasets suggests that the GloVe model performs slightly better than the Word2Vec

model, and the FastText has the lowest performance rate. The objective function sim_1 performs

slightly better than the other two objective functions. The R was better than the P; however, the

best F1 mean achieved using the three datasets was below 0.2, which indicates that the WE based

ABC does not perform at an acceptable level for TLR task automation.

For future experimentation, there is potential for improvement given that the ABC algorithm

involves extensive parameter adjustment which demands more experimentation. Additionally,

changing the preprocessing of the datasets might result in improvement. Other future exploration

involves building a domain specific customized word embedding to advance the research. Three

other embedding systems, recently gaining popularity in NLP are ELMO (Peters et al., 2018),

BERT (Kenton, Kristina, & Devlin, 2019), and VAMPIRE (Gururangan, Dang, Card, & Smith,

2019). We want to explore their applicability and performance in the TLR task automation

process. In addition, we want to investigate with other possible objective functions.

64

REFERENCES

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering

traceability links between code and documentation. IEEE Transactions on Software

Engineering, 28(10), 970–983. https://doi.org/10.1109/TSE.2002.1041053

Bella, E. E., Creff, S., Gervais, M. P., & Bendraou, R. (2019). ATLaS: A framework for

traceability links recovery combining information retrieval and semi-supervised techniques.

Proceedings - 2019 IEEE 23rd International Enterprise Distributed Object Computing

Conference, EDOC 2019, 161–170. https://doi.org/10.1109/EDOC.2019.00028

Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language model.

Advances in Neural Information Processing Systems, 3, 1137–1155.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with

Subword Information. Transactions of the Association for Computational Linguistics, 5,

135–146. https://doi.org/10.1162/tacl_a_00051

Cheng, S., Yan, X., & Khan, A. A. (2020). A Similarity Integration Method based Information

Retrieval and Word Embedding in Bug Localization. Proceedings - 2020 IEEE 20th

International Conference on Software Quality, Reliability, and Security, QRS 2020,

(October), 180–187. https://doi.org/10.1109/QRS51102.2020.00034

Coest.org. (n.d.). No Title. Retrieved April 16, 2021, from http://coest.org/

Goldberg, Y., & Levy, O. (2014). word2vec Explained: deriving Mikolov et al.’s negative-

sampling word-embedding method, (2), 1–5. Retrieved from http://arxiv.org/abs/1402.3722

Guo, J., Cheng, J., & Cleland-Huang, J. (2017). Semantically Enhanced Software Traceability

Using Deep Learning Techniques. Proceedings - 2017 IEEE/ACM 39th International

Conference on Software Engineering, ICSE 2017, 3–14.

https://doi.org/10.1109/ICSE.2017.9

Gururangan, S., Dang, T., Card, D., & Smith, N. A. (2019). Variational Pretraining for Semi-

supervised Text Classification.

Holbrook, E. A., Hayes, J. H., Dekhtyar, A., & Li, W. (2013). A study of methods for textual

satisfaction assessment. Empirical Software Engineering, 18(1), 139–176.

https://doi.org/10.1007/s10664-012-9198-8

Karaboga, D., & Basturk, B. (2007). Artificial Bee Colony (ABC) Optimization Algorithm for

65

Solving Constrained Optimization. IEEE, 789–798.

Kenton, M. C., Kristina, L., & Devlin, J. (2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding, (Mlm). Retrieved from

https://arxiv.org/pdf/1810.04805v2.pdf

Lam, A. N., Nguyen, A. T., Nguyen, H. A., & Nguyen, T. N. (2017). Bug Localization with

Combination of Deep Learning and Information Retrieval. IEEE International Conference

on Program Comprehension, 218–229. https://doi.org/10.1109/ICPC.2017.24

Liu, N., Chan, A., Feng, C., Fulton, J., & Wu, S. (2019). Automate RFP response generation

process using fasttext word embeddings and soft cosine measure. ACM International

Conference Proceeding Series, 12–17. https://doi.org/10.1145/3349341.3349362

Mihalcea, R., Corley, C., & Strapparava, C. (2006). Corpus-based and knowledge-based

measures of text semantic similarity. Proceedings of the National Conference on Artificial

Intelligence, 1, 775–780.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Distributed Representations of Words

and Phrases and their Compositionality arXiv : 1310 . 4546v1 [cs . CL] 16 Oct 2013.

ArXiv Preprint ArXiv:1310.4546, 26, 1–9.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013b). Efficient estimation of word

representations in vector space. 1st International Conference on Learning Representations,

ICLR 2013 - Workshop Track Proceedings, 1–12.

Nguyen, T. Van, Nguyen, A. T., Phan, H. D., Nguyen, T. D., & Nguyen, T. N. (2017).

Combining Word2Vec with revised vector space model for better code retrieval.

Proceedings - 2017 IEEE/ACM 39th International Conference on Software Engineering

Companion, ICSE-C 2017, 183–185. https://doi.org/10.1109/ICSE-C.2017.90

Niu, N., & Mahmoud, A. (2012). Enhancing candidate link generation for requirements tracing:

The cluster hypothesis revisited. 2012 20th IEEE International Requirements Engineering

Conference, RE 2012 - Proceedings, 81–90. https://doi.org/10.1109/RE.2012.6345842

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshynanyk, D., & De Lucia, A. (2013). How

to effectively use topic models for software engineering tasks? An approach based on

Genetic Algorithms. Proceedings - International Conference on Software Engineering,

522–531. https://doi.org/10.1109/ICSE.2013.6606598

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word

representation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural

Language Processing, Proceedings of the Conference, 1532–1543.

