
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Historical Dissertations and Theses Graduate School

1991

Modeling of Physical Database Design and Performance Analysis Modeling of Physical Database Design and Performance Analysis

With Emphasis on VSAM Files. With Emphasis on VSAM Files.

Sung-eon Kim
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation
Kim, Sung-eon, "Modeling of Physical Database Design and Performance Analysis With Emphasis on
VSAM Files." (1991). LSU Historical Dissertations and Theses. 5192.
https://repository.lsu.edu/gradschool_disstheses/5192

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Scholarly Repository. For more information, please contact gradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_disstheses
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_disstheses?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_disstheses/5192?utm_source=repository.lsu.edu%2Fgradschool_disstheses%2F5192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Beil & Howell Information C o m p a n y

3 0 0 North Z e e b R oad , Ann Arbor, Ml 4 8 1 0 6 - 1 3 4 6 USA
3 1 3 / 7 6 1 - 4 7 0 0 8 0 0 / 5 2 1 - 0 6 0 0

Order Number 9207514

M odeling o f physical database design and perform ance analysis
w ith em phasis on V S A M files

Kim, Sung-Eon, Ph.D.
The Louisiana State University and Agricultural and Mechanical Col., 1991

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Modeling of Physical Database Design
and Performance Analysis

with Emphasis on VSAM files

A Dissertation

Submitted t o the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Interdepartmental Program in Business Administration

by
Sung-Eon Kim

B.S., Seoul National University, 1977
M.S., Florida State University, 1984

M.S., Louisiana State University, 1988
August 1991

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my
major professor, Dr. Helmut Schneider, for his valuable
guidance and support throughout the period of this research.

I would also like to thank the members of my doctoral
committee, Dr. Kwei Tang, Dr. Ishwar Murthy, Dr. Ye-Sho
Chen, and Dr. Bush Jones, for their helpful suggestions.

I would like to express my thanks to Dr. Tim Vaughan
for his constructive help for this research before he left
this school.

Most special thanks go to my wife, Gyuwon Kim, for her
love, encouragement, understanding, sufferring, and patience
throughout my graduate studies.

I want to thank Mr. Pil Seo for his encouragement and
suggestions when I had hard times.

TABLE OF CONTENTS

page
Acknowledgements ... il
List of T a b l e s ..v
List of F i g u r e s ...vi
Abstract... vii
CHAPTER

1 INTRODUCTION .. 1
1.1 Statement of the P r o b l e m 3
1.2 Research Framework 4
1.3 Contribution of the Research...................5
1.4 Organization of the Research...................6

2 DESCRIPTION OF FILE STRUCTURES 8
2.1 Hashed Files 9
2.2 Indexed-sequential Files 13

2.2.1 ISAM F i l e s 14
2.2.2 VSAM F i l e s 16

3 LITERATURE REVIEW 20
3.1 File/Physical Database Design and

Reorganization: Stochastic Approach 20
3.2 File/Physical Database Design and

Reorganization: Analytic/Heuristic Approach 24
4 MODELING OF PHYSICAL DATABASE DESIGN 28

4.1 Modeling of a Physical Database When
Continuous Insertions Are Considered 30

iii

TABLE OF CONTENTS

page
CHAPTER

4.2 Modeling of a Physical Database When Both
Insertions and Deletions Are Considered . . 40

5 NUMERICAL EXPERIMENT RESULTS FOR THE MODELS OF
PHYSICAL DATABASE DESIGN 53
5.1 Numerical Analysis for the Physical Database

Constructed with Records Insertions Only . . 54
5.2 Numerical Analysis for the Physical Database

Constructed with Records Insertions and
D e l e t i o n s 63

6 PHYSICAL DATABASE REORGANIZATION 81
6.1 Analysis of File Operation Cost on the Behalf of

CA S p l i t s 81
6.2 Physical Database Reorganization Policy . . . 86

7 NUMERICAL EXPERIMENTS FOR THE OPTIMAL REORGANIZATION
P O I N T ... 92

8 SUMMARY AND CONCLUSION 99
REFERENCES... 103
VITA 107

LIST OF TABLES

Table 5.1

Table 5.1
Table 5.2

Table 5.2

Table 5.2

Table 5.2

Table 5.2

Table 5.2
Table 7.1

Table 7.2

page
. 1 Probability of Inserting a record into Cl's,

the number of Cl's, and associated storage
utilization..................................... 58

.2 Utility changes for each Cl capacity size 58

.1 Growth of CIs for three different Cl capacity
sizes (CA9, CA15, CA 2 1) 69

.2 Utility changes for three different Cl capacity
sizes (CA9, CA15, CA21) 71

.3 Effect of loading factors on the total number
of CIs in a f i l e 73

.4 Effect of loading factors on the utility of
a f i l e 75

. 5 Cl spreading pattern over the entire Cl's
after initial l o a d i n g 77

.6 The relative portion of each C l ' 79
Effects of deterioration rate and query rate
on optimal reorganization points 97
Free space effects on optimal reorganization
p o i n t s 98

v

LIST OF FIGURES

page
Figure 2.1 Hashing overflow techniques 10
Figure 2.2 Basic view of a ISAM f i l e 15
Figure 2.3 Basic view of a VSAM f i l e 18
Figure 4.2.1 Graph for the basic model 49
Figure 5.1.1 Number of Cl's........................... 59
Figure 5.1.2 The relation between the number of total

records and the total number of CIs . . . 60
Figure 5.1.3 Probabilities of inserting a record into

a Cl’s 61
Figure 5.1.4 Storage utilization changes over time . . 62
Figure 5.2.1 Growth of the CIs for three different Cl

capacity sizes 70
Figure 5.2.2 Utility changes for three different Cl

capacity sizes 72
Figure 5.2.3 Effect of loading factors on the total

number of CIs in a f i l e74
Figure 5.2.4 Effect of loading factors on the utility

of a f i l e 76
Figure 5.2.5 Cl spreading pattern over the entire Cl's

after initial l o a d i n g 78
Figure 5.2.6 The relative portion of each Cl' 80
Figure 6.1.1 Cost of accessing next logical CA

sequentially 91
vi

Abstract

Growth in the size of a database is reflected in
deterioration of database performance. Since deterioration
is related to the structure of the file, the performance
efficiency involves the design of a physical database and
the proper management of it.

This research addresses a modeling procedure of a
physical database design considering both records insertions
and deletions. The model describes the behavior of a
physical database in a VSAM file environment, and is
extended to the issue of database reorganization through a
cost analysis. The cost of accessing the database increases
because of the physical disorganization of the database
caused by records updates and insertions. A cost function
that describes this excess cost is defined. As a remedy to
the performance deterioration, database reorganization is
required. Optimum reorganization points are obtained as a
tradeoff between the excessive access costs and the
reorganization cost. Numerical examples based on the
characteristics of IBM 3380 are given.

Chapter 1

INTRODUCTION

The complexity of every aspect of modern society has
greatly increased the demand for information of all kinds.
When the volume of information becomes too huge to be
handled by hand, organizations turn to computers to process
the data efficiently. Computers store information as
records in a file. The structure of this file deteriorates
over time as the number of transactions increases. These
transactions include, for example, insertions, deletions,
retrievals, and updates. Guarding against file
deterioration becomes an increasingly greater challenge for
the database administrator. Since deterioration is related
to the structure or organization of the file, the solution
involves the design of a physical database and the proper
management of files through reorganization (Koushik, 1987).
A physical database is a collection of interrelated data
that are stored together as one or more types of records.
Since files can be considered degenerated forms of physical
databases in which the number of stored record types is one,
the terms physical database and file can be used
interchangeably when the stored record type is one.

The physical database design problem centers on the
choice of an efficient means for implementing the database.
To solve this problem, one must make decisions concerning

file organization and the design parameters to be used for
that organization. A file organization is a representation
of the stored records that make up a file. The
representation shows the record format, logical and physical
ordering, potential access paths such as indexes, and
physical device allocation. Two main file organizations are
hashed files and indexed-sequential files. The latter can
be subdivided into indexed-sequential access method files
and virtual storage access method files. The choice of a
file organization may depend on anticipated use of the
database. Values of the design parameters depend on the
associated file organization and should be determined
precisely. Design parameters include, for example, initial
loading factor, block capacity, overflow handling method,
and capacity of a file.

With regard to file reorganization, the problem is to
determine the optimal time required to reorganize the file
physically. Reorganization is the process of unloading
(reading) records from a file and reloading (writing) these
records on a restructured file. The optimal reorganization
point depends largely on the file organization chosen to
support the database and on the frequency of transactions on
this database. The reason is that both the overflow problem
and the implementation of deletion are handled differently
for each file organization. A modeling structure can be
changed according to the implementation of deletion. If

implementation is by logical deletion, the garbage
collection effect appears at the time of reorganization.
Logical deletion means that deleted records are marked at
the deletion time and are physically deleted at the time of
reorganization only. In a physical deletion implementation,
the deleted record space is immediately reusable; thus, the
frequency of reorganization is less than that in a logical
deletion implementation.

Frequent reorganizations are not desirable because
reorganization is a lengthy and costly procedure. In
general, the reorganization point can be determined by
comparing total excess cost and reorganization cost so as to
minimize total operating cost. However, sometimes it is
suggested to reorganize the database at a fixed time or at
the end of the n* time period after the most recent
reorganization.

1.1. Statement of the Problem

Problems relating to physical database design and
performance analysis have been studied over the last decade.
To analyze these problems, researchers have adopted
stochastic and analytic modelings. In many researches that
focus on database reorganization, it is assumed that an
efficient physical database design already exists or that
characteristics of the database deterioration process have

already been given. Since deterioration is influenced by
the physical database design that is chosen, it may be
desirable to treat them jointly.

The main objectives of this research are to integrate
physical database design problem and reorganization problem
and to develop a combined model of these problems.

1.2. Research Framework

The research effort addresses the modeling procedure of
physical design for growing databases in the environment of
a virtual storage access method (VSAM) file.

Unlike a hashed file and an indexed-sequentia1 access
method (ISAM) file, a VSAM file does not have an overflow
area. Instead, it handles the overflow problem through
control interval (Cl) splits and control area (CA) splits.
A Cl is the unit of information that the VSAM file transfers
between virtual storage and disk storage.

With the increase of records in a database, CIs are
filled up. When this happens, a Cl split occurs at the next
record insertion. In this event, half the records remain in
that Cl and the other half move to one of the CIs that are
allocated as free space in a CA at the database loading
time. A CA consists of a fixed number of CIs, and the
maximum size of a CA is a cylinder. As a result of
continuous Cl splits, if free space is no longer available

in a CA, a CA split occurs in a manner similar to a Cl
split. When a CA split occurs, a new CA is established at
the end of the data set and all the records in half the CIs
of the old CA move into a new CA. With CA splits,
sequential processing slows because of the increase in seek
time (Ranade, 1987). In other words, growth in the size of
a database is reflected in the deterioration of performance
for that database. This performance deterioration causes an
increase in record search costs. Therefore, to restore
performance efficiency and to reduce the search cost, one
must turn to database reorganization. As reorganization
also requires extra cost, however, optimal reorganization
policy is set up in the way of minimizing the total
operation cost. The optimal reorganization point is
calculated based on the number of CIs or CAs obtained from
the physical database design model.

1.3. Contribution of the Research

The analysis of the performance of database file
structure has been addressed by many researchers over the
last decade. Most of their works have focused on the hashed
files or ISAM files. Only a few studies have centered on
the VSAM files (Maruyama and Smith, 1976; Chin, 1978). Even
in these studies, the physical database design and
reorganization problems were not analyzed as a combined

problem, and any specific model for the behavior of the
physical database was not provided.

The present research contributes to the current
knowledge in handling physical database design and
reorganization problems in the following ways. First, this
research attempts to model the physical database design in a
VSAM file for the first time in the literature. The model
deals with two difficult factors that the VSAM file adopts.
One is the physical record deletion, and the other is Cl and
CA splits that are used as a means of overflow handling.
Second, this research attempts to combine the physical
database design problem and the reorganization problem.

1.4. Organization of the Research

This research is organized into eight chapters. In
Chapter 2, the structures of files such as hashed, ISAM, and
VSAM are described to provide a basic difference among
files. The literature review in Chapter 3 focuses on prior
researches on physical database design and reorganization
problems. In Chapter 4, models of the physical database
design for a VSAM file are described for the following
situations: (1) when only continuous records insertions are
considered; and (2) when both records insertions and
deletions are considered. In Chapter 5, numerical analyses
are performed for the models developed in Chapter 4 using

the various parameter values and the results are discussed.
The second model developed in Chapter 4 is used in Chapter 6
to do the performance analysis. Through this performance
analysis, the way to determine the optimal reorganization
policy is discussed. File structure at each reorganization
period is updated through the time of reorganization. File
operation and reorganization costs are obtained to determine
the optimal reorganization point. In Chapter 7, IBM 3380
environment is introduced to discuss the optimal
reorganization policy obtained in Chapter 6 numerically.
The final chapter gives the summary and conclusion of the
research.

Chapter 2

DESCRIPTION OF FILE STRUCTURE

A database system includes files and the programs to
manage those files. A Database Management System (DBMS)
helps to manage the related data in multiple files. A DBMS
uses file management services to manipulate many files in
the system. A database is defined as a collection of
related data. The data storage for a database is
accomplished through the use of one or more files. A file
is a collection of records kept on computer storage devices.
A file will have a name and a structure that is determined
by a file access program. A record is a collection of
related fields containing elemental data items.

Given the position of the file, we can locate the
records and update their fields. The performance of a
database system can vary greatly, however, depending on the
file organizations when records are stored and retrieved.
Two file structures widely used in the performance analysis
are the hashed file and the indexed-sequential file. These
files are supported by major commercial DBMS's such as IDMS,
IMS and TOTAL (Park et al, 1988). These files have
similarities in the way that they incorporate growth in the
number of records over time.

8

9
2.1. Hashed Files

Hashed files are based on direct access to a file using
a relative address. The relative address is an integer
ranging in value from zero to the maximum number of blocks
within the domain of the system which controls the storage
of data. The relative address of a record is determined by
applying a hashing function to the record key. Such a
key-to-address transformation (also commonly referred to as
a randomizing hashing function) translates the key attribute
values into relative addresses within the file space and
gives each arriving record its own slot, based on the key
provided. One problem with the key-to-address transformation
is the possibility of a collision. A collision occurs when
identical addresses are generated from different source of
keys by a hashing function so that more than one record is
directed to the same place in a storage. If a collision
occurs when all record slots for a given bucket are filled,
then an overflow occurs. Selection of overflow handling
techniques is one of the most important decisions in the
design of a random access method. The basic types of
overflow techniques are Open overflow, Nonlinear search,
Coalesced chaining, and Separate chaining (Severance and
Duhne, 1976; Teorey and Fry, 1982). The Open overflow
method stores an overflow record in the first unused or open
record slot in the next unfilled bucket. In the nonlinear

search method, rehashing within a sequence of identifier
transformation functions is used to find an open slot to
either store a new record or retrieve that record later.
Coalesced chaining provides for a group of unused buckets at
initial load to allow for overflow. The Separate chaining
method allocates local overflow record buckets for each home
address bucket. This method is similar to the overflow
chains used in indexed-sequential files except that records
are not maintained in any sequential order. These overflow
techniques are illustrated in Figure 2.1.

