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CHAPTER 1
INTRODUCTION

Quality control is the process by which the actual 

performance of a production lot or process is measured, compared 

with a qualified standard, and acted upon to prevent deficiencies. 

Although there has been an interest in the quality of output since 

the advent of manufacturing, it was not until the 1920s that 

statistical theory began to be applied effectively to quality 
control. At that time, scientists, especially statisticians, 

developed more reliable and valid methods for statistical quality 
control.

Walter A. Shewart of the Bell Telephone Laboratories is 

generally credited with introducing statistical quality control 

methods in the United States (Sinha and Willborn 1985). In a 

memorandum prepared Hay 16, 1924, Shewart made the first sketch of a 

modern "control chart” (Duncan 1986). It provided a means for 

detecting "non-chance" causes of adverse quality variations in a 

process and a basis for determining whether statistical control of 

the process is attained. In 1929, H. F. Dodge and H. G. Romig 

applied statistical methods to lot-by-lot sampling and provided a 

system for designing sampling inspection plans. These two
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introduced fundamental concepts that are still used today, such as 

lot tolerance percent defective, consumer's risk, process average, 

and average amount of inspection. They also showed how to relate 
these quantities with lot size to determine an appropriate sampling 

plan (Hald 1960). The work of Shewart, Dodge and Romig today 

constitutes most of what comprises the fundamental theory of 

statistical quality and control.

After the 1920s, basic quality control methodology remained 

unchanged until the 1980s. The quality revolution that began then 

has produced major breakthroughs in quality management, in the form 

of greater quality awareness, and liability and risk protection.

This revolution came about mainly because of strong foreign and 

domestic competition which demanded improved working conditions, 

lower costs and improved quality. Although American experts such as 

Deming, Juran, Feigenbaum and Crosby developed many sophisticated 

theories, programs, and techniques prior to the revolution, U.S. 

industry was not receptive to their ideas until the 1980s, when the 

Japanese began to implement and subsequently improve these quality 

management techniques (Schonberger and Knod 1988). Since then, 

there has been a dramatic increase in interest among U.S. firms in 

the quality of goods and services in general, in the role to be 

played by top management in the improvement of quality, and in the 

increased productivity that can be attained through the reduction in 
scrap or rework of nonconforming products.



In this chapter, lot-by-lot acceptance sampling (section

1.1), which is one of the traditional Inspection methods, is 

discussed, and an overview of modern screening procedures (section

1.2), which involves 100% inspection, is provided. In section 1.3, 

the two-stage procedure for three-class screening proposed in this 
dissertation is presented along with the organization of the 
dissertation.

1.1 Lot-By-Lot Acceptance Sampling

One of the traditional methods of inspection is lot-by-lot 

acceptance sampling, which is used as a tool for determining whether 
an inspection lot should be accepted or rejected. In this method, a 

random sample is drawn from a finite inspection lot to assess the 

quality of the lot. If the quality of the sample is found to be 

better than a predetermined threshold, the lot is accepted. 

Otherwise, it is rejected.

In a typical sampling plan by attributes, an item is 

classified as conforming if it meets product specifications and non- 
conforming if it does not. Since each item is classified into one 

of the two categories, this procedure is called "two-class" 

acceptance sampling. A sampling plan, consisting of a sample size 

and an acceptance number, is used to ensure that the non-conforming 

rate for the lot is below a specified value. The quality attributes 

might be color, thickness, chemical purity, power consumption, on-



time frequency, service time, or some other specific attribute or 
feature.

If the performance variable of interest is measurable on a 
continuous scale and is known to follow a specific type of 

distribution, sample statistics, such as mean and standard 

deviation, can be used as decision criteria. These are called 

acceptance sampling plans by variables, which was first introduced 

by Jeannett and Welch (1939). The development of lot-by-lot 

acceptance sampling plans by variables was discussed by Kao (1971). 

Although variable sampling plans usually require higher per unit 

inspection cost, it has been well known that the variable sampling 
plans are able to achieve the same control with a smaller sample 

size using the distribution of the initial measurements (Duncan 
1986).

