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ABSTRACT 

Traceability link recovery (TLR) is a software engineering activity that helps to ensure software 

quality and assists with keeping track of changes by establishing links between software artifacts 

that are a part of the software engineering process, such as requirements, use cases, source code, 

test cases, and documentation. Software requirement artifacts are typically written in natural 

language. An Information Retrieval process is frequently used in many software activities, 

including the TLR activity. Recently, Word Embedding (WE) techniques have been used in 

many natural language processing tasks as well as in TLR tasks. We investigate the effectiveness 

of WE techniques in conjunction with the ABC algorithm for automating the TLR process 

between requirements and source code. The ABC algorithm, which is a metaheuristic search 

Swarm Intelligence (SI) algorithm that simulates the behavior of honeybee swarms, is useful for 

solving multidimensional optimization problems. We use a modified ABC algorithm in which 

the initial population is generated randomly based on the document ID number within the 

document set boundaries. We use the algorithm to optimize the objective function and find the 

best links between the requirements and the source code. For our investigation we use three open 

source pretrained models: Word2Vec, GloVe, and FastText. We experiment with three objective 

functions that are optimized by the ABC algorithm to find the best possible links between the 

documents. Our experimentation with three datasets indicates that the three objective functions 

result in similar success rates. We use precision, recall, and the F1 measure to determine 

effectiveness for the TLR task. Our results show that the recall is higher than the precision and 

that the resulting F1 value does not indicate promise for combining word embedding, our three 
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objective functions, and the modified ABC algorithm as a recommended approach for 

automating traceability links between requirements and source code.    
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1. INTRODUCTION 

Software engineering (SE) is a continuously evolving field; it evolves because of its 

built-in nature of incompleteness (Sommerville, 2016). Moreover, it has to fit in with the 

demands and needs of consumers. According to Lehman’s Law, “Software systems have to 

change if they are to remain useful.” (as cited in Sommerville, 10th ed., p. 271). Requirement 

changes to fit customer expectations require SE to be adaptive. It demands modifications 

throughout the lifetime of a system. Traceability Link Recovery (TLR) assists software system 

evolution as modifications are incorporated into system.  

More specifically, TLR is defined as a SE task that establishes a link between different 

software artifacts from high-level (HL) documentation to low-level (LL) source code (Rodriguez 

& Carver, 2020). It ensures the quality of the product, keep track of changes, and helps to 

analyze change impact. It is vital for safety critical products and imperative for bug localization 

and feature location tasks. Despite its importance, it can be a very time and labor consuming 

task, motivating researchers to invest in studying how to automate the task of evaluating 

software links.  

Artifacts, including requirements, use cases, test cases, and design documentation are 

generally written using natural language; therefore, Information Retrieval (IR) processes are used 

in many software engineering tasks including the TLR task (Antoniol, Canfora, Casazza, De 

Lucia, & Merlo, 2002). The IR probabilistic, Latent Semantic Indexing (LSI) and Vector Space 

Model (VSM) are among the most popular IR techniques that are used for this task. An IR model 

is often used as a base model with other machine learning (ML) techniques, such as learning to 
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rank (LtR) or optimization algorithms, in order to improve the overall success in evaluating 

links. In such an endeavor, (Rodriguez & Carver, 2020) combine IR with the ABC (Artificial 

Bee Colony) algorithm to accomplish link recovery. Their investigation provides an encouraging 

result in Precision, Recall, and F1 measure, which they hypothesize could be improved even 

more with additional tuning (e.g., experimental set up change, parameter adjustment). They 

found that the ABC implementation achieves better Recall when compared to other methods.   

 Recently, word embedding (WE) has earned popularity in many natural language 

processing (NLP) tasks. It is also used in TLR tasks, and it has been shown to perform 

significantly better than the traditional IR techniques (Tian, Cao, & Sun, 2019; Zhao, Cao, & 

Sun, 2018; Wang et al., 2019; Bella et al., 2019). The success of WE over traditional IR 

techniques lies in its ability to carry the semantic meaning of the words. Unlike existing IR 

techniques, WE values the order of the words in a context and resolves the lexical gap problems 

(Zhao et al., 2018). 

Observing the success of the ABC algorithm in the TLR task (Rodriguez & Carver, 

2020), we were motivated to further investigate using the WE model along with the ABC 

algorithm. In our experiment, we use open source pretrained WE models Word2Vec, GloVe and 

FastText models.  

We apply the ABC algorithm following the (Rodriguez & Carver, 2020) implementation. 

Instead of the TFIDF (term frequency-inverse term frequency) based weighted cosine similarity 

function, we use three different similarity functions, which we call sim_1, sim_2, and sim_3. 

Using the available pretrained WE models, we learn the term vectors. Then, we learn the 
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document vector representation by taking the average of term vectors contains in that document. 

In sim_1, we calculate the cosine similarity between these documents. In addition to the 

similarity measure used in sim_1, we find another similarity score that is the value given by the 

number of common terms in two documents (HL and LL documents) divided by the total terms 

in their combined document (Bella, Creff, Gervais, & Bendraou, 2019). The sim_2 is a linear 

combination of these two scores weighted by an empirical parameter. In sim_3 we find the HL 

document vectors in the same way as in sim_1, but the LL document vectors are weighted using 

their TFIDF score (Cheng, Yan, & Khan, 2020). Finally, the ABC algorithm is used to optimize 

these objective functions. We organize our whole investigation around the following research 

questions: 

RQ1: How does performance vary with each objective function?  

RQ2. How does performance vary with different word embedding (WE) pretrained 

models?  

RQ3. How do a WE based objective function and an ABC combination perform in TLR 

task automation? 

In Section 2 we review the related literature, Section 3 discusses word embedding, 

Section 4 describes the dataset and pretrained models, Section 5 explains the methodology of the 

overall experiment, Section 6 includes the experimental setup along with the detail 

experimentation process, and Section 7 contains the results and discussions. In Section 8 we 

conclude our work and provide future research paths.    
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2. LITERATURE REVIEW 

In an endeavor to reduce the lexical gaps between the software artifacts written in natural 

language (search queries) and source code, (Ye, Shen, Ma, Bunescu, & Liu, 2016) first use word 

embedding in the software engineering text retrieval task. They learn the word embedding using 

word2vec Skip-gram model (Mikolov, Chen, Corrado, & Dean, 2013b) on the documents that 

contain both high-level and low-level languages, such as API documents, tutorials, and bug 

reports. Then they measure the semantic similarity between word vectors learned from the 

embedding using the cosine similarity measure. To measure the document similarity, they use a 

slightly modified version of the Mihalcea et al.’s (Mihalcea, Corley, & Strapparava, 2006) 

approach, where they first calculate the similarity between each word w in a document S (bag-of-

words) to any word 𝑤′ in another document T (in bag-of-words representation) and use the 

maximum value. This relation is expressed in the following Equation (1): 

 𝑠𝑖𝑚(𝑤, 𝑇) = 𝑚𝑎𝑥
𝑤′𝜖 𝑇

𝑠𝑖𝑚(𝑤, 𝑤′) (1) 

 

where the word-to-word similarity is simply the inner product of their learned vectors shown in 

Equation (2): 

 𝑠𝑖𝑚(𝑤𝑠, 𝑤𝑡) = 𝑐𝑜𝑠(𝑤𝑠, 𝑤𝑡) =
𝑤𝑠

𝑇 𝑤𝑡

||𝑤𝑠||||𝑤𝑡||
  (2) 

 

To achieve a better result, they first define a set of words with positive similarity: 

𝑃(𝑇 → 𝑆) = {𝑤 𝜖 𝑇|𝑠𝑖𝑚(𝑤, 𝑆) ≠ 0} 
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excluding words with no embedding or that simply do not appear in the target document. They 

name these modified similarities as asymmetric similarities, which are calculated by taking the 

sum of similarities between words in a document and the entire bag-of-words in another 

document divided by the number of words in the previously defined set of words with positive 

similarity. These computations are given in Equations (3) and (4): 

 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑇 → 𝑆) =
∑ 𝑠𝑖𝑚(𝑤, 𝑆)𝑤𝜖𝑃(𝑇→𝑆)

|𝑃(𝑇 → 𝑆)|
 (3) 

 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑆 → 𝑇) =
∑ 𝑠𝑖𝑚(𝑤, 𝑇)𝑤𝜖𝑃(𝑆→𝑇)

|𝑃(𝑆 → 𝑇)|
 (4) 

 

Finally, the symmetric similarity is computed by summing the two asymmetric similarities as 

defined in Equation (5):  

 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑇, 𝑆) = 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑆 → 𝑇) +  𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑖𝑚(𝑇 → 𝑆) (5) 

 

They improve the performance of bug localization tasks, as well as for API code retrieval tasks 

(Ye et al., 2016).  

In another API code retrieval task improvement method proposed by (Nguyen, Nguyen, 

Phan, Nguyen, & Nguyen, 2017), they combine traditional IR with Word2Vec to achieve better 

accuracy in code retrieval compared to the simple IR or simple Word2Vec approach. They first 

find the two similarity scores using the Word2Vec model used in (Ye et al., 2016) Equation (5) 

and the rVSM (revised Vector Space Model) model proposed in (Zhou, Zhang, & Lo, 2012). The 

rVSM model presented in Equation (8) differs from the classical VSM model by providing 
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higher preference to larger documents than smaller ones. To increase the ranking score of larger 

documents, rVSM model includes a logistic function Equation (9) in the VSM model. In this 

investigation, the final similarity is computed using Equation (7), which is measured by taking 

the linear combination of the similarity scores (rVSM score and Word2Vec score) weighted by a 

parameter (α) that is calculated based on the Jaccard similarity of the two documents (HL and LL 

documents). Jaccard similarity is calculated using Equation (6): 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑇, 𝑆) =
|𝑇 ∩ 𝑆|

|𝑇| + |𝑆| − |𝑇 ∩ 𝑆|
 (6) 

 

where 𝛼 = {
0, 𝑖𝑓 𝑛𝑜𝑟𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑇,𝑆) ≤ 𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, which means that α is 0 when the 

Jaccard similarity is less than or equal to an empirically chosen threshold value, otherwise it is 1. 