Figure 2.1 Hashing overflow techniques (Teorey and Fry, 1982)
PRIMARY AREA

ID 35

IDmod 10

0
1
2
3
4

-> 5
6
7
8
9

20 160

42 22 12
53 43
14
95 125 15 25
76 36 35

98 108
19

< -
<-
< -

-> Record slot
----- > Block

Retrieval
accesses
7 record slots 4 blocks
2 buckets

Bucket-
(a) Open overflow

ID 35
1st
ID mod 10

ifcollision
(i*i + 3i +
ID mod 10)
mod 10
i *= probe

number

i=0

i=l

0
1
2
3
4

> 5
6
7
8

-> 9

20 160

42 22
53 43
14 .
95 125
76 36

98 108
19

35

12

>■*_-- -
15

..
25

Retrieval
accesses
6 record slots
3 blocks
2 buckets

(b) Nonlinear search

12

PRIMARY AREA

ID *= 35
ID mod 10

free space head
160 35200 } Two way linked list

t of free space buckets1
222 42 12 { Retrieval accesses 7 record slots

j 4 blocks
2 buckets

533 43
144

5 95 125 15 25
766 36

7
8 98 108
9 19

(c) Coalesced chaining
PRIMARY AREA Overflow area

0
1

ID = 35 2
ID
mod 10

3

Retrieval
accesses 6
5 record
slots 7

3 blocks
2 buckets 8

9

20 160

42 22 12
53 43
14 b*___*d
95 125 — *-*-— 15

-T--
25

76 36

98 108
19

(d) Separating chaining.

13
2.2. Indexed-Sequential Files

Indexed-sequential file design attempts to overcome the
access problem inherent in sequential file organization
without losing all the benefits and tradition associated
with sequential files. The indexed-sequential file has two
additional features beyond the organization of a sequential
file. One is an index to provide better random access. The
other is an overflow area to provide a means for handling
additions of records to the file. This file uses two types
of access. One is sequential, and the other is random. The
ratio of the amount of sequential access to random access in
the usage may affect the choice of this file. However,
because the file permits both sequential and random access
to the data records in the database, it is a frequent choice
in database applications.

The indexed-sequential file can be made to fit a
specific file hardware configuration. This means that the
type of storage devices may be changed or that the file may
be moved from one type of storage device to another. In
this file, two access methods used within the IBM System 370
can be considered. One is ISAM (indexed-sequential access
method) in which the indexes and blocks are designed to fit
specific file units. The other is VSAM (virtual storage
access method) which is hardware-independent.

14
2.2.1 ISAM Files

An ISAM file consists of an ordered physical sequential
file and a hierarchy of track indexes, each ordered by
primary key values in the same way in which the data file is
ordered. In ISAM files, the records are grouped to fit onto
physical disk tracks, and one track on each cylinder
contains an index to the records stored in that cylinder.
When the file is initially created, all the records are
located in primary storage areas. If new records are
inserted when the original sequential file has been filled
up, they are stored in an overflow area. The index track
contains pointers both to the prime data area and to the
overflow area.

An ISAM file has three levels of indices. The lowest
level of index is the track index, which contains the
highest-value key on each track and points to that track.
The cylinder index is the next higher level index, which
contains highest-value key on each cylinder and points to
the track index of that cylinder. The highest level of
index is called the master index. It contains the highest-
value key on each track of the cylinder index, along with a
pointer to that track. Figure 2.2 shows the basic structure
of a ISAM file. The way that an ISAM file addresses the
overflow is to use pointers from the track index and then
chains to indicate the key sequence of the inserted records.

Figure 2.2 Basic view of a ISAM file.

Master index (level 3)

i dex (/evel 2)ster
Master index (level 1)

nder^ifidex

Cylinder 1 4/Cylinder 2 -VCylinder 3 Cylinder
7Track index Track index Track indexTrack index

overflow
track

overflow
track

overflow
track

overflow
track

16
When a record is inserted, it is fitted into prime data
track. If there is no room in a track for a new record that
has been inserted, then it is written on the overflow track.

2.2.2 VSAM Files

The VSAM has been developed for use with virtual
storage operation systems. It grows out of the need for an
access method that allows data to be accessed both directly
by key and sequentially in key-defined collating order
(Keehn and Lacy, 1974). The way a VSAM file reads a record
is similar to that of an ISAM file except that the operation
is not described in terms of track and cylinders. In a VSAM
file, instead of cylinders that are subdivided into tracks,
control areas are subdivided into control intervals (Martin,
1975).

A control interval (Cl) is a continuous area of direct
access storage that a VSAM file uses to store data records
and to control information that describes these records. A
Cl is the unit of information that a VSAM file transfers
between virtual storage and disk storage. Whenever a record
is retrieved from direct access storage, the entire Cl
containing the record is read into a VSAM file I/O buffer in
virtual storage. The CIs in a VSAM file data set are
grouped together into fixed-length contiguous areas of
direct access storage called control areas (CAs). A VSAM

17
file fixes the number of CIs for each CA in a file. The
maximum size of a CA is one cylinder, and the minimum size
is one track of Direct Access Storage Device (DASD) storage.
The basic view of a VSAM file is given in Figure 2.3.

In a VSAM file, unused space can be scattered
throughout the data set as free space. The space that was
occupied by the deleted record is available as free space,
because when a record is deleted, the record is physically
erased. Insertions into a key-sequenced data set use the
free space provided during the definition of the data set,
provided by the record deletions, or developed as a result
of Cl and CA splits.

Cl splits and CA splits are particular ways of handling
the overflow problem in a VSAM file. As was discussed in
Section 1.2, if there is not enough free space in a Cl to
accommodate the new records, then a Cl split takes place at
the point of insertion. Cl split causes the data CIs to
have a physical order that differs from the key sequence.
When a Cl split occurs, the records comprising the first
half of the full Cl are copied into the new Cl and the old
Cl is adjusted by shifting the latter half of the records to
the front. The index is updated to include the new Cl at
the appropriate point. The last record provides the key
value for the index entry (Wiederhold, 1987). When free
space is no longer available in a CA, a split occurs in a
manner similar to a Cl split. When a CA split occurs, a

Figure 2.3 Basic view of a VSAM file

index set

sequence
set

’ t

free
CA

free
CA

free
space

free
space

free
space free

space

CACACA CACA CA

new CA is established at the end of the data set and half of
the CIs with all their data records moves into a new CA.
With CA splits, sequential processing becomes slow because
of the seek time increase. While the use of overflow areas
in a ISAM file always increases the access time needed to
read the inserted records, the use of distributed free space
in a VSAM file generally results in higher storage
requirements than an overflow chaining method. However, it
permits much faster retrievals of inserted records (Martin,
1975).

The index structure of a VSAM file is also different
from that of an ISAM file. While an ISAM file has a track
index and a cylinder index, a VSAM file has a Cl index and
one sequence set index per CA. The sequence set index is
itself indexed by a hierarchy of indices called index set.
The sequence set index contains the highest key value in
each Cl and points to that Cl. The lowest level of the
index set contains the highest-value key in each CA and
points to the sequence set index block for that CA. The
structure of the VSAM file index blocks is implemented by
B+-trees (Comer, 1979). In a B+-tree, all keys reside in
the leaves. The upper levels consist only of an index and
are organized as a B-tree.

Chapter 3

LITERATURE REVIEW

Many authors have contributed to the body of researches
concerning file design and reorganization. Classification
of the published literature gives a perspective on the
relation of the studies and provides a means for comparing
related efforts. Classification could be done by the
methodologies the authors adopted. To identify the specific
approach used to analyze and to solve the given problem, the
methodology can be broken down into following two types:
stochastic and analytic/heuristic. Classification could
also be done by the file organizations adopted. However,
since the applicability of some models may not be limited to
one file structure, this classification may not be
desirable. Simulation-oriented early works are not reviewed
because of the differences in the approach method expected
in the present research.

3.1. File/Physical Database Design and Reorganization:
Stochastic Approach

Van der Pool (1973) adopted the storage allocation of
hash-based files in steady state. The evolution of the file
is modeled as a Markov chain. It was assumed that the
insertion characteristic follows a homogeneous Poisson

20

21
process and that life times are distributed exponentially.
The loading factors that minimize file maintenance costs in
terms of storage space and additional accesses are computed
for different bucket sizes and different operational
conditions.

Larson (1981) analyzed the performance deterioration of
indexed-sequential files under the assumption that overflow
records are handled by chaining. The objective of this
research was to quantify the effects of insertions and
deletions (1) on the number of overflow records, and (2) on
the number of additional accesses for both successful and
unsuccessful retrieval performance. He modeled the dynamics
of the file system as an instance of a birth and death
process. The insertion characteristic was modeled by a
homogeneous Poisson process, while the record life times
were taken to be exponentially distributed. In the
development of the model, a simplifying assumption was made
about the distribution of the key interval assigned to a
bucket.

Under the assumption of incremental reorganization, the
distribution of overflow records was determined and the
steady-state was rapidly achieved for a stable file. He
considered the file growth problem explicitly, but did not
formulate the file reorganization problem.

Heyman (1982) modeled the performance deterioration by
diffusion models from which the number of overflows from a

22
block is estimated. As Larson (1981) assumed, the deletion
rate was assumed to be constant and was treated to be
independent of the number of records in the bucket. He
examined a formula for the calculation of the expected
number of overflows by time. He derived a simple formula,
different from Larson's, for the optimal time to reorganize
a stochastically growing database by using renewal theorem.

Cooper and Solomon (1984) extended Larson's work to
consider the problem of the average time until bucket
overflow. The growth of the file was modeled as a renewal
process. The inter-arrival time between records was assumed
i.i.d. random variables of arbitrary distribution. However,
their model cannot be generalized to handle residence time
with an arbitrary distribution while Larson's can.

Their work was also compatible with Heyman's (1982)
work although there are some differences. One difference is
the assumption for the deletion rate. They assumed that the
deletion rate is proportional to the number of records in
the bucket. The other difference is the fundamental
calculation of the average time until the bucket first
overflows. A result showed that the average time until
bucket overflow is greatly reduced by increasing the bucket
capacity for the same load factor. This model was created
for hashed files and has a limitation to be applied to
indexed-sequential files.

23
Mendelson and Yechiali (1981) considered a database

where record additions are governed by a renewal process and
record deletion is a logical deletion. In logical deletion,
deleted records are flagged and physically deleted when a
reorganization occurs. They modeled the reorganization
problem as a semi-Markov-decision problem and proved that
the optimal state-dependent decision rule is a deterministic
control-limit rule. This rule calls for a reorganization as
soon as the number of records in the system reaches or
exceeds a fixed control-limit. They developed an optimal
control-limit evaluation procedure. In this procedure,
reorganization occurs as soon as the expected one-stage cost
rate per unit time resulting addition of a record exceeds
the expected average total cost of the system per unit time.
They concentrated on proving that the "cost-cutoff" policies
considered by Shneiderman (1973) are optimal without a loss
of generality.

Koushik (1987) considered the combined problem of a
file design and a reorganization. The major design
parameters involved are the blocking factor and the loading
factor. The problem of a file reorganization is formulated
as a stochastic dynamic program. Models for both hashed
files and indexed-sequentia1 files have been presented.

Park et al. (1988) presented a theoretical approach to
analyze the optimal file reorganization policies using a
dynamic programming method. They integrated the micro-level

24
stochastic model of file state dynamics and the cost
structures of operations that are derived from a low-level
analysis of the physical file design. They also developed
solution procedures such as an integrated model for
evolutionary and stationary databases. In setting optimal
file reorganization policies, they considered a
reorganization only when the arriving transaction was an
insertion under the assumption of logical deletion of
records. The model and solution procedures were applied to
an indexed-sequential file.

3.2. File/Physical Database Design and Reorganization:
Analytic/Heuristic approach

Shneiderman (1973) introduced the problem and solution
techniques with a few typical cases for a database
reorganization. In part I of his study, he considered a
deterministic steady-state model with linearly increasing
search and reorganization costs and a finite database
lifetime. He found the optimal fixed-length reorganization
point, assuming fixed-length time intervals between
reorganization instants. In part II, he considered the case
of random deterioration, where the search cost was a
stochastic process with a given time-dependent distribution.
He considered two reorganization strategies: reorganization
at fixed time intervals and reorganization when the search
cost has determined to a given level.

Yao et al. (1976) studied the reorganization problem
for five file reorganizations: direct, sequential, indexed-
sequential, multi-list and inverted file structures. They
argued that, since the lifetime of the database is unknown,
and because of computational efficiency considerations, it
is preferable to use a heuristic dynamic reorganization
algorithm. This algorithm calls for a reorganization as
soon as the search cost savings due to a reorganization
become at least the average reorganization cost per time
period. They showed that this algorithm yields near-optimal
results for the deterministic case with linearly increasing
costs. When costs are fixed, it is shown that, fixed-length
reorganization intervals are optimal, while increasing costs
result in increasing reorganization intervals. This
algorithm was also applied to various file reorganization
schemes with nonlinear search costs.

Tuel (1978) extended Shneiderman1s (1973) work on
linearly growing files and obtained the optimal solution
when variable-length reorganization intervals are allowed.

Maruyama and Smith (1976) considered databases that
were stored on disk devices using a disk file organization
which allowed free space to be distributed throughout the
file. The insertion characteristic was modeled as a non-
homogeneous Poisson process, and the insertion rate was
regarded as the difference between the actual insertion and

26
deletion rates. However, deletions were not explicitly
considered.

They found that the physical disorganization of the
disk file of this type is nonlinear, and that the impact of
the disorganization on accesses to the file depends on the
sequentiality of the accesses. They showed that the optimum
reorganization point also depends on the sequentiality of
accesses to the file and concluded that for some files the
optimum strategy is not to do a reorganization.

Chin (1978) studied the size of an expected distributed
free space within a data storage area (DSA) for ordered and
non-ordered access methods in terms of number of records.
When a file is created using an ordered access method,
records in a DSA are stored, maintained, and retrieved with
respect to a preordered sequence that depends on the value
of a selected attribute. When a file is created using a
non-ordered access method, records within a DSA are stored,
retrieved, and maintained in a random, non-ordered sequence.
He described the optimal block size for a DSA, which
minimizes the CPU operations and I/O interruptions, under
the following assumptions: (1) the CPU cost is proportional
to the size of a physical block, and (2) the I/O cost is
proportional to the number of blocks.

Leung (1986) studied the time-dependent deterioration
and performance degradation of files. He considered both
the insertion and deletion characteristics. However, he

assumed that the records are deleted logically and that they
are deleted physically at a reorganization time. He
established a connection between the dynamic fragmentation
pattern and the concrete microscopic parameters of record
insertion and deletion. Since the actual file performance
behavior is difficult to observe, such a connection is
useful for prediction purposes. Deterioration
characteristics are presented for non-homogeneous Poisson
insertion process and general record lifetime distribution.
He obtained a closed-form expression for the optimal
compaction interval for the case of constant record
insertion rate and exponential record lifetime distribution.