There are various forms of acceptance sampling procedures; 

i.e., single sampling, double sampling, multiple sampling, 

sequential sampling, continuous sampling, etc. These sampling plans 

may be used in different environments, and each has advantages and 
disadvantages. The aim of an inspection is not easy to define 

precisely, and different aims require different schemes for choosing 

a sampling plan. Some possible aims are to grade batches for sale, 

to reduce costs, to satisfy certain standard requirements, and to 

prevent bad batches from being passed on to customers or to the next 

production stage. The type of sampling plan suitable for a 

particular producer or product is based on factors such as



administrative costs, quality information, number of items 

inspected, and psychological impact (Besterfield 1979). Whatever 

the type, these sampling plans are designed to reduce the expected 
sample size while meeting specified statistical criteria.

Traditional attribute acceptance sampling plans use non- 

conforming rate as a criterion to select the appropriate sampling 

plan. In the last four decades, researchers have tried to develop 

economically based attribute acceptance sampling plans. Hamaker's 
(1951) discussion about risk function was one of the early 

contributions in this area. Hamaker (1951) introduced a sampling 

plan to reduce the cost of the damage resulting from undetected non- 

conforming items and to reduce the losses stemming from the 

rejection of conforming items during inspection. Anscombe (1951) 

gave a general discussion on the economic approach to sampling 
inspection. His views on the sampling problem do not differ 

substantially from those expressed by Hamaker. Anscombe (1951) 

mentioned that the damage due to the acceptance of non-conforming 

items may sometimes vary as the square or an even higher power of 

the non-conforming rate in the accepted lots and may not be simply 
proportional to that percentage.

Sittig (1951) discussed the expected cost minimization for 
single sampling procedure. He provided an economical approach to 

minimize the sum of inspection costs, the cost of non-conforming 

items in accepted lots, and the cost of conforming items in rejected 

lots. Champemowne (1953) generalized Sittig's model by using the



beta distribution as the prior distribution and utilized sequential 
sampling procedure to improve the efficiency.

Guthrie and Johns (1959) introduced a general linear cost 

model. According to their model, two possible actions can be taken 

on the basis of the sample: (1) acceptance of the uninspected 

remainder of the lot, or (2) rejection of the uninspected remainder. 

The consequences of these alternatives are appraised by linear cost 

functions. In their model, the cost of accepting non-conforming 
items and the cost of rejecting conforming items in the uninspected 

remainder is proportional to the number of items inspected. The 

cost model includes a wide variety of sampling inspection and 

acceptance sampling problems corresponding'to various choices of the 

cost parameters and families of distribution functions. Their 

purpose was to find explicit asymptotic characterizations for large 

batch sizes of the decision procedures and sample sizes that are 

optimal in the Bayes sense for various classes of single-parameter 

prior distributions.

Hald (1960) presented a detailed discussion of the problems 

involved in sampling inspection plans based on prior distributions 

and costs. For any prior distribution, he provided a general 

solution to the problem of determining the optimum sampling plan 

that minimizes a cost function. The cost model consists of three 

elements: (1) the cost of sampling inspection, (2) the loss incurred 

because of non-conforming items in an accepted lot, and (3) the 

costs associated with the disposition of rejected lots. Hald's



(1960) paper established a theoretical and systematic foundation for 

later research in this field, tfetherill and Chiu (1975) presented a 

detailed review of economic models for acceptance sampling when only 
one performance variable is considered.

A product may have several important performance variables. 

