Searching for Galveztown: Employing Multiple Methodologies to Identify Features of the Galveztown Settlement

Ashlee Taylor
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Archaeological Anthropology Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_theses/5024

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
Searching for Galveztown: Employing Multiple Methodologies to Identify Features of the Galveztown Settlement

A Thesis
Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree Master of Arts

in
The Department of Geography and Anthropology

by
Ashlee Nicole Taylor
B.A., California State University, Chico, 2011
December 2019
Dedication

I would like to dedicate my thesis in memory of my grandmother, Charlene Marie Taylor née Eggert (1931-2019) and my aunt, Mary Lou Thompson née Stallions (1945-2019). Both of you never stopped believing in me. I miss and love you both!
Acknowledgments

I would like to thank my advisor, Dr. Rebecca Saunders, for helping during every step of my research, particularly for all the help with the soil analysis. I would also like to thank Dr. Saunders for taking me on as her Curational Assistant in the Museum of Natural Science and for all the experience and skills that she taught me.

I would also like to thank my other committee members, Dr. Robbie Mann, Dr. Lei Wang, and Dr. David Chicoine for all their input, suggestions, and support of my thesis. Dr. Mann’s knowledge of Galveztown and historical archaeology was vital to my research. Dr. Wang’s suggestions on how to improve my georeferenced maps enabled me to more accurately hypothesize my results, and Dr. Chicoine’s suggested edits helped me enhance my overall product. I cannot thank my advisor and committee enough!

I would also like to thank John Anderson, Map Librarian and Director of the LSU Cartographic Information Center, for helping me locate historical maps and translate the historical field survey notes. Beverly Nuschler, Collections Manager of the Anthropology Division at the Museum of Natural Science, thank you for helping me track down all the Galveztown paperwork and for going out to the Galveztown site with me. Cher Foster, thank you for sacrificing a weekend to help me with last minute edits.

Finally, I would like to thank all of my family in California for believing in me and making trips out to see me when I was home sick! I would especially like to thank my mom, Tami Taylor, and brother, Scott Taylor, for all the proofreading they did during my time at LSU. Last, I would like to thank Sherlock for helping me de-stress.
Table of Contents

Acknowledgments .. iii

List of Tables .. v

List of Figures .. vi

Abstract ... x

Chapter 1. Introduction .. 1

Chapter 2. Background ... 4
 2.1. Historical Background ... 4
 2.2. Previous Archaeological Studies ... 15

Chapter 3. Methodology ... 21
 3.1. Review of Historical Documents ... 21
 3.2. Artifact Categories ... 23
 3.3. Artifact Distribution Analysis ... 24
 3.4. Shovel Test Pits and Profiles .. 25
 3.5. Georeferencing ... 28

Chapter 4. Results ... 31
 4.1. Artifact Categories ... 31
 4.2. Artifact Distribution .. 43
 4.3. Soil Color Analysis ... 63
 4.4. Georeferencing .. 94
 4.5. Summary .. 116

Chapter 5. Conclusion .. 118

References ... 122

Appendix A. Permission of Use .. 130

Vita ... 131
List of Tables

Table 1. Number of STPs dug by year... 26
Table 2. Soil color groupings.. 27
Table 3. Dates for coarse earthenware... 37
Table 4. Tin-enameled coarse earthenware dates.. 38
Table 5. Refined earthenware dates.. 39
Table 6. Stoneware dates.. 39
Table 7. Glass dating by color.. 40
List of Figures

Figure 1. Map of Louisiana, 1814 by Mathew Carey. Red star indicates Galveztown settlement. 1
Figure 2. Spanish West Florida map dated 1781 by John Bew and John Lodge. 5
Figure 3. Map displaying British territory after Treaty of Paris dated 1772 by Peter Bell 7
Figure 4. Map by Vincente Sebastián Pintado, 1805. 8
Figure 5. Plan map of Galveztown, 1778. 10
Figure 6. Perchet map (1796) displaying proposed fort and the actual village layout. 11
Figure 7. Map of the Widow Maxent's property in the District of Galveztown. 14
Figure 8. Map showing O'Brien and Mann's work. It is unknown where Goodwin and Saltus conducted their work. 18
Figure 9. The 1941 aerial map of the Galveztown Site. Red square indicates the location of the site. 23
Figure 10. Maps showing total number of artifacts and their distribution. 25
Figure 11. Map displaying overlay of original river bend superimposed onto the modern landscape. 29
Figure 12. Counted artifacts by category. 32
Figure 13. Artifacts within the Architecture Category. 44
Figure 14. Maps displaying distribution of brick by weight. The map on the left has a contour interval of 1 g and the map on the right has a contour interval of 40 g. 45
Figure 15. Maps display hand-wrought and machine-cut square nails. 46
Figure 16. Due to the limited number of window glass fragments, a contour map did not provide an accurate portrayal of the site distribution. 47
Figure 17. Due to the limited number of arms-related artifacts, a contour map did not provide an accurate portrayal of the site distribution. 48
Figure 18. Maps display the distribution of bone based on count (top) and weight (bottom). 49
Figure 19. Maps displaying all artifacts within the Kitchen Category. 50
Figure 20. Maps displaying all Old-World ceramics. 51
Figure 21. Map displaying all Old-World ceramics by type. ... 52

Figure 22. Top maps displays all vessel glass fragments. Bottom maps display glass by color. 53

Figure 23. Due to the limited amount of charcoal, a contour map did not provide an accurate portrayal of the site distribution... 54

Figure 24. Due to the limited number of tobacco pipes (bowls and stems), a contour map did not provide an accurate portrayal of the site distribution. 55

Figure 25. Map displaying the unidentified iron artifacts. Left map has interval of 1 and right map has interval of 3. Black dot indicates concentration lost during blanking. 56

Figure 26. Due to the limited number of unidentified artifacts, a contour map did not provide an accurate portrayal of the site. Dots indicate artifacts of at least two or more. 56

Figure 27. Map displaying brick (contour interval 100g), historic nails (contour interval 3), bousillage/daub, and window glass... 58

Figure 28. Map displaying Old-World ceramics (contour interval 2), bone (contour interval 2), and charcoal.. 59

Figure 29. Map displaying vessel glass and Old-World ceramics sherds. Contour interval is 3 for vessel glass and 2 for ceramic... 60

Figure 30. Map displaying Old-World ceramics and historic Native American Chicot Red ceramics. Contour Interval of 2. Red dots indicate Chicot Red sherds. 61

Figure 31. Typical Olivari Silty Loam (Ov) profile. ... 64

Figure 32. Soil Color Map. ... 65

Figure 33. Top map (A) displays soil profile transects of grid line N540. Bottom map (B) displays soil profile transects of grid line E540... 68

Figure 34. Top map (A) displays soil profile transects of grid line E530. Bottom map (B) displays soil profile transects of grid line E536... 71

Figure 35. Feature 1 in STP N530 E500 at 24 cm below surface level.. 73

Figure 36: Feature 2, possible chimney sweep dump, located in STP N500 E520 and N500 E520A. .. 74

Figure 37. Feature 2A, a posthole, located in STP N500 E520A at 30 cmbs. 75

Figure 38. Feature 3, a pile of brick and soil stain, located in STP N540 E540....................... 76

Figure 39. Feature 4, a possible posthole located in STP N525 E540.. 77
Figure 40. Feature 5, a trench feature, located in STP N505 E530. ... 78
Figure 41. Feature 6, pit with artifacts, located in STP N535 E525. ... 79
Figure 42. Feature 7, a possible pit feature, located in STP N545 E525. ... 80
Figure 43. Feature 8, a possible trench feature, located in STP N550 E525 .. 81
Figure 44. Feature 9, trench and square posthole, located in STP N565 E515. ... 82
Figure 45. Feature 10, possible pit, located in STP N575 E525 ... 83
Figure 46. Feature 11, a trench, and Feature 11a, a posthole, located in STP N590 E540 ... 84
Figure 47. Feature 12, a possible trench, located in STP N600 E535. ... 85
Figure 48. Feature 13, a possible pit feature, located in STP N540 E570. ... 86
Figure 49. Feature 14, a posthole, located in STP N535 E575. ... 87
Figure 50. Feature 15, a trench feature, located in STP N495 E590. ... 88
Figure 51. Feature 16, a possible pit, located in STP N535 E590. ... 89
Figure 52. Feature 17, a trench, located in STP N520 E560. ... 90
Figure 53. Possible Feature located in STP N644 E530 ... 91
Figure 54. Un-Numbered Feature located in STP N510 E500 .. 92
Figure 55. Un-Numbered Feature located in STP N520 E500 .. 93
Figure 56. District of Galveztown map, 1793, by unknown ... 95
Figure 57. Perchet map (1796) ... 96
Figure 58. Perchet Map (1796) depicting the actual village on USGS 1939 Denham Springs 1:62,500 map .. 97
Figure 59. Perchet Map (1796) depicting the actual fort on USGS 1939 Denham Springs 1:62,500 map. Overlay is the reduced size of the fort ... 99
Figure 60. Georeferenced features of the 1796 Perchet map depicted on the modern landscape ... 100
Figure 61. John Gilmore (1832) plat map ... 101
Figure 62. Gilmore (1832) map displaying Galveztown on USGS 1939 Denham Springs 1:62,500 map ... 103
Figure 63. Gilmore (1832) map displaying Galveztown on modern landscape. 104

Figure 64. 1872 General Land Office Plat Map, by Robert Boyd.. 105

Figure 65. Miguel Gonzales.. 106

Figure 66. Boyd (1872) map displaying Galveztown on USGS 1939 Denham Springs 1:62,500 map... 107

Figure 67. Georeferenced map displaying Galveztown as drawn by Boyd on the modern landscape.. 108

Figure 68. Map displaying shovel test pits, hypothesized village and fort, and features. 110

Figure 69. Map displaying shovel test pits, hypothesized fort and village, and artifact concentrations by category. .. 112

Figure 70. Map displaying 1941 aerial image and hypothesized village and fort location. 115
Abstract

Galveztown (1778-1806) was a Spanish fort and settlement located in southeastern Louisiana. This site was historically important as it provided protection for the city of New Orleans during a time of constantly shifting geopolitical environment. Today, this site is among the most important historical archaeological sites in Louisiana. Culturally, this site is significant as the descendants of the settlers still live within the Baton Rouge metropolitan area. Archaeologically, the site is significant due to the limited disturbance and lack of urban development at the location which has protected the archaeological record.

Galveztown is also one of the best documented Canary Islander sites in the United States, with archaeological work sporadically conducted at the site since the 1980s. Despite this documentation, the fort’s location and the boundaries of the settlement have not been determined. This thesis employs several archaeological methods, including a historical document review, an artifact distribution analysis which is correlated with a soil color analysis, and the georeferencing of historical maps, to hypothesize the locations of the fort and village. The combination of these methods suggested that the fort was located on the right bank of the Amite River and the village was some 60-70 m south of the fort.
Chapter 1. Introduction

Galveztown (16AN39) was an 18th and early 19th century Spanish fort and settlement located in southeastern Louisiana ca. 240 m south of the junction of Bayou Manchac and the Amite River in what is now Ascension Parish. The site is located in Township 8 South and Range 3 East in section 17 (Figure 1). This fort was established to help prevent the British from entering Spanish territory (Mann 2011a:11).

Figure 1. Map of Louisiana, 1814 by Mathew Carey. Red star indicates Galveztown settlement. (Courtesy of the Library of Congress, Washington D.C.).

Galveztown is one of the most important historical sites in southeastern Louisiana. This site was significant for helping to protect the interest of Spain during a time of changing geopolitical environments along the northern Gulf Coast. This site is culturally significant as most of the descendants of the survivors of the fort still reside within the Baton Rouge metropolitan area and are actively involved in researching the site.
The first known historical research at Galveztown was done by V. Scramuzza (1924) in the 1920s. Since that time, professional research into the history of the site has been intermittent. Archaeological research of Galveztown began in the 1980s and has been sporadic. The types of archaeological studies included archaeological transects and survey, shovel test pits (STPs), block excavation, artifact analysis, and limited remote sensing. These studies were successful in determining the general locality of Galveztown. However, specific features, such as the actual fort location and the boundaries of the village have not yet been determined.

For my thesis, I attempted to identify features of the Galveztown settlement. I employed the following methods: I conducted a review of historical documents, an analysis of artifact distributions, an analysis of soil colors in the shovel test pits (STPs) excavated from 2008 to 2011, and a geospatial analysis. For the geospatial analysis, I georeferenced historical maps and the STP excavation grid to compare historical maps with the features and artifacts concentrations that were identified.

The artifact distributions were mapped using Surfer 11.6; distributions were done by artifact class in an attempt to identify discreet activity areas. The STPs and their floor plans (excavation of STPs went to sterile or ceased at the top of features), which were mapped, were analyzed for soil color and texture. These were then compared to the artifact distributions to see if there was any correlation between the presence or absence of artifacts and the soil colors/textures. Ultimately, artifact distributions, site stratigraphy, and features were compared to information from historical documents in an attempt to locate mapped areas on the ground at Galveztown.

The historical documents I reviewed included field notes and plat maps from a survey that was conducted in 1832 by John Gilmore and the 1796 map of Juan Marie Perchet. Both of
these maps depict the Amite River at its confluence with Bayou Manchac. Once the feature locations were identified, the village and the fort’s location were hypothesized. Using the Esri ArcGIS program, I georeferenced maps that were created in 1796, 1832, and 1871. I produced multiple maps using the hypothesized georeferenced points from the historical maps and then georeferenced them onto a 1939 USGS topographic map. I then superimposed my results onto the modern landscape.

The chapters of my thesis are divided up thusly: Chapter 2 Background, Chapter 3 Methodology, Chapter 4 Results, and Chapter 5 Conclusion. Chapter 2 will provide the historical background of the Galveztown site as well as the previous archaeological research that has been conducted. Chapter 3 will provide the methodology that I followed during my analyses. Chapter 4 will include the results of my analyses. Chapter 5 will provide a summary of my results.
Chapter 2. Background

Galveztown had a relatively short lifespan. Despite its short life, this settlement is well documented and, sporadically, the focus of different studies. This chapter is going to provide a brief historical background of the Spanish within the continental United States and the preceding events that led to the founding of Galveztown. This chapter will then discuss all previous archaeological investigations that have occurred at the site.

2.1. Historical Background

2.1.1. The Spanish and The Isleños

In 1402, Spain began the colonization of the Canary Islands (Parsons 1983:448). After the “discovery” of the New World, Canary Islanders were routinely recruited to immigrate to the Americas by the Spanish Crown. Although documents mention earlier expeditions and planned settlements that included the Canary Islanders, the first well-documented settlement of the islanders in the New World occurred in 1545 with the establishment of Monte Cristi in the Dominican Republic (Parsons 1983:453). The first request for Isleños in the United States came from the Spanish Governor of Florida in 1681. This request, however, was never fulfilled (Parsons 1983:460). The first Isleños arrived in the United States in the San Antonio area of Texas in 1731, long before their recruitment to Louisiana (Parsons 1983:463).

2.1.2 The Spanish in the Continental United States

The Spanish first arrived in the continental United States in 1513 with the expedition of Juan Ponce de León (Morison 1974:506-507). Ponce de León, who had landed in Florida, received a grant from the Spanish Crown to settle the “island of Florida” in 1514. The first attempted settlement in Florida, in 1521 by Ponce de León, failed (Morison 1974:513-515). Subsequent explorations and attempted settlements in the Southeast occurred. The first
successful Spanish settlement was established in 1566, at St. Augustine, Florida (Deagan 1980:22-23).

While the Spanish had a foothold in Florida (Figure 2), they lacked settlements within Louisiana. The first Spanish to arrive in Louisiana were with the Hernando de Soto expedition in 1542. However, the expedition passed through the area without building any settlements (Kniffen at al. 1987). The first Spaniards settled within the present-day state boundaries of Louisiana in 1717 when they established a mission and trading post at Los Adaes, in the northwest of Louisiana. At the time of the Los Adaes Settlement, the territory was considered a part of Texas. Indeed, from 1731 until 1770, Los Adeas was the capital of Texas (Avery 2010:223-224; National Parks Service nd).

Figure 2. Spanish West Florida map dated 1781 by John Bew and John Lodge (Courtesy of the Library of Congress, Washington D.C.).
The construction of Los Adaes was a response to the establishment of the French trading post of Fort St. John Baptiste de Natchitoches in 1713. The French had laid claim to the territory of Louisiana since 1682 with the arrival of René Robert Cavelier, sieur de La Salle, during his exploration of the Mississippi River. However, the French had slowly been attempting to claim land within Texas (Avery 2010:226). By 1756, the French, Spanish, and British (who had claimed territory along the Atlantic coast), were warring against each other (Mann 2012:50). In 1762, near the close of the French and Indian War, France ceded the majority of the land within Louisiana (including New Orleans) to Spain as part of the secret Treaty of Fountainebleau (Avery 2010:223; Mann 2012:50). A shifting of lands occurred again in 1763 as a result of the Treaty of Paris. Following this treaty, Great Britain gained control of all the territories controlled by France east of the Mississippi except New Orleans and the surrounding area; Spain ceded Florida to Great Britain (Figure 3) (Calloway 2006:165). This placed Great Britain dangerously close to New Orleans (the capital of Spanish Louisiana) and the Isle d’Orleans. The Isle d'Orleans encompasses New Orleans and the surrounding area. It is bordered by the Mississippi River, Amite River, Bayou Manchac as well as Lake Maurepas and Pontchartrain (Mann 2012:50).

