1989

Syntheses of Organometallic Platinum(II), Platinum(IV), and Palladium(II) Complexes and Methyl Functionalization of 2-Methyl- And 2,7-Dimethyl-1,8-Naphthyridine.

Kevin J. Theriot
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/4813

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17” x 23” black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Syntheses of organometallic platinum(II), platinum(IV), and palladium(II) complexes and methyl functionalization of 2-methyl- and 2,7-dimethyl-1,8-naphthyridine

Theriot, Kevin J., Ph.D.
The Louisiana State University and Agricultural and Mechanical Col., 1989
Syntheses of Organometallic Platinum(II), Platinum(IV), and Palladium(II) Complexes and Methyl Functionalization of 2-Methyl- and 2,7-Dimethyl-1,8-Naphthyridine

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in The Department of Chemistry

by

Kevin J. Theriot
B.S., Northeast Louisiana University, 1980
August, 1989
For Jackie
Acknowledgements

I would like to express my deepest appreciation to Dr. George R. Newkome for his support and encouragement throughout my graduate career. His manner of requiring his students to independently develop and solve problems has allowed me to learn more than I could have dreamed and has made this endeavor a truly enjoyable and rewarding experience.

I would also like to thank my colleague Gregory R. Baker for his friendship and his willingness to help me in those areas in which his expertise surpassed mine. To Dr. Vinod K. Gupta I express my gratitude for his support and also for generating in me an interest in organometallic chemistry. In addition, Garry E. Keifer, Charles N. Moorefield, Daryl R. Sauer, James Leahy, Barry K. Cheskin, and Philip G. Hanson are to be thanked for their inspirational discussions and friendships.

I would also like to thank Dr. Frank R. Fronczek who performed the X-ray crystal structure determinations which were so important to this work.

My parents, Clayton and Doris, have also been understanding and supportive in my undertaking and I thank them.

Most importantly, I would like to thank Jackie for her undying support and belief in me. It was her presence and love that enabled this work to come to fruition.

Finally, I would like to thank Louisiana State University, the University of South Florida, Dow Chemical, and the National Science Foundation for financial support and Engelhard Corporation for the use of precious metals.
Table of Contents

Acknowledgements ... iii

List of Tables ... xi

List of Figures .. xii

List of Schemes .. xiv

Abstract .. xv

Chapter 1. Syntheses and Characterization of Metalated and Cyclo-
metalated Platinum(II) and Platinum(IV) C-Malonato Complexes

Introduction .. 1

History and Background .. 2

Central C-Bonded β-Diketones and β-Ketoesters 2

β-Diesters as Ligands ... 5

O,O’-Chelated β-Diesters .. 7

Central C-Bonded β-Diesters ... 12

C-Bonded Malonato Pt(II) Complexes ... 20

Results .. 21

Syntheses of C-Malonato Complexes ... 21

Reactivity of Pt(II) C-Malonato Complexes 24

Characterization of Platinum C-Malonato Complexes 27

Proton NMR Spectroscopy of the Pt(II) Complexes 34

Proton NMR Spectroscopy of the Pt(IV) Complexes 40

Carbon-13 NMR Spectroscopy of the Pt(II) Complexes 43

Carbon-13 of the Pt(IV) Complexes .. 49
Infrared Spectra of the Platinum Complexes 52

Structural Characterization of the Cyclometalated Pt(II)

Complexes ... 53

Conclusions ... 65

Experimental .. 65

General Comments ... 65

Reagents ... 66

X-ray ... 66

trans-Dichloro-bis{methyl α-(methoxycarbonyl)[pyridine]-2-
propanoate-N}platinum(II) ... 67

trans-Dichloro-bis{methyl α-(methoxycarbonyl)[pyridine]-2-
butanoate-N}platinum(II) ... 67

Preparation of the C,N-chelates ... 68

trans-Bis{methyl α-(methoxycarbonyl)[pyridine]-2-
propanoate-C,N}platinum(II) ... 68

trans-Bis{methyl α-(methoxycarbonyl)[pyridine]-2-
butanoate-C,N}platinum(II) ... 69

Preparation of Pt(dipy)Cl₂, Pt(phen)Cl₂, and Pt(diox)Cl₂ 69

Dichloro-2,2'-dipyridineplatinum(II) .. 69

Dichloro-1,10-phenanthrolineplatinum(II) .. 70

Dichloro[1,1-bis(2-pyridyl)-1,3-dioxolane]platinum(II) 70

Preparation of the N,N'-chelated C-malonato complexes 71

bis(Dimethyl malonato-C)-2,2'-dipyridineplatinum(II) 71

bis(Dimethyl malonato-C)-1,10-phenanthroline-
platinum(II) ... 72
Attempt to synthesize bis(dimethyl malonato-C)-[1,1-bis(2-pyridyl)-1,3-dioxolane]platinum(II) .. 72
Reaction of Pt(phen)(dmm)₂ with Pt(phen)Cl₂ 73
Reaction of Pt(phen)(dmm)₂ with acetyl or benzoyl chloride 73
Reaction of Pt(phen)(dmm)₂ with methyl vinyl ketone 74
Preparation of the dibromo Pt(IV) complexes 74
 af-Dibromo-de-bis(dimethyl malonato-C)-bc-2,2'-dipyridineplatinum(IV) ... 74
 af-Dibromo-de-bis(dimethyl malonato-C)-bc-1,10-phenanthrolineplatinum(IV) ... 75
Preparation of the dichloro Pt(IV) complexes 75
 af-Dichloro-de-bis(dimethyl malonato-C)-bc-2,2'-dipyridineplatinum(IV) ... 75
 af-Dichloro-de-bis(dimethyl malonato-C)-bc-1,10-phenanthroline(IV) ... 76
 cis(Dichloro)-bis(dimethyl malonato-C)-1,10-phenanthrolineplatinum(IV) ... 77
Attempt to synthesize Pt(phen)(dmm)₄ ... 77
Reaction of Pt(phen)(dmm)₂Br₂ with NaOH 78

Chapter 2. Cyclopalladated Complexes of 2-Vinylpyridine

Derivatives Possessing Pd-C₄p² Bonds 79
Introduction ... 79
History and Background ... 79
Palladium and Platinum Complexes ... 79
Ruthenium, Rhodium and Iridium Complexes 88
2,2'-Dipyridine as a N,C-Chelate ... 94
2-Vinylpyridine as a N,C-Chelate ... 96
Results ... 100
Syntheses .. 100
Proton NMR Spectroscopy ... 102
Carbon-13 NMR Spectroscopy .. 102
Structure Determination ... 104
Conclusion .. 104
Experimental .. 104
General Comments .. 104
Reagents ... 104
2-(2-Pyridinyl)-3-acetoxypropene ... 104
2-(2-Pyridinyl)-3-hydroxypropene ... 105
μ-Dichloro-bis[2-(2-pyridinyl)-3-acetoxypropenyl-C,N]-
dipalladium(II) ... 106
Chloro[2-(2-pyridinyl)-3-acetoxypropenyl-C,N]pyridine-
palladium(II) ... 107
Chloro[2-(2-pyridinyl)-3-acetoxypropenyl-C,N]triphenyl-
phosphinepalladium(II) .. 108
μ-Dichloro-bis[2-(2-pyridinyl)-3-hydroxypropenyl-C,N]-
dipalladium(II) ... 108
Chloro[2-(2-pyridinyl)-3-hydroxypropenyl-C,N]pyridine-
palladium(II) ... 109
Chloro[2-(2-pyridinyl)-3-hydroxypropenyl-C,N]triphenyl-
phosphinepalladium(II) ... 110

Chapter 3. Methyl Functionalization of 2-Methyl- and 2,7-
Dimethyl-1,8-Naphthyridine 111

Introduction ... 111
Results ... 114
 Functionalization of 2,7-dimethyl-1,8-naphthyridine 114
 Functionalization of 2-methyl-1,8-naphthyridine 116
 NMR Spectroscopy ... 119
 IR Spectroscopy .. 120
Experimental ... 120
 General Comments .. 120
 Reagents .. 120
 2,7-Bis(trichloromethyl)-1,8-naphthyridine 120
 2,7-Bis(methoxycarbonyl)-1,8-naphthyridine 121
 Attempted Reduction of 2,7-Bis(methoxycarbonyl)-1,8-
 naphthyridine with NaBH₄ .. 122
 2,7-Bis(hydroxymethyl)-1,8-naphthyridine 122
 Chlorination of 2,7-Bis(hydroxymethyl)-1,8-naphthyridine
 with PCl₃ .. 123
 2-Trichloromethyl-1,8-naphthyridine 123
 2-Methoxycarbonyl-1,8-naphthyridine 125
 2-Hydroxymethyl-1,8-naphthyridine 126
Reaction of 2,7-Bis(trichloromethyl)-1,8-naphthyridine with

KOH in EtOH ... 127

Reaction of 2-Trichloromethyl-1,8-naphthyridine with KOH

in EtOH .. 128

Chapter 4. Synthesis of Metal Paddlanes. 129

Introduction ... 129

Results ... 129

Crystal Data ... 131

Discussion ... 131

Chapter 5. Hydrogen-Bonding in the Pyridine-Oxalic Acid System 135

Introduction ... 135

Experimental ... 136

Dipyridinium oxalate-oxalic acid 136

Dipyridinium bis(hydrogen oxalate)-oxalic acid 137

Discussion ... 138

Dipyridinium oxalate-oxalic acid 138

Dipyridinium bis(hydrogen oxalate)-oxalic acid 138

Chapter 6. An Improved Synthesis of 3-Methoxycarbonyl-4H-

quinolizone via Palladium(II) Assistance. 142

Introduction ... 142

Experimental ... 149

Dichlorobis(2-vinylpyridine)palladium(II) 150

3-Methoxycarbonyl-4H-quinolizone 150

Summary and Conclusions .. 152
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organoplatinum Complexes</td>
<td>152</td>
</tr>
<tr>
<td>Cyclometalated Palladium Complexes</td>
<td>153</td>
</tr>
<tr>
<td>Functionalization of Methyl Naphthyridines</td>
<td>153</td>
</tr>
<tr>
<td>References</td>
<td>154</td>
</tr>
<tr>
<td>VITA</td>
<td>177</td>
</tr>
<tr>
<td>List of Publications</td>
<td>178</td>
</tr>
</tbody>
</table>
List of Tables

1. Selected analytical data for C-bonded β-dicarbonyls ... 29

II. Proton NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs ... 37

III. Proton NMR spectral data for the Pt(IV) complexes .. 41

IV. Carbon-13 NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs ... 46

V. Carbon-13 NMR spectral data for the Pt(IV) complexes ... 50

VI. Diagnostic Pt IR absorptions .. 52

VII. Crystal data and data collection parameters for C\textsubscript{22}H\textsubscript{24}N\textsubscript{2}O\textsubscript{8}Pt, C\textsubscript{24}H\textsubscript{28}N\textsubscript{2}O\textsubscript{8}Pt and C\textsubscript{26}H\textsubscript{30}N\textsubscript{2}O\textsubscript{12}Pt\textsubscript{2} .. 57

VIII. Important bond distances (Å) for C\textsubscript{22}H\textsubscript{24}N\textsubscript{2}O\textsubscript{8}Pt and C\textsubscript{24}H\textsubscript{28}N\textsubscript{2}O\textsubscript{8}Pt .. 59

IX. Important bond angles (°) for C\textsubscript{22}H\textsubscript{24}N\textsubscript{2}O\textsubscript{8}Pt and C\textsubscript{24}H\textsubscript{28}N\textsubscript{2}O\textsubscript{8}Pt .. 59

X. Important bond distances (Å) for C\textsubscript{26}H\textsubscript{30}N\textsubscript{2}O\textsubscript{12}Pt\textsubscript{2} ... 60

XI. Important bond angles (°) for C\textsubscript{26}H\textsubscript{30}N\textsubscript{2}O\textsubscript{12}Pt\textsubscript{2} ... 60

XII. Coordinates for Pt(C\textsubscript{11}H\textsubscript{12}NO\textsubscript{4})\textsubscript{2} ... 62

XIII. Coordinates for Pt(C\textsubscript{12}H\textsubscript{14}NO\textsubscript{4})\textsubscript{2} ... 63

XIV. Coordinates for Pt\textsubscript{2}C\textsubscript{26}H\textsubscript{30}N\textsubscript{2}O\textsubscript{12} .. 64

XV. Selected Bond Distances (Å) and Angles (°) for [Cu(C\textsubscript{2}H\textsubscript{3}O\textsubscript{2})\textsubscript{2}]\textsubscript{2}C\textsubscript{7}H\textsubscript{7}NO\textsubscript{2}. .. 133
List of Figures

1. Bonding Modes for β-Diesters ... 6
2. Effect of Stabilizing Ligands (L) on O,O’Chelates of β-Dicarbonyl Complexes ... 7
3. Use of β-Diester Chelates in Synthetic Transformations 11
4. Reactions of Organoplatinum Complexes .. 24
5. Appearance of a Singlet, a Doublet, and a Triplet Coupled to Platinum ... 28
6. Three and Four Bond Coupling Routes to C-3 for the
 N,N’-Chelates ... 44
7. ORTEP Drawing of C_{22}H_{24}N_{2}O_{8}Pt .. 56
8. ORTEP Drawing of C_{24}H_{28}N_{2}O_{8}Pt ... 58
9. ORTEP Drawing of C_{26}H_{30}N_{2}O_{12}Pt_{2} .. 61
10. Cyclometalated Transition Metal Carbonyl Complexes of Pyridinyl Ligands ... 94
11. Mechanism for Cyclometalation of 2-Vinylpyridine with MX_{2} 97
12. ORTEP drawing of C_{28}H_{25}NClO_{2}PPd ... 103
13. Interesting Examples of 1,8-Naphthyridine Complexes 111
14. Syntheses of 2,7-Dimethyl-1,8-naphthyridine 112
15. Proposed Mechanism for the Basic Hydrolysis of bis(2,7-
 Trichloromethyl)-1,8-naphthyridine ... 118
16. Proposed Mechanism for the Reaction of 2-(Trichloromethyl)-1,8-
 naphthyridine with KOH and Comparison to the Haloform Reaction 119
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>ORTEP Drawing of 185</td>
<td>134</td>
</tr>
<tr>
<td>18</td>
<td>Possible Bonding Modes in the 1:1 Pyridine/oxalic acid System</td>
<td>135</td>
</tr>
<tr>
<td>19</td>
<td>ORTEP Drawing of 2C₅H₆N⁺·C₂H₂O₄</td>
<td>139</td>
</tr>
<tr>
<td>20</td>
<td>ORTEP Drawing of 2C₅H₆N⁺·2C₂HO₄·C₂H₂O₄</td>
<td>141</td>
</tr>
<tr>
<td>21</td>
<td>ORTEP Drawing of PdCl₂(C₇H₇N)₂</td>
<td>145</td>
</tr>
<tr>
<td>22</td>
<td>ORTEP Drawing of C₇H₁¹NO₄</td>
<td>147</td>
</tr>
<tr>
<td>23</td>
<td>ORTEP Drawing of C₁₁H₆NO₃</td>
<td>148</td>
</tr>
</tbody>
</table>
List of Schemes

I. Functionalization of 2,9-Dimethyl-1,10-phenanthroline. 114

II. Synthesis of Metal Paddlanes. ... 129

III. Previous Syntheses of 3-Carboalkoxy-4\textit{H}-quinolizones. 142

IV. Proposed Mechanism for the Formation of 3-Methoxycarbonyl-4\textit{H}-quinolizone. ... 144
Abstract

The syntheses of several new metalated and cyclometalated organoplatinum(II) complexes of C-malonato ligands have been accomplished. These complexes were characterized by 1H and 13C NMR and IR. The trans cyclometalated complexes utilized pyridinyl ligands possessing pendant groups at the 2-position with terminal malonate groups capable of forming either a five- or six-membered C,N-chelate. X-ray crystal structure determinations of these cyclometalated complexes were also done. The acyclic cis complexes are N,N'-chelates of dipyridine or phenanthroline in which platinum is bonded to the central carbons of two different dimethyl malonate ligands. These N,N'-chelates were easily oxidized by either Br$_2$ or Cl$_2$ to give the corresponding Pt(IV) complexes; interestingly, this oxidation could also be accomplished by Cu(II) halides. The stability and reactivity of these complexes were also studied. A 13C NMR spectral analysis of the N,N'-chelates showed that when two paths for Pt-C coupling are available, the observed coupling constant is the sum of the two individual coupling constants.

Very few examples of cyclometalated 2-vinylpyridines have been reported, but, by the employment of α-substituted 2-vinylpyridine derivatives, the synthesis of novel cyclometalated dimers was achieved. These dimers were readily cleaved by pyridine or triphenylphosphine and the structure of one of these monomers was proven by an X-ray crystal structure determination which showed the existence of the metal-alkenyl bond.

Methyl functionalization of 2-methyl- and 2,7-dimethyl-1,8-naphthyridine was accomplished by a three-step synthesis. The methyl group was first oxidized to the trichloromethyl group by N-chlorosuccinimide. Subsequent hydrolysis with
$\text{H}_3\text{PO}_4/\text{MeOH}$ gave the methyl ester which was reduced to an alcohol with $\text{NaBH(O} \text{Me})_3$, which does not readily reduce less reactive esters. Because of the enhanced reactivity of the naphthyridine system, reagents [e.g. H_2SO_4, and NaBH_4, (and NCS/CCl$_4$ for 2-methyl-1,8-naphthyridine)] that were used on other heterocycles could not be used on naphthyridine.
Chapter 1. Syntheses and Characterization of Metalated and Cyclometalated Platinum(II) and Platinum(IV) C-Malonato Complexes

Introduction

Monoanions of β-diketones [β-dik(s)] [e.g. 2,4-pentanedione (acac), 1-phenyl-1,3-butanedione (bzac), and 4,6-nonanedione] and β-ketoesters (β-kes) [e.g. ethyl acetoacetate (etac)] are known to form complexes with diverse metals via a resonance stabilized six-membered O,O'-chelate 1. Although this is the most important mode of complexation, other types of complexation are known including O-unidentate, η-allylic, terminal-C, and central-C bonding. The last of these, central-C-bonding 2, is probably the second most prolific mode of complexation of β-dicarbonyls [β-dic(s)] outnumbered only by O,O'-chelates. Examples of central-C-bonded β-dik or β-kes ligands are known for manganese(I), rhodium(I), rhodium(III), iridium(III), platinum(II), platinum(IV), silver(I), gold(I), mercury(II), and palladium(II) with most of the reports being done on Pd(II), Pt(II) and Pt(IV); thus, this discussion will focus on the Ni, Pd, Pt triad.

![Diagram 1](image1.png)

![Diagram 2](image2.png)
History and Background

Central C-Bonded β-Diketones and β-Ketoesters

The existence of central-C-bonded β-dicarbonyls was confirmed in 1960-1962 by Truter et al. through X-ray crystal structure determinations of

\[[\text{Me}_3 \text{Pt}(\text{C}_3\text{H}_7 \text{COCHCOC}_3\text{H}_7)]_2 \] (3a),
\[[\text{Me}_3 \text{Pt}(\text{etac})]_2 \] (3b), and
\[\text{Me}_3 \text{Pt}(\text{acac-C}^3)(\text{dipy}) \] (4). In dimers 3, the β-dics function as terdentate bridging ligands forming both a Pt-C bond and an O,O'-chelate; however, the β-dic in 4 is unidentate bonded solely through the central carbon.

![Chemical structures](image)

In 1901, Werner reported the synthesis of the complex K[Pt(acac)_2Cl] and over a half a century later Grinberg and Chapurskii proposed 5 as the structure which involves one O,O'-chelating acac and one O-unidentate acac. Although one acac does form an O,O'-chelate as proposed, the fact that the other acac formed a Pt-C bond instead of a Pt-O bond remained unknown until the X-ray crystal structure determination was reported in 1962 proving 6 to be the correct structure.

The first example of a central-C bonded β-dic which did not have an oxygen ligand or a chelated ligand was the Pt(II) complex Na_2[Pt(acac)_2Cl_2] (7). This complex reacted with 2,4-dinitrophenylhydrazine adding further support to the proposed presence of the keto moiety.
The interesting complex $\text{K}[\text{Pt(acac)}_3]$ (8)²⁶,²⁷ is the only known complex of the Ni, Pd, Pt triad which contains only β-dic ligands with at least one central-C bonded β-dic. When 8 was treated with HX (X = Cl, Br), greenish-yellow complexes resulted with compositions $\text{C}_{10}\text{H}_{14}\text{O}_3\text{PtX}_2$ which were symmetric by ^1H NMR spectroscopy possessing two different methyl groups, one aliphatic and one vinylic. In addition, the IR data indicated vinyl ether linkages as well as Pt-X bonds; there were no coordinated acacs. The complexes were monomeric in chloroform and non-electrolytes in nitromethane. In 1965, structure 9 (X = Cl) was proven by Gibson et al.¹¹ who revealed that two acacs had condensed and eliminated one mole each of H_2O and acacH to give the dienyl complex 9.

The acid complex HPt(acac)$_2$Cl was treated with bidentate ligands (dipy, phen, diphos, en) to give the neutral complexes Pt(acac)(L-L)Cl (10),²² whose IR bands in the 1600-1700 cm$^{-1}$ region (C=O) confirmed the presence of the C-bonded acac.
Hiraki et al. prepared unique tri-dentate O,N,P Schiff base ligands and formed the corresponding Pd(II) complexes which in turn reacted with acac to form the novel O,N,P,C-bonded complexes 11.\(^{72}\)

More recently S-ligands have been used to make Pt(acac)$_2$SEt$_2$ (12).\(^{21}\) Thus by reacting trans-PtCl$_2$(SEt)$_2$ with Tl(β-diks) in MeOH at 25 °C, the complexes Pt(β-dik)$_2$SEt$_2$ (12) were obtained. In the same manner, starting with a S,S'-chelated platinum complex PtCl$_2$(S-S), Pt(acac)Cl(S-S) (13) was obtained.

Reaction of the bis-chelate complexes M(acac)$_2$ [M = Pd(II), Pt(II)] with either N-monodentate ligands (L = alkylamines or pyridines) or tertiary phosphines gave C-bonded complexes M(acac)$_2$L (14) which had one O,O'-chelate and one C-bonded acac ligand.\(^{14,15,18,27,59,61,62,67}\) It was also reported that reaction of M(β-dic)$_2$ [M =
Pd(II), Pt(II)] with an excess of L (py, 3-pic, 4-pic) gave M(β-dic)$_2$L$_2$ (15 and 16) which possessed two C-bonded acac.15,27,70,71

Newkome et al. synthesized the novel complexes 17, which incorporated two β-dics and a pyridine ligand into unique terdentate ligand systems possessing two fused five-membered chelate rings.68,69 The complexes were stable both in air and solution and none were found to interact with DNA. The external pyridine could readily be exchanged with 4-picoline.

β-Diesters as Ligands

Although there is a plethora of complexes of β-dik and β-kes ligands, there is one type of β-dic which has been virtually ignored in this area: β-diesters (β-des) [i.e. dimethyl (dmmH) and diethyl (demH) malonate esters 18 (R’ = H)]. The two main types of bonding known for monoanions of β-des ligands are central C-bonded and O,O’-chelated; see Figure 1.
Kawaguchi16 has suggested that the formation of C-bonded versus O,O'-chelated complexes is directly related to the extent of keto-enol tautomerization of the free β-dic; thus low keto:enol ratios favor O,O'-chelation, whereas high ratios favor C-bonded complexes. Unsubstituted malonates have a relatively high "keto:enol" ratio and thus would be expected to form mainly C-bonded complexes. Despite this fact, there are as many literature reports of O,O'-chelated complexes of simple malonates as there are of C-bonded complexes; however, there are not many examples of either type.

The fact that malonates form both O,O'-chelates and central C-bonded complexes is probably due to a combination of two counter effects: 1) High "keto:enol" ratios disfavor O,O'-chelation, whereas 2) chelate stabilization favors O,O'-chelation. These two effects are apparently of approximately equal magnitude, and thus, when a system is sufficiently stable that chelation is not required, C-bonding takes place; however, where extra stabilization is needed, it is available through the O,O'-bonding mode.

The stability of the system is, of course, dependent on the other ligands. An interesting example of this can be seen in the β-dik systems M(acac)_2L, which are prepared from the bis-chelates $\text{M(acac)}_2$14,15,18,27,59,61,62,67 (Figure 2). In the absence of stabilizing ligands, the needed stabilization of chelation in M(acac)_2 prohibits C-bonding; however when good donor ligands are added, C-bonding can occur.
Figure 2. Effect of Stabilizing Ligands (L) on $\textit{O,O'}$-Chelates of β-Dicarbonyl Complexes.

$\textit{O,O'}$-Chelated β-Diesters

Weingarten et al., in 1968, reported the syntheses of the first titanium malonato complexes $\text{Ti}[\text{N}(\text{Me})_2](\text{dmm})_2$ (19) and $\text{Ti}(\text{OMe})_2(\text{dmm})_2$ (20). The source of their malonate anion was the stable salt hexamethylguanidinium dimethyl malonate (21), which would seem to be an excellent source of malonate anion for ligand exchange reactions but has not been exploited. The IR data for 19 and 20 were consistent with a $\textit{O,O'}$-chelated structure (1643 and 1631 cm$^{-1}$, respectively) although the ^1H NMR spectra indicated the possibility of C-bonded malonates (δ 4.2-4.5). A similar complex, $\text{Ti}(\text{dem})_2(\text{phenolate})_2$ (22), was reported in a Japanese patent.

Synthesis of the mixed β-dic chromium complex $[\text{Cr}($acac$)_2(\text{dem})]$ (23) has recently been reported by the reaction of CrPh(acac)$_2$ with Hdem in 50% yield. Benzene, the other product from the reaction, was obtained in quantitative yield but
no other chromium products were isolated. The O,O'-chelate of dem gave an absorption in the IR at 1620 cm$^{-1}$.

Diethyl dichloromalonate was found to undergo oxidative addition with Fe$_2$(CO)$_9$ to give Fe(C$_7$H$_9$ClO$_4$)$_3$ (24).79 The IR C=O stretch at 1582 cm$^{-1}$ in 24 is definitive for the O,O'-chelate, which is expected at longer wavelengths because the electron-withdrawing effect of the chlorine substituent decreases the keto:enol ratio1c and thus increases the propensity for O,O'-chelation.

Both Co(II) and Cu(II), with a variety of N-ligands (α-pic, γ-pic, quin, NHR$_2$), were found to form malonato chelate complexes 25.80 The IR C=O frequencies of 25 ranged from 1610-1625 cm$^{-1}$.

The interesting rhodium dioxygen dimer 26 was found to react with Hdmme to give Rh(C$_8$H$_{12}$)(dmm) (27) [IR 1605 cm$^{-1}$ (C=O)] and H$_2$O$_2$.81 A similar reaction occurred
between the cyclometalated palladium complexes 28 and β-des ligands to give the cyclometalated complexes 29.82

There are several literature reports on nickel malonato O,O'-chelates. Nickel chloride was found to react with diethyl malonate in the presence of aqueous NH3 to give the stable bis-chelate Ni(dem)2 (30) which was then reacted with a series of bases to afford the mixed ligand complexes NiL2(dem)2 31.83 The IR C=O absorption for 30 is at 1600 cm⁻¹; whereas it ranges from 1610-1630 cm⁻¹ for 31.

The mixed ligand tris-chelated nickel complex Ni(dipy)[dem]2 (32) was synthesized by two different routes starting with either Ni(dipy)(Et)2 or Ni(dipy)(COD).84 The mass spectrum of 32 showed a parent ion (m/e = 532) and its octahedral geometry was implied by three bands in its UV spectrum (16350, 12930, 9630 cm⁻¹). However, the IR C=O frequencies (1660, 1675 cm⁻¹) appeared at slightly shorter wavelength
than for most malonato chelates which normally are in the 1585-1640 cm$^{-1}$ range. In view of this, another possible structure for 32 is the C-bonded 33 which incorporates C=O bonding similar to that observed by Newkome et al. for the Rh(III) complex 34.4b

Agnes and Bart recently reported85 the X-ray crystal structure determination of the chelated malonate Ni(II) complex Ni(dem)(naph)P(Ph)$_3$ (35), in which malonate was nearly planar (maximum out-of-plane distance 0.067 Å) and O,O'-chelated.

In 1975 Kite and Psaila reported86 the synthesis of the dimer [Me$_3$Pt(β-des)$_2$]$_2$ (36) in which the dialkyl malonate anion acted as a terdentate ligand as in [Me$_3$Pt(etac)$_2$]$_2$ (3), however, no conclusive data were reported.

Reaction of diethyl malonate with MeCu[P(Ph)$_3$]$_2$ gave the malonato chelate Cu(dem)[P(Ph)$_3$]$_2$ (37).87 The IR spectrum of 37 showed a C=O absorption at 1643 cm$^{-1}$ and the NMR had a singlet at 5.12 ppm, both consistent with O,O'-chelation.
An interesting series of uranium(IV) complexes with the general formula UCpₙ[β-des]₄₋ₙ (n = 0-2) was reported in which low temperature ¹H NMR was used to study the fluxionality of the ligands. Included in the series was the dodecahedral tetra-chelated U(β-des)₄ (38).

Recently a copper(I) diethyl malonate chelate was used in the coupling reaction shown in Figure 3. The copper malonate complex was not isolated and so it is not certain whether it is O,O'-chelated or C-bonded. The authors proposed initial nucleophilic aromatic substitution and cyclization to give 3-ethoxycarbonyl-2-oxo-2-indolizinyl Cu(I) which then dimerizes thermally to give the product.

Figure 3. Use of β-Diester Chelates in Synthetic Transformations.

Zinc also forms complexes with malonates usually by oxidative addition into halomalonates. These complexes, XZn[CR(CO₂R')₂] (R = H, X, alkyl), behave like Grignard reagents in terms of synthesis, stability, reactivity, et cetera.
Central C-Bonded β-Diesters

The first examples of complexes which probably contained C-bonded β-des ligands were the copper(I) isonitrile complexes Cu(β-des)(CN\textsubscript{f-Bu})\textsubscript{2} (39).91 Although the acac complexes were \textit{O,O'}-chelated [IR (C=O) 1610 cm-1], the malonato complexes appeared to be C-bonded [IR (C=O) 1690 cm-1]. The 1H NMR for both types of complexes was reported;91 however, the Cu\textit{CH} proton was not noted.

Ito and Yamamoto found that when Pt(acac)(\gamma-acac)P(Ph)\textsubscript{3} [14 M = Pt, L = P(Ph)\textsubscript{3}] (which contains both a \textit{O,O'}-chelated and a C-bonded acac) was reacted with dimethyl malonate, the C-bonded acac was displaced by C-bonded malonate to give Pt(acac)(dmm)P(Ph)\textsubscript{3} (40), as the sole product.20 The product was characterized (IR) by its C=O absorptions (1740, 1715 cm-1) and by 1H NMR. The chemical shift of the Pt\textit{CH} proton was 3.43 ppm with a two bond coupling constant to 195Pt of 96 Hz.

The "rigid" tetradentate 4192,93 was used in an attempt to force C-bonding of β-dic ligands by capturing the equatorial positions of octahedral Co(III) leaving only the axial positions available for unidentate ligands. However when 1,3-diphenyl-1,3-propanedione was used, 41 proved insufficiently rigid and the β-dik was bonded via a \textit{O,O'}-chelate 42 (X-ray crystal structure determination). On the other hand, when diethyl malonate was used, the product 43 contained one C-bonded malonate as indicated by its IR (C=O frequencies greater than 1700 cm-1) with pyridine or water
capping the other axial position.

Another strategy to force C-bonding of β-des ligands was reported94 using the O,N,N'-tridentate 44. By using Pd(II), which forms primarily four coordinate square planar complexes, only one coordination site would remain for the malonate to bind. Thus, reaction of 44 with Na$_2$PdCl$_4$ in ethanol gave the chloro complex 45, which subsequently was reacted with sodiomalonate in methanol to afford (31\%) 46. The analytical data of 46 were comparable to other C-bonded malonate complexes [IR (C=O) 1714 cm$^{-1}$; 1H NMR δ 3.93 (PdCH); 13C NMR δ 28.2 (PdC)].
The same research group later reported the synthesis of a new O,N,S-tridentate ligand in which the S-atom is labile thereby facilitating either O,O'-chelation or C-bonding. Reaction of the Pd(II) complex 47 with Tl(acac) gave (17%) the O,O'-chelated complex 48 but reaction with sodiomalonate gave (48%) the C-bonded complex 49, which had an IR $C=O$ absorption at 1718 cm$^{-1}$, a 1H NMR absorption at δ 3.69 (PdCH) and a 13C NMR absorption at δ 32.3 (PdC).