 𝑠𝑖𝑚(𝑇, 𝑆) =  𝛼 ∗  𝑛𝑜𝑟𝑚_𝑟𝑉𝑆𝑀(𝑇, 𝑆) + (1 −  𝛼) ∗ 𝑛𝑜𝑟𝑚_𝑊𝑜𝑟𝑑2𝑉𝑒𝑐(𝑇, 𝑆) (7) 

 

where the rVSM score and Word2Vce score are the normalized value calculated using Equation 

(8) and Equation (5) respectively. 

 𝑟𝑉𝑆𝑀(𝑇, 𝑆) = 𝑔(#𝑡𝑒𝑟𝑚) ∗ 𝑐𝑜𝑠(𝑇, 𝑆) (8) 

 

The function g(#terms) in Equation (8) is defined by Equation (9): 

 𝑔(#𝑡𝑒𝑟𝑚)  =
1

1 + 𝑒−𝑁(#𝑡𝑒𝑟𝑚𝑠)
 (9) 
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where #term represents the number of terms in a given document. In Equation (9), N is a 

normalization factor calculated by using Equation (10). 

 𝑁 =  
𝑥 −  𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥  −  𝑥𝑚𝑖𝑛
 (10) 

 

where x is any data in a dataset, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum data in that 

dataset, respectively.  

In a TLR task, (Tian et al., 2019) adopt pre-trained word embedding. They consider the 

out of vocabulary (OOV) words; OOV words are those words that are not found in the pretrained 

embedding model. They argue that OOV words are important factors for TLR tasks, as they are 

usually the named entities, technical terms or compound words in the source code. They define a 

set of OOV words, 𝑜𝑜𝑣_𝑠𝑒𝑡 along with the Word2Vec word set, 𝑤2𝑣_𝑠𝑒𝑡 (words with 

embedding) where  

𝑜𝑜𝑣_𝑠𝑒𝑡 = {𝑤𝑜𝑟𝑑|𝑤𝑜𝑟𝑑 𝜖 𝑉 ∩ 𝑤𝑜𝑟𝑑 ∉ 𝑤2𝑣_𝑠𝑒𝑡} 

𝑤2𝑣_𝑠𝑒𝑡 = {𝑤𝑜𝑟𝑑𝑠 𝑡ℎ𝑎𝑡 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔} 

where V represents the Vocabulary. Then they map each document into the VSM model based on 

the OOV set, which is build using the term-frequency (TF) and inverse document frequency 

(IDF) as defined by Equation (11), (12), and (13), respectively.  

 𝑇𝐹𝑖,𝑗 =  
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘
 (11) 

 𝐼𝐷𝐹𝑖 = 𝑙𝑜𝑔
𝐷

1 + |{𝑗: 𝑖𝜖𝑑𝑗}|
 (12) 
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 𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹𝑖,𝑗 ∗  𝐼𝐷𝐹𝑖 (13) 

 

where ni,j = number of times ith word appears in document dj, ∑ nk,jk  = number of time ith word 

appears in D, D is the number of total documents in the dataset, and |{j: iϵdj}| = number of words 

contain in the document dj. To calculate the cosine similarity of the documents with the 

embedding set, they measure the average of the word vectors in each document to get the 

document vectors given by Equation (14).  

 𝑇𝑤2𝑣 =  
∑ 𝑤𝑖

𝑚
𝑖=1

𝑚
 (14) 

 

where wi is a word in 𝑤2𝑣_𝑠𝑒𝑡. Then the final similarity is computed using Equation (15):  

 𝑠𝑖𝑚(𝑇, 𝑆) =   𝛼 ∗ 𝑐𝑜𝑠(𝑆𝑤2𝑣, 𝑇𝑤2𝑣) + (1 − 𝛼) ∗ 𝑐𝑜𝑠 (𝑆𝑜𝑜𝑣, 𝑇𝑜𝑜𝑣) (15) 

 

In Equation (15), the cosine similarity of the words in oov_set and w2v_set are adjusted with a 

parameter α which ranges between 0 and 1, (0 <  α < 1). The value of α is empirically chosen 

to achieve higher precision. Additionally, they use the machine learning technique, LtR 

(Learning to Rank), for better accuracy. Their results indicate that this integration of word 

embedding with LtR works better in their TLR task compared to the single word embedding 

implementation. 

  In a similar approach to (Tian et al., 2019), (Xinye Wang, Cao, & Sun, 2019) receive a 

comparable outcome. In this TLR task they both improve their overall result by introducing LtR. 
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However, (Xinye Wang et al., 2019) follow a varied similarity method. Instead of defining a 

OOV word set, they define a set for key words, called IPTs.  IPTs are the top n% words in the 

whole corpus, which is measured using the same TFIDF method as in (Tian et al., 2019). For the 

final similarity measurement, they consider the (Ye et al., 2016) similarity method with a 

weighted word-to-word similarity measurement. They first measure the cosine similarity 

between word vector pairs learned from pretrained-embedding and then weight the similarity 

result with a harmonic parameter, r (>1), and a set of two thresholds, 𝛿l (0 < 𝛿l < 0.5) and 𝛿h (0.5 

< 𝛿h < 1) using the Equation (16):  

 𝑠𝑖𝑚𝑚𝑜𝑑 = 𝑐𝑜𝑠(𝑤, 𝑤′) − [
(0.5 − 𝑐𝑜𝑠(𝑤, 𝑤′))

𝑟
] (16) 

 

where both words 𝑤 and 𝑤′ belongs to IPTs and 𝑐𝑜𝑠(𝑤, 𝑤′) <  𝛿𝑙 , 𝛿ℎ <  𝑐𝑜𝑠(𝑤, 𝑤′). The rest of 

the similarity measurement process is similar to (Ye et al., 2016). 

A novel approach called WELR is introduced by (Zhao et al., 2018) in their TLR task. 

This method is based on the combination of word embedding and LtR methods. Motivated by the 

success of query expansion (QE) in IR tasks, they implement QE in this experiment along with 

the IDF weighting strategy. They use IDF instead of TFIDF to focus only on the common terms 

and to minimize the process time. Initially they form an expansion word set with top (topn%) 

words based on their IDF weight from document S. Then the set is expanded with similar words 

(synonyms) as represented in Equation (17): 

 𝑄𝐸_𝑆𝐸𝑇𝑤 = {𝑤𝑜𝑟𝑑|𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑤𝑜𝑟𝑑) > 𝑎}  (17) 
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where {𝑤 𝜖 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑠𝑒𝑡} and parameter a is the similarity threshold used to remove less 

important words. Both topn% words in the expansion set and parameter a are obtained 

empirically, depending on the dataset. Next, they calculate the asymmetric document similarity 

with a modified version of (Ye et al., 2016). Similarity between a word w and a document T is 

calculated somewhat differently than Equation (3) (Ye et al., 2016). They add an additional term 

defined in Equation (18) that gives the average term similarity for words belonging to the query 

expansion set: 

 𝑔(𝑤, 𝑤′) =  
∑ 𝑙𝑘 ∗ 𝑠𝑖𝑚𝑤2𝑤(𝑤𝑘, 𝑤′)𝑤𝑘 𝜖 𝑄𝐸_𝑆𝐸𝑇𝑤

|𝑄𝐸_𝑆𝐸𝑇𝑤|
 (18) 

 

where  , 𝑙𝑘 =  𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑤𝑘). The modified equation is illustrated in Equation (19):  

 𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑇) = max
𝑤′𝜖 𝑇

{𝛼 ∗ 𝑠𝑖𝑚𝑤2𝑤(𝑤, 𝑤′) + (1 − 𝛼) ∗ 𝑔(𝑤, 𝑤′)} (19) 

 

In Equation (19) the parameter 𝛼 is empirically chosen and tuned with a step of 0.01 to achieve 

an optimal result. If a word is not in the 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑠𝑒𝑡 then Equation (3) is used to calculate 

the word-to-document similarity. These values are then used to calculate the asymmetric 

similarity. Finally, another threshold is analytically defined to filter the ranked list with most 

similar documents followed by the LtR implementation.  

With an aim to reduce false positive link generation in their TLR task, (Bella et al., 2019) 

present a different approach. Their model is called Aggregation Trace Links Support (ATLaS), 



11 

 

which is based on the clustering hypothesis that combines various methods of IR and NLP 

techniques (such as word and sentence embeddings). They present an empirical evaluation of the 

model based on an industrial case study. The inputs of this framework are HL requirements 

documents and LL models in XML Metadata Interchange (XMI) format, which outputs a list of 

traceability links along with their confidence measures. The inputs are preprocessed using basic 

NLP techniques to prepare for the syntactic and semantic measure computation. The syntactic 

measure is computed using LSI (Xiaobo Wang, Lai, & Liu, 2009), LDA (Panichella et al., 2013) 

and VSM (Niu & Mahmoud, 2012) scores, and for the semantic measure they use three 

similarity measures. In these similarity scores they use Word2Vec and GloVe pretrained models 

to learn word vectors and to build a dictionary of synonymous words and phrases. These three 

similarity scores are based on the Naïve Satisfaction Method  (Holbrook, Hayes, Dekhtyar, & Li, 

2013) presented in Equations (20), (21), and (22). The first similarity score, S1 is obtained by 

direct implementation of the Naïve Satisfaction Method. In the second similarity score, S2 verbal 

phrases and nouns are considered to obtain the score, instead of words. Finally, the third score, 

S3 is a variation of the S1, and obtained after excluding the less impactful words. They assume 

that some frequently appearing words such as, “shall”, “system” are less useful, the same as stop 

words; hence, they filtered out those non-impactful words based on an empirically defined 

frequency threshold.  

 𝑆1 =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑒𝑟𝑚𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
 (20) 
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 𝑆2 =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑛𝑜𝑢𝑛 𝑝ℎ𝑟𝑎𝑠𝑒𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
 (21) 

 𝑆3 =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑖𝑚𝑝𝑎𝑐𝑡𝑓𝑢𝑙 𝑡𝑒𝑟𝑚𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
 (22) 

 

Finally, a confidence matrix is build using all these syntactic and semantic scores. A weight is 

assigned to each of the semantic similarity scores to overcome the lower performance of 

syntactic measures. Based on the matrix associated with each requirement model pair, the true 

links are generated. 