The American Revolution saw an increase of British troops in British West Florida. The arrival of British troops in the Mississippi Valley in the late 1770s presented the threat of British advancement into Spanish Louisiana. To combat this encroachment, the Spanish government began to recruit settlers to south Louisiana (Mann 2012:50). Specifically, the recruited settlers were the Canary Islanders, or Isleños. The Isleños arrived in Louisiana in November 1778 (Mann 2012:51).
2.1.3. **Galveztown**

The Louisiana Spanish Governor Bernardo de Gálvez established four settlements for Isleños. These settlements included Galveztown, Barataria, St. Bernard, and Valenzuela. The Galveztown settlement, which contained a village and a fort, was established in 1778 (Din 1988). This settlement was located below the junction of Bayou Manchac and the Amite River (Figure 4). Galveztown, like the other Isleños settlements, was chosen for its defensive location (Din 1988:28). The British were actively using and developing Bayou Manchac. The continued presence of the British in the area, and the knowledge that the British could easily access New Orleans via Bayou Manchac and the Amite River, led to the establishment of Galveztown (Sternberg 2009). A letter from Governor Galvez to his uncle, Don Josef de Galvez, dated January 15, 1779 described the advantages of the location of Galveztown as:
The advantages offered by this settlement are many, the principal one being the following: It is near this capital, not more than thirty leagues distant. It is possible to go there either by land or by water, which circumstance is very convenient for the transportation of goods; it is within the very island of New Orleans in the lake region where up to now we have not had any settlement, and for this reason the island is exposed to being surprised by the Indians or by the English, who on this side could approach the capital without being detected. It is the only passage by water that these English have to go from Pensacola to Machak or Natches and, except through here or by the Mississippi, they must go through almost impassable forests. Finally, these lands are the only high ones on the island and are free from inundation. Consequently these lands are capable of other and better crops than those that are flooded and are situated where there are sanguine hopes that the crops of wheat will do well. This grain is unsuccessful up to now in other places despite the efforts made (Kinnaird [1779] 1949:326-327).

Figure 4. Map by Vincente Sebastián Pintado, 1805. One of the earliest known maps depicting Galveztown. Red arrow indicates Galveztown’s location (Courtesy of the Library of Congress, Washington D.C).

In 1779, the British constructed Fort Graham on the east side of the Amite River, downriver from Galveztown; this fort was constructed in response to the Galveztown fort. Fort Graham would later be captured by the Spanish during the American Revolution (Din 1986:354, 357; Goodwin et al. 1990:37; Mann 2012:50; Scramuzza 1924:3, 55).

The first Europeans to settle in the area of Galveztown were a mix of French, German, and English colonists that fled to Louisiana from the chaos of the American Revolution (Mann
The Spanish Government allowed these “squatters” to stay; local lore claims that the Native Americans told these immigrants to build on the highest part of the land which was marked with a “leaning oak” which is still believed to be alive and located on the Cambre Property (Mann 2012:51; Sternberg 2009:55). However, the Spanish stipulated that the Isleños would also live there and they, the French, German, and English, were required to provide support for the settlement. In return for allowing them to stay, the ‘squatters’ named the village and fort Galveztown in honor of Governor Bernardo de Gálvez. The first Isleños arrived in Galveztown in January of 1779. Within a few months, their population grew to 400 (Mann 2012:51-52).

The layout of the fort and village should have followed the “Law of the Indies”; these laws, passed in 1573 by Phillip II of Spain, stated how Spanish colonial villages were to be laid out but did not specify the specific sizes (Jimenez Verdejo et al. 2007:11; Mann 2012:55). Galveztown was originally supposed to be designed by Captain Luis Andry. However, he died unexpectedly so Don Josef Briones was tasked with designing the settlement (Kinnaird [1779] 1949:327). An idealized layout of the Galveztown settlement (Figure 5) was published in 1778; from a map produced in 1796, it is believed that the village did resemble this layout.
The Galveztown village was laid out in a grid of 32 square blocks, arranged around a central plaza (Figure 6). The blocks were then subdivided into four lots, each of which had an area of a ¼ arpent or 3,424.8 square meters (Boyd 1871a:18; Mann 2012:55). The plaza was approximately four-square blocks wide and had 12 roads that connected with it. A study by Jimenez Verdejo et al. (2007) identified six possibly plaza types determined by the number and location of roads entering the plaza, the Galveztown plaza matched Plaza Type C; this plaza type has 12 roads that access the plaza with the plaza measuring approximately four blocks in length and width (Jimenez Verdejo et al. 2007:13; Mann 2012:55-56).
The houses, constructed of wood, were meant to measure 32 by 16 feet wide and were approximately 7 ½ feet high. Ditches were dug around the land containing structures to provide drainage during flooding (Kinnard [1779] 1949:323-324; O’Brien 1981:13). Reportedly, the houses contained a gallery (Mann 2012:52; O’Brien 1981:13). The village site was enclosed by a quadrangle-shaped trench that was four feet wide and 600 to 800 feet long (Scramuzza 1924:4). The area surrounding Galveztown, known as the District of Galveztown, was developed as farmland (Sternberg 2007:64).

The fort was located on the western bank of the Amite River. There were two forts built at this location. The first fort was built between June and August 1779. It was described as
“irregular in shape with five bastions.” A 1793 report claimed the fort had ten guns and was built up with a stockade (Casey 1983:66; Mann 2011:11; O’Brien 1981:13).

This fort received heavy damage from flooding and had to be rebuilt in 1799 (Mann 2011a:11). The plan for a second fort had previously been commissioned in 1797 by Governor Carondelet. He wanted this fort to be constructed of brick and that should cost between 13,000 to 15,000 pesos (Casey 1983:66-67). The design of the second fort was planned by the engineer Juan Marie Perchet and was described as “rectangular with redans on three or four sides;” a redan is a V-shaped fortification made up of two walls (Mann 2011a:11; Merriam Webster nd). It should be noted that a local historian John Hickey, a member of the Canary Islander Heritage Society that has studied the history of Galveztown for several years, believes the second fort was never constructed (Robbie Mann, personal communication 2018). The precise location of the fort(s) has not been determined.

Like the Isleños homes, the barracks were constructed out of wood and the roof consisted of the tiles made from an unknown material. Twenty-five thousand nails, of unknown size, were requested for the completion of the roof of the barracks and kitchen. In the request he sent to the governor, Commandant Francisco Collell stated that larger nails “…are useless because they are so large they will break all the tiles.” (Kinnaird [1779] 1949:319, 323-324). A military kitchen is known to have existed somewhere within settlement. However, it is not currently known where the kitchen was located.

Other significant features of the settlement included a main road, a cemetery, and communal brick ovens. The road, described in letters by Francisco Collell, was eight feet across and ran between the settlement and the Mississippi River (O’Brien 1981:13). The cemetery was located in the southeastern section of the settlement. Similar to the fort and kitchen, the exact
location of the cemetery has not been located. The general “southeastern” location was provided to V.M. Scramuzza (1924) when he conducted interviews of the local landowners; some of the landowners noted that they would pick flowers among the graves (1924:5-6). The communal ovens were built at the request of the Isleños women. The ovens are described as “fairly large brick structures that could accommodate enough bread for several families” (O’Brien 1981:13). It is unknown where these ovens were located.

The first year, 1779, has been described as a “complete loss for the government” as the Isleños had been unable to produce their own food (Scramuzza 1924:77). A study conducted by Antonio Rodriguez (1981) concluded that the amount of food the Spanish Government thought would be necessary to supply the fort was not adequate when considering the young age of the settlement; his study led him to state that the age of the settlement was a significant factor in the loss of life (Mann 2012:52; Rodriguez 1981:301). Because the settlers were unable to produce their own food, the Spanish Government had to supply the provisions. Approximately 70% of the funds that Galveztown received from the Spanish Government was spent on food (Rodriguez 1981:305). In 1781, the village commandant, Francisco Collell, defended the settlers in his report concerning the lack of stability in the settlement. Collell stated “that year they worked hard enough” (Scramuzza 1924:80).

Collell was later replaced as commandant by Captain Antonio de St. Maxent (Figure 6) in 1781. Governor Gálvez hoped that the success St. Maxent had at the Valenzuela settlement could be replicated at Galveztown (Din 1988:36-37). Unfortunately, St. Maxent was no more successful than Collell.

As the years progressed, the population of Galveztown declined significantly. During that first year, disease entered the village and killed a substantial portion of the population.
Scramuzza (1924) claimed that one such disease was “calenture.” Calenture has been described as a fever that is similar to but distinct from yellow fever. However, it was suggested in a later study that the disease may actually have been yellow fever (Carrigan 1961:14-15). The 1793 census claimed there were 126 people living in Galveztown (Scramuzza 1924:35). However, by 1796 there were approximately 109 people in the village (Scramuzza 1924:38). On April 18th, 1801, a possible hurricane destroyed the Galveztown barracks. The same storm destroyed several houses and a portion of the military kitchen. By 1805, only 213 people lived in the entire District of Galveztown area (Figure 7) (Din 1988:4).

![Figure 7. Map of the Widow Maxent's property in the District of Galveztown. Painted in 1804 by Barthelemy Lafon (Courtesy of LSU Special Collections).](image-url)
After the Louisiana Purchase, the Isleños began leaving the settlement with most of the population going to Baton Rouge. The first Spanish to leave the area were the soldiers, in 1804, and they were followed in 1806 by a large proportion of the Isleños (Din 1986:365). In 1804, a visiting doctor described the remaining families as “poor and very miserable” (Scramuzza 1924:38). In 1816, an American surveyor passed through the area and noted that Galveztown was “… of little consequence, consisting of a few ruined houses” (Darby 1816:201).

2.2. Previous Archaeological Studies

Archaeological investigations at the Galveztown settlement have been sporadic. The first exploration was conducted in 1980 by Helen O’Brien, a student at Louisiana State University. During her work, O’Brien conducted a survey (Figure 8), limited remote sensing, and shovel testing (Mann 2011a:11). O’Brien had two goals for her study. The first was to determine what archaeological materials remained. Her second goal was to apply Stanley South’s analytical framework, which used functional categories for the analysis of artifacts from British settlements, to an 18th century Spanish site. Specifically, O’Brien wanted to know if South’s framework could be applied to a Spanish colonial site (O’Brien 1981:3).

When applied to historical archaeological sites, South’s framework was designed to “reflect cultural and ethnic patterns.” In order to find these patterns, the framework uses a “type-ware-class-group classification” which contains nine artifact groups (O’Brien 1981:4; South 1977:95-96). O’Brien determined that South’s original framework did not work for the Galveztown artifacts. After she altered her categories, by expanding two of the artifact groups (Architecture and Faunal) and creating a Miscellaneous group, she was able to apply the framework. Ultimately, O’Brien concluded that the framework could be used for inter-site comparison (O’Brien 1981:73).
In 1986, Allan Saltus conducted an underwater survey in the Maurepas Basin. The purpose of his study was to locate archaeological sites that are now underwater (Saltus 1987:iv). Galveztown was chosen as an area to explore due to its status as a place of great historic value in the project area (Saltus 1987:131). Saltus employed remote sensing, specifically scanning sonar and scanning fathometer, and divers to explore the river along the site (Saltus 1987:170-171).

During the remote sensing, no features or artifacts of significance to the Isleños occupation were located. The few items that were located included a metal hoop net, an anchor, cinder blocks, and coke bottles (Saltus 1987:170-171). However, the archaeologists noted some magnetic anomalies as well as a potential feature. The magnetic anomalies are believed to be related to trash that was not associated with Galveztown. The possible feature was described as “…three to four-foot hole possibly associated with the drainage” (Saltus 1987:171).

Work at Galveztown was conducted by Christopher Goodwin and Associates in 1989. This contracting firm was hired to conduct archaeological reconnaissance and testing on archaeological sites along the Amite River and several of its tributaries. Their work was part of a larger Cultural Resource Management (CRM) project in advance of construction of flood control measures (Goodwin et al. 1990:1).

At the Galveztown townsite, Goodwin conducted a surface survey and six shovel tests (Mann 2011a:11). Goodwin states “Numerous eighteenth through twentieth century artifacts were observed in four gardens at Galveztown; these included creamware, pearlware, whiteware, porcelain, red earthenware, bottle glass, window glass, a kaolin pipe stem, a gun flint, and brick fragments” (Goodwin et al. 1990:98). The shovel test pits, which were placed on the neighboring land, did not reveal any historic artifacts, only modern debris (Goodwin et al. 1990:98).
Unfortunately, no maps were provided in the reports to show where these investigations were conducted.

Beginning in 2005, Dr. Robbie Mann, then the Regional Archaeologist for Southeastern Louisiana, began another study at Galveztown (Mann 2011a:13). His earliest work entailed taking core samples from around the site. These core samples were taken north of LA 42 but south of the modern house as well as along the bank of the Amite River. Some of the samples revealed midden in disturbed and undisturbed areas. One of the core samples also contained fragmented brick (Mann 2011a:13).

Working in conjunction with Dr. Brooks Ellwood, of the Department of Geology and Geophysics, and Dr. Chip McGimsey, the Regional Archaeologist of Southwest Louisiana, Dr. Mann began remote sensing at the site in 2006. They used a magnetometer and a soil resistivity meter along a 30-meter line. The soil resistivity meter revealed a disturbed area approximately 2 meters in depth. This disturbed area was described as a “broad trough.” Several variances were detected using the magnetometer; these variances were described as being both small and large (Mann 2011a:13). This transect occurred between the river and the modern houses; however, the exact location is unknown as the transects were informal and not mapped.

The most intensive field work at Galveztown were the excavations that took place between 2008 and 2011 (Figure 8), also conducted by Mann. The excavations included systematic shovel testing (measuring between 30 x 30 cm and 45 x 45 cm), judgmentally placed test pits, and a block excavation. Systematic shovel tests were dug along N-S and E-W transects at five-meter intervals during the 2008, 2009, 2010 field season, and at three-meter intervals during the 2011 field season (Mann 2009a:16). The south part of the site was tested in 2008 and the north part, to the 600N line, was tested in 2009. The 2010 excavations were conducted from
the N475 grid line to the N590 line and the 2011 STPs were excavated just north of grid line N644 along on the E530 and E536 lines. There were 217 shovel test pits dug during these field seasons.

Figure 8. Map showing O'Brien and Mann's work. It is unknown where Goodwin and Saltus conducted their work. Map adapted from Robbie Mann’s project maps (2009a, 2010, 2011a, and 2012).
Approximately 1455 artifacts, 9491.8 g of brick, 58.5 g of charcoal, and seven features were recovered from the 2008 field season. The 2009 field season only produced 442 artifacts, 650.1 g of brick, 7.1 g of charcoal, 0.8 g of baked clay, and five features (Mann 2009a:16; Mann 2011b). The 2010 field season produced 661 artifacts, 502.7 g of brick, 346.5 g of rangia shell, 5.3 g of aquarium gravel, and five features. There was a noticeable reduction in the artifact count from the 2008 to the 2010 collections. Mann originally hypothesized that the area with low artifact frequency contained the plaza. This theory has since been proven inaccurate and the current hypothesis is that the excavation took place between the fort and village (Mann 2012:58; Robbie Mann, personal Communication 2018).

Features, which were located during all field seasons, were determined by changes in soil colors and artifact concentrations. In 2008, seven features were located; the features included possible postholes, trenches, pits, and a possible chimney (Mann 2008). In 2009, five features were located. Three of these features were trenches, one was either a trench or posthole, and the last was a trench with a posthole. Of the three trenches, one is likely of modern origin (Mann 2009a:16). The five features located in 2010 consisted of two possible pit features, two trenches (one is likely modern), and a post with chinking (Mann 2010:15).

In 2011, Mann excavated a block of 19 1-x-1m test units and 10 additional STPs that measured 40 cm by 40 cm (Mann 2011a:15). The test unit excavations revealed an additional 10 features, including a large pit filled with artifacts and faunal remains. This feature, measuring 4.75 by 3.5 meters (depth unknown), is close to the size of the Isleños homes (Mann 2011a:23). The other features included trenches, postholes, and plow scars. Only five of the features in the block excavation, the large pit and four postholes, were considered to belong to the Galveztown
era (Mann 2011a:17, 23). The 10 STPs produced 388 artifacts, 0.9 g of charcoal, 329.6 g of brick, and one possible feature. It is unknown what the possible feature was.
Chapter 3. Methodology

Despite the historic and archaeological work that has been conducted at Galveztown, specific features of the site have not been located and/or identified. I employed multiple methods in an attempt to identify the different features of the settlement. The methods I employed included reviewing historical documents, separating artifacts into categories and doing an artifact distribution analysis, analyzing soil colors for midden, and finally georeferencing historic maps as well as a grid map displaying the soil colors for all shovel tests. Georeferencing refers to the tying of mapped features to real-world geographical locations (Price 2016). The location of the fort and other features of the settlement can be hypothesized, and georeferenced, from comparing the artifact distributions, the midden locations, and the historic maps.