Chapter 4

MODELING OF PHYSICAL DATABASE DESIGN

This chapter describes the modeling of the physical
database design for a VSAM file. The general descriptions
and the operations on VSAM are well represented in many
books (Ranade and Ranade, 1986; Ranade, 1987; IBM Corp.,
1985). VSAM is IBM's strategic access method for MVS/SP,
VS/XA, DOS/VSE, OS/VSI, and VM/CMS systems. VSAM supports
three different data set formats: key-sequenced, entry-
sequenced, and relative record. In this research, a key-
sequenced data set (KSDS) is used as the underlying file
structure because it fulfills the same functional
requirements as ISAM. A KSDS consists of two physical
components on the direct access storage device. The first
of these is the index component, which contains the key
fields and pointers to the location of the record to which
that key field belongs. The second is the data component,
which contains the records that hold the user data including
the key field. The key field is small compared to the whole
record; similarly, the index component is small compared to
the data component. Therefore, the main concern of this
research is the data component. In a KSDS, logical records
are placed in the data set in ascending collating sequence
by key field. Records can be retrieved and inserted, both
randomly and sequentially. When a KSDS is created, unused

28

space, called free space, can be scattered throughout the
data set to allow records to be inserted. Free space within
a Cl is used for in-place reorganization of KSDS's for
additions, updates, or deletions of records within that Cl
(IBM Corp., 1985). To some extent, this helps to keep the
data components in physical sequence in spite of many
subsequent random insertions. However, as a result of
excessive random insertions and deletions, the components
eventually become physically out of sequence, although they
are still in logical sequence when accessed through the
index of the cluster (Ranade and Ranade, 1986).

The main purpose of this chapter is to develop models
that describe such a physical database deterioration by
analyzing the expected behavior of a physical database
structure in which splits are used to handle overflows. The
difficulty of handling the model comes from the fact that
the probabilities of inserting a record into each Cl changes
continuously with the change of total records in the system.
Another difficulty in modeling comes from a Cl split. Since
the split changes the state of a Cl, it is difficult to
define any distribution function that describes the number
of records in each Cl, differently from the analytical
method used in ISAM file analysis. In developing a model,
it is assumed that no record spans over Cl boundary are
allowed, and that the data record size is fixed. These

30
assumptions will be applied both in the following two
sections.

4.1. Modeling of a Physical Database When Continuous
Insertions Are Considered

The modeling described in this section considers
successive random insertions of records in the construction
of a physical database. The assumptions given in this
section are (1) that records are uniformly distributed
according to keys of records, and (2) that insertion is at
random. If there are n keys in a database, these n keys
divide all possible key values into n+1 slots. If an
insertion has an equal probability of being in any one of
these n+1 slots, it is called a random insertion and its
probability is given by 1/(n+1). However, if we let f(i) be
i/(n+1), the total sum of f(i), i = 1 , ... n, becomes
n/(n+1), which is not one. This situation can be relieved
in the following way. We know that if a Cl has i records,
it provides i slots for a newly inserted record except for
either the first Cl or the last Cl, which has one more slot
than the others. The generalization of the fact that, if
there are i records, there are i slots, can be obtained by
putting a dummy key at the beginning of the first front Cl.
If the system has a large enough number of records, the
effect of this dummy key will be insignificant (Baeza-Yates,

1989a). The analysis of this model is based on the fringe
analysis. Fringe analysis has been used to analyze files
whose indices have tree structures such as 2-3 trees, B-
trees, and B+-trees (Yao, 1978; Eisenbarth et al., 1982;
Baeza-Yates, 1989a, 1989b). The research stream of these
researchers was to find the expected behavior of balanced
search trees. The composition of a fringe is described in
several ways. Yao (1978) described it as the expected
number of trees of each different type of 2-3 trees.
Eisenbarth et al. (1982) indicated that the fringe of a tree
consists of one or more subtrees that are isomorphic to
members of a tree collection. Typically, the fringe
contains all subtrees that meet this description. The
description of the fringe is modified in this research,
however, to the expected number of CIs that contain i
records after the n* insertions, which is denoted by X4(n) .

The transitions between CIs can be used to model the
insertion process. When a record arrives for an insertion
into the database, it is assigned to a Cl. The method used
for determining the assignment depends on the file
organization technique. In an indexed-sequential file such
as VSAM, the assignment is made by means of an index look­
up. If the assigned Cl is not full when an insertion
occurs, then a new record is added to that Cl and the
insertion process is completed. If the assigned Cl is full,
then a Cl split occurs. In the former case, the count of

32
the number of records in the assigned Cl is increased by
one. In the latter case, as was discussed in Section 1.2,
because of the split, the count of the number of records in
the assigned Cl is decreased to (b+J) /2* and a new Cl with
(b+1)/2 records is created.

Let the Cl that contains i records be denoted by Cl'.
The insertion of a record into a Cl' will cause a decrease
in the number of Cl's by one and an increase in the number
of CI‘+1s by one, because a Cl' will be converted to a CI'+1
with the addition of a record. Since the current value of
X(n) depends on the history of the process only through the
recent value of X(n-l), this insertion process follows a
Markovian. According to Hillier and Lieberman (1986), a
sequence { X(n) } = { X(0) , X(l) , ...} of random variables
taking values on a set space S is a Markov chain if
Pr { X(n) = i | X(n-l) = j, ..., X(0) = k >
= Pr { X(n) = i | X(n-l) = j } for all i, j, ...,k eS.

Recall that X;(n) is the number of Cl's when there are n
records in the file. The probability that a record is
inserted into a Cl* is assumed to be iX;(n) / (n+1) . With this
probability, Xj(n) is decreased by one and Xj+1(n) is
increased by one, because one record insertion into a Cl'

* b is the capacity of a Cl and is assumed to be an odd
number for analytical convenience. Therefore, (b+l)/2 will
be an integer number.

33
will make it a CIi+1 as explained earlier. Similarly, the
above relationship also holds for Xi., (n) and Xj(n) with
probability (i-1) X ^ n) / (n+1) . These relationships are
represented by the following transition probabilities when a
record is inserted:

Pr { X;(n+1) = a2 | X;(n) = alf X ^ n) }
iXj(n)

= for a2 = al - 1 (4.1.1)
n + 1
(i-1) Xj_, (n)

= for a2 = al + 1 (4.1.2)
n + 1

= 1 - (4.1.1) - (4.1.2) for a2 = al, (4.1.3)

where i = 2,3, ..., b, and b is the maximum number of
records that a Cl can hold; i.e., capacity of a Cl. When
i = 1 , some of the above transition probabilities are
changed by the following equations:

Pr { X, (n+1) = a2 | X^n) = a, }
X, (n)

= for a2 = al - 1 (4.1.4)
n + 1

= 1 - (4.1.4) for a2 = al. (4.1.5)

If an insertion falls on a CIb, with probability
bXb(n)/ (n+1), a Cl split occurs. The effect of a Cl split
could be combined on the transition probabilities for the
CIs with kl or k2 records, kl and k2 are defined as
kl = L(b+l)/2j , k2 = R b + D / 2 1 , where [_(b+l)/2j denotes the

34
integer part of (b+l)/2 and f(b+l)/2"| denotes the smallest
integer £ (b+l)/2. To make the analysis simple, let us
define integer value k = (b+l)/2 by selecting only odd
numbers for b. Since a Cl split produces two CIks, the
transition probabilities reflecting this Cl split are given
by the following equations:

Pr { Xk(n+1) = a2 | Xk(n) = a„ Xk.,(n), Xb(n) >
kXk(n)

= ------ for a2 = al - 1 (4.1.6)
n + 1
(k-l)Xk.,(n)

= ------------- for a2 = al + 1 (4.1.7)
n + 1

bXb(n)
= ------ for a2 = al + 2 (4.1.8)

n + 1
= 1 - (4.1.6) - (4.1.7) - (4.1.8) for a2 = al (4.1.9)

Using the above transition probability equations
(4.1.1) through (4.1.9), one can obtain the expected values
of Xj(n+1) conditional on X;(n) and X;i(n) by:

i) when i = 2, 3, ..., b, + k

E [X;(n+1) | Xj(n), Xw (n)]
iXj(n) (i-l)X,,(n)

= (X4(n) - 1) ------- + (Xj(n) + 1)
n + 1 n + 1
iX;(n) (i-lJX^fn)

+ Xj(n) (1 -----------------------)
n + 1 n + l

i (i“l)Xi.1(n)
= (1 ---------) x;(n) + -----------

n + i n + 1

35

(4.1.10)

ii) when i = 1
1

E [Xj(n+1) | Xj(n)] = (1 ---------) X,(n) (4.1.11)
n + 1

iii) when i = k

E [Xk(n+1) | Xk(n) , X^fn), Xb(n)]
kXk(n) (k-l)Xk.,(n)

= (Xk(n) - 1) ------ + (Xk(n) + 1) ------------
n + 1 n + 1

bXb(n)
+ (Xk(n) + 2) ------

n + 1
kXk(n) (k-l)Xk.j(n) bXb(n)

+ Xk(n) (1 ------------------------------------)
n + 1 n + 1 n + 1

k (k-1) Xk.j (n) 2bXb(n)
= (1 ---------) Xk(n) + ------------- + ----- (4.1.12)

n + 1 n + 1 n + 1

Now, we wish to obtain the unconditional expected value
of Xi(n+1) . This can be done in the following way (Ross,
1984) :

E (E (Xi(n+1) | Xj(n) , Xi.j(n)]]
= E [Xj(n+l)=a2 | Xi(n)=al, XM (n)=/3]

x P {X;(n)=al, X^n^jS}
= a2 P {Xi(n+l)=o2 | Xi(n)=al, XM (n)=^}

x p {Xj(n)=al, Xi.Jn)^}

36
P {Xj(n+l)=a2, Xi(n)=al, Xi.1(n)=^>

= a 2
P {Xi(n)=al/ XiA(n)=P}

x P {Xi(n)=al, Xi.1(n)=/3}
= a2 P {X;(n+l)=a2, Xj(n)=al, XM (n)=/8}
= 2^02 P {Xj(n+1) =a2, X;(n)=al, Xi.1(n)=i8}
= Ea2a2 P {Xi(n+l)=a2>
= E [X{(n+1)]

Therefore, using the above relation, we can
following unconditional relations from equations
through (4.1.12).

i) when i = 2, 3, ..., b, + k

E [E (Xi(n+1) | Xj(n) , X^n)])
= E [Xj(n+1)]

i i - 1
= (1) E [X;(n)] + ----- E [X;., (n)]

n + 1 n + 1

Similarly,
ii) when i = 1

1
E [X, (n+1)] = (1 -------) E [Xj (n)]

n + 1
iii) when i = k

E [Xk(n+1)]
k k - 1

= (1 ---------) E[Xk(n)] + ------ E[Xk.,(n)]
n + 1 n + 1

derive the
(4.1.10)

(4.1.13)

(4.1.14)

37
2 b

+ ----- E[Xb(n)] (4.1.15)
n + 1

The probability, Pj(n) , that an insertion falls into
one of the key intervals of a Cl' is obtained using the
relation P;(n) = i E [Xj(n)] / (n+1). Using this relation,
we can convert the expected difference equations (4.1.13)
through (4.1.15) into probability difference equations
(4.1.16) through (4.1.18).

n - i i
P.(n) = ----- Pi(n-l) + ----- Pj-i(n”l) (4.1.16)

n + 1 n + 1
Similarly, for i = 1 and i = k, the following difference
equations are obtained.

n - 1
P,(n) = ------ Pi(n-l) (4.1.17)

n + 1
n - k 2 k

pk(n) = ------ Pk(n-1) +------ Pk-i(n-l) + ------ Pb(n-1)
n + 1 n + 1 n + 1

(4.1.18)
Let P(n) be a b-component column vector containing

Pi(n) . Then, equations (4.1.16) through (4.1.18) can be
written in a recurrence relation using vectors and matrix.

A
P(n) = [I + ------] P(n-l), (4.1.19)

n + 1
where

P(n) = [P,(n), P2(n) , ..., P;(n) , ..., Pb(n)]T,

38
I is an b x b identity matrix, and
A is the transition matrix.

A =

-2 0
2 -3

3 -4

i -(i+1)

k - (k+1) 2k

b -(b+1)

The equation (4.1.19) is similar to the equation
derived in Eisenbarth et al. (1982) for the analysis of 2-3
trees and in Baeza-Yates (1989a, 1989b) for the analysis of
B+-trees.

Since Pi(j) = 0 for all integer j, (j < i) , the
solution of equation (4.1.19) is obtained by recursion

n - i- l APi(n) = n [I + -----
m~° n+l-m] P(i), (4.1.20)

where i = 1 , 2 , ..., b, and
P(i) = [P,(i), P2(i), ..., P;(i), 0, ..., 0]T.
The probability Pj(n) converges to the solution of a

equation A Xj = 0 when n goes infinite, where Xj is an

39
eigenvector corresponding to the eigenvalue Xj = 0. The
convergence of Pj(n) is proved in Theorem 4.1.1 (Eisenbarth
et aJL., 1982, pl35) .
Theorem 4.1.1 Let A be the b x b transition matrix of a
fringe analysis problem. Let \lf ..., Xb be eigenvalues of A,
with Xj^O > Re(X2) > ... £ Re(Xb) , and let x, be the
eigenvector of A corresponding to Xj. Then, there exists a
constant c such that for every vector P(n)

J P(n) - c x, | = O (nReO»)j t

-*
where P(n) is defined in equation (4.1.19).

The probability of a Cl being split after n* insertion
is denoted by Pb(n) , and can be derived from equation
(4.1.20).

Pb(n) = n 1[I + — —] P*(b) (4.1.21)
m_0 n+l-m

If we know the probability Pj(n) , then we can get the
expected number of crs for large n, E [Xj(n)], using the
relation E [X;(n)] = ((n+l)/i) P;(n). The E [Xj(n)] is given
by

n + 1 n + 1 ni, A
E [Xi(n)) = ----- Pj(n) = ------- n [I +------] P(i).

i i m_0 n+l-m
(4.1.22)

40
The total expected number of CIs, X(n), which is the

sum of E [Xi(n)], is given by
b j, El + 1 n-i-l A

X(n) = E E [X;(n)] = E II [I + —] P(i) .
i=1 i=1 i m=0 n+l-m

(4.1.23)
The utility of a file is estimated by the minimum

number of CIs and total number of CIs, X(n), in the
following way:

min. number of CIs n/b
Utility = -------------------- = (4.1.24)

X(n) X(n)

For a given number of records, utilization of a file
only depends on the Cl capacity (b) and the total number of
CIs (X(n)).

4.2. Modeling of a Physical Database When Both Insertions
and Deletions Are Considered

The modeling described in this section considers both
insertions and deletions of records in the construction of a
physical database. Different from the analysis in section
4.1, this section adopts continuous transaction analysis.
The assumptions used in section 4.1 are also effective in
this section. However, the probability of a record being
deleted is assumed to be equal for all records. It is also
assumed that the arrival of records to be inserted to the

physical database follows a Poisson process with arrival
rate X. Each record in the database and in the arriving
stream has a unique key. All the discussions in section 4.1
relating to a record insertion into a Cl also apply to this
section and are therefore not be repeated. When a record is
inserted into a database, its service is assumed to have
commenced. The service continues until a record is
physically deleted from the system, and the space occupied
by the record is then immediately reusable by another
record. It is assumed that the service times of all records
inserted into the file are independently, identically
distributed random variables with an exponential
distribution and a finite mean l//x - The rate that an
insertion occurs between time t and t+At is equal to XAt,
and the rate that a deletion occurs between this time
interval is equal to /uAt.