Tensile strength and compressibility, for example, are two important 

performance variables for an alloy, but for a video cassette 

recorder (VCR) head-drum, the performance variables are distortion and 

rotating speed. Economic models for multi-attribute acceptance 

sampling plans have been formulated by Ailor et al. (1975), Schmidt 

and Bennett (1972), Moskowitz et al. (1984), and Tang et al. (1986).
For many products, the distinction between a conforming and 

a non-conforming item is not sharp. Bray et al. (1973) and Clement 

(1980) considered a situation where the product quality of interest 

has three classes; i.e., good, marginal, and bad. They developed a 

three-class attribute acceptance sampling plan which was shown to 

require a smaller sample size than a two-class plan. A three-class 

variable acceptance sampling plan was developed by Newcombe and 

Allen (1988). As was the case with the attribute plan, they showed 

that the advantage of the three-class variable plan is its ability 

to discriminate between lots with a high and low percentage of 

marginally conforming items. The procedure developed by Newcombe 

and Allen assumes that the performance variable is normally 

distributed. The variable sampling plans generally require smaller



sample sizes than a three-class attribute plan, with approximately 
the same operating characteristic <0C) surface.

Bai and Hong (1989) considered a situation where an 

inspection lot can be sold to several markets at different prices 

and acceptance costs. For example, an integrated circuit (IC) can 
be used as a component of a tuner, turntable, etc., and a relay as a 

component of an amplifier, tape recorder, clock, etc. In such 

situations, a conforming IC or relay yields different profits. A 

non-conforming one may also cause different acceptance costs.

An economic model was developed for lot-by-lot attribute 

acceptance sampling using a decision rule with a sample size and 
several acceptance numbers. Based on the inspection outcome, a 

decision was made whether the lot should be sold to one of the 

markets, or scrapped.

1.2 Screening Procedures

Sampling is attractive when inspection is costly, time- 

consuming, or destructive. However, modern self-correcting 

computerized numerical control (CNC) systems eliminate a separated 

inspection function and make inspection an inherent portion of the 

basic manufacturing process (Stiler 1987). This and other 

computerized automatic inspection systems incorporating 

technological advances such as X-ray, laser technology, machine- 

vision, pattern recognition, industrial robotics, etc., have changed 
the nature of basic manufacturing concepts (Baired, Patal, Stitt and



Mundel 1982). These automated Inspection systems offer fast, 

accurate, and consistent feedback of Inspection results, with a 

better report at lower operating costs (Stover 1984).

Furthermore, controlling quality at the source instead of 

using inspectors to find the problems that someone else has created 

is the backbone of the Japanese manufacturing just-in-time (JIT) 

production systems (Chase and Aquilano 1985). The JIT production 

systems emphasize the need for high quality and small production lot 

sizes. In addition, the flexible manufacturing systems (FMS) make 

the automated production of complex workpieces in small and medium 
lot sizes economically possible. Given these mo d e m  production 

trends, screening (100% inspection) can be more efficient than the 

traditional lot-by-lot sampling schemes, both in terms of 

controlling and providing early feedback on the quality of incoming 

materials and outgoing items. Therefore, the prompt feedback and 

control based on inspection results are paramount to the eventual 

achievement of economic control of the quality of a manufactured 

product. Consequently, the design and inspection of screening 

procedures have received increased research attention in the last 
several years (Tang 1989a).

In a typical screening procedure, all the outgoing items are 

inspected to determine whether they conform to predetermined 

screening specifications. Screening procedures can be designed on 

the basis of the performance variable of interest or a surrogate 

variable that is correlated with the performance variable. Using a
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correlated variable la attractive In those Instances where 
inspecting the performance variable is expensive, time-consuming, or 

destructive. For example, the voltage at an internal point of an 

electronic device is the performance variable of interest. If it is 

difficult to measure the performance variable directly, we may 

consider using the voltage at an external point as the screening 
variable (Li and Owen 1979).

Several other examples are discussed in literature. Owen,

Li, and Chou (1981) consider a situation where the strength of 

welding by which an automobile seat is attached to the frame is the 

performance variable of interest. Measuring of the strength of 

welding requires destructive testing. However, it is possible to 
screen items by measuring X-ray penetration of the weld, which is 

known to be negatively correlated with the strength of the weld. 

Menzefricke (1984) discussed the problem of screening applicants for 

employment where an individual's ultimate performance is thought to 

be related to scores on aptitude tests. It is well known that the 

practice of using a correlated variable in lieu of the performance 

variable in inspection has been widely found in electronics, 

machinery, food, medicine, and many other industries.