3.1. Review of Historical Documents

I began my project by researching the history of Galveztown. I referenced the work of historians Gilbert Din (1988) and V.M. Scramuzza (1924). From interviews conducted by Scramuzza with an informant, Butler Gonzales, we know that the fort’s remains were visible up until the 1850s when his family purchased the land. Gonzales described the fort as “extremely dilapidated.” Scramuzza also noted that the soil where the Isleños’s homes stood was darker and in rectangular shapes (Scramuzza 1924:4). This is an important observation, as it suggests that house lots may be identified archaeologically by changes in soil color.

In addition to these secondary accounts, I also referenced primary documents. These documents consist of maps, letters, field notes, and aerial images. The maps included the 1796 map of Juan Marie Perchet, the 1778 plan map of Galveztown (Mann 2012:53-54), a 1793 Galveztown District map, the 1871 plat map by Robert Boyd, and the 1832 plat map by John
Gilmore; it is unknown who created the 1778 and 1793 maps. It should be noted that the features noted on the 1778 Galveztown Plan Map will be reviewed for historical context, but will not be used in this study, as this layout was not completely accurate during the construction of the settlement [O’Brien 1981:15]. This map was likely used as a blueprint. The letters I examined were the correspondences of Commandant Francis Collell to Governor Gálvez and letters from the governor to his uncle, Don Josef de Galvez. Other documents I reviewed included the original field notes of surveyors John Gilmore (1832a) and Robert Boyd (1871a), as well as the plat maps that were produced from this survey.

I also reviewed the earliest available aerial images from 1941 (Figure 9). In the 1960s, the Army Corps of Engineers dredged the Amite River as part of a flood control project (Saltus 1987:175). This dredging changed the riverbank location by adding approximately 30 m of fill (Robbie Mann, personal communication 2019). The 30 m measurement is visible when looking at the parish boundaries. The boundary between (whatever the parishes are) was set in the center of the Amite River, as is common when rivers and streams are used as boundaries (Rebecca Saunders, personal communication 2019). With the dredging and filling, the parish boundary is now located partially on the riverbank of the Amite.

These historical documents contain information that was used to hypothesize the location of the fort. Gilmore and Boyd worked for the General Land Office (GLO) and surveyed the land containing Galveztown; data from both of these surveys were used to produce the GLO plat maps. The surveyors left detailed field notes of their observations. For example, Boyd made note of 44 lots within the original site of Galveztown; he also noted trees and a standing house (Boyd 1871a:18). Gilmore’s survey notes mention the “front” area of the village (Gilmore 1832a:133).
3.2. Artifact Categories

Before I began my analysis of their distributions, I grouped the artifacts into categories. In a previous archaeological study, Stanley South’s functional categories were used to analyze Galveztown artifacts (O’Brien 1981). Today, South’s categories are generally no longer applied to archaeological sites. South’s work is based on “pattern recognition” in the distribution of artifacts in discrete functional categories. South (1977:223) suggested that patterned relationships in artifact distributions by functional category reflected “similar temporal and cultural associations.” With the introduction of post-processual paradigms in the 1980s, methods that were developed under the processual paradigm, including South’s functional categories, fell out of favor. Orser (1989), for instance, criticized the South’s approach because of its eclectic
theoretical basis. In addition, he argued that, despite its explicit evolutionary foundation, the South’s method cannot be used to investigate historic change.

However, for consistency with previous studies of Galveztown, I used Helen O’Brien’s (1981) adaption of South’s categories. Similar to O’Brien, I needed to create new groups to encompass all recovered artifact types. The categorical groups I employed included: activities, architectural, arms, clothing, faunal, furniture, historic Native American, kitchen, miscellaneous, modern, personal, prehistoric Native American, tobacco pipes, and unidentified. The groups I created were the historic Native American, modern, prehistoric Native American, and unidentified categories.

3.3. Artifact Distribution Analysis

The maps of the distributions of artifacts recovered from STPs excavated at Galveztown during the 2008-2011 field seasons were based on artifact count (Figure 10). The only exceptions to this were the brick, charcoal, and rangia shell, which were based on weight rather than count. Faunal bone distributions were based on count and weight. Figure 9 shows the distribution of all material: 2946 counted artifacts, 12128.6 g of brick, 174.9 g of charcoal, 350 g of rangia shell, and 5.3 g of aquarium gravel. In the next chapter more specific artifact distribution maps are presented in two maps. The map on the left will show the artifact distribution with the contour interval set at 1 artifact. The map on the right has a higher contour interval, which served to remove algorithm-generated clutter, making potential activity areas easier to see. Maps were made for all artifacts that had a count of 10 or more.
Figure 10. Maps showing total number of artifacts and their distribution. Left map has a contour interval of 1 and right map has interval of 2 (black) and 100 g (red).

3.4. Shovel Test Pits and Profiles

During the 2008-2011 field seasons, 217 STPs were excavated (Table 1). Most STPs were excavated by natural stratigraphy, although some were done in arbitrary levels. A field form was filled out for each STP; these included a written stratigraphy, Munsell soil color, depth, and in situ artifacts. Each form also contained a wall profile and, when features were present, a floor plan. I used this information to correlate soil colors and other stratigraphic information with artifact distributions in an attempt to locate activity areas. The activity areas are interesting in their own right, but I hoped to locate some combination of artifacts and soil colors that would help in georeferencing the site (e.g., a houselot, street, etc.)
Table 1. Number of STPs dug by year.

<table>
<thead>
<tr>
<th>Year</th>
<th>STP #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>52</td>
</tr>
<tr>
<td>2009</td>
<td>80</td>
</tr>
<tr>
<td>2010</td>
<td>75</td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>217</td>
</tr>
</tbody>
</table>

The soil colors are significant as the historian Scramuzza noted that it was possible to see where the former homes of the Isleños stood. He stated that the soil was darker in color and rectangular in shape (Scramuzza 1924:4). My analysis of the stratigraphy revealed different midden areas that could represent these structures or the ditches that were dug around the land containing the Isleños houses (Kinnard 1949:323). It should be noted that plow zones may have disrupted, and possibly smeared, some areas of midden.

After analyzing the soil color map, I began to analyze the site-wide stratigraphy. This analysis was conducted through the creation of soil profile transects for a limited number of grid lines. The transects were created from the center 6 cm section of the profile drawing. The grid lines I selected for analysis were N540, E530, E536, and E540. Grid N540 and E540 were selected because they bisect the main excavation and produced the largest number of artifacts on their respective line orientations. The 10 STPs located north of the house were selected because it is believed that the fort was located in this area.

Floor plans were drawn for every STP that produced a feature. These were examined for soil color and textures. Twenty STPs produced features and thus, had floor plans drawn. These STPs were located north of the N495 and extend from the E500 grid line to the E590 line.
Soil colors were variable; similar colors were subsumed into one color for analysis (Table 2). Soils with 5 can be either the A Horizon or the sterile subsoil. The A Horizon ranges from 5/1, 5/2, and 5/3; sterile subsoil overlaps with the A Horizon in color, with colors ranging from 5/3 to (rarely) 5/8. Soils with values of 4 and below were considered organically enhanced and were grouped based on their value (2-4) and chroma (1-8). Soils with values higher than 5 were grouped with the sterile subsoil to better define the organically enhanced soils. The GLEYs were all grouped together.

Table 2. Soil color groupings. One asterisk (*) indicates the color is only present on the soil transect maps. Two asterisks (**) indicate the color is only present on the soil color distribution map.

<table>
<thead>
<tr>
<th>Selected Color</th>
<th>Soil</th>
<th>Value/Chroma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>10YR; 7.5 YR; and 2.5Y</td>
<td>2/1</td>
</tr>
<tr>
<td>Grayish Brown</td>
<td>10YR; 7.5YR; and 2.5Y</td>
<td>3/2; 4/2</td>
</tr>
<tr>
<td>Dark Brown</td>
<td>10YR; 7.5YR; and 2.5Y</td>
<td>3/3; 4/3</td>
</tr>
<tr>
<td>Dark Yellowish Brown</td>
<td>10YR</td>
<td>3/4; 4/4</td>
</tr>
<tr>
<td>Brown</td>
<td>10YR</td>
<td>3/6; 4/6</td>
</tr>
<tr>
<td>Dark reddish Gray</td>
<td>5YR</td>
<td>4/2</td>
</tr>
<tr>
<td>*Dark reddish Brown</td>
<td>5YR</td>
<td>3/3</td>
</tr>
<tr>
<td>*Yellowish Red</td>
<td>5YR</td>
<td>4/6</td>
</tr>
<tr>
<td>**Greenish Gray</td>
<td>GLEY 1 and GLEY 2</td>
<td>all</td>
</tr>
<tr>
<td>Yellow</td>
<td>Sterile Subsoil</td>
<td>5/all; 6/all; 7/all</td>
</tr>
<tr>
<td>*Light Gray</td>
<td>A Horizon</td>
<td>5/1; 5/2; 5/3</td>
</tr>
</tbody>
</table>

With only a few exceptions, the field forms contained soil colors for all levels and strata. Four STPS (N480 E575, N530 E525, N535 E575, and N540 E575) were missing information that was needed for an accurate identification of the soil colors; missing information included all or part of the soil hue (10YR, 7.5YR, etc.). STPs N480 E575, N530 E525, and N540 E575 were all likely 10 YR hues, and were colored as such. The 10YR hue was selected as this was the most
common soil hue type located on the site. STP N480 E575 was the only STP to produce another hue type, a GLEY, which was either a dark greenish gray or a dark blueish gray. STP N535 E575 had no soil color information but did contain Feature 14, which will be discussed within the feature section.

Four additional STPs (N550 E520, N550 E525, N550 E530, and N550 E540) provided conflicting information; records show that these STPs were excavated twice, once in 2008 and again in 2009. Unfortunately, the soil color, artifacts, and/or the presence of a feature were different for the ‘same’ STPs. For instance, on the 2009 STP form, N550 E525 revealed a feature while the 2008 form contained no mention of a feature. These STPs will not be included in the stratigraphy discussion. The artifacts from these STPs will be combined and analyzed within the artifact distribution section. The only exception will be STP N550 E525, the location of Feature 8. It will be assumed that the 2009 data is accurate for that STP.

3.5. Georeferencing

Using the historical documents (maps and field survey notes), I attempted to identify features and coordinates that correspond with today’s landscape by first georeferencing the historical maps and superimposing my results onto a USGS 1939 topographic map. I began by attempting to georeference a District of Galveztown 1793 map. This map was created to show the James Johnston property claim located north of Bayou Manchac and west of the Amite River. The map did not depict the junction of the Bayou Manchac with the Amite River. However, a small note on the map stated “point to fort.” It is assumed the “point to fort” is indicating the Galveztown fort.
The second map I attempted to georeference was the 1796 Perchet Map. This map depicts the specific features of Galveztown. These features include the layout of the Galveztown village square, the plaza, and the fort. This map displayed both the actual fort, located on the bank of the Amite River, and a hypothesized fort, located in line with the village square. Due the dredging by the Army Corps of Engineers, I moved my georeferenced map approximately 30 meters south of the current landscape to account for the fill (Figure 11).

Figure 11. Map displaying overlay of original river bend superimposed onto the modern landscape.
The final maps I attempted to georeference were the 1832 plat map by John Gilmore and the 1871 Robert Boyd plat map. These maps depict the sections and names of plot owners in Township 8 South, Range 3 East of the Southeastern District. The sections on these maps are located south of Bayou Manchac and west of the Amite River.

After georeferencing the maps, I georeferenced the site STP grid with soil color distributions. This allowed me to see where the concentrations of dark soils were located. This map also allowed me to see where the features and artifact concentrations were in relation to the Galveztown Fort and village. I also georeferenced the 1941 aerial image to look for any visible midden, or other features, in the soil. This allowed me to locate other areas that should be investigated in the future.
Chapter 4. Results

In this section I present the results of my studies. First, I will discuss the artifact categories used, and, where applicable, any known dates for the artifacts. Then I will discuss the artifact distribution maps and comparisons between certain artifact distributions. The analysis of soil color, using Munsell soil colors and stratigraphic information from the STPs, follows the artifact distributions. Finally, I will discuss the results of georeferencing the historical maps and compare these results to the artifacts, soils, and features. I will then summarize my results.

The artifacts, and soil stratigraphy data, were collected between 2008 – 2010 by students enrolled in an LSU Leisure class and volunteers. The data from 2011 was collected through an LSU field school. The work was led by Dr. Robbie Mann, Research Assistant Professor, Louisiana State University. The students were responsible for the collecting and washing the artifacts. The artifact identification and analysis of the artifacts was conducted by Dr. Mann and student employees.

4.1. Artifact Categories

A total of 2946 counted artifacts, 12128.6 g of brick, 174.9 g of charcoal, 350 g of rangia shell, and 5.3 g of aquarium gravel were recovered from the STPs during the 2008 - 2011 field seasons (Figure 12). Artifacts were assigned to 14 artifact categories: activities, architecture, arms, clothing, faunal, furniture, historic Native American, kitchen, miscellaneous, modern, prehistoric Native American, personal, tobacco pipe, and unidentified. Artifacts in each of these categories are described below.
4.1.1. Activities Category

Only one artifact was attributed the Activities Category. This artifact consisted of a drainage pipe. The pipe was made from a coarse earthenware.

4.1.2. Architecture Category

The Architecture Category had the second largest number of artifacts, with a total of 451 artifacts and 12128.6 g of brick. The artifacts located within this category include bousillage/daub, brick, flat (window) glass, hand-wrought nails, machine-cut nails, wire nails, unidentified nails, and a pintle hinge.

Bousillage/Daub. Three pieces of burned clay were tentatively identified as *bousillage* and two were identified as possible daub. *Bousillage* is a mixture of clay, grass, and other fibers that is used as infill, and support, during the construction of timbered structures (Blokker and Knight 2013:27). The daub is part of a Native American technique called “wattle and daub.” It is similar to the use of *bousillage* as it involves the mixing of clay and fibers. In the Southeast, the
Native Americans were incorporating Spanish moss into their mixtures. When the French arrived in the Gulf Coast, they adopted the Native American use of Spanish moss as the fiber. The earliest recorded use of *bousillage* in Louisiana was in March 1700 by the Jesuit Priest, Father du Ru. Du Ru provided an account of the technique during the construction of the church by the Native Americans (Blokker and Knight 2013:30).

Bousillage was used for the first, temporary housing of the Isleños and then again in their later, permanent housing, which was raised off the ground. Three houses from the late 18th century St. Bernard Isleños settlement are still standing (Blokker and Knight 2013:34). The houses are named the Estopinal House, the Magnolia Plantation House, and the Messa House.

Brick. A total of 12128.6 g of brick was recovered during the four field seasons. Fourteen of the brick fragments were classified as glazed brick, one brick was classified as a fire brick, two were classified as structural, and one was a classified as a composite of glazed brick and mortar. Fire bricks are used within furnaces, chimneys, and kilns (Ugheoke et al. 2006:168).

Hinge. Only one hinge type was recovered. This hinge consisted of a pintle hinge shank. Pintle hinges have been located in colonial Spanish churches in New Mexico. These hinges were identified as part of the window shutters (Montaño 2001:94).

Mortar. One fragment of mortar was recovered.

Nails. Two hundred and fifty-four nails were recovered during the excavations. The nail types recovered included two hand-wrought nails, 105 machine-cut square nails, three wire nails, and 144 unidentified nails; among those classified as unidentified, three were likely hand-wrought and four were likely machine-cut square nails (Mann 2011b).

Of the recovered nail types, the hand-wrought nails are the most significant, as this type dates from before the 1600s up to the 1870s. The machine-cut square nails, which were cheaper
to produce, were in use as early as 1794 and lasted until roughly 1920 (Adams 2002:67-68; Edwards and Wells 1993:15-18; Nelson 1968:204-205). Wire nails, while existing in Europe by 1820, did not arrive in the United States until approximately 1851; mass production did not begin until around 1890 (Edward and Nails 1993; Priess 1973:87-88). Wire nails will no longer be discussed as they postdate the Galveztown settlement.

Amy Young (1994) conducted an experiment to try and determine if a structure had formerly been standing in a specific location, if the structure was removed, or if the location was a disposal location based on concentrations of nails. Young examined the form (unaltered, clinched, and pulled) of the nails. Young found that structures that were left to deteriorate would have a higher number of unaltered nails and are more likely to signify the presence of a structure. The clinched nails likely indicate a disposal site and pulled nails could indicate a disposal or torn down structure (Young 1994:58). Unfortunately, this information was not recorded for the Galveztown nails. However, this would be beneficial to analyze in the future.