A major source of difficulty in modeling arises from
the need to keep track of the number of Cl’s. This number is
influenced by the rate of arrival of new records into each
Cl, by the deletion rate of records, and by the way of
handling overflows; i.e., Cl splits. These in turn depend
on the probabilities of a record insertion and deletion into
and from each Cl. To develop a model, fringe analysis is
also used, as in section 4.1. However, the fringe in this
section is described by the expected number of Cl's at time

42
t. The birth and death process has been adopted as a means
of describing the transitional behavior of fringes.

Let Xj(t) be the number of Cl's. It is assumed that the
probability that a record is inserted into a Cl' is
iXj(t) / (n+1), and the probability that a record is deleted
from a Cl' is iXj(t)/n at time t, where n is the total number
of records in the system at time t and n = n(t). There are
two occasions where X;(t) can increase. One occurrence is
an insertion into the CI^s, and the other is a deletion
from CI'+1s. Xi (t) decreases when an insertion or a deletion
occurs from the Cl's. In other cases, X;(t) remains the
same. This transaction follows a birth and death process.
The instantaneous changes in the system state can amount to
an increase (birth) or a decrease (death) of a CI‘. When a
transaction occurs, the following conditional transition
probabilities are given using a state of X;(t+At) for a
given state Xj(t) , where i = 2,3, ..., b-1 and b is the
maximum number of records that a Cl can hold, as defined in
section 4.1.

Pr { X;(t+At) = a2 | X;(t) = al, Xj.,(t), Xi+1(t) }

(i-l)XM (t) (i+1) Xi+1 (t)
X„At] + (Mn^t] (4.2.1)

n + 1 n
for a2 = al + 1

43
iXj(t) iXj(t)

= [------ X„At] + [------ n£t] (4.2.2)
n + 1 n

for a2 = al - 1
= 1 - (4.2.1) - (4.2.2), (4.2.3)

for a2 = al
where \ and nn are the insertion rate and the deletion
rate, respectively, and al and a2 are constant.

The conditional probability equations (4.2.1) through
(4.2.3) can be interpreted in the following ways. The first
term of the equation (4.2.1) represents the birth of a
record into one of the CI'^s, with a probability (i-l)Xi.1(t)
X„At / (n+1). The second term represents the death at one
of the CIi+1s, with a probability (i+l)Xi+1(t) /i„At / n. The
result of these combinations is an increase in the number of
Cl's. The interpretation of equation (4.2.2) is similar to
that of equation (4.2.1). This equation represents the
birth or the death of a record at one of the Cl's with a
probability iX;(t) X„At / (n+1) or iX;(t) naAt / n,
respectively. The result is a decrease in the number of
Cl's. In other cases that do not appear in equation (4.2.1)
and (4.2.2), the number of Cl's remains the same.

When i = 1, i = b, or i =k, the equation (4.2.1) is
modified in the following way.
i) When i = 1

Pr { Xt(t+At) = a2 | Xj(t) = al, X2(t) }

44
2 X2(t)

= [-------- Mn^t] (4.2.4)
n

The interpretation of equation (4.2.4) is that the
increase of Xj(t) is caused only by the deletion on one of
the CI2s with a probability 2X2(t) /i„At / n.

ii) When i = b

Pr { Xb(t+At) = a2 | Xb(t) = al, Xw (t) >
(b-DXh.^t)

= [----------- X„At] (4.2.5)
n + 1

The interpretation of equation (4.2.5) is that the
increase of Xb(t) is caused only by the insertion on one of
the CI^s with a probability (b-lJX^ft) X„At / (n+1).

iii) When i = k, one more equation is added to equations
(4.2.1), (4.2.2), and (4.2.3) to reflect the Cl split.

Pr { Xj(t+At) = a2 | Xj(t) = al, X,,(t), Xi+1(t), Xb(t) }
b Xb(t)

= [------- X„At] (4.2.6)
n + 1

for a2 = al + 2
The interpretation of equation (4.2.6) is that the

increase of Xk(t) has an additional source besides the
sources in equation (4.2.1). The birth of a record into one
of the CIbs, with a probability b X ^ t) X„At / (n+1) , causes
a Cl split and, with this split, Xk(t) is increased.

45
Using the conditional probabilities (4.2.1) through

(4.2.6) , the expected values of X;(t+At) , conditional on
Xj(t), X ^ t) and Xi+1(t), can be obtained as

E [Xj(t+At) | X;. j (t) , Xj (t) , Xi+1 (t)]
(i-l)XM (t) (i+1) Xi+1 (t)

= (Xj(t) +1) {[------------ \jAt] + [/x„At]}
n + 1 n

iXj(t) iXj(t)
+ (Xi(t)-l) {[X„At] [------ JUrAt]}

n + 1 n
+ Xj(t) { 1 - (4.2.1) - (4.2.2) >

(i-l)XM (t) (i+1) Xi+1 (t) iXj (t)
= -------------- XnAt + ------------ M n A t ----------- X„At

n + 1 n n + 1
iXj(t)

MnAt + X;(t), (4.2.7)
n

where i = 2, 3, ..., b-1, + k.
Using the expectation from equation (4.2.7), we can

obtain the unconditional expectation for X;(t+At). That is,
E [E [Xj(t+At) | XM (t), X;(t), Xj+1(t)]] becomes E
[X;(t+At)]. (See section 4.1 for proof of this.)
Therefore, the expectation on equation (4.2.7) can be
represented by the following equation:

E [E [Xj (t+At) | XM (t), X;(t) , Xi+, (t)]]
= E [Xj (t+At))

(i-1) X„At (i+1) MnAt
= ------- E [X,,(t)] + E [Xi+, (t)]

n + 1 n

46

i X„At i /i„At
 E [X;(t)] ---------- E [Xj(t)]

n + 1 n
+ E [Xj(t)] (4.2.8)

If we subtract E [X(t)] from both sides of equation
(4.2.8) and divide them by At, we will have

E [X;(t+At)] - E [Xj(t)]
At

(i-1) Xn (i+l)M„
------ E [Xw (t)] + E [Xi+1 (t)]
n + 1 n

i i Mn E [Xj(t)] ------- E [Xj(t)]. (4.2.9)
n + l n

If we take the limit on At, we will have the following
differential difference equation:

E [Xj(t+At)] - E [Xj(t)] dE [Xj(t)]
lim ---------------------------- = ----------
Al-° At dt
(i“l) Xn (i+1) /xn

= --------- E [Xj.,(t)] + --------- E [Xj+1(t)]
n + 1 n

i i Mn- (---- +) E [X;(t)] (4.2.10)
n+l n

Substitute E [Xj(t)] with Yj(t) and let X„ and /i„ be ^
and /xn. Then, equation (4.2.10) can be rewritten as

47
V (t) = a (i-1) Yw (t) + n (i+1) Yi+1(t)

- (a+/i) i Y;(t) , (4.2.11)

where Y+(t) = dYj(t) /dt, a = X / (n + 1), and i = 2,3,
...,b-l, +k. This equation is similar to the equation that
Quitzow and Klopprogge (1980) derived in terms of pages
considering both insertions and deletions for the B-trees
model.

When i = 1 or i = b, we can derive equation (4.2.12) or
(4.2.13) using a procedure similar to that used in equation
(4.2.7) through (4.2.10) to derive equation (4.2.11).

If an insertion occurs on one of the CIbs, then a CIb
splits. When this happens, half the records remain in the
split Cl, and the other half move to a new Cl within the
same CA or to that in a different CA, depending on space
availability as explained earlier in Chapter 2. As a result
of the split of one of the CIbs, two CIks are generated.
Therefore, when i = k, this Cl split effect is added to the
differential equation in the following way:

Yk'(t) = a (k-1) YM (t) + /x (k+1) Yk+1(t)

V (t) = 2 fi Y2(t) - (a + n) Yx(t)
Yb'(t) = a (b-1) Yw (t) - (a + fi) b yb(t) (4.2.13)

(4.2.12)

- (a + /z) k Yk(t) + 2 a b Yb(t) . (4.2.14)

48
The graphical representation of the changes of Yj(t) in

At is depicted in Figure 4.2.1. This figure can be
interpreted in the following way:
i) Circles with Yj represent the states of Yj(t), (l<i<b) .
ii) A labeled arc from Y;., to Y; illustrates the increase

of Y; in At and a labeled arc from Y; to Y^
illustrates the decrease of Y; in At, (l<i<b).

iii) A labeled arc from Y! to nowhere indicates the release
of a Cl1 to the future available space.

iv) A labeled arc from Yb to Yk illustrates the increase of
Yk in At as a result of a Cl split.

The solution for the system of differential difference
equations given in equations (4.2.11) through (4.2.14) can
be obtained by an initial condition method. Consider a
database that was initially created with n0 fixed-length
records. Let F(0) denote the total number of CIs assigned
when £ number of records are initially loaded into a Cl,
where £ is called the loading factor. Since each Cl has £
records on file creation, it allows that F(0) equals to
fn0/£") . The initial conditions (i.e.) that reflect this
fact can be set up by

Yj(0) = F (0) for i = £
Yj(0) = 0 otherwise. (4.2.15)

Figure 4.2.1 Graph for the basic model.

b-1
2aY

baY,

ikaY,

(i-l)aY,

k-1iaY;

50
Equations (4.2.11) through (4.2.14) can be represented

as a normalized system of b first-order, linear equations.
These equations form an initial condition problem with given
initial conditions in equation (4.2.15).

This initial condition problem can be represented in a
vector form:

Y'(t) = A(t) Y(t),
i.e.

Y (0) = [0 0 . . . F (0) ... 0 0]T,
where

(4.2.16)

and
Y (t) = [Yj (t) Y2(t) ... Yb(t)]

-/3 2/i
a -2/3 3/x

A(t) = (i-l)a -i/3 (i+1)/i

(k-1)a -k/3 (k+l)/i 2ab

(b-1) a -b/3

where a = X/(n+l), /8 = a + /i, and n = n(t) .

The number of records in the database at time t can be
obtained by solving the following ordinary differential
equation.

51
dn
 = X - fin (4.2.17)
dt

Equation (4.2.17) indicates that insertion increases,
and deletion decreases, the number of records in the system.
The general solution of this equation is given by

n = X//i + C exp (-/it) , (4.2.18)

where C is an arbitrary constant that should be determined
by the initial condition. As the database was created with
^ records initially, we can decide C using the initial
condition; i.e., when t=0, C = n0 - X//u. Using this
constant C, we can determine the particular solution of
equation (4.2.17).

n = X/m + (n0 - X/m) exp(-/xt) (4.2.19)

The system of differential equation (4.2.16) could not
be solved in an analytical method, because n is a function
of time and so is the A matrix. Numerical method is used to
obtain the solution of this equation, and the simulation
package SLAM II has been used for this purpose. SLAM II
uses Runge-Kutta-Fehlberg (RKF) algorithms to integrate the
equations (Pritsker, 1986). The RKF method is particularly
useful if certain coefficients in the differential equation
are empirical functions for which analytical expressions are
not known, and hence for which initial series developments

52
are not feasible. This method provides the specific
capability of numerically integrating a system of
first-order ordinary differential equations such as equation
(4.2.16). Using this method, a simulation is done to obtain
the time history of Y(t) for a given equation for Y'(t).
This is accomplished by considering Y(t) as a function of
the derivatives of Y(t) using a Taylor series expansion.
The values of Y(t) can be estimated by evaluating the Y'(t).
Given the vector of expected number of CIs, Y(t), the total
number of CIs could be calculated. Let F(t) represent the
total number of CIs at a given time. Then, F(t) is given by

F(t) = E Yj(t) , (4.2.20)
i = l

and the minimum number of CIs, CI,,̂ , is given by

CInun = £ i Yj (t) / b. (4.2.21)
i = l

From equations (4.2.20) and (4.2.21), utility of the file
could be calculated. Utility represents that portion of the
file that is utilized or being used efficiently.

0 J • b b

Utility = ---— — = E i Y4(t) / (b E Y4(t)) (4.2.22)
F (t) i=1 i=1

A detailed analysis to the results given so far is
presented in Chapter 5 through numerical experiments.

Chapter 5

NUMERICAL EXPERIMENT RESULTS
FOR THE MODELS OF PHYSICAL DATABASE DESIGN

The previous chapter focusses on developing models that
describe the behavior of a physical database in a VSAM file.
One model considers the case where the database is built up
through the insertions of records without deletions. The
other model considers the case where the database is built
up through both insertions and deletions of records. In
developing models, two factors are vital. One is the
probability of inserting a record into a particular Cl, and
the other is the Cl split. The increase and the decrease of
the number of records for each CIjs depend mainly on the
probabilities of inserting and deleting records. The Cl
splits adopted as an alternative technique of handling the
overflow problem act as another source of increment for the
number of CIks.

An efficient design for a physical database system is a
function of the various parameters that define the system.
A specific physical database can be described by the values
that are assigned to the various parameters. Design
parameters define the particular implementation that has
been chosen for a given application. These design
parameters include the capacity of a Cl, loading factors,
the method of handling the overflows, etc.

53

In this chapter, we introduce details of computational
results for each model. The primary objective of these
numerical analysis is the verification and the understanding
of the models developed in Chapter 4 by showing how the
physical database behaves with changes of different
parameter values. The examination is based only on the
models developed in Chapter 4, however; we neglect the
status changes related to the CA splits in this chapter and
discuss them in the following chapters. The first model was
verified using a program written in Pascal, and the second
model was verified using the simulation package SLAM II.

5.1. Numerical Analysis for the Physical Database
Constructed with Records Insertions Only

The insertion of a record into the database contributes
to an increase in the number of CIs in the system in the
following ways. As explained in Section 4.1, the insertion
of a record into the Cl’s contributes to an increase in the
number of CI2s and to decrease in the number of Cl’s.
Similarly, the insertion of a record into the CI2s increases
the number of CI3s and decreases the number of CI2s and so
on. However, the situation is somewhat different when a
record is inserted into the CIbs . In this case, because of
the Cl split, the number of CIks increases and the number of
CIbs decreases. From the above mechanism, we can conjecture

the following results. With a continuous increase in record
insertions into the system, the number of CPs, Xj(n) (l<i<Jc
) decrease to zero because there are no resources that
contribute to the increase of them. However, Xj(n) (k<i<b
) continuously increases as a result of records supply and
Cl splits. This conjecture is well matched to the numerical
analysis results, which are based on the given model, and is
verified in Table 5.1.1. This table was developed using the
model in Section 4.1. Eleven was used for the capacity of a
Cl; i.e., b=ll. When n < 400, Xs(n) (l<i<5) retains
>0.005, although they are negligibly small. When n > 500,
however, they become practically zero, whereas Xi(n)
(6<i<ll) grow bigger with the increase of n. This
situation is depicted in Figure 5.1.1. As this figure
indicates, the total number of CIs in the system is shown in
Figure 5.1.2. The interesting finding from this figure is
that the total number of CIs increases linearly with the
increase of the total number of records in the system.