Since the correlated variable may not have a perfect 

relationship with the performance variable, screening error may 
occur. Early studies in this area focused on the selection of 

screening specification limits for correlated variables to raise the
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proportion of conforming units to a specified higher level after 
screening.

Owen, Mclntlre, and Seymour <1975) consider a "larger is 

better” performance variable and propose screening procedures using 

one or two correlated variables. Let L be the lower product 

specification limit of the performance variable Y. An item is 

classified as conforming if its Y value is larger than L, and as 
nonconforming otherwise. Let u> be the conforming rate before 

screening. In the screening procedure using one correlated 

variable, a variable X, which is correlated with Y, is used to 

select items to raise the conforming proportion to the desired level 

d after screening. The joint distribution of the performance 

variable and the correlated variables in their study is assumed to 
be known.

This procedure is illustrated by Figure 1.1, page 20, where

the entire ellipse represents the unscreeued population. The 

portion above the lower specification limit L (areas I and II) 

represents the conforming items. The ratio of this portion to the 

whole population is u. If we reject all the items having an X value
itsmaller than the screening specification limit x (areas II and IV), 

the conforming rate after screening becomes the ratio of area I and

combined areas I and III. Using this screening rule, there are two
decision errors. Area II represents the error that conforming items 

are rejected, and area III represents the error that non-conforming 

items are accepted.



12
Owen et el. also proposed two methods of using two correlated 

variables, and Xg, to develop screening procedures. The first 

method is to accept an Item only if both X^ and X^ are larger than 
their corresponding screening specification limits. The second 

procedure involves a linear combination of the two correlated 

variables, V - + a2*2’ w^ere ai an<* a 2 are comPuted to maximize
the proportion of acceptable product after screening. Extensive 
tables have been developed for these two methods.

When the distribution parameters are unknown, the problem 

becomes much more complicated. Owen and Boddie (1976) studied cases 

in which parameters were partially or completely unknown. The main 

issue is how to estimate u  when some of the parameters are unknown. 

Approximated solutions are obtained using Monte Carlo simulation for 

the case where only the mean of the correlated variable is unknown 

and the case where both the mean and variance of the correlated 

variable are unknown. If the only known parameter is the 

correlation coefficient, a solution is available for the situation 

where the marginal distributions of the performance variable and the 
correlated variable are identical. This is obtained by an 

approximation using the bivariate student-t distribution.

Owen and Su (1977) obtained a solution for the situation 

where the correlation is unknown and/or when the conforming rate of 
the unscreened population is unknown. Basically, they extended 
Owen and Boddie's procedures to the situation where u> and/or the 

correlation coefficient are unknown. The procedure involves setting



lower confidence limits on these unknown parameters and then 

relating the confidence coefficient to the probability of attaining 
a required proportion of conforming items.

Li and Owen (1979) extended Owen et al. results to the case 
of two-sided (upper and lower) specification limits. Owen, Li, and 

Chou (1981) proposed a method to ensure that, with a specified 

degree of confidence, a given number of accepted items yield at 

least a specified number of conforming items. For example, we may 

wish a probability of 0.9, i.e., at least 9 of the next 10 accepted 
items meet the specification limit. They achieved this probability 

by accepting or rejecting as many items as needed based on X. They 

treated two cases: one where all parameters are known, and the 

other where all parameters are unknown and only a sample of 

observations on X and Y is available.

Madsen (1982) considered selection procedures that ensure 

that, with a specified level of confidence, a guaranteed proportion 

of accepted items are conforming. He presented a method whereby ? 

maximal subset out of the number of items available for screening 

can be chosen. Based on the observed correlated measurements, 

there is a high probability that a large proportion of the selected 

subset will meet the desired product specifications. The procedure 

presented has the advantage of not depending on the assumption of 

bivariate normality. It also makes use of the actual observed value 
of the correlated variable, not simply whether the value is above a 

given cutoff value. A disadvantage of his procedure is that it may
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become somewhat involved computationally when the number of items 

available for screening is small. If the available number for 

screening is large, however, a normal approximation can be used.