Spike. One spike, identified as machine-cut square, was recovered.

Window Glass. There were 36 fragments of window (flat) glass. Among the fragments, one had an amethyst color, and another had a gray tint. The amethyst and gray tinted glass will no longer be discussed as they postdate the Galveztown settlement

4.1.3. Arms Category

The Arms Category had a total of 15 artifacts, including three French gunflint fragments, two English gunflints, one spall gunflint, one lead shot, one lead sprue, four pieces of lead waste, one lead buck or swan shot, and two possible gun parts. One of the English gunflints was possibly used for a cannon (Mann 2011b).
4.1.4. Clothing Category

Two artifacts within the Clothing Category were recovered. One of the artifacts consisted of a broken glass bead. The bead was typed under the Brain type classification as either an III A1 or IV A2. It was also typed under the Kidd & Kidd type classification as either III a3 or IV a5-7 (Mann 2011b). The second artifact consisted of a metal, possibly cupreous, sew-through button.

4.1.5. Faunal Category

The Faunal Category encompasses all bone and shell recovered at Galveztown. In total, there were 131 bone fragments which weighed 107.2 g. Of the bone recovered, 56 (26.5 g) bones had evidence of burning. The recovered shell consisted of rangia. A total of 350 g was recovered. It is believed that the rangia is modern and part of the road fill; the rangia will not be discussed further. One unidentified shell, weighing 1.7 g, was also located.

4.1.6. Furniture Category

Only one artifact was attributed to Furniture Category. This artifact consisted of a possible candlestick base. The base was made of a cupreous metal and contained a black enameling.

4.1.7. Historic Native American

Four sherds of historic Native American ceramic were recovered; all were typed as Chicot Red. The Chicot Red is a red-filmed ware that is shell-tempered in the Lower Mississippi Valley and grog tempered elsewhere (Mann 2014b:276). It is almost always in bowl form. Mann (2014) and Dawdy and Mathews (2010) hypothesized that this pottery was involved in the exchange of food, possibly as gifts or as a sign of peace, between the local Native Americans and the colonists (Mann 2014b:282). In 1765, the Spanish Crown passed a trade act on the nation’s Caribbean colonies. This act outlawed trade with foreign powers (Woodward 2003:143). During the time of Galveztown, the trade act was in force in Louisiana, making any trading with the
local Native Americans illegal (Mann 2014a). The presence of the Chicot Red may indicate illegal trade was occurring.

4.1.8. Kitchen Category

The Kitchen Category produced most of the artifacts, with a total of 1698 artifacts. These included a cast-iron kettle leg, vessel glass fragments, and Old-World ceramics.

Cast Iron. Two cast-iron artifacts were recovered. One of the artifacts consisted of a cast-iron kettle leg. The other artifact was a vessel fragment.

Old-World ceramics. The Old-World ceramics section encompasses all non-Native American ceramic. The Old-World ceramics recovered at Galveztown have been classified as coarse earthenware, tin-enamed coarse earthenware, refined earthenware, unidentified earthenware, stoneware, and porcelain. In total, there were 1012 sherds of Old-World ceramics (Mann 2011b). Of these, 109 were classified as coarse, 164 as tin-enamede, 708 as refined, 16 stoneware, 11 as porcelain, and 4 were classified as unidentified ceramics. Some types were specific to certain nationalities; this included French, Spanish, English, English/Dutch, and Italian. The presences of non-Spanish ceramic sherds reinforce the theory that illegal trade was occurring at Galveztown (Mann 2014a).

Coarse Earthenware. The Coarse Earthenware ceramic category technically includes the tin-enamede wares; however, these will be discussed separately. The other coarse earthenware sherds included French, Spanish, Italian, and British wares. There were a total 22 identified French ceramic sherds. These sherds included possible Saintonge Plain, a Saintonge Plain or Marseille monochrome, Charente Plain, and Provence style redwares (Mann 2011b; Olin et al. 2002:84). Two sherds, classified within the coarse earthenware group as redwares, may have been exfoliated Faïence brune (Mann 2011b).
Five sherds were identified as Italian Albisola Slip Trailed, one was identified as Spanish El Morro, one red-bodied slipware was identified as British, and 13 sherds were either Spanish or French unidentified coarse earthenware sherds. Five sherds, two of which were classified as redwares and three as undetermined coarse earthenware, are believed to have been locally made (Mann and Jones 2012). The El Morro, which dates between 1550 and 1770, could potentially indicate the curation of some household items was occurring (Florida Museum of Natural History of Natural History 2019). Dates for some of the identified types are available in Table 3. Some dates correspond to the presence of the ceramic in the Mississippi Valley rather than the date of creation.

Table 3. Dates for coarse earthenware (Arcangeli 2009:135; Avery 2011:98; Florida Museum of Natural History 2019).

<table>
<thead>
<tr>
<th>Coarse Earthenware</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albisola Slip Trailed</td>
<td>ca 1750s-19th Century</td>
</tr>
<tr>
<td>Chartene Plaine</td>
<td>1717-1780</td>
</tr>
<tr>
<td>El Morro</td>
<td>1550-1770</td>
</tr>
<tr>
<td>Saintonge Plain</td>
<td>1719-1765</td>
</tr>
<tr>
<td>Plain Redware</td>
<td>1500-1750</td>
</tr>
</tbody>
</table>

Tin-Enameled Coarse Earthenware. Tin-enamede ware is one of the most ethnically diagnostic ceramic artifacts recovered. The tin-enamede ceramics include *Faïence blanche*, *Faïence brune*, delft, and majolica. The *Faïence blanche* and *Faïence brune* are French in origin, the delft ceramic was likely English (although delft is also attributed to the Dutch), and the majolica was produced by the Spanish (Emery 2004: 42, 43, 88).

Of the tin-enamede recovered, there were 70 *Faïence blanche*, 23 *Faïence brune*, four possible sherds of majolica, three sherds of possible delft. Four sherds were either *Faïence blanche* or *Faïence brune*, three sherds were either delft or majolica, and 1 sherd was either
Faïence blanche or majolica (Mann 2011b). The types of Faïence blanche recovered included Normandy Blue and White, Normandy Plain, Saint Cloud Polychrome, Seine Polychrome, and Marseille Monochrome. The recovered Faïence brune consisted of Rouen plain, Rouen Polychrome, and Rouen Blue on White (Waselkov and Walthall 2002:65). The only identified majolica consisted of Abó Polychrome. The predominance in French Faïence suggests that merchant traders were very successful in skirting the law (Mann 2014). The dates of these identified tin-enamelled types are given in Table 4 below.

<table>
<thead>
<tr>
<th>Tin-enamed Type</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abó Polychrome</td>
<td>1650-1750</td>
</tr>
<tr>
<td>Marseille Monochrome</td>
<td>Late 18th Century-19th Century</td>
</tr>
<tr>
<td>Normandy Blue or White</td>
<td>1690-1785</td>
</tr>
<tr>
<td>Normandy Plain</td>
<td>1690-Early 19th Century</td>
</tr>
<tr>
<td>Rouen Plain</td>
<td>1740-1790</td>
</tr>
<tr>
<td>Rouen Polychrome</td>
<td>Ca. 1770</td>
</tr>
<tr>
<td>Saint Cloud Polychrome</td>
<td>1675-1766</td>
</tr>
<tr>
<td>Seine Polychrome</td>
<td>1719-1765</td>
</tr>
</tbody>
</table>

Refined Earthenware. The refined earthenware includes creamwares, whitewares, pearlwares, yellow wares, and ironstone. There were 270 creamware sherds, 176 pearlware sherds, 19 whiteware sherds, two ironstone sherds, and one yellow ware sherd. An additional 179 sherds were either creamware or pearlware and 47 were either pearlware or whiteware. The largest number of sherds, at 251, consisted of plain creamware. Dates and types of refined earthenware are located in Table 5. The plain ironstone, plain whiteware, and yellow ware all postdate the Galveztown settlement. Therefore, they will not be discussed again.
Table 5. Refined earthenware dates (Florida Museum of Natural History 2019; Waslekov et al. 2000:146-147, 149).

<table>
<thead>
<tr>
<th>Refined Earthenware</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Hand Painted Pearlware</td>
<td>1775-1840</td>
</tr>
<tr>
<td>Feathered Edged Creamware</td>
<td>1765-1810</td>
</tr>
<tr>
<td>Plain Ironstone</td>
<td>1840-1930</td>
</tr>
<tr>
<td>Plain Pearlware</td>
<td>1780-1840</td>
</tr>
<tr>
<td>Plain Creamware</td>
<td>1760s-1820s</td>
</tr>
<tr>
<td>Plain Whiteware</td>
<td>1830 - present</td>
</tr>
<tr>
<td>Polychrome Hand Painted Pearlware</td>
<td>1795-1840</td>
</tr>
<tr>
<td>Transfer Pearlware</td>
<td>1784-1840</td>
</tr>
<tr>
<td>Yellow ware</td>
<td>1840-1900s</td>
</tr>
</tbody>
</table>

Stoneware. Sixteen stoneware sherds were recovered. These included one gray stoneware sherd, one Bristol glazed bottle, two brown salt-glazed, six gray salt-glazed, and five white salt-glazed. The white salt-glazed included one English sherd identified as a Barley Pattern. The grey salt-glazed one included one Albany Slip. The Albany slip and the Bristol glaze will no longer be discussed as they post-date the Galvestown settlement. Table 6 displays some of the corresponding dates.

Table 6. Stoneware dates (Cheek 2016:89; Florida Museum of Natural History 2019; Mann 2011b; Waslekov et al. 2000:144)

<table>
<thead>
<tr>
<th>Stoneware</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany Slip</td>
<td>Mid-19th Century</td>
</tr>
<tr>
<td>Barley Pattern White Salt-Glazed</td>
<td>1720-1805</td>
</tr>
<tr>
<td>Bristol Glazed</td>
<td>1835 - 1950s</td>
</tr>
<tr>
<td>Brown Salt-Glazed</td>
<td>1690-1775</td>
</tr>
<tr>
<td>White Salt-Glazed</td>
<td>1720-1770</td>
</tr>
</tbody>
</table>

Porcelain. The porcelain category includes both hard- and soft-paste porcelains. The porcelain included at least one piece of Chinese export porcelain, one possible Chinese export, and one possible English porcelain sherd.
Unidentified Ceramic. Four unidentified ceramic sherds were also recovered. These sherds include three originally typed as Zimmerman Black, var. Zimmerman, which would be of Native American origin. However, they were later reclassified as ‘unidentified’ as they were micaceous and there is no correlation to Native American pottery pastes in this area. The current hypothesis is that these ceramics were created by the Isleños (Mann 2011:18; Mann and Jones 2012).

Vessel Glass. Approximately 681 vessel glass fragments were recovered. The vessel types included tumblers, glass bottles, and miscellaneous glass fragments. The glass colors were diverse and included amber, amethyst, aqua (which encompasses light blue and light green colors), blue-greens, cobalt, colorless, gray (it is possible this was originally colorless), olive-green, opaque white, and peach (possibly a shade of amber or a pink). The glass colors are diagnostic (Table 7). The olive-green coloring had the largest number at 410 fragments. The amber, amethyst, gray, and peach colored glass postdate the settlement of Galveztown and will not be discussed further.

Table 7. Glass dating by color (Florence and Florence 2010; Lindsay 2019b; Noël Hume 1969:196; Tibbetts 2015:2; Waslekov et al. 2000:146-147, 149).

<table>
<thead>
<tr>
<th>Glass</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber</td>
<td>Post 1800s</td>
</tr>
<tr>
<td>Amethyst</td>
<td>1840-1880s</td>
</tr>
<tr>
<td>Amethyst Solarized</td>
<td>1820-1930s</td>
</tr>
<tr>
<td>Aqua</td>
<td>1800-1920s</td>
</tr>
<tr>
<td>Blue-Greens</td>
<td>1700-1900s</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Late 1700s-1930s</td>
</tr>
<tr>
<td>Colorless</td>
<td>Post 1700s</td>
</tr>
<tr>
<td>Gray</td>
<td>1915-1925</td>
</tr>
<tr>
<td>Olive-Green</td>
<td>1700-1900s</td>
</tr>
<tr>
<td>Opaque White</td>
<td>Post 1743</td>
</tr>
<tr>
<td>Peach</td>
<td>1930s</td>
</tr>
</tbody>
</table>
Two olive-green bottle fragments were tentatively considered to be derived from a demijohn (Mann 2011b). Demijohns were large glass bottles that usually stored alcohol. Bottles similar to demijohns were used as early as the 1400s and were often imported to the Americas. However, a tariff in 1824 saw a decrease in European demijohns and an increase in the American production of the bottle (Odell 2008). One of the demijohns located had a hand-applied lip. The other identified demijohn had a hand-applied string rim that could provide a date as early as the mid-1600s (Lindsay 2017; Mann 2011b).

One colorless bottle fragment was identified as having a blob-top finish. This finish type dates between the 1830s and 1890s (Waslekov and Gum 2000:154). One other olive-green bottle fragment, identified as a bitters bottle, was embossed with “…MAC” (Mann 2011b). The embossing gives this bottle a date as early as the 1750s (Lindsay 2019a). The colorless blob top finish will no longer be discussed as it post-dates the Galveztown settlement.

4.1.9. Miscellaneous Category

The Miscellaneous Category had the third greatest artifact count with a total of 161 artifacts. The artifacts within this category included burned/baked clay, charcoal, coal, possible bakelite, and a piece of safety glass. The bakelite dates between 1909-1941 and the safety glass postdates 1915 (Miller et al. 2000; Tibbetts 2015:62). The burned/baked clay and charcoal are the only artifacts that will be discussed from this point on.

4.1.10. Modern

The Modern Category includes asbestos tiles, aquarium gravel, flat glass, vessel glass, an iron ring, plastic, rubber, and wire. Approximately 48 modern items were identified, although the aquarium gravel was not counted and only weighed (5.3 g). Modern items will not be discussed further.
4.1.11. Personal Category

The Personal Category consisted of two artifacts, a silver flat mirror fragment, and a possible mirror fragment.

4.1.12. Prehistoric Native American

The Native American Category includes all items created by Native Americans, with the exception of the Chicot Red ceramics which were analyzed under the Historic Native American Category. The artifact types within this category include ceramics and lithics. The ceramic types include 118 Baytown Plain, 21 Bell Plain, one Coles Creek Incised, one Mazique Incised, two shell & grog tempered sherds, one shell tempered brushed sherd, one possible Tchefuncte podal support, and 46 unidentified ceramics. Three of the unidentified ceramics are incised, with one that was possibly brushed. The lithics included a possible core, one stemmed dart point, one biface, six flakes, one piece of shatter, and one piece of heat-spalled chert shatter. This category will no longer be discussed as it predates the Galveston settlement.

4.1.13. Tobacco Category

The Tobacco Category contained 13 clay pipe stem fragments, two clay tobacco pipe bowl fragments (one with an unidentified mark), and one tobacco pipe that still contained a bowl, heel, and stem.

4.1.14. Unidentified Category

The unidentified artifacts included items made of brass, copper, iron, and pewter. It is possible that the unidentified brass object was originally part of a gun, the copper was possibly sheet metal, and some of the unidentified iron may have been nails and a nail shank. One artifact may have been a glass fragment with a blue or opaque milk color. Five additional artifacts were made of clay. These fragments may have originally been ceramic sherds and “heavily fired bricks” (Mann 2011b).
4.2. Artifact Distribution

The Galveztown artifacts were found throughout the tested area of the site. All the shovel test units, with the exception of STP N456 E500, produced artifacts. The larger concentrations of artifacts were present in the mid-western STPs. The N535 grid line and the E540 grid line had the highest number of artifacts for their respective grid line orientations. STP N535 E515 had the largest number of artifacts

4.2.1. Architecture Category

Artifacts within the Architecture category (Figure 13) were largely clustered in the middle of the site. A small concentration occurs in the northwestern portion of the site. The densest concentrations are located in the STPs north of the N510 line and west of the E560 line. The architectural artifacts that are most likely to signify Isleños’s houses, the bousillage and the daub and hand-wrought nails, were all located in STPs south of the N550 line. One of the bousillage fragments was in the same STP (N500 E520A) and same level as the only identified structural bricks; all bricks are considered structural, however these bricks were specifically classified as “structural” indicating there must have been something substantially different about these two bricks (Robbie Mann, personal communication 2019).
Figure 13. Artifacts within the Architecture Category. The map on the left has a contour interval of 1 for counted artifacts. The map on the right has a contour interval of 3 for counted artifacts. Weighed artifacts have a contour interval of 100 g.

Brick. The brick is concentrated in the middle of northing lines and in the western easting lines of the STPs (Figure 14). Seventy-six percent (9187.5 g out of 12128.6 g) of the total brick was located north of the N505 line, south of the N545 line, and west of the E545 line. STP N505 E530 had the heaviest weight of brick at 1089.3 g. Most of the glazed brick was on the western side of the site and most fragments were located on the E500 line.
Figure 14. Maps displaying distribution of brick by weight. The map on the left has a contour interval of 1 g and the map on the right has a contour interval of 40 g.