Reaction of diethyl malonate with Na$_2$PdCl$_4$ in aqueous KOH gave two novel C-bonded products. The major isolated (14%) product was dimer Na$_2$[PdCl(dem)$_2$]$_2$ (50) whose IR spectrum showed an absorption at 1703 cm$^{-1}$ (C-bonded). The minor
isolated (4.9%) product was the complex salt \(\text{Na}_2[\text{PdCl(dem)}_2]_2\text{K}_2[\text{Pd(dem)}_2]_2\cdot(\text{C}_2\text{O}_4)\cdot4\text{H}_2\text{O} \) (51) whose structure was determined by X-ray crystal data. The IR of 51 showed a \(\text{C}=\text{O} \) absorption at 1710 cm\(^{-1}\). The \(^1\text{H NMR} \) of both 50 and 51 did not show the \(\text{PdCH} \) protons due to limited solubility.

A non-typical synthesis of a \(C \)-malonatometallic complex has been reported\(^97\) where Na[(\(\eta \)-\(\text{C}_5\text{H}_5 \))\(\text{Fe(CO)}_2 \)] was reacted with dimethyl diazomalonate under UV irradiation to give \(\text{Fe(}\eta\text{-}\text{C}_5\text{H}_5)(\text{CO})_2(\text{dmm}) \) (52) in 31% yield.

![Chemical structure](image)

The first example of a complex which contained more than one \(C \)-bonded \(\beta \)-des ligand was reported by Newkome and Gupta in 1982.\(^98\) Dichloro-2,2′-dipyridine-palladium(II) and dichloro-1,10-phenanthroline-palladium(II) reacted with dimethyl malonate under extremely mild conditions (\(\text{K}_2\text{CO}_3, \text{DMF, 25 °C} \)) to give \(\text{cis} \) complexes 53, which were stable in both air and solution. Interestingly, even with \(\text{cis} \) alkyl groups, these complexes did not undergo reductive elimination. The full account of the work reported\(^99\) four new bis-malonato complexes which contained six- or seven-membered \(N,N' \)-chelates 54, all of which were stable complexes; an X-ray crystal structure of 54d proved that the malonates were \(C \)-bonded. In attempts to form the cyclometalated complex 55, 1,3-dibromopropane was reacted with 54c and 54d and \(\text{K}_2\text{CO}_3 \) in \(\text{CH}_3\text{CN} \); however, the only products obtained were the unsymmetrical bromo complexes 56, whose structure was also proven by X-ray structure determination. A mechanism involving initial deprotonation of the metalated malonate, nucleophilic attack on dibromopropane, followed by \(\text{Br}^- \) displacement of the
substituted malonate was proposed. However, this mechanism should give two complexes: one containing bromopropyl malonate (which was not reported) and 56. The possibility of initial oxidative addition, followed by reductive elimination was not considered; exclusion of base could easily distinguish between the two. Although not investigated in depth, these cis Pd(II) complexes may possess significant anti-tumor activity because of the cis orientation of the diamino moiety and relative stability of the C-malonato palladium(II) bond. The 1H NMR [PdCH - dipy: δ 4.12; phen: δ 4.25] substantiated C-bonding of the malonates.

Re-examination of the ^{13}C NMR data for 53 and 54 indicated errors in the assignments of the PdC carbons. The correct values are:

- 53 (dipy) - δ 25.4
- 53 (phen) - δ 25.6
- 54c (diox) - δ 24.3

all of which are self-consistent and in the expected range of C-bonded malonate complexes.

A new approach to the synthesis of stable C-bonded β-des complexes has been taken by Newkome et al. by incorporating both a dialkyl malonato moiety and a pyridine ring into one ligand 57 thereby taking advantage of added stabilization.
through N,C-chelation. Systems have been designed which facilitate both cis and trans carbon-metal bonds as well as fused bi- and tri-cyclic complexes. The first report of these ligand systems was of the fused tricyclic dipyridine complex 58, [IR (C=O) 1738 cm⁻¹], which was found to nick purified DNA and proposed to act similar to known intercalating anti-tumor platinum drugs [cis-Pt(NH₃)₂Cl₂].

The analogous 1,10-phenanthroline ligand cyclometalated on one side only to give 59. The X-ray crystal structure of 59 showed that the second carbanion was too far away from the metal center to allow Pd-C bond formation. The rationale for the difference between the dipyridine and phenanthroline complexes was that the
phenanthroline backbone in 59 is not as flexible as the dipyridine bridge in 58, which does allow bis-cyclometalation.

A related disubstituted pyridine ligand reacted with K$_2$PdCl$_4$ to give the trans fused bicyclic complex 60, whose structure was proven by X-ray crystal structure data. This trans complex did not nick DNA lending support to the proposition that 58 acts similar to cis Pt(NH$_3$)$_2$Cl$_2$. Complex 60 has one non-chelated ligand (pyridine) which when replaced by a linear bidentate ligand (i.e. pyrazine, 4,4'-dipyridine) formed dinuclear complexes 61. An X-ray crystal structure of the pyrazine bridged dimer 61 proved the proposed structure.

The simplest ligand in this series was the 1:1 pyridine(pyrazine):malonate ligand where the two moieties were joined by one or two methylene bridges (62).
Reaction of 62 with \(\text{PdCl}_2 \) in the presence of base gave the bis chelated trans complexes 63, whose structures were proven by X-ray crystal structure data [\(X = \text{CH}, \ R = \text{H}, \ E = \text{CO}_2\text{Me}, \ (n = 1);^{103} (n = 2)^{104} \)].

The pyrazine complexes 63 are interesting in that mixed metal polymers with interesting electrochemical properties should be readily available through reaction with simple metal salts.

Expansion of the tricyclic [5.5.5] system 58 to [5.6.5]- and [5.7.5]-tricyclic systems was reported\(^{105}\) by Newkome et al. in 1986. Thus, ligands 64 readily reacted with \(\text{PdCl}_2 \) in the presence of base to give complexes 65 (X-ray of 65b).
C-Bonded Malonato Pt(II) Complexes

Prior to our initial work, there was only one example in the literature of an unsubstituted malonato ligand C-bonded to Pt(II) \(^{20} \) and the only Pt(IV) complexes, which incorporated a C-malonato ligand, were \(^{36} \) in which the malonate acted as a terdentate ligand giving both C-bonded and \(O,O' \)-chelation. \(^{86} \) In addition, we recently reported \(^{106} \) the syntheses of several new cyclometalated complexes of Pt(II) (66 and 67) which are \(C,N,N',C' \)- and \(C,N,N' \)-chelates, respectively.

Our interest in platinum stems from the anti-tumor activity observed in cis-diammine platinum complexes, \(^{107} \) of which cis-diamminedichloroplatinum(II) ("cisplatin") is best known. The generally accepted mechanism for cisplatin's activity is initial preferential binding at the N(7) position of the guanine moiety of DNA, \(^{108} \) replacing the chloride ligands, thereby forming intra-strand \(^{109} \) cross-links which are the sites of nicking in the DNA.

Cisplatin is rather nonselective in that it binds both tumor and normal DNA. The lack of selectivity is generally associated with the lability of the Pt-Cl bond. It was rationalized that complexes in which the non-ammine ligands are not as labile as
chloride but yet react with specific sites should lead to more selective anti-tumor activity than cisplatin. To this end, the cis complexes reported here, which contain Pt-C-malonato bonds, are prime candidates for anti-tumor activity, especially Pt(phen)(dmm)$_2$ 71b which, in addition to the possibility of Pt binding to DNA, also contains a phenanthroline ligand that can intercalate into DNA itself110 thereby facilitating the complex's binding to DNA.

In order to compare the similarities and differences of palladium and platinum C-malonato complexes, the platinum analogs of the previously reported C-malonato complexes of two types: cyclometalated complexes 63 (X = CH, R = H)103,104 and the acyclic metalated complexes 5399 were prepared.

Results

Syntheses of C-Malonato Complexes

Because of the rapid aquation (hydrolysis) of platinum salts,111 the initial 2:1 adducts 68 were elusive; alkaline aqueous conditions gave mixtures, presumably of both cis and trans isomers as well as aquated complexes. Despite these complex mixtures, the interesting acetate dimer 70, whose structure was proven by X-ray crystal diffraction, was isolated from a reaction of K$_2$PtCl$_4$ with 62 in an acetone/H$_2$O mixture utilizing KOH, as base. Since no acetate was added to the reaction, it was assumed that the commercially obtained K$_2$PtCl$_4$ contained acetate as an impurity. Attempts to prepare 70 under controlled
conditions as well as those to reproduce the initial preparation failed. Dimer 70 is the first example in which ligand 62 (or related ligands) was found to form a dimeric species; even in equimolar ratios, these ligands generally react to form 2:1 complexes.

Although reactions using K₂PtCl₄ and the appropriate ligand in DMF or CH₃CN did not give the desired 68, dichloroplatinum(II) did react with 62 in refluxing THF to give 68, however, this reaction depended on the particular lot of PtCl₂ used. In an effort to increase the solubility of PtCl₂, refluxing dioxane was used as solvent for this reaction with reproducible results being obtained, regardless of the lot of PtCl₂ used.

\[
\begin{align*}
62 \quad & \xrightarrow{\text{PtCl}_2 \quad \text{THF} \quad (\text{dioxane})} \\
68 \\
\end{align*}
\]

Initial attempts to make 69 using previously reported conditions (K₂CO₃, DMF, 25 °C) failed. The most obvious variable to change was the reaction temperature but even at 50 °C, no reaction occurred. Finally, at 90 °C, cyclometalation succeeded to give 69a and 69b in 84% and 19%, respectively. The low yield of 69b was attributed to β-elimination of the cyclometalated complex at the elevated temperatures as shown by the appearance of vinyl absorptions in the ¹H NMR spectrum of the crude mixture.

The adducts Pt(phen)Cl₂, Pt(dipy)Cl₂, and Pt(diox)Cl₂ (diox = 1,1-bis(2-pyridyl)-1,3-dioxolane) were prepared by a modified procedure of Rosenblatt and Schleede where acetone solutions of the ligands were added to an aqueous solution of K₂PtCl₄.
from which the product precipitated. Elevated temperatures (90 °C) were again required for metalation; 71a and 71b were obtained in 78% and 76%, respectively. Under these strenuous conditions, it was apparent that dimethyl malonate had self-condensed to give a small amount of a thick oil which was easily removed by chromatography. Pt(diox)Cl₂ did not react under any of our conditions.

Presumably the metalations require high temperatures due to the relative insolubility of the Pt(L)Cl₂ adducts in DMF. To circumvent this problem, KI was added to the metalation reactions to generate Pt(L)I₂ in situ which, if not more soluble, would certainly be more reactive. An initial test reaction at 25 °C using Pt(phen)Cl₂, Hdmm,
K₂CO₃, and KI in DMF indeed gave (63%) Pt(phen)(dmm)₂ 71b along with some mono- and un-substituted products; raising the temperature to 40 °C improved the yield of 71b to 80%. The complex Pt(dipy)Cl₂, under identical conditions, gave (74%) Pt(dipy)(dmm)₂ (71b); however, Pt(diox)Cl₂ gave a complex mixture from which no pure complexes were isolable. Unfortunately, attempts using KI to effect cyclometalation on 68 at lower temperatures (=40 °C) also failed.

Reactivity of Pt(II) C-Malonato Complexes

Simple alkyl organoplatinum(II) complexes are known to react with numerous organic substrates such as alkyl and acyl halides, as well as olefins¹¹³ (Figure 4); however, Pt(phen)(dmm)₂ (71b) failed to react with methyl vinyl ketone, acetyl chloride or benzoyl chloride, in which each returned the unchanged complex. Reaction of 71b with methyl iodide gave a complex mixture which included Pt(phen)I₂ (probably by two consecutive oxidative addition/reductive elimination sequences whereby dimethyl methylmalonate should also be formed but was not investigated).

\[
\text{71b} + \text{reagent} \rightarrow \text{N. R.}
\]

Figure 4. Reactions of Organoplatinum Complexes.

<table>
<thead>
<tr>
<th>Reagent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetyl chloride,</td>
</tr>
<tr>
<td>Benzoyl chloride,</td>
</tr>
<tr>
<td>Methyl vinyl ketone</td>
</tr>
</tbody>
</table>
Organoplatinum(II) complexes are also known to undergo ligand-ligand exchange,113 for example the transfer of a C-malonato ligand. However, attempts to react 71b with Pt(phen)Cl\textsubscript{2} to obtain Pt(phen)(dmm)Cl gave only starting complexes.

Oxidation of organoplatinum(II) complexes can be accomplished using X\textsubscript{2}, and accordingly, when Br\textsubscript{2} was added to either Pt(dipy)(dmm)\textsubscript{2} (71a) or Pt(phen)(dmm)\textsubscript{2} (71b), the corresponding Pt(dipy)(dmm)\textsubscript{2}Br\textsubscript{2} (72a) or Pt(phen)(dmm)\textsubscript{2}Br\textsubscript{2} (72b), respectively, was immediately formed, both in 98\% yield. Predominant trans addition occurred114 as determined by symmetry in the 1H and 13C NMR spectra of the Pt(IV) complexes. Use of Cl\textsubscript{2} also effected oxidation of 71a and 71b; lower yields were realized probably due to oxidation of the ligand. Interestingly, the oxidation could be conducted using CuCl\textsubscript{2} (72c, 72d, and 73) or CuBr\textsubscript{2} (72a and 72b) as the oxidant, in general the yields were lower (70-90\%) than with Br\textsubscript{2} but higher than with Cl\textsubscript{2}. Although CuX\textsubscript{2} reacts with organometallic complexes by cleaving the C-metal bond,115 Terheijden has recently reported116 the oxidation of platinum(II) complexes with CuX\textsubscript{2} and reported lower yields than with X\textsubscript{2}. One by-product isolated from the reaction of Pt(phen)(dmm)\textsubscript{2} (71b) with CuCl\textsubscript{2}, was the cis addition product giving (5\%) the
unsymmetric cis(dichloro)-bis(dimethyl malonato-C)-1,10-phenanthrolineplatinum(IV) (73). Pt(dipy)(dmm)$_2$ (71a) gave much cleaner reactions with CuX$_2$ than did Pt(phen)(dmm)$_2$ (71b).

Attempts to react 72b with excess Hdmm to form the Pt(IV) complex Pt(phen)(dmm)$_4$ (74), which contains four C-malonato ligands, gave instead the reduced product Pt(phen)(dmm)$_2$ (71b). Complex 74 may have formed in the reaction but then underwent reductive elimination to give the reduced complex 71b. An alternative explanation is that potassiomalonate attacked one of the bromides with concomittant reduction of platinum.

The Pt(IV) complex 72b possesses two acidic protons and upon treatment with base and elimination of two equivalents of HBr, the di-carbene complex 75 (or its
polynuclear equivalent) was expected to form; however, treatment of 72b with NaOH gave (25%) Pt(phen)(dmm)$_2$ (71b) probably with loss of HOBr and Br$^-$. The other possible mechanism, which could explain this product, is reductive elimination of Br$_2$; however, this is not likely due to the greater propensity for alkyl-alkyl elimination as opposed to Br-Br elimination. After work-up, the mixture rapidly turned dark green perhaps an indication of the decomposing intermediate 75.

Characterization of Platinum C-Malonato Complexes

Table I contains important analytical data for various palladium(II) and platinum(II) C-malonato complexes for comparison purposes.

One of the most important features about the 1H and 13C NMR spectra of platinum complexes is the fact that, of the six stable isotopes of platinum, only one isotope, namely 195Pt, has a nuclear spin (1/2). It has a relatively high natural abundance (33.8%) and gyromagnetic ratio ($\gamma = 5.7412$) allowing the 195Pt-H and 195Pt-C couplings to be easily observed. Because 195Pt does not have a natural abundance of 100%, a singlet in the 1H NMR spectrum appears as a 1:4:1 triplet: a singlet due to the molecules which have 9Pt with no spin (66.2%) and a doublet (usually called satellites) due to molecules containing 195Pt (33.8%) (see Figure 5).

As with $H-H$ or $C-H$ coupling constants, the ^{195}Pt-H and ^{195}Pt-C coupling constants
Figure 5. Appearance of a Singlet, a Doublet, and a Triplet Coupled to Platinum.

decrease in magnitude as the distance (number of bonds) between the nuclei increases. Thus for a malonato ligand, the magnitude of the 195Pt-C and 195Pt-CH coupling constants can be used to ascertain if O,O'-chelation or C-bonding occurred.

The coupling constants $J_{P\alpha}$ can be either positive or negative. However, in this work, only the absolute values of the coupling constants are reported.
<table>
<thead>
<tr>
<th>Compound</th>
<th>M</th>
<th>R</th>
<th>R'</th>
<th>L</th>
<th>1H NMR [MCH$2^1J{HH}$]</th>
<th>13C NMR [MC$t^1J{HC}$]</th>
<th>IR [C-bonded C=O, cm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pda</td>
<td>Me</td>
<td>Me</td>
<td>PPh$_3$</td>
<td>3.54</td>
<td>51.1</td>
<td>1670s, 1640s</td>
<td></td>
</tr>
<tr>
<td>Pdb</td>
<td>Me</td>
<td>Me</td>
<td>PEt$_3$</td>
<td>3.53</td>
<td>--</td>
<td>1683vs, 1650vs</td>
<td></td>
</tr>
<tr>
<td>Pdb</td>
<td>Me</td>
<td>Me</td>
<td>PMePh$_2$</td>
<td>3.72</td>
<td>--</td>
<td>1568vs, 1515vs</td>
<td></td>
</tr>
<tr>
<td>Pdb</td>
<td>Me</td>
<td>Me</td>
<td>PPhMe$_2$</td>
<td>3.55</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Pda</td>
<td>Me</td>
<td>Me</td>
<td>PCy$_3$</td>
<td>3.44</td>
<td>--</td>
<td>1675s, 1665m</td>
<td></td>
</tr>
<tr>
<td>Pdb</td>
<td>Ph</td>
<td>Me</td>
<td>PPh$_3$</td>
<td>4.38</td>
<td>47.8(cis)</td>
<td>1653vs, 1558vs</td>
<td></td>
</tr>
<tr>
<td>Pdb</td>
<td>CF$_3$</td>
<td>Me</td>
<td>PPh$_3$</td>
<td>3.91(cis)</td>
<td>43.4</td>
<td>1715vs, 1665vs</td>
<td></td>
</tr>
<tr>
<td>Pdb</td>
<td>thienyl</td>
<td>CF$_3$</td>
<td>PPh$_3$</td>
<td>4.34, 4.41</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ptc,d</td>
<td>OMe</td>
<td>OMe</td>
<td>PPh$_3$</td>
<td>3.72(96)</td>
<td>--</td>
<td>1740, 1715</td>
<td></td>
</tr>
<tr>
<td>Ptc,d</td>
<td>OMe</td>
<td>Me</td>
<td>PPh$_3$</td>
<td>3.89(105)</td>
<td>--</td>
<td>1735, 1715</td>
<td></td>
</tr>
<tr>
<td>Ptc,d</td>
<td>OEt</td>
<td>Me</td>
<td>PPh$_3$</td>
<td>3.85(101)</td>
<td>--</td>
<td>1710</td>
<td></td>
</tr>
<tr>
<td>Pt*</td>
<td>Me</td>
<td>Me</td>
<td>PPh$_3$</td>
<td>4.04(110)</td>
<td>41.3</td>
<td>1685s, 1650s</td>
<td></td>
</tr>
<tr>
<td>Pt*</td>
<td>Me</td>
<td>Me</td>
<td>PCy$_3$</td>
<td>3.99</td>
<td>--</td>
<td>1645s</td>
<td></td>
</tr>
<tr>
<td>Ptf</td>
<td>Me</td>
<td>Me</td>
<td>pyr</td>
<td>5.05(129)</td>
<td>41.7(619)</td>
<td>1700s, 1655m</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Selected analytical data for C-bonded β-dicarbonyls (continued).

<table>
<thead>
<tr>
<th>Compound</th>
<th>M</th>
<th>R</th>
<th>R'</th>
<th>L</th>
<th>1H NMR [MCH(2P$_{N M}$)]</th>
<th>13C NMR [MC(2P$_{C C}$)]</th>
<th>IR [C-bonded C=O, cm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pdi</td>
<td>OMe</td>
<td>OMe</td>
<td>N,N,O</td>
<td></td>
<td>3.93</td>
<td>28.2</td>
<td>1714s</td>
</tr>
<tr>
<td>Pdi</td>
<td>OMe</td>
<td>OMe</td>
<td>O,N,S</td>
<td></td>
<td>3.69</td>
<td>32.3</td>
<td>1718</td>
</tr>
<tr>
<td>Pdb</td>
<td>OMe</td>
<td>OMe</td>
<td>dipy</td>
<td></td>
<td>4.12</td>
<td>25.0i</td>
<td>--</td>
</tr>
<tr>
<td>Pdb</td>
<td>OMe</td>
<td>OMe</td>
<td>phen</td>
<td></td>
<td>4.25</td>
<td>25.3i</td>
<td>--</td>
</tr>
<tr>
<td>Pt</td>
<td>OMe</td>
<td>OMe</td>
<td>phen</td>
<td></td>
<td>4.81(130)</td>
<td>18.8(634)</td>
<td>1725</td>
</tr>
<tr>
<td>Pt</td>
<td>OMe</td>
<td>OMe</td>
<td>dipy</td>
<td></td>
<td>4.68(129)</td>
<td>19.7(635)</td>
<td>1744,1721</td>
</tr>
<tr>
<td>Pdj</td>
<td>OMe</td>
<td>OMe</td>
<td>n=2</td>
<td></td>
<td>3.67</td>
<td>52.0k</td>
<td>--</td>
</tr>
<tr>
<td>Pdj</td>
<td>OMe</td>
<td>OMe</td>
<td>n=1</td>
<td></td>
<td>3.75</td>
<td>--</td>
<td>1708</td>
</tr>
<tr>
<td>Pdj</td>
<td>OMe</td>
<td>OMe</td>
<td>n=1</td>
<td></td>
<td>3.75</td>
<td>--</td>
<td>1708</td>
</tr>
<tr>
<td>Pdj</td>
<td>OMe</td>
<td>OMe</td>
<td>diox</td>
<td></td>
<td>3.90</td>
<td>--</td>
<td>1695</td>
</tr>
<tr>
<td>Pdj</td>
<td>OEt</td>
<td>OEt</td>
<td>diox</td>
<td></td>
<td>4.17</td>
<td>--</td>
<td>1705</td>
</tr>
</tbody>
</table>
Table I. Selected analytical data for C-bonded β-dicarboxyls (continued).

<table>
<thead>
<tr>
<th>Compound</th>
<th>M</th>
<th>R</th>
<th>R'</th>
<th>L</th>
<th>1H NMR</th>
<th>13C NMR</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[MCH(1J_{Pd})]</td>
<td>[MC(1J_{Pd})]</td>
<td>[C-bonded C=O, cm$^{-1}$]</td>
</tr>
<tr>
<td>Pdl OMe OMe diox</td>
<td>3.85</td>
<td>52.3k</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe diox</td>
<td>3.87</td>
<td>--</td>
<td>1690</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe n=1; R'=H; X=CH</td>
<td>--</td>
<td>53.6</td>
<td>1670</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdm OMe OMe n=2; R'=H; X=CH</td>
<td>--</td>
<td>45.6</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe n=1; R'=4-Me; X=CH</td>
<td>--</td>
<td>53.1</td>
<td>1680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe n=1; R'=5-Me; X=CH</td>
<td>--</td>
<td>52.9</td>
<td>1730-1670b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe n=1; R'=H; X=N</td>
<td>--</td>
<td>54.6</td>
<td>1700-1645b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe n=1; R'=3-Me; X=N</td>
<td>--</td>
<td>52.6</td>
<td>1710-1680b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdl OMe OMe n=1; R'=5-Me; X=N</td>
<td>--</td>
<td>54.3</td>
<td>1710-1670b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt OMe OMe n=1; R'=H; X=CH</td>
<td>--</td>
<td>49.3(453)</td>
<td>1686vs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt OMe OMe n=2; R'=H; X=CH</td>
<td>--</td>
<td>41.4(448)</td>
<td>1690s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdm OMe OMe X=CH</td>
<td>--</td>
<td>51.0</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdm OMe OMe X=N</td>
<td>--</td>
<td>51.6</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table I. Selected analytical data for C-bonded \(\beta \)-dicarbonyls (continued).

<table>
<thead>
<tr>
<th>Compound</th>
<th>M</th>
<th>R</th>
<th>R'</th>
<th>L</th>
<th>(^1H) NMR [MCH((^2J_{PH}))]</th>
<th>(^13C) NMR [MC((^1J_{PC}))]</th>
<th>IR [C-bonded C=O, cm(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(^a) OEt OEt dipy; R(^1)=H</td>
<td>--</td>
<td>46.4</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd(^a) OEt OEt dipy; R(^1)=Me</td>
<td>--</td>
<td>46.7</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd(^a) OEt OEt dipy; R(^1)=CH(_2)dem</td>
<td>--</td>
<td>52.9</td>
<td>1728</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd(^a) OMe OMe phen; R(^1)=CH(_2)dem</td>
<td>--</td>
<td>52.7</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd(^a) OEt OEt</td>
<td>----</td>
<td>47.4</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(^a) Me Me pyr</td>
<td>4.29(102)</td>
<td>60.3(369)</td>
<td>1650 vs, 1610s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table I. Selected analytical data for C-bonded β-dicarbonyls (continued).

<table>
<thead>
<tr>
<th>Compound</th>
<th>M</th>
<th>R</th>
<th>R'</th>
<th>L</th>
<th>(^1)H NMR</th>
<th>(^{13})C NMR</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[MCH((^2)J(_{PH}))]</td>
<td>[MC((^1)J(_{PC}))]</td>
<td>[C-bonded C=O, cm(^{-1})]</td>
</tr>
<tr>
<td>Pt OMe OMe phen; X=Br</td>
<td>5.04(90)</td>
<td>21.1(560)</td>
<td>1746s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt OMe OMe dipy; X=Br</td>
<td>4.94(90)</td>
<td>21.0(557)</td>
<td>1744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt OMe OMe phen; X=Cl</td>
<td>5.09(89)</td>
<td>23.9(561)</td>
<td>1744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt OMe OMe dipy; X=Cl</td>
<td>4.93(89)</td>
<td>21.0(556)</td>
<td>1742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Reference 14. b) Reference 18. c) Reference 20. d) The O,O'-chelate is acac. e) Reference 15. f) Reference 94. g) Reference 95. h) Reference 98. i) Literature values were incorrectly reported. j) Reference 99. k) Literature values are probably incorrect. l) Reference 103. m) Reference 104. n) Reference 100
Proton NMR Spectroscopy of the Pt(II) Complexes

Upon complexation to form the Pt(L)_nCl_2 adducts, the main change in the ^1H NMR spectra relative to the ligands is a downfield shift for the aromatic proton [H-2(6)] nearest the ligating nitrogen atom (H-6 for pyridine/dipyridine and H-2 for phenanthroline). This shift is electronic in nature due to the electron-withdrawing effect of the Pt on the ring. As observed in other pyridine Pt(II) complexes, this same proton is also coupled to ^195Pt with a coupling constant (^J) range of 28.8-46.6 Hz. The N,N'-chelated complexes have larger coupling constants (L = diox: 46.6 Hz; phen: 41.3 Hz; dipy: 40.4 Hz) than the trans complexes 68a and 68b (28.8 and 30.8 Hz, respectively) which probably reflects the relative "trans effects" of chloride versus nitrogen. The other ring protons are probably also coupled to ^195Pt but at 80 MHz could not be observed.

In the spectrum of the complexes containing Pt-C-malonato bonds, the most important features are the malonato CH chemical shifts and ^2J ^195Pt-H coupling constants. Upon metalation, the remaining proton on malonate shifted downfield relative to unsubstituted malonate (3.39 ppm) with a range of 4.68-5.38 ppm. Although bordering the vinyl region expected for a O,O'-chelate, the effect is rather a downfield shift resulting from increased C-substitution.

The data which best supported C-bonding of the malonate ligand are the PtCH coupling constants which, for the complexes reported here, are only possible in the N,N'-chelates. For the complexes reported here, the range for ^2J_{phH} is 125.9-129.9 Hz. This coupling constant is too large for an O,O'-chelate having a four-bond coupling constant. Interestingly, the ^2J_{phH} coupling constant in various methyl platinum complexes ranges from -50 to -85 Hz, much lower than those observed here. The only other Pt(II)-C-malonato complex reported was 40 which had a ^2J_{phH} coupling
constant of 96 Hz.

Although complex 69a showed symmetry in its NMR spectra, complex 69b was clearly less symmetric in that two different methoxy protons were seen in the 1H NMR spectrum with one having a large upfield shift (δ 2.83). Also, in the 13C NMR spectrum, in addition to two methoxy carbons (δ 49.7, 50.6), two carbonyl resonances were observed (δ 174.5, 176.5). This will be discussed further in the X-ray discussion.

Comparing the Pt(L)$_n$Cl$_2$ adducts to the C-malonato complexes (69 and 71), the N,N'-chelates again showed a downfield shift of the ring protons nearest nitrogen [H-2(6)]: for Pt(phen)(dmm)$_2$ and for Pt(dipy)(dmm)$_2$ $\Delta\delta$ were 0.73 and 0.49 ppm, respectively. However in the C,N-chelates, complex 69a's H-6 shifted downfield only 0.09 ppm and complex 69b's H-6 shifted upfield by 0.18 ppm. This is probably due to increased steric interaction in the cyclometalated complexes between H-6 and the ester moieties of the trans ligand which is absent in the adducts. (A crude X-ray crystal structure determination of adduct 68a showed that the pyridine ligands are perpendicular to the coordination plane with no non-bonded intramolecular contacts.)

The ring $^3J_{PH}$ coupling constants for these same protons are decreased in the N,N'-chelates ($^3J_{PH} = 25.6$ Hz for both 71a and 71b; an average decrease of 15.2 Hz) but increased in the C,N-chelates ($^3J_{PH} = 36.8$ and 40.4 Hz for 69a and 69b, respectively; an average increase of 8.8 Hz). Also worth noting is a small five-bond coupling of the methoxy protons to 195Pt of 3.0 Hz for 71a and 3.4 Hz for 71b.

Although in most of the Pt complexes' 1H NMR spectra the shifts are similar to the corresponding Pd complexes, a couple of shifts are significantly different. For the N,N'-chelates, the PtCH shifts are downfield of the PdCH shifts [M(dipy)(dmm)$_2$: Pd = 4.12, Pt = 4.68 ppm; M(phen)(dmm)$_2$: Pd = 4.25, Pt = 4.81 ppm; an average
downfield shift of 0.56 ppm]. Also the Pt complexes' H-2(6) protons are shifted downfield relative to the analogous Pd complexes [M(dipy)(dmm)_2: Pd = 9.74, Pt = 10.09 ppm; M(phen)(dmm)_2: Pd = 10.07, Pt = 10.44 ppm; complex 69a: Pd = 9.06, Pt = 9.25 ppm; an average downfield shift of 0.30 ppm]. In one example, Pt(diox)Cl_2, the Pt complex's H-6 is shifted upfield from the Pd complex: Pd(diox)Cl_2: H-6 = 9.42 ppm;^{119} Pt(diox)Cl_2: H-6 = 9.37 ppm.