66

https://doi.org/10.3115/v1/d14-1162

Peter F. Brown, DeSouza, P. V., Mercer, R. L., Pietra, V. J. Della, & Lai, J. C. (1992). Class-

Based n-gram Models of Natural Language. Computational Linguistics, 18(4), 467–479.

Retrieved from http://dl.acm.org/citation.cfm?id=176316

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.

(2018). Deep contextualized word representations. NAACL HLT 2018 - 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies - Proceedings of the Conference, 1, 2227–2237.

https://doi.org/10.18653/v1/n18-1202

Rodriguez, D. V, & Carver, D. L. (2020). An IR-Based Artificial Bee Colony Approach for

Traceability Link Recovery. IEEE International Conference on Software Maintenance,

ICSM, 32, 1145–1153. https://doi.org/10.1109/ICTAI50040.2020.00174

Rong, X. (2014). word2vec Parameter Learning Explained. Retrieved from

http://arxiv.org/abs/1411.2738

Scott, D., T, D. S., W, F. G., K, L. T., & Richard, H. (1990). Indexing by latent semantic

analysis. Journal of the American Society for Information Science, 41(6), 391–407.

Retrieved from papers2://publication/uuid/BA23C102-A2EA-4493-AEA4-

2B85C3BD3FA1

Sommerville, I. (2016). Software engineering (10th edition). Pearson Education Limited.

Tian, Q., Cao, Q., & Sun, Q. (2019). Adapting Word Embeddings to Traceability Recovery.

Proceedings of 2018 International Conference on Information Systems and Computer Aided

Education, ICISCAE 2018, 255–261. https://doi.org/10.1109/ICISCAE.2018.8666883

Wang, Xiaobo, Lai, G., & Liu, C. (2009). Recovering Relationships between Documentation and

Source Code based on the Characteristics of Software Engineering. Electronic Notes in

Theoretical Computer Science, 243, 121–137. https://doi.org/10.1016/j.entcs.2009.07.009

Wang, Xinye, Cao, Q., & Sun, Q. (2019). An Improved Approach based on Balanced Keyword

Weight to Traceability Recovery. IOP Conference Series: Materials Science and

Engineering, 569(5). https://doi.org/10.1088/1757-899X/569/5/052109

Xiao, Y., Keung, J., Mi, Q., & Bennin, K. E. (2018). Improving Bug Localization with an

Enhanced Convolutional Neural Network. Proceedings - Asia-Pacific Software Engineering

Conference, APSEC, 2017-Decem, 338–347. https://doi.org/10.1109/APSEC.2017.40

67

Ye, X., Bunescu, R., & Liu, C. (2014). Learning to rank relevant files for bug reports using

domain knowledge. Proceedings of the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, 16-21-Nove, 689–699. https://doi.org/10.1145/2635868.2635874

Ye, X., Shen, H., Ma, X., Bunescu, R., & Liu, C. (2016). From word embeddings to document

similarities for improved information retrieval in software engineering. Proceedings -

International Conference on Software Engineering, 14-22-May-, 404–415.

https://doi.org/10.1145/2884781.2884862

Zhao, T., Cao, Q., & Sun, Q. (2018). An Improved Approach to Traceability Recovery Based on

Word Embeddings. Proceedings - Asia-Pacific Software Engineering Conference, APSEC,

2017-Decem, 81–89. https://doi.org/10.1109/APSEC.2017.14

Zheng, Y., Shi, Y., Guo, K., Li, W., & Zhu, L. (2017). Enhanced word embedding with multiple

prototypes. 4th International Conference on Industrial Economics System and Industrial

Security Engineering, IEIS 2017, (91546201). https://doi.org/10.1109/IEIS.2017.8078651

Zhou, J., Zhang, H., & Lo, D. (2012). Where should the bugs be fixed? More accurate

information retrieval-based bug localization based on bug reports. Proceedings -

International Conference on Software Engineering, 14–24.

https://doi.org/10.1109/ICSE.2012.6227210

68

VITA

Mahfuza Khatun is from Bangladesh. She received her Bachelor of Science and Master of

Science (Thesis) degree in Physics from the University of Dhaka, Bangladesh. She is now on her

way to pursue a second Master of Science in Computer Science (Thesis) from Louisiana State

University (LSU), Baton Rouge. Her area of concentration is Software Engineering. She has

been working as a Graduate Assistant with the Education Support Service Team at Cox

Communication Academic Center for Student-Athlete (CCACSA), LSU. She acknowledges the

CCACSA, LSU family’s support towards her endeavor during her entire period as a graduate

student at LSU. The knowledge and experiences gathered from this institution have elevated both

of her personal and profession lives. She is now focusing to serve a greater community.

	EVALUATING WORD EMBEDDING MODELS FOR TRACEABILITY
	Recommended Citation

	tmp.1626825919.pdf.Ou3lK