Nails. The nails were distributed throughout the tested area (Figure 15). There was a large clustering between N515 and N550 lines, which contained more than half of the recovered nails, 51% or (110/217). This area produced 31% (23/75) of the identified historic nails. STPs N644 E530 and N653 E536 had the largest amount of the known historic nails (machine cut square) at 10 nails each. STP N530 E540 produced the only definitively identified hand-wrought nails. The majority of the historic nails were located north of the N520 line and west of the E545 line.
Figure 15. Maps display hand-wrought and machine-cut square nails. The left map has a contour interval of 1 and the right map has an interval of 3.

Window (Flat) Glass. Only 43 fragments of window glass were recovered (Figure 16). The majority of the fragments were concentrated south of the N540 line. North lines 515, 530, and 540 produced four fragments. East line 500 produced the most window glass fragments at six. However, STP N650 E530 had the largest number of fragments in any STP at four fragments.
Figure 16. Due to the limited number of window glass fragments, a contour map did not provide an accurate portrayal of the site distribution. Red dot indicates STPs with two or more window glass fragments.

4.2.2. Arms Category

Only 13 artifacts in the arms category were recovered (Figure 17). The majority these were concentrated south of the N550 line. However, STP N650 E5230 had the largest number of arms-related artifacts at three, followed by STP N520 E525 with two.
Figure 17. Due to the limited number of arms-related artifacts, a contour map did not provide an accurate portrayal of the site distribution. Red dot indicates STPs with two or more arms-related artifacts.

4.2.3. Faunal Category

Bone. There were 131 bone fragments, weighing 107.2 g. When analyzing the bone distribution, there was a noticeable difference between bone count and the bone weights (Figure 18). The northern 535 line had the highest number, and weight, of bone fragments. By count, most of the bone was recovered in STP N535 E515; by weight STP N535 E540 had the most bone.
Figure 18. Maps display the distribution of bone based on count (top) and weight (bottom). Maps on left have a contour interval of 1 and 1 g. Maps on right have an interval of 2 and 2 g.
4.2.4. Kitchen Category

Artifacts within the Kitchen Category were largely clustered within the middle and towards the north of the excavated area (Figure 19). The densest concentrations appear to be located in the STPs north of the N500 line and south of N570 line. This area represents 77% (1266/1648) of the recovered artifacts in the Kitchen Category.

![Figure 19](image)

Figure 19. Maps displaying all artifacts within the Kitchen Category. Left map has interval of 1 and right has a of 2.

Old-World ceramics. As the Old-World ceramics were the most commonly recovered artifact, there does not appear to be a significant difference in the overall Kitchen Category distribution map and the Old-World ceramics distribution map (Figure 20). The Old-World ceramics sherds appeared to be distributed in a linear band stretching from N600 line south and east to the N490 line.
Figure 20. Maps displaying all Old-World ceramics. Left map has a contour interval 1 and right map has a contour interval 2.

The coarse earthenware was largely concentrated in the northern middle half of the site (Figure 21). The STPs located north of the N520 line contained 74% (75/102) of the recovered coarse earthenware sherds. STP N525 E540 had the largest number of coarse earthenware sherds. The tin-enameled coarse earthenware concentrated in the center of the site, with the majority of the sherds located north of the N510 line and south of the N550 line. This area contained 62% (102/164) of the total tin-enameled sherds. STP N525 E540 had the highest number of tin-enameled sherds. The refined earthenware was more scattered than the other ceramics. However, there was a large concentration of refined sherds in north of the N520 line, west of the E550 line, and south of the N560 line. STP N525 E540 had the highest number of refined earthenware. This area contained 61% (421/685) of the recovered refined earthenware. Very few stoneware and porcelain sherds were recovered. The stoneware was predominately located north of N550; no STP produced at least two sherds. The porcelain was concentrated
largely on grid lines N530 and N535, producing six out of 11 of the sherds. STPs N530 E590 and N535 E515 each two produced sherds.

Vessel glass. Vessel glass fragments were concentrated in the same general location as the Kitchen and Old-World ceramics artifacts; that is, in the mid-western side of the site, north of the N510 line west of the E550 line, and south of the N550 line (Figure 22). This area contained 42% (277/658) of the vessel glass. STP N535 E515 had the largest number of vessel glass fragments and the largest number of olive-green glass. STP N530 E500 had the largest number of aqua vessel glass and STP N510 E530 and N525 E540 the largest count of colorless glass fragments.

Figure 21. Map displaying all Old-World ceramics by type. Left map has contour interval 1 and right map has contour interval 1.5 (coarse and tin enameled) and 3 (refined).
Figure 22. Top maps display all vessel glass fragments. Bottom maps display glass by color. Left maps have contour interval of 1 and right maps have an contour interval of 2 (aqua and colorless), 3 (top right map) or 5 (olive-green).
4.2.5. Miscellaneous Category

Charcoal. The recovered charcoal was present in 27 STPs in small amounts (Figure 23). The largest amount of charcoal, weighing 161.6 g, is located at N500 E520A. The next largest amount, located at N595 E500, only weighed 2.8 g.

![Graph showing charcoal distribution](image)

Figure 23. Due to the limited amount of charcoal, a contour map did not provide an accurate portrayal of the site distribution. Red dot indicates STPs with at least 1 g of charcoal. Largest dot represents STP over 100 g of charcoal.

4.2.6. Tobacco Pipes

Very few tobacco pipe stems, and even fewer bowls, were recovered (Figure 24). The fragments were recovered from the center of the site. STPs N530 E540 and N525 E540 had the highest number of tobacco pipe fragments at two each.
Due to the limited number of tobacco pipes (bowls and stems), a contour map did not provide an accurate portrayal of the site distribution. Red dot indicates STPs with at least two tobacco pipe fragments.

4.2.7. **Unidentified Category**

Iron. Unidentified iron artifacts were located throughout the site (Figure 25). However, the most came from the center of the site, with STP N510 E550 containing the most.

Unidentified Artifacts. Eighty unidentified artifacts (including copper, fired clay, pewter, and unidentified) were located during the excavation (Figure 26). Somewhat surprisingly, all the artifacts, with the exception of the fired clay, were recovered from a restricted area, between the N510 and N540 lines, and extending across the tested area W to E. The unidentified fire clay, which had the highest number of artifacts in the unidentified category, was restricted to the STPs north of the house. STPs N644 E530 had the highest number of artifacts (fired clay). N520 E500 had the highest numbers of non-fired clay unidentified artifacts at eight each.
Figure 25. Map displaying the unidentified iron artifacts. Left map has interval of 1 and right map has interval of 3. Black dot indicates concentration lost during blanking.

Figure 26. Due to the limited number of unidentified artifacts, a contour map did not provide an accurate portrayal of the site. Dots indicate artifacts of at least two or more.
4.2.8. Comparison of Artifact Type Distributions

Bousillage/Daub, Brick, Nails, and Window Glass. The distributions of brick, bousillage, nails, and window glass (Figure 27) were examined together to help determine the possible locations of structures. These generally clustered together in the previously defined, high artifact concertation area between N500 – N540 on the western side of the tested area. However, the STP with the highest number of historic nails, N560 E525, had no brick. The STPs with the heaviest brick concentrations, STP N505 E530 and N540 E540, only produced a total of seven nails between them. However, the only confirmed hand-wrought nails were located in STP N530 E540, south of the second largest concentration of brick (STP N540 E540). STP N530 E540 also produced three machine-cut nails and 114.7 g of brick. The only identified fire brick was recovered from N500 E575, which was the only brick recovered from this STP. STP N500 E575 also produced one unidentified nail.

The bousillage/daub were located in three STPs, N500 E520A, N520 E530, and N535 E590. All three of these STPs produced brick, with STP N500 E520A producing the most brick. STP N500 E520A also produced the only known structural bricks. Only one of the STPs, N535 E590, produced bousillage, brick, and nails. However, only two nails (unidentified) were recovered in this STP.

The STP with the highest number of window glass fragments, N520 E500, had one unidentified nail, 354.2 g of brick (of which 8.8 g was glazed brick), and no bousillage or daub. The STPs with the highest amount of nails by weight, STP N530 E540, produced 114.7 g of brick but did not produce any window glass or bousillage/daub. The STPs containing the bousillage/daub did not contain any window glass.
From the distribution of the brick and nails, there does not appear to be any significant relationship based on their locations. The STPs with the highest number of nails by weight.

Figure 27. Map displaying brick (contour interval 100g), historic nails (contour interval 3), bousillage/daub, and window glass.

Faunal Bone, Old-World ceramics, Charcoal, and Fire Brick. The bone, Old-World ceramics, charcoal, and fire brick (Figure 28) were selected for comparison because I was looking for a possible kitchen area/midden. When comparing the bone and the Old-World ceramics, there is an obvious clustering in the area north of the N520, west of E570, and south of
N560. This area contained a large clustering of bone, with 91% of the faunal bone (105/116). The two STPS (N535 E515 and N535 E540) with the most bone were located directly in the middle of a large clustering of the Old-World ceramics.

Figure 28. Map displaying Old-World ceramics (contour interval 2), bone (contour interval 2), and charcoal.

The fire brick was located away from the clustering of bone and ceramic. However, three ceramic sherds were recovered from the same STP as the fire brick. There was no overlap of the charcoal with the bone, ceramic sherds, or fire brick.

From the comparison of these artifact distributions, there appears to be a significant relationship between the bone and ceramic sherd concentration. A small relationship may also
exist between the charcoal, bone, and ceramics. However, the fire brick and charcoal do not appear to have any relationship with the bone and Old-World ceramics.

Vessel Glass and Old-World ceramics. The vessel glass and Old-World ceramics (Figure 29) were distributed throughout the N-S axis of the site. However, similar to other artifact concentrations, the vessel glass and ceramic sherds were largely concentrated in the middle/western side of the site. The largest concentration of vessel glass and Old-World ceramics existed north of the N520, west of E570, and south of N560.

![Map displaying vessel glass and Old-World ceramics sherds. Contour interval is 3 for vessel glass and 2 for ceramic.](image)

<table>
<thead>
<tr>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>●</td>
</tr>
<tr>
<td>Colorless Glass</td>
</tr>
<tr>
<td>Old-World Ceramic</td>
</tr>
</tbody>
</table>

Figure 29. Map displaying vessel glass and Old-World ceramics sherds. Contour interval is 3 for vessel glass and 2 for ceramic.
Historic Native American and Old-World ceramics. The four historic Native American sherds were located within the scatters of the Old-World ceramic sherds (Figure 30). Relatively few Old-World ceramics in the same STPs as the Chicot Red. However, the presence of the Chicot Red indicates interactions between the Native Americans and the Isleños were occurring. The location of Chicot Red with the Old-World ceramics also indicates that these Native American ceramics were possibly incorporated into the daily life of the Isleños; this supports the hypotheses of Mann (2014b) and Dawdy and Mathews (2010) that the Native Americans were trading food to the settlers in red-filmed bowls.

Figure 30. Map displaying Old-World ceramics and historic Native American Chicot Red ceramics. Contour Interval of 2. Red dots indicate Chicot Red sherds.
4.2.9. Discussion

The artifact distributions indicate several activity areas. Artifacts were more frequently observed along the N535 and E540 line. STPs N525 E540 and N535 E515 produced the largest number of artifacts. STP N525 E540 also produced the most Old-World (coarse, tin-enameded, and refined) ceramic sherds. This STP also evenly matched STP N510 E530 for the most colorless vessel glass and matched STP N530 E540 for the greatest number of tobacco pipe fragments. STP N535 E515 produced the greatest number of bones, the greatest number of vessel glass, and the greatest number of olive-green glass.

Other significant STPs are N500 E520A and N535 E590. N500 E520A produced the only identified structural brick as well as a piece of daub. This STP also contained Feature 2, a possible chimney sweep. STP N535 E590 may also be significant as it was the only STP to produce nails, brick, and bousillage clay. This could indicate a structure was located within this area.

When comparing the distribution of artifact types against each, potentially significant relationship become obvious. For instance, a 30-x-60 m area between the N520 line, N550 line, E500 line, and E560 contained 44% (1223/2754) of the counted artifacts, 55% (6673.6/12128.6 g) of the brick, and 5.2 g of the charcoal. The co-occurrence of the brick, nails, ceramic, bone, and vessel glass strongly suggest this is a significant activity location. While there is a large concentration of brick and nails in this location, there is no obvious relationship between the two. This indicates that the Galveztown structures were not made of brick. The brick likely is the result of hearths, and possibly, the ovens that were constructed at the Isleños request.
4.3. Soil Color Analysis

During my analysis, I focused on the horizontal and vertical distribution of soils. I specifically focused on the anthrosols (B Horizon). Anthrosols are soils that were altered by human activities. In this analysis, I was particularly interested in the areal distribution and depth of earth middens. Such anthrosols are typically darker in color, as they are enriched with organics. The soils’ texture consists of either a silty loam or a silty loam clay.

The Natural Resource Conservation Service (NRCS) soil survey (NRCS 2018) found that the soils within the Galveztown settlement area are a part of the Olivier series. The soils in the Olivier series are typically a poorly drained silty loam that was formed in loess on Pleistocene terraces. The landforms are usually found along stream beds; the slope is usually between zero and five percent (NRCS 2018). The silty loams are generally seen in the upper levels, while the lower levels typically contain more clay. The unaltered soil profile for the Olivier series includes: an A Horizon (0-9), an E Horizon (6-9 cm), a series of Bt Horizons Bt (9-30 cm), Btx/E (30-37 cm), Btx (37-52 cm), and BC Horizon (52-86 cm) (NRCS 2018).

Within the Galveztown settlement, the soil is specifically an Olivier silt loam (Ov). There is some variation between this soil and the general Olivier series in regards to depth and color (NRCS 2018a). The A Horizon is deeper (0-15 cm) and the E Horizon is better developed (15-23 cm). The Bt extends much lower, up to 132 cm: (Bt1 (23-38 cm), Bt2 (38-76 cm), Btx/E (76-94 cm), and Btx (94-132 cm). Colors are as shown in Figure 31.
4.3.1. Soil Color Map

Table 2 displays all the soil colors represented on the soil distribution map (Figure 32), including those that have been collapsed together. The sterile subsoil in the Olivier profile are generally in the 10YR 5/1-5/6 range. Darker soils are assumed to represent anthrosols. The yellowish brown, which consisted of largely sterile soils, were the sediments of the Bt, Btx/E, Btx, and BC horizons (NRCS 2019). These areas saw little organic deposition and may represent either unused localities or areas that were covered.

The darker soils, the anthrosols, were located throughout the tested area. However, two areas stand out. The STPs located between N565 and N600 are predominately dark with only nine of 49 STPs producing no anthrosols; the previous artifact distribution analysis did not identify any significant artifact concentrations in this location. The other location, previously
Figure 32. Soil Color Map. Map created by author, adapted from Robbie Mann (2010, 2011 and 2012).
identified due a large concentration of artifacts, existed between N520, N550 and E560. This area had 33 out of 45 STPs produce anthrosols. There was an obvious break between these two midden areas with grid lines N555 and N560 predominately producing sterile soil colors.

Other areas that highlight potential anthrosols include easting grid line 540. Line E540 only produced two STPs (N500 E540 and N555 E540) that lacked anthrosols. STP N555E540 created a break in an area predominately covered in midden; potentially indicting the presence of at least two features. The soil colors are particularly interesting in this line as E540 produced more artifacts concentrations than the other easting lines.

Grid lines in the southeastern portion of the site, E575, E580, E585, and E590, produced the most diverse soil colors. Several STPs produced GLEYs. This indicates that this area had been waterlogged in the past.

There is no obvious patterning of midden/non-midden areas that might suggest house lots, streets, or other features. However, the map will be georeferenced and compared to the historical maps later in this chapter, which may help in the interpretation of soils distribution.

4.3.2. STP Profile Transects

Profile transects were created by visually connecting the profiles of STPs along the N540 line and E540 line. Transects were also done for easting lines E530 and E536, as it is believed that the fort was located in this area. The intent of this exercise was to produce ‘trench-like’ profiles across the site. The ‘trench’ profiles can aid in detecting any patterning in anthrosol distribution, can display the extensiveness and depth of middens, and can provide areal contexts for features. As with the soil map, a variety of soil colors were recorded in the STPs. To simplify the data, colors closely related by chroma were combined (refer to Table 2).
North 540 Line. Fourteen STPs were excavated on the N540 line (Figure 33). This line had well developed, and relatively deep, anthrosols in some locations, and 173 artifacts that potentially date to the Galveztown settlement. Two previously recorded features (Features 3 and 13) are located on this line; however, they will be discussed in the next section.

When comparing the STPs in this transect, there is some noticeable patterning. In general, the A Horizon (as defined in the California Soil Resource Lab SoilWeb) was absent from most STPs. STPs that did contain the A Horizon were located east of E560. The soils defined as anthrosols were darker in color and mostly had values of three and four and chromas of two and three. However, the anthrosols east of STP E555 produced values three and four with chromas of four and six. The deeper anthrosols were generally located west of the E545 STP.