Complete 1H NMR spectral data for the Pt(II) complexes are presented in Table II.
Table II. Proton NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs.*

| Compound | Assignment | Pd(II) | Pt(II) | $|J_{PH}|$ |
|----------|------------|--------|--------|--------|
| ![Image](image1.png) | 5-pyrH | b | 7.83c | 3$J_{PH} = 40.4$ Hz |
| | 3-pyrH | b | 8.34c | |
| | 4-pyrH | b | 8.48-8.71c | |
| | 6-pyrH | b | 9.50c | |
| ![Image](image2.png) | 3-phenH | b | 8.17c | 3$J_{PH} = 41.3$ Hz |
| | 5-phenH | b | 8.29c | |
| | 4-phenH | b | 9.04c | |
| | 2-phenH | b | 9.71c | |
| ![Image](image3.png) | CH$_2$ | 4.34-4.45d | 4.25-4.45 | |
| | 5-pyrH | 7.31d | 7.40 | |
| | 3,4-pyrH | 7.84-7.94d | 7.79-8.04 | |
| | 6-pyrH | 9.42d | 9.37 | 3$J_{PH} = 46.6$ Hz |
| ![Image](image4.png) | CH$_3$ | 3.62c | 3.62 | 5$J_{PH} = 3.0$ Hz |
| | CH | 4.12c | 4.68 | 2$J_{PH} = 129.4$ Hz |
| | 5-pyrH | 7.56c | 7.61 | |
| | 3-pyrH | 8.00c | 7.99-8.19 | |
| | 4-pyrH | 8.10c | 7.99-8.19 | |
| | 6-pyrH | 9.74c | 10.09 | 3$J_{PH} = 25.6$ Hz |
| ![Image](image5.png) | CH$_3$ | 3.66c | 3.64 | 5$J_{PH} = 3.4$ Hz |
| | CH | 4.25c | 4.81 | 2$J_{PH} = 129.9$ Hz |
| | 5-phenH | 7.86c | 7.89 | |
| | 3-phenH | 7.87c | 7.93 | |
| | 4-phenH | 8.41c | 8.53 | |
| | 2-phenH | 10.07c | 10.44 | 3$J_{PH} = 25.6$ Hz |
Table II. Proton NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs (continued).

| Compound | Assignment | Pd(II) | Pt(II) | $|J_{PdH}|$ |
|---------|------------|--------|--------|----------|
| CH_3 | b | 3.80f | | |
| CH_2 | b | 4.35f | | |
| CH | b | 5.35f | | |
| 5-pyrH | b | 7.14-7.32f | | |
| 3-pyrH | b | 7.44-7.76f | | |
| 4-pyrH | b | 7.44-7.76f | | |
| 6-pyrH | b | 9.16f | $3J_{PdH} = 30.8$ Hz | |
| CH_3 | b | 3.40g | 3.45 | $3J_{PdH} = 20.3$ Hz |
| CH_2 | b | 3.75g | 3.66 | |
| 5-pyrH | b | 7.17g | 7.09 | |
| 3-pyrH | b | 7.33g | 7.35 | |
| 4-pyrH | b | 7.70g | 7.75 | |
| 6-pyrH | b | 9.06g | 9.25 | $3J_{PdH} = 36.8$ Hz |
| β-CH_2 | b | 2.60-2.79 | | |
| α-CH_2 | b | 3.59-4.04 | | |
| CH | b | 3.59-4.04 | | |
| CH_3 | b | 3.79 | | |
| 3-pyrH | b | 7.21-7.39 | | |
| 5-pyrH | b | 7.21-7.39 | | |
| 4-pyrH | b | 7.69 | | |
| 6-pyrH | b | 9.09 | $3J_{PdH} = 28.8$ Hz | |
Table II. Proton NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs (continued).

| Compound | Assignment | Pd(II) | Pt(II) | $|^oJ_{PtH}|$ |
|----------|------------|--------|--------|----------------|
| α-CH$_2$ | b | 2.12-2.30 | | |
| CH$_3$ | 2.75, 3.26h | 2.83, 3.29 | | |
| β-CH$_2$ | b | 2.93-3.74 | | |
| 3-pyrH | b | 7.06-7.44 | 7.72 | |
| 5-pyrH | b | 7.06-7.44 | | |
| 4-pyrH | b | 7.72 | | |
| 6-pyrH | b | 8.91 | 3$^oJ_{PtH} = 40.4$ Hz | |

a) Shifts are reported in ppm downfield from TMS and spectrum were taken in CDCl$_3$, unless otherwise noted. b) Data not reported. c) Me$_2$SO-d_6. d) Ref. 119. e) Ref. 98. f) In Me$_2$SO-d_6 δ 3.74 (CH$_3$), 4.20 (CH$_2$), 5.12 (CH), 7.44-7.58 (3,5-pyrH), 7.93 (4-pyrH), 8.88 (6-pyrH). g) Ref. 103. h) Ref. 104.
Proton NMR Spectroscopy of the Pt(IV) Complexes

Probably the most significant aspect of the 1H NMR spectra of the Pt(IV) complexes is the fact that 195Pt-H coupling constants are generally about 30% less than corresponding Pt(II) complexes due to decreased electron density on the Pt(IV) atom. In these Pt(IV) complexes the average $^6J_{PtlH}$ values are: $^2J = 89.5$ Hz, $^3J = 14.2$ Hz, with an average decrease of 67% supporting the proposed Pt(IV) structures.

Another interesting trend is that the PtCH proton shifts downfield by an average of 0.26 ppm for the symmetrical Pt(IV) complexes. Also H-2(6) shifts downfield relative to the Pt(II) complexes with an average downfield shift of 0.44 ppm and a range of 10.53-10.89 ppm. These shifts are due to the increased electron-withdrawing ability of Pt(IV) over Pt(II).

The $^2J_{Pth}$ coupling constants for the Pt(IV) complexes range from 84.7 to 98.9 Hz confirming the fact that C-bonding is maintained during oxidation. The average decrease in $^2J_{Pth}$ as compared with the Pt(II) complexes is 30% as expected for Pt(IV) complexes.

The structure of the unsymmetrical cis(dichloro)-cis(dimethyl malonato-C)-1,10-phenanthrolineplatinum(IV) (73) was assigned based on its 1H NMR spectrum which has four different methoxy peaks ranging from δ 2.56-3.84. The fact that four signals rather than two averaged signals were observed indicates hindered rotation (on the NMR time scale) about the Pt-C bond in this complex, probably due to a malonate-malonate steric interaction. In addition, the phenanthroline moiety showed two ortho proton signals (δ 10.60 and 10.87; $^3J_{Pth} = 20.0$ and 30.5 Hz, respectively).

Complete 1H NMR spectral data for the Pt(IV) complexes are presented in Table III.
Table III. Proton NMR spectral data for the Pt(IV) complexes.

| Compound | Assignment | Shift | $|\nu J_{\text{PtH}}|$ |
|----------|------------|-------|------------------|
| ![Compound 1](image) | CH_3 | 3.76 | $^5J_{\text{PtH}} = 3.0$ Hz |
| | CH | 5.04 | $^2J_{\text{PtH}} = 90.3$ Hz |
| | 5-phenH | 7.96 | |
| | 3-phenH | 8.00 | |
| | 4-phenH | 8.49 | |
| | 2-phenH | 10.89 | $^3J_{\text{PtH}} = 15.4$ Hz |
| ![Compound 2](image) | CH_3 | 3.72 | |
| | CH | 4.94 | $^2J_{\text{PtH}} = 89.9$ Hz |
| | 5-pyrH | 7.59-7.77 | |
| | 3,4-pyrH | 8.02-8.29 | |
| | 6-pyrH | 10.53 | $^3J_{\text{PtH}} = 14.1$ Hz |
| ![Compound 3](image) | CH_3 | 3.73 | $^5J_{\text{PtH}} = 2.7$ Hz |
| | CH | 5.09 | $^2J_{\text{PtH}} = 88.7$ Hz |
| | 5-phenH | 7.95 | |
| | 3-phenH | 8.01 | |
| | 4-phenH | 8.50 | |
| | 2-phenH | 10.88 | $^3J_{\text{PtH}} = 14.6$ Hz |
| ![Compound 4](image) | CH_3 | 3.72 | |
| | CH | 4.93 | $^2J_{\text{PtH}} = 89.1$ Hz |
| | 5-pyrH | 7.60-7.78 | |
| | 3,4-pyrH | 7.91-8.18 | |
| | 6-pyrH | 10.53 | $^3J_{\text{PtH}} = 12.8$ Hz |
Table III. Proton NMR spectral data for the Pt(IV) complexes* (continued).

| Compound | Assignment | Shift | $|^{1}J_{PtH}|$ |
|---------------------------|------------|--------|----------------|
| CH₃ | | 2.56 | |
| | | 3.58 | |
| | | 3.73 | |
| | | 3.84 | |
| CH | | 4.52 | $^{2}J_{PtH} = 84.7$ Hz |
| | | 5.87 | $^{2}J_{PtH} = 98.9$ Hz |
| (H₂ cis to dmm) | | | |
| 3.5,6,8-phenH | 7.92-8.16 | | |
| 7-phenH | 8.60 | | |
| 4-phenH | 8.62 | | |
| 2-phenH | 10.60 | | $^{3}J_{PtH} = 20.0$ Hz |
| 9-phenH | 10.87 | | $^{3}J_{PtH} = 30.5$ Hz |

a. All spectra were taken in CDCl₃.
Carbon-13 NMR Spectroscopy of the Pt(II) Complexes

The first thing that is apparent in the 13C NMR spectra of the complexes is the enhanced 195Pt coupling over that seen in the 1H NMR spectra. The pyridine/dipyridine complexes show a $^4J_{PLC}$ coupling to C-4 of the ring ranging from 6.5 to 9.7 Hz. Two different 3J coupling constants are possible: C-3 and C-5. Of the two, the phenanthroline complex only showed a coupling in C-3: $^3J_{PLC} = 29.0$ Hz. On first inspection both of these coupling constants would be expected to be similar, however, in these pyridine/dipyridine complexes C-5 has a larger coupling constant than does C-3. For the five-membered chelated pyridine/dipyridine complexes, Δ^3J ($J_{C5} - J_{C3}$) range is 7.8-9.7 Hz, very close to the 4J range (6.5-9.7 Hz), suggesting that for C-5 there is only one pathway for coupling: Pt-N-C(6)-C(5). But for C-3 there are two pathways for coupling: Pt-N-C(2)-C(3) and Pt-N'-C(2')-C(2)-C(3) [Pt-\(\beta\)C-\(\alpha\)C(2)-C(3) for 69a], a four bond route (see Figure 6). Assuming these four bond and three bond coupling constants are of opposite sign and are additive then the observed coupling constants for C-3 are the expected ones. Sarneski et al. have recently proposed additive multi-path couplings such as this between platinum and carbon in small ring systems. Based upon the valid assumption that, for 3J, when n is even the coupling constants are of one sign and when n is odd they are of the opposite sign, then, where two different paths are available for coupling, if the summation of n is even (both odd or both even) the observed coupling constant will be the sum of the absolute values of the two constants and larger than expected. If the summation of n is odd (one odd and one even), then the observed coupling constant will be the difference of the absolute values of the two separate constants and substantially less than expected.

In complex 69b, 3J for C-5 is larger than for C-3 and Δ^3J is even greater (23.5
Figure 6. Three and Four Bond Coupling Routes to C-3 for the \(N,N' \)-Chelates.

Hz). In this case there exists a 3-bond and a 5-bond path for \(^{195}\text{Pt}\) coupling to C-3. Assuming the signs for these two constants are the same then the sum of the two paths gives the larger observed coupling constant. The two bond coupling constants to C-2(6) are similar in all of the Pt(II) complexes with a range of 30.5 to 34.0 Hz.

In complex 69a, the α-pyridyl carbon showed a two bond (or a two and a three bond) coupling to \(^{195}\text{Pt}\) of 17.4 Hz, substantially less than the two bond coupling constants to C-2 and C-6 (37.5 and 30.5 Hz, respectively); however, in 69b, the corresponding three bond (or two three bond paths) coupling constant to the α-pyridyl carbon was 132.0 Hz and the β-carbon has an aggregate four bond and two bond coupling constant of 43.5 Hz. The differences seen here are probably an effect of the six-membered ring conformation and Karplus effects. The four-bond path for the β-carbon is probably negligible because of the bond angles, whereas the two three-bond paths both have a dihedral angle of nearly zero (see X-ray discussion) thereby maximizing the Karplus effect. This result again supports the theory of multipath additive coupling constants.\(^{120}\)

Of course the largest coupling constants are the one-bond Pt-C coupling constants which can be grouped into two ranges: cyclometalated complexes (448.0-453.2 Hz) and the acyclic cis metalated complexes (634-635 Hz). The main effect here is the
differing trans effects, but also the non-cyclometalated complexes are more flexible and allow maximum Pt-C orbital overlap and, thus, the larger coupling constants.

In the N,N'-chelated complexes, the PtC resonances appeared at 19.7 and 18.8 ppm for 71a and 71b, respectively, relative to ≈ 40 ppm for Hdmm. For the C,N-chelated complexes the carbon bonded to the Pt resonated at $\delta 49.3$ and 41.4 for 69a and 69b, respectively, compared with $\delta 49.9$ and 50.8 for the ligands. This difference in $\Delta \delta$'s between the N,N'- and C,N-chelates is probably due to different trans effects.

Before a comparison of the MC shifts for Pd(phen)(dmm)$_2$ and Pd(dipy)(dmm)$_2$ can be made, the literature values98,100 must be reassigned to 25.6 and 25.4 ppm, respectively. A comparison then shows a slight upfield shift (average 6.2 ppm) in the Pt complexes. This upfield shift was also seen in the C,N-chelated complexes with an average shift of 4.2 ppm. All other chemical shifts (Table IV) are as expected and very close to the Pd analogues (largest $\Delta \delta = 2.2$ ppm).
Table IV. Carbon-13 NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs.*

<table>
<thead>
<tr>
<th>Compound</th>
<th>Assignment</th>
<th>Pd(II)</th>
<th>Pt(II)</th>
<th>(^{1}J_{\text{PtC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>25.0(^{d,e})</td>
<td>19.7</td>
<td>19.7</td>
<td>635 Hz</td>
</tr>
<tr>
<td>CH(_3)</td>
<td>50.9(^{e})</td>
<td>51.5</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>121.6(^{e})</td>
<td>122.5</td>
<td>122.5</td>
<td>18.2 Hz</td>
</tr>
<tr>
<td>C5</td>
<td>126.4(^{e})</td>
<td>127.6</td>
<td>127.6</td>
<td>27.9 Hz</td>
</tr>
<tr>
<td>C4</td>
<td>138.9(^{e})</td>
<td>138.9</td>
<td>138.9</td>
<td>6.5 Hz</td>
</tr>
<tr>
<td>C6</td>
<td>153.1(^{e})</td>
<td>153.8</td>
<td>153.8</td>
<td>32.2 Hz</td>
</tr>
<tr>
<td>C2</td>
<td>155.4(^{e})</td>
<td>157.0</td>
<td>157.0</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>174.8(^{e})</td>
<td>177.0</td>
<td>177.0</td>
<td></td>
</tr>
</tbody>
</table>

\(^{d}\) J \text{PtC} = 634 Hz

\(^{e}\) J \text{PtC} = 29.0 Hz

\(^{f}\) J \text{PtC} = 34 Hz

\(^{g}\) J \text{PtC} = 64 Hz
Table IV. Carbon-13 NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs\(^*\) (continued).

| Compound | Assignment | Pd(II) | Pt(II) | \(|^\text{m}J_{\text{PtC}}|\) |
|----------|------------|--------|--------|-----------------|
| CH\(_2\) | f | | 37.0\(^b\) | |
| CH | f | | 49.9\(^b\) | |
| CH\(_3\) | f | | 52.8\(^b\) | |
| C5 | f | | 124.3\(^b\) | |
| C3 | f | | 127.7\(^b\) | |
| C4 | f | | 139.3\(^b\) | |
| C6 | f | | 153.8\(^b\) | |
| C2 | f | | 159.6\(^b\) | |
| CO | f | | 168.9\(^b\) | |

\[\text{B-CH}_2 \] | f | 27.7\(^b\) |
\[\text{A-CH}_2 \] | f | 36.0\(^b\) |
CH	f	50.5\(^b\)
CH\(_3\)	f	52.3\(^b\)
C-5	f	123.3\(^b\)
C-3	f	126.0\(^b\)
C-4	f	139.1\(^b\)
C-6	f	153.7\(^b\)
C-2	f	163.0\(^b\)
CO	f	169.5\(^b\)

CH\(_2\)	43.1\(^g\)	44.1	2\(^{\text{m}}J_{\text{PtC}} = 17.4\ Hz
PtC	53.6\(^g\)	49.3	1\(^{\text{m}}J_{\text{PtC}} = 453.2\ Hz
CH\(_3\)	51.0\(^g\)	50.8	
C3	120.6\(^g\)	120.7	3\(^{\text{m}}J_{\text{PtC}} = 33.8\ Hz
C5	121.2\(^g\)	121.5	3\(^{\text{m}}J_{\text{PtC}} = 42.0\ Hz
C4	138.0\(^g\)	137.4	4\(^{\text{m}}J_{\text{PtC}} = 8.7\ Hz
C6	151.7\(^g\)	151.8	2\(^{\text{m}}J_{\text{PtC}} = 30.5\ Hz
C2	171.8\(^g\)	172.7	2\(^{\text{m}}J_{\text{PtC}} = 37.5\ Hz
CO	173.7\(^g\)	174.6	2\(^{\text{m}}J_{\text{PtC}} = 47.9\ Hz
Table IV. Carbon-13 NMR spectral data for the Pt(II) complexes and comparison with the Pd(II) analogs* (continued).

| Compound | Assignment | Pd(II) | Pt(II) | $|^{a}J_{PtC}|$ |
|----------|------------|--------|--------|----------------|
| α-C | 28.6^b | 28.9 | | |
| PtC | 45.6^b | 41.4 | | |
| β-C | 42.4^b | 41.8 | | |
| CH₃ | 49.6^b | 49.7 | | |
| | 50.5^b | 50.6 | | |
| C5 | 121.5^b | 122.0 | | $^{3}J_{PtC} = 49.9$ Hz |
| C3 | 122.3^b | 122.5 | | $^{3}J_{PtC} = 26.4$ Hz |
| C4 | 137.6^b | 137.2 | | $^{4}J_{PtC} = 9.2$ Hz |
| C6 | 151.3^b | 152.3 | | |
| C2 | 162.8^b | 163.3 | | $^{2}J_{PtC} = 10.4$ Hz |
| CO | 173.7^b | 174.5 | | $^{2}J_{PtC} = 56.3$ Hz |
| | 175.9^b | 176.5 | | $^{2}J_{PtC} = 63.9$ Hz |

a) All spectra were taken in CDCl₃, unless otherwise noted. b) In Me₂SO-d₆. c) Not observed. d) Incorrectly reported in the literature. e) Reference 98. f) Not reported in the literature. g) Reference 103. h) Reference 104.
Carbon-13 of the Pt(IV) Complexes

Only one, two, and three bond ^{195}Pt coupling constants were observed in the Pt(IV) complexes. In the phenanthroline complexes, the 3J ^{195}Pt(3-phenC) coupling constants were larger (18.6, 18.3 Hz) than for 2J (15.0, 14.0 Hz); no other ring coupling was observed. In the dipyridine complexes, the ^{195}Pt(3-pyrC) coupling constants were again smaller than those for C-5. This is also due to the fact that two different paths for coupling were available to C-3.

In the dibromo complexes the malonate moiety showed carbonyl carbon coupling to ^{195}Pt of 44.3 and 43.0 Hz for Pt(phen)(dmm)$_2$Br$_2$ and Pt(dipy)(dmm)$_2$Br$_2$, respectively. The largest coupling constants were for ^{195}Pt.C ranging from 556.5 to 560.5 Hz. The average (558.5 Hz) was 88% that of the Pt(II) complexes (634 Hz) substantiating the proposed structure of the oxidation products.

Complete 13C NMR spectral data for the Pt(IV) complexes are presented in Table V.
Table V. Carbon-13 NMR spectral data for the Pt(IV) complexes.*

| Compound | Assignment | Shift | $|^{1} J_{PtC}|$ |
|----------|------------|-------|----------------|
| [Structure 1] | CH | 21.1 | $^{1} J_{PtC} = 560$ Hz |
| | CH$_3$ | 50.8 | |
| | C3 | 126.4 | $^{3} J_{PtC} = 18.6$ Hz |
| | C5 | 127.5 | |
| | C4a | 131.0 | |
| | C4 | 139.0 | |
| | C10a | 146.0 | |
| | C2 | 156.0 | $^{2} J_{PtC} = 15.0$ Hz |
| | CO | 174.5 | $^{2} J_{PtC} = 44.3$ Hz |
| [Structure 2] | CH | 21.0 | $^{1} J_{PtC} = 556.7$ Hz |
| | CH$_3$ | 50.8 | |
| | C3 | 123.1 | $^{3} J_{PtC} = 12.1$ Hz |
| | C5 | 127.1 | $^{3} J_{PtC} = 18.1$ Hz |
| | C4 | 140.2 | |
| | C6 | 155.9 | $^{2} J_{PtC} = 14.5$ Hz |
| | C2 | 157.7 | $^{2} J_{PtC} = 16.1$ Hz |
| | CO | 174.3 | $^{2} J_{PtC} = 43.0$ Hz |
| [Structure 3] | CH | 23.9 | $^{1} J_{PtC} = 560.6$ Hz |
| | CH$_3$ | 50.9 | |
| | C3 | 125.9 | $^{3} J_{PtC} = 18.3$ Hz |
| | C5 | 127.5 | |
| | C4a | 131.0 | |
| | C4 | 139.1 | |
| | C2 | 155.5 | $^{2} J_{PtC} = 14.0$ Hz |
| | CO | 173.8 | |
| | C10a | b | |
Table V. Carbon-13 NMR spectral data for the Pt(IV) complexes* (continued).

| Compound | Assignment | Shift | \(|^nJ_{PtC}| \) |
|----------|------------|-------|-----------------|
| CH | 21.0 | | |
| CH₃ | 50.9 | | |
| C3 | 123.0 | | |
| C5 | 127.1 | | |
| C4 | 140.2 | | |
| C2 | 155.2 | | |
| C6 | 156.0 | | |
| CO | 174.4 | | |

\(^1J_{PtC} = 556.5 \text{ Hz}\)
\(^3J_{PtC} = 12.2 \text{ Hz}\)
\(^3J_{PtC} = 18.0 \text{ Hz}\)
\(^2J_{PtC} = 14.3 \text{ Hz}\)

a) All spectra were run in CDCl₃. b) Not observed.
Infrared Spectra of the Platinum Complexes

The C=O stretching frequency in the IR spectrum of a malonato complex is an excellent indicator of the mode of bonding. For C-bonded complexes, this absorption ranges from 1670-1730 cm\(^{-1}\) and for O,O'-chelation, the range is generally below 1600 cm\(^{-1}\). Thus, as expected, the delocalization which occurs in O,O'-chelation shifts the carbonyl stretching frequency to longer wavelengths whereas C-bonding has a negligible effect. For these platinum complexes, the C=O stretching absorptions occurred in the range of 1686-1750 cm\(^{-1}\) corresponding to the general range for C-bonded complexes.

Table VI. Diagnostic Pt IR absorptions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C=O</th>
<th>C-O</th>
<th>Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(five)(_2)</td>
<td>1686</td>
<td>1181</td>
<td></td>
</tr>
<tr>
<td>Pt(six)(_2)</td>
<td>1690</td>
<td>1196</td>
<td></td>
</tr>
<tr>
<td>Pt(dipy)(dmm)(_2)</td>
<td>1744</td>
<td>1136</td>
<td>783, 729</td>
</tr>
<tr>
<td>Pt(phen)(dmm)(_2)</td>
<td>1725</td>
<td>1138</td>
<td>841, 716</td>
</tr>
<tr>
<td>Pt(dipy)(dmm)(_2)Br(_2)</td>
<td>1744</td>
<td>1127</td>
<td>778, 732</td>
</tr>
<tr>
<td>Pt(phen)(dmm)(_2)Br(_2)</td>
<td>1746</td>
<td>1144</td>
<td>845, 716</td>
</tr>
<tr>
<td>Pt(dipy)(dmm)(_2)Cl(_2)</td>
<td>1740</td>
<td>1127</td>
<td>762, 727</td>
</tr>
<tr>
<td>Pt(phen)(dmm)(_2)Cl(_2)</td>
<td>1744</td>
<td>1129</td>
<td>847, 718</td>
</tr>
</tbody>
</table>
Structural Characterization of the Cyclometalated Pt(II) Complexes

To determine the salient structural features in the cyclometalated complexes (69a and 69b) such as Pt-C and Pt-N bond distances and chelate bond angles, single crystal X-ray structure determinations were undertaken and the crystal data are given in Table VII. Important bond distances and angles for 69a are presented in Tables VIII and IX, respectively, and an ORTEP drawing is shown in Figure 7.

For the trans complex 69a, the Pt-coordination is square planar with a slight distortion. The ligating atoms are tetrahedrally arranged each lying 0.1 Å out-of-the-best-plane defined by the four atoms [N(1), N(2), C(7), C(18)]. The Pt atom lies on the line defined by the nitrogen atoms [N(1)-Pt-N(2): 178.4(4)°] with the carbon atoms tetrahedrally displaced [C(7)-Pt-C(18): 169.6(2)°].

The Pt-N bond distances are 2.013(5) and 2.021(5) Å as compared to 2.040(3) and 2.042(3) Å in the Pd(II) analogue.103 The Pt-C bond distances are 2.142(6) and 2.159(6) Å, identical to the corresponding distances in the Pd(II) analogue.103 The chelation angles about Pt [N(1)-Pt-C(7) and N(2)-Pt-C(18)] are 10° less than the 90° square planar arrangement [80.6(2)° and 80.4(2)°, respectively]. Newkome et al. have reported a correlation between the M-C-CH2 chelate angle and the 13C NMR chemical shift of the central carbon for the Pd(II) complexes.100 The Pt(II) complexes reported here also fit this correlation.

The bond distances and angles in the pyridine rings are all normal. The pyridine rings are planar and form a dihedral angle of 60° with each other and each being =30° rotated from the coordination plane in opposite directions. The conformations of both of the five-membered chelate rings are envelopes [Pt-N(1)-C(5)-C(6) = -2.6°; Pt-N(2)-C(16)-C(17) = -0.2°] with the metalated carbons [C(7) and C(18)] forming the flaps, both of which lie on the same face of the coordination plane.

Important bond distances and angles for 69b are presented in Tables VIII and IX.
respectively, and an ORTEP drawing is shown in Figure 8. The Pt coordination is square planar with a slight, but definite, tetrahedral distortion. The platinum atom lies on-the-best-plane defined by the ligating atoms [N(1), N(2), C(8), C(20)] plus platinum with the carbon atoms lying 0.18 Å above-the-best-plane and the nitrogen atoms lying 0.16 Å below it giving the tetrahedral distortion. The N(1)-Pt-N(2) and C(8)-Pt-C(20) angles are 172.2(1)° and 169.2(1)°, respectively.

The Pt-N bond distances are 2.013(3) and 2.021(3) Å as compared to 2.038(7) and 2.037(7) Å in the corresponding Pd(II) analogue. The Pt-C bond distances are 2.176(3) and 2.159(3) Å in close agreement with those in the Pd(II) analogue [2.190(9) and 2.172(9) Å]. The chelation angles about Pt [N(1)-Pt-C(8) and N(2)-Pt-C(20)] are again less than the expected 90° for a square planar arrangement [84.9(1)° and 83.7(1)°, respectively]. The pyridine rings are planar and form a torsion angle of 56.8° with each other; each of the pyridine rings is rotated ca. 61° from the coordination plane.

The six-membered chelate rings are in "pseudo" boat conformations [Pt-N(1)-C(5)-C(6) = 0.14°; Pt-C(8)-C(7)-C(6) = 12.57°; Pt-N(2)-C(17)-C(18) = 2.93°; Pt-C(20)-C(19)-C(18) = 23.01°] with Pt and C(6) as apexes in one chelate and Pt and C(18) as apexes in the other.

The two methoxy groups of each ligand are clearly in different environments with one being over the opposite pyridine ring thus structurally supporting the large upfield shift observed in the 1H NMR spectrum (δ = 2.83).

Because of the unusual structure of 70, an X-ray crystal structure was needed to clarify the structure. Crystal data for 70 are presented in Table VII and important bond lengths and angles are given in Tables X and XI, respectively; an ORTEP drawing is shown in Figure 9.

Complex 70 is a diacetate bridged dimer with a Pt-Pt distance of 3.1170(5) Å.
which is slightly longer (≈0.1 Å) than related structures121 and far longer than complexes containing a Pt-Pt bond (2.495-2.557 Å).122 The Pt-atoms have square planar coordination and the Pt-N bond distances [2.034(7), 1.996(7) Å] are very close to those in complex 69a [2.013(5), 2.021(5) Å] but the Pt-C distances [2.069(9), 2.061(9) Å] are slightly shorter than in 69a [2.159(6), 2.142(6) Å]. The two pyridyl ligands are arranged in an anti sense in the dimer accounting for the upfield shift of one of the OCH\textsubscript{3} moieties in the 1H NMR spectrum because of shielding caused by the opposite pyridine ring.123 The five-membered chelate rings are in envelope conformations with the metallated carbons being the flaps as shown by the torsion angles Pt(1)-N(1)-C(9)-C(10) (0.0°) and Pt(2)-N(2)-C(20)-C(21) (1.1°). The chelate angles are similar to those in 69a.
Figure 7. ORTEP Drawing of C$_{11}$H$_{14}$N$_{2}$O$_{3}$Pt.
Table VII. Crystal data and data collection parameters for $\text{C}_{22}\text{H}_{24}\text{N}_{2}\text{O}_{8}\text{Pt}$, $\text{C}_{24}\text{H}_{28}\text{N}_{2}\text{O}_{8}\text{Pt}$ and $\text{C}_{26}\text{H}_{30}\text{N}_{2}\text{O}_{12}\text{Pt}_{2}$.

<table>
<thead>
<tr>
<th>Compound:</th>
<th>69a</th>
<th>69b</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula:</td>
<td>$\text{C}{22}\text{H}{24}\text{N}{2}\text{O}{8}\text{Pt}$</td>
<td>$\text{C}{24}\text{H}{28}\text{N}{2}\text{O}{8}\text{Pt}$</td>
<td>$\text{C}{26}\text{H}{30}\text{N}{2}\text{O}{12}\text{Pt}_{2}$</td>
</tr>
<tr>
<td>Formula Wt:</td>
<td>639.5</td>
<td>667.6</td>
<td>952.7</td>
</tr>
<tr>
<td>Crystal System:</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space Group:</td>
<td>$P2_1/c$</td>
<td>$P2_1/n$</td>
<td>$P2_1/n$</td>
</tr>
<tr>
<td>a, Å:</td>
<td>9.590(2)</td>
<td>10.0905(12)</td>
<td>10.446(5)</td>
</tr>
<tr>
<td>b, Å:</td>
<td>29.594(7)</td>
<td>23.555(2)</td>
<td>16.669(3)</td>
</tr>
<tr>
<td>c, Å:</td>
<td>8.442(2)</td>
<td>10.823(3)</td>
<td>17.038(3)</td>
</tr>
<tr>
<td>β, deg.:</td>
<td>106.02(2)</td>
<td>106.23(2)</td>
<td>97.19(3)</td>
</tr>
<tr>
<td>V, Å3:</td>
<td>2303(2)</td>
<td>2470(1)</td>
<td>2943(3)</td>
</tr>
<tr>
<td>d, g cm$^{-3}$:</td>
<td>1.845</td>
<td>1.795</td>
<td>2.150</td>
</tr>
<tr>
<td>Z:</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T, °C:</td>
<td>20</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>μ (MoKα), cm$^{-1}$:</td>
<td>62.0</td>
<td>57.9</td>
<td>96.6</td>
</tr>
<tr>
<td>Crystal size, mm:</td>
<td>0.03x0.32x0.44</td>
<td>0.20x0.36x0.48</td>
<td>0.10x0.12x0.36</td>
</tr>
<tr>
<td>Color:</td>
<td>colorless</td>
<td>colorless</td>
<td>pale yellow</td>
</tr>
<tr>
<td>Min. rel. trans., %:</td>
<td>41.46</td>
<td>57.93</td>
<td>83.98</td>
</tr>
<tr>
<td>2θ limits, deg.:</td>
<td>$2 < 2\theta < 50$</td>
<td>$2 < 2\theta < 60$</td>
<td>$2 < 2\theta < 50$</td>
</tr>
<tr>
<td>Scan rates, deg. min$^{-1}$:</td>
<td>0.39 - 4.0</td>
<td>0.91 - 4.0</td>
<td>0.53 - 4.0</td>
</tr>
<tr>
<td>Precision:</td>
<td>$I = 50\sigma(I)$</td>
<td>$I = 50\sigma(I)$</td>
<td>$I = 50\sigma(I)$</td>
</tr>
<tr>
<td>Max. scan time, s:</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Unique Data:</td>
<td>4032</td>
<td>7186</td>
<td>5175</td>
</tr>
<tr>
<td>Observed Data:</td>
<td>2872</td>
<td>5237</td>
<td>3375</td>
</tr>
<tr>
<td>Criterion:</td>
<td>$I > 2\sigma(I)$</td>
<td>$I > 3\sigma(I)$</td>
<td>$I > 3\sigma(I)$</td>
</tr>
<tr>
<td>Variables:</td>
<td>298</td>
<td>317</td>
<td>379</td>
</tr>
<tr>
<td>R:</td>
<td>0.036</td>
<td>0.026</td>
<td>0.032</td>
</tr>
<tr>
<td>R_w:</td>
<td>0.037</td>
<td>0.029</td>
<td>0.030</td>
</tr>
<tr>
<td>Extinction:</td>
<td>—</td>
<td>$1.28(3) \times 10^{-7}$</td>
<td>—</td>
</tr>
<tr>
<td>Max. residual, eÅ$^{-3}$:</td>
<td>0.98</td>
<td>0.91</td>
<td>1.16</td>
</tr>
<tr>
<td>Comments:</td>
<td>Isomorphous with Pd analog</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 8. ORTEP Drawing of C$_{24}$H$_{28}$N$_2$O$_8$Pt.
<table>
<thead>
<tr>
<th>Complex</th>
<th>69a</th>
<th>Complex</th>
<th>69b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-N(1)</td>
<td>2.013(5)</td>
<td>Pt-N(1)</td>
<td>2.013(3)</td>
</tr>
<tr>
<td>Pt-N(2)</td>
<td>2.021(5)</td>
<td>Pt-N(2)</td>
<td>2.021(3)</td>
</tr>
<tr>
<td>Pt-C(7)</td>
<td>2.159(6)</td>
<td>Pt-C(8)</td>
<td>2.176(3)</td>
</tr>
<tr>
<td>Pt-C(18)</td>
<td>2.142(6)</td>
<td>Pt-C(20)</td>
<td>2.159(3)</td>
</tr>
</tbody>
</table>

Table VIII. Important bond distances (Å) for C_{22}H_{24}N_{2}O_{8}Pt and C_{24}H_{28}N_{2}O_{8}Pt.