Table 5.1.1 also shows the probability values P;(n) for
the various number of records in the system, where i=l,2 ,
...11. As the number of records in the system increases,
Pj(n) (l<i<5) decrease and become zero when n > 200 while
Pi(n) (6<i<ll) have stable values convergent to 0.219,
0.191, 0.170, 0.153, 0.139, and 0.127. Figure 5.1.3 depicts
the distribution of these probabilities. Practically, this
situation indicates that, when n becomes > 200, all the CIs

56
contain more than 5 records; thus, we no longer need to
consider Xj(n) (l<i<5) .

The storage utilization, which was calculated using the
equation (4.1.24), is shown in Table 5.1.1 and in Figure
5.1.4. The storage utilization increases as n increases.
However, when n is large enough, the utility becomes stable,
approaching a value of around 0.71. This analysis can be
comparable with B-tree analysis when n is large. As X;(n) (
l<i<5) become zero with large n, it is plausible that the
physical database behaves similarly to B-tree. Then, we can
compare the utility values from the model with those from
the B-tree analysis. The predicted utility values used as a
standard for B-tree analysis are Ln2 + 0(l/b) (Baeza-Yates
1989a, 1989b; Chu and Knott 1989; Eizenbarth et al. 1982) .
The values we have shown above are within the error range of
this prediction value. This supports the fact that the
model in Section 4.1. is reasonably formulated. Another
numerical experiment related to the utility analysis was
done for the files that have different Cl capacities. Table
5.1.2 shows the different utility values and the total
number of CIs for each file when the total number of records
in the system is fixed at 200. This table shows the
negative relation between utility and the size of b. With a
smaller value of b, we have a higher utility value; i.e.,
when b equals 21, utility is 0.6960, but when b equals 3,
utility is 0.7739, and so on. However, if we adopt a small

Cl capacity, the probability of a Cl split increases, as
does the total number of CIs. The result will be an
increase in the record insertion cost because of the high Cl
splits. Consequently, the optimal choice of the Cl capacity
will be the tradeoff between the high utility and the high
record storage cost.

58

Table S.1.1 Probability of Inserting a record into C l ' s , the nuaber of
Cl's, and associated storage utilization

(N) 20 50 100 200 300 400 500

PI in) 0.0048 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000P2(n) 0.0095 0.0016 0.0004 0.0001 0.0000 0.0000 0.0000P3(n) 0.0143 0.0024 0.0006 0.0002 0.0001 0.0000 0.0000P4(n) 0.019 0.0031 0.0008 0.0002 0.0001 0.0000 0.0000P5(n) 0.0238 0.0039 0.001 0.0002 0.0001 0.0001 0.0000P6(n) 0.186 0.2174 0.2183 0.2186 0.2187 0.2187 0.2187P7(n) 0.1735 0.1891 0.1909 0.1913 0.1913 0.1913 0.1913P8(n) 0.1695 0.1677 0.1696 0.17 0.17 0.1701 0.1701P9(n) 0.1569 0.151 0.1526 0.153 0.153 0.1531 0.1531P10(n) 0.1344 0.1373 0.1386 0.139 0.13 91 0.1391 0.1391Pll(n) 0.1082 0.1256 0.127 0.1274 0.1275 0.1275 0.1275

XI (n) 0.1 0.04 0.02 0.01 0.0067 0.005 0.004X2(n) 0.1 0.04 0.02 0.01 0.0067 0.005 0.004X3(n) 0.1 0.04 0.02 0.01 0.0067 0.005 0.004X4 (n) 0.1 0.04 0.02 0.01 0.0067 0.005 0.004X5(n) 0.1 0.04 0.02 0.01 0.0067 0.005 0.004X6(n) 0.651 1.848 3.6753 7.3235 10.9695 14.615 18.2603X7(n) 0.5205 1.378 2.7547 5.4919 8.2266 10.9609 13.6949X8 (n) 0.4451 1.0693 2.1415 4.2708 6.398 8.5248 10.6513X9(n) 0.3662 0.8558 1.7123 3.4161 5.118 6.8195 8.5208X10(n) 0.2822 0.7003 1.4001 2.7945 4.1871 5.5794 6.9714Xll(n) 0.2066 0.5824 1.1657 2.3282 3.489 4.6492 5.8093Total 2.9716 6.6338 12.9496 25.675 38.4215 51.1738 63.928

Utility 0.6119 0.6852 0.702 0.7082 0.7098 0.7106 0.7113

Table 5.1.2 Utility changes for each Cl capacity size

Capacity Utility

3 0.77395 0.73617 0.72129 0.713211 0.708213 0.704615 0.701817 0.699519 0.697621 0.696

Prob. of Total no. split of CIs
0.4285 860.2702 540.1969 400.1548 310.1274 260.1082 220.094 190.0831 170.0746 150.0678 13

Figure 5.1.1 Number of CIfs

Number of CIs Xi(n)20

15

10

5

r !

0
1 2 3 4 5 6 7 8 9 10 11

Control Interval i

Figure 5.1.2 The relation between the number of total
records and the total number of CIs

Number of CIs700
600

500

400

300

200
100

21.5 2.5 3 3.50 0.5 1 4.5 54
Number of records (Thousands)

0.25

0.2

0.15

0.1

0.05

0

Figure 5.1.3 Probabilities of inserting a record into a Cl’s

Probability Pi(n)

m L L I
6

I
1

1I
1I1
7

Control Interval

1

8 9

I

i
10

I

11

n=20 n=50 n=100 n=200 n=300 n=500

Figure 5.1.4 Utility changes and the probability of a Cl split for
different Cl capacity size.

Prob/U tility0.8

0.6

0.4

0.2

9 1913 15 17 213 5 7 11

Cl capacity size

Prob. of a Cl split U tility

to

63
5.2. Numerical Analysis for the Physical Database

Constructed with Records Insertions and Deletions

Consider a database that has 50,000 records initially.
This size of this database file is small to medium by
conventional commercial standards. The two key parameters
that determine the evolution of the physical database system
from state to state are the record arrival rate to the
database and the deletion rate of records from the database.
In the development of the model in Section 4.2, the arrival
rate per period has been assumed to be distributed as a
Poisson random variable, and the deletion time distribution
per record has been assumed to be exponentially distributed.
For the numerical experiments, it is assumed that the
arrival rate of records to be inserted into the database is
200 records per period. The unit of a period is assumed to
be one hour. Each record is assumed to be deleted at a rate
of 0.001 per period. This means that if there are N0 records
in the system, the rate at which records are deleted is
0.001 N0, and this rate is changed as the number of records
in the system is changed over time. The choice of the
values of the insertion rate and deletion rate combination
is based on the assumption that the database grows over the
time horizon. Besides the two parameters mentioned above,
we need to consider two other parameters: Cl capacity sizes,
and the range of loading factors for a given Cl capacity

size. In performing the numerical analysis for the model
given in Section 4.2, a finite set of parameter values is
considered to be tested, as was done in Section 5.1.
Verification of the model could be done using the simulation
package SLAM II. To verify the model, we can compare the
total number of records that can be predicted using the
equation (4.2.19) with the total number of records that is
calculated from the simulation. From the simulation, we can
obtain the number of Cl's. Summing up i times Cl's for all
i's gives the total number of records.

The growth of a database over time from a given initial
state is illustrated in Figure 5.2.1 and in Table 5.2.1 for
different Cl capacity values when X=200, 0 .001, and
N0=5O,000. To find the effect of the Cl capacity sizes, we
experimented with three different sizes: 9, 15, and 21. To
set up the same initial condition in the analysis, we
arranged the number of records to be loaded initially as 6 ,
12, and 14, respectively, yielding utility of 0.6667. Under
this initial condition with 50,000 records, the total
initial number of CIs for each database is 8,334, 5,000, and
3,572, respectively. As can be seen in Figure 5.2.1, the
number of CIs increases as time increases for all three
cases. The number of CIs in the file with capacity 9
increases faster than the others. However, the relative
increases in the total number of CIs, compared to the
initial number of CIs, are similar for all files. Let us

define state variable st = Xj/Xq, where Xo is the number of
CIs at the initial file loading time and X(is the total
number of CIs at time t. Then, from the Table 5.2.1, we can
obtain s200 = 1.5, s300 = 1.8, and s400 = 2.0 for all files.
The file size is doubled at time 400 hours regardless of the
Cl sizes. This fact gives us the possibility of predicting
the number of CIs in a database at the desired time if we
are given the state variable st. Another comparison of the
behaviors of files with different Cl capacities is shown in
Table 5.2.2 and in Figure 5.2.2, which depict the utility
changes over the time horizon for each file. As indicated,
the time horizon can be divided into three parts according
to the relative pattern of utilities of the files. In the
early stage of the file life, utilities increase
continuously until they reach their maximum utility values
at a time between 60 hours and 70 hours, and decrease
thereafter. The greater the Cl capacity, the higher the
utility values, until the time about 170 hours. At this
point, utility values for all files become almost the same
with a value of 0.69. After this time, the utility patterns
change. Utility is higher for the file that has a smaller
Cl capacity until the time 300 hours. After the time 300
hours, the file with the greater Cl capacity has higher
utility values again. What we determined from these
observations is as follows. First, the utilities are
greater than the initial utility until the time of 300

hours. Thereafter, they decline to a value less than that of
the initial utility; i.e., file utilization deteriorates
after the time of 300 hours. Second, if the utility is a
measure of the efficient file use related to the Cl size,
the optimal Cl size will be a function of time. Although
the choice of favorable Cl size is a function of time, if
the length of the time period and the magnitude of the
utility differences among the different files of different
Cl sizes are considered, one would recommend use of the
large Cl size. This conclusion can be supported also by a
comparison of the total number of CIs in each file as
follow. The increase in the total number of CIs during the
500 hours period for the file with b=9 is 10,526 and for the
file with b=21 is 4,259. This indicates that the file with
b=9 experienced more costly Cl splits than the file with
b=21.

To see how the file behaves for the different loading
factors, we experimented with initial loading of 9, 10, 11,
12, 13, and 14 records for the file whose Cl capacity is 15.
It seems evident that, if we use a smaller loading factor,
we need a greater number of CIs. However, this is true only
for the file that has a short life time. If the file life
is more than 400 hours, the total number of CIs becomes
almost the same regardless of the loading factor (Table
5.2.3 and Figure 5.2.3). A similar situation could be
obtained for the utility analysis. At the initial stage of

the file, it is difficult to predict the relationship
between the utility and the loading factor. However, when
the time period becomes long enough, the utilities of all
cases converge to one value. The utilities become about
0.67 at time 300 hours and about 0.65 at time 500 hours for
all cases (Table 5.2.4 and Figure 5.2.4). These results
suggest that loading factor does not influence the file
status much if the file has a long life time.

The distribution change of the number of CIs over the
CI‘s was examined for the file whose Cl capacity is 9. This
experiment shows how the file structure changes over time
for the given parameter values. At the file creation time,
records are loaded with a loading factor 6 ; so, X6(0) is
8334 and Xj(0) (l<i<9, i^6) are zero. After the loading
time, the number of CIs is spread over the other Cl's as a
result of records insertions and deletions and Cl splits.
Table 5.2.5 and Figure 5.2.5 show that, at time 90, Xs(90)
is even bigger than X6(90) and retains the bigger values
over the entire time horizon. The reason for this is that
X5(t) has an extra increasing source from the Cl splits. As
the time period becomes big enough, X;(t) (l<i<4) begin to
grow significantly and, before time 400, X4(t) becomes even
bigger than Xg(t) and X9(t). The relative portion of each
Xj(t) is shown in Table 5.2.6 and Figure 5.2.6. Whereas
weights of X;(t) (5<i<9) gradually decrease, those of X;(t)
(l<i<4) increase over time. This situation indicates that

file utilization decreases with the increase in the number
of CIs that contains a smaller number of records. The
decline of file utilization is also supported in Figure
5.2.2. As illustrated earlier, utilization begins to drop
after time 60 hours and becomes smaller than the initial
utilization after time 300 hours. Both the increase in the
number of total CIs and the decrease in utility become the
evidence of file usage deterioration. The following
chapters contain further discussion of file usage
deterioration and its solutions.

Table 5.2.1 Growth of CIs for three different Cl capacity
sizes (CA9, CA15, CA 21)

Time CA 9 CA 15 CA 21
0 8334 5000 3572

10 8336 5000 3572
20 8356 5002 357230 8414 5013 3575
40 8521 5044 358550 8677 5104 361060 8875 5195 3656
70 9106 5317 372680 9362 5464 3820
90 9633 5631 3934ICO 9913 5812 4064

110 10200 6001 4206
120 10480 6193 4354130 10760 6384 4505140 11040 6573 4655150 11310 6757 4802
160 11570 6935 4945170 11840 7106 5081180 12090 7271 5211
190 12340 7430 5335
200 12580 7582 5453
210 12820 7729 5564
220 13060 7871 5669
230 13290 8009 5770240 13520 8142 5865250 13750 8272 5957
260 13970 8400 6045270 14190 8524 6129280 14410 8646 6212290 14630 8767 6292300 14840 8886 6370310 15060 9004 6448320 15270 9120 6523
330 15480 9236 6598
340 15690 9351 6673
350 15900 9464 6746360 16100 9578 6820370 16310 9690 6893
380 16510 9802 6966390 16710 9914 7038
400 16910 10020 7111410 17110 10130 7183420 17310 10240 7256
430 17510 10350 7328
440 17700 10460 7400
450 17900 10570 7472460 18090 10680 7544
470 18290 10790 7616
480 18480 10890 7688
490 18670 11000 7760
500 18860 11100 7831

Figure 5.2.1 Growth of the CIs for three different Cl capacity sizes

Number of CIs (Thousands)20

15

10

5

0
0 50 100 150 200 250 300 350 400 450 500

Time (hours)

Capacity=9 — Capaci ty=15 —1* - Capacity=21

Table 5.2.2 Utility changes for three different Cl capacity
sizes (CA9, CA15, CA21)

le CA 9 CA 15 CA 21
0 0.6667 0.6667 0.666710 0.6864 0.6866 0.6865

20 0.7044 0.706 0.706130 0.7188 0.7239 0.725140 0.7287 0.7385 0.742350 0.734 0.7486 0.756160 0.7353 0.7537 0.7651
70 0.7338 0.7541 0.768780 0.7303 0.7507 0.7671
90 0.7257 0.7448 0.7615100 0.7204 0.7373 0.753110 0.7151 0.7291 0.743120 0.7099 0.7209 0.7323130 0.7051 0.7131 0.7218