Three new possible features were observed. One was located in STP N540 E590. A small area of dark soil, a black (10YR 2/1) was located at 17 cmbs. This anthrosols was described as being suitable for “potting soil;” presumably this means soils were unusually dark and had a high organic content. This description and the plan map on the field form suggests the STP may have clipped the edge of a feature. From the depth of this soil, and the fact that the B Horizon (10YR 4/6, dark yellowish brown) soils overlie it, it is likely this deposit dates to the time of the Galveztown settlement. However, only five artifacts that might date to the Galveztown settlement were recovered from this STP; the artifacts include one refined earthenware (creamware), one stoneware (white salt-glazed) and three aqua vessel glass fragments.

A possible feature may also exist in STP N540 E545. This STP, located immediately east of STP N540 E540 and Feature 3, may -contain more of the feature. The possible anthrosols in
Figure 33. Top map (A) displays soil profile transects of grid line N540. Bottom map (B) displays soil profile transects of grid line E540. Maps created by author.
the STP were a dark yellowish brown (10YR 3/4 and 10YR 4/6). However, only three artifacts (one olive-green glass, one colorless glass, and one creamware) dateable to Galveztown were recovered from this STP.

Another area of interest appeared in STP N540 E515. The anthrosol in this STP, which was a clay silt loam, was unusually dark (10YR 3/2, very dark grayish-brown). It extended from the surface to 20 cmbs, where it bottomed out on a slightly browner soil (10YR 4/3, brown). Soil in the STP directly to the east produced a similar color (10YR 4/2, dark grayish brown) with a relatively close stratum depth (17 cmbs). However, this STP ended with the typical subsoil (10YR 5/4, yellowish brown). There may be a pit here, with the slope extending to the west. These two STPs produced 46 artifacts that potentially date to the Galveztown settlement, with STP N540 E515 producing the most at 30; the artifacts included three tin-enamedled (Faïence blanche, and Faïence blanche or Faïence brune), 31 refined earthenware (creamware and pearlware/whitewares), and 12 vessel glass fragments (olive-green, aqua, and colorless).

East 540 Line. Nineteen STPs were excavated on the E540 line (Figure 33). However, one of the STPs, N550 E540, has conflicting data from the 2008 and 2009 excavation. As such, this shovel test has been excluded from the analysis.

Anthrosols were present in most of the STPs on the E540 line as well. A total of 301 artifacts that could date to the time of Galveztown were recovered. Three previously recorded features (Features 3, 4, and 11) were located on this line; these features will be discussed in the next section.

Similar to the N540 line, the A Horizon is noticeably absent from the majority of the STPs. It was present in STPs north of N555, with the exception of STP N510 E540. There is a
broad area of well-developed, dark soil (reflected in Features 3 and 4), and in the two STPs between. This area should be further investigated.

Two STPs (N500 E540 and N555 E540) had a noticeable absence of anthrosols and they produced very few artifacts. A total of six artifacts were recovered from STP N500 E540 but they included one tin-enameded coarse earthenware (faîence blanche), two refined earthenware (creamware), one porcelain, and two olive-green vessel glass fragments. STP N555 E540 only produced 4.7 g of brick. STP N510 E540 may indicate the end of the anthrosols and the transitioning into the sterile soils.

Only one STP stood apart from the others in this transect, STP N585 E540. The soil at the top of this STP was a dark reddish gray (5YR 4/2). The B Horizon also had a reddish cast (5YR 3/3, dark reddish brown) soil. It is not known why this STP varied greatly from the others or if the coloring is significant. Reddish coloration is often associated with heat, or it could come from brick ‘dust.’ However, only 2.0 g of brick was recovered from this STP. Only five artifacts that potentially date to the Galveztown settlement were recovered; these artifacts include one coarse earthenware sherd (redware), one aqua vessel glass fragment, and three machine-cut nails.

East 530 and 536 Lines. Ten STPs were excavated on the easting 530 and 536 lines (Figure 34), and all produced anthrosols. A total of 161 artifacts that could date to the Galveztown settlement were recovered from the STPs; these include 32 machine-cut nails, one machine-cut spike, two British gun flints, seven tin-enameded coarse earthenware (*Faïence brune* and unidentified), seven coarse earthenware (redware, Saintonge Plain, and Spanish El Morro), 17 refined earthenwares (creamware and pearlwares), five stoneware (gray-salt glazed and white salt glazed), and 81 vessel glass fragments (olive-green, aqua, and colorless). The deep anthrosols do suggest there was significant activity in this area. It is hypothesized that the fort
that was located in this area. Only one possible feature was previously identified. This feature will be discussed in the next section.

Figure 34. Top map (A) displays soil profile transects of grid line E530. Bottom map (B) displays soil profile transects of grid line E536. Maps created by author.
The STPs on these lines were significantly different from the STPs south of the house. The most common soil type was a 2.5Y, rather than a 10YR. Profiles along the E536 line contained relatively deep, dark soils. The dark soil (or possible pit fill) appears to get deeper to the north. To the south, in the 530 line, such soils were located in the southernmost STP on this line. STPs N647 E530 and N650 E530 had unusual stratigraphy; the first stratum was a color generally associated with the sterile subsoil.

4.3.3. Features

Twenty-two STPs contained possible features—identified at the base of the midden, when soils lightened. Excavation was curtailed at this point, and a plan map was made. The possible features occasionally had artifacts at the level the floor plan was drawn; these were mapped in situ and collected. Note in all proceeding profiles the number “1” indicates the feature.

Feature 1

Feature 1, a possible trench, was located in the N530 E500 STP (Figure 35). The feature was located at the base of Level 2, at 24 cm below surface. At this depth, the subsoil a yellowish brown (10YR 5/4, silty loam) appeared on the northern side of the unit, while a brown (10YR 5/3, silty loam) soil remained on the southern ca. one-third of the STP. This was designated as Feature 1. Artifacts that potentially date to the settlement, include three tin-enamedled coarse earthenware (Faïence blanche and one unidentified), eight refined earthenware (creamware and pearlware), one Native American Chicot Red, and 13 vessel glass fragments (olive-green and aqua). Other artifacts located, include one unidentified nail, one window glass, two (3.7 g) burned bone, one piece of charcoal, 314.4 g of brick, and three (6.4 g) glazed brick.
Figure 35. Feature 1 in STP N530 E500 at 24 cm below surface level.

Feature 2

Feature 2 (Figure 36), a possible chimney sweep dump, was located in STP N500 E520 (Mann 2008:122). The top of the brick appeared at 15 cmbs; the STP was excavated to 22 cmbs, exposing more brick. At 22 cmbs, two soil colors were observed, a brown (10YR 4/3) and a mottled grayish brown (10YR 5/2) silty loam. Artifacts that are dateable, and potentially date to the settlement, include one refined earthenware (pearlware/whiteware). Other located artifacts included five unidentified iron artifacts, 95.5 g brick, 3 (2.1 g) burned bone, and 0.1 g of charcoal.
Figure 36. Feature 2, possible chimney sweep dump, located in STP N500 E520 and N500 E520A. Note the fire brick in sketch, no recorded fire brick was recovered from this STP, this may have actually been burned brick.

To locate the remaining part of the chimney sweep, STP N500 E520A was excavated immediately to the east of STP N500 E520. This STP was excavated for three levels; soils were the same as in the adjoining STP. Brick, associated with Feature 2, was noted throughout the first two levels indicating Feature 2 extending into STP N500 E520A; this feature may have extended into Level 2 (20-25 cm in) of STP N500 E520A. The soil at the end of Level 1 had brown (10YR 4/3) color on the western side of the STP. The color was not defined on eastern side of the STP. The brick was layered throughout the level with some of the brick being located between four and eight cm above the base of the level. Artifacts that are dateable, and potentially date to the settlement, include one refined earthenware (creamware) and two (96.3 g) bousillage. Other located artifacts included two (2.7 g) bones, two (650.0 g) structural brick, and 104.4 g charcoal.
Feature 2A

Feature 2A, a possible posthole and post mold, was defined in the northeastern corner of STP N500 E520A at 30 cmbs (Figure 37). The inner, possible post mold, was a black (7.5YR 2.5/1) color. The possible posthole, surrounding the black soil, was a brown (7.5YR 5/4) color (no soil textures were noted). A small charcoal lens (black, 7.5YR 2.5/1) also was present at this level. Charcoal (57.2 g) was the only artifact recovered from this level.

![Feature 2A Diagram](image)

Figure 37. Feature 2A, a posthole, located in STP N500 E520A at 30 cmbs.

Feature 3

Feature 3, which consisted of brick rubble in a matrix of 10YR 4/3 (brown) soil, was located within STP N540 E540 (Figure 38). This feature was defined at 31 cmbs. Artifacts located within this STP that are dateable to the Galveztown settlement included two coarse earthenwares (Redware), one tin-enamedle coarse earthenware (unidentified), 16 refined
earthenwares (creamware, pearlware and a pearlware/whiteware), and six vessel glass fragments (olive-green and aqua). Other located artifacts included two window glass, three unidentified nails, one tobacco pipe stem, one (0.1 g) bone, 738.9 g of brick, and baked clay.

Figure 38. Feature 3, a pile of brick and soil stain, located in STP N540 E540.

Feature 4

Feature 4, another possible posthole, was located in STP N525 E540 at 25 cmbs (Figure 39). The feature was defined as a semi-oval area of brown (10YR 4/3) soil while the surrounded soil was a strong brown (7.5YR 4/6). No soil textures were provided. It is unclear whether the 7.5YR hues in the feature and in the subsoil (instead of the more common 10YR) are significant. Artifacts that are dateable to Galveztown include 10 coarse earthenware (Redware), 10 tin-enameled coarse earthenware (Faïence blanche and unidentified), 42 refined earthenware (creamware, pearlware, pearlware/whiteware, and unidentified), and 13 vessel glass fragments (olive-green, aqua, and colorless). Other artifact included two tobacco pipes, one tobacco pipe
bowl, three unidentified nails, three unidentified iron, 10 (1.8 g) bone, 163.3 g of brick, and baked clay.

Figure 39. Feature 4, a possible posthole located in STP N525 E540.

Feature 5

Feature 5, a possible trench feature, was located in STP N505 E530 at 34 cmbs (Figure 40). This feature was split between two areas identified as Feature 5 and Feature 5A. Feature 5 was linear area of pale brown (10YR 6/3) silt loam. Feature 5A was similar to Feature 5, but it was mottled with a clayey subsoil, perhaps indicating the feature was ending in this location. The soil color assigned to the feature is not atypical of other features, it is possible they were mis-inscribed. Dateable artifacts to Galveztown included one tin-enamedel coarse earthenware (Faïence blanche), four refined earthenware (creamware and pearlware), and seven vessel glass
fragments (olive-green and colorless). Other artifacts included four unidentified nails and 1089.3 g of brick.

Figure 40. Feature 5, a trench feature, located in STP N505 E530.

Feature 6

Feature 6, a shallow hole or depression that contained artifacts, was located in STP N535 E525 at 30 cmbs (Figure 41). At this depth, the ca. western half of the unit contained brown (10YR 4/3) soils, while the eastern half, and Feature 6, was slightly darker: dark brown (10YR 3/3). No soil textures were recorded for this STP. Dateable artifacts to Galveztown included five tin-enamed coarse earthenware (Faïence blanche and Faïence blanche/Faïence brune), 17 refined earthenware (creamware and pearlware), and 21 vessel glass fragments (olive-green [including a champagne bottle base noted on floor plan], aqua, and colorless). Other artifacts included five (2.7 g) bones, one window glass fragment, four unidentified nails, 191.1 g of brick,
and one unidentified iron. This STP was later expanded into a Test Unit and the feature eventually became Feature 20.

![Figure 41. Feature 6, pit with artifacts, located in STP N535 E525.](image)

Feature 7

Feature 7, a possible pit feature which may have been a plow scar, was located in STP N545 E525 (Figure 42) at ca. 27 cmbs. The soil consisted of a brown (10YR 4/3) color and no soil color was documented for the feature. The feature was well-defined in the western portion of the unit, and less well-defined to the east. The eastern portion of the feature (Feature 7A) was described as partially disturbed. No soil textures were recorded for this STP. Artifacts dateable to Galveztown included one tin-enamedled coarse earthenware (*Faïence blanche* noted on floor plan), 10 refined earthenware (creamware and creamware/pearlware), and 15 vessel glass
fragments (olive-green, aqua, and colorless). Other artifacts included two (0.2 g) bones, 138.3 g of brick, and three unidentified iron.

Figure 42. Feature 7, a possible pit feature, located in STP N545 E525.

Feature 8

Feature 8, a possible trench feature, was located in STP N550 E525 (Figure 43) at 22 cmbs. Feature 8 consisted of a very linear area of yellowish brown (10YR 5/4) soil. An area along the southern half of the feature was slightly browner (10YR 4/4, dark yellowish brown). A small circular area, identified as a root disturbance, had a dark grayish brown (10YR 4/2) color. The soil textures were not provided. Artifacts dateable to Galveztown included one coarse earthenware (possibly redware), one olive-green vessel glass fragment, and one machine-cut square nail. Other artifacts included 6.1 g of brick and baked clay. It should be noted that this STP was one of the four STPs that had conflicting records and may have been excavated twice.
Feature 8, a possible trench feature, located in STP N550 E525

Feature 9 and 9a

Feature 9 is a possible trench and adjoining possible square posthole located in N565 E515 (Figure 44) (Mann 2009b:49). The trench (Feature 9), consisting of a pale brown (10YR 6/3) clay, extended along the northern portion of the unit. In the northwestern portion of the unit, a squarish area of brown (10YR 5/3; Feature 9a) soil abutted the possible trench. Interestingly, very few artifacts were located within this STP. The only artifacts dateable to Galveztown were three olive-green vessel glass fragments. Other artifacts located included 2.1 g of brick and burned clay.
Figure 44. Feature 9, trench and square posthole, located in STP N565 E515.

Feature 10

Feature 10, a possible pit feature, was located in N575 E525, at 15 cmbs (Figure 45). The feature consisted of a linear area of dark brown (10YR 3/3) soil, bordered on eastern side by a brown (10YR 5/3) soil, and on the western side a (slightly darker) brown (10YR 4/3). No soil textures were recorded. The only artifacts dateable to Galveztown included one coarse earthenware (unidentified) and one stoneware (white salt-glazed stoneware). The only other artifact located was 0.1 g of brick.
Figure 45. Feature 10, possible pit, located in STP N575 E525.

Feature 11 and 11a

Feature 11 (Figure 46) is a possible trench feature and a possible square post (Feature 11a), located in STP N590 E540 26cmbs. The base of the STP had multiple soil colors representing the features and subsoil. Feature 11, located in the southern half of the STP, had a dark grayish brown (10YR 4/2) soil and was abutted by an area with a mottled brown (10YR 5/3) soil. Feature 11a, located in the northwestern corner, had a brown (10YR 4/3) soil. The features were divided by a yellowish brown (10YR 5/4) soil. No soil textures were recorded. Only two artifacts that potentially date to the Galveztown settlement were located, one aqua vessel glass fragment and one machine-cut nail. Other located artifacts included 7.2 g of brick and burned clay.
Figure 46. Feature 11, a trench, and Feature 11a, a posthole, located in STP N590 E540.

Feature 12

Feature 12, a possible trench feature, was located in STP N600 E535 (Figure 47) at 28 cmbs. The feature, linear in shape, and had a brown (10YR 4/3) soil and was boarded by a yellowish brown (10YR 5/4) soil. No soil textures were recorded. Artifacts dateable to Galveztown included one refined earthenware (creamware) and three one olive-green vessel glass fragments. Other artifacts included one unidentified nail, one unidentified iron, and 10.6. g of brick.
Feature 12, a possible trench, located in STP N600 E535.

Feature 13

Feature 13, a possible pit, was located in STP N540 E570 (Figure 48) at 24 cmbs. The feature was separated into two sections by a yellowish brown (10YR 5/8) soil. The northern most part of the feature (Feature 13A) was square and had a dark yellowish brown (10YR 4/6) soil. The southernmost part of the feature had a yellowish brown (10YR 5/6) soil indicating at this was likely the end of the feature. No soil textures were recorded. Artifacts dateable to Galveztown included two refined earthenware (creamware/pearlware) and two vessel glass fragments (aqua and colorless). Other artifacts included two unidentified nails and 9.5 g of brick.
Figure 48. Feature 13, a possible pit feature, located in STP N540 E570.