<table>
<thead>
<tr>
<th>Complex</th>
<th>69a</th>
<th>Complex</th>
<th>69b</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-Pt-N(2)</td>
<td>178.4(2)</td>
<td>Pt-N(2)-C(12)</td>
<td>126.9(5)</td>
</tr>
<tr>
<td>Pt-N(2)-C(16)</td>
<td>114.8(4)</td>
<td>Pt-C(18)-C(17)</td>
<td>101.3(4)</td>
</tr>
<tr>
<td>Pt-C(18)-C(19)</td>
<td>106.1(4)</td>
<td>Pt-C(18)-C(20)</td>
<td>112.0(4)</td>
</tr>
<tr>
<td>Pt-C(7)-C(6)</td>
<td>101.6(4)</td>
<td>Pt-C(7)-C(8)</td>
<td>106.5(4)</td>
</tr>
<tr>
<td>Pt-C(7)-C(9)</td>
<td>110.2(4)</td>
<td>N(1)-Pt-C(7)</td>
<td>80.6(2)</td>
</tr>
<tr>
<td>N(1)-Pt-C(18)</td>
<td>98.3(2)</td>
<td>N(2)-Pt-C(7)</td>
<td>100.9(2)</td>
</tr>
<tr>
<td>N(2)-Pt-C(18)</td>
<td>80.4(2)</td>
<td>C(7)-Pt-C(18)</td>
<td>169.6(2)</td>
</tr>
<tr>
<td>Pt-N(1)-C(1)</td>
<td>127.0(5)</td>
<td>Pt-N(1)-C(5)</td>
<td>115.1(4)</td>
</tr>
</tbody>
</table>

Table IX. Important bond angles (°) for C_{22}H_{24}N_{2}O_{8}Pt and C_{24}H_{28}N_{2}O_{8}Pt.

| Complex | 69a |
|---------|
| N(1)-Pt-N(2) | 172.2(1) |
| N(1)-Pt-C(8) | 84.9(1) |
| N(2)-Pt-C(8) | 96.8(1) |
| C(8)-Pt-C(20) | 169.2(1) |
| Pt-N(1)-C(5) | 120.6(2) |
| Pt-N(2)-C(17) | 121.1(2) |
| Pt-C(20)-C(21) | 104.7(2) |
| Pt-C(8)-C(7) | 110.0(2) |

| Complex | 69b |
|---------|
| Pt-C(8)-C(10) | 105.5(2) |
| N(1)-Pt-C(20) | 96.1(1) |
| N(2)-Pt-C(20) | 83.7(1) |
| Pt-N(1)-C(1) | 119.5(2) |
| Pt-N(2)-C(13) | 119.7(2) |
| Pt-C(20)-C(19) | 108.9(2) |
| Pt-C(20)-C(22) | 108.8(2) |
| Pt-C(8)-C(9) | 102.3(2) |
Table X. Important bond distances (Å) for C\textsubscript{26}H\textsubscript{30}N\textsubscript{2}O\textsubscript{12}Pt\textsubscript{2}.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)-Pt(2)</td>
<td>3.1179(5)</td>
</tr>
<tr>
<td>Pt(1)-O(2)</td>
<td>2.106(6)</td>
</tr>
<tr>
<td>Pt(1)-O(4)</td>
<td>2.009(7)</td>
</tr>
<tr>
<td>Pt(1)-N(1)</td>
<td>2.034(7)</td>
</tr>
<tr>
<td>Pt(1)-C(11)</td>
<td>2.069(9)</td>
</tr>
<tr>
<td>Pt(2)-O(1)</td>
<td>2.013(8)</td>
</tr>
<tr>
<td>Pt(2)-O(3)</td>
<td>2.112(6)</td>
</tr>
<tr>
<td>Pt(2)-N(2)</td>
<td>1.996(7)</td>
</tr>
<tr>
<td>Pt(2)-C(22)</td>
<td>2.061(9)</td>
</tr>
</tbody>
</table>

Table XI. Important bond angles (°) for C\textsubscript{26}H\textsubscript{30}N\textsubscript{2}O\textsubscript{12}Pt\textsubscript{2}.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(2)-Pt(1)-O(2)</td>
<td>77.9(2)</td>
</tr>
<tr>
<td>Pt(2)-Pt(1)-O(4)</td>
<td>81.3(2)</td>
</tr>
<tr>
<td>Pt(2)-Pt(1)-N(1)</td>
<td>101.5(2)</td>
</tr>
<tr>
<td>Pt(2)-Pt(1)-C(11)</td>
<td>110.0(3)</td>
</tr>
<tr>
<td>O(2)-Pt(1)-O(4)</td>
<td>89.1(3)</td>
</tr>
<tr>
<td>O(2)-Pt(1)-N(1)</td>
<td>94.2(3)</td>
</tr>
<tr>
<td>O(2)-Pt(1)-C(11)</td>
<td>171.0(3)</td>
</tr>
<tr>
<td>O(2)-Pt(1)-Pt(2)</td>
<td>96.2(3)</td>
</tr>
<tr>
<td>O(2)-Pt(1)-N(1)</td>
<td>176.0(3)</td>
</tr>
<tr>
<td>O(2)-Pt(1)-C(11)</td>
<td>80.2(3)</td>
</tr>
<tr>
<td>Pt(1)-Pt(2)-O(1)</td>
<td>78.7(2)</td>
</tr>
<tr>
<td>Pt(1)-Pt(2)-O(3)</td>
<td>76.1(2)</td>
</tr>
</tbody>
</table>
Figure 9. ORTEP Drawing of $\text{C}_{26}\text{H}_{30}\text{N}_{2}\text{O}_{12}\text{Pt}_{2}$.
Table XII. Coordinates for Pt(C$_{11}$H$_{12}$NO$_{4}$)$_{2}$.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>0.41814(3)</td>
<td>0.12295(1)</td>
<td>0.25561(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.0834(7)</td>
<td>0.1716(2)</td>
<td>-0.0252(6)</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.1341(6)</td>
<td>0.1001(2)</td>
<td>-0.0726(6)</td>
</tr>
<tr>
<td>O(3)</td>
<td>0.1470(7)</td>
<td>0.0771(2)</td>
<td>0.4210(6)</td>
</tr>
<tr>
<td>O(4)</td>
<td>0.0670(6)</td>
<td>0.0521(2)</td>
<td>0.1628(6)</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.7578(7)</td>
<td>0.0830(2)</td>
<td>0.1666(7)</td>
</tr>
<tr>
<td>O(6)</td>
<td>0.6926(6)</td>
<td>0.1540(2)</td>
<td>0.1089(6)</td>
</tr>
<tr>
<td>O(7)</td>
<td>0.6754(7)</td>
<td>0.1655(2)</td>
<td>0.5924(6)</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.7992(7)</td>
<td>0.1871(2)</td>
<td>0.4211(7)</td>
</tr>
<tr>
<td>N(1)</td>
<td>0.3887(7)</td>
<td>0.1902(2)</td>
<td>0.2607(7)</td>
</tr>
<tr>
<td>N(2)</td>
<td>0.4530(7)</td>
<td>0.0557(2)</td>
<td>0.2492(7)</td>
</tr>
<tr>
<td>C(1)</td>
<td>0.4731(9)</td>
<td>0.2219(3)</td>
<td>0.2280(10)</td>
</tr>
<tr>
<td>C(2)</td>
<td>0.4455(10)</td>
<td>0.2666(3)</td>
<td>0.2358(11)</td>
</tr>
<tr>
<td>C(3)</td>
<td>0.3283(11)</td>
<td>0.2804(3)</td>
<td>0.2840(11)</td>
</tr>
<tr>
<td>C(4)</td>
<td>0.2333(9)</td>
<td>0.2484(3)</td>
<td>0.3081(9)</td>
</tr>
<tr>
<td>C(5)</td>
<td>0.2619(8)</td>
<td>0.2035(2)</td>
<td>0.2934(8)</td>
</tr>
<tr>
<td>C(6)</td>
<td>0.1641(9)</td>
<td>0.1655(3)</td>
<td>0.3123(9)</td>
</tr>
<tr>
<td>C(7)</td>
<td>0.1850(8)</td>
<td>0.1247(3)</td>
<td>0.2064(8)</td>
</tr>
<tr>
<td>C(8)</td>
<td>0.1265(8)</td>
<td>0.1344(3)</td>
<td>0.0294(9)</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.1328(9)</td>
<td>0.0834(3)</td>
<td>0.2747(9)</td>
</tr>
<tr>
<td>C(10)</td>
<td>0.0808(12)</td>
<td>0.1078(3)</td>
<td>-0.2434(10)</td>
</tr>
<tr>
<td>C(11)</td>
<td>0.0156(12)</td>
<td>0.0123(3)</td>
<td>0.2213(12)</td>
</tr>
<tr>
<td>C(12)</td>
<td>0.3713(10)</td>
<td>0.0258(3)</td>
<td>0.1473(9)</td>
</tr>
<tr>
<td>C(13)</td>
<td>0.4046(11)</td>
<td>-0.0182(3)</td>
<td>0.1461(11)</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.5263(12)</td>
<td>-0.0340(3)</td>
<td>0.2533(12)</td>
</tr>
<tr>
<td>C(15)</td>
<td>0.6189(11)</td>
<td>-0.0038(3)</td>
<td>0.3555(11)</td>
</tr>
<tr>
<td>C(16)</td>
<td>0.5818(9)</td>
<td>0.0412(2)</td>
<td>0.3507(9)</td>
</tr>
<tr>
<td>C(17)</td>
<td>0.6729(9)</td>
<td>0.0774(3)</td>
<td>0.4467(10)</td>
</tr>
<tr>
<td>C(18)</td>
<td>0.6496(8)</td>
<td>0.1219(3)</td>
<td>0.3504(8)</td>
</tr>
<tr>
<td>C(19)</td>
<td>0.7076(8)</td>
<td>0.1175(2)</td>
<td>0.2048(9)</td>
</tr>
<tr>
<td>C(20)</td>
<td>0.7043(9)</td>
<td>0.1600(3)</td>
<td>0.4656(9)</td>
</tr>
<tr>
<td>C(21)</td>
<td>0.7319(11)</td>
<td>0.1498(3)</td>
<td>-0.0428(10)</td>
</tr>
<tr>
<td>C(22)</td>
<td>0.8545(13)</td>
<td>0.2237(3)</td>
<td>0.5343(13)</td>
</tr>
</tbody>
</table>
Table XIII. Coordinates for Pt(C_{12}H_{14}NO_{4})_{2}.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>0.18987(1)</td>
<td>0.12188(1)</td>
<td>0.18534(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>-0.0434(3)</td>
<td>0.2410(1)</td>
<td>0.1995(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.1063(3)</td>
<td>0.2497(1)</td>
<td>0.0829(3)</td>
</tr>
<tr>
<td>O(3)</td>
<td>-0.0061(4)</td>
<td>0.1846(1)</td>
<td>-0.1370(3)</td>
</tr>
<tr>
<td>O(4)</td>
<td>-0.0423(3)</td>
<td>0.0950(1)</td>
<td>-0.0895(3)</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.5670(3)</td>
<td>0.0851(1)</td>
<td>0.2148(3)</td>
</tr>
<tr>
<td>O(6)</td>
<td>0.4965(3)</td>
<td>0.1538(1)</td>
<td>0.3225(3)</td>
</tr>
<tr>
<td>O(7)</td>
<td>0.4376(3)</td>
<td>0.0794(1)</td>
<td>0.5129(3)</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.2535(3)</td>
<td>0.0261(1)</td>
<td>0.4227(3)</td>
</tr>
<tr>
<td>N(1)</td>
<td>0.1301(3)</td>
<td>0.1399(1)</td>
<td>0.3435(3)</td>
</tr>
<tr>
<td>N(2)</td>
<td>0.2669(3)</td>
<td>0.1131(1)</td>
<td>0.0330(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>0.2103(4)</td>
<td>0.1734(2)</td>
<td>0.4357(4)</td>
</tr>
<tr>
<td>C(2)</td>
<td>0.1695(5)</td>
<td>0.1915(2)</td>
<td>0.5398(4)</td>
</tr>
<tr>
<td>C(3)</td>
<td>0.0446(5)</td>
<td>0.1743(2)</td>
<td>0.5542(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>-0.0381(4)</td>
<td>0.1398(2)</td>
<td>0.4599(4)</td>
</tr>
<tr>
<td>C(5)</td>
<td>0.0040(4)</td>
<td>0.1239(2)</td>
<td>0.3519(4)</td>
</tr>
<tr>
<td>C(6)</td>
<td>-0.0836(4)</td>
<td>0.0932(2)</td>
<td>0.2402(4)</td>
</tr>
<tr>
<td>C(7)</td>
<td>-0.1255(4)</td>
<td>0.1315(2)</td>
<td>0.1202(4)</td>
</tr>
<tr>
<td>C(8)</td>
<td>-0.0057(4)</td>
<td>0.1601(2)</td>
<td>0.0809(3)</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.0126(4)</td>
<td>0.2204(2)</td>
<td>0.1253(4)</td>
</tr>
<tr>
<td>C(10)</td>
<td>-0.0178(4)</td>
<td>0.1504(2)</td>
<td>-0.0582(4)</td>
</tr>
<tr>
<td>C(11)</td>
<td>0.1427(6)</td>
<td>0.3047(2)</td>
<td>0.1379(6)</td>
</tr>
<tr>
<td>C(12)</td>
<td>-0.0454(5)</td>
<td>0.0800(2)</td>
<td>-0.2186(4)</td>
</tr>
<tr>
<td>C(13)</td>
<td>0.3031(4)</td>
<td>0.1601(2)</td>
<td>-0.0235(4)</td>
</tr>
<tr>
<td>C(14)</td>
<td>0.3682(5)</td>
<td>0.1569(2)</td>
<td>-0.1188(4)</td>
</tr>
<tr>
<td>C(15)</td>
<td>0.3965(5)</td>
<td>0.1039(2)</td>
<td>-0.1605(4)</td>
</tr>
<tr>
<td>C(16)</td>
<td>0.3596(5)</td>
<td>0.0563(2)</td>
<td>-0.1036(4)</td>
</tr>
<tr>
<td>C(17)</td>
<td>0.2977(4)</td>
<td>0.0616(2)</td>
<td>-0.0049(4)</td>
</tr>
<tr>
<td>C(18)</td>
<td>0.2652(4)</td>
<td>0.0126(2)</td>
<td>0.0673(4)</td>
</tr>
<tr>
<td>C(19)</td>
<td>0.3516(4)</td>
<td>0.0120(2)</td>
<td>0.2094(4)</td>
</tr>
<tr>
<td>C(20)</td>
<td>0.3628(4)</td>
<td>0.0690(2)</td>
<td>0.2815(4)</td>
</tr>
<tr>
<td>C(21)</td>
<td>0.4871(4)</td>
<td>0.1013(2)</td>
<td>0.2714(4)</td>
</tr>
<tr>
<td>C(22)</td>
<td>0.3602(4)</td>
<td>0.0599(2)</td>
<td>0.4167(4)</td>
</tr>
<tr>
<td>C(23)</td>
<td>0.5967(5)</td>
<td>0.1916(2)</td>
<td>0.2941(5)</td>
</tr>
<tr>
<td>C(24)</td>
<td>0.2382(6)</td>
<td>0.0152(2)</td>
<td></td>
</tr>
</tbody>
</table>
Table XIV. Coordinates for Pt$_2$C$_{26}$H$_{30}$N$_2$O$_{12}$.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT(1)</td>
<td>0.04712(3)</td>
<td>0.10894(2)</td>
<td>0.11225(2)</td>
<td>C(6)</td>
<td>0.0108(10)</td>
<td>0.0984(7)</td>
<td>0.3603(6)</td>
</tr>
<tr>
<td>PT(2)</td>
<td>-0.12984(3)</td>
<td>0.25434(2)</td>
<td>0.05785(2)</td>
<td>C(7)</td>
<td>0.1070(10)</td>
<td>0.1480(7)</td>
<td>0.3919(6)</td>
</tr>
<tr>
<td>O(1)</td>
<td>-0.2616(7)</td>
<td>0.1685(5)</td>
<td>0.0698(4)</td>
<td>C(8)</td>
<td>0.1871(10)</td>
<td>0.1819(7)</td>
<td>0.3425(6)</td>
</tr>
<tr>
<td>O(2)</td>
<td>-0.1383(5)</td>
<td>0.0577(4)</td>
<td>0.1049(4)</td>
<td>C(9)</td>
<td>0.1632(8)</td>
<td>0.1669(6)</td>
<td>0.2628(5)</td>
</tr>
<tr>
<td>O(3)</td>
<td>-0.0887(6)</td>
<td>0.2021(4)</td>
<td>-0.0491(3)</td>
<td>C(10)</td>
<td>0.2437(9)</td>
<td>0.2015(6)</td>
<td>0.2022(6)</td>
</tr>
<tr>
<td>O(4)</td>
<td>0.0417(6)</td>
<td>0.0956(5)</td>
<td>-0.0053(4)</td>
<td>C(11)</td>
<td>0.2376(8)</td>
<td>0.1456(6)</td>
<td>0.1327(5)</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.3744(6)</td>
<td>0.0594(5)</td>
<td>0.2192(4)</td>
<td>C(12)</td>
<td>0.3120(8)</td>
<td>0.0664(6)</td>
<td>0.1554(5)</td>
</tr>
<tr>
<td>O(6)</td>
<td>0.2952(6)</td>
<td>0.0092(4)</td>
<td>0.1011(4)</td>
<td>C(13)</td>
<td>0.3485(10)</td>
<td>-0.0661(6)</td>
<td>0.1258(7)</td>
</tr>
<tr>
<td>O(7)</td>
<td>0.2599(8)</td>
<td>0.2583(5)</td>
<td>0.0501(5)</td>
<td>C(14)</td>
<td>0.2777(8)</td>
<td>0.1882(6)</td>
<td>0.0621(5)</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.3382(7)</td>
<td>0.1431(5)</td>
<td>0.0141(4)</td>
<td>C(15)</td>
<td>0.3717(12)</td>
<td>0.1834(9)</td>
<td>-0.0543(7)</td>
</tr>
<tr>
<td>O(9)</td>
<td>-0.1200(7)</td>
<td>0.2538(5)</td>
<td>0.2776(4)</td>
<td>C(16)</td>
<td>0.0481(9)</td>
<td>0.3604(6)</td>
<td>-0.0189(5)</td>
</tr>
<tr>
<td>O(10)</td>
<td>-0.3187(6)</td>
<td>0.2399(5)</td>
<td>0.2173(4)</td>
<td>C(17)</td>
<td>0.1335(10)</td>
<td>0.4226(7)</td>
<td>-0.0243(6)</td>
</tr>
<tr>
<td>O(11)</td>
<td>-0.2758(7)</td>
<td>0.4479(5)</td>
<td>0.1269(5)</td>
<td>C(18)</td>
<td>0.1630(10)</td>
<td>0.4694(7)</td>
<td>0.0407(7)</td>
</tr>
<tr>
<td>O(12)</td>
<td>-0.3914(6)</td>
<td>0.3384(4)</td>
<td>0.0996(4)</td>
<td>C(19)</td>
<td>0.1064(10)</td>
<td>0.4575(7)</td>
<td>0.1105(6)</td>
</tr>
<tr>
<td>N(1)</td>
<td>0.0661(6)</td>
<td>0.1213(5)</td>
<td>0.2319(4)</td>
<td>C(20)</td>
<td>0.0169(9)</td>
<td>0.3937(6)</td>
<td>0.1115(6)</td>
</tr>
<tr>
<td>N(2)</td>
<td>-0.0084(6)</td>
<td>0.3450(5)</td>
<td>0.0471(4)</td>
<td>C(21)</td>
<td>-0.0498(9)</td>
<td>0.3690(6)</td>
<td>0.1795(5)</td>
</tr>
<tr>
<td>C(1)</td>
<td>-0.2444(8)</td>
<td>0.0922(6)</td>
<td>0.0894(5)</td>
<td>C(22)</td>
<td>-0.1708(9)</td>
<td>0.3207(5)</td>
<td>0.1537(5)</td>
</tr>
<tr>
<td>C(2)</td>
<td>-0.3611(9)</td>
<td>0.0418(7)</td>
<td>0.0948(6)</td>
<td>C(23)</td>
<td>-0.1975(9)</td>
<td>0.2688(6)</td>
<td>0.2227(5)</td>
</tr>
<tr>
<td>C(3)</td>
<td>-0.0211(8)</td>
<td>0.1404(6)</td>
<td>-0.0620(5)</td>
<td>C(24)</td>
<td>-0.3431(11)</td>
<td>0.1845(8)</td>
<td>0.2769(7)</td>
</tr>
<tr>
<td>C(4)</td>
<td>-0.0117(9)</td>
<td>0.1207(7)</td>
<td>-0.1473(5)</td>
<td>C(25)</td>
<td>-0.2817(9)</td>
<td>0.3767(6)</td>
<td>0.1273(5)</td>
</tr>
<tr>
<td>C(5)</td>
<td>-0.0094(9)</td>
<td>0.0864(6)</td>
<td>0.2793(6)</td>
<td>C(26)</td>
<td>-0.5042(10)</td>
<td>0.3875(7)</td>
<td>0.0852(7)</td>
</tr>
</tbody>
</table>
Conclusions

Several potential anti-tumor cis organoplatinum(II) complexes have been prepared which incorporate dimethyl malonato-C ligands. The Pt-C bonding was substantiated by 1H and 13C NMR chemical shift and coupling data as well as by IR (C=O) data. These complexes were readily oxidized with either Br$_2$, Cl$_2$, CuBr$_2$, or CuCl$_2$ to give the corresponding organoplatinum(IV) complexes. In addition, two new trans C,N-cyclometalated platinum(II) complexes were made from 2-pyridyl ligands having dimethyl malonate pendants for metalation. The 1H and 13C NMR spectra of all complexes were studied and compared to their corresponding Pd(II) complexes.100 X-ray crystal structures of the cyclometalated complexes proved the presence of trans Pt-C bonding.

Experimental

General Comments. All melting points were taken in open capillary tubes with either a Thomas-Hoover Unimelt or a Gallenkamp Melting Point Apparatus and are uncorrected. The 1H and 13C nuclear magnetic resonance spectra were recorded on a IBM/Bruker NR/80 spectrometer (80.06 and 20.08 MHz, respectively), in CDCl$_3$ solutions, except where noted. Deuterated solvent residues were used as internal standards [CHCl$_3$ - 7.27 (1H) and 77.0 (13C) ppm, Me$_2$SO - 2.49 (1H) and 39.5 (13C) ppm] and chemical shift values (δ) are reported in parts per million (ppm) downfield from tetramethylsilane (TMS). Infrared spectra (IR) were recorded on an IBM IR/38 Fourier transform infrared spectrophotometer. Elemental analyses were conducted by either Galbraith Laboratories, Inc. (Knoxville, TN) or M-H-W Laboratories (Phoenix, AZ). "Dry column" flash chromatography was performed by the method of
Harwood124 using preparative grade silica gel (Brinkman PF-254-366) in a quartz funnel with the eluants specified.

Reagents. Unless otherwise noted, all reagents and solvents utilized were of reagent grade and no further purification was undertaken. Methyl α-(methoxycarbonyl)-[pyridine]-2-propanoate103 and methyl α-(methoxycarbonyl)[pyridine]-2-butanoate104 were prepared by previously published procedures. Dichloroplatinum(II) and potassium tetrachloroplatinate were obtained from Engelhard Corporation.

X-ray. The structure determinations were carried out by Frank R. Fronczek (L. S. U.). Intensity data were collected on an Enraf-Nonius CAD4 diffractometer equipped with MoK$_\alpha$ radiation ($\lambda = 0.71073$ Å) and a graphite monochromator, by $\omega$$-$$2\theta$ scans of variable speed designed to yield equal relative precision for all significant data. A maximum was placed on the time allowed for scanning a single reflection. Crystal data and experimental details are listed in Table VII. One quadrant of data was measured for each crystal within the specified angular limits. Data reduction included corrections for background, Lorentz, polarization, and absorption by ψ scans.

Structures were solved by heavy atom methods and refined by full-matrix least squares, treating non-hydrogen atoms anisotropically. Hydrogen atoms were located by difference maps and included as fixed contributions. Final R factors and residual electron densities are given in Table VII; coordinates are listed in Tables XII, XIII, and XIV.

![Chemical reaction](chart.png)

68 a
trans-Dichloro-bis{methyl α-(methoxycarbonyl)[pyridine]-2-propanoate-N}platinum(II) (68a). A stirred mixture of PtCl₂ (71 mg, 267 µmol) and methyl α-(methoxycarbonyl)[pyridine]-2-propanoate (123 mg, 552 µmol) in 1,4-dioxane (10 mL) was refluxed for 24 h. After cooling, the solvent was removed in vacuo and the resulting solid was triturated with Et₂O to give (70%) adduct 68a, as a grayish white solid: 133 mg; mp 233-235 °C; \(^1\)H NMR (Me₂SO-\(d_6\)) δ 3.74 (s, OCH₃, 6H), 4.20 (d, CH₂, \(J = 7.4\) Hz, 2H), 5.12 (t, CH, \(J = 7.4\) Hz, 1H), 7.44-7.58 (m, 3,5-pyrH, 2H), 7.93 (m, 4-pyrH, 1H). 8.88 (ds, \(^{125}\) 6-pyrH, \(J_{5,6} = 5.2\) Hz, \(J_{\text{pH}} = 32.3\) Hz, 1H); \(^{13}\)C NMR (Me₂SO-\(d_6\)) δ 37.0 (CH₂), 49.9 (CH), 52.8 (CH₃), 124.3 (C-5), 127.7 (C-3), 139.3 (C-4), 153.8 (C-6), 159.6 (C-2), 168.9 (C=O); IR (KBr) 1732 vs (C=O), 1213 (C-O) cm⁻¹; Anal. Calcd for C₂₂H₂₉N₂Cl₂O₈Pt: C, 37.09; H, 3.68; N, 3.93. Found: C, 36.91; H, 3.89; N, 3.79.

\[
\begin{align*}
\text{trans-Dichloro-bis{methyl α-(methoxycarbonyl)[pyridine]-2-butanoate-N}platinum(II) (68b) was similarly prepared from methyl α-(methoxycarbonyl)-[pyridine]-2-butanoate and PtCl₂: 83%; mp 164.2-167.0 °C; } \ \(^1\)\text{H NMR (Me₂SO-\(d_6\)) δ 2.38-2.67 (m, 8-CH₂, 2H), 3.71-3.96 (m, α-CH₂, CH, 3H), 3.74 (s, CH₃, 6H), 7.35-7.59 (m, 3,5-pyrH, 2H), 7.93 (ddd, 4-pyrH, \(J_{3,4} = 6.8, J_{4,5} = 2.0\) Hz, 1H), 9.00 (ds, \(^{125}\) 6-pyrH, \(J_{5,6} = 5.1, J_{\text{pH}} = 26.4\) Hz, 1H); } \ \(^{13}\)\text{C NMR (Me₂SO-\(d_6\)) δ 27.7 (8-CH₂), 36.0 (α-CH₂), 50.5 (CH), 52.3 (CH₃), 123.3 (C-5), 126.0 (C-3), 139.1 (C-4),}
\end{align*}
\]
153.7 (C-6), 163.0 (C-2), 169.5 (C=O); IR (KBr) 1728vs (C=O), 1228 (C-O) cm⁻¹; Anal. Calcd for C₂₄H₃₀N₂Cl₂O₈Pt: C, 38.93; H, 4.08; N, 3.78. Found: C, 39.07; H, 4.11; N, 3.79.

Preparation of the C,N-chelates 69a and 69b.

trans-Bis{(methyl α-(methoxycarbonyl)[pyridine]-2-propanoate-C,N}platinum(II) (69a). A stirred mixture of 68a (86 mg, 121 μmol) and excess anhydrous K₂CO₃ in DMF was heated to 90 °C and stirred for 12 h after which the DMF was removed in vacuo. The remaining solid was partially dissolved in CHCl₃ and then filtered through Celite. The CHCl₃ was removed and the product passed through a short chromatographic column (SiO₂, CHCl₃) to give (84%) 69a, as a yellow solid: 65 mg, mp 205-208 °C (dec); ¹H NMR δ 3.45 (s, CH₃, 6H), 3.66 (ss, CH₂, J₉₁₂ = 20.3 Hz, 2H), 7.15-7.33 (m, 5-pyrH, 1H), 7.53-7.79 (m, 3,4-pyrH, 2H), 9.18 (ds, J₉₁₂ = 5.1, y,n' = 36.8 Hz, 1H); ¹³C NMR δ 44.1 (CH₂, JPtC = 17.4 Hz), 49.3 (PtC, JPtC = 453.2 Hz), 50.8 (CH₃), 120.7 (C-3, JPtC = 33.8 Hz), 121.5 (C-5, JPtC = 42.0 Hz), 137.4 (C-4, JPtC = 8.7 Hz), 151.8 (C-6, JPtC = 30.5 Hz), 172.7 (C-2, JPtC = 37.5 Hz), 174.6 (C=O, JPtC = 47.9 Hz); IR (KBr) 1686vs (C=O), 1181 (C-O) cm⁻¹; Anal. Calcd for C₂₂H₂₄N₂O₈Pt: C, 41.32; H, 3.78; N, 4.38. Found: C, 40.98; H, 4.01; N, 4.25.
trans-Bis(methyl \(\alpha\)-(methoxycarbonyl)[pyridine]-2-butanoate-\(C,N\))platinum(II) (69b) was similarly prepared (purification was done by dry-column flash chromatography eluting initially with CHCl\(_3\) and then with 50% CHCl\(_3\)/MeOAc) from 68b: 19%; mp 220-222 °C (dec); \(^1\)H NMR \(\delta\) 2.12-2.30 (m, \(\alpha\)-CH\(_2\), 2H), 2.83 (s, CH\(_3\), 3H), 2.93-3.74 (m, \(\beta\)-CH\(_2\), 2H), 3.29 (s, CH\(_3\), 3H), 7.06-7.44 (m, 3,5-pyrH, 2H), 7.71 (ddd, 4-pyrH, \(J_{4,5} = J_{3,4} = 7.6, J_{4,6} = 1.7\) Hz, 1H), 8.91 (ddds, \(J_{4,1} = 1.7\) Hz, \(J_{2,6} = 0.7, J_{4,6} = 41.2\) Hz, 1H); \(^{13}\)C NMR \(\delta\) 28.9 (B-C, \(J_{PC} = 44.8\) Hz), 41.8 (\(\alpha\)-C, \(J_{PC} = 132.0\) Hz), 49.7 (CH\(_3\)), 50.6 (CH\(_3\)), 122.0 (C-3, \(J_{PC} = 49.9\) Hz), 122.5 (C-5, \(J_{PC} = 26.4\) Hz), 137.2 (C-4, \(J_{PC} = 9.2\) Hz), 152.3 (C-6), 163.3 (C-2, \(J_{PC} = 10.4\) Hz), 174.5 (C=O, \(J_{PC} = 56.3\) Hz), 176.5 (C=O, \(J_{PC} = 63.9\) Hz); IR (KBr) 1690s (C=O), 1196 (C-O) cm\(^{-1}\); Anal. Calcd for C\(_{22}\)H\(_{24}\)N\(_2\)O\(_8\)Pt: C, 43.19; H, 4.23; N, 4.20. Found: C, 43.32; H, 4.41; N, 4.13.