 In bug localization performance improvement research, (Cheng et al., 2020) combine IR 

techniques, rVSM and WE to find similar documents. They use DNN (deep neural network), a 

machine learning technique to integrate these two similarity matrices (rVSM and WE). They 

compare their result with five existing methods BugLocator (Zhou et al., 2012), LtR (Ye, 

Bunescu, & Liu, 2014), LtR based on Word Embedding (Ye et al., 2016), and two deep neural 

network learning based methods DNNLoc (Lam, Nguyen, Nguyen, & Nguyen, 2017) and 

DeepLoc (Xiao, Keung, Mi, & Bennin, 2018). They indicate that their method improved upon 

the existing ones and achieved better statistical significance. This method calculates surface 

lexical similarity and semantic similarity between bug report and source code. To calculate the 

surface similarity, they redefine the well-known VSM into rVSM, which is weighted cosine 

similarity times the length factor, presented in Equation (8). The length factor is added to reduce 

the noise in larger source code files, same as in (Nguyen et al., 2017). Semantic similarity is 

calculated separately for bug report T and source code S. For bug report files, each document 
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vector is the mean of all word vectors (vector learned from the embedding) in the document, and 

the source code document vector is the sum of all words in the document multiplied by their 

TFIDF weight, divided by the length of document given by Equations (23) and (24): 

 𝑆′ =  
1

|𝑆|
∑ 𝑤𝑖,𝑆 ∗ 𝑇𝐹𝐼𝐷𝐹𝑖,𝑆

𝑖𝜖𝑆

 (23) 

 𝑇′ =  
1

|𝑇|
∑ 𝑤𝑖,𝑇

𝑖𝜖𝑇

 (24) 

They do the same measurement for each method in the source code document. Next, the 

similarity results are calculated by taking the maximum from each set computed by Equations 

(25) and (26): 

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑆𝑖𝑚(𝑇, 𝑆) = 𝑚𝑎𝑥 ({𝑟𝑉𝑆𝑀(𝑇, 𝑆)}𝑈{𝑟𝑉𝑆𝑀(𝑇, 𝑚)|𝑚𝜖𝑆}) (25) 

 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝑇′, 𝑆′) = 𝑚𝑎𝑥 ({𝑐𝑜𝑠(𝑇′, 𝑆′)}𝑈{𝑐𝑜𝑠(𝑇′, 𝑚′)|𝑚𝜖𝑆}) (26) 

 

where m and 𝑚′are the methods in S. Finally, they integrate the similarity measures using a DNN 

(deep neural network) method.      

The TLR task is considered as a combinational problem by (Rodriguez & Carver, 2020); 

hence, they applied the ABC optimization algorithm. The search space for this problem is 

defined by the set of document pairs (T, S). Then the ABC algorithm is used to find the best 

solution from that search space that optimizes an objective function. They define their objective 

function as the weighted (by TFIDF) cosine similarity measure between the documents, 

presented in Equation (27): 
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 𝑆𝑒𝑚𝑆𝑖𝑚(𝑇, 𝑆) =  
1

𝑚
(∑ 𝑐𝑜𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡(𝑇, 𝑆))

𝑚

𝑖=1

) (27) 

 

They first preprocess the requirements and source codes separately. The TFIDF model is used to 

find the document vectors. Then, they measure the cosine similarity of each document pair. The 

final similarity score is a value obtained by taking the sum of all the cosine similarity scores 

divided by the total number of document pairs in a dataset, as shown in Equation (27). Following 

this method, they achieve a high Precision and Recall values. 

We summarize our literature review in Table 1. This Table 1 presents the various research 

methods involved in the literature to perform code retrieval, bug localization and TLR tasks. We 

include methods applied to our current research on TLR. Motivated by the literature review, we 

use WE based models in conjunction with an ABC model in our investigation to perform a TLR 

task. Instead of the weighted TFIDF based model as used in (Rodriguez & Carver, 2020) we use 

WE based models to investigate the effectiveness for the TLR task. 
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Table 1. Summary of Literature Review 

Literature Task Method 

Ye et al. (2016) Bug localization and 

API Code retrieval  

WE based model 

Nguyan et al. (2017) API Code retrieval  Combined rVSM model and WE based model 

Cheng et al. (2020) Bug localization Integrated rVSM and WE based DNN model 

Tian et al. (2019) TLR Combined WE and TFIDF based model 

Wang et al. (2019) TLR  WE based model weighted by a harmonic 

parameter 

Zhao et al. (2018) TLR  WELR: Weighted (by IDF) WE based model 

and LtR model 

Bella et al. (2019) TLR ATLaS: Clustering hypothesis-based model 

Rodriguez & Carver 

(2020)  

TLR Weighted TFIDF based model and ABC 

model 

Khatun & Carver 

(2021)  

TLR WE based models and ABC model 
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3. WORD EMBEDDING 

The simplest way to achieve word to vector representation is the one-hot representation. The 

vector of a given word type (a distinct word) is encoded by setting that element as 1 and the rest 

of the elements in the vocabulary as 0. The dimension of these vectors is equal to the corresponding 

vocabulary size. With this increased dimension, the word to vector transformation becomes very 

challenging and costly. Another drawback of this representation is that it does not carry any 

semantic meaning of the words. Each word is embedded in isolation and contains the same number 

of 0’s and a single 1; hence, the resultant vectors neither provide any information about each other 

nor about themselves. 

N-gram is another popular language model based on the Markov Model (Peter F. Brown, 

DeSouza, Mercer, Pietra, & Lai, 1992). It takes a probabilistic approach in language modeling, 

where words are the atomic units of the model (Mikolov et al., 2013b). The concept is to 

consider a sequence of N-1 words to predict the next possible word in that sequence. Therefore, 

the N-gram model is built by counting the occurrences of a sequence of N words in a given 

corpus and assessing the related probabilities of the words. If a model counts the number of 

occurrences of a single word without looking into any previous words, then it is called a unigram 

model. Likewise, a bigram model predicts a word based on the word right before it; whereas a 

trigram model looks into the previous two words then predict the third possible word in that 

sequence. Again, this process does not carry any information about the words or their order; 

because words are represented as the indices in a vocabulary (Mikolov et al., 2013b). Moreover, 

N-gram is known as a sparse model since the word prediction depends largely on the training 
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dataset. If a certain word is not in the training set, it gets a zero-probability score. Consequently, 

the training requires a large number of data to build a quality model, which increases 

computational overhead.  

Word embedding (WE) handles the ‘curse of dimensionality’ (refers to all the problems 

that come with oversized dimension) by utilizing a neural network-based language model 

(NNLM) (Bengio, Ducharme, & Vincent, 2001). WE also outperforms the N-gram model in a 

larger context (greater than trigram) (Bengio et al., 2001). It replaces the discrete vector 

representation (as in one-hot) with distributional vector representation of words. It is developed 

based on the hypothesis that words with similar context have similar meaning (Zheng, Shi, Guo, 

Li, & Zhu, 2017). Each word vector is learned by considering that each element in the vector 

space (represented by the vocabulary) takes part in forming that vector.   

3.1. Word2Vec 

The Word2Vec WE method is presented by Mikolov et al. (Mikolov, Chen, Corrado, & 

Dean, 2013a). They indicate that the model can learn a word vector with better dimensionality at 

significantly lower computational costs than N-gram. This cost optimization is achieved by 

removing the non-linear hidden layers, leaving only the projection layer in the neural network. 

The architecture is based on two separate steps, consisting of a continuous word vector learning 

step (here they use one-hot method) and a training step (objective is to maximize the conditional 

probability) that trains the N-gram NNLM on that learned vector. They propose two models, 

Continuous Bag-of-Words (CBOW) and continuous Skip-gram (SG) models. These models are 

elaborately explained in (Goldberg & Levy, 2014) and (Rong, 2014). The concept is that the 
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CBOW predicts the current word vector based on the input context vectors (like bigram model), 

whereas SG predict the context vectors of an input word vector. Figure 1 represents these two 

architectures. 

 

 

 

 

 

 

Figure 1. CBOW and SG model architectures 

In their extended work with the SG model (Mikolov et al., 2013b), they replace the hierarchical 

SoftMax with Negative Sampling method, and introduce the subsampling of frequent words. 

They find that these changes improve the obtained vector (both word and phrase vectors) quality 

and speed up the overall process. They find that compared to other concurrent neural network-

based models, Skip-gram outperforms in word analogy tasks. Additionally, they find that the 

time complexity remains significantly low even with their implementation of larger (two to three 

times) training datasets. With these improvements, the Skip-gram model achieved state-of-the-art 

recognition in word embedding. Later, they publish this trained model as Word2Vec model for 

public use. Since then, researchers have implemented the Word2Vec model in many SE tasks, 
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including the TLR task (Guo, Cheng, & Cleland-Huang, 2017; Nguyen et al., 2017; Tian et al., 

2019; Xinye Wang et al., 2019; Zhao et al., 2018). 

3.2. GloVe 

 Global Vector (GloVe) for word representation captures a global corpus statistic, based on 

the word-to-word cooccurrence (Pennington, Socher, & Manning, 2014). Pennington et al. 

(Pennington et al., 2014) claim that this model performs better in analogy tasks, by combining 

two popular methods, the global matrix factorization method and Word2Vec model. It starts with 

building the word-word cooccurrence matrices, which tabulates the number of times a word 𝑤𝑗 

occurs in a given context of word 𝑤𝑖, and the sum of the number of times any other word appears 

in that same context of word 𝑤𝑖. Next the probability of a word  𝑤𝑗 appearing in the context of a 

word 𝑤𝑖 is measured by taking their ratio. Then the ratio of the probabilities is used instead of 

the probabilities as the base for learning word vectors. They argue that the probability ratio 

performs better not only in separating the relevant words from the irrelevant ones, but also in 

separating two relevant words. The cooccurrence matrix is then factorized following the LSA 

model (Scott, T, W, K, & Richard, 1990)  and used as a baseline model. They assert that this 

model does a better job for the following tasks: word similarity, named entity recognition, and 

word analogy tasks. They also compare this model with the Word2Vec model and assert that 

GloVe consistently outperforms Word2Vec.  