Feature 14

Feature 14, a possible posthole, is located in STP N535 E575 (Figure 49) at 21 cmbs. No soil hues or textures were recorded for this STP. Artifacts located within the STP included coarse earthenware, refined earthenware, a vessel glass fragment, and brick. Artifacts dateable to Galveztown included two refined earthenware (creamware). One coarse earthenware (redware), and one vessel glass fragment (colorless). Other artifacts included one window glass fragment and 149.3 g of brick.
Feature 15

Feature 15, a possible trench feature, was located in STP N495 E590 at 27 cmbs (Figure 50). The base level had multiple soil colors. Feature 15, located in the southern half of the STP, had a grayish brown (2.5Y 5/2) soil. The feature is broken up by the presence of a small area of mottled red (10R 4/8) soil in the southwestern corner. The northern half of the STP had a weak red (10R 4/4) soil. It is unknown what created this shift in the soil. Soil texture was not provided for this STP. Artifacts dateable to Galveztown included two tin-enameded coarse earthenware (*Faïence blanche*), one refined earthenware (pearlware), three coarse earthenwares (redware and unidentified), two vessel glass fragments (colorless), and four machine-cut nails. Other artifacts included 4.3 g of brick.
Figure 50. Feature 15, a trench feature, located in STP N495 E590.

Feature 16

Feature 16, a possible pit feature, was located in STP N535 E590 at 28 cmbs (Figure 51). Feature 16 was squarish in shape had brown (10YR 4/3) soil. The feature was bordered to the north and west by a strong brown (7.5YR 5/4) soil. Soil textures were not provided for this STP. Artifacts dateable to Galveztown included one tin-enamed coarse earthenware (unidentified), three refined earthenware (pearlware and creamware/pearlware), one porcelain, two bousillage, and six vessel glass fragments (olive-green and colorless). Other artifacts included three unidentified nails, one lead shot, and 16.2 g of brick.
Feature 17

Feature 17, a possible trench, was located at 28 cmbs in STP N520 E560 (Figure 52). The feature, a brown (10YR 5/3) soil, is linear and travels in a north-south direction. A red (10R 4/6) soil abutted the western side of the feature. As the brown (10YR 5/3) color usually indicates an sterile subsoil, it is possible this is an error on the paperwork and the subsoil should have been the brown 10YR 5/3 color leaving the red 10R 4/6 soil (likely a dark yellowish brown 10YR 4/6) as the feature. Soil textures were not provided for this STP. Artifacts dateable to Galveztown included five refined earthenware (creamware/pearlware) and two vessel glass fragments (olive-green and colorless). Other artifacts included two unidentified nails, one unidentified iron, and 14.5 g of brick.
Figure 52. Feature 17, a trench, located in STP N520 E560.

Possible Feature

A possible feature was encountered in STP N644 E 529.9 (Figure 53) at 47 cmbs. The base of this STP consisted of a dark yellowish brown (10YR 4/6) clay. The soil color of the possible feature was not provided. Artifacts dateable to Galveztown included three coarse earthenware (Saintonge Plain, El Morro, and Redware), three tin-enamede coarse earthenware (*Faïence blanche* and *Faïence brune*), three refined earthenware (creamware and pearlware), one stoneware (gray salt-glazed), 13 vessel glass fragments (olive-green and colorless), one machine-cut square spike, and 10 machine-cut nails. Other artifacts included two window glass, seven unidentified iron, two (0.1 g) charcoal, 11 (4.3 g) faunal bone, 32 unidentified fired clay fragments, one possible candlestick base, two buttons, one zinc ring, and 10 4.2 g of brick.
Un-Numbered Feature 1

Un-Numbered Feature 1, a possible square post, was located in STP N510 E500 at 40 cmbs (Figure 54). The feature was located in the northeastern corner of the STP. A yellowish red (5YR 4/6) clay surrounded the feature. No soil color or texture was recorded for the feature. Artifacts dateable to Galveztown included one tin-enameled coarse earthenware (*Faïence blanche*), two refined earthenware (creamware and pearlware), and two vessel glass fragments (olive-green). Other artifacts included 88.2 g of brick, one (0.3 g) bone, one glazed brick with mortar, 1.3 g of charcoal, and four unidentifed iron artifacts.
Un-Numbered Feature 2

Un-Numbered Feature 2, a possible posthole, was located in STP N520 E500 at 28 cmbs (Figure 55). This feature is circular in shape and measured 6-by-7 cm in diameter. The soil color and texture were not provided for the feature, but the surrounding area consisted of a brownish yellow (10YR 6/8) soil. Artifacts dateable to Galvestown included five tin-enamedel coarse earthenware (Faïence blanche and unidentified), eight refined earthenware (creamware and pearlware), one coarse ceramic (Saintonge), and eight vessel glass fragments (Olive-Green). Other artifacts included one unidentified ceramic, three window glass, one unidentified nail, three (8.8 g) glazed brick, 345.4 g of brick, four (2.5 g) bones, six Native American ceramics (Baytown Plain and unidentified), and 15 unidentified artifacts (pewter, iron, and unidentified).
4.3.4. Discussion

The soil color distribution map and the profile transects of the STPs were analyzed in the hopes of detecting any patterning in anthrosol distribution, and to provide an area-wide examination of the extensiveness and depth of anthrosols. I also hoped to provide areal contexts for features. The examination was also fueled by a tantalizing bit of information from Scramuzza (1924)- that the location of Isleños structures were apparent “…in the springtime, when the soil is freshly plowed, rectangular spots of a darker color evince the places where the cabins stood.”

The soil color distribution map and the profile transects revealed abundant anthrosols across the site. The transects in the southern portion of the site contained deep anthrosols which produced a large number of artifacts. The most significant location revealed by the soil map was a 30 x 60 m area located north of N520, south of N550, and west of E560. Anthrosols were well developed and almost continuous in this location, suggesting sustained activity there. This area
was separated from another continuous anthrosol locality (line N565 through N600) by two lines of sterile subsoil.

It is not surprising that artifacts that date to the colonial era were more abundant in the dark midden. STPs with no anthrosols produced a very limited number of artifacts. However, no strong soil color patterning suggestive of houses, house lots, and streets was apparent in the soil color distribution or in the profiles. It remains to be seen whether georeferencing of the settlement with the soils will provide a clearer picture of the configuration of the site.

4.4. Georeferencing

Using historical documents, I attempted to georeference four historic maps and one aerial photograph. The maps were drawn between 1793 and 1871 and the photograph was taken in 1941. All the shapefiles I created are in the Universal Transverse Mercator (UTM) coordinates NAD83 Zone 15.

4.4.1. 1793 District of Galveztown Map

The first, and oldest map I tried to georeference was a 1793 map (Figure 56) depicting the lot of James Johnston. This lot was located west of the junction of the Amite River and Bayou Manchac. More importantly, this map made a note stating, “point for fort.” I attempted to georeference the images of the Bayou Manchac and the Amite River on the map to the modern landscape. However, I was unable to successfully georeference the map. The curves of the Bayou Manchac on the map are very different from the modern curvature of the bayou and did not match any of the other historical maps.
Figure 56. District of Galveztown map, 1793, by unknown (Permission received to print, courtesy of The Dolph Briscoe Center for American History, University of Texas at Austin).

4.4.2. 1796 Perchet Map

The 1796 map (Figure 57) was created by Juan María Perchet, an engineer assigned to report on the different forts within Louisiana (Din 1988:42). The Perchet Map depicts both the Galveztown fort and the village. The map contains two views of the fort, the proposed fort plan (including the actual layout of the village) and the actual fort plan. The actual fort plan (Figure 58b) depicts the fort on the curve of the Amite River. The proposed fort (Figure 58a and 58c) was located within the boundaries of the village.
Figure 57. Perchet map (1796). Top left map (A) displays proposed fort and right (B) displays actual fort. Bottom map (C) displays actual village layout with the proposed fort (Mann 2012:54; Sternberg 2009:56).

I was able to partially georeference the Perchet Map using the curve of the Amite River. For this map, I first concentrated on the village settlement. The scale of the Perchet map is unclear and I was unable to determine what scale was used. However, Robert Boyd noted the Galveztown lots on his survey notes and stated that the lots were each ¼ arpent (Boyd 1871a:18). Knowing this measurement, I was able to alter the scale of the shapefiles down to the appropriate size. I then superimposed the layout of the village (Figure 58). This placed the village approximately 155 m south of the river’s bend.
Figure 58. Perchet Map (1796) depicting the actual village on USGS 1939 Denham Springs 1:62,500 map.
Georeferencing the fort was more difficult. I did not use the locations or shape of the fort that was depicted inside the village as this was only a proposed fort. The fort I georeferenced, which was described by Perchet as the actual fort, was located on the curve of the Amite River (Figures 59 and 60). To georeference the fort, I again had to determine the scale of the historic map. However, unlike the known arpent area for each of the lots, there is no known measurement for the fort itself. Thus, I opted to use the width of the bend of the Amite River depicted on the 1939 USGS topographic map as Perchet had depicted the actual fort reaching across the width of the river’s bend. However, when the fort was scaled to the length of the curve in the river, it was over 200 m long. It is unlikely the fort was this large, so I reduced the size of the fort to just under 100 meters in length which is consistent with the size of the fort at Los Adaes Presidio (1717-1773). This may make the Galveztown fort too large, because Los Adaes was a presidio, but Los Adaes is the only contemporaneous Spanish fort in the area with concrete measurements. The Size of the fort does not affect the hypothesized location of the village.

Ultimately, the fort was placed on the Amite River’s bank at the bend with the village located approximately 60-70 m south of the fort.
Figure 59. Perchet Map (1796) depicting the actual fort on USGS 1939 Denham Springs 1:62,500 map. Overlay is the reduced size of the fort.
Figure 60. Georeferenced features of the 1796 Perchet map depicted on the modern landscape.
4.4.3. 1832 Plat Map

The 1832 plat map (Figure 61) was created by John Gilmore as part of a survey on behalf of the General Land Office. The map depicts Township 8 south and Range 3 east and encompasses land grants south of Bayou Manchac and west of the Amite River. Gilmore depicted the roads inside the Galveztown Village in Section 17, T8 R3. The Galveztown settlement was positioned just under the bend of the Amite River and extended towards the west. Outside of the boundaries of the section, Gilmore included a road that extended out on both sides of the section.

Figure 61. John Gilmore (1832) plat map (Courtesy of the State of Louisiana, Office of State Lands).
Along with the map, Gilmore produced field notes detailing his survey of Section 17. While his notes were very sparse, he did mention the presence of the Galveztown village. However, he made no mention of the fort (Gilmore 1832a). This is concerning, as Butler Gonzales, a previous landowner and informant for historian V.M. Scramuzza, claimed that part of the fort was still standing when his family purchased the land in the 1850s (Scramuzza 1924:4).

I was able to partially georeference the 1832 plat to the modern landscape (Figures 62 and 63) using Bayou Manchac and the Amite River. The 1832 map did not completely match the riverbank along Bayou Manchac or the Amite River, but was fairly close to the modern land and water bodies in Section 17. The features that were slightly off could have been due to the 1832 map not being completely accurate. After georeferencing the map, I created shapefiles for the boundary of Section 17. I then created shapefiles for the Galveztown Road, located outside of Section 17, and the roads within the Galveztown settlement.
Figure 62. Gilmore (1832) map displaying Galveztown on USGS 1939 Denham Springs 1:62,500 map.
Figure 63. Gilmore (1832) map displaying Galveztown on modern landscape.
4.4.4. **1872 Plat Map**

The 1872 plat map (Figure 64) was created by Robert Boyd as part of a survey on behalf of the General Land Office. The map depicts all of Township 8 south and Range 3 east. This area encompasses land grants south of Bayou Manchac and west of the Amite River. Boyd noted the individual lots of the Galveztown village. He also noted a road that likely passed through the village area. However, he stopped the road on both the east and west sides of Section 17 (Boyd 1872). East of Galveztown, Boyd referred to the road as “Galveztown Road” while the western portion of the road is referred to as “Road to New Iberia.”

![1872 Plat Map](image)

Figure 64. 1872 General Land Office Plat Map, by Robert Boyd (Courtesy of the Bureau of Land Management, General Land Office Records).

Similar to Gilmore, Boyd produced field notes detailing his survey of Section 17. His notes concerning Section 17 were relatively brief. However, he did note the presences of 44 lots within the Galveztown village settlement and he described them as being a ¼ arpent (Boyd 1871a). Boyd did not describe the lots beyond noting where they were located within his
bearings. Boyd also claimed that the lots had previously been described in letters. However, Boyd was unable to locate these letters. Boyd also noted that Gilmore (1832) did not locate the lots during his survey of the section. Boyd did note the house of Miguel Gonzales (Figure 65). Gonzales was the father of Butler Gonzales (Marchland 1952:11). Boyd stated that Gonzales’s house was located within the boundaries of the town.

Figure 65. Miguel Gonzales (Marchand 1952:22)

With the visible and prominent curves of the Bayou Manchac and Amite River, I was able to partially georeference the map to the modern landscape. However, the modern landscape and the image depicted on the map have slight variations. I was able to create a shapefile depicting Section 17 (Figure 66 and Figure 67), but due to the variations, the section is likely off by a few meters. I also adjusted the location of the map to depict where the original southern bank of the Amite River was located. Along with the shape of Section 17, I created a shapefile for a road that passes through the Galveztown village, the home of Miguel Gonzales, and a depiction of the lots of the Galveztown village.
Figure 66. Boyd (1872) map displaying Galveztown on USGS 1939 Denham Springs 1:62,500 map.
Figure 67. Georeferenced map displaying Galveztown as drawn by Boyd on the modern landscape.
4.4.5. *Georeferenced Maps with Located Features and Artifact Concentrations*

Using the Perchet Map (which I determined was the closest approximation of the location of the village and the fort), I looked for associations between the colonial features and the features and artifact concentrations that were located during the excavations. Colonial lot function was based on previous research by local Isleños historian John Hickey, who has identified the location of the barracks, jail, and church from different historical records (Hickey nd). Hickey identified the barracks and jail within the same square block with each measuring ¼ arpent.

To do this, I georeferenced a gridded site map displaying all excavated shovel test pits over my hypothesized fort and village locations (Figure 68). This map also displays the darkest soil color observed in each STP. If the fort and village have been properly located, the shovel testing appears to have taken place in the northern half of the village. The STPs appear to be largely in the area between the fort and the village, with some occurring within, and east of the block containing the jail/barracks. The two previously identified areas with significant anthrosols are in or in proximity to a possible lot and the hypothesized fort. The area between N565 and N600 is located along the southern boundary and just outside the fort while the 30 x 60 m area is in and just outside of the lot identified as containing the barracks and jail. Note the historic tree feature located to the left of the hypothesized fort location. Local lore says this tree was standing during the time of the Galveztown settlement and the local Native Americans suggested the Spanish settle where the tree was standing (Sternberg 2009:55).
Figure 68. Map displaying shovel test pits, hypothesized village and fort, and features.
Testing appears to have occurred primarily in open areas south of the fort and between the two northernmost lots (Figure 70). However, some features were located within identified lots, including four that were located within or on the boundaries of the fort and another seven on the boundaries of the square lots that housed the barracks and jail. The features located inside the fort included one possible posthole and associated trench that may mark a portion of the southern wall, another possible trench within the fort, and a possible pit near the fort’s southern redan. There does appear to be a correspondence between features and proposed lot boundaries. The edge of the lot containing the barracks had a possible trench, a possible pit, and a hole or depression with artifacts. One possible feature (identified during the stratigraphy analysis) was also located inside the barracks. The features located along the boundary of the lot containing the jail included three postholes and one possible chimney sweep. The boundary of the lot directly east of the jail/barracks lot, across the open area, also had a trench feature.

The majority of the artifact concentrations (defined as at least two artifacts in the same major category) were also located in the open area between the two northernmost lots within the previously identified 30 x 60 m anthrosol area; the midden located on the southern border of the fort only contained one artifact concentration (Figure 69). Other concentrations were located inside the boundaries of the barracks lot and fort. The artifact concentrations located inside the barracks lot included faunal remains (by count), porcelain, and vessel glass fragments (Olive-Green colored). Several concentrations existed just outside the boundaries of the barracks and jail lots. These concentrations consisted of the heaviest amount of bone, tobacco pipes, glass (aqua and colorless) vessel fragments, *bousillage*, and charcoal. The fort had the largest concentration of window glass, machine cut nails, arms-related artifacts, and unidentified fired clay.
Figure 69. Map displaying shovel test pits, hypothesized fort and village, and artifact concentrations by category.
Artifacts that were not located within concentrations but were located in the jail and barracks block included baked clay, brick, coarse earthenware, glazed brick, Native American Chicot Red, refined earthenware, tobacco pipe stem, tin-enameled coarse earthenware, vessel glass fragments, window glass, unidentified ceramics, unidentified iron, unidentified pewter, and unidentified artifacts. Only 12 nails (machine-cut and unidentified) were recovered from this locality. In total, there were 342 counted artifacts, 1.3 g of charcoal, and 2115.2 g of brick recovered from this block. This low number is expected as only 10 STPs were dug within these two lots.

The artifacts that are most indicative of the Isleños dwellings (or other structures) would be the bousillage and the hand-wrought nails. Two pieces of bousillage were located just outside the jail lot in STP N500 E520A, but the hand-wrought nails were located 20 meters away (in STP N530 E540) in an area with no recorded structures. The remaining bousillage (in STPs N520 E530 and N535 E590) was located away from the posited location of the lots (Figures 28 and 71).