Preparation of Pt(dipy)Cl\(_2\), Pt(phen)Cl\(_2\), and Pt(diox)Cl\(_2\).

Dichloro-2,2'-dipyridineplatinum(II). To a stirred solution of K\(_2\)PtCl\(_4\) (960 mg,
2.31 mmol) in H₂O (50 mL). 2,2’-dipyridine (377 mg, 2.42 mmol) in acetone (15 mL) was added and the temperature maintained at 65 °C for 12 h. The yellow precipitate which formed was then filtered and rinsed with H₂O to give (85%) Pt(dipy)Cl₂, as a yellow powder: 829 mg; mp 368-370 °C; ¹H NMR⁷⁶ (Me₂SO-d₆) δ 7.83 (dd, 5-pyrH, J₄,₅ = 7.8, J₅,₆ = 5.7 Hz, 1H), 8.34 (d, 3-pyrH, J₃,₄ = 8.0 Hz, 1H), 8.48-8.71 (m, 4-pyrH, 1H), 9.50 (ds,¹²⁵ 6-pyrH, J₅,₆ = 5.7, J₆,₁ = 40.4 Hz, 1H); ¹³C NMR (Me₂SO-d₆ limited solubility) δ 124.2 (C-3, JPtC = 30.6 Hz), 127.7 (C-5, JPtC = 38.4 Hz), 140.5 (C-4, JPtC = 9.7 Hz), 148.5 (C-6, JPtC = 33.3 Hz) (C-2 not observed); IR (KBr) 766, 720 cm⁻¹; Anal. Calcd for C₁₀H₁₀N₂Cl₂Pt: C, 28.46; H, 1.91; N, 6.64. Found: C, 28.37; H, 1.70; N, 6.46.

Dichloro-1,10-phenanthrolineplatinum(II) was similarly prepared (86%) from 1,10-phenanthroline monohydrate and K₂PtCl₄: mp 400 °C; ¹H NMR (Me₂SO-d₆) δ 8.17 (dd, 3-phenH, J₃,₄ = 8.2, J₂,₃ = 5.5 Hz, 1H), 8.29 (s, 5-phenH, 1H), 9.04 (dd, 4-phenH, J₃,₄ = 8.2, J₂,₄ = 1.3 Hz, 1H), 9.71 (dds,¹²⁵ 2-phenH, J₂,₃ = 5.5, J₂,₄ = 1.3, J₆,₁ = 41.3 Hz, 1H); IR (KBr) 839, 708 cm⁻¹; Anal. Calcd for C₁₂H₁₂N₂Cl₂Pt: C, 32.31; H, 1.81; N, 6.28. Found: C, 32.48; H, 1.80; N, 6.24.

Dichloro[1,1-bis(2-pyridyl)-1,3-dioxolane]platinum(II) was similarly prepared (52%) from [1,1-bis(2-pyridyl)-1,3-dioxolane] and K₂PtCl₄: mp 313-315 °C (dec); ¹H NMR δ 4.25-4.45 (m, CH₂, 2H), 7.40 (ddd, 5-pyrH, J₄,₅ = 5.9, J₅,₆ = 5.6, J₃,₅ = 3.3 Hz, 1H), 7.79-8.04 (m, 3,4-pyrH, 2H), 9.37 (ds,¹²⁵ 6-pyrH, J₅,₆ = 5.6, J₆,₁ = 46.6 Hz, 1H); IR (KBr) 1090 cm⁻¹ (C-O); Anal. Calcd for C₁₃H₁₂N₂Cl₂O₈Pt: C, 31.60; H, 2.45; N, 5.67. Found: C, 31.96; H, 2.17; N, 5.59.
Preparation of the \(N,N'-\)chelated \(C\)-malonato complexes 71a and 71b.

bis(Dimethyl malonato-C)-2,2'-dipyridineplatinum(II) (71a). Method A. A stirred mixture of Pt(dipy)Cl\(_2\) (90 mg, 213 μmol), dimethyl malonate (140 mg, 1.06 mmol), and anhydrous K\(_2\)CO\(_3\) (293 mg, 2.13 mmol) was kept at 90 °C for 18 h. The DMF and excess malonate were then removed in vacuo and the resulting solid triturated with CHCl\(_3\). After removing the CHCl\(_3\) the product was purified on a silica gel column eluting first with CHCl\(_3\) and then with MeOAc to obtain (78%) 71a, as a bright yellow solid.

Method B. A stirred solution of Pt(dipy)Cl\(_2\) (573 mg, 1.36 mmol) and KI (1.38 g, 8.31 mmol) in DMF (5 mL) was heated to 100 °C for 5 min. After cooling to 40 °C, dimethyl malonate (895 mg, 6.78 mmol) and anhydrous K\(_2\)CO\(_3\) (1.00 g, 5.68 mmol) were added and the mixture was stirred for 24 h at 40 °C. The same work-up as in Method A above yielded (74%) 71a: Method A: 102 mg; Method B: 617 mg; mp 210-214 °C (dec); \(^1\)H NMR δ 3.62 (ss,\(^{125}\)CH\(_3\), \(J_{\text{PtH}} = 3.0\) Hz, 6H), 4.68 (ss,\(^{125}\)CH, \(J_{\text{PtH}} = 129.4\) Hz, 1H), 7.61 (ddd, 5-pyr\(H\), \(J_{5,6} = J_{4,5} = 6.1\), \(J_{3,5} = 2.8\) Hz, 1H), 7.99-8.19 (m, 3,4-pyr\(H\), 2H), 10.09 (ds,\(^{125}\)6-pyr\(H\), \(J_{5,6} = 6.1\), \(J_{\text{PtH}} = 25.6\) Hz, 1H); \(^{13}\)C NMR δ 19.7 (CH, \(J_{\text{Ptc}} = 635\) Hz), 51.5 (CH\(_3\)), 122.5 (C-3, \(J_{\text{Ptc}} = 18.2\) Hz), 127.6 (C-5, \(J_{\text{Ptc}} = 27.9\) Hz), 138.9 (C-4, \(J_{\text{Ptc}} = 6.5\) Hz), 153.8 (C-6, \(J_{\text{Ptc}} = 32.2\) Hz), 157.0 (C-2), 177.0 (C=O); IR (KBR) 1744 vs, 1721 s (C=O), 1136 m (C-O), 783, 729

bis(Dimethyl malonato-C)-1,10-phenanthrolineplatinum(II) (71b) was prepared by both methods from Pt(phen)Cl₂: Method A: 76%; Method B: 80%; mp 255.9-256.9 °C (dec); ¹H NMR δ 3.64 (ss, 125 CH₃, Jₚₚₖ = 3.4 Hz, 6H), 4.81 (ss, 125 CH, Jₚₚₖ = 129.9 Hz, 1H), 7.89 (s, 5-phenH, 1H), 7.93 (dd, 3-phenH, Jₐ,ₙ = 8.2, J₂,₃ = 5.4 Hz, 1H), 8.53 (dd, 4-phenH, J₂,ₔ = 1.4, Jₐ,ₙ = 8.2 Hz, 1H), 10.44 (dds, 125 2-phenH, J₂,₃ = 5.4, J₂,ₔ = 1.4, Jₚₚₖ = 25.6 Hz, 1H); ¹³C NMR δ 18.8 (CH, Jₚₚₖ = 634 Hz), 50.7 (CH₃), 125.4 (C-3, Jₚₚₖ = 29 Hz), 126.9 (C-5), 129.6 (C-4a), 137.5 (C-4), 147.0 (C-10a), 152.9 (C-2, Jₚₚₖ = 34 Hz), 176.2 (C=O, Jₚₚₖ = 64 Hz); IR (KBR) 1725vs (C=O), 1138 (C-O), 841, 716 cm⁻¹; Anal. Calcd for C₂₂H₂₂N₂O₈Pt: C, 41.45; H, 3.48; N, 4.39. Found: C, 41.36; H, 3.42; N, 4.22.

\[
\begin{array}{c}
\begin{array}{c}
\text{C}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{N}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{O}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{C}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{N}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{O}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{P}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Cl}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{Cl}
\end{array}
\end{array}
\end{array}
+ \text{CH}_3(\text{CO}_2\text{Me})_2 \xrightarrow{\text{K}_2\text{CO}_3} \text{DMF} \ 80^\circ \text{C} \n \rightarrow \n \begin{array}{c}
\begin{array}{c}
\text{N}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{R}
\end{array}
\end{array}
\end{array}

\text{Attempt to synthesize bis(dimethyl malonato-C)-[1,1-bis(2-pyridyl)-1,3-dioxolane]platinum(II). To a stirred solution of dichloro[1,1-bis(pyridyl)-1,3-dioxolane]-platinum(II) (81 mg, 160 µmol) in DMF (20 mL) was added excess dimethyl malonate and K₂CO₃. The mixture was heated for 20 h at 90 °C, cooled, filtered and the solvent removed in vacuo. The resulting yellow solid was then extracted with CHCl₃ and the CHCl₃ removed in vacuo. Attempted purification on a short silica gel column gave no fraction which resembled the expected product as determined by ¹H NMR.}
Reaction of Pt(phen)(dmm)$_2$ (71b) with Pt(phen)Cl$_2$. A stirred mixture of Pt(phen)(dmm)$_2$ (71b) (36 mg, 80 μmol), Pt(phen)Cl$_2$, and anhydrous K$_2$CO$_3$ (50 mg, 360 μmol) in DMF (20 mL) was heated to 60 °C for 12 h after which the DMF was removed in vacuo. The yellow solid was then triturated with CHCl$_3$ to give a 50:50 mixture of starting complexes as determined by 1H NMR.

Reaction of Pt(phen)(dmm)$_2$ (71b) with acetyl or benzoyl chloride. After stirring a mixture of Pt(phen)(dmm)$_2$ (71b) (50 mg, 80 μmol) and acetyl chloride (92 mg, 120 μmol) or benzoyl chloride (26.5 mg, 190 μmol) in benzene (25 mL) at 25 °C for 15 min, the solvent was removed to give unchanged starting material for both reactions (acetyl or benzoyl chloride).
Reaction of Pt(phen)(dmm)$_2$ (71b) with methyl vinyl ketone. After stirring a mixture of Pt(phen)(dmm)$_2$ (71b) (50 mg, 80 μmol) and methyl vinyl ketone (97 mg, 1.4 mmol) in CHCl$_3$ (25 mL) at 30 °C for 12 h, the CHCl$_3$ was removed to give unchanged Pt(phen)(dmm)$_2$ (71b) as determined by 1H NMR.

Preparation of the dibromo Pt(IV) complexes 72a and 72b.

aq-Dibromo-de-bis(dimethyl malonato-C)-bc-2,2'-dipyridineplatinum(IV) (72a).

Method A. A 4% solution of bromine in CHCl$_3$ was added dropwise to a stirred solution of 71a (169 mg, 276 μmol) in CHCl$_3$ (5 mL) until no further color change was noted (initially the solution got lighter then suddenly turned dark from excess Br$_2$). The excess Br$_2$ and solvent were then removed in vacuo to give (98%) the oxidized product 72a.

Method B. A mixture of cupric bromide (70 mg, 313 μmol) and 71a (49 mg, 80 μmol) in acetone (20 mL) was stirred at 25 °C for 12 h. The acetone was evaporated and the residue redissolved in CH$_2$Cl$_2$ which was then filtered to remove Cu salts. Removal of the CH$_2$Cl$_2$ in vacuo gave (73%) 72a, as a light yellow solid: Method A: 209 mg; Method B: 46 mg; mp 342-346 °C; 1H NMR δ 3.72 (s, CH$_3$, 6H), 4.94 (ss, 125CH, J_{Pd} = 89.9 Hz, 1H), 7.59-7.77 (m, 5-pyrH, 1H), 8.02-8.29 (m, 3,4-pyrH, 2H), 10.53 (ds, 1256-pyrH, $J_{5,6}$ = 6.6, J_{Pd} = 14.1 Hz); 13C NMR δ 21.0 (CH, J_{PC} = 556.7 Hz), 50.8 (CH$_3$), 123.1 (C-3, J_{PC} = 12.1 Hz), 127.1 (C-5, J_{PC} = 18.1 Hz),
140.2 (C-4), 155.9 (C-6, $J_{PC} = 14.5$ Hz), 157.7 (C-2, $J_{PC} = 16.1$ Hz), 174.3 (C=O, $J_{PC} = 43.0$ Hz); IR (KBr) 1744 vs (C=O), 1127 (C-O), 778, 732 cm$^{-1}$; Anal. Calcd for C$_{20}$H$_{22}$N$_2$Br$_2$O$_8$Pt: C, 31.07; H, 2.87; N, 3.62. Found: C, 31.42; H, 3.21; N, 3.22.

af-Dibromo-de-bis(dimethyl malonato-C)-bc-1,10-phenanthrolineplatinum(IV) (72b) was prepared by both methods from 71b: **Method A**: 98%; **Method B**: 91%; mp > 350 °C; 1H NMR δ 3.76 (ss, 123CH$_3$, $J_{PH} = 3.0$ Hz, 6H), 5.04 (ss, 125CH, $J_{PH} = 90.3$ Hz, 1H), 7.96 (s, 5-phenH, 1H), 8.00 (dd, 3-phenH, $J_{3,4} = 8.2$, $J_{2,3} = 5.5$ Hz, 1H), 8.49 (dd, 4-phenH, $J_{3,4} = 8.2$, $J_{2,4} = 1.3$ Hz, 1H), 10.89 (dds, 1232-phenH, $J_{2,3} = 5.5$, $J_{2,4} = 1.3$ Hz, $J_{PH} = 15.4$ Hz, 1H); 13C NMR δ 21.1 (CH, $J_{PC} = 560$ Hz), 50.8 (CH$_3$), 126.4 (C-3, $J_{PC} = 18.6$ Hz), 127.5 (C-5), 131.0 (C-4a), 139.0 (C-4), 146.0 (C-10a), 156.0 (C-2, $J_{PC} = 15.0$ Hz), 174.5 (C=O, $J_{PC} = 44.3$ Hz); IR (KBr) 1746s (C=O), 1144s (C-O), 845, 716 cm$^{-1}$; Anal. Calcd for C$_{22}$H$_{22}$N$_2$Br$_2$O$_8$Pt: C, 33.14; H, 2.78; N, 3.51. Found: C, 33.35; H, 2.48; N, 3.42.

Preparation of the dichloro Pt(IV) complexes 72c and 72d.

af-Dichloro-de-bis(dimethyl malonato-C)-bc-2,2'-dipyridineplatinum(IV) (72c). **Method A.** A cooled (0 °C) saturated solution of chlorine in CHCl$_3$ was added dropwise to a cooled (0 °C) stirred solution of 71a (61 mg, 100 µmol) in CHCl$_3$ until no further color change was noted. (Initially the solution got lighter and then turned
darker from excess chlorine.) The excess chlorine and CHCl₃ were then removed in vacuo and the product was passed through a short silica column eluting with CHCl₃ to give (56%) 72c.

Method B. A mixture of 71a (45 mg, 70 µmol) and CuCl₂ (40 mg, 300 µmol) was stirred in acetone (10 mL) at 25 °C for 1 h. After filtering and removing the acetone the resulting light yellow solid was purified using flash-dry chromatography eluting initially with CH₂Cl₂ and finally with 3% EtOH/CH₂Cl₂ to give (83%) 72c, as a light yellow solid: **Method A:** 38 mg; **Method B:** 42 mg; mp > 390 °C (dec); ¹H NMR δ 3.72 (s, CH₃, 6H), 4.93 (ss,125 CH, Jₚₜₜ = 89.1 Hz, 1H), 7.60-7.78 (m, 5-pyrH, 1H), 7.91-8.18 (m, 3,4-pyrH, 2H), 10.53 (ds,125 6-pyrH, Jₚₜₜ = 12.8 Hz, 1H); ¹³C NMR δ 21.0 (CH, Jₚₜₜ=C = 556.5 Hz), 50.9 (CH₃), 123.0 (C-3, Jₚₜₜ=C = 12.2 Hz), 127.1 (C-5, Jₚₜₜ=C = 18.0 Hz), 140.2 (C-4), 155.2 (C-2), 156.0 (C-6, Jₚₜₜ=C = 14.3), 174.4 (C=O); IR (KBr) 1740vs (C = O), 1127m (C-O), 847, 718 cm⁻¹; Anal. Calcd for C₂₂H₂₂N₂Cl₂O₈Pt: C, 35.10; H, 3.24; N, 4.09. Found: C, 34.90; H, 3.50; N, 4.06.

aq-Dichloro-de-bis(dimethyl malonato-C)-bc-1,10-phenanthroline(IV) (72d) was prepared by both methods from 71b. **Method A:** 59%; **Method B:** 69%; mp > 300 °C; ¹H NMR δ 3.73 (ss,125 CH₃, Jₚₜₜ = 2.7 Hz, 6H), 5.09 (ss,125 CH, Jₚₜₜ = 88.7 Hz, 1H), 7.95 (s, 5-phenH, 1H), 8.01 (dd, 3-phenH, Jₚ₂₄ = 8.2, J₂₃ = 5.5 Hz, 1H), 8.50 (dd, 4-phenH, Jₚₚₚ = 1.3 Hz, 1H), 10.88 (ds,125 2-phenH, J₂₂ = 5.5, Jₚₜₜ = 14.6 Hz, 1H); ¹³C NMR δ 23.9 (CH, Jₚₜₜ=C = 560.6 Hz), 50.9 (CH₃), 125.9 (C-3, Jₚₜₜ=C = 18.3 Hz), 127.5 (C-5), 131.0 (C-4a), 139.1 (C-4), 155.5 (C-2, Jₚₜₜ=C = 14.0 Hz), 173.8 (C=O); IR (KBr) 1744 (C=O), 1129 (C-O), 847, 718 cm⁻¹; Anal. Calcd for C₂₂H₂₂N₂Cl₂O₈Pt: C, 37.30; H, 3.13; N, 3.95. Found: C, 37.42; H, 3.22, N, 3.76.

When **Method B** was used with 71b, the cis complex 73 was also isolated:
cis(Dichloro)-bis(dimethyl malonato-C)-1,10-phenanthrolineplatinum(IV) (73): 5%; mp >260 °C; 1H NMR δ 2.56 (ss,125 CH3, JPH = 2.2 Hz, 3H), 3.58 (ss,125 CH3, JPH = 2.5 Hz, 3H), 3.73 (s, CH3, JPH = 2.2 Hz, 3H), 3.84 (s, CH3, JPH = 2.2 Hz, 3H), 4.52 (ss,125 CH, JPH = 85.6 Hz, 1H), 5.88 (ss,125 CH, JPH = 98.9 Hz, 1H), 7.92-8.16 (m, 3.5,6,8-phenH, 4H), 8.59 (dd, 7-phenH, J7,8 = 8.2, J7,9 = 1.2 Hz, 1H), 8.63 (dd, 4-phenH, J3,4 = 8.3, J2,4 = 1.3 Hz, 1H), 9.60 (dds,125 2-phenH, J2,3 = 5.4, J2,4 = 1.3, JPH = 14.9 Hz, 1H), 10.86 (dds,125 9-phenH, J8,9 = 5.7, J7,9 = 1.2, JPH = 30.4 Hz, 1H); (insufficient sample for CHN analysis).

Attempt to synthesize Pt(phen)(dmm)4 (74). Dimethyl malonate (80 mg, 610 μmol) and anhydrous K2CO3 (134 mg, 970 μmol) were added to a solution of freshly prepared Pt(phen)(dmm)2Br2 (72b) (75 mg, 90 μmol) in DMF (10 mL) and the solution was heated to 90 °C for 12 h. The DMF and excess malonate were then removed in vacuo and the remaining solid tritured with CHCl3. After filtration and removal of the CHCl3 the product was purified by flash-dry chromatography eluting first with CHCl3 and then with 30% MeOAc/CHCl3.

The CHCl3 fraction afforded (88%) dimethyl 2,3-bis(methoxycarbonyl)butandioate,127 as determined by 1H NMR: 22 mg.

The MeOAc/CHCl3 fraction afforded (77%) bis(dimethyl malonato-C)-1,10-phenanthrolineplatinum(II) (71b): 47 mg.
Reaction of $\text{Pt(phen)(dmm)}_2\text{Br}_2 \,(72b)$ with NaOH. $\text{Pt(phen)(dmm)}_2\text{Br}_2 \,(72b)$ (40 mg, 50 µmol) in CH$_2$Cl$_2$ (5 mL) was added to a solution of NaOH (52 mg, 1.3 mmol) in EtOH (5 mL). The mixture was stirred for 15 min at 25 °C. More CH$_2$Cl$_2$ was added and the solution washed twice with aqueous saturated NaCl. The CH$_2$Cl$_2$ solution was then dried over anhydrous MgSO$_4$ and the solvent removed to give Pt(phen)(dmm)$_2 \,(71b)$, as a yellow solid (8 mg, 25%).
Chapter 2. Cyclopalladated Complexes of 2-Vinylpyridine Derivatives Possessing Pd-C$_{sp^2}$ Bonds

Introduction

Although N,C-cyclometalated sigma complexes, in which the carbon bonded to the metal is sp^2 hybridized, are well known, examples of complexes where the N-donor is pyridine are rather limited.128 Most reports have used one of the following ligands where the metalated carbon is part of an aromatic ring: benzo-$[h]$-quinolines (bhq, 76), 2-(2'-thienyl)pyridines (2-tp, 77), 2-(3'-thienyl)pyridines (3-tp, 78), 2-phenylpyridines (ppy, 79), 2,6-diphenylpyridines (dpp, 80), 2,2'-dipyridines (dipy, 81), and 2-pyridinylferrocenes (pyf, 82). For comparison purposes, this discussion will be limited to those complexes that contain only carbon non-ligating atoms in the chelate ring.

![Chemical structures of ligands](attachment:image.png)

History and Background

Palladium and Platinum Complexes

Kasahara reported129 the first example of a N,C_{sp^2} complex of a pyridine ligand in which [Pd(ppy)Cl]$_2$ (83) was synthesized. In support of this structure, 83 was treated with LiAlD$_4$ to give 2-phenylpyridine-d_1 in which the deuterium was located...
at the 2-position of the phenyl ring as determined by mass spectroscopy. Complex 84 was also reported129 and treated with LiAlD\textsubscript{4} in an analogous manner.

The related ligand, benzo-[\textit{h}]-quinoline, was also found130 to cyclometalate with K\textsubscript{2}PdX\textsubscript{4} (X = Cl, Br) to form [Pd(bhq)X\textsubscript{2}] (85). A far IR and Raman spectroscopic study was conducted in order to assign the bridged M-X frequencies.131 When dimer 85 was treated with various ligands, the monomeric PdX(bhq)L\textsubscript{130,132,133} (86) were isolated. The corresponding Pt(II) complexes have also been reported.132

Cockburn et al. synthesized134 [Pt(bhq)Cl\textsubscript{2}] (87), then studied the chemistry of both
85 and 87 with respect to dimer cleavage, metathesis, and salt formation. Thus, when 87 was reacted with PPh₃, the monomer Pt(bhq)(PPh₃)Cl (88) was obtained. When 85 or 87 was treated with Tl(acac), the O,O'-chelated monomer 89 or 90, respectively, were obtained. ¹³C NMR spectroscopy of 89 and the related Pd(bhq)cp were reported but complete assignments have not yet been reported. When 89 was treated with PPh₃, or 86 (L = PPh₃) was treated with Tl(acac), Pd(bhq)(acac)PPh₃ (91) was obtained. The authors proposed a penta-coordinate O,O'-chelate, as the structure; however, O,O'-chelates are known to rearrange to central-C bonded complexes upon addition of certain ligands, thus 92 is the probable structure of Pd(bhq)(acac)PPh₃. No IR data were given which would differentiate between 91 and 92. The ionic complexes [Pd(bhq)(PPh₃)₂][BF₄] (93) and [Pd(bhq)(diphos)][BF₄] (94) were also prepared.
Siedle has shown that Pd(hfac)$_2$ reacts spontaneously with Hppy to give the orthometalated Pd(hfac)(ppy) 95 with concomitant elimination of one of the hfac moieties. The hfac in 95 was O,O'-chelated as shown by its C=O absorption (IR) at 1640 cm$^{-1}$.

Motivated by the fact that thiophene readily undergoes metalation with certain metals, Giordano and Rasmussen investigated the metalation of 2-(2'-thienyl)pyridine with Pd(II) and Pt(II) and found that, instead of N,S-chelation, cyclometalation occurred at ambient temperature to form 96; an X-ray crystal structure determination of 96a confirmed the existence of the carbon-metal bond.

The bis-cyclometalated complexes of both 2-(2'-thienyl)- (97) and 2-(3'-thienyl)-pyridine (98) were also reported. When 97 or 98 was reacted with either py or PBU$_3$, the monomeric cyclometalated complexes were generated and characterized by the IR and 1H NMR data.

An interesting metathetical reaction has been reported in which [Pd(C=N)Cl]$_2$ (83 or 85) was treated with sodium tetrakis(1-pyrazolylborate) (NaBPz$_4$), to give the
monomeric Pd(C-N)(BPz$_4$) (99 or 100, respectively) was isolated. The 1H NMR spectra of the products indicated that the pyrazolyl groups readily exchanged intramolecularly at ambient temperature.

Utilization of Pd(II) cyclometalated complexes in the synthesis of S-heterocycles was shown by Davis et al.139 whereby an initial ligand exchange on 83 or 85 (or the corresponding bridged acetates) with tetraethylammonium N,N-dialkyldithiocarbamate generated the monomeric 101 or 102, respectively, which in turn reacted with thiocyanogen to give the non-metalated 103 or 104, respectively, which was subsequently cyclized with perchloric acid to yield the corresponding isothiazolium perchlorates.

Numerous 2-phenylpyridine derivatives were used to gain insight into the mechanism of cyclopalladation of 2-phenylpyridine. Thus, complexes 105 were prepared140 in which varied substitution patterns of electron-withdrawing and electron-donating groups were present and it was concluded that, after initial N-complexation,
the aryl ring undergoes electrophilic attack by the palladium atom leading to the cyclometalated product (105).

Complex 85 was found141 to undergo an insertion reaction with hexafluoro-2-butyne to give dimer 106, which contains two 7-membered chelates. The structure of 106 was deduced by elemental analysis, IR, and comparison to similar complexes whose crystal structures were determined.

The potential terdentate 2,6-diphenylpyridine (dpp) could possibly undergo cyclometalation twice to give a fused-ring complex with trans C-metal bonds similar in structure to terpyridine complexes. The first cyclometalation with dpp, however, only exhibited mono-metalation to give 107 in 80% yield from Pd(hfac)\textsubscript{2}.59

Selbin and Gutierrez later reported142 a series of diarylpyridine complexes (108)
in which the aryl group possessed 3-CH₃, 4-Cl, or 4-Br substituent. No bis-metalated complexes were found. It was thought that electron-withdrawing groups in the 4-position of the phenyl rings would make the electrophilic attack of the Pd-atom on the ring facile enough to overcome any steric interaction. In addition, although dibenz[c,h]acridine did not cyclometalate, 5,6,8,9-tetrahydrodibenz[c,h]acridine did undergo mono-metalation to give 109 in 67% yield. Detailed ¹H NMR analyses of 108 and 109 were presented.

The first example of the 2:1 bis-cyclometalated Pt(ppy)₂ (110) was reported by Chassot and Zelewsky in 1983. And later, an X-ray crystal structure determination proved the assigned structure. Complex 110 was also found to react with Br₂ to give the corresponding Pt(IV) complex Pt(ppy)₂Br₂. Synthesis of the related Pt(2-tp)₂ (111) and Pt(3-tp)₂ (112) were also reported by initial lithiation of the appropriate ligand, followed by metal-metal (ligand-ligand) exchange. In this manner, only the homoleptic complexes 110–112 were obtained rather than the bridged dimers 83 (M = Pt), 97, or 98. Regardless of whether cis- or trans-PtCl₂(SEt₂)₂ was used as starting material, only the cis isomers 110–112 were obtained.

Studies on the interesting photochemical and electrochemical properties of this type of complex showed for example, that, in CH₂Cl₂, 111, under irradiation (Hg
lamp), gave Pt(2-tp)$_2$(CH$_2$Cl)Cl (113) by cis photo-oxidative addition.147 Several other alkyl and acyl halides were also found to react in this manner.148

Reaction of [Pd(bhq)Cl]$_2$ (10) with 8-lithio-1-methoxy-naphthalene gave the mixed bis-cyclometalated 114, as a mixture of cis and trans isomers.151 Reaction of 114 with PMe$_2$Ph cleaved the weak Pd-O bond to give 115; complex 114 was also found to undergo an insertion reaction with hexafluorobut-2-yne to give 116.152 The weak Pd-O bond was broken and replaced by a η2 bond from the naphthyl group. This was the first time that such a bond had been observed in a Pd(II) complex. The structure of a related complex was confirmed by X-ray crystallography.152
An interesting approach to cyclometalation based on previous reports of metallocene cyclometalation was reported by Kasahara et al. in which 2-pyridinylferrocene (pyf) reacted with Li₂PdCl₄ in the presence of NaOAc to give dimer 117. Dimer 117 was readily cleaved by reaction with Tl(acac) or PPh₃ to give 118 or 119, respectively. Reaction of 117 with CO/EtOH, Br₂, n-BuLi, or PhLi gave non-metalated products 120a-d, respectively. In support of the structure of 117, reaction with LiAlD₄ gave 1-(2-pyridinyl)ferrocene-2-d₁. Complex 117, when treated with methylvinylketone and phenylvinylketone, gave 121a and 121b, respectively, albeit in low yields (8 and 20%, respectively).

Thummel and Jahng synthesized a series of bridged phenylpyridines, in which the dihedral angle between the aromatic rings was varied from 0 to 80°, in order to investigate the mechanism of cyclometalation. Thus, complexes 122 were
prepared and spectroscopic, kinetic, and H/D isotope effect data reported; an alternative mechanism to the electrophilic attack of the Pd-atom on the aromatic ring, an oxidative addition mechanism was put forth but, based on the reported data, no conclusion was reached.

Ruthenium, Rhodium and Iridium Complexes

RhCl₃·H₂O was found to react with Hbhq and Hppy to give the octahedral dimers [RhX(C=N)₂]₂ (123: C=N = bhq, X = Br; 124: C=N = bhq, X = Cl; 125: C=N = ppy, X = Cl). Treatment of 124 with PBU₃ or SMe₂ gave the corresponding monomers 126. The interesting ¹H NMR spectra of 124 and 126 (L = PBU₃) were discussed and the nitrogens of the cyclometalated ligands were proposed to be in a trans orientation based on spectroscopic evidence (IR, ¹H NMR).

Later, the chemistry of 124 was investigated and it was found to react with a variety of ligands to give monomers 126 (L = py, 4-pic, H₂NCH₃, dmso). Reaction of 124 with NaSMe gave a neutral complex whose formula was given as Rh(bhq)₂(SMe)·1/2 H₂O but no structure was assigned; NaOAc gave the neutral Rh(bhq)₂(OAc) in which the acetate was bidentate as determined by IR. Bidentate ligands reacted with 124 to give the corresponding charged monomers 127, as shown by conductivity measurements. Metatheses of 124 with LiBr in Me₂SO and 126 (L = PBU₃) with LiBr gave monomers Rh(bhq)₂(dmso)Br and Rh(bhq)₂(PBU₃)Br, respectively.

Reaction of [RhX₃(PBU₃)₂]₂ with two molar equivalents of Hbhq or Hppy gave the mono-metalated penta-coordinate complexes 128 which, when treated with one equivalent of PBU₃, gave the octahedral complexes 129. Interestingly, reaction of
RhCl₂(bhq)(PBu₃)₂ with NaI gave, instead of the expected di-iodo complex, RhClI(bhq)(PBu₃)₂, where the iodide was trans to the metalated carbon due to the higher trans effect of the metalated C-atom compared to the heterocyclic N-atom.