3.3. FastText 

 According to (Bojanowski, Grave, Joulin, & Mikolov, 2017), many popular continuous 

word representations lack morphological meaning by assigning distinct vectors to each word. 
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They propose the FastText model incorporating the N-gram in the SG model (Mikolov et al., 

2013b). They represent each word as a bag of character N-grams (instead of one-hot 

representation). Hence, each word vector becomes the sum of these character N-gram vectors 

comprising that word. They start by building a set of character N-gram. They assign a special 

boundary symbol “< >” representing the character N-grams of a word. This boundary symbol 

separates the suffixes and prefixes of a word from other character sequences. They also consider 

each word as a special sequence and wrap them with the same boundary symbol. The final set of 

N-grams includes all these character N-grams as well as the special sequences. This N-gram 

representation includes 3 ≤ 𝑁 ≤ 6. Using the Fowler-Noll-Vo (FNV-1a variant) hashing 

function, they minimize the memory requirement of the model, where they map N-grams to 

integers, limiting it from1 to 2x106. Therefore, words are described by their specific indices in 

the dictionary along with the set of hashed N-grams they consist of. They state that this model is 

capable of learning reliable representations for rare words through its shared representation 

across words (an out of vocabulary word can be represented by summing up the character N-

grams consisting of that word). Consequently, they assert that the consideration of the subword 

information has significantly improved their model, and it achieved state-of-the-art performance 

in word analogy and similarity tasks. Furthermore, they indicate the model as a simple and fast 

model, requiring no additional preprocessing step.   
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4. ABC ALGORITHM 

The ABC algorithm was developed by observing the social behavior of honeybee swarms 

(Karaboga & Basturk, 2007). The artificial bee colony model simulates the behavior of the real 

bee swarms, and it is used for solving multidimensional optimization problems. In this model 

there are three groups of bees: employed bees, onlooker bees, and scout bees. Half of the total 

population in a colony are employed bees and the rest are onlookers. The number of food sources 

around the hive is equal to the number of assigned employed bees, which means that each 

employed bee is assigned to exactly one food source. Once a food source is abandoned by the 

bees, the associated employed bee becomes a scout bee. The scout bee then randomly searches 

for new potential food sources and memorizes their locations to share with other bees in the hive. 

The information sharing takes place in a dance area in the hive via waggle dancing of the bees. 

The onlooker bee on the dance floor carefully observes the dances and employs herself to a 

profitable food source.  

The position of a food source represents a possible solution of the optimization problem, and 

the quality of the solution is determined by the nectar amount of the source. Therefore, the 

number of solutions in a population is equal to the number of employed bees or onlooker bees. 

The algorithm first generates a randomly distributed initial population based on the food source 

positions. Then the employed, onlooker, and scout bees initiate their repetitive search cycle. An 

employed bee memorizes the position of a new food source only if it provides a better nectar 

amount (fitness) than the existing source in her memory; otherwise, she keeps the information of 

the old source. Once all the employed bees in a hive complete their search process, they gather in 
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the waggle dance area and share their knowledge about the source position and the 

corresponding nectar value through waggle dancing. An onlooker bee observes their dance and 

finds a food source based on a probability value associated to its nectar amount. The employed 

bee modifies the source position in her memory and checks its nectar value. If the nectar value of 

the new one is higher than the previous one, then the bee forgets the old one and memorizes the 

new one. A more detail explanation of the steps involved in the ABC algorithm is provided 

below. 

4.1. PARAMETER INITIALIZATION 

The ABC algorithm has four control parameters that need to be initialized in the 

beginning: the solution number (SN), the maximum cycle number (MCN), and the value of limit. 

The number of solutions (SN) is equal to the number of employed bees or onlooker bees in a 

hive. The parameter MCN controls the maximum number of food generation. The parameter 

limit, called the limit for abandonment (Karaboga & Basturk, 2007), is the maximum number of 

attempts that an employed bee gets to find an improved food source before abandoning the 

current food source.  

4.2. INITIAL POPULATION GENERATION 

An initial population of size SN is generated following Equation (28). Each solution 

vector Xi,j is D-dimensional; dimension D is equal to the number of optimization parameters:  

 𝑋𝑖,𝑗 =  𝐿𝐵𝑗 +  𝑟𝑎𝑛𝑑(0,1) ∗ (𝑈𝐵𝑗  −  𝐿𝐵𝑗) (28) 
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where 𝑖 ∈ {1, 2, … , SN}, 𝑗 ∈ {1, 2, … , D}, rand (0, 1) generates random numbers between 0 and 1, 

and LBj, UBj are lower and upper values of the decision variable Xi,j.  

4.3. EMPLOYED BEE PHASE  

Each employed bee visits its assigned food source and memorizes its position and nectar 

value. After the waggle dance phase, she modifies the information in her memory using Equation 

(29) to produce a new potential food source. She applies a greedy selection method to find the 

best possible source at the time. If the old source has a higher nectar value than the new one, then 

she keeps the old source information in the memory without any change; otherwise, the new 

source has a high nectar value. She then forgets the old food source and memorizes the new 

source information. 

 𝑉𝑖,𝑗  =  𝑋𝑖,𝑗 + 𝑟𝑎𝑛𝑑(−1, 1)  ∗  (𝑋𝑖,𝑗  −  𝑋𝑘,𝑗) (29) 

  

where 𝑘 ∈ {1, 2, … , SN} is randomly determined and has to be different than i, and rand (-1, 1) is 

a random number between -1 to 1. This candidate food source generation is controlled by the 

parameter MCN so that the food sources are limited to the neighboring area of the hive.   

4.4. ONLOOKER BEE PHASE  

An onlooker bee carefully observes the waggle dancing of employed bees. Based on the 

nectar value associated to each source, the bee calculates the probability of the source applying 

Roulette Wheel Selection method presented in Equation (30): 

 𝑃𝑖 =  
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑆𝑁
𝑗=1

 (30) 
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where, Pi is the probability of food source 𝑋𝑖, 𝑓𝑖𝑡𝑖 is the fitness cost (nectar value) of 𝑋𝑖 at ith 

position, and ∑ 𝑓𝑖𝑡𝑗
𝑆𝑁
𝑗=1  is the total fitness cost of all the solution pairs at this position.  

4.5. SCOUT BEE PHASE 

When the food source is not improved within the defined limit (cycle number), the onlooker 

bee abandons it. The associated employed bee becomes a scout bee. This scout bee roams around 

in search for new resources and follows the same procedure as in the initial population 

generation step.  

4.6. TERMINATION  

The above steps are reiterated until termination condition is met. This condition is expressed 

with the parameter MCN, empirically allocated in the initialized stage for convergence. 
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5. DATASETS AND PRETRAINED MODELS 

5.1. DATASETS 

For our experiment we choose three datasets, EasyClinic, eTour, and EBT. These datasets 

are recurrently used in literature for many software engineering tasks, especially in the TLR task 

of bug localization. We collect the datasets from the Center of Excellence for Software and 

Systems Traceability (CoEST) website (coest.org), an open-source resource for traceability 

research. All of our datasets include the requirement/use-cases and source code (represented by 

classes) documents along with their trace links, which are needed to validate our results. These 

datasets are presented in Table 2. 

The eTour project is a tour guide project, EasyClinic is a project for hospital 

management, and Event Based Traceability (EBT), a traceability software built upon event-

notification. These systems are developed in Java programming language. The eTour includes 58 

use cases, 116 Java source code classes, and 308 trace links between use case to class. EBT has 

40 requirements, 50 source code classes, and 98 true links between them. EasyClinic contains 30 

use cases, 20 interaction diagrams, 63 test cases, and 47 class description. In total EasyClinic 

provides 1388 trace links, which includes 93 trace links between the use case to class 

description. 
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Table 2. Dataset Description 

Dataset Description True links 

eTour • Tour guide project 

• 58 use cases  

• 116 code classes 

• Lines of code 25,011 

• 308 trace links from use cases to 

code classes  

EBT • Event based traceability 

software 

• 40 requirements 

• 50 java source code classes 

• Contains 2,773 lines of 

code 

• 25 test cases 

• 98 trace links from requirements to 

classes  

• 51 trace links from requirements to 

test cases 

EasyClinic • Hospital management 

project 

• 30 use cases (UC) 

• 47 code classes (CC) 

• 63 test cases (TC) 

• 20 interaction diagrams 

(ID) 

• 93 trace links from use cases to code 

classes  

• 63 UC-TC links, 26 UC-ID links, 69 

ID-CC links, 83 ID-TC links, 204 

TC-CC links, 59 ID-ID links, 144 

UC-UC links, 578 TC-TC links, 69 

CC-CC trace links 

 

 

5.2. PRETRAINED MODELS 

In our investigation we consider the following three publicly available pre-rained word 

embedding models: Google’s Word2Vec (Mikolov et al., 2013a), GloVe by Stanford 

(Pennington et al., 2014), and Facebook produced FastText (Bojanowski et al., 2017). 
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The pretrained Word2Vec model is trained on about 100 billion words and phrases 

collected from Google News. It includes 3,000,000 word vectors with dimension 300. The file 

size is 1662 MB. Table 3 depicts a brief description of the pretrained models. 

Two different GloVe models are available, one based on Twitter and the other trained on 

datasets collected from Wikipedia 2014 and Gigaword 5 (6B tokens uncased). They each have a 

vocabulary of size 400,000 and come with varied file size and vector dimension. For our 

experiment, we use the Wiki-Gigaword combination-based model, which comes in a file of size 

376 MB, and the vector dimension is 300. We convert these models into Genism w2v format 

before use.  