140 0.7006 0.7059 0.7119150 0.6965 0.6995 0.703
160 0.6928 0.6939 0.6951170 0.6896 0.689 0.6883180 0.6866 0.685 0.6826
190 0.684 0.6815 0.6779200 0.6816 0.6786 0.6741210 0.6794 0.6763 0.6711220 0.6774 0.6743 0.6688230 0.6755 0.6727 0.667240 0.6738 0.6714 0.6658250 0.6722 0.6703 0.6649260 0.6707 0.6694 0.6644270 0.6693 0.6686 0.6641
280 0.6679 0.6679 0.6641290 0.6665 0.6673 0.6641300 0.6652 0.6668 0.6643
310 0.664 0.6663 0.6646320 0.6628 0.6657 0.6648
330 0.6615 0.6652 0.6651340 0.6603 0.6647 0.6654350 0.6591 0.6642 0.6656360 0.658 0.6637 0.6658370 0.6568 0.6631 0.6659
380 0.6556 0.6626 0.666390 0.6545 0.662 0.666
400 0.6534 0.6614 0.666
410 0.6522 0.6608 0.6659420 0.6511 0.6601 0.6658
430 0.65 0.6595 0.6656440 0.6489 0.6588 0.6653
450 0.6478 0.6581 0.665460 0.6467 0.6574 0.6647
470 0.6456 0.6567 0.6643480 0.6445 0.656 0.6639490 0.6434 0.6553 0.6634
500 0.6423 0.6545 0.6629

Figure 5.2.2 Utility changes for three different Cl capacity sizes

Uti l i ty0.8

0.75

0.7

0.65

0.6
50 100 150 200 250 300 350 400 450 5000

Time (hours)

Capacity=9 —r - Capacity=15 ~ C a p a c i t y = 2 1

73

Table 5.2.3 Effect of loading factors on the total number
of CIs in a file

Lme L=9 L=10 L=ll L=12 L=13 L=14
0 5556 5000 4546 4167 3847 357210 5556 5000 4547 4175 3912 394320 5556 5002 4560 4244 4165 454730 5558 5013 4609 4403 4532 508840 5566 5044 4708 4638 4927 551550 5584 5104 4857 4917 5301 584360 5618 5195 5046 5212 5633 609270 5671 5317 5262 5502 5919 628580 5745 5464 5492 5777 6162 643890 5838 5631 5726 6031 6370 6563100 5950 5812 5957 6261 6547 6670110 6077 6001 6180 6489 6702 6766120 6216 6193 6393 6658 6838 6855130 6365 6384 6593 6829 6962 6942140 6520 6573 6781 6935 7076 7030150 6679 6757 6957 7128 7185 7119160 6839 6935 7122 7263 7290 7212170 7000 7106 7278 7390 7394 7309180 7160 7271 7426 7511 7497 7410190 7318 7430 7566 7629 7601 7515200 7473 7582 7700 7744 7706 7624210 7625 7729 7830 7857 7813 7736220 7774 7871 7956 7969 7921 7851230 7919 8009 8078 8081 8032 7969240 8061 8142 8199 8192 8144 8088250 8200 8272 8317 8304 8258 8209260 8336 8400 8434 8417 8373 8332270 8469 8524 8550 8529 8489 8454280 8599 8646 8665 8643 8606 8578290 8727 8767 8779 3756 8724 8701300 8852 8886 8894 8870 8842 8324310 8976 9004 9008 8985 8960 8947320 9098 9120 9121 9100 9079 9070330 9218 9236 9234 9214 9197 9191340 9337 9351 9347 9329 9315 9312350 9454 9464 9460 9444 9433 9432360 9570 9578 9573 9558 9550 9551370 9685 9690 9685 9673 9667 9670380 9800 9802 9797 9786 9783 9787390 9913 9914 9909 9900 9898 9903400 10020 10020 10020 10010 10010 10020410 10140 10130 10130 10130 10130 10130420 10250 10240 10240 10240 10240 10250430 10360 10350 10350 10350 10350 10360440 10470 10460 10460 10460 10460 10470450 10570 10570 10570 10570 10570 10580460 10680 10680 10680 10680 10680 10690470 10790 10790 10790 10790 10790 10800480 10900 10890 10890 10900 10900 10910490 11000 11000 11000 11000 11000 11020500 11110 11100 11110 11110 11110 11120

Figure 5.2.3 Effect of loading factors on the total
number of CIs in a file

Number of CIs (Thousands)
12

10

8

6

4

2

0
0 50 100 150 200 250 300 350 400 450 500

Time (hours)
L=9 ~+-L=10 -*-L=11 - B —L=12 -* -L = 1 3 - 0 - L=14

#>■

75

Table 5.2.4 Effect of loading factors on the utility of
a file

Time L=9 1>10 L=ll L=12 L==13 L-14
0 0.6 0.6667 0.7332 0.7999 0.8665 0.933210 0.6179 0.6866 0.755 0.8222 0.8775 0.870620 0.6356 0.706 0.7744 0.8322 0.8479 0.776730 0.6529 0.7239 0.7873 0.8242 0.8006 0.713340 0.6694 0.7385 0.7913 0.8032 0.7561 0.675550 0.6843 0.7486 0.7867 0.7771 0.7208 0.65460 0.697 0.7537 0.776 0.7513 0.6952 0.642770 0.707 0.7541 0.7619 0.7287 0.6774 0.637980 0.7141 0.7507 0.7469 0.7101 0.6657 0.637190 0.7184 0.7448 0.7324 0.6954 0.6584 0.639100 0 ® 7 2 0 2 0.7373 0.7193 0 « 6 8 4 4 0.6545 0 . 6 4 2 4110 0.72 0.7291 0.7079 0.6762 0.6528 0.6466120 0.7182 0.7209 0.6983 0.6705 0.6528 0.6512130 0.7153 0.7131 0.6905 0.6667 0.6539 0.6557140 0.7116 0.7059 0.6843 0.6643 0.6557 0.66150 0.7077 0.6995 0.6794 0.663 0.6578 0.6638160 0.7035 0.6939 0.6756 0.6625 0.66 0.6672170 0.6995 0.689 0.6728 0.6626 0.6623 0.6699180 0.6956 0.685 0.6707 0.6631 0.6643 0.6721190 0.6919 0.6815 0.6693 0.6637 0.6662 0.6738200 0.6886 0.6786 0.6682 0.6645 0.6678 0.6749210 0.6855 0.6763 0.6676 0.6653 0.6689 0.6757220 0.6828 0.6743 0.6672 0.6661 0.6701 0.6761230 0.6804 0.6727 0.6669 0.6668 0.6708 0.6761240 0.6782 0.6714 0.6668 0.6673 0.6713 0.6759250 0.6762 0.6703 0.6667 0.6677 0.6715 0.6754260 0.6745 0.6694 0.6667 0.668 0.6715 0.6748270 0.673 0.6686 0.6666 0.6682 0.6714 0.6741280 0.6716 0.6679 0.6665 0.6682 0.6711 0.6733290 0.6704 0.6673 0.6664 0.6681 0.6706 0.6724300 0.6693 0.6668 0.6662 0.6679 0.6701 0.6714310 0.6683 0.6663 0.666 0.6676 0.6695 0.6705320 0.6674 0.6657 0.6657 0.6673 0.6688 0.6695330 0.6665 0.6652 0.6653 0.6668 0.668 0.6685340 0.6657 0.6647 0.6649 0.6662 0.6673 0.6675350 0.6649 0.6642 0.6645 0.6657 0.6664 0.6665360 0.6642 0.6637 0.664 0.665 0.6656 0.6655370 0.6635 0.6631 0.6635 0.6643 0.6647 0.6646380 0.6628 0.6626 0.6629 0.6636 0.6639 0.6636390 0.6621 0.662 0.6623 0.6629 0.663 0.6627

400 0.6614 0.6614 0.6617 0.6622 0.6622 0.6618410 0.6607 0.6608 0.661 0.6614 0.6613 0.6609420 0.66 0.6601 0.6603 0.6606 0.6604 0.66
430 0.6593 0.6595 0.6596 0.6598 0.6596 0.6592440 0.6586 0.6588 0.6589 0.659 0.6587 0.6583
450 0.6579 0.6581 0.6582 0.6582 0.6579 0.6575460 0.6572 0.6574 0.6574 0.6574 0.6571 0.6567
470 0.6565 0.6567 0.6567 0.6566 0.6563 0.6559480 0.6558 0.656 0.6559 0.6558 0.6554 0.6551490 0.6551 0.6553 0.6551 0.655 0.6546 0.6543500 0.6544 0.6545 0.6544 0.6542 0.6538 0.6535

Figure 5.2.4 Effect of loading factors on the utility ©f a file

Uti l i ty

0.9

0.8

0.7

0.6

0.5
100 150 200 250 300 350 400 450 5000 50

Time (hours)
L-9 —I— L-10 — L-11 -B -L -1 2 - * - L “13 L-14

>0o\

77

Table 5.2.5 Cl spreading pattern over the entire Cl's
after initial loading

me 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 8334 0 0 010 0 0 0 10 387 6284 1442 194 2020 0 0 1 32 638 4903 2128 547 10730 0 0 2 61 849 3954 2411 888 24840 0 0 5 95 1070 3299 2482 1161 41050 0 0 9 134 1311 2849 2448 1357 56860 0 1 14 180 1570 2548 2368 1489 70670 0 1 20 231 1836 2357 2275 1569 81880 0 2 27 287 2097 2246 2186 1613 90490 0 2 36 348 2344 2193 2110 1633 967100 0 3 46 412 2573 2182 2050 1637 1009

110 o 5 53 478 2780 2200 2006 1633 1036
120 0 6 71 543 2965 2239 1978 1624 1051130 0 8 85 613 3128 2290 1964 1614 1059140 1 10 101 680 3271 2349 1961 1605 1060150 1 12 117 746 3397 2412 1967 1599 1058160 1 15 135 811 3507 2476 1980 1595 1054170 1 13 153 875 3604 2540 1999 1594 1050180 2 22 173 936 3690 2602 2023 1597 1046190 2 26 193 996 3768 2662 2049 1601 1042200 3 30 213 1054 3839 2720 2078 1608 1039
210 3 34 234 1110 3904 2776 2108 1618 1037
220 4 39 255 1165 3965 2829 2138 1629 1036230 4 44 277 1218 4023 2879 2169 1641 1037240 5 50 299 1270 4078 2927 2200 1654 1038250 6 56 322 1320 4131 2974 2231 1669 1040260 7 62 345 1370 4128 3018 2262 1684 1042270 8 68 368 1418 4233 3061 2292 1699 1046280 9 75 391 1466 4282 3103 2321 1715 1050290 10 82 414 1513 4331 3143 2350 1731 1054300 12 90 438 1559 4380 3182 2379 1746 1059310 13 97 462 1604 4428 3220 2407 1762 1063320 15 105 486 1650 4476 3258 2434 1778 1068330 17 114 510 1694 4523 3295 2461 1794 1073340 18 122 534 1739 4570 3331 2487 1809 1079350 20 131 559 1783 4617 3366 2512 1824 1084360 22 140 583 1326 4663 3401 2538 1839 1089370 24 150 608 1870 4709 3435 2562 1854 1094380 27 159 633 1913 4755 3469 2587 1868 1099390 29 169 658 1956 4800 3503 2610 1382 1104400 32 180 684 1999 4845 3536 2634 1896 1108410 34 190 709 2041 4890 3568 2657 1910 1113420 37 201 735 2084 4934 3600 2679 1923 1118430 40 212 761 2126 4977 3632 2702 1936 1122440 43 223 787 2169 5021 3664 2723 1949 1126
450 47 234 913 2211 5064 3695 2745 1961 1130460 50 246 839 2253 5106 3725 2766 1974 1134
470 54 253 866 2294 5148 3756 2787 1986 1138480 57 270 892 2336 5190 3786 2808 1997 1142490 61 283 919 2378 5231 3815 2828 2009 1145
500 65 296 646 2419 5271 3844 2848 2020 1149

Figure 5.2.5 Cl spreading pattern over the entire Cl’s
after initial loading

Number of CIs (Thousands)
10

8

6

4

2

0
4 5 6

Cl with i Records
7

Time 0

Time 3 0 0

Time 100

i n Time 400

8

Time 200

Time 5 0 0

9

Table 5.2.6 The relative portion of each Cl'
79

Lme 1 2 3
0 0 0 010 0 0 0 0.20 0 0 0.0001 0.30 0 0 0.0002 0.40 0 0 0.0005 0.SO 0 0 0.0010 0.60 0 0.0001 0.0015 0.70 0 0.0001 0.0021 0.80 0 0.0002 0.0028 0.90 0 0.0002 0.0037 0.100 0 0.0003 0.0046 0.110 0 0.0004 0.0056 0.120 0 0.0005 0.0067 0.130 0 0.0007 0.0078 0.140 0.0000 0.0009 0.0091 0 o150 0.0000 0.0010 0.0103 0.160 0.0000 0.0012 0.0116 0.170 0.0000 0.0015 0.0129 0.180 0.0001 0.0018 0.0143 0.190 0.0001 0.0021 0.0156 0.200 0.0002 0.0023 0.0169 0.210 0.0002 0.0026 0.0182 0.220 0.0003 0.0029 0.0195 0.230 0.0003 0.0033 0.0208 0.240 0.0003 0.0036 0.0221 0.250 0.0004 0.0040 0.0234 0.260 0.0005 0.0044 0.0247 0.270 0.0005 0.0047 0.0259 0.280 0.0006 0.0052 0.0271 0.290 0.0006 0.0056 0.0283 0.300 0.0008 0.0060 0.0295 0.310 0.0008 0.0064 0.0306 0.320 0.0009 0.0068 0.0318 0.330 0.0010 0.0073 0.0329 0.340 0.0011 0.0077 0.0340 0.350 0.0012 0.0082 0.0351 0.360 0.0013 0.0086 0.0362 0.370 0.0014 0.0091 0.0372 0.380 0.0016 0.0096 0.0383 0.390 0.0017 0.0101 0.0393 0.400 0.0018 0.0106 0.0404 0.410 0.0019 0.0111 0.0414 0.420 0.0021 0.0116 0.0424 0.430 0.0022 0.0121 0.0434 0.440 0.0024 0.0125 0.0444 0.450 0.0026 0.0130 0.0454 0.460 0.0027 0.0135 0.0463 0.470 0.0029 0.0141 0.0473 0.480 0.0030 0.0146 0.0482 0.490 0.0032 0.0151 0.0492 0.500 0.0035 0.0159 0.0348 0.