The number of artifacts recovered from the shovel test pits is also potentially revealing in regard to the village layout. Two STPs were located south of Port Vincent road, STP N456 E500 and N456 E515. STP N456 E500, which was located on the inside border of a village square block and directly to the north of the plaza, produced no artifacts. STP N456 E515, located within three meters of another square lot boundary, only produced three artifacts (two unidentified iron artifacts and one wire nail). The significant reduction in the number of artifacts within these two STPs could be due to the close proximity of the plaza.

Somewhat troubling in regard to the posited lot locations is the number of recovered nails. A letter from the Galveztown Commandant Francisco Collell requested 25,000 nails for
the roof of the barracks alone (Kinnaird [1779] 1949:323-324). Only 281 nails were recovered from the STPs. Of the recovered nails, only 107 were identified as being historic. The 2011 block excavation, located just inside the barracks lot, only produced 821 nails. If this was the location of the barracks, more nails should have been recovered. However, the lack of nails could indicate materials were repurposed later.

4.4.6. Hypothesized Fort and Aerial Map

Finally, I georeferenced a panchromatic aerial map, taken in 1941, to the modern landscape (Figure 70). In the aerial photograph, dark soil is located within the projected and hypothesized location of the fort and village lots. The presence or absence of dark soils in panchromatic photography is the result of the reflection of energy when the photograph is taken. Energy is absorbed rather than reflected when moisture exists in the soil (Campbell and Wynne 2011). Buried features often retain this moisture (Weber and Yool 1999:484). Large dark soil covers, seen in the photograph and located east and west of the fort, may indicate that the presence of features and that this area should be investigated. Significantly, the location containing the 30 x 60 m area of anthrosols contains some dark soil coloring; there does not appear to be any soil discoloration in the location of the midden on the southern border of the fort. However, the dark coloring could be related to later human activities on the landscape or recent flooding.
Figure 70. Map displaying 1941 aerial image and hypothesized village and fort location.
4.5. Summary

From the georeferenced maps, excavation grid, and aerial image I believe that the fort should be located on the right bank at the first bend of the Amite River after the junction of the river and Bayou Manchac. From the 1796 Perchet Map, it appears that the Galveztown Fort should be closer to the river than the Galveztown village. I hypothesized the village would be approximately 60 to 70 meters south of the fort.

The located features were identified to the east and north of the western boundary of the lots containing the jail and barracks. Several features, suggested to be postholes and trenches, were located on the hypothesized borders of the lots. This suggests that the lot borders may have been marked by posts and drainage ditches may have been dug alongside the lot border (not unlike what can be seen in Baton Rouge today). The 1778 commandant of Galveztown wrote that ditches were dug around land that had been selected for the construction of Islenos houses in order to drain flood waters (Kinnaird [1779] 1949:323-324).

The artifact count located inside the hypothesized village blocks was relatively low, but this was expected as only 10 STPs were dug in this area. However, the depression with artifacts (Feature 6), which was located inside the barracks lot, is the most revealing. Dr. Robbie Mann conducted a block excavation in this area which revealed a large pit feature (Feature 20) and an additional nine features including six postholes. Over 19,000 counted artifacts and 33,000 g of brick were recovered (Mann 2011c).

The soil colors were also indicative of activities areas. From the previous analysis of the soil color, two areas of dark soils were located. The first area, located between lines N565 and N600, appears to be in and just outside the hypothesized fort. However, only 280 counted artifacts (and one artifact concentration) and 403.6 g of brick were located in this area. This area
also had no visible soil discoloration in the aerial photograph. However, three features (two trenches and one post hole) were located in this area. The second area with a significant amount of dark soil (separated from the first area by 10 meters of mostly sterile subsoil) was located north of N520, west of E560, and south of N550 and is located in and just outside the hypothesized lot containing the barracks and jail. This area produced almost half of the artifacts recovered (including 10 artifact concentrations) and eight features (trenches, post holes, pit, depression with artifacts, brick rubble, and one possible unknown feature). In this area, there is a soil discoloration visible in the aerial image. The aerial image also displayed a darker soil colors east and west of the hypothesized fort location, potentially indicating the presence of buried features.
Chapter 5. Conclusion

Galveztown is a well-documented Spanish settlement in southeastern Louisiana. The settlement and fort were located just below the junction of Bayou Manchac and the Amite River in what is now Township 8 South and Range 3 East in section 17. Galveztown was a relatively short-lived settlement, lasting from 1778 to roughly 1804 (Mann 2011a:11).

Galveztown is a significant site, in terms of the history of Louisiana, and in its relevance to the history of colonization of the northern Gulf Coast. Galveztown was settled during a time when European empires were engaged in a war over control of the eastern United States. Galveztown was built to provide protection to the Ilse d’Orleans and the city of New Orleans, the capital of Spanish Louisiana. Historically and archaeologically, the Galveztown site has a lot to offer in regards to understanding the geopolitical environment that shaped Louisiana and the Gulf Coast. The site, one of the most well-documented Canary Islander sites in the United States, has enormous research potential for historians and archaeologists. The site is also important ethnographically, because descendants of the Isleños are still living in Baton Rouge and the surrounding areas.

Today, the site of Galveztown is an open field and has some disturbance from farming in the past. Despite the farming disturbances, the site has largely been unaltered. It is rare for a site that contained a village settlement, let alone a fort, to be largely untouched by modern urban development. The integrity of the site is clear from the archaeological work that has been done--significant archaeological resources, including artifacts and features, relating to the Galveztown settlement have been recovered.

My analysis is based on four years of field work that was conducted by LSU professor Dr. Robbie Mann from 2008 to 2011. The analysis I conducted on the artifact distributions,
features, and soils identified activity areas within the tested area. From my analysis of the artifact concentrations, I was able to determine the location of a significant activity locality, a 30 x 60-meter area located north of the N520 line, west of the E560 line, and south of the N550 line. Forty-five STPs were excavated within this area. Of the 45 STPs, only 13 had no dark soils that I interpret as anthrosols. This area produced 1223 artifacts, 6673.6 g of the brick, and 5.2 g of the charcoal. This represents 44% of the recovered artifacts and 55% of the total brick weight. Also located in this area were nine of the artifact category concentrations and nine features.

I georeferenced three historical maps, one of which was created in 1796, during the time the Galveztown settlement was active. The other two maps were survey plat maps that were created in 1832 and 1871 for the General Land Office. The most reliable of these, the Perchet map, indicated the fort was actually built on the right bank of the Amite River, at the base of a sharp curve in the river (which has since been filled in). From my analysis of the georeferenced maps, I also hypothesized that the field excavations largely occurred in the 60-70 m area between the southern wall of the fort and the northern village lots, as well as an open area between northernmost west (housing the jail and barracks) and east lots.

The artifact locations and counts, coupled with the georeferencing, are potentially revealing. The large concentration of artifacts in the 30 x 60 m area may correlate with the northern boundary of the village. The lack, or significant reduction in the number of artifacts, may signify the area was covered by structures, or other features such as a roadway. Other areas with a reduced number of artifacts, such as the two STPs on the N456 line, could indicate proximity to the plaza, or, possibly areas that were little used.

The dark soil in the 30 x 60 m area, north of the N520 line, west of the E560 line, and south of the N550 line, was partially within the jail/barracks block and extended to the north
(refer to Figure 70). Other areas that had small concentrations of dark soils were not located within a village block but were located in the open area between the fort and village. One area with a significant amount of anthrosols was located south of the fort with some of the anthrosols extending north into the fort boundary.

From my analysis of the artifact distributions, the soil analysis, and the georeferenced maps, I believe that the Galveztown Fort was built on the right bank of the Amite River some 200 m below the confluence of Bayou Manchac. The fort was built where there was a sharp bend in the river. The village was situated approximately 60 to 70 meters south of this location. I believe that the majority of the STPs excavated were located in the area between the fort and village. From the presence of anthrosols, artifact concentrations, and features, I believe that this area was a highly used area.

I believe that the methods I followed, and my proceeding results, demonstrate the value of combining artifact distributions and soil color analyses, with georeferenced historical maps. Artifact distribution and soil colors are among the more traditional archaeological analyses. However, geospatial analyses have developed into a powerful tool for archaeological research.

Research into Galveztown is ongoing. In the future the use of remote sensing, and other geospatial tools, will help determine the exact location of the fort, and in turn, the village itself. Structures could be located using more traditional research methods, such as the analysis of nail distribution following methods established by Amy Young (1994).

Galveztown is one of the most important historical sites in southeastern Louisiana. The site helps add to our understanding of the history of Louisiana and the geopolitical environment of the Gulf Coast during the time of colonialization. It is culturally significant to the descendants of the survivors of the Galveztown settlement. Archaeologically speaking, the site offers the
chance to develop a better relation between historical archaeology and geospatial analyses as well as the continuation of more traditional archaeological approaches.
References

Adams, William Hampton

Aero Exploration Co.

Arcangeli, Myriam

Avery, George

Bell, Peter

Bew, John and John Lodge

Blokker, Laura Ewen and Heather A. Knight

Boyd, Robert
1871a T8S & R3E South Eastern District East of River. Survey Field Notes. On File at the National Archives.

1871b T8S & R3E South Eastern District East of River Plat Map. Plat Map. On File at the Bureau of Land Management.
California Soil Resource Lab, University of California Davis (UC Davis)

Calloway, Colin

Campbell, James B., and Randolph H. Wynne

Carrigan, JoAnn

Carey, Mathew

Casey, Powell A.

Cheek, Charles D.

Darby, William

Dawdy, Shannon Lee and Christopher N. Matthews

Deagan, Kathleen

Din, Gilbert C.
Din, Gilbert C.

Edwards, Jay D. and Tom Wells

Emery, Jason

Florence, Cathy and Gene Florence

Florida Museum of Natural History (FLMNH)

Gilmore, John
1832a *T8S & R3E South Eastern District East of River.* Survey Field Notes. On File at the State of Louisiana Office of State Lands.

1832b *T8S & R3E South Eastern District East of River Plat Map.* Plat Map. On File at the State of Louisiana Office of State Lands.

Goodwin, R. Christopher with Stephen Hinks, William P. Athens, Lawrence L. Hewitt, and William A. Morgan

Hickey, John
Nd *Villa de Galvez 1803.* On File at LSU Museum of Natural Science.

Hume, Ivor Noël

Jimenez Verdejo, Juan Ramon with Jose Maria Cabeza Lainez and Jose Manuel Almodovar Melendo
Kinnard, Lawerence (editor)

Kniffen Fred B, Hiram F. Gregory, and George A. Stokes
1987 *The Historic Indian Tribes of Louisiana from 1542 to the Present*. Louisiana State University Press, United States.

Lafon, Barthélémy

Lindsay, Bill

Mann, Rob
2008 Galveztown Field School Field Notes. On file at Louisiana State University Museum of Natural Sciences

2009b Galveztown Field School Field Notes. On file at Louisiana State University Museum of Natural Sciences

2010 2010 Annual Report for Management Units IV And V, Regional Archaeology Program, Department of Geography and Anthropology, Louisiana State University. On File at Louisiana State University Museum of Natural Sciences.

125
Mann, Rob

2011b Artifact Catalog from the 2008-2011 Field Excavations at Galveztown, Louisiana. On File at Louisiana State University Museum of Natural Sciences.

2014a French Hegemony in Spanish Louisiana and the Collapse of Mercantilism. Paper presented at the 47th Annual Meeting of the Society for Historical Archaeology, Quebec City, Canada.

2014b Persistent Pots, Durable Kettles, and Colonialist Discourse: Aboriginal Pottery Production in French Colonial *Basse Louisiana* and the *pays d'en haut*, In *Rethinking Colonial Pasts through Archaeology*

Mann, Rob and Billie Jones

2012 Exploring the Ceramics from Galveztown: An Eighteenth-Century Spanish Colonial Outpost in Southeast Louisiana. Poster presented 69th Annual meeting of the Southeastern Archaeological Conference, Baton Rouge, Louisiana,

Marchand, Sidney A.

1952 *The House of Marchand*. Sidney A. Marchand, Donaldsonville, Louisiana

Merriam Webster

Miller, George with Patricia Samford, Ellen Shlasko and Andrew Madsen

Montaño, Mary

2001 *Tradiciones Nuevomexicanas: Hispano Arts and Culture of New Mexico*. University of New Mexico Press, Albuquerque, New Mexico.

Morison, Samuel Eliot

Munsell Color

National Park Service

Natural Resources Conservation Service (NRCS)

Natural Resource Conservation Service (NRCS)

Nelson, Lee H.

O’Brien, Helen
1981 An Archaeological Survey of Galveztown. On file at Division of Archaeology, State of Louisiana

Odell, John
2008 Big Bottles Big History -Demijohns and Carboys. Antique Bottle & Glass Collector 25(7):27-33

Olin, Jacqueline S. with M. James Blackman, Jared E. Mitchen, and Gregory A. Waselkov

Orser, Charles E. Jr.

Parsons, James J.

Pintado, Vincente Sebastián
Plan De La Villa De Galvez
1778 Plan de la Villa de Galvez (Plan of Galveztown). Manuscript, G4014.G225 1
778.P5 vault, Geography and Map Division, Library of Congress, Washington, DC.

Price, Maribeth

Priess, Peter
5(4):87-92

Rodriguez, Antonio Acosta
1981 Overview of the Consumption of Food and Goods by Isleños Immigrants to
Louisiana. Paul Hoffman, trans. Louisiana History: The Journal of
Louisiana Historical Association 22(3):299-306

Saltus, A.R. Jr.
1987 Submerged Cultural Resources Investigation of The Western Portion Of The
Maurepas Basin. On file at Division of Archaeology, State of Louisiana.

Scramuzza, V.M.
1924 Galveztown: A Spanish Settlement of Colonial Louisiana. Master of Arts
Thesis, Louisiana State University, Baton Rouge, Louisiana.

South, Stanley

Sternberg, Mary Ann
2007 Winding Through Time: The Forgotten History and Present-Day Peril of Bayou
Manchac. Louisiana State University Press, Baton Rouge, Louisiana

2009 In Search of Galveztown an Archaeological Dig Uncovers Fragments of Life at a
Spanish Outpost in 18th Century Louisiana. Louisiana Cultural Vistas: 54-61.

Surveyors Maps of the District of Galveston, Louisiana
1793 Surveyors Maps of the District of Galveston, Louisiana. Edward Alexander
Parsons Collection, e_eap_3437, The Dolph Briscoe Center for American History,
The University of Texas at Austin.

Tibbetts, Deborah
Forest. Oroville, California.
Ugheoke, Benjamin Iyenagbe with Emmanuel Ogo Onche, Oliver Nicholas Namessan, Gabriel Abasiaka Asikpo

Waselkov, Gregory A. and John A. Walthall

Waselkov, Gregory A. with Bonnie L. Gum, Kristen J. Gremillion and Diane E. Siliva

2000 Plantation Archaeology at Rivière aux Chiens, ca. 1725-1848. Center for Archaeological Studies University of South Alabama, Mobile Alabama.

Weber, Scott A. and Yool. S.R.

Woodward, Ralph Lee Jr.

Young, Amy

Appendix A. Permission of Use

The following email was received from the Dolph Briscoe Center for American History at the University of Texas at Austin, granting me permission for the use of the 1793 District of Galveztown Map.

Re: Permission of Use

From: Ashley N Taylor <aty155@ku.edu>
Date: Tuesday, October 8, 2019 at 8:13 AM
To: Photographs, <chh.photos@utexas.edu>
Subject: Permission of Use

To Whom It May Concern,

I am writing to request permission to use one of the Succession Maps of the District of Galveztown, Louisiana. I have attached the forms requesting permission for the use of the map.

Sincerely,

Ashley Taylor
Master Student
Department of Geography and Anthropology
Museum of Natural Sciences
Louisiana State University
aty155@lsu.edu

Re: Permission of Use

From: Photographs, chh.photos@utexas.edu
Sent: Friday, October 11, 2019 3:01:16 PM
To: Ashley N Taylor <aty155@ku.edu>
Subject: Re: Permission of Use

Thank you, Ashley. Your request is approved. Here is our preferred citation:

Edward Alexander Parsons Collection, e_eap_3417, The Dolph Briscoe Center for American History; The University of Texas at Austin

Arty

130
Vita

Ashlee Taylor was born and raised in Paradise, California. She attended California State University, Chico, from 2007 until December 2011, when she received a Bachelor of Arts degree in Anthropology as well as a certificate in Cultural Resource Management. In 2017, Ashlee began attending graduate school at Louisiana State University. She anticipates graduating in December 2019 with a Master of Arts degree in Anthropology and with the Graduate Certificate in Geographic Information Systems. Ashlee currently works for Gulf South Research Corporation in Baton Rouge, Louisiana, as the Archaeological Laboratory Director. Ashlee intends to continue to work for this company upon graduation.