FastText is an extension of Word2Vec created by Facebook’s AI Research (FAIR) lab in 

2015 (Liu, Chan, Feng, Fulton, & Wu, 2019). FastText includes 999,999 word vectors of 

dimension 300. The model is trained on dataset Wikipedia 2017, UMBC web base corpus and 

statmt.org news dataset (16B tokens). The file size is 958MB. 
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Table 3. Pretrained Models 

Pretrained Embedding  Description 

Word2Vec • Trained on about 100 billion words and phrases collected 

from Google news 

• Vocabulary size 3,000,000  

• Vector dimension 300 

• File size 1662 MB 

GloVe • Trained on dataset collected from Wikipedia 2014 and 

Gigaword 5 (6B tokens uncased) 

• Vocabulary size 400,000 

• Vector dimension 300 

• File size 376 MB 

FastText • Trained on Wikipedia 2017, UMBC webbase corpus and 

statmt.org news dataset (16B tokens) 

• Vocabulary size 999,999  

• Vector dimension 300 

• File size 958 MB 
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6. METHODOLOGY 

We provide an overview of the techniques we use from the data preprocessing to the 

optimization process. Our method involves four separate steps: 

1. Preprocess data. 

2. Learn word vectors using pretrained WE models. 

3. Choose similarity measures. 

4. Run the ABC algorithm using the similarity measures.  

6.1. DATA COLLECTION AND PREPROCESSING 

 After data collection, we separate the high-level (HL) textual documents (such as 

requirements and use cases) and low-level (LL) documents (source code files) for our 

experimentation. We preprocess the HL and LL documents separately. First, we remove the 

numeric and non-alpha numeric from the documents, leaving only the meaningful words. We 

convert those meaningful words into lowercase, remove stop words and tokenize them. In 

addition to these steps, the LL document’s preprocessing requires some more steps because of its 

varied structure. We strip the multiple white spaces and remove the programming language 

keywords that are not relevant for our purpose. These preprocessing steps are performed using 

the highly efficient Genism preprocessing tool.  

6.2. VECTOR REPRESENTATION   

 Once the preprocessing is done, we represent our documents in vector form (feature 

extraction) using the pretrained word embedding model. First, we load the pretrained model into 

our workspace, which takes about 2 minutes in Jupyter notebook. Once the pretrained model is 
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loaded, it is ready to use for learning word embedding from the preprocessed documents. We use 

three different open source pretrained models (Word2Vec, GloVe, FastText) in our experiment. 

The goal is to compare the results obtained using each pretrained model.  

6.3. SIMILARITY MEASURES 

  We use three different similarity measures in our investigation. The first similarity 

measure, sim_1 is obtained using the cosine similarity between two document vectors. To 

calculate the document vector (Tw2v and Sw2v), we first measure the word vectors in a document, 

then take their average as defined in Equation (34). The second similarity measure, sim_2, is a 

linear combination of the first similarity measure, sim_1 with another similarity score, S_score 

obtained using Equation (35). This sim_2 is tuned by a parameter 𝛼, which varies with the 

dataset, and is adjusted empirically to achieve the best results. The third similarity score, sim_3 

is also a cosine similarity between two documents; however, in this case, the LL document 

vectors are learned differently than the HL ones. The HL document vectors (Tw2v) are learned 

using Equation (34). The LL document vectors (Sw2v_tfidf) are learned using Equation (36), where 

we include the TFIDF weight of the LL document. These three similarity functions are presented 

in Equations (31), (32), and (33), respectively. 

 𝑠𝑖𝑚_1(𝑇, 𝑆) =  cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣) (31) 

  𝑠𝑖𝑚_2(𝑇, 𝑆) =   𝛼 ∗ 𝑠𝑖𝑚_1(𝑇, 𝑆) + (1 − 𝛼) ∗ 𝑆_𝑠𝑐𝑜𝑟𝑒 (32) 

  𝑠𝑖𝑚_3(𝑇, 𝑆) =  cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣_𝑡𝑓𝑖𝑑𝑓) (33) 

where 𝑇𝑤2𝑣 =  
1

|𝑇|
∑ 𝑤𝑖

𝑖𝜖𝑇

 (34) 
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 𝑆_𝑠𝑐𝑜𝑟𝑒(𝑇, 𝑆) =
𝑁𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑒𝑟𝑚𝑠

𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑟𝑚𝑠
 (35) 

  𝑆𝑤2𝑣_𝑡𝑓𝑖𝑑𝑓 =
1

|𝑆|
∑(𝑤𝑖 ∗ 𝑇𝐹𝐼𝐷𝐹𝑖)

𝑖𝜖𝑆

 (36) 

 

In these similarity functions T and S represent HL and LL documents, respectively. The 

document vector, Tw2v is calculated by averaging the word vectors (w) in document T. The Sw2v is 

calculated in the same way as Tw2v. The value Sw2v_tfidf represents the modified vector 

representation of Sw2v in which each word vector is learned using one of the pretrained models 

and is weighted by the TFIDF score of that word. The TFIDF score is calculated using Equation 

(13). 

6.4. ABC IMPLEMENTATION 

 We use the modified ABC algorithm for the TLR purpose as used in (Rodriguez & 

Carver, 2020). Their objective function is based on weighted cosine similarity, Equation (27). 

We consider three different similarity functions, sim_1, sim_2 and sim_3 defined 

correspondingly in Equation (31), (32), and (33) as our objective functions to evaluate the food 

sources (solution vectors).  

The first step of the ABC implementation involves the generation and initialization of the 

initial population and parameters. We assign unique integer ID numbers to our input data, 

requirements (HL) and source code (LL). A food source is produced by a list of these integer ID 

pairs which belongs to HL and LL documents, respectively. These pairs are generated randomly 

and are controlled by a parameter (Max_size_sol), representing the maximum number of pairs in 
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a food source. The parameter Max_size_sol is empirically decided based on the dataset. Since 

different datasets have different numbers of HL and LL documents, they will have distinctive 

food source sizes. Table 4 is an example of the food source representation, where HL12 is a 

requirement document number with an assigned ID number 12, and LL3 is a source code 

document number with ID number 3.  

 

Table 4. Food Source Representation 

 
 

HL12 LL3 

HL15 LL31 

HL39 LL10 

 

Therefore, the initial population of the modified ABC algorithm is an integer vector consisting of 

the list of random pairs (food source/vector solution). A boundary is set up to keep the random 

generation inside the domain (the maximum ID numbers of the HL and LL documents). The 

lower boundary is set to zero (minimum possible ID value), while the upper boundary depends 

on the maximum ID number of the HL and LL documents in the dataset.  

An individual food source has a distinctive value (nectar value) associated with it, which 

is obtained using the objective function. The solution depends on the quality of this nectar value 

of the food source. An employed bee is assigned to a food source to collect the nectar from it. 

The parameter SN is defined to properly regulate the number of food sources and employed bees 

generated at each iteration. 
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Figure 2. TLR to ABC mapping 

The goal is to find a food source that maximizes the nectar value at each iteration. This situation 

is depicted in Figure 2. 

Each employed bee visits its assigned food source to collect nectar. The mutation 

operator plays a very important role here. It uses a random mutation factor to decide mutation for 

a specific pair. Once the employed bee is assigned for a food source, this operator selects three 

different pairs from the source and applies Equation (37) for mutation (Rodriguez & Carver, 

2020): 

 𝑀𝑢𝑡𝑎𝑡𝑒𝑑𝑃𝑎𝑖𝑟 = [𝑋𝑖]  + (𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑛𝑡𝑒𝑔𝑒𝑟) − [𝑋𝑛]  (37) 

 

where, Xi is the current food source, and Xn is a neighboring food source randomly selected. This 

mutation is regulated by another function to check the boundary conditions of the ID pairs. 

Crossover and mutation act together to produce new possible solutions for an employed bee.  

  

 

 Population regulated by SN 

 

 

 

 

 

 

Food Source:  

Pairs (HL, LL) 

regulated by  

Max_size_sol 

 

Nectar: 

Objective function 

value connected to 

each food source 
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With the information gathered from the employed bees, the onlooker bee performs a 

selection process. For this purpose, we use Equation (30), as used in the original ABC algorithm. 

Using this probability measure, the onlooker bee chooses the quality food source at a given 

position. Then, it uses the mutation operator Equation (37) to produce a new set of food sources.  

The employed bee becomes a scout bee when the food source is not improved within a 

specified cycle number, defined by the parameter limit. This parameter is initialized in the 

parameter initialization step. Then the scout bee generates new random food sources using 

Equation (28). Eventually, the program terminates when it hits the termination condition, MCN, 

which is also predefined to achieve convergence.  
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7. EXPERIMENT 

The experiment is developed in Python-3.6.9 and runs on a Jupyter notebook. The first 

step of the experimentation is the preprocessing of the datasets. We use Gensim 3.8.3 for 

preprocessing and loading the pretrained embeddings. A detailed description of the 

preprocessing was provided in Section 5.  

We evaluate our results based on the IR metrics precision (P) and recall (R). The P value 

is calculated using Equation (38), which measures the correctness of the result based on the 

number of true positives (TP) and false positives (FP) obtained. Equation (39) is used to measure 

the R value, where FN stands for the number of false positive links found. R represents the 

completeness level of the result.  

 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝜖 [0,1] (38) 

 𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝜖 [0,1] (39) 

  

ABC parameter set up: Based on the dataset we set part of the ABC algorithm’s 

parameters initially, which remain unchanged throughout the experimentation. More specifically 

the upper and lower boundaries for a specific dataset will remain the same throughout the 

experimentation process. The lower boundary is set to 0 for all of the datasets, and the upper 

boundaries vary with the dataset. For the EBT dataset we set the upper boundary equal to 40, 

representing the number of HL documents in the dataset. Similarly, for EasyClinic the upper 

boundary is set to 29, and for eTour it is set to 57. 
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7.1. Objective Function sim_1 

 We use sim_1 as the objective function for the ABC algorithm. The function sim_1 was 

described in subsection 6.3. For convenience, Equation (31) is presented again here:  

𝑠𝑖𝑚_1(𝑇, 𝑆) =  cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣) (31) 

 

We run the ABC algorithm at different SN and MCN assignments with objective function 

sim_1. The results using the three different datasets follow. 