All of these works are a sampling of theoretic treatments of the 
screening problem.

Henzefricke (1984) presented decision theoretic approaches 

to the screening problem in two situations. The first situation is 

that the performance variable can be measured directly before an 

item is used to ensure that the item is conforming. It is to be 

determined whether a correlated variable should be measured first to 

screen for items that have a high probability of being acceptable on 
the performance variable.

Let the total number of conforming items needed be A.

Without using X, items are sequentially inspected based on the 

performance variable until A conforming items are found. The cost 
of this approach is

c2< A + fy> >
where C2 is the per-item cost of measuring the performance variable, 

and f is the number of non-conforming items found in the process.

If X is used to select items for further measurement of Y, the total 
cost of inspection until A conforming items are found is

°lfx + (C1 +c2) (A + V ’ 
where c^ is per-item cost of measuring X, and f is the number of

items that are excluded from further measurement of Y. The expected
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cost of two alternatives is obtained and compared in order to choose 
the more economical method.

In the second situation, it is not possible to measure the 

performance variable before using an item. It is desired to obtain 

at least a given number of conforming items among accepted items.

If there is a shortage of conforming items, a penalty will be 

incurred. In addition, the cost of using a non-conforming item is 
also considered.

If a correlated variable is used, it is necessary to find 

the optimal cutoff point and the optimal number of accepted items to 

minimize the total cost. These results are comparable with the ones 

given in Owen et al. (1981), where a non-decision theoretic approach 

is taken. They discuss the cases where all parameters of a 

bivariate normal distribution are known and all parameters are 

unknown.
Boys and Dunsmore (1986) studied a predictive approach to 

find critical values of a correlated variable X for which the 

success probability for an item reaches a satisfactory level. They 

also introduced an alternative approach to screening through 

considering the losses incurred by the screening out of conforming 
individuals and the retention of non-conforming individuals. The 

methods are exemplified within the context of a bivariate normal 

model. Wong, Meeker, and Selwyn (1985) proposed Bayesian methods 

for determining a cutoff limit on correlated variables so that, with
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a guaranteed probability, the performance variable meets its 

specification limit.

Tang (1987) considered the economic aspect of the screening 
process and proposed an economic model for designing screening 

specifications. The performance variable of interest is assumed to 

have a lower specification limit. In contrast to the previous 
approaches using a statistically based goal, he used cost as the 

decision criterion. In formulating the model, two costs are 

considered: (1 ) the cost incurred by imperfect items, (2 ) and the 

cost associated with the disposition of rejected items. The optimal 

screening specifications are determined by minimizing the sum of 

these two costs. Solution procedures are developed for three 

quality cost functions which measure the loss incurred because of 

imperfect quality. This work has been extended to the situation 

where the product of interest has upper and lower product 

specification limits (Tang 1988a). Since each item is classified 

into one of two categories, these two procedures can be called & 

single-stage procedure for two-class screening.

As mentioned, screening errors occur because the performance 

variable and the correlated variable are not perfectly correlated.

It is evident that screening errors are likely to occur for items 

having X values close to the screening specification limits. To 

reduce the screening errors, a two-stage screening procedure is 

proposed (Tang 1988b). The performance variable considered in the 

study has a lower specification limit. Figure 1.2 on page 21



illustrates this procedure. In the first-stage screening, all the 

items are inspected on X. An item is accepted if its X value is 
larger than the upper screening limit U, and an item is rejected if 

its X value is smaller than the lower screening limit L. When X is 
between L and U, the item is inspected on Y (second stage). It is 

clear that the screening errors (shaded areas) of this procedure are 

smaller than those of a single-stage procedure. Of course, the 

inspection cost of the two-stage procedure is higher. The screening 

limits are determined by minimizing the sum of inspection cost and 
the cost incurred because of screening errors.

