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for R = 2, compared to tha t for R = 4, would have contributed to larger and more 

scattered values of shear stresses (see Fig 5.1). The values of u for both velocity 

ratios considerably exceed those of ii. While the values of u and i  profiles are nearly 

independent of the velocity ratio, the values of uv  profiles are strongly dependent. 

Note the value of the shear stress which is an order of magnitude higher in R = 4 than 

the case of R=2. This increase of the shear stress uv with the increasing velocity 

ratio, which results in increased velocity gradients, reinforces the observation that 

the mean velocity gradients play im portan t roles in the turbulent energy production.

The uv profiles change their sign at the two edges of the jet. One edge exists 

at the interface sheet between the jet stream and the outer cross stream and the 

other a t the lower edge of the jet cross-section. The locations of the change of sign 

in uv profiles arise generally in the change of sign in the mean velocity gradients 

(see Fig. 5.17 and Fig. 5.18), especially in UjUa profiles. Farther downstream, there 

exists essentially negligible velocity gradient, and thus the uv profiles smooth out. 

This mechanism will be discussed in detail in the next paragraph.

The position of the m aximum u and utJ profiles corresponds approximately to 

the location of the jet cross-section where the velocity gradients, and | ^ ,  are 

maxima for both velocity ratios (see Fig. 5.17 and Fig. 5.18). The t> profile m ax

imum corresponds to the edges of the jet where is maximum. Recall from the 

turbulent and mean kinetic energy equation th a t  the maximum transfer of energy 

from the mean flow to the turbulent flow occurs when IpuTujllf^l is maximum.
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Thus, the turbulent stresses which are an indication of the level of turbulence will 

be a m axim um  when the Reynolds stress and mean velocity gradient are maxima.

The tu rbu len t kinetic energy dissipation rates calculated from the com puted and 

the experimentally de te rm ired  velocity fields are presented at x /D  ~4  and x /D  = 

8 for R = 2  (Fig. 5.21) and for R = 4 (Fig. 5.22). The tu rbu len t energy dissipation 

rate is defined as :

The numerical results of the dissipation ra te  c are obtained by solving the transport 

equation of e in the k-r turbulence model. The dissipation rate expressed in this 

equation is difficult to  m easure unless multi-probes are employed. However, an 

approxim ated value of the dissipation rate can be obtained experimentally using 

the isotropic assum ption. The dissipation rate for isotropic flow is defined as :

r -  15v u * f \ \  (5.4)

where u 2 is the longitudinal mean square velocity and Ay is the longitudinal Tay

lor microscale. The equation implies th a t  the energy dissipation is a small scale 

phenomenon.

Comparisons of calculated dissipation ra te  with m easured values are presented 

in Fig. 5 .21 and Fig. 5.22. T he dissipation rates are normalized with pU */D .  In 

Fig. 5.21 (a) and a t y > 3, the com puted viscous dissipation is greater than  the 

experimentally m easured value. This is probably a result of the calculated tra jec to 

ries of the jet penetra ting  farther into the confined crossflow than  is the  actual case.
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The fairly poor agreement is due to the nonhomogeneity in the turbulent velocity 

field. As m entioned in the in troduction, turbulence models including the k-e tur 

bulence cannot yet sufficiently resolve fine scales at practically occuring Reynolds 

nuinbers[5]. W hen modeling the  dissipation rate (Eq. 5.3) tha t eppears  in the exact 

(primitive) transpo rt  equations into a solvable form, the k-c model undos influence 

upon the local mean velocity. This is inappropriate  since the dissipation occurs in 

the finest scales of motion and these fine scales do not reflect the  local mean velocity 

field[63]. T he strong dependency of the dissipation rate on the mean flow field is 

only acceptable at the  low Reynolds num