EBT dataset with sim_1: The results for the EBT dataset with sim_1 are listed in Table 5. 

The values shown in bold represent the highest values from each embedding model. We use all 

three of the pretrained models on EBT. After some experimentation we set the parameter 

Max_size_sol equals to 250, which provides the best result. The highest P score of 0.1875 is 

obtained using the Word2Vec model, and it is found at 90 MCN and 90 SN assignments. The 

corresponding R score is 0.1837. Using GloVe model, we find the highest P of 0.1739 and the 

highest R of 0.2449 are found at 100 MCN and 50 SN number. The highest R score for FastText 

model was 0.143 with a P score of 0.102 at 50 SN and 100 MCN.  

EasyClinic dataset with sim_1: We list the experimentation on the EasyClinic dataset 

using sim_1 objective function in Table 6. The highest values obtained from each WE model is 

shown in bold. We use all three of the pretrained model for this dataset as well. First, we find the 

parameter Max_size_sol that works best for the EasyClinic dataset. We find that 150 provides the 

best outputs. With the Word2Vec model, assigning the Max_size_sol to 150 and parameter SN 

and MCN to 50, the highest P score obtained is 0.1023 with the corresponding R of 0.0968. The 
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result found with GloVe model has the highest P score of 0.0877 with R score of 0.106, which is 

obtained at 50 SN and 100 MCN assignments. 

Table 5. EBT with sim_1 result 

Embedding Max_size_sol SN MCN P R 

Word2vec 250 50 50 0.1243 0.2245 

60 60 0.1133 0.1735 

70 70 0.1277 0.1837 

80 80 0.1129 0.1429 

90 90 0.1875 0.1837 

100 100 0.1667 0.1837 

110 110 0.1494 0.1327 

150 150 0.1714 0.1224 

GloVe 250 50 50 0.1193 0.2143 

90 90 0.152 0.1939 

100 100 0.169 0.2449 

50 100 0.1739 0.2449 

110 110 0.1354 0.1327 

FastText 250 50 50 0.073 0.1327 

50 100 0.1022 0.1429 

100 100 0.1034 0.0918 
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The FastText pretrained model produces lower results than the other two models. The highest P 

score is 0.034 and R score is 0.043.  

Table 6. EasyClinic with sim_1 result 

Embedding Max_size_sol SN MCN P R 

Word2Vec 150 40 40 0.0566 0.0645 

50 50 0.1023 0.0968 

60 60 0.086 0.108 

90 90 0.085 0.086 

100 100 0.063 0.065 

50 100 0.0725 0.0538 

GloVe 150 50 50 0.071 0.149 

50 100 0.065 0.054 

60 60 0.058 0.054 

100 100 0.0877 0.106 

FastText 150 50 50 0.0213 0.0426 

50 100 0.042 0.032 

100 100 0.0339 0.0426 

 

eTour dataset with sim_1: The results obtained using sim_1 on the eTour dataset are 

listed in Table 7, where the highest values are shown in bold. The best result is obtained using 

the GloVe pretrained model at 400 Max_size_sol and 50 SN and 50 MCN, which scored the 
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highest P of 0.1138 and R of 0.1234. Both Word2Vec and FastText models have comparable 

results. Word2Vec produces the highest P score of 0.0962 and 0.0909 R score. FastText has the 

highest P score of 0.0909 and R score of 0.0974.  

 

Table 7. eTour with sim_1 result 

Embedding Max_size_sol SN MCN P R 

Word2Vec 400 

 

50 50 0.0696 0.0779 

50 100 0.0962 0.0909 

60 60 0.0613 0.0617 

90 90 0.053 0.042 

100 100 0.0882 0.0682 

GloVe 400 50 50 0.1138 0.1234 

60 60 0.066 0.068 

50 100 0.064 0.058 

90 90 0.088 0.068 

FastText 400 50 50 0.0909 0.0974 

60 60 0.0501 0.052 

50 100 0.031 0.029 

90 90 0.067 0.055 
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7.2. Objective Function sim_2 

 We use the sim_2 as the objective function for the ABC algorithm. A detail description 

of sim_2 is presented in subsection 6.3, and Equation (32) is repeated here for convenience: 

𝑠𝑖𝑚_2(𝑇, 𝑆) =   𝛼 ∗ 𝑠𝑖𝑚_1 + (1 − 𝛼) ∗ 𝑆_𝑠𝑐𝑜𝑟𝑒 (32) 

Again, we investigate this objective function based on the three datasets. The 

experimentation is described below, and the results of this investigation are presented in Table 8 

for EBT dataset, Table 9 for EasyClinic and Table 10 for the eTour dataset, accordingly. The 

highest values obtained from each WE model are shown in bold. 

 

Table 8. EBT with sim_2 result 

Embedding Max_size_sol SN MCN ALPHA P R 

Word2Vec 250 50 50 0.5 0.058 0.102 

50 100 0.5 0.045 0.061 

100 100 0.5 0.104 0.112 

GloVe 250 50 50 0.5 0.056 0.102 

50 100 0.5 0.1447 0.1122 

100 100 0.5 0.1346 0.143 

FastText 250 50 50 0.5 0.08 0.123 

50 100 0.5 0.053 0.082 

100 100 0.5 0.105 0.122 
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EBT dataset with sim_2: The highest P value is 0.1447 and R value is 0.112 using the 

GloVe model by setting the ABC parameter Max_size_sol to 250, MCN to 100, and SN to 50. 

The parameter α of sim_2 is assigned to 0.5, chosen empirically. We kept α the same for all three 

of the pretrained models. Both Word2Vec and FastText have similar P and R scores. The best 

results obtained with the Word2Vec model is at 100 SN and MCN assignment; the highest R 

score is 0.112 and R is 0.104. Similarly, the FastText model achieves the highest P score of 

0.105 with an R score of 0.122. These results are listed in Table 8.  

 

Table 9. EasyClinic with sim_2 result 

Embedding Max_size_sol SN MCN ALPHA P R 

Wor2Vec 150 

 

 

50 50 0.5 0.0947 0.0968 

100 0.5 0.065 0.0645 

100 100 0.5 0.0714 0.0851 

GloVe 150 50 50 0.5 0.0899 0.086 

100 0.5 0.0753 0.052 

100 100 0.5 0.0735 0.0538 

FastText 150 50 50 0.5 0.06 0.0645 

100 0.5 0.056 0.055 

100 100 0.5 0.06 0.044 
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EasyClinic dataset with sim_2: The highest P and R scores are obtained at the same 

parameter setup for all three of the models; the ABC parameter Max_size_sol is set to 150, SN 

and MCN both are set to 50, and the sim_2 parameter is set to 0.5, which provides the best result. 

The Word2Vec model provides the best scores out of all three, with a high P score of 0.0947 and 

an R equal to 0.0968. GloVe gives the highest P score of 0.0899 and R score of 0.086. FastText 

provides a P score of 0.06 and R score of 0.0645.  

Table 10. eTour with sim_2 result 

Embedding Max_size_sol SN MCN ALPHA P R 

Wor2Vec 400 

 

50 50 0.5 0.061 0.065 

60 60 0.5 0.052 0.052 

50 100 0.5 0.073 0.071 

100 100 0.5 0.087 0.071 

GloVe 400 50 50 0.5 0.067 0.075 

60 60 0.5 0.073 0.075 

50 100 0.5 0.073 0.071 

100 100 0.5 0.062 0.042 

FastText 400 

 

50 50 0.5 0.084 0.064 

60 60 0.5 0.06 0.062 

90 90 0.5 0.0494 0.042 

100 100 0.5 0.046 0.036 
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eTour dataset with sim_2: The results obtained using objective function sim_2 with the 

eTour dataset and the three models are listed in Table 10. We find that assigning 400 to 

Max_size_sol provides the best result. The GloVe model produces the best results, which is 

0.073 as the P value and 0.075 as the corresponding R value. The values are found with 60 SN 

and 60 MCN assignments. At 100 SN, and MCN with sim_2 parameter set to 0.5, a high P score 

of 0.087 with a R score 0.071 is obtained using the Word2Vec model. A similar result is 

obtained using the FastText model at 50 SN and MCN, which provides the highest P of 0.084 

with a R of 0.064.  

 

7.3. Objective Function sim_3 

 We use the three pretrained models on our datasets with sim_3 as an objective function 

for ABC algorithm. This function is presented in subsection 6.3, Equation (33), and is repeated 

here for convenience: 

𝑠𝑖𝑚_3(𝑇, 𝑆) =  cos(𝑇𝑤2𝑣, 𝑆𝑤2𝑣_𝑡𝑓𝑖𝑑𝑓) (33) 

 

The investigation on the three datasets is presented in Table 11, Table 12, and Table 13; 

where Table 11 represent the EBT dataset, Table 12 is the EasyClinic dataset, and Table 13 is the 

eTour dataset. The bold values in the tables represents the highest value found from each WE 

model.  
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Table 11. EBT with sim_3 result 

Embedding Max_size_sol SN MCN P R 

Word2Vec 250 50 50 0.09 0.153 

50 100 0.112 0.153 

100 100 0.14 0.143 

Glove 250 50 50 0.1356 0.2449 

50 100 0.1544 0.2347 

100 100 0.1869 0.2041 

FastText 250 50 50 0.061 0.112 

50 100 0.066 0.092 

100 100 0.104 0.102 

 

EBT dataset with sim_3: The experiment with the EBT dataset shows that the best R 

score is obtained using the GloVe pretrained model where both MCN and SN are set to 100 at 

which the highest P score and R scores of 0.1869 and 0.2041 are obtained, respectively. The 

Word2Vec and FastText models provide a comparable result. The Word2Vec obtains the highest 

P score of 0.14 and a R score of 0.143 at 100 SN and MCN set up. The FastText model provides 

the highest P score of 0.104 with a R score of 0.102 at 100 SN and MCN. 
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Table 12. EasyClinic with sim_3 result 

Embedding Max_size_sol SN MCN P R 

Word2Vec 150 50 50 0.101 0.0968 

50 100 0.078 0.0538 

70 70 0.057 0.043 

GloVe 150 50 50 0.0761 0.075 

50 100 0.056 0.043 

70 70 0.044 0.032 

FastText 150 50 50 0.036 0.032 

50 100 0.015 0.011 

70 70 0.0299 0.0215 

100 100 0.021 0.011 

 

EasyClinic dataset with sim_3: The EasyClinic dataset obtained the best score with 

Word2Vec, which is a high P equals 0.1011 and R equals to 0.0968. Using the GloVe model, a 

high P of 0.0761 is scored with an R of 0.075. For the FastText model, high P and R scores are 

0.036 and 0.032, respectively. These scores are found at 50 SN and MCN. 

 eTour dataset with sim_3: We find a high R score of 0.081 and corresponding P score of 

0.077. These values are obtained with the GloVe model with the parameter setup of 60 for both 

SN and MCN, and 400 for Max_size_sol. With the Word2Vec model a high P value is found to 

be 0.0785 and the corresponding R score is 0.0747, which are obtained at 50 SN and 100 MCN 
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set up. With the same SN and MCN assignment, the FastText model obtained a comparable result 

as obtained in Word2Vec. For the FastText the highest R score is 0.071 and the corresponding P 

score is 0.073. 