When the items produced by the same production process 

often vary in quality, manufacturers may sort items into different 

grades and sell them in different markets at different prices. For 

example, an integrated circuit (IC) may be sold to different markets 

for use in producing different appliances. Chemical materials and 

primary materials, such as butter, lumber, and cotton, are sold in 

grades (England and Leenders 1975). Usually, a higher-price grade 

has tighter product specifications. In this situation, a producer 

has to make a decision as to which market the items should be sold. 

For this problem, Tang (1989b) considered the situation where every 

outgoing item is either sorted into one of two grades or scrapped. 

There are predetermined product specifications for the two product 

grades, and the items that are not sorted into one of these grades 

are scrapped. He developed single-stage grading procedures using 

the performance variable and a correlated variable. The joint
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distribution of the performance variable and the correlated variable 

is assumed to be a bivariate normal distribution with known 

parameters. Since each items is classified into one of three 

categories, the procedure can be called a single-stage procedure for 
three-class screening.

1.3 Proposed Procedure and Dissertation Organization

In this dissertation, a two-stage procedure for three-class 

screening is proposed. In the first-stage of the screening 

procedure, each item is inspected on a variable correlated with the 

performance variable of Interest. The item is subjected to a 

second-stage inspection on the performance variable only when an 

acceptance/rejection decision is not reached at the first-stage 

inspection. Since screening specification limits are needed in both 

stages for classifying an item into either Grade 1 or Grade 2, the 

model is much more complicated than that of the two-class problem.

In addition, the unknown parameter situation is addressed using a 

Bayesian approach. This approach is applicable to all the economic 

models proposed by Tang (1988a, 1988b, 1989b).

The dissertation is organized as follows. In Chapter 2, 

the single-stage procedure for three-class screening with known 

parameters is introduced. In Chapter 3, a two-stage model with 

known parameters is developed. Also included in Chapter 3 are a 

solution procedure and a method for identifying degenerate 

solutions. Unknown parameter cases for both single-stage and two-



stage models are studied In Chapter 4. In Chapter 5, numerical 

experiments are presented for investigating the sensitivity of the 
optimal solution with respect to the correlation between the 

performance variable and the correlated variable, and cost and 

profit parameters on the optimal solution. The effects of sample 

size are studied for unknown-parameter cases. Finally, a conclusion 
is presented in Chapter 6 .



Performance Variable

X* Correlated Variable

Figure 1.1 Screening Using One Correlated Variable.



Performance Variable

L U Correlated Variable

Figure 1.2 The Two-stage Screening Procedure.



CHAPTER 2
A SINGLE-STAGE PROCEDURE FOR THREE-CLASS SCREENING

In this chapter, single-stage procedures for three-class 

screening are discussed. In section 2.1, the notation and 

assumptions are introduced. The models are formulated in section 

2.2, and solution procedure is given in section 2.3.

2.1 Notation and Assumptions

Let Y denote the deviation of the performance variable from 

the target value. Let [-d^, d^] and [ - d ^ ,  d ^ ] be the product 
specifications for Grades 1 and 2, respectively. Let P^ and P^ 

denote the selling prices for Grades 1 and 2, respectively. It is 

assumed that d ^ K d ^  and Pj>Pj. Let Ap-P^-Pg be the price difference.
It is assumed that a constant loss (acceptance cost) is 

incurred by the producer when an item is sold to a grade when the 

Item does not conform to the product specifications of that grade. 

The acceptance cost for Grade i (i-1,2) is defined as

Lt (y) -  Uj i f  y > I djJ

- 0  y £ | d t \, (1 )

where is assumed to be larger than v ^ .

22
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Let X denote a variable correlated with Y. The joint

probability density function h(y,x) is assumed to be a bivariate

normal density function with a known mean vector jf(/i ,p )' and ay x
known variance-and-covariance matrix X equal to

' V ' x
] .

where p is the correlation coefficient, and and are the 

standard deviations of Y and X, respectively.