Bruce et al. first reported the synthesis of a cyclometalated Ru(II) complex with a pyridine-type ligand in 1973. The trimeric Ru₃(CO)₁₂ was found to react with Hbhq to form Ru(bhq)₂(CO)₂ (130) in 27% yield. An X-ray crystal structure was later
conducted150 which showed the cis arrangement of the heteroatoms. In a similar manner, reaction of Rh(CO)\textsubscript{2}Cl and Hbhq gave the dinuclear complex 131 in which one Rh-atom is tri-valent and the other is mono-valent.159

The dimeric complexes [Ru(C\textasciitilde N)(CO)\textsubscript{2}Cl]\textsubscript{2} (132), prepared from RuCl\textsubscript{3}·3H\textsubscript{2}O (pretreated with CO) and either Hbhq or Hppy, were reported161 and found to undergo a number of cleavage reactions. For example, treatment of 132 with Tl(acac) in CH\textsubscript{2}Cl\textsubscript{2} gave the O,O'-chelates 133 or with PPh\textsubscript{3} gave monomers 134. 4-Picoline reacted with 132 to give 135 but, in the case of 132a, the dimer 136 was also obtained in 10% yield.

\textsuperscript{2-(2-Thienyl)pyridine (H2-tp) was found137 to react with [RuCl\textsubscript{2}(CO)\textsubscript{3}]\textsubscript{2} to give the cyclometalated dimer 137, which could be split by treatment with either py or PBu\textsubscript{3} into monomers 138 Similarly, [RhX\textsubscript{3}(PBu\textsubscript{3})\textsubscript{2}]\textsubscript{2} reacted with H2-tp (X = Cl, Br) and H3-tp (X = Cl) to give dimers 139.

Because of its similarity to Ru(dipy),24 Selbin and co-workers synthesized and
studied the mono-cyclometalated complex 140.162 All 23 protons were assigned by 400-MHz 2-dimensional 1H NMR spectroscopy. The X-ray crystal structure, electrochemical, and spectral properties, and the photochemical aspects of 140 were also reported.163 The related complexes 141 were later reported164 and were also studied by 2-D 1H NMR spectroscopy, spectral, and electrochemical methods.

The dimeric bis-cyclometalated complexes 142, which contain phenyl substituted 2-phenylpyridines were prepared165 and reacted with diethyldithiocarbamate to give the corresponding monomers 143, both of which were studied by 1H NMR spectroscopy.

Although the reactions of Hbhq with Ir(III) halides required more drastic conditions than those with Rh(III) halides (e. g. 123 and 124), the dimers 144 [Ir(bhq)$_2$X]$_2$ were formed by using refluxing 2-methoxyethanol as the reaction solvent.166 As expected, these complexes, when treated with PBu$_3$ and SEt$_2$, gave the desired monomers. The
corresponding 2-phenylpyridine complexes \([\text{Ir(ppy)}_2\text{Cl}]_2\) (145) were synthesized\(^{167}\) and the photophysics of 124, 125, 144, and 145 was studied and correlated.

Because the metal-bound carbon and nitrogen cannot be unambiguously distinguished by X-ray structure determination, the complex \([\text{Ir(ptpy)}_2\text{Cl}]_2\) [ptpy = 2-(p-tolyl)pyridine] was prepared and its structure determined to show that these complexes have two mutually trans Ir-N bonds and two mutually cis Ir-C bonds.\(^{168}\)

The absorption spectra, electrochemistry, luminescence, and excited state lifetimes of \([\text{M(C=N)}_2(\text{L=})]^{1+}\) (146: C=N = ppy, bhq, 2-tp; L = dipy, phen), with various counterions, and \(\text{Ir(ppy)}_3\) (147) were reported\(^{169-174}\) and compared to that of \(\text{Rh(dipy)}\).\(^{34}\)

Iridium chloride with H2-tp in refluxing 2-methoxyethanol formed a bis-cyclo-metalated dimer 148, which was cleaved with py, PBu₃, and Me₂SO to give
monomers 149. Complexes 148 and 149 were characterized by IR and 1H NMR spectroscopy.

A very interesting reaction was reported,176,177 in which [Ir(cod)(PPh\textsubscript{3})\textsubscript{2}][SbF\textsubscript{6}] was treated with Hbhq under 1 atm of H\textsubscript{2} and a trace of H\textsubscript{2}O to give Ir(bhq)-(PPh\textsubscript{3})\textsubscript{2}(H)H\textsubscript{2}O (150). In the presence of H\textsubscript{2}, one molecule of H\textsubscript{2} displaces the H\textsubscript{2}O in 150 to give 151 in which H\textsubscript{2} is undissociatively bound. This dihydrogen complex appeared to be in equilibrium with the trihydride 152. Reaction of 151 with MeLi gave the dihydride 153.

Various transition metal carbonyls were found to form both mono- and bis-
cyclometalated complexes depending on the metal used. Figure 10 shows the different complexes prepared. In addition, the novel hetero-dinuclear complex 154 was prepared from Cr(CO)$_3$(π-Hbhq) and Mn(CO)$_3$Me.

$$\text{Cr(CO)}_3(\pi-\text{Hbhq}) + \text{Mn(CO)}_3\text{Me} \rightarrow \text{Mn(CO)}_4\text{Cr}$$

154

2,2'-Dipyridine as a N,C-Chelate

In 1977 Watts et al. published a report in which [Ir(dipy)$_2$(H$_2$O)(dipy)]Cl$_3$·H$_2$O (155) was proposed to possess one dipy as a monodentate ligand. This instigated a vigorous discussion in the literature concerning its structure. Two years later Watts and Bergeron published what was claimed to be the first observation of proton phototautomerism in a transition metal complex i.e. 155. In the same year Kahl et al. reported the detailed NMR spectrum of 155 and its conjugate base 156, whose
1H NMR spectrum showed a doublet at an abnormally low δ value (~6.9 ppm). Gillard et al. reported182 the 1H NMR spectrum of 155 and also found an upfield doublet at 6.77 ppm which they believed was due to a tetrahedral carbon and thus postulated 157 as the actual structure of 155. In a rebuttal by Spellane and Watts,183 the 13C NMR spectrum of 155 was reported which showed that no signal was present below 120 ppm that would correspond to a tetrahedral carbon and thus maintained that 155 was the actual structure.

Finally, in 1981, Wickramasinghe et al.184 disproved both 155 and 157 as the correct structure by reporting the X-ray crystal structure of "[Ir(dipy)$_2$(H$_2$O)(dipy)]^{3+}" which contains a N.C-bidentate dipy ligand (158). Although it was not actually determined that there was an Ir-C bond, the fact that a H$_2$O molecule was hydrogen bonded to the pyridine ring led to that conclusion. They noted that the structure...
determination did not discount the possibility of a C,C-chelate of dipy. The 500-MHz proton and 125-MHz 13C NMR spectra of 158 were reported185 and completely assigned. The X-ray crystal structure of the conjugate base of 158 was reported186 and it also contained a N,C-bidentate dipy ligand. These authors pointed out that the signal at \approx6.7 ppm in the 1H NMR spectrum, which was assigned to the 4-pyrH of the C-bonded pyridine ring, may be diagnostic for N,C-chelated octahedral dipy complexes of this type (this upfield shift is probably due to the close proximity of an orthogonal pyridine ring of one of the N,N'-chelated dipy ligands). If this is the case, then Pt(dipy)(CN)$_2$H$_2$O, which was reported187 to be a covalent hydrate (e.g. 157) due to the 1H NMR signal at \approx6.8 ppm, may in fact be a N,C-chelate. Constable and Seddon also reported188 H/D exchange at the 3,3'-positions of [Ru(dipy)$_3$]$^{2+}$ in Me$_2$SO-d_6 with NaOCD$_3$ in CD$_3$OD; this exchange was later postulated189 to proceed through an intermediate cyclometalated species.

2-Vinylpyridine as a N,C-chelate

Considering the greater reactivity of an isolated carbon-carbon double bond as compared to benzene, the cyclometalation of 2-vinylpyridine (2-vp) would be expected to be more facile than 2-phenylpyridine for example. However, to the best of our knowledge, there are very limited reports of cyclometalated 2-vp (or its derivatives) complexes. The rationale for this is probably due to the accepted mechanism of the reaction. The first step is the straightforward formation of the M-N bond. Next, electrophilic attack of the metal on the double bond (2-vp) or aromatic ring (2-arylpyridine) occurs generating a positive charge on the carbon alpha to the pyridine. In 2-arylpyridines, this positive charge is stabilized by delocalization in the carbocyclic ring, but in 2-vp, delocalization would result in disruption of the
aromaticity of the pyridine ring. The charge thus resides mostly on the alpha carbon, which is a secondary carbocation possessing an electron-withdrawing group (pyridine).

![Mechanism for Cyclometalation of 2-Vinylpyridine with MX₂](image)

Figure 11. Mechanism for Cyclometalation of 2-Vinylpyridine with MX₂.

destabilizing the cation even further. To circumvent this, a very electrophilic metal must be used or the cation intermediate must be stabilized by suitable electron-donating substituents (R¹). The final step in the mechanism is deprotonation at the beta position to regenerate a double bond.

In 1973, the first cyclometalated 2-vp complex was reported in which [RhX₃(Pn-Bu₃)₂]₂ was reacted with 2-vp to give 159a,b. In the full account, several other complexes of 2-vp derivatives 159c-f were reported. In the \(^1\)H NMR spectra of 159, the β-alkenyl protons (R²) were shifted downfield to 9.30-9.38 ppm and in the \(^{13}\)C

\[
\begin{align*}
\text{RhX}_3(P(n-\text{Bu})_3)_2 & \\
\text{+} & \\
\text{159}a & \\
\text{b} & \\
\text{c} & \\
\text{d} & \\
\text{e} & \\
\text{f} & \\
\end{align*}
\]
NMR spectra, the β-alkenyl carbons were shifted extremely downfield and ranged from 186.0 to 196.9 ppm. Complexes 159b and 159c underwent an interesting addition reaction with Br$_2$ followed by elimination of HBr to give 160; whereas 159 did not react with nucleophiles, CO, or equimolar HBr, although excess HBr displaced the 2-(alkenyl)pyridine.

Bruce et al. reported178 the synthesis of 161 which was structurally supported by analytical and IR data. The mass spectrum of 161 contained ions up to m/e 744 which was attributed to thermal decomposition; without further evidence the actual structure of 161 is yet uncertain.

When PtBr$_4$(2-vp)(PEt$_3$) was recrystallized from wet solvents, 162 was formed; the proposed intermediate 163 (which was not isolable) was transformed to 162 by reaction with water and subsequent oxidation.

2-Vinylpyridine reacted with [Os$_3$H$_2$(CO)$_{10}$] to give the triosmium cluster [Os$_3$H(CO)$_{10}$(2vp)] (164a)192 which contained a cyclometalated 2-vp ligand. The
ethenyl moiety was also intramolecularly bonded to another osmium center via a π-bond which was proven by an X-ray crystal structure determination; reaction of 164a with CCl₄ gave the chloro derivative 164b. Although structurally different than 159 and 160, clusters 164 showed similar ¹H NMR resonances at ~9.20 attributed to the β-alkenyl protons. Other related complexes were also reported.¹⁹²
Results

Syntheses

Dichloropalladium(II) does not readily undergo cyclometalation with 2-vp because of the formation of an intermediate secondary carbocation (see Figure 11). To circumvent this problem, the α-substituted derivative 165 was chosen for cyclometalation for two reasons: 1) α-substitution would generate a more stable tertiary cation in the intermediate, and 2) a functionalized α-substituent would allow such uses as polymer functionalization, synthesis of dinuclear complexes, easy ligand modification, etc.

Ligand 165a was easily synthesized by the method of Bohlmann, et al.193 from the commercially available194 2-(2-pyridinyl)-1,3-propanediol. Treatment of the propanediol with acetic anhydride at reflux for 6h yielded (94%) 165a which underwent facile transesterification with anhydrous K\textsubscript{2}CO\textsubscript{3} in absolute EtOH to give (57%) 165b.

Cyclometalation of 165a with PdCl\textsubscript{2} occurred at 25 °C in CH\textsubscript{3}CN to give (47%) the chloro-bridged dimer 166a; addition of K\textsubscript{2}CO\textsubscript{3} increased the yield to 67%. The
2:1-complex PdCl$_2$(165a)$_2$ could not be obtained under these conditions using two equivalents of ligand. Dimer 166a reacted, as expected, with either pyridine or P(Ph)$_3$ to give monomers 167.

Although reaction of 165b with PdCl$_2$ in CH$_3$CN did not give [PdCl(165b)]$_2$ (166b), the use of K$_2$PdCl$_4$ (generated in situ) in H$_2$O/acetone did yield (96%) dimer 166b, which also reacted with either pyridine or P(Ph)$_3$ to give monomers 168.

Because of the high yield (96%) of 166b when the reaction was conducted in H$_2$O/acetone, these conditions were tried on ligand 165a to give (74%) dimer 166a. When excess 165a was used, the yield was generally lower (50-60%). Dimer 169 was sometimes isolated under these conditions in varying (10-40%) yields. A similar product was reported195 when 2-vp was reacted with Na$_2$MCl$_4$ (M = Pd, Pt) in various alcohols to give complexes 170.
Foot and Heaton reported190,191 the synthesis of complex 171 by reaction of the 2-vp complex with Br\textsubscript{2}. When dimer 166a was reacted with Br\textsubscript{2}, an inseparable mixture of oxidation products was obtained.

Proton NMR Spectroscopy

A comparison of the chemical shifts of the 6-pyridinyl protons shows a gradual *downfield* shift when the ligands (\textasciitilde 8.5 ppm) are compared to the dimers (\textasciitilde 8.8 ppm) which are in turn compared to the monomers (9.03 - 9.36 ppm). These shifts are probably due to the difference in the electron-withdrawing effects of the metal centers on the pyridine rings as well as the trans effects in the complexes.

The most important shifts in the 1H NMR spectra are those of the vinyl protons. For the allyl acetate and alcohol ligands these resonances appear at 5.56/5.99 ppm and 5.50/5.78 ppm, respectively. The analogous cyclometalated complexes show the disappearance of one resonance and the collapse to a singlet of the other resonance which is shifted *downfield* relative to the analogous ligand. The allyl acetate complexes range from 6.63 - 7.04 ppm and the allyl alcohol complexes range from 6.20 - 6.80 ppm. These shifts are in the same range as those observed by Foot and Heaton190,191 for complexes 159 and again are due to an electron-withdrawing effect of the metal on the vinyl carbons. The only other shifts are a slight *upfield* shift (\textasciitilde 0.4 ppm) of the allyl-CH\textsubscript{2} protons observed on complexation.

Carbon-13 NMR Spectroscopy

The only extreme shifts in the 13C NMR spectra are those of the \(\beta\)-alkenyl carbons which exhibit large downfield shifts upon complexation from \textasciitilde 116 ppm in the ligands to \textasciitilde 168 ppm in the complexes; similar shifts are observed in the related complexes 159190,191. All other shifts are similar to those observed in the ligands.
Figure 12. ORTEP drawing of C₂₅H₂₅NCIO₂PPd.
Structure Determination

An X-ray crystal structure determination of 167b has been done196 to verify the existence of the carbon-metal bond [1.982(5) \(\text{Å}\)]; an ORTEP drawing is shown in Figure 12. The carbon-carbon double bond is also intact [1.328(8) \(\text{Å}\)].

Conclusion

Novel dimeric cyclometalated complexes of 2-vinylpyridine derivatives and their pyridine and \(\text{PPh}_3\) monomers that possess Pd-C\(_{\text{sp}^2}\) sigma bonds, in which the \(\text{sp}^2\) carbon is part of a vinyl (allyl) system rather than in an aromatic ring, have been synthesized and characterized by \(^{1}\text{H}\) NMR and \(^{13}\text{C} \) NMR spectroscopy. An X-ray crystal structure determination of one of the monomers proved the existence of the Pd-C sigma bond.

Experimental

General Comments. are found on page 65 in Chapter 1.

Reagents. Unless otherwise noted, all reagents and solvents utilized were of reagent grade and no further purification was undertaken. 2-(2-Pyridinyl)-1,3-propanediol was purchased from Aldrich Chemical Co., Milwaukee, Wisconsin194.

![Experimental Procedure](image)

2-(2-Pyridinyl)-3-acetoxypropene (165a). A stirred solution of 2-(2-pyridinyl)-1,3-propanediol193 (10.36 g, 6.77 mmol) in \(\text{Ac}_2\text{O} \) (75 mL) was refluxed for 6h. The
Ac₂O was removed in vacuo to give a thin oil, which was distilled under reduced pressure to give (94%) 165a.¹⁹³,¹⁹⁷ as a colorless liquid: 11.27g; bp 105-115 °C(1 mm) [lit¹⁹³ bp 120-130 °C(3 mm)]; ¹H NMR δ 2.09 (s, CH₃, 3H), 5.16 (d, CH₂, J = 1.4 Hz, 1H), 5.56 (dd, CH₉₅ pyr, ²J = 0.9, ⁴J = 1.4 Hz, 1H), 5.99 (d, CH₉₆ pyr, ²J = 0.9 Hz, 1H), 7.18 (ddd, 5-pyrH, J₄₅ = 7.0, J₅₆ = 4.8, J₃₅ = 1.7 Hz, 1H), 7.42-7.55 (m, 3-pyrH, 1H), 7.58-7.79 (m, 4-pyrH, 1H), 8.58 (ddd, 6-pyrH, J₅₆ = 4.8, J₄₆ = 1.7, J₃₆ = 1.0 Hz, 1H); ¹³C NMR δ 20.8 (CH₃), 64.6 (CH₂), 117.1 (=CH₂), 120.2 (C3), 122.7 (C5), 136.5 (C4), 142.6 (=CR₂), 149.2 (C6), 156.0 (C2), 170.9 (CO); MS m/z 177(2), 134(100), 78(15), 43(19).

\[
\begin{align*}
\text{K₂CO₃} & \quad \text{EtOH} \\
\text{165a} & \quad \text{165b}
\end{align*}
\]

2-(2-Pyridinyl)-3-hydroxypropene (165b). A stirred solution of 2-(2-pyridinyl)-3-acetoxypropene (490 mg, 2.77 mmol) and anhydrous K₂CO₃ (300 mg, 2.16 mmol) in EtOH (50 mL) was refluxed for 15 h. After concentration, the resulting solid was extracted with CH₂Cl₂, the solvent removed in vacuo and the resulting oil distilled under reduced pressure to give (71%) pure 165b¹⁹⁷: 213 mg; bp 135-145 °C(1 mm); ¹H NMR δ 4.60 (s, CH₂, 1H), 5.50 (s, CH₉₅ pyr, 1H), 5.78 (s, CH₉₆ pyr, 1H), 7.18 (ddd, 5-pyrH, J₄₅ = 6.8, J₅₆ = 4.8, J₃₅ = 2.0 Hz, 1H), 7.55-7.82 (m, 3-pyrH, 1H), 7.63-7.77 (m, 4-pyrH, 1H), 8.50 (ddd, 6-pyrH, J₅₆ = 4.8, J₄₆ = J₃₆ = 1.2 Hz, 1H); ¹³C NMR δ 65.6 (CH₂), 115.8 (=CH₂), 120.1 (C3), 122.4 (C5), 136.6 (C4), 145.9 (=CR₂), 148.3 (C6), 157.4 (C2); MS m/z 135(22), 134(36), 117(5), 106(100), 105(19), 104(37), 79(28), 78(62).
\[\text{\(\mu\)-Dichloro-bis[2-(2-pyridinyl)-3-acetoxypropenyl-C\(\equiv\)N]dipalladium(II) (166a).}\]

Method A: A solution of \(\text{PdCl}_2\) (297 mg, 1.67 mmol), allyl acetate 165a (302 mg, 1.71 mmol), and anhydrous \(\text{K}_2\text{CO}_3\) (470 mg, 3.40 mmol) in \(\text{CH}_3\text{CN}\) (100 mL) was stirred for 12 h at 25 °C. The solvent was then removed in vacuo and the resulting solid triturated with \(\text{CHCl}_3\). After removing the \(\text{CHCl}_3\), the mixture was purified using dry-flash chromatography (SiO\(_2\)) eluting with \(\text{CHCl}_3\) to give (67%) 166a, as light yellow microcrystals: 362 mg; mp >255 °C (dec); \(^1\text{H NMR (Me}_2\text{SO-\(d_6\)}) \delta 2.01 (s, \text{CH}_3, 3\text{H}), 4.76 (s, \text{CH}_2, 2\text{H}), 7.04 (s, \text{CH}, 1\text{H}), 7.34 (dd, \text{3-pyrH}, J_{3,4} = 7.8, J_{3,5} = 1.4 \text{ Hz, 1H}), 7.37 (ddd, \text{5-pyrH}, J_{5,6} = 4.7, J_{4,5} = 7.7, J_{3,5} = 1.4 \text{ Hz, 1H}), 8.03 (ddd, \text{4-pyrH}, J_{4,5} = J_{3,4} = 7.7, J_{4,6} = 1.7 \text{ Hz, 1H}), 8.85 (bd, \text{6-pyrH}, J_{5,6} = 4.7 \text{ Hz, 1H}); \(^{13}\text{C NMR (Me}_2\text{SO-\(d_6\)}) \delta 20.4 (\text{CH}_3), 62.1 (\text{CH}_2), 119.9 (\text{C3}), 122.2 (\text{C5}), 140.9 (\text{C4}), 142.3 (\text{C6}), 150.0 (\text{C2}), 170.1 (\text{CO}), 171.6 (\text{PdC}); \text{IR (KBr)} 1732s (\text{C = O}), 1603, 1480s (\text{C=C, C=N}), 1264s, 1030 (\text{C-O}), 826, 776 \text{ cm}^{-1}; \text{Anal. Calcd for \(\text{C}_{20}\text{H}_{20}\text{N}_2\text{Cl}_2\text{O}_4\text{Pd}_2\): C, 37.76; H, 3.17; N, 4.40; Cl, 11.15. Found C, 37.73; H, 3.18; N, 4.32; Cl, 10.91.}

Method B. A solution of allyl acetate 165a (131 mg, 740 \(\mu\)mol) in acetone (15 mL) was added to a stirred solution of \(\text{PdCl}_2\) (132 mg, 744 \(\mu\)mol) and \(\text{KCl}\) (165 mg, 2.21 mmol) in \(\text{H}_2\text{O}\) (10 mL) and the solution was stirred at 25 °C for 12 h. The mixture was then filtered to give (74%) 166a, as a light yellow solid (176 mg).
In some reactions, a by-product was also isolated and shown to be dimer 169 (10-40%): mp >280 °C; 1H NMR (Me$_2$SO-d$_6$) δ 2.00 (s, CH$_3$, 3H), 2.18 (d, PdCH$_2$, 2J = 9.2 Hz, 1H), 2.62 (d, PdCH$_2$, 2J = 9.2 Hz, 1H), 4.21 (d, OCH$_2$, 2J = 11.1 Hz, 1H), 4.38 (d, OCH$_2$, J_{gem} = 11.1 Hz, 1H), 6.07 (s, OH, 1H), 7.47-7.59 (m, 3, 5-pyrH, 2H), 8.07 (ddd, 4-pyrH, $J_{3,4} = J_{4,5} = 7.3$, $J_{4,6} = 1.4$ Hz, 1H), 8.89 (d, 6-pyrH, $J_{5,6} = 5.5$ Hz, 1H); 13C NMR (Me$_2$SO-d$_6$) δ 20.1 (CH$_3$), 39.1 (PdCH$_2$), 70.4 (CH$_2$O), 80.7 (aC), 123.3, 123.6 (C3 & C5), 138.9 (C4), 148.5 (C6), 168.9, 169.1 (C2 & CO); IR (KBr) 3468b (OH), 1738s (C =O), 1607, 1478 (C -C, C -N), 1250, 1048 (C-O) cm$^{-1}$; Anal. Calcd for C$_{20}$H$_{24}$N$_2$Cl$_2$O$_6$Pd$_2$: C, 35.74; H, 3.60; N, 4.17. Found: C, 35.89; H, 3.63; N, 4.16.

Excess pyridine (~600 mg) was added to a stirred solution of 166a (63 mg, 0.1 mmol) in CH$_2$Cl$_2$ (10 mL) and after stirring for 12 h at 25 °C the solvent was removed. Purification by column chromatography (SiO$_2$) eluting with CH$_2$Cl$_2$ gave (100%) 167a, as a yellow solid: 80 mg; mp 189-190 °C (dec); 1H NMR δ 2.06 (s, CH$_3$, 3H), 4.79 (s, CH$_2$, 2H), 6.99 (s, =CH, 1H), 7.05-7.15 (m, 3,5-pyrH, 2H), 7.44 (dd, 3'-pyrH, $J_{3,4} = 7.1$, $J_{2,3} = 7.1$ Hz, 2H), 7.70-7.95 (m, 4-, 4'-pyrH, 2H), 8.85 (d, 2'-pyrH, $J_{2,3} = 7.1$ Hz, 1H), 9.25 (d, 6-pyrH, $J_{5,6} = 4.7$ Hz, 1H); 13C NMR δ 20.7 (CH$_3$), 62.5 (CH$_2$), 118.8 (C3), 121.0 (C5), 125.2 (C3'), 138.0, 138.9 (C4 & C4'), 142.2 (=CR$_2$), 152.1 (C6), 153.1 (C2'), 166.2, 166.9 (C2 & Pd-C), 170.3 (CO); IR
(KBr) 1721 (C=O), 1447, 1480 (C=C, C=N), 1223, 1028 (C-O), 830, 760, 696 cm⁻¹; Anal. Calcd for C₁₅H₁₅N₂ClO₂Pd: C, 45.36; H, 3.81; N, 7.05. Found: C, 45.22; H, 3.86; N, 7.00.

Chloro[2-(2-pyridinyl)-3-acetoxypropenyl-C,V]triphenylphosphine palladium(II) (167b). A solution of 166a (71 mg, 0.11 mmol) and triphenylphosphine (64 mg, 0.24 mmol) in CH₂Cl₂ (20 mL) was stirred for 18 h at 25 °C. The solvent was then removed to give (95%) 167b, as a yellow solid: 123 mg; mp 187-188 °C (dec). ^1H NMR δ 1.98 (s, CH₃, 3H), 4.61 (s, CH₂, 2H), 6.63 (d, =CH, Jₚ,H = 19.0 Hz, 1H), 7.10 (d, 3-pyrH, J₃,₄ = 7.9 Hz, 1H), 7.19 (dd, 5-pyrH, J₄,₅ = 7.5, J₅,₆ = 4.4 Hz, 1H), 7.39-7.49 (m, 2.4.6-phH, 9H), 7.60-7.78 (m, 3.5-phH & 4-pyrH, 7H), 9.36 (t, 6-pyrH, J₅,₆ = Jₚ,H = 4.4 Hz, 1H); ^13C NMR (400 MHz) δ 20.9 (CH₃), 64.2 (CH₂), 118.5 (C3), 121.4 (C5, Jₚ,C = 3 Hz), 128.4 (C3', Jₚ,C = 11.1 Hz), 130.2 (C1', Jₚ,C = 52.3 Hz), 130.8 (C4', Jₚ,C = 2.0 Hz), 134.7 (C2', Jₚ,C = 12.1 Hz), 139.2 (C4), 142.6 (=CR₂), 150.0 (C6), 164.3 (C2, Jₚ,C = 4.0 Hz), 170.1 (Pd-C, Jₚ,C = 4.0 Hz), 170.6 (CO); IR (KBr) 1742s (C=O), 1603, 1480 (C=C, C=N), 1435s (P-C), 1219s, 1096 (C-O), 750, 694 cm⁻¹; Anal. Calcd for C₄₈H₃₅NClO₂PPd: C, 57.95; H, 4.34; N, 2.41. Found: C, 57.80; H, 4.52; N, 2.16.

167b

μ-Dichloro-bis[2-(2-pyridinyl)-3-hydroxypropenyl-C,V]dipalladium(II) (166b). Allyl alcohol 165b (300 mg, 2.22 mmol) in acetone (5 mL) was added to a stirred solution of PdCl₂ (200 mg, 1.13 mmol) and KCl (300 mg, 4.02 mmol) in H₂O (15
mL). After stirring for 16h at 27 °C, the mixture was filtered and washed with acetone to give (96%) 166b·H₂O, as a yellow solid: 310 mg; mp 217 °C (dec); ¹H NMR (Me₂SO-d₆) δ 4.16 (s, CH₂, 2H), 6.80 (s, =CH, 1H), 7.27-7.55 (m, 3.5-pyrH, 2H), 8.00 (ddd, 4-pyrH, J₃,₄ = J₄,₅ = 7.8, J₄,₆ = 1.7 Hz, 1H), 8.83 (d, 6-pyrH, J₅,₆ = 4.5 Hz, 1H); ¹³C NMR (Me₂SO-d₆) δ 60.4 (CH₂), 120.4 (C₃), 121.9 (C₅), 140.6 (C₄), 148.1 (C₆), 149.9 (αC), 166.3 (PdC), 166.4 (C₂); IR (KBr) 3337b (OH), 1599s, 1482s (C=C, C=N), 1080 (C-O), 822, 762 cm⁻¹; Anal. Calcd for C₁₆H₁₆N₂Cl₂O₂Pd₂H₂O: C, 33.71; H, 3.18; N, 4.91. Found: C, 33.81; H, 3.42; N, 4.78.

An excess of pyridine was added to a stirred suspension of 166b (85 mg, 0.15 mmol) in CHCl₃ (25 mL). After stirring for 12h at 25 °C the solvent was removed and the resulting solid was purified on a SiO₂ column eluting with CHCl₃ to give (66%) 168a, as a yellow solid: 72 mg; mp 138-141 °C; ¹H NMR δ 1.56 (t, OH, J = 5.8 Hz, 1H), 4.36 (d, CH₂, J = 5.8 Hz, 2H), 6.83 (s, =CH, 1H), 7.07 (ddd, 5-pyrH, J₄,₅ = 7.3, J₅,₆ = 5.6, J₃,₅ = 1.4 Hz, 1H), 7.18-7.85 (m, 3,3'-pyrH, 3H), 7.88-7.96 (m, 4,4'-pyrH, 2H), 8.88 (d, 2'-pyrH, J₂,₃ = 5.6 Hz, 2H), 9.25 (d, 6-pyrH, J₅,₆ = 5.1 Hz, 1H); ¹³C NMR δ 61.4 (CH₂), 119.4 (C₃), 120.6 (C₅), 125.1 (C₃'), 138.0, 138.7 (C₄ & C₄'), 147.0 (αC), 151.4 (C₆), 152.9 (C₂'), 162.0 (C₂), 166.2 (PdC); IR (KBr) 3376b (OH), 1601s, 1480s, 1449s (C=C, C=N), 1084 (C-O), 820, 758, 698 cm⁻¹; Anal. Calcd for C₁₃H₁₃N₂ClO₂Pd: C, 43.97; H, 3.69; N, 7.89. Found: C, 43.90; H, 3.76; N, 7.84.
Chloro[2-(2-pyridinyl)-3-hydroxypropenyl-C,N]triphenylphosphinepalladium(II) (168b). Triphenylphosphine (83 mg, 0.317 mmol) was added to a stirred solution of 166b (87 mg, 0.16 mmol) in CHCl₃ (10 mL). After stirring for 12h at 25 °C, the solvent was removed to give (90%) 168b, as a yellow solid: 153 mg; mp 109-112 °C; ¹H NMR δ 1.22 (t, OH, J = 5.7 Hz, 1H), 4.17 (d, CH₂, J = 5.7 Hz, 2H), 6.20 (d, =CH, J_P,H = 19.2 Hz, 1H), 7.11-7.41 (m, 2,4,6-phH & 3,5-pyrH, 11H), 7.56-7.87 (m, 3,5-phH & 4-pyrH, 7H), 9.35 (dd, 6-pyrH, J₅,₆ = J_P,H = 4.4 Hz, 1H); ¹³C NMR δ 63.1 (CH₂), 119.4 (C3), 121.1 (C5), 128.2 (C3′, J_P,C = 10.8 Hz), 130.3 (C1′, J_P,C = 50.1 Hz), 130.6 (C4′), 134.5 (C2′, J_P,C = 11.8 Hz), 139.1 (C4), 148.1 (αC), 149.5 (C6), 164.7 (C2), 165.6 (PdC); IR (KBr) 3422b (OH), 1601, 1480 (C=C, C=N), 1435s (P-C), 1098 (C-O), 746, 694s cm⁻¹; Anal. Calcd for C₂₆H₂₃NC₁₀PPd: C, 58.01; H, 4.31; N, 2.60 Found: C, 58.06; H, 4.57; N, 2.55.
Chapter 3. Methyl Functionalization of 2-Methyl- and 2,7-
Dimethyl-1,8-Naphthyridine

Introduction

In 1967, Paudler and Kress first reported a feasible one-step synthesis of 2,7-
dimethyl-1,8-naphthyridine [dmnap(s)],198 2-methyl-1,8-naphthyridine [mnap(s)],198 and 1,8-naphthyridine [nap(s)]198,199 from commercially available starting materials. Since then, a plethora of novel inorganic complexes have been reported using these potential bidentate ligands, ranging from dodecahedral transition metal complexes to dinuclear complexes containing bridging naps to icosahedral, twelve-coordinate lanthanide complexes. 1,8-Naphthyridine complexes have been reported for alkaline earth metals,200 Cr(0),201 Cr(VI),202 Mo(0),201, 203 W(0),201 Mn(I),204 Re(I),204 Fe(II),204, e Ru(0),206 Ru(II),207 Co(II),204 c, f, 205 i Rh(I),209 Rh(II),210 Ir(I),209 Ni(1.5),211 (formal oxidation state) Ni(II),204 b, f, 205 i Pd(II),212 Pt(II),204 b, 213 Cu(I),214 Cu(1.5),215 (formal oxidation state) Cu(II),204 b, e, 205 i Au(III),217 Zn(II),204 b, f, 205 i

![Diagram of complexes](image)

Figure 13. Interesting Examples of 1,8-Naphthyridine Complexes.
Cd(II),204b,d,e, 205i, 218 Hg(I),218, 219 Sn(IV),220 U(III),221 lanthanide metals,222 and Th(IV)223. Despite this profusion of reports, very little has been done on the functionalization of these ligands in order to exploit 1,8-naphthyridines' unique complexation properties. Because of the decreased complexing ability of macrocyclic naphthyridine ligands possessing heteroatoms at the two position224, 225 it was of interest to devise a method for the α-carbon functionalization of 2-methyl- and 2,7-dimethyl-1,8-naphthyridines.