Table 13. eTour with sim_3 result 

Embedding Max_size_sol SN MCN P R 

Word2Vec 400 50 50 0.0589 0.065 

50 100 0.0785 0.0747 

60 60 0.0625 0.0617 

GloVe 400 60 60 0.0767 0.0812 

50 50 0.063 0.054 

50 100 0.059 0.06 

FastText 400 60 60 0.0438 0.0455 

50 100 0.073 0.071 

50 50 0.051 0.068 

 

In Table 14 we summarize the best results obtained applying the three pretrained WE 

models on the three datasets using the three objective functions. Along with the P and R sores, 

we add the F1 measure in this summary table. F1 score is calculated following Equation (40); it 

is obtained by doubling the product of P and R scores divided by their sum. 

 𝐹1 = 2
𝑃 ∗ 𝑅

𝑃 + 𝑅
  (40) 
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The EBT dataset obtains the highest F1 score of 0.203 with the sim_1 function with the 

GloVe model. A comparable score of 0.195 is recorded from the sim_3 function with the GloVe 

model. The sim_1 function with the Word2Vec model obtains 0.186, and with the FastText 

model it scores 0.119. The sim_2 function with both the FastText and Word2Vec score 

comparable values of 0.108 and 0.113, respectively, whereas with the GloVe model it scores 

0.126. The sim_3 with the Word2Vec scores 0.141, the nearest competitive score of 0.103 is 

obtained with the FastText model. 

Table 14. Summary of experiment on three datasets 

Datasets 

Pretrained 

Model 

sim_1 sim_2 sim_3 

P R F1 P R F1 P R F1 

EBT 

Word2Vec 0.188 0.184 0.186 0.104 0.112 0.108 0.140 0.143 0.141 

GloVe 0.174 0.245 0.203 0.145 0.112 0.126 0.187 0.204 0.195 

FastText 0.102 0.143 0.119 0.105 0.122 0.113 0.104 0.102 0.103 

EasyClinic 

Word2Vec 0.102 0.097 0.099 0.095 0.097 0.096 0.101 0.097 0.099 

GloVe 0.088 0.106 0.096 0.090 0.086 0.088 0.076 0.075 0.076 

FastText 0.034 0.043 0.038 0.060 0.065 0.062 0.036 0.032 0.034 

eTour 

Word2Vec 0.096 0.091 0.093 0.087 0.071 0.078 0.079 0.075 0.077 

GloVe 0.114 0.123 0.118 0.073 0.075 0.074 0.077 0.081 0.079 

FastText 0.091 0.097 0.094 0.084 0.064 0.073 0.073 0.071 0.072 
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 EasyClinic dataset records the same F1 score of 0.99 from the sim_1 and sim_3 with the 

Word2Vec model. The sim_2 with Word2Vec scored 0.096. The sim_1 with the GloVe model 

records the same F1 score of 0.96 and with the FastText it obtains 0.038. The sim_2 and sim_3 

with the GloVe model are 0.088 and 0.076, respectively. While with the FastText model sim_2 

scores 0.062, and sim_3 scores 0.034. 

The eTour dataset obtains the highest F1 score of 0.118 with the sim_1 using the GloVe 

pretrained model. eTour obtains a comparable F1 score with sim_1 function using Word2Vec 

and FastText model; with Word2Vec the score is 0.093 and with FastText it is 0.094. For the 

other two objective functions the F1 scores obtained using all three pretrained models have a 

similar result. The sim_2 function with Word2Vec records 0.078, with GloVe the score is 0.074, 

and with FastText it is 0073. The objective function sim_3 scores 0.077, 0.079, and 0.072 with 

Word2Vec, GloVe, and FastText, respectively.   
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8. RESULTS AND DISCUSSION 

Based on our experiment, we revisit the three research questions presented in Section 1.   

RQ1: How does performance vary with each objective function?  

The Table 15 and Figure 3 show the best F1 scores obtained by each dataset using the 

three similarity functions that we use with the ABC algorithm in this investigation.  

 

Table 15. F1 scores of three datasets 

Datasets Pretrained Model 

F1 

sim_1 sim_2 sim_3 

EBT 

Word2Vec 0.186 0.108 0.141 

GloVe 0.203 0.126 0.195 

FastText 0.119 0.113 0.103 

EasyClinic 

Word2Vec 0.099 0.096 0.099 

GloVe 0.096 0.088 0.076 

FastText 0.038 0.062 0.034 

eTour 

Word2Vec 0.093 0.078 0.077 

GloVe 0.118 0.074 0.079 

FastText 0.094 0.073 0.072 
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Figure 3. F1 scores of three datasets based on objective functions  

 

The Figure 3 indicates that the objective function sim_1 outperforms the other two 

functions. The EBT dataset records the best F1 score of 0.203 with sim_1 function trained on 

GloVe model. The eTour dataset also records its highest F1 score of 0.118 with the same GloVe 

model-based sim_1 function. The EasyClinic dataset performs the same score of 0.99 with both 

the sim_1 and sim_3 functions.  

 

Word2Vec GloVe FastText Word2Vec GloVe FastText Word2Vec GloVe FastText

EBT EasyClinic eTour

F1  sim_1 0.186 0.203 0.119 0.099 0.096 0.038 0.093 0.118 0.094

F1  sim_2 0.108 0.126 0.113 0.096 0.088 0.062 0.078 0.074 0.073

F1  sim_3 0.141 0.195 0.103 0.099 0.076 0.034 0.077 0.079 0.072
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Figure 4. Comparison of three objective functions on each dataset 

 

A comparison between the three objective functions based on their statistical significance 

is presented in Figure 4. The Figure 4 represents the mean, standard deviation, and 95% 

confidence level error score of F1 obtained from each dataset using the three objective functions. 

The mean in Figure 4 is the sum of the three WE model’s F1 scores from Table 15 under each 

similarity function divided by three (the number three represents the three WE models). For 

example, the highest mean F1 score of 0.169 is obtained by the EBT dataset with sim_1 function, 

and this score is measured by calculating the sum of F1 sim_1 scores (0.186+0.203+0.119), from 

Table 15 or Figure 3, and dividing the sum by three. The standard deviation represents the 

dispersions of the F1 score, meaning how far the data spreads from the mean. The EBT sim_1 

mean 0.169 has a standard deviation of 0.044, which indicates that the sim_3 mean score of 

sim_1 sim_2 sim_3 sim_1 sim_2 sim_3 sim_1 sim_2 sim_3

EBT EasyClinic eTour

Mean 0.169 0.116 0.146 0.078 0.082 0.070 0.102 0.075 0.076

Standard Deviation 0.044 0.009 0.046 0.034 0.018 0.033 0.014 0.003 0.004

Confidence Level(95.0%) 0.110 0.023 0.115 0.085 0.044 0.082 0.035 0.007 0.009

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

F1 Analysis on each dataset based on Objective 

Functions
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0.146 exists within one standard deviation of sim_1, but the sim_2 mean of 0.116 does not exist 

within one standard deviation of sim_1 mean. The error score of 95% confidence level provides 

the lower and upper limit of the F1 score. The EBT sim_1 mean has an error score of 0.11, which 

indicates that the lowest F1 score could be 0.059 and the highest could be 0.279.  

The EasyClinic dataset achieved its highest mean with sim_2; however, the differences 

between the three means are not very significant as they all exist within one standard deviation of 

each other. Additionally, the standard deviation of sim_1 mean is higher than the other two 

means, which means that the values obtained from sim_1 are more spread out than sim_2. The 

95% confidence level suggests that the best F1 score of 0.163 that could be obtained by the 

EasyClinic dataset is with the sim_1 function and the lowest score of 0.012 could be obtained 

with the sim_3 function. 

The eTour dataset also scored the best mean of 0.102 with the sim_1 function. The lower 

means with low standard deviations of the other two functions indicates that they are not 

competitive enough with the sim_1. With a 95% confidence level, the highest F1 score that could 

be achieved by the eTour dataset is 0.137 and the lowest is 0.067.  

A separate analysis on each dataset in Figure 4 confirms that the sim_1 function is the 

best performer among the three WE based objective functions.  

 

RQ2. How does performance vary with different pretrained models?  

We compare the three pretrained models based on the best F1 score obtained from each 

dataset. The Table 15 and Figure 5 present the F1 score of each dataset based on the three 
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pretrained WE models. The Figure 5 shows that the GloVe model records the highest F1 score 

for both EBT and eTour datasets. For EasyClinic, The Word2Vec model produces the highest 

score of 0.99, and with the score of 0.96, the GloVe model is the second highest scorer. 