5 6 7 8 9
0 1 0 0 00.0464 0.7537 0.1729 0.0232 0.00230.0763 0.5867 0.2546 0.0654 0.01280.1009 0.4699 0.2865 0.1055 0.02940.1255 0.3871 0.2912 0.1362 0.04810.1511 0.3283 0.2821 0.1564 0.06540.1768 0.2870 0.2667 0.1677 0.07950.2016 0.2588 0.2498 0.1722 0.08980.2239 0.2399 0.2334 0.1722 0.09650.2433 0.2276 0.2190 0.1695 0.10030.2595 0.2201 0.2068 0.1651 0.10170.2726 0.2157 0.1967 0.1601 0.10160.2829 0.2136 0.1887 0.1549 0.10020.2906 0.2128 0.1825 0.1499 0.09840.2963 0.2128 0.1776 0.1454 0.09600.3003 0.2132 0.1739 0.1413 0.09350.3030 0.2139 0.1710 0.1378 0.09100.3045 0.2146 0.1689 0.1346 0.08870.3051 0.2152 0.1673 0.1320 0.08650.3053 0.2157 0.1660 0.1297 0.08440.3050 0.2161 0.1651 0.1277 0.08250.3044 0.2164 0.1643 0.1261 0.08080.3035 0.2166 0.1637 0.1247 0.07930.3026 0.2165 0.1631 0.1234 0.07800.3016 0.2164 0.1627 0.1223 0.07670.3004 0.2163 0.1622 0.1213 0.07560.2965 0.2168 0.1625 0.1209 0.07430.2982 0.2156 0.1614 0.1197 0.07360.2971 0.2153 0.1610 0.1189 0.07280.2960 0.2148 0.1606 0.1183 0.07200.2950 0.2143 0.1602 0.1176 0.07130.2941 0.2138 0.1598 0.1170 0.07060.2931 0.2133 0.1593 0.1164 0.06990.2921 0.2128 0.1589 0.1158 0.06930.2912 0.2123 0.1585 0.1153 0.06870.2904 0.2117 0.1580 0.1147 0.06810.2896 0.2112 0.1576 0.1142 0.06760.2887 0.2106 0.1571 0.1137 0.06700.2880 0.2101 0.1566 0.1131 0.06650.2872 0.2096 0.1561 0.1126 0.06600.2864 0.2090 0.1557 0.1120 0.06550.2857 0.2085 0.1552 0.1116 0.06500.2850 0.2079 0.1547 0.1110 0.06450.2842 0.2074 0.1543 0.1105 0.06400.2835 0.2069 0.1537 0.1100 0.06350.2829 0.2064 0.1533 0.1095 0.0631

0.2822 0.2058 0.1523 0.1091 0.0626
0.2815 0.2053 0.1524 0.1086 0.0622
0.2808 0.2048 0.1519 0.1080 0.0618
0.2801 0.2043 0.1514 0.1076 0.0613
0.2840 0.2071 0.1534 0.1088 0.0619

4
00011003800720111015402020253030603610415046805200569061606590700073907740807083708650892091609390960098409991017103410501065108010941108112111341146115811701181119212031214122512351245

1254126412731303

Figure 5.2.6 The relative portion of each Cl*

Portion of each Cl

Time 0

Time 3 0 0

1

0.8

0.6

0.4

0.2

0
2 3 5 6 7 8 94

Cl w ith i Records
H m Time 100

i l l Time 400

Time 2 0 0

Time 5 0 0

00o

Chapter 6

PHYSICAL DATABASE REORGANIZATION

The discussion in Section 4.1 focused on the file
behavior under the assumption that a file is built only
through continuous records insertions. For a large number
of records, the probability of an insertion's occurring in
each Cl was obtained. In Section 4.2, a formulation of the
expected number of CIs was obtained by considering the
insertions and the deletions of records together. The birth
and death process was used to describe the transitional
behavior of fringes. In this chapter, we consider only the
model developed in Section 4.2 for further discussion. The
main purposes of this chapter are to describe the file
deterioration through the analysis of file operation and to
set up the optimal reorganization policy.

6.1. Analysis of File Operation Cost on Behalf of CA Splits

In a file such as a VSAM file, that permits distributed
free space, two records access methods are considered. One
is a direct access, and the other is a sequential access.
The difference between the two is well stated in Maruyama
and Smith (1976). Direct accessing of records by their keys
depends on the index structure of a file. VSAM is an
indexed-sequential file organization. It permits multiple

81

secondary indexes. The indexes have a B+-tree structure
(Coiner, 1979) . The sequential access of records depends on
the location of the records. If a record currently accessed
and a record that is to be accessed next are in the same Cl,
then the next record can be accessed directly. If it is,
however, in the next Cl within the same CA as the current
Cl, then it is retrieved sequentially, using the entries in
the sequence set index since the entries are in sequence.
If the next Cl is in a different CA, then the horizontal
pointer in the CA set must be traversed to get the sequence
set index for that CA, and then the next Cl can be accessed
using the vertical pointer in the sequence set entry.
Sequential accesses over CA boundaries are significantly
more costly than those that are not, since they require
mechanical movement of Read/Write heads. The cost of
sequential accesses is a function of the distance that the
Read/Write heads must move to get to the next CA.
In other words, the size of a file is denoted by a set of
CAs, and the cost of accessing a file depends on the number
of CAs. The file growing pattern through the Cl and CA
splits is described in the following way. Until the file
growth is insufficient to fill the free CIs within a CA
after the file is loaded or reorganized, no CA split occurs
and the cost of accessing the next logical CA in key
sequence remains constant. As soon as the number of Cl
splits exceeds free space in a CA, the CA split begins.

When a CA split occurs, a new CA obtains free space at the
end of the file, making logically close CA to be physically
far apart. This causes the additional increase in the cost
of accessing the next logical CA. This cost could be
reduced by allocating the optimal size of free spaces in the
file. Free spaces reduce the probability of Cl and CA
splits and, as a result, improve file performance. This, in
turn, reduces the likelihood of moving a set of records to a
different CA away from the other records that have been in
the key sequence and reduces the sequential access cost.
However, too much or too little free space is not desirable.
Too much free space requires more I/O operations to do
sequential processing of the same number of records. Too
little space causes the frequent splits of Cl and CA. It
causes an excessive number of CIs and CAs and results in an
excessive time requirement for sequential processing because
of the disorder of the physical sequence of the data (IBM
Corp., 1985). The size of free space is decided by a
loading factor. The loading factor should be decided in the
way of maximizing file performance or minimizing file
execution cost by preventing wasted space as well as too
frequent CA splits. A CA split requires 248 I/O's, for
example, on an IBM 3380, if a Cl capacity size is 4K
(Ranade, 1987). At the rate of 12 I/O's per second, it
would take about 20.6 seconds to execute 248 I/O's. This is
a considerable time to wait in an on-line environment.

84
In Section 4.2, we calculated the total expected number

of CIs at time t, using the simulation method. However, we
did not consider the relationship between CIs and CAs in
that section. The relationship between them and its effect
on file operation costs can be described in the following
way.

Let m be the maximum number of CIs in a CA and f be the
number of free CIs allocated in a CA. The first CA split
would not occur at least until the growth of the file causes
the f+1 times of Cl splits. If more than f times of Cl
splits occur (i.e., if F(t) - F(0) exceeds f in a CA), the
CA split can be considered. The initial number of CAs,
Z (0), is defined as Z (0) = F(0)/ (m-f), and the maximum
number of CA splits is calculated by (F(t) - F(0))/(f + l).
Therefore, the maximum number of CAs at time t, Z(t), is
given by

Z(t) = Z (0) + (F(t) - F (0)) / (f + 1). (6.1.1)

As explained earlier in this section, the cost of
accessing a file depends on Z(t). Let the cost of accessing
a CA before a split be h(0) and the cost at time t be h(t).
The cost h(t) will increase as more of the costly splits
occur, until it reaches a maximum value h,^. Because of the
capacity limit of a file, the number of CAs in a file is
limited to a finite number. Let define Zm be the maximum
number of CAs in a file. Then, the maximum accessing cost

for this finite number of CAs will be h^. If the file
operation requires more than Zm CAs as a result of CA
splits, then the system is locked. If the system is locked,
we cannot do any operations on that file. In this case,
since we can no longer use the present file, we need to
retrieve a backup file. To do this, we must execute the
proper file operation again. In this undesirable situation,
the accessing cost could be considered infinite, since the
cost of accessing the next logical CA is bounded by the cost
of accessing the first CA and the last CA of a file, this
cost can be represented in the following way:
h(t) = h(0), for INT(Z(t)) = Z (0)
h(t) = h(0) + e (Z(t) - Z (0)) / (ZB + 1 - Z(t)),

for INT(Z(t)) > Z(0)
h(t) = 00, for INT(Z (t)) > Zm, (6.1.2)
where e is the deterioration rate.

As data are inserted, deleted, and updated, the
structure of the physical database or file is deteriorated,
and this deterioration causes inefficient data or records
retrievals. This, in turn, results in the excess costs of
file operation. The operation cost of a file is based only
on the retrieval and update queries for the database that
cause sequential CAs accesses. The addition and deletion
costs are negligible. Because these operations are direct,
the performance of these operations is not affected by the
physical disarrangement of the file. Therefore, only

86
retrievals and updates are considered in this study, and
they are treated in the same way. The total excess costs
caused by the access of CAs during a time interval are given
by

TAC =
r t

7 g(s) (h(t') - h(0)) dt', (6.1.3)
0

where 7g(s) is the sequential CA access rate due to
retrievals, 7 is the query retrieval and update rate at a
given time period and assumed to be constant during that
period, and g(s) is the expected number of sequential CA
accesses for a query that requests s records accesses in
sequence.

When the pointer chains become long as a result of
splits, retrieval and update operations in a sequential
processing involve excessive time cost. Too much excessive
time cost is not desirable for the sake of smooth and
efficient operations. In such a case, a reorganization is
requested to regulate this excessive cost.

6.2. Physical Database Reorganization Policy

Reorganization of a database is usually managed by the
database administrator (DBA) (Teorey and Fry, 1982). The
DBA determines that reorganization should be performed,
decides when it is best done, and carries out the

87
implementation with DBMS. The issues considered by the DBA
in carrying out a reorganization are well described in
Sockut and Goldberg (1979). These issues include:

(1) Deciding what new structures are to be the final
result of reorgani z a c ion.

(2) Deciding when to perform reorganization.
(3) Knowing how to execute the reorganization.
(4) Accessing how much reorganization will cost.
Reorganization of the database could be performed at a

fixed time, at the end of the n* time period, or at the time
when the database is deteriorated to some point after the
most recent reorganization. In general, however, the
reorganization point may be determined by comparing total
excess cost and reorganization cost. The optimal
reorganization policy minimizes the total operating costs by
specifying when to reorganize a file. The policy balances
tradeoff between the extra cost of reorganization and its
benefit in restoring file performance efficiency and
reducing the excess cost of ensuing transactions.

Reorganization is performed by unloading (reading) the
file sequentially and reloading (writing) the records
sequentially into the newly restructured file. During this
process, new indexes are created based on the changed
distribution of key values. The basic assumption for the
estimate of the reorganization cost is that this cost is a
function of the size of a file. Under this assumption, the

88
cost of j* reorganization is given by the following equation
(Maruyama and Smith (1976)):

X r Zj (t)
Rj(t) = Ro + ---------------------— , (6.2.1)

£(m-f) 7j (Zj(t) -Zj(0))
where Ro is constant and represents the overhead cost

associated with reorganizing the file,
f(m-f) is the space utilization within a CA, and
r is the sum of the time required to read a full CA,

plus the time to write a full CA.
The total operating cost at the j* reorganization

period is given by TCj(t) = TACj(t) + Rj(t). Since the
optimal reorganization policy minimizes the total cost, we
differentiate TCj(t) for Zj(t) and find the point that makes
this differentiation zero. This scheme gives the optimal
reorganization point in terms of Zj(t) .

dTCj(t) dTACj(t) dRj(t)
 = — + (6.2.2)
dZj (t) dZj (t) dZj(t)

Considering the first term on the right-hand side first,

dTACj(t) dTACj (t) dt = () (—)
dZj(t) dt dZj(t)

= (7jg(s) (hj(t) - hj(O))) (dt/ dZj (t)) , (6.2.3)

we can get dt/dZj(t) as an inverse of dZj(t)/dt. From
equation (6 .1 .1), we can get

89
Zj(t) = Zj(0) + (Fj(t) - Fj(0)) / (f + 1). (6.2.4)

From equation (6.2.4), we have

dZj(t) _ 1 dFj(t)
dt f + l dt

1 d b 1 b d
“ --------- (? Yj(t)) = E — Yy(t).

f + 1 dt 1=1 f + 1 1=1 dt

Using equations (4.2.11) through (4.2.14), we can derive
following relation:

E — Y,(t) = a E (i-l) Y„(t) - (a+M) E i Y4(t)
. = 1 d t i = 2 i - l

b - l+ M E (i+1) Yi+1(t) + 2ab Yb(t)
i = l

= - /I Y,(t) + ab Yb(t)

Therefore, we have

dZj (t) - n Y^t) + ab Ybj (t)
dt f + 1

(6.2.5)

Let us put Tj(t) s dZj(t)/dt. Then, from equations (6.2.3)
and (6.2.5), we have

dTACj(t) /dZj(t) = 7jg(s) rj(t)-1 (hj(t) - hj(0)) . (6.2.6)

Differentiating equation (6.2.1) for Zj(t) gives

90
dRj(t) - X r Zj(0)
----- = ------------------------- . (6.2.7)
dZj(t) b(m-f) 7j (ZjCt) -Z^O))2

Therefore, the condition that the differentiation of total
cost for Zj(t) equals zero, dTCj(t)/dZj(t) = 0, gives the
following relation:

7jg(s) ^(t) 1 e (Zj(t) - Zj(0)) / (Zm + 1 - Zj(t))
- X r Zj(0) / [£(m-f) 7j (Zj (t) - Zj (0))2] = 0. (6.2.8)

If we rearrange this equation, we have

Dj(t) (Zj (t) - Zj (0))3 + Zj (t) - Zm -1 = 0, (6.2.9)

where Dj(t) = 7j2g(s) Tj(t) 1 e £ (m-f) / (X r Zj(0)).
The solution of the equation (6.2.9), Zj(t)*, gives the

optimal reorganization point. This means that when the
number of CAs is Zj(t)*, reorganization is called. Figure
6 .1.1 shows this situation graphically together with the
cost function in equation (6.1.2). Since the equation
(6.2.9) cannot be solved analytically, the simulation
package SLAM II is used to obtain the solution numerically.
A detailed analysis of the optimal reorganization point is
discussed in the next chapter, using various parameter
values adopted in IBM 3380.

91

Figure 6.1.1 Cost of accessing next logical CA sequentially

h(t)

h(0)

2(t)‘ Z, Z(t)Z(0) Z(0)+1

Chapter 7

NUMERICAL EXPERIMENTS FOR THE OPTIMAL REORGANIZATION POINT

The previous chapter described how the CAs are
increased, based on the model discussed in Section 4.2.
When the number of CAs increased as a result of CA splits,
the database accessing cost per query also increased because
CA splits disperse logically adjacent data to physically far
apart locations. This cost function is given in equation
(6.1.2). Based on this cost function and the reorganization
cost given in equation (6 .2 .1), optimal policy was set up
for reorganization of the database for each reorganization
period.

In this chapter, we discuss the computational results
of this optimal database reorganization policy. This policy
is determined from equation (6.2.9) and depends on the
various parameter values. For the analytical purpose, we
consider IBM 3380, which is one of the IBM direct access
storage devices (DASD). IBM 3380 gives the following
characteristics (Ranade, 1987; IBM Corp., 1985).