Since Paudler and Kress' first report198 on the synthesis of 1,8-naphthyridines, other modifications have been described226 making these ligands readily available. Although most syntheses of dmnap have focused on the Skraup synthesis in which 2-amino-6-picoline is combined with crotonaldehyde, this procedure is difficult due to the extreme ease and exothermicity of polymerization of crotonaldehyde. Alternatively,

![Syntheses of 2,7-Dimethyl-1,8-naphthyridine](image)

Figure 14. Syntheses of 2,7-Dimethyl-1,8-naphthyridine.

mnap can be prepared in very good yields198 by the reaction of 2-amino-6-picoline with acrolein (generated in situ from glycerol). Based on reports227, 228 that nap reacts with excess PhLi to give initially 2-phenyl-1,8-naphthyridine and finally 2,7-diphenyl-
1,8-naphthyridine228 (after oxidation) and that 2,2′-dipyridine was shown229 to react with MeLi to give 6,6′-dimethyl-2,2′-dipyridine, Newkome and co-workers reacted mnap with three equivalents of MeLi followed by oxidation of the resultant dihydro-naphthyridine with K\textsubscript{2}MnO\textsubscript{4}/acetone to give dmnap in 43% overall yield from 2-amino-6-picoline.224,230

To the best of my knowledge, the only reports of α-carbon functionalization at the two and seven positions of methyl naps was by the use of SeO\textsubscript{2}. Thus, Weissenfels and Ulrici described231 the oxidation of one methyl group of mnap and dmnap to give the mono-aldehydes in 24% and 15% yields, respectively. A later report232 used SeO\textsubscript{2} to oxidize 2,4-dimethyl-7-hydroxy-1,8-naphthyridine to the 2,4-dialdehyde in 49% yield. The most recent account226d of this oxidation was by Chandler et al. in which dmnap was oxidized to the 2,7-dialdehyde, which was further incorporated into a macrocycle; despite these reports, this oxidation is not easily reproduced.

An interesting approach to the methyl functionalization of 2,9-dimethyl-1,10-phenanthroline was reported233 by Newkome et al. (see Scheme I) in which excess NCS oxidation gave the corresponding bis-trichloromethyl derivative which was hydrolyzed with H\textsubscript{2}SO\textsubscript{4} followed by MeOH to give the bis-methyl ester. Subsequent reduction with NaBH\textsubscript{4}/EtOH followed by treatment with PCl\textsubscript{3}/CHCl\textsubscript{3} gave the desired bis-chloromethyl derivative in 65% overall yield. Using this approach on dmnap, the bis-trichloromethyl derivative 172 was obtained in 98% yield.224 Unfortunately, subsequent treatment with H\textsubscript{2}SO\textsubscript{4} followed by MeOH234 gave only 42% of diester 173.
Scheme I. Functionalization of 2,9-Dimethyl-1,10-phenanthroline.

along with 172 and 2-trichloromethyl-7-methoxycarbonyl-1,8-naphthyridine.\(^{224}\)

Results

Functionalization of 2,7-dimethyl-1,8-naphthyridine

Attempts to functionalize dmnap using two equivalents of NCS\(^{235}\) gave a mixture of at least seven products which were isolated by column chromatography (with difficulty), none of which were formed in greater than 10% yield; attempted oxidation of dmnap with KMnO\(_4\) gave starting material. In a continuation of the above scheme, since the treatment of 172 with H\(_2\)SO\(_4\) at 110 °C gave incomplete reaction, higher temperatures were tried in an effort to force the reaction to completion but no organic soluble material was obtained. On the assumption that ring sulfonation may have occurred, H\(_3\)PO\(_4\) was chosen for the hydrolysis in an attempt to eliminate this
possibility. As predicted, treatment of 172 with H$_3$PO$_4$ at \(\approx 170 \) °C followed by MeOH gave diester 173 in 80% yield.

Although NaBH$_4$ is not generally used to reduce esters, Brown and Rapoport reported236 that a large excess (10 molar equivalents) of the reagent can be used to reduce aromatic esters in high yields. But when 173 was treated with an excess of NaBH$_4$, diverse products were formed due to ring reduction. The 1H NMR spectrum of the mixture showed peaks ranging from the aromatic to alkenyl to aliphatic regions. Using only one equivalent of NaBH$_4$ gave the same results and lowering the temperature (-40 and -25 °C) gave less ring reduction but also less ester reduction.

Although NaBH$_4$ has not been reported to reduce aromatic rings, borane does reduce nap above 0 °C to 1,2,3,4-tetrahydro-1,8-naphthyridine in 44% yield.237 After the first hydride transfer from NaBH$_4$, BH$_3$ is formed which can then complex with nap thereby facilitating the ring reduction.

The reducing reagent of choice therefore was a mono-hydride source which would not produce a Lewis acid hydride product. Brown et al. reported238 that NaBH(OMe)$_3$ reduces aldehydes and acyl chlorides effectively (66-79%) but is a poor reducing agent for ethyl benzoate (33%). Despite this report, reaction of 173 with six equivalents of NaBH(OMe)$_3$ in DCM/THF gave diol 174 in 55% yield.239

Although diol 174 has great potential for ligand modification and is in itself a tetradeutate ligand, the seemingly trivial conversion of 174 to the bis-chloromethyl
derivative 175 was attempted. Reaction of 174 with PCl3 in CHCl3 did give 175, but in only 7% yield with much decomposition. Because 175 is a relatively stable compound and can be stored for long periods, it appears that the acidic reaction conditions cause decomposition of the diol before the chlorination can occur.240 SOCl2 and concentrated HCl both gave decomposition. Several neutral chlorinating reagents were tried (PPh3/CCl4,241 NCS/SEt2,242 treatment of the unquenched reduction mixture with PCl3 or methanesulfonyl chloride), all to no avail.

Functionalization of 2-methyl-1,8-naphthyridine

The reaction of mnap with one equivalent of NCS gave a mixture of products and was inappropriate for methyl functionalization. Therefore the same sequence, as was used for dmnap, was attempted with mnap. Treatment of mnap with four equivalents of NCS in refluxing CCl4 gave the desired 2-trichloromethyl-1,8-naphthyridine (176) in 85% yield along with 6-chloro-2-trichloromethyl-1,8-naphthyridine (177) as determined by its 1H NMR spectrum. Using a more selective solvent (DCM) for the reaction increased the yield of 176 to 94% with only a trace of 177 being formed.
Treatment of 176 with H$_3$PO$_4$ at 140 °C followed by refluxing in MeOH gave 2-methoxycarbonyl-1,8-naphthyridine (178) in 78% yield. Although attempts to reduce 178 with NaBH$_4$ again gave ring reduction, the use of NaBH(OME)$_3$ afforded 2-hydroxymethyl-1,8-naphthyridine (179) in 59% yield. Attempts to chlorinate 179 under acidic conditions, as in the case of 174, also gave decomposition of the alcohol.

Before I discovered the hydrolysis of 172 and 176 with H$_3$PO$_4$, basic hydrolysis with KOH/EtOH was attempted based on the proposed mechanism shown in Figure 15. However, under these conditions, the first reaction which takes place is the displacement of the entire trichloromethyl group in a nucleophilic heteroaromatic
Figure 15. Proposed Mechanism for the Basic Hydrolysis of bis(2,7-Trichloromethyl)-1,8-naphthyridine.

substitution reaction to give a 2-hydroxy group. Thus, from 176, 1,8-naphthyridin-2-one (180) was obtained as the sole product, and from 172, depending on the reaction conditions, either 7-trichloromethyl-1,8-naphthyridin-2-one (181) (25 °C) or its hydrolysis product 7-ethoxycarbonyl-1,8-naphthyridin-2-one (182) (reflux) was formed. The remaining heteroaromatic rings in 181 and 182 are not as electron-deficient as in 172, thus the second CCl₃ group is not displaced. This type of reaction has been reported for 1,3,5-triazines²⁴³ and for quinazolines²⁴⁴ but this is the first
example in which a trichloromethyl group acts as a leaving group in a heterocyclic ring possessing only one heteroatom. This reaction is not totally unexpected and is analogous to the haloform reaction for α,α,α-trihaloketones as shown in Figure 16.

![Figure 16. Proposed Mechanism for the Reaction of 2-(Trichloromethyl)-1,8-naphthyridine with KOH and Comparison to the Haloform Reaction.](image)

NMR Spectroscopy

The 1H NMR spectrum of 172 was previously incorrectly reported224 and so the correct values are reported here. Both 172 and 173 exhibit downfield shifts of the aromatic resonances due to the electron-withdrawing CC1$_3$ and CO$_2$Me moieties, respectively. Diol 174 showed a resonance at 5.01 ppm due to the CH$_2$ group which shifted slightly upfield in 175 to 4.9 ppm. The mono-substituted derivatives displayed similar shifts.

For the naphthyridin-2-one derivatives 181 and 182, the 3-napH shifts were both shifted upfield to 6.79 ppm. This is due to the predominance of the lactam resonance form which causes a shift of the 3-napH into the vinyl region.

Most of the 13C NMR spectral resonances were easily assigned by comparison to the spectrum of 1,8-naphthyridine.245 However, for 181 and 182, the assignments for C3 and C6 were not straightforward. Shift constants for these carbons were calculated based on those derivatives (both mono- and di-substituted) which could be unequivocally assigned. Important to note is that, in 2-pyridone, the greatest shift
difference in comparison to pyridine is in the 5-pyrC (para) which is shifted upfield by 16.9 ppm.246 Based on this fact, in the spectrum of 1,8-naphthyridin-2-one (180), the signal at 118.6 ppm was assigned to C6. This lead to an assignment of the resonances at 113.4 and 118.8 ppm in 181 and 182, respectively, to C6.

IR Spectroscopy

The most important absorptions in the IR spectra are those of the NH and C=O stretches in 181 (3434 and 1663 cm-1) and 182 (3425 and 1659 cm-1) which indicate their "lactam" character.

Experimental

General Comments are found on page 65 in Chapter 1.

Reagents. Unless otherwise noted, all reagents and solvents utilized were of reagent grade and no further purification was undertaken. 2-Methyl- and 2,7-dimethyl-1,8-naphthyridine were prepared by the method of Newkome et al.224,230

\[
\begin{array}{c}
\text{Me} & \begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \text{Me} \\
\text{H} & \begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \text{Cl}_3 \\
\end{array} \xrightarrow{\text{NCS, CCl}_4} \begin{array}{c}
\text{N} \\
\text{N}
\end{array} & \text{Cl}_3 \\
\end{array}
\]

2,7-Bis(trichloromethyl)-1,8-naphthyridine (172) was prepared from dmnap (89%) by a previously reported procedure224: 6.69 g; mp 234-236 °C (C\textsubscript{8}H\textsubscript{12}) (lit.224 mp 233-234 °C); 1H NMR δ 8.28 (d, 3-napH, J\textsubscript{3,4} = 8.7 Hz, 1H), 8.47 (d, 4-napH, J\textsubscript{3,4} = 8.7 Hz, 1H); 13C NMR δ 95.3 (CCl\textsubscript{3}), 118.8 (C3), 121.0 (C4a), 137.3 (C4), 149.9 (C8a), 160.4 (C2); MS m/e 364 (6), 333 (21), 331 (67), 329 (100), 327 (64), 294 (33), 292 (21), 222 (11); IR (KBr) 1605, 1549, 1495, 876, 826, 772 cm-1; Anal. Calcd for
2,7-Bis(methoxycarbonyl)-1,8-naphthyridine (173). A solution of 2,7-bis(trichloromethyl)-1,8-naphthyridine (172) (7.00 g, 19.1 mmol) in 85% H$_3$PO$_4$ (25 mL) was heated to 160-170 °C. After 3 h (all of 172 had dissolved) the solution was cooled to 25 °C and MeOH (150 mL) was carefully added. After refluxing for 12 h, most of the MeOH was removed in vacuo and CHCl$_3$ (150 mL) and saturated aqueous Na$_2$CO$_3$ were carefully added. The solution was stirred vigorously for 15 min and then the organic layer was separated, dried over anhydrous MgSO$_4$, filtered, and the CHCl$_3$ removed in vacuo to give (80%) diester 173: 3.76 g; mp 215-217 °C (dec) (lit224 mp 212-218 °C); 1H NMR δ 4.08 (s, CH$_3$, 3H), 8.34 (d, 3-napH, J$_{3,4}$ = 8.4 Hz, 1H), 8.46 (d, 4-napH, J$_{3,4}$ = 8.4 Hz, 1H); 13C NMR δ 52.9 (CH$_3$), 123.3 (C3), 125.3 (C4a), 138.4 (C4), 152.2 (C2), 154.3 (C8a), 165.4 (CO); MS 246 (2), 216 (30), 215 (5), 188 (100), 187 (24), 157 (5), 156 (40), 128 (67); IR (KBr) 1709, 1381, 1136, 872, 772 cm$^{-1}$; Anal. Calcd for C$_{12}$H$_{10}$N$_2$O$_4$: C, 58.54; H, 4.09; N, 11.38. Found: C, 58.66; H, 4.09; N, 11.09.
At tempted Reduction of 2,7-Bis(methoxycarbonyl)-1,8-naphthyridine with NaBH₄. A solution of NaBH₄ (100 mg, 2.6 mmol) and diester 173 (440 mg, 1.8 mmol) in EtOH (25 mL) was stirred for 1 h at 25 °C. The EtOH was then removed and H₂O (25 mL) added. Continuous extraction with CHCl₃ for 12 h afforded (12%) diol 174, after recrystallization from benzene/CHCl₃. The majority of the recovered material was comprised of ring reduced products, as determined by ¹H NMR which contained a vast array of aliphatic and vinyl resonances and very little in the aromatic region. Attempts using NaBH₄ at lower temperatures (-25 °C and -40 °C) gave diminished ring-reduction, however, the ester reduction was also retarded to such an extent that this was not a viable method.

2,7-Bis(hydroxymethyl)-1,8-naphthyridine (174). A solution of sodium trimethoxyborohydride (250 mg, 1.95 mmol) in THF (10 mL) was added to a stirred solution of diester 173 (78 mg, 317 µmol) in CH₂Cl₂ (10 mL). The solution was maintained at 25 °C for 1 h after which the solvents were removed in vacuo. The remaining solid was dissolved in saturated aqueous NaHCO₃ (10 mL), then the water was removed in vacuo. The resulting solid was extracted with hot EtOH (3X, 20 mL) and the EtOH removed in vacuo; extraction of the resultant solid with CH₂Cl₂ and removal of the solvent in vacuo gave (55%)²³⁹ diol 174: 33 mg; mp 143-145 °C (CH₃CN); ¹H NMR δ 1.61 (bs, OH, 1H), 5.01 (s, CH₂, 2H), 7.48 (d, 3-napH, J₃,₄ = 8.3 Hz, 1H), 8.21 (d, 4-napH, J₃,₄ = 8.3 Hz, 1H); ¹³C NMR (CD₃OD) δ 66.2 (CH₂).
120.9 (C3), 122.5 (C4a), 139.6 (C4), 167.2 (C2); (C8a was not observed using a 20 second pulse delay); IR (KBr) 3322, 1609, 1433, 1071, 858, 804, 785 cm$^{-1}$; MS m/e 190 (51), 189 (100), 172 (58), 161 (49), 143 (73), 131 (20); Anal. Calcd for C$_{10}$H$_{10}$N$_2$O$_2$: C, 63.15; H, 5.30; N, 14.73. Found: C, 63.20; H, 5.36; N, 14.72.

Chlorination of 2,7-Bis(hydroxymethyl)-1,8-naphthyridine with PCl$_3$. PCl$_3$ (0.75 mL, 8.6 mmol) was added dropwise to a stirred solution of diol 174 (102 mg, 0.54 mmol) in CHCl$_3$. After refluxing for 30 min, the CHCl$_3$ was removed in vacuo, and the resulting oil neutralized with saturated aqueous Na$_2$CO$_3$ and then extracted with CH$_2$Cl$_2$. The solution was dried over anhydrous MgSO$_4$, filtered and the CH$_2$Cl$_2$ removed to give traces of a white solid, which proved to be a mixture of 2,7-bis(chloromethyl)-1,8-naphthyridine (175) (85%) and diol 174 (15%) as determined by 1H NMR. However, only 8 mg of solid was recovered (7% yield of 175). A considerable amount of decomposition was noted in the reaction.

2-Trichloromethyl-1,8-naphthyridine (172). A stirred solution of 2-methyl-1,8-naphthyridine (3.0 g, 20.8 mmol) and N-chlorosuccinimide (NCS) (11.10 g, 83.0
mmol) in CCl₄ (200 mL) was refluxed and benzoyl peroxide (1-3 mg) was added every 30 min for the first 2 h; the solution was refluxed for an additional 20 h. The solvent was removed in vacuo and the solid residue dissolved in CHCl₃ which was washed twice with saturated aqueous Na₂CO₃. The CHCl₃ solution was dried over anhydrous MgSO₄, filtered, and the solvent removed in vacuo to give a light yellow solid, which was purified by dry-flash chromatography using CHCl₃ as eluant, collecting two fractions:

Fraction 1: 6-Chloro-2-trichloromethyl-1,8-naphthyridine (177): 800 mg; 14%; mp 128-130 °C (dec); ¹H NMR δ 8.25 (d, 5-napH, J₅,₇ = 2.6 Hz, 1H), 8.26 (d, 3-napH, J₃,₄ = 8.7 Hz, 1H), 8.35 (d, 4-napH, J₃,₁ = 8.7 Hz, 1H), 9.11 (bs, 7-napH, 1H); ¹³C NMR δ 97.0 (CCl₃), 119.8 (C₃), 122.9 (C₄a), 131.4 (C₆), 134.5 (C₄), 138.6 (C₅), 151.8 (C₈a), 154.3 (C₇), 160.7 (C₂); IR (KBr) 1595, 1549, 849, 829, 772 cm⁻¹; MS m/e 284 (7), 282 (14), 280 (10), 249 (32), 247 (100), 249 (96), 210 (15); Anal. Calcd for C₉H₄N₂Cl₄: C, 38.34; H, 1.43; N, 9.94; Cl, 50.30. Found: C, 38.24; H, 1.48; N, 9.77; Cl, 50.13.

Fraction 2: 2-trichloromethyl-1,8-naphthyridine (176): 4.38 g; 85%; mp 174-176 °C (dec); ¹H NMR δ 7.61 (dd, 6-napH, J₅,₆ = 8.2 Hz, J₆,₇ = 8.1 Hz, 1H), 8.19 (d, 3-napH, J₃,₄ = 8.7 Hz, 1H), 8.29 (dd, 5-napH, J₅,₆ = 8.2, J₅,₇ = 2.0 Hz, 1H), 8.40 (d, 4-napH, J₃,₄ = 8.7 Hz, 1H), 9.23 (dd, 7-napH, J₆,₇ = 4.2, J₅,₇ = 2.0 Hz, 1H); ¹³C NMR δ 97.3 (CCl₃), 118.7 (C₃), 122.7 (C₄a), 123.7 (C₆), 136.7 (C₄), 139.4 (C₅), 153.7 (C₈a), 154.9 (C₇), 160.4 (C₂); MS 248 (18), 246 (19), 213 (68), 211 (100), 176 (21), 129 (14); IR (KBr) 1599, 1555, 824, 785, 768, 762 cm⁻¹; Anal. Calcd for C₉H₅N₂Cl₃: C, 43.67; H, 2.04; N, 11.32; Cl, 42.97. Found: C, 43.75; H, 1.88; N, 11.16; Cl, 42.84.
In an attempt to avoid ring chlorination the following procedure was used. A stirred solution of 2-methyl-1,8-naphthyridine (1.0 g, 6.9 mmol) and NCS (3.7 g, 27.2 mmol) in CH₂Cl₂ (100 mL) was refluxed and a catalytic amount of azoisobutyronitrile (AIBN) was added; additional AIBN (=5 mg) was added every hour for 4 h. The solution was refluxed for an additional 12 h and then cooled, washed twice with saturated aqueous Na₂CO₃, dried over anhydrous MgSO₄, filtered, and the solvent removed in vacuo to give (94%) 176, as a light yellow solid. Traces of ring chlorinated product were detected (≤5%).

\[
\begin{align*}
\text{N} & \quad \text{N} & \quad \text{Cl} \\
& \quad \text{176} & \quad \text{177} \\
176 & \xrightarrow{\text{H₃PO₄}} & \text{CO₂Me} & \xrightarrow{\text{MeOH}} & \text{178}
\end{align*}
\]

2-Methoxycarbonyl-1,8-naphthyridine (178). A stirred mixture of 176 (1.6 g, 6.5 mmol) and 85% H₃PO₄ (10 mL) was heated to 140 °C for 3 h. After cooling, anhydrous MeOH (25 mL) was carefully added and the mixture refluxed for 12 h. Most of the MeOH was removed and the remaining slurry was treated with saturated aqueous Na₂CO₃. Extraction of the basic solution with CH₂Cl₂, followed by drying over anhydrous MgSO₄, and removal of the CH₂Cl₂ gave (78%) 178, as a tan solid: 950 mg; mp 146-150 °C; ¹H NMR δ 4.08 (s, CH₃, 3H), 7.59 (dd, 6-napH, J₅,₆ = 8.2, J₆,₇ = 4.2 Hz, 1H), 8.26 (d, 3-napH, J₃,₄ = 9.8 Hz, 1H), 8.27 (dd, 5-napH, J₅,₆ = 8.2, J₅,₇ = 2.0 Hz, 1H), 8.40 (d, 4-napH, J₃,₄ = 9.8 Hz, 1H), 9.24 (dd, 7-napH, J₆,₇ = 4.2, J₅,₇ = 2.0 Hz, 1H); ¹³C NMR δ 52.6 (CH₃), 121.6 (C6), 123.4 (C3), 124.0 (C4a), 136.6 (C5), 138.5 (C4), 150.6 (C8a), 154.6 (C7), 155.0 (C2), 165.4 (CO); MS m/e
120

130 (100), 129 (40); IR (KBr) 1709, 1601, 1451, 1318, 1235, 1140, 870, 801, 774 cm⁻¹; Anal. Calcd for C₁₀H₈N₂O₂: C, 63.83; H, 4.28; N, 14.89. Found: C, 63.64; H, 4.41; N, 14.69.

2-Hydroxymethyl-1,8-naphthyridine (179). A solution of sodium trimethoxyborohydride (379 mg, 2.97 mmol) in THF (10 mL) was added to a stirred solution of ester 178 (184 mg, 979 µmol) in CH₂Cl₂ (10 mL). The solution was maintained at 25 °C for 1 h, after which the solvents were removed in vacuo. The remaining solid was dissolved in saturated aqueous NaHCO₃ (10 mL) and the water removed in vacuo. The resulting solid was then extracted with hot EtOH (3X, 20 mL) and the combined EtOH extract was concentrated in vacuo to give a solid, which was purified by dry-flash chromatography eluting first with EtOAc, followed by 3:2 EtOAc/EtOH to give (59%) alcohol 179: 93 mg; mp 99-100 °C (benzene/CHCl₃); ¹H NMR δ 4.40 (b, OH, 1H), 5.01 (s, CH₂, 2H), 7.46 (d, 3-napH, J₃,₄ = 8.4 Hz, 1H), 7.51 (dd, 6-napH, J₅,₆ = 8.1, J₆,₇ = 4.3 Hz, 1H), 8.20 (d, 4-napH, J₃,₄ = 8.4 Hz, 1H), 8.22 (dd, 5-napH, J₅,₆ = 8.1, J₅,₇ = 2.0 Hz, 1H), 9.10 (dd, 7-napH, J₆,₇ = 4.3, J₅,₇ = 2.0 Hz, 1H); ¹³C NMR δ 64.5 (CH₂), 119.7 (C3), 122.2 (C6), 137.2, 137.9 (C4, C5), 153.7 (C7), 163.9 (C2). (C4a and C8a were not observed with a 4 second delay); IR (KBr) 3412, 1607, 1499, 1080, 848, 808, 777 cm⁻¹; Anal. Calcd for C₉H₈N₂O: C, 67.49; H, 5.03; N, 17.49. Found: C, 67.25; H, 5.16; N, 17.30.
Reaction of 2,7-Bis(trichloromethyl)-1,8-naphthyridine (172) with KOH in EtOH. A stirred solution of 172 (254 mg, 696 μmol) and KOH (474 mg, 8.46 mmol) in EtOH (35 mL) was refluxed for 3 h. The EtOH was then removed in vacuo and saturated aqueous NaHCO₃ (10 mL) was added. The aqueous solution was extracted with CHCl₃ (3X, 20 mL) and the combined organic solution was dried over anhydrous MgSO₄, filtered, and the solvent removed in vacuo to give a brown solid, which was purified using dry-flash chromatography eluting initially with CHCl₃, followed by 1:1 CHCl₃/EtOAc to give 2 fractions:

Fraction 1: 7-trichloromethyl-1,8-naphthyridin-2-one (181): (73 mg, 40%); mp 201-202 °C (dec); ¹H NMR δ 6.79 (d, 3-napH, J₃,₄ = 9.6 Hz, 1H), 7.74 (d, 4-napH, J₃,₄ = 9.6 Hz, 1H), 7.86 (d, 6-napH, J₅,₆ = 8.2 Hz, 1H), 8.03 (d, 5-napH, J₅,₆ = 8.2 Hz, 1H), 9.56 (bs, OH, 1H); ¹³C NMR (Me₂SO-d₆) δ 96.8 (CCl₃), 113.4 (C₆), 115.8 (C₄a), 125.3 (C₃), 138.2 (C₄), 138.9 (C₅), 148.9 (C₈a), 157.1 (C₇), 163.0 (C₂); MS m/e 264 (11), 262 (10), 229 (71), 227 (100); IR (KBr) 3434, 1663, 1597, 1547, 870, 824, 762 cm⁻¹; Anal. Calcd for C₉H₅N₂C₁₃O: C, 41.02; H, 1.91; N, 10.63; Cl 40.36. Found: C, 41.20; H, 1.87; N, 10.31; Cl, 40.41.

Fraction 2: 7-ethoxycarbonyl-1,8-naphthyridin-2-one (182): (26 mg, 17%); mp 207-208 °C (dec); ¹H NMR δ 1.45 (t, CH₃, J = 7.1 Hz, 3H), 4.50 (q, CH₂, J = 7.1 Hz, 2H), 6.79 (d, 3-napH, J₃,₄ = 9.6 Hz, 1H), 7.74 (d, 4-napH, J₃,₄ = 9.6 Hz, 1H), 7.99 (s, 5,6-napH, 2H), 9.48 (bs, OH, 1H); ¹³C NMR (Me₂SO-d₆) δ 14.0 (CH₃), 61.4
(CH₂), 117.1 (C₄a), 118.8 (C₆), 125.4 (C₃), 137.8 (C₅), 138.4 (C₄), 147.4 (C₈a), 149.8 (C₇), 163.0 (C₂), 164.4 (CO); MS m/e 218 (30), 173 (7), 146 (100), 145 (30); IR (KBr) 3425, 1730, 1659, 1595, 1547, 1287, 1154, 764 cm⁻¹; Anal. Calcd for C₁₁H₁₀N₂O₃: C, 60.55; H, 4.62; N, 12.84. Found: C, 60.53; H, 4.74; N, 12.71.

When the reaction was conducted at 25 °C for 36 h, the formation of 181 was increased to 79% with very little 182 being formed.

Reaction of 2-Trichloromethyl-1,8-naphthyridine (176) with KOH in EtOH. A stirred solution of 176 (268 mg, 1.08 mmol) and KOH (623 mg, 11.1 mmol) in absolute EtOH (20 mL) was refluxed for 3 h. The EtOH was then removed in vacuo and saturated aqueous NaHCO₃ (10 mL) was added. The aqueous solution was extracted with CHCl₃ (3X, 15 mL), the combined organic solution dried over anhydrous MgSO₄, filtered, and the solvent removed in vacuo to give a brown solid, which was purified using dry-flash chromatography eluting initially with CHCl₃, followed by 1:1 CHCl₃/EtOAc to give (61%) 1,8-naphthyridin-2-one (180): 96 mg; mp 198-201.5 °C; (lit.²⁴⁷ mp 198-199 °C, lit.²⁴⁸ mp 197-198 °C) ¹³C NMR δ 115.0 (C₄a), 118.6 (C₆), 123.8 (C₃), 136.4 (C₅), 138.8 (C₄), 150.0 (C₈a), 150.6 (C₇), 164.0 (C₂); Anal. Calc for C₈H₆N₂O: C, 65.75; H, 4.14; N, 19.17. Found: C, 65.59; H, 4.23; N, 19.10.
Chapter 4. Synthesis of Metal Paddlanes.

Introduction

Several attempts have been made to correlate the structural and magnetic properties in dinuclear metal(II) carboxylate complexes. In order to further elucidate the interactions in these species we designed flexible N,N'-bidentate ligands (183) and attempted construction of macrocyclic copper(II) carboxylate complexes (paddlanes) of the type 184 depicted in Scheme II.

Scheme II. Synthesis of Metal Paddlanes.

In the 1:1 complex of 183 with dimeric copper(II) acetate to form the metal paddlane 184, variation of the chain length in the ligand (n = 3-5), was expected to systematically alter the copper acetate moiety and provide a better insight into the Cu-Cu interaction.

Results

Reaction of nicotinoyl chloride with an appropriate glycol in benzene gave 183 (ca. 100%) as colorless oils.

\[
\begin{align*}
183: n & = 3 \\
b: n & = 4 \\
c: n & = 5
\end{align*}
\]

\[
\text{[Cu(C}_2\text{H}_3\text{O}_2}_2\text{]}_2\cdot\text{2H}_2\text{O}
\]

\begin{align*}
\text{MeOH} & \\
\text{Scheme II. Synthesis of Metal Paddlanes.}
\end{align*}

An equimolar mixture of 183 and [Cu(C_2H_3O_2)_2]_2·2H_2O in MeOH at 25 °C under high-dilution conditions produced the metal paddle 184.

\[
\begin{align*}
\text{[Cu(C}_2\text{H}_3\text{O}_2}_2\text{]}_2\cdot\text{2H}_2\text{O}
\end{align*}
\]

conditions 253 yielded a bluish-green solid (184) $n = 4$: mp 164-165 °C; $n = 5$: mp 118-119 °C.

Although the complexation reaction which leads to 184 was conducted in MeOH, the only crystals obtained from the recrystallization of 184b ($n = 4$) in MeOH/CHCl$_3$ was the methyl nicotinate complex of copper acetate 185 [mp > 225 °C (dec)]. The formation of 185 occurred by facile transesterification of the ligand portion of complex 184b during recrystallization; recrystallizations from aprotic solvents do not give 185. The fact that transesterification does not occur in the reaction is due to the relatively short reaction time (3 h) compared to recrystallization (1 week). In light of this, the role of chloroform is simply that of a co-crystallization solvent. In addition, the commutation appeared to occur solely on the complexed ligand since attempted transesterifications of non-ligating esters (i.e. benzoate esters) in the presence of copper acetate failed. Because of the mild reaction conditions (25 °C, MeOH/CHCl$_3$), participation by copper is not unlikely; however this possibility has not been pursued. Slow evaporation of a MeOH/CHCl$_3$ solution gave single crystals of 185. Due to the small amount of material used in the recrystallization (≈ 5 mg), no other products were isolated, nor was the yield determined.
Crystal Data

Formula weight = 637.5, monoclinic, space group *P2_1/c*, \(a = 8.710(2), b = 18.823(5), c = 8.059(2)\,\text{Å}, \beta = 92.56(2)^\circ\). \(Z = 2, D_c = 1.604\,\text{g cm}^{-3}, T = 24\,\text{°C}, \mu(\text{MoK}_\alpha) = 16.77\,\text{cm}^{-1}, R = 0.043\) for 1612 observed data.