 

 

 

Figure 5. F1 scores of three datasets based on WE models 

 

In Figure 6 we represent a statistical analysis of F1 score on each dataset based on the three 

pretrained models. The mean in Figure 6 is calculated by taking the sum of the F1 scores of the 

three objective functions on each WE model then divides that sum by three (the number three 

represents the number of objective functions).   
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F1 Word2Vec 0.186 0.108 0.141 0.099 0.096 0.099 0.093 0.078 0.077

F1 GloVe 0.203 0.126 0.195 0.096 0.088 0.076 0.118 0.074 0.079

F1 FastText 0.119 0.113 0.103 0.038 0.062 0.034 0.094 0.073 0.072
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Figure 6. Comparison of three pretrained WE models on each dataset 

 

The EBT dataset records the highest mean F1 score of 0.175 with the GloVe model, 

which has a standard deviation of 0.042, and with a 95% confidence level the error recorded is 

0.105. The confidence interval is from 0.07 to 0.28. The closest competitor is the Word2Vec 

model with a score of 0.145 with a standard deviation of 0.039 and a confidence interval of 

(0.048, 0.242). The FastText model scored the lowest of 0.112 with a standard deviation of 0.008 

and error score of 0.02, which gives a lower limit of 0.092 and upper limit of 0.132 for F1. This 

analysis indicates that the Word2Vec F1 score exists within one standard deviation of GloVe and 

vice versa. However, the FastText score does not exist within one standard deviation of the 

GloVe model. The FastText mean F1 score exists within one standard deviation of Word2Vec 

model score; however, the FastText F1’s standard deviation of 0.008 indicates that the 
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Word2Vec F1 score is not within the three standard deviation range of FastText model. Therefor 

the EBT dataset records the GloVe model as the highest, the Word2Vec model as comparable 

with the GloVe model, and the FastText model as the lowest performer.  

 The EasyClinic dataset scores the highest mean F1 of 0.098 with the Word2vec model, 

which has a standard deviation score of 0.002 and an error of 0.004 with 95% confidence level. 

This finding indicates that the lower limit of mean F1 is 0.094 and the upper limit is 0.102. The 

next highest mean F1 score is obtained by the GloVe model, which is 0.087 with a standard 

deviation of 0.01 and an error value of 0.025. The mean score obtained by the GloVe model does 

not belong within one standard deviation of the Word2Vec mean and vice versa; however, the 

95% confidence interval (0.062, 0.112) of the GloVe model indicates that the GloVe could 

achieve a higher F1 score of 0.112, which is greater than the upper limit of Word2Vec model, 

0.102. The FastText scored the lowest mean of 0.045 with a standard deviation of 0.015 and an 

error score of 0.038. Therefore, for the EasyClinic dataset, both the GloVe and Word2Vec have a 

comparable performance.  

 The highest mean F1 of the eTour dataset is recorded with GloVe model and the score is 

0.09 with a standard deviation of 0.024 and an error of 0.06, which gives the lower limit of 0.03 

and the higher limit of 0.15. Both the Word2Vec and FastText model scored a comparable F1 

mean of 0.083 and 0.08, respectively. The differences between the three means have low 

significance. The Word2Vec and FastText exist within one standard deviation of the GloVe 

model and vice versa. However, the 95% confidence level indicates that the highest possible 
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score of 0.15 could be achieved with the GloVe model, which suggests that the GloVe model is 

the best performer.  

 

RQ3. How does a WE based objective function and an ABC combination perform in TLR task 

automation? 

Based on our discussion on the previous two research questions, we can summarize that 

the WE based objective function, specifically the GloVe model based sim_1 objective function is 

the best performer. The model produces an F1 score of below 20%, which indicates that our 

three WE based objective functions and the ABC combination are not efficient for the purpose of 

TLR task automation.  

The experimental result obtained from the EBT dataset is summarized in Table 16. The P, 

R, and F1 scores obtained using the three similarity functions with three pretrained models are 

depicted in Figure 7. The Figure 7 shows that the R score achieved is better than the P score. 

However, the R score of the EBT dataset resides below 25%, while the P and F1 scores are 

below 20%.  
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Table 16. P, R, and F1 scores of EBT dataset 

Objective function Pretrained model P R F1 

sim_1 

Word2Vec 

0.124 0.225 0.160 

0.113 0.174 0.137 

0.128 0.184 0.151 

0.113 0.143 0.126 

0.188 0.184 0.186 

0.167 0.184 0.175 

0.149 0.133 0.141 

0.171 0.122 0.143 

GloVe 

0.119 0.214 0.153 

0.152 0.194 0.170 

0.169 0.245 0.200 

0.174 0.245 0.203 

0.135 0.133 0.134 

FastText 

0.073 0.133 0.094 

0.102 0.143 0.119 

0.103 0.092 0.097 

sim_2 

Word2Vec 

0.058 0.102 0.074 

0.045 0.061 0.052 

0.104 0.112 0.108 

GloVe 

0.056 0.102 0.072 

0.145 0.112 0.126 

0.135 0.143 0.139 

FastText 

0.080 0.123 0.097 

0.053 0.082 0.064 

0.105 0.122 0.113 

sim_3 

Word2Vec 

0.090 0.153 0.113 

0.112 0.153 0.129 

0.140 0.143 0.141 

GloVe 

0.136 0.245 0.175 

0.154 0.235 0.186 

0.187 0.204 0.195 

FastText 

0.061 0.112 0.079 

0.066 0.092 0.077 

0.104 0.102 0.103 
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Figure 7. P, R, and F1 scores of EBT dataset 

 

A summary of the result obtained by using the WE based model with the EasyClinic 

dataset is presented in Table 17. The P, R, and F1 scores of EasyClinic dataset are depicted in 

Figure 8. This dataset records a comparable P and R score. The highest R score is in 15% range 

and the P and F1 scores are within 10%.  
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Table 17. P, R, and F1 scores of EasyClinic dataset 

Objective 

function 
Pretrained model P R F1 

sim_1 

Word2Vec 

0.057 0.065 0.060 

0.102 0.097 0.099 

0.086 0.108 0.096 

0.085 0.086 0.085 

0.063 0.065 0.064 

0.073 0.054 0.062 

GloVe 

0.071 0.149 0.096 

0.065 0.054 0.059 

0.058 0.054 0.056 

0.088 0.106 0.096 

FastText 

0.021 0.043 0.028 

0.042 0.032 0.036 

0.034 0.043 0.038 

sim_2 

Word2Vec 

0.095 0.097 0.096 

0.065 0.065 0.065 

0.071 0.085 0.078 

GloVe 

0.090 0.086 0.088 

0.075 0.052 0.062 

0.074 0.054 0.062 

FastText 

0.060 0.065 0.062 

0.056 0.055 0.055 

0.060 0.044 0.051 

sim_3 

Word2Vec 

0.101 0.097 0.099 

0.078 0.054 0.064 

0.057 0.043 0.049 

GloVe 

0.076 0.075 0.076 

0.056 0.043 0.049 

0.044 0.032 0.037 

FastText 

0.036 0.032 0.034 

0.015 0.011 0.013 

0.030 0.022 0.025 

0.021 0.011 0.014 
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Figure 8. P, R, and F1 scores of EasyClinic dataset 

 

The eTour dataset result is summarized in Table 18 and illustrated in Figure 9. The P and 

R score obtained using the WE based model on this dataset are comparable. The highest R is in 

the range of 12% and the P and F1 scores are within 11%. 
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Table 18. P, R, and F1 scores of eTour dataset 

Objective function Pretrained model P R F1 

sim_1 

Word2Vec 

0.070 0.078 0.074 

0.096 0.091 0.093 

0.061 0.062 0.061 

0.053 0.042 0.047 

0.088 0.068 0.077 

GloVe 

0.114 0.123 0.118 

0.066 0.068 0.067 

0.064 0.058 0.061 

0.088 0.068 0.077 

FastText 

0.091 0.097 0.094 

0.050 0.052 0.051 

0.031 0.029 0.030 

0.067 0.055 0.060 

sim_2 

Wor2Vec 

0.061 0.065 0.063 

0.052 0.052 0.052 

0.073 0.071 0.072 

0.087 0.071 0.078 

GloVe 

0.067 0.075 0.071 

0.073 0.075 0.074 

0.073 0.071 0.072 

0.062 0.042 0.050 

FastText 

0.084 0.064 0.073 

0.060 0.062 0.061 

0.049 0.042 0.045 

0.046 0.036 0.040 

sim_3 

Word2Vec 

0.059 0.065 0.062 

0.079 0.075 0.077 

0.063 0.062 0.062 

GloVe 

0.077 0.081 0.079 

0.063 0.054 0.058 

0.059 0.060 0.059 

FastText 

0.044 0.046 0.045 

0.073 0.071 0.072 

0.051 0.068 0.058 



62 

 

 

 

Figure 9. P, R, and F1 scores of eTour dataset 

 

Based on the results of the three datasets, we conclude that neither of the three WE based 

objective functions and the ABC algorithm applied to the three datasets performs at an 

acceptable level for TLR task automation. 
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9. CONCLUSIONS AND FUTURE WORK 

We investigate the compatibility of a WE based ABC algorithm applied to TLR. We use 

three different WE based objective functions and open source pretrained models: Word2Vec, 

GloVe, and FastText to learn the document vectors. We evaluate the performance of these 

pretrained WE models combined with the ABC algorithm for automating TLR. Our analysis on 

the three datasets suggests that the GloVe model performs slightly better than the Word2Vec 

model, and the FastText has the lowest performance rate. The objective function sim_1 performs 

slightly better than the other two objective functions. The R was better than the P; however, the 

best F1 mean achieved using the three datasets was below 0.2, which indicates that the WE based 

ABC does not perform at an acceptable level for TLR task automation.  

For future experimentation, there is potential for improvement given that the ABC algorithm 

involves extensive parameter adjustment which demands more experimentation. Additionally, 

changing the preprocessing of the datasets might result in improvement. Other future exploration 

involves building a domain specific customized word embedding to advance the research. Three 

other embedding systems, recently gaining popularity in NLP are ELMO (Peters et al., 2018), 

BERT (Kenton, Kristina, & Devlin, 2019), and VAMPIRE (Gururangan, Dang, Card, & Smith, 

2019). We want to explore their applicability and performance in the TLR task automation 

process. In addition, we want to investigate with other possible objective functions. 
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