Cylinders per diskpack 885
Tracks per cylinder 15
Bytes per track 47,968

92

93
Seek time delay (ms)

minimum 3
average 16
maximum 30

Rotational delay (ms)
average 8.4
maximum 16.8

Data transfer rate (MBS)
Data transfer delay for 4K Cl (ms)
Number of I/O's on a CA split 248

3
1.3

For IBM 3380, if we assume that the size of a CA is one
cylinder, and the size of Cl is 4K, the number of data CIs
per CA is given by 150; i.e., m = 150. Therefore, with this
m value, if we choose about 10% free space in a CA, f will
be 15. Also, if we assume about 80% loading of records in a
Cl, loading factor f will be 12 for given b=15.

The cost per cylinder to reorganize the file, r, is
taken to be the sum of three terms: seek time delay,
rotational delay, and data transfer delay. The following
three steps are required to perform a successful I/O.
First, the read-write arms search the desired cylinder.
Second, the disk rotates until the read-write head is
located on the desired track. Third, data is transferred
from or to DASD. The values used in this analysis are
selected in the following way. The maximum seek time, on

94
the average, is 30 ms. However, from the fact that a seek
does not traverse more than one-third of the cylinders, we
use an average seek time of 16 ms, instead of 30 ms. For
the IBM 3380, a complete revolution takes 16.8 ms. To
account for the I/O rotational delay, one-half of the
maximum rotational delay (8.4 ms) is used for all practical
purposes (Ranade, 1987) instead of the delay time for a
complete revolution. If a 4K-byte Cl is transferred to or
from an DASD over a 3 -M B S channel, the transfer delay is
given by 1.3 ms. Using the values given above, we can find
the optimal reorganization point in terms of Zj(t), as well
as in terms of time, from equation (6.2.9). In finding the
optimal reorganization point, we experimented with four
access cost deterioration rates over the different rate of
retrieval and update queries where the initial database size
is 50,000, and the portion of free space in Cl and CA are
20% and 10%, respectively. The experiment results are given
in Table 7.1.

One observation from Table 7.1 is that if the cost
deterioration rate increases, the optimal reorganization
time is shortened. For example, the reorganization time is
shortened from 34.5 hours when e = 0.01 to 28.7 hours when e
= 0.04, where yi = 400. This agrees with the fact that if
the database is deteriorated fast, the reorganization is
called frequently. The other observation is that if the
query rate is increased, the optimal reorganization time is

also shortened and that if the query rate is too high, the
reorganization is called even before the time of a CA split.
For example, with e = 0.02, the optimal reorganization time
is 50.5 hours when y = 100, but it is 12.5 hours when y =
12,000. However, when y = 12,000, only one CA split is
permitted before the reorganization is called, and, if y is
greater than 12,000, the reorganization is called even
before the database experiences one CA split. A similar
pattern of the optimal reorganization points, which vary
depending on the values of e and y , is also observed in
Maruyama and Smith (1976).

To determine the effect of free space in a Cl or in a
CA, experiments were done for three different loading
factors and four different free Cl values with the initial
database size of 50,000. These are significant experiments
because it is known that the free spaces within a VSAM file
have contributed significantly to preventing frequent Cl or
CA splits. Table 7.2 shows the effect of free space
combinations (% of free space in a Cl; % of free space in a
CA) on optimal reorganization point.

Observation of Table 7.2 indicates that the increase of
free space both in a Cl and in a CA contributes to lengthen
the optimal reorganization point. This indicates that the
free space allocations in CIs and CAs reduce the database
operational costs, especially costly CA splits and
reorganizations are done less frequently. One must

consider, however, that increasing the free spaces requires
additional storage costs. As can be seen in Table 7.2, Z(0)
increases, along with the increase in free spaces.
Therefore, the free space allocation should be decided in
the way of balancing the operational cost reduction and the
additional storage costs. If we compare the net effect of
free space increase in a Cl and that in a CA, the increase
of free space in a Cl more significantly contributes to
lengthen the reorganization period. For example, when the
free space in a Cl is increased 6.7% from 13.3% to 20%
(where the free space in a CA is 10%), the optimal
reorganization point is increased by 12.4 hours, but when
the free space in a CA is increased 10% from 10% to 20%
(where the free space in a Cl is 13.3%), the optimal
reorganization point is increased only 6.6 hours. The
storage usage also shows that the increase of free spaces in
a Cl is more economical than that in a CA.

97
Table 7.1. Effects of deterioration rate and query rate on

optimal reorganization points

e
y

0.01 0.02 0.03 0.04

100 time
Z(t)*

54.9
86

50.5
78

47.1
72

44.7
68

200 time
Z(t)*

43.1
65

39.9
60

37.3
56

35.7
53

400 time
Z(t)*

34.5
51

31.9
48

30.1
45

28.7
44

1000 time
Z(t)‘

26.1
41

24.3
39

22.9
38

22.1
37

2000 time
Z(t)‘

22.1
37

20.1
35

18.9
35

18.3
34

4000 time
Z(t)’

18.3
34

16.7
33

15.7
33

15.1
33

8000 time
Z(t)‘

15.1
33

13.9
32

13.1
32

12.7
32

10000 time
Z(t)‘

14.3
32

13.1
32

12.5
32 Z(0)

12000 time
Z(t)*

13.7
32

12.5
32 Z(0) Z(0)

18000 time
Z(t)‘

12.3
32 Z(0) Z (0) Z(0)

18000 > time
Z(t)‘ Z(0) Z(0) Z(0) Z(0)

{ Z(0) = 31, free space (CI,CA) = (20%,10%) }

98
Table 7.2. Free space effects on optimal reorganization

points { e = 0.02, 7 = 400 }

CI(%)
CA(%)

13.3 20.0 26.7

10.0 Z(0) 29 31 34
time 19.5 31.9 47.5
Z(t)* 47 48 50

20.0 Z(0) lllllfllill 35 38
time 26.1 41.1 59.1
Z(t)* 50 51 53

30.0 Z(0) 37 40 44
time 32.1 49.3 69.9
Z(t)* 53 55 59

40.0 Z(0) 43 47 51
time 38.5 57.9 80.7
Z(t)* 59 63 66

Chapter 8

SUMMARY AND CONCLUSION

Efficient implementation of the physical database
structure is an important issue in the design and
development of database systems that grow over time. This
research has addressed the issue of determining efficient
physical database implementation in a VSAM file environment
by considering both the physical database design and the
database performance analysis that leads to the database
reorganization problem.

The initial design of the physical database structure
addressed in this research is a function of the estimated
values of the various parameters. As implementation of the
initial design proceeds and the database is reorganized,
these estimates are revised and used as input to the
redesign, and the cycle starts anew. This process continues
in a similar manner so that the physical design of the
database and the reorganization policies are, in effect,
maintained at an efficient level over the life of the
database.

In the micro view of the research, we are concerned
with the specific details that describe how the model is
actually implemented.

For the analysis of the behavior of the database in a
VSAM file, two basic models for the physical database design

99

have been developed based on fringe analysis. The
importance of the modeling is that it is the first attempt
in the literature and that it gives the basis for the
combined analysis of physical database design and
performance analysis that leads to the issue of database
reorganization in a VSAM file environment. The significance
of the first model, which considers only record insertions,
is that it helps to verify the correctness of the modeling.
In the environment where there is no other model to be
compared directly, the storage utilization calculated from
this model provides a good clue for the correctness of the
model. Because, as was discussed in Section 5.1, if the
file life time is long enough, the behavior of the model is
similar to B-tree, and the storage utilization in a B-tree
is well known. The comparison of the utility values that
come from the model of this research and that from the B-
tree analysis gives a good match within the order of error
range.

The second model, which was developed by extending the
concept of the first model, considers both record insertions
and deletions. In this model, a birth and death process was
used to describe the transitional behavior of fringes. The
expected number of Cl's was obtained by the function of
initial loading factor, insertion rate, deletion rate,
number of total records in the system, Cl capacity size,
etc. One observation from the numerical experiment of this

model is that the ratios between the total number of CIs at
time t and that at initial loading time are similar
regardless of the Cl capacity sizes of files if the initial
storage utilizations are set equal. Another observation is
that the total number of CIs in a file becomes almost the
same regardless of the loading factor if the file life is
long enough. Based on this model, further study of the
physical database structure change has been conducted
including CA splits. Ci and CA splits are a major cause of
poor performance. While both increase I/O's at the time of
the split, a CA split generates far more I/O's than a CI
split, increasing run time and CPU time for a batch job and
increasing response time for an on-line transaction. For
this reason, the number of CAs is used as a basis of
database performance analysis. If database deterioration
caused through the CA splits badly prohibits the efficient
database operations, database reorganization is called.
Therefore, determining the optimal reorganization policy is
introduced as the next issue to be discussed.

Numerical analysis performed using the equations
developed in Chapter 6 shows first, the optimal
reorganization point highly depends both on the database
access cost deterioration rate and on the database query
rate. The increase of them cause the reduction of the
optimal reorganization time. Second, the larger the free
space allocation, the more the optimal reorganization point

102
is extended. However, the balance between the operational
cost reduction and the storage cost increase should be
considered.

For the further development of this research, it is
recommended to consider the more detailed analysis on
database operations together with the cost analysis based on
index structure changes.

REFERENCES

Baeza-Yates, R.A., Modeling Splits in File Structures, Acta
Informatica, 26, (1989 a) 349-362.

Baeza-Yates, R.A., Expected behavior of B+-trees under
Random Insertions, Acta Informatica, 26, (1989 b) 439-
471.

Chin, Y.H., An analysis of distributed free space in an
operating and data management systems environment, IEEE
Trans. Software Eng. SE-4, (1978) 436-440.

Chu, J.H., An analysis of B-trees and Their Variants,
Information Systems, 14, 5, (1989) 359-437.

Comer, D., The Ubiquitous B-tree, ACM Computing Surveys,
11, 2, (June 1979) 121-137.

Cooper, R.B. and Solomon, M.C., The Average Time Until
Bucket Overflow, ACM Trans. Database Syst. (Sept. 1984)
392-408.

Cullen, C.G., Linear Algebra and Differential Equations : An
Integrated Approach, Prindle, Weber & Schmidt, Boston,
(1979).

Eisenbarth, B., Ziviani, N., Gonnet, G., Mehlhorn, K., Wood,
D., The Theory of Fringe Analysis and its Application
to 2-3 Trees and B-Trees, Inf. Control, 55, (1982) 125-
174.

103

104
Heyman, D.P., Mathematical Models of database degradation,

ACM Trans. Database Syst., 7,4, (Dec. 1982) 615-631.
Hillier, F.S. and Lieberman, G.J., Introduction to

Operations Research, Holden-Day Inc., Oakland, (1980)
888 pp.

IBM Corp., MVS/Extended Architecture VSAM Administration
Guide, San Jose, California, (1985).

Keehn, D.G. and Lacy, J.O., VSAM data set design parameters,
IBM Sys. J., 3, (1974) 186-202.

Koushik, M.V., Optimal Physical Database Design and
Reorganization Policies, Ph.D. Dissertation, Univ. of
Iowa, (1987) 131 pp.

Larson, P., Analysis of index-sequential files with overflow
chaining, ACM Trans. Database Syst., 6 , 4, (Dec. 1981)
671-680.

Leung, C.H.C., Dynamic Storage Fragmentation and File
Deterioration, IEEE Trans, on Software Eng., 12, 3,
(Mar. 1986) 436-441.

Martin, J., Computer Data-Base Organization, Prentice Hall,
(1977) 576 pp.

Maruyama, K. and Smith, S.E., Optimal Reorganization of
Distributed Space Disk Files, Comm. ACM (Nov. 1976)
634-642.

Mendelson, H. and Yechiali, U., Optimal Policies for
Database Reorganization, Operations Research, 29, 1,
(Jan. 1981) 23-36.

105
Park, J.S., Bartoszynski, R., Prabuddha De and Pirkul, H.,

Optimal Reorganization Policies for Stationary and
Evolutionary Databases, 36, Mgt. Sci. (May 1990), p.613

Pritsker, A.A.B., Introduction to simulation and SLAM II,
Halsted Press Book, John Wiley & Sons, New York, (1986)
837 pp.

Quitzow, K.H. and Klopprogge M.R., Space Utilization and
Access Path Length in B-trees, Information Systems, 5,
(1980) 7-16.

Ranade, J., VSAM : Performance, Design, and Fine Tuning,
Macmillan Publishing Company, New York, (1987) 280 pp.

Ranade, J. and Ranade H., VSAM t Concepts, Programming, and
Design, Macmillan Publishing Company, New York, (1986)
358 pp.

Ross, S., A First Course in Probability, Macmillan
Publishing Company, New York, (1984) 392 pp.

Severance, D.G. and Duhne, R., A Practitioner's guide to
addressing algorithms, Comm. ACM, 19, 6 , (1976) 314-
326.

Shneiderman, B., Optimum database reorganization points,
comm. ACM, 16,6, (June 1973) 362-365.

Sockut, G. and Goldberg, R., Database reorganization -
Principles and practice, ACM Computing Survey, 11, 4,
(Dec. 1979) 371-396.

Teorey, T.Y. and Fry, J.P., Design of Database Structures,
Prentice-Hall, (1982) 492 pp.

106
Tuel, W.G., Optimum reorganization points for linearly

growing files, ACM Trans. Database Syst., 3, 1, (Mar.
1978) 32-40.

Van der Pool, J.A., Optimum Storage Allocation for a file in
Steady State, IBM J. Res. Dev., (1973) 27-38.

Wiederhold, G., File Organization for Database Design,
McGraw-Hill, New York, (1987) 619 pp.

Yao, S.B., Das, K.S., and Teorey, T.J., A dynamic database
reorganization algorithm, ACM Trans. Database Syst.,
1, 2, (June 1976) 159-174.

Yao, A., On random 2-3 trees, Acta Informatica, 9, (1978)
159-170.

VITA

Birth Date
EDUCATION :
1988-Pre

1985-1988

1982-1984

1973-1977

SUNG-EON KIM
March 14, 1953

Ph.D. student in Quantitative Business Analysis
Major Area : Management Information Systems
Minor Area : Computer Science
Louisiana State University
M.S. in Systems Science
Louisiana State University
M.S. in Physical Oceanography
Florida State University
Tallahassee, Florida
B .S . in Oceanography
Seoul National University
Seoul, Korea

ACADEMIC/PROFESSIONAL EXPERIENCES
1990-Pre

1988-1990

1987-1988

1986-1987

1982-1984

1980-1982

1978-1980

Teaching Assistant
Dept, of Quantitative Business Analysis
Louisiana State University
Graduate Assistant
Dept, of Quantitative Business Analysis
Louisiana State University
Programmer
Dept, of Civil Engineering
Louisiana State University
Programmer
Ports and Waterways Institute
Louisiana State University
Research Assistant
Dept, of Oceanography
Florida State University
Researcher
Korea Research Institute for Human Settlements
Seoul, Korea
Researcher
Agency for Defense Development
Chinhae, Korea

107

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: S u n g -E o n K im

Major Field: Business Administration
(Quantitative Business Analysis)

Title of Dissertation: Modeling of Physical Database Design and Performance
Analysis with Emphasis on VSAM files

Approved:

Major Professor and Chairman

Dean of the Graduate School

E XA M IN IN G C O M M ITTEE.

J A

Date of Examination:

June 24, 1991

	Modeling of Physical Database Design and Performance Analysis With Emphasis on VSAM Files.
	Recommended Citation

	00001.tif