Intensity data were collected on an Enraf-Nonius CAD4 diffractometer equipped with MoK\(\alpha\) radiation (\(\lambda = 0.71073\,\text{Å}\)) and a graphite monochromator, using a crystal of dimensions 0.14 X 0.32 X 0.42 mm. All data in one quadrant having \(1^\circ < \theta < 25^\circ\) were measured by \(\omega-2\theta\) scans of variable rate. Scan rates varied 0.74-10.00 deg min\(^{-1}\) in order to measure all significant reflections with \(I > 5\sigma(I)\). Data reduction included corrections for background, decay (23%), Lorentz, and polarization effects, as well as absorption corrections based on \(\psi\) scans of reflections near \(\chi = 90^\circ\). The minimum relative transmission coefficient was 0.582. A total of 2328 unique data was measured, of which 1612 had \(I > 3\sigma(I)\) and were used in the refinement.

The structure was solved by heavy atom methods and refined by full matrix least squares based on \(F\) with weights \(w = \sigma^{-2}(F_o)\), using the Enraf-Nonius SDP programs.\(^{25}\) Nonhydrogen atoms were treated anisotropically; hydrogen atoms were located by difference maps and included as fixed contributions. The maximum residual density in a final difference map was 0.72 eÅ, near Cu.

Discussion

Selected bond distances are listed in Table XV. The copper acetate dimer structure is observed with methyl nicotinate capping the apical position. There is a center of symmetry between the two copper atoms. The Cu-Cu distance is 2.607(1) Å, which falls within the range of that observed in copper acetate complexes with \(N\)-donor ligands (2.58-2.67 Å).\(^{24}\) As well, the Cu-N distance of 2.173(3) Å is also within the
normally observed range (2.08-2.24 Å). The geometry around copper is distorted tetragonal-pyramidal with the copper atom out of the basal plane of the four oxygens, displaced toward the nitrogen atom, by 0.197(1) Å as compared to similar compounds with a range of 0.19-0.23 Å. The Cu-O distances average 1.974 Å. In both independent acetate groups, the two C-O distances differ by statistically significant amounts. Since no reason for this difference is readily apparent, it may be indicative of an under-estimation of the uncertainties, or of imperfect decay and absorption corrections. No abnormal intermolecular interactions are observed. An ORTEP drawing of 185 is given in Figure 17.
Table XV. Selected Bond Distances (Å) and Angles (°) for [Cu(C_2H_3O_2)_2]_2-2C_7H_7NO_2.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-O(1)</td>
<td>1.978(2)</td>
<td>Cu-O(1)-C(1) 123.4(2)</td>
</tr>
<tr>
<td>Cu-O(2)</td>
<td>1.975(2)</td>
<td>Cu-O(2)-C(1) 122.5(2)</td>
</tr>
<tr>
<td>Cu-O(3)</td>
<td>1.979(3)</td>
<td>Cu-O(3)-C(3) 120.7(3)</td>
</tr>
<tr>
<td>Cu-O(4)</td>
<td>1.964(3)</td>
<td>Cu-O(4)-C(3) 125.8(3)</td>
</tr>
<tr>
<td>Cu-N(1)</td>
<td>2.173(3)</td>
<td>O(1)-C(1)-O(2) 125.3(3)</td>
</tr>
<tr>
<td>Cu-Cu'</td>
<td>2.607(1)</td>
<td>O(3)-C(3)-O(4) 124.8(4)</td>
</tr>
<tr>
<td>C(1)-O(1)</td>
<td>1.260(4)</td>
<td>N(1)-Cu-O(1) 94.5(1)</td>
</tr>
<tr>
<td>C(1)-O(2)</td>
<td>1.232(4)</td>
<td>N(1)-Cu-O(2) 96.9(1)</td>
</tr>
<tr>
<td>C(3)-O(3)</td>
<td>1.270(5)</td>
<td>N(1)-Cu-O(3) 95.9(1)</td>
</tr>
<tr>
<td>C(3)-O(4)</td>
<td>1.229(5)</td>
<td>N(1)-Cu-O(4) 95.6(1)</td>
</tr>
</tbody>
</table>
Figure 17. ORTEP Drawing of 185.
Chapter 5. Hydrogen-Bonding in the Pyridine-Oxalic Acid System

Introduction

Grigorowsky and Kimen reported a 1:1 adduct between pyridine and oxalic acid in 1945. Reaction of an equimolar mixture of oxalic acid and pyridine would be expected to give pyridinium hydrogen oxalate based on pKₐ data. Our interest in this system was based on a report from our labs of a macrocycle in which pyridine was μ-bonded to two different atoms. The 1:1 adduct between pyridine and oxalic acid also has the potential for intramolecular μ-bonding of the pyridine moiety with the two acidic protons.

![Possible Bonding Modes in the 1:1 Pyridine/oxalic acid System.](image)

An equimolar mixture of pyridine and oxalic acid in MeOH indeed gave a 1:1 salt as shown by combustion analysis. An X-ray crystal structure of the 1:1 salt was undertaken to gain insight into its structure. It was shown that μ-bonding was not present and that the 1:1 salt was not the expected hydrogen oxalate salt but rather dipyridinium oxalate-oxalic acid (186). Further investigations showed that the product which is formed is dependent on the solvent system used. Thus, when pyridine and oxalic acid were mixed in a 1:1 ratio in 10% MeOH/CHCl₃ a different salt was formed which was shown to be dipyridinium bis(hydrogen oxalate)-oxalic acid (187)

by X-ray crystallography.

Experimental

Dipyridinium oxalate-oxalic acid. An equimolar mixture of pyridine and oxalic acid dihydrate in MeOH gave 186 as colorless crystals: mp 426-428 K; \(^1\)H NMR (CD\(_3\)OD) \(\delta \) 7.72-7.89 (m, 3-pyH, 2H), 8.30 (tt, 4-pyH, \(J_{3,4} = 7.7, J_{2,4} = 1.7 \) Hz, 1H), 8.76 (dd, 2-pyH, \(J_{2,3} = 4.7 \) Hz, 2H). A colorless tabular crystal of dimensions 0.16 \(\times \) 0.42 \(\times \) 0.45 mm was mounted on a capillary. Space-group determination was done by successful refinement of a centrosymmetric model. Data were collected on an Enraf-Nonius CAD-4 diffractometer with a graphite monochromator using Mo Ka radiation. Cell dimensions were obtained from setting angles of 25 reflections, \(24 < 2\Theta < 30^\circ \). Data collection was by \(\omega-2\Theta \) scans designed for \(I=50\sigma(I) \). Scan rates varied 0.53-5.0\(^\circ \) min\(^{-1}\). Reflections having \(1 < \Theta < 30^\circ \), \(0 \leq h \leq 5, -11 \leq k \leq 11, -15 \leq l \leq 15 \) were measured and corrected for background, Lorentz, and polarization effects. Three standard reflections were used with \(\pm 2.5\% \) random variation. The structure was solved using *MULTAN78*\(^{257} \) by phasing in \(P\bar{1} \) space group from fragments recognized in \(E \) maps in \(P\bar{1} \). Refinement was done by full-matrix least squares (based on \(F \)) using data for which \(I > 3\sigma(I) \) (765 unobserved reflections), \(w=[\sigma^2(F) + 0.02F^2]^{-1} \), with Enraf-Nonius SDP package.\(^{258} \) Non-H atoms were refined anisotropically; H-atoms were located by \(\Delta F \) and were refined isotropically. Final \(R = 0.041, R_w = 0.057, S = 1.993 \) for 138 variables, with the largest residual densities of 0.33 and 0.36 eÅ\(^{-3} \) on oxalic acid and oxalate centers. The extinction coefficient was 3.3(7) \(\times \) 10\(^{6} \) with a maximum shift in the final cycle of 0.01\(\sigma \). Atomic coordinates and equivalent isotropic thermal parameters can be found in reference 259a. Formula: \(2C_5H_6N^+\cdot C_2H_2O_4 \cdot M_r = 338.3, \) triclinic, \(P\bar{1}, a = 3.999(2), b = 8.439(4), c = \)
11.319(3)Å, α = 77.96(3), β = 88.64(2), γ = 82.69(3)°, V = 370.5(4)Å³, Z = 1, Dₓ = 1.516 g cm⁻³, Mo Kα, λ = 0.71073Å, μ = 1.18 cm⁻¹, F(000) = 176, T = 301 K, R = 0.041 for 1390 observations (of 2155 unique data).

Dipyridinium bis(hydrogen oxalate)-oxalic acid. Pyridine (630 mg, 8.0 mmol) in CHCl₃ (10 mL) was added to a solution of oxalic acid dihydrate (1.0 g, 8.0 mmol) in 10% MeOH/CHCl₃; slow evaporation yielded colorless prisms of 187. A crystal of dimensions 0.10 X 0.26 X 0.56 mm was sealed in a capillary. The space group was determined from the systematic absences h0l with h+l odd, 0k0 with k odd. The cell dimensions were ascertained from setting angles of 25 reflections having 15° < θ < 13°. Data collection was done on an Enraf-Nonius CAD-4 diffractometer, using Mo Kα radiation and a graphite monochromator by ω-2θ scans designed for I=50σ(I), with a maximum scan time of 120 s. The scan rates varied 0.39 - 4.0° min⁻¹. Reflections having 2 < 2θ < 53° with 0 ≤ h ≤ 4, 0 ≤ k ≤ 11, -34 ≤ l ≤ 34 were measured and corrected for background, Lorentz, and polarization effects; no absorption corrections were made. Redundant 0kl and 0kl̅ were averaged, R_int = 0.025. Standard reflections were 200, 020, 0,0,10, giving ±2.3% maximum random variation. The structure was solved by direct methods using MULTAN78²⁵⁷ and refined by full-matrix least squares based on F, using 1179 data with I>σ(I) and weights w=σ²(Fo), with the Enraf-Nonius SDP package²⁵⁸. Non-H atoms were refined anisotropically and the H-atoms were located by ΔF and refined isotropically. The secondary extinction coefficient was 9.6(10) X 10⁻⁷. Final R = 0.049, R_w = 0.041, S = 1.744 for 169 variables. The maximum shift in the final cycle was 0.09σ and the largest residual density was 0.20 eÅ⁻³ and the minimum was -0.24 eÅ⁻³. Atomic coordinates and equivalent isotropic thermal parameters can be found in reference
Dipyridinium oxalate-oxalic acid. Contrary to the \(pK_a \) based conclusions, one oxalic acid donates two protons to pyridine bases rather than two oxalic acids giving up one proton each! Figure 19 illustrates that the structure contains pyridinium ions, oxalate ions, and oxalic acid molecules. The oxalate and oxalic acid moieties are hydrogen bonded in a linear fashion with the pyridinium ions hydrogen bonded to the oxalate in a trans orientation. Thus, each oxygen of the oxalate moiety is hydrogen bonded to either an oxalic acid or a pyridinium ion. A structure containing both oxalic acid molecules and oxalate ions has been reported. All of the heavy atoms of the pyridinium ion lie within 0.001\(\sigma \) of a common plane, and the acidic proton bonded to it lies within 0.01\(\sigma \) of that plane. This pyridinium cation donates a hydrogen bond to \(\text{O}(4) \) of the oxalate anion with an N-O distance of 2.716(1)\(\text{Å} \). Theoretical calculations for the pyridine-HF dimer indicated that the favored geometry for the angle \(\angle \text{FHN} \) is 180°, i.e. a linear hydrogen bond. However, in this case, the corresponding angle (\(\angle \text{OHN} \)) is only 152(2)°. Of probable importance in causing this non-linearity is the somewhat longer contact between pyridinium N and O(3') of the same oxalate anion. Indeed, the contact between the pyridinium and oxalate ions may best be thought of as an asymmetrically bifurcated hydrogen bond.

Dipyridinium bis(hydrogen oxalate)-oxalic acid. The structure contains hydrogen oxalate ions hydrogen bonded in chains along the \(b \) axis. These chains are linked by
Figure 19. ORTEP Drawing of $2\text{C}_2\text{H}_6\text{N}^+\cdot\text{C}_2\text{O}_4^{2-}\cdot\text{C}_2\text{H}_2\text{O}_4$.
oxalic acid molecules donating hydrogen bonds to O(2) of hydrogen oxalate ions in neighboring parallel chains. The resulting non-planar, hydrogen-bonded sheets are stacked along the [101] direction. Pyridinium ions are hydrogen bonded to the carbonyl O-atom of each hydrogen oxalate in this array. Figure 20 portrays an ORTEP drawing of 187. Although most hydrogen oxalates are nearly planar this one is not, with a relatively large O(3)-C(6)-C(7)-O(1) torsion angle of 14.9(4)°.²⁶³⁻²⁶⁵

The pyridinium moiety is planar [maximum deviation 0.004(3)Å] and forms a hydrogen bond to the carbonyl of the hydrogen oxalate [N-O(3) 2.792(2)Å, N-H-O 138(2)°]. The pyridinium ion also forms a longer interaction with O(1) of the next hydrogen oxalate ion along the b-axis chain. This interaction has N···O(1) distance 3.098(2)Å, H(1N)···O(1) distance 2.38(3)Å, and N-H···O angle 129(2)°. This interaction is similar to that found between the pyridinium and oxalate species in 186 and may best be thought of as an asymmetric bifurcated hydrogen bond.
Figure 20. ORTEP Drawing of $2\text{C}_5\text{H}_8\text{N}^+\cdot2\text{C}_2\text{HO}_4^-\cdot\text{C}_2\text{H}_2\text{O}_4^-$.

Introduction

Since the parent and reduced quinolizine ring structures occur naturally both in the free state and as part of numerous alkaloids,266,267 the herein facile synthesis of substituted 4H-quinolizones was pursued. Alkoxycarbonyl-4-quinolizones have generally been prepared by the condensation of the α-anion of an activated picoline with ethoxymethylene derivatives of active methylene compounds.267b-d Thus, 1-methoxycarbonyl-3-ethoxycarbonyl-4-quinolizone was prepared from methyl 2-pyridylacetate and diethyl ethoxymethylidenemalonate in 73\% yield.268 Unfortunately attempted mono-dealkoxycarbonylation of 1,3-disubstituted 4-quinolizones gave exclusively the more stable 1-substituted product. Bohlmann reported the synthesis of 3-ethoxycarbonyl-4-quinolizone by reaction of the α-anion of 2-picoline, generated in situ from 2-picoline with NaNH\textsubscript{2}, with the above mentioned electrophile; the yield was unreported.269 Another synthesis involved initial generation of 2-ethynylpyridine, prepared in two steps from 2-vinylpyridine, which was then condensed with diethyl malonate to give the desired quinolizone in a meager 8\% overall yield from the

\begin{center}
\begin{tikzpicture}
\node[scale=0.8](a){\includegraphics[scale=0.8]{image}};
\end{tikzpicture}
\end{center}

Scheme III. Previous Syntheses of 3-Carboalkoxy-4H-quinolizones.

1Newkome, G. R.; Theriot, K. J.; Fronczek, F. R.; Casten, C. C. \textit{Heterocycles}, 1988, 27, 385.
The original synthesis of 63b (X = CH) was accomplished by the Michael addition of 2-vinylpyridine with sodiomalonate, without transition metal catalysis, followed by Pd(II)-N-complexation and subsequent cyclometalation; in addition, C-malonato Pd(II) complexes 53 were also prepared. In an attempt to prepare 63b from its individual components (i.e. 2-vinylpyridine, dialkyl malonate and PdCl₂) in a one-pot synthesis, the unanticipated 188 and 189 were isolated. Due to the very mild reaction conditions, it became apparent that Pd(II) was activating the vinyl group towards Michael addition. [In the absence of Pd(II), addition of malonate to 2-vinylpyridine requires alkoxide, as base, in refluxing alcohol (ca. 80 °C).] To determine if the effect was an inductive one or if a Pd π-bond was present, bis(2-vinylpyridine)PdCl₂, (190) was isolated by mixing 2-vinylpyridine and PdCl₂ in a 2:1 ratio (to avoid Cl-bridged dimer formation) in CH₃CN; the desired complex 190 precipitated. An X-ray crystal structure determination of 190 clearly showed exclusive N-coordination and that no Pd-vinyl interactions exist. Thus the Pd(II) activation of
Scheme IV. Proposed Mechanism for the Formation of 3-Methoxycarbonyl-4H-quinolizone.

the olefin to nucleophilic addition must be an inductive electron withdrawing effect.

A mechanism which invokes palladium assistance for the formation of 188 is given in Scheme IV. In the reaction of 190 with methyl sodiomalonate, the electron withdrawing effect of Pd(II) on the pyridine ring caused an $S_{N}2^\prime$ reaction to proceed [rather than exclusive 1,2-addition as in the absence of Pd(II)] with sequential elimination of chloride ion from Pd(II) to give 191. Abstraction of the acidic β-hydrogen of 191 afforded pyridine 192 with concomitant reduction of Pd(II) to Pd(0). Based on the fact that no Pd(0) was isolated from, or observed in, the reaction mixture, the Pd(0) may then have formed a π-complex with unreacted 2-vinylpyridine, which then decomposed on work-up. Subsequent loss of the labile allylic proton under the basic conditions and cyclization gave 188. Although quinolizone 188 was obtained when other solvents were used (e.g. MeOH, EtOH, acetone, DMF, and Me$_2$SO), DMF was the best solvent medium in that the highest yields (ca. 39%) were realized, although the reaction conditions were not optimized.

Although disorder in the crystal of 190 (Figure 21) prevented an accurate
Figure 21. ORTEP Drawing of PdCl$_2$(C$_7$H$_7$N)$_2$.
determination, several salient features were evident. There are no inter- or intra-molecular Pd-vinyl interactions. The geometry around Pd is square planar with the two trans pyridine rings being nearly coplanar and both orthogonal to the line defined by Cl-Pd-Cl. The Pd-Cl bonds are 2.287(2) Å and Pd-N average 2.02(3) Å.

Because of the lack of precedence for the formation of 189 under such conditions, an X-ray crystal structure determination of 189 was undertaken to prove its solid state structure (Figure 22). It exists in the enamine form rather than the imine form as seen by the shortened C(2)-C(3) bond [1.394(2) Å]. The carboxylate trans to the amino group is not coplanar with the rest of the molecule and is oriented such that the torsion angle O(2)-C(4)-C(3)-C(2) is 135.6°; the rest of the molecule is essentially planar. The second H-atom on N could not be located although all other H positions are evident in difference maps. This H-atom is thought to be disordered in spite of the potential N-O(3) intramolecular contact of 2.613(2) Å. This structure determination supports the conformation predicted from vibrational spectroscopy. 273

Quinolizone 188 is planar (Figure 23) and exists as the monohydrate with water forming a nearly symmetric bridge between O(1) and O(2). In the pyridine moiety, the C(1)-C(2) and C(3)-C(4) bonds are shortened [1.341(2) and 1.343(2) Å, respectively]. In the other ring the C(8)-C(9) distance is short [1.358(2) Å] and the C(9)-N bond long [1.468(2) Å]. The external angles about the ring carbonyl carbon \{C(8)-C(9)-O(1) [129.18(14)°] and N-C(9)-O(1) [116.49(13)°]\} indicate that the oxygen is tilted slightly toward the ring nitrogen perhaps because of N-electron delocalization into the ring and onto the oxygen although not directly between C(9)-N [1.468(2) Å].
Figure 22. ORTEP Drawing of $C_7H_{11}NO_4$.
Figure 23. ORTEP Drawing of $C_{11}H_9NO_3$.
Experimental

All melting points were taken in capillary tubes with a Thomas-Hoover Uni-melt apparatus and are uncorrected. 1H and 13C NMR were recorded on either an IBM NR/80 or IBM AF/100 spectrometer using CDCl$_3$ as solvent (unless otherwise specified) with Me$_4$Si and CDCl$_3$ as respective internal standards. 13C NMR data were assigned using selective 1H decoupled experiments. Mass spectral (MS) data (70 eV) were determined by Mr. D. A. Patterson on a Hewlett-Packard HP 5985 GC/mass spectrometer. Preparative thick-layer chromatography (ThLC) was performed on 20 x 40 cm glass plates coated with a 2-mm layer of Brinkman silica gel PF-254-366.

Intensity data for 188, 189, and 190 were collected on an Enraf-Nonius CAD4 diffractometer equipped with Mo K$_\alpha$ radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. The crystal of 189 was sealed in a capillary to prevent sublimation. Variable scan rates were employed in the ω-2θ scans in order to achieve approximately equal relative precision for all observable data. One quadrant of data was collected for the monoclinic crystal, one hemisphere for the triclinic crystals. Data reduction included corrections for background, Lorentz, and polarization effects. Absorption corrections for 190 were based on ψ scans of reflections near $\chi = 90^\circ$; the minimum relative transmission coefficient was 61.24%. Equivalent data were averaged; data having $I > 3\sigma(I)$ were used in the refinement for 189, those having $I > 0$ for 188 and 190.

The structures of 188 and 189 were solved using MULTAN, that of 190 by heavy-atom methods. Refinements of 188 and 189 were full-matrix least squares based on F with weights $w = \sigma^2(F_o)$, treating non-hydrogen atoms anisotropically, with H atoms located by ΔF and refined isotropically. Disorder in 190 prevented routine refinement.
Only Pd and Cl atoms were treated anisotropically, while half-populated vinylpyridine ligand atoms were treated isotropically. Well resolved half-atoms in the disordered region were refined by full-matrix least squares, while positions of C2, C5, C7 and their equivalents in the alternate orientation were adjusted with the aid of difference maps. Ordered models in possible alternate space groups C2 and Cc led to high correlations and did not lead to improved agreement with the data, and thus were abandoned. Final R factors for 188, 189, and 190 were 0.036, 0.049, and 0.076, respectively.

Dichlorobis(2-vinylpyridine)palladium(II) (190). Freshly distilled 2-vinylpyridine (181 mg, 1.72 mmol) was added to PdCl₂ (132 mg, 740 μmol) in dry CH₃CN (30 mL) and stirred for 12 h at 25 °C. The precipitated complex was filtered and washed with a small amount of CH₃CN to give (74%) 190, as a bright yellow solid: 214 mg; mp 178-180 °C (dec); ¹H NMR δ 5.94 (d, β-CH₅, Jα,βtrans = 11.2 Hz, 1H), 6.10 (d, β-CHcis, Jα,βcis = 17.5 Hz, 1H), 7.16-7.35 (m, 5-py, 1H), 7.56-7.64 (m, 3-py, 1H), 7.66-7.87 (m, 4-py, 1H), 8.59 (dd, α-CH, Jα,βcis = 17.5, Jα,βtrans = 11.2 Hz, 1H), 8.98 (ddd, 6-pyH, J5,6 = 5.6, J4,6 = 1.7, J3,6 = 0.8 Hz, 1H).

3-Methoxycarbonyl-4H-quinolizone (1). Method A - Reaction in DMF. Dimethyl malonate (823 mg, 6.24 mmol) and anhydrous K₂CO₃ (1.62 g, 11.7 mmol) were added to dichlorobis(2-vinylpyridine)palladium(II) (302 mg, 6.24 mmol) in reagent grade DMF (50 mL). After stirring at 50 °C for 12 h, the solvent was removed in vacuo, the residue dissolved in CHCl₃ and filtered. The CHCl₃ soluble material was purified by ThLC eluting with 5% MeOH/CHCl₃ to give (39%) 188, as yellow microcrystals: 61 mg; mp 116.5-117.3 °C (pet. ether); ¹H NMR δ 3.95 (s, CH₃, 3H), 6.66 (dd, 1-quinH, J1,2 = 8.5, J1,8 = 0.6 Hz, 1H), 7.20 (ddd, 6-quinH, J5,6 = 7.3, J6,7
\[J_{6,8} = 3.4 \text{ Hz, 1H}, \text{ 7.57-7.65 (m, 7,8-quinH, 2H), 8.41 (d, 2-quinH, } J_{1,2} = 8.5 \text{ Hz, 1H), 9.40 (dd, 5-quinH, } J_{5,6} = 7.3, J_{5,7} = 0.9 \text{ Hz, 1H}); \\
\text{ } ^{13}\text{C NMR } \delta 52.0 \text{ (CH}_{3}\text{), 101.6 (C1), 115.9, 124.7 (C7 & C8), 133.0 (C5), 140.4 (C2), 166.1 (3-CO), 167.1 (C4); MS m/z 203 (10), 188 (8), 172 (11), 160 (21), 132 (37), 106 (39), 78 (100).} \]

Method B - Reaction in CH\textsubscript{3}CN. Using the same procedure as with DMF, gave (20%) 188 and methyl 3-amino-2-methoxycarbonyl-2-butanoate (189) as colorless microcrystals: mp 83.5-84.5 °C (lit.273 mp 83-84 °C); Subl. 50°C (2 mm), 1H NMR \[\delta 2.15 \text{ (s, CCH}_{3}\text{, 1H), 3.71 (s, OCH}_{3}\text{, 1H), 3.74 (s, OCH}_{3}\text{, 1H); } ^{13}\text{C NMR } \delta 22.2 \text{ (CCH}_{3}\text{), 51.1 (OCH}_{3}\text{), 51.7 (OCH}_{3}\text{), 164.1 (CO), 169.0 (CO); MS m/z 173 (48), 142 (100), 141 (88), 110 (26), 83 (22).} \]
Summary and Conclusions

Organoplatinum Complexes. Several new organoplatinum(II) C-malonato complexes of two types have been synthesized and fully characterized by \(^1\)H and \(^{13}\)C NMR and IR. The first type is a cyclometalated complex of pyridinyl ligands possessing pendants at the 2-position with terminal malonate groups capable of forming either a five- or six-membered C,N-chelate. These complexes have trans carbon-metal bonds and have also been characterized by X-ray crystal structure determinations.

The second type of complex is an N,N'-chelate of dipyridine or phenanthroline in which platinum is bonded to the central carbons of two different dimethyl malonate ligands. The reactivity of these cis complexes was investigated and they were found to be rather inert toward reagents known to react with organoplatinum complexes such as acyl halides and vinyl ketones; methyl iodide did react with them but a complex mixture was obtained. These N,N'-chelates were easily oxidized by either Br\(_2\) or Cl\(_2\) to give the corresponding Pt(IV) complexes which, although possessing cis alkyl groups, were stable and only underwent reductive elimination under basic conditions; interestingly, this oxidation could also be accomplished by Cu(II) halides. The \(^1\)H and \(^{13}\)C NMR spectra of the Pt(IV) complexes were used to establish the fact that oxidation had occurred via the \(^1\)J\(_{PC}\) and \(^1\)J\(_{PT}\) coupling constants which were 30% less than the corresponding Pt(II) coupling constants as expected.

An interesting feature of the \(^{13}\)C NMR spectra was that where two different pathways were possible for Pt-C coupling to a particular carbon, the observed coupling constant was the sum of the two constants.

Future endeavors should focus on the potential anti-tumor activity of the cis
complexes which possess the "cis diammine" structure important in complexes that are active against tumors. Other possibilities include catalysis in hydrogenation or carboxylation reactions and, for the cis complexes, modifications utilizing the remaining acidic hydrogen on malonate.

Cyclometalated Palladium Complexes. Very few examples of cyclometalated 2-vinylpyridines have been reported, but, by the utilization of α-substituted 2-vinylpyridine derivatives, novel cyclometalated Pd(II) dimers were readily synthesized. The α-substituent on the ligand facilitates cyclometalation by stabilizing the intermediate carbocation which is formed by electrophilic attack of the metal on the alkenyl moiety. These dimers were readily cleaved by pyridine or triphenylphosphine and the structure of one of these monomers was proven by an X-ray crystal structure determination which showed the existence of the metal-alkenyl bond.

Future work should include the use of other metals for cyclometalation and synthetic transformation of both the alkenyl moiety and the α-substituent.

Functionalization of Methyl Naphthyridines. The methyl group(s) of 2-methyl- and 2,7-dimethyl-1,8-naphthyridine were oxidized to hydroxymethyl moieties by a three-step synthesis. The methyl group was oxidized with NCS to a trichloromethyl group followed by H₃PO₄/MeOH hydrolysis to give the methyl ester which was then reduced to the hydroxymethyl functionality by NaBH(OMe)₃ which does not readily reduce less reactive esters. Because of the enhanced reactivity of the naphthyridine system, reagents that were used on other heterocycles [e.g. H₂SO₄ and NaBH₄ (and NCS/CCI₄ for 2-methyl-1,8-naphthyridine)] could not be used on naphthyridine.

Possible extensions of this work include investigating the complexation properties of the functionalized naphthyridines and incorporation of the di-functionalized derivative into macrocyclic ligand systems.
References

6. Werner, A. Ber. 1901, 34, 2584.

(b) Chung, P.-J. Gakujutsu Ronbunshu-Chosen Shogakkai 1979, 9, 226; Chem. Abstr. 1980, 93, 8283k.

\textbf{123.} 1H NMR (CDCl$_3$) δ 2.20 (s, O$_2$CCH$_3$, 1H), 2.97 (d, α-CH$_2$, J = 16.9 Hz, 1H), 3.15 (s, OCH$_3$, 3H), 3.56 (s, OCH$_3$, 3H), 3.75 (d, α-CH$_2$, J = 16.9 Hz, 1H), 6.96-7.16 (m, 5-pyrH, 1H), 7.47 (d, 3-pyrH, $J_{3,4}$ = 7.1 Hz, 1H), 7.70-7.92 (m, 4-pyrH, 1H), 8.26 (ds, 6-pyrH, $J_{5,6}$ = 5.9, J_{plH} = 30.2 Hz, 1H).

\textbf{125.} Satellites due to coupling to 195Pt.

194. 2-(2-Pyridyl)-1,3-propanediol was purchased from Aldrich Chemical Co., Milwaukee, Wisconsin but is no longer available. See reference 193.

207. (a) Staniewicz, R. J.; Hendricker, D. G.; Griffiths, P. R. Inorg. Nucl. Chem.
Lett. 1977, 13, 467. (b) Staniewicz, R. J.; Sympson, R. F.; Hendricker, D. G.

209. (a) Balch, A. L.; Cooper, R. D. J. Organomet. Chem. 1979, 169, 97. (b)

1984, 23, 141.

213. (a) Dixon, K. R. Inorg. Chem. 1977, 16, 2618. (b) Bushnell, G. W.; Dixon,

216. (a) Mealli, C.; Sacconi, L. Acta Cryst. 1977, B33, 710. (b) Enwall, E. L.,
Emerson, K. Acta Cryst. 1979, B35, 2562. (c) Sacconi, L.; Foa, M.; Bencini,
1987, 107, 97159x. (d) Emerson, K.; Emad, A.; Brookes, R. W.; Martin, R. L.

239. A 1H NMR (D2O) spectrum of the unquenched reaction mixture showed only
one naphthyridine derivative: δ 5.07 (s, CH₂OH, 2H), 7.76 (d, 3-naphH, J₃₄ = 8.4 Hz, 1H), 8.39 (d, 4-naphH, J₃₄ = 8.4 Hz, 1H).

240. Treatment of diol 174 in CHCl₃ with HCl gas gave immediate decomposition.

251. Satisfactory spectral and analytical data were obtained for each new compound.

VITA

Kevin J. Theriot was born in Houma, Louisiana on June 16, 1958. He completed secondary education at H. L. Bourgeois High School in Gray, Louisiana where he graduated in May, 1976. The author received a B.S. in chemistry from Northeast Louisiana University in Monroe, Louisiana in May, 1980. From there he moved to Louisiana State University where he worked as a graduate student while completing requirements for the doctoral degree. He has accepted a position as research chemist at Ethyl Corporation (Technical Center) in Baton Rouge, Louisiana.
List of Publications

Candidate: Kevin J. Theriot

Major Field: Chemistry

Title of Dissertation: Syntheses of Organometallic Platinum(II), Platinum(IV), and Palladium(II) Complexes and Methyl Functionalization of 2-Methyl- and 2,7-Dimethyl-1,8-Naphthyridine

Approved.

Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

Date of Examination: July 24, 1989