2.2 Model Formulation

If the inspection is directly based on the performance 
variable, the screening specifications should be identical to 

product specifications. Furthermore, if an item conforms to both 

the specifications, it should be sold as Grade 1 because of the 

price difference. In other words, if y is within [-d^,d^], the item 

should be sold as a Grade 1 item, and if y is in [ - d ^ t - d ^ ]  or 

^ 1 ,Ĉ 2^’ t*ie *-tem sh°uld t>e sold as a Grade 2 item.
The screening procedure using the correlated variable X is 

discussed in the remainder of this section. Let and be the 

screening specification limits so that an item is sold as Grade 1 if 

its X value is in and it is sold as Grade 2 if its X

value is in or [-a^.-a^]. For given a^, the proportion of
Grade 1 items is determined by
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p(Gl) - J* 

"al

m(x) dx, (2)

where m(x) is the marginal probability density function (pdf) of X. 
Similarly, the proportion of Grade 2 items is

result of a screening error in which an item that is classified into 

a grade does not conform to the product specifications of that 

grade. On the other hand, a loss in revenue is caused by the error 

in which a high grade item is classified to a lower grade, or 

scrapped. Figure 2.1 on page 31 illustrates the decision rule and 

decision errors associated with the single-stage model. As 

indicated, the shaded area represents the decision errors of the 

screening procedure. For example, shaded area A represents the 

decision error that a Grade 2 item is sold as a Grade 1 item, and 

shaded area B is represents the error that a Grade 1 item is sold as 

a Grade 2 item. It can be verified that the per-item expected 

acceptance cost for given and Is determined by

P(G2) (3)

Consequently, the per-item expected revenue is given by

ER - PL p(Gl) + P 2 p(G2). (4)

As previously discussed, acceptance cost is incurred as the
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a, «o a ,  -d-

ECA “ V1 t J 1 J  h ( y ,x )  dydx + J 1 J 1 h ( y ,x )  dydx ]

■ai dl ”al -
a ,  «  a„ -d„

+ «2 f J  J  h (y»x > dydx + J  J  M y .* )  dydx

° 1  d 2 ° 1  -
« -a. -d

+ J J h ( y ,x )  dydx + J  J  h ( y ,x )  dydx ] .  (5)

" ° 2 d 2 - ° 2 •"

Let be the per-item cost of inspecting X, then the per-item 
expected profit is given by

EPR - ER - ECA - Sx . (6 )

2.3 Solution Procedure

It has been shown that h(y,x) - g(y|x) m(x), where g(y|x) is

a normal pdf with a mean ft — p + p a  / a  (x - p  ) and a variancey y x x
2 2 2

a  -• ffy(l ■ P ) (Morrison 1976). Using the mean and variance of 
g(y|x), we can rewrite equation (6 ) as follows:

EPR - P 1 J  m(x) dx + P 2 [ j* m(x) dx + J x m(x) dx ]

" ° 1  ° 1  ~a 2

a 1 « o. -d1
- f J J g(y|x) m(x) dydx + J  J  g(y|x) m(x) dydx ]

-“ 1 dl '“ I -
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v 2 [ J  J  g < y | x )  “ (x) dydx + J  J  g(y|x) m(x)dydx

“l d 2 ° 1  -
-a. «o -a, -d

+ J 1  J  g(y|x) m(x) dydx + J 1  J 2  g(y|x) m(x) dydx ]
" ° 2 d 2 ~a 2 *"

* V  <7>

The first derivative of EPR with respect to er̂  is
CD

aEPR/do^ -  m(o1) - ? 2  nKa^) * ^  [ J  gCylc^) dy m ^ )

dl
- d _  «>

+ J  g C y l 0 ^ )  dy mCa^) ] - i>2 [ - J* g C y l ^ )  dy m ^ )

d2
- 1 2J  gCy(«!> dy mCoj^) ] (8 )

<*> -d.-  m C ^ )  { P L  - P 2  - «1 [ J  g ( y t « * 1 ) dy + J  g(y|af1) dy ]

CO -ff
—  ' - ’ - (9)+  V2 I J  dy + J  gfyla^) dy ] }

d2 -«»

The optimal screening specification limit for Grade 1 is
ita^, which can be obtained by solving

dEFR/da^ - 0 (1 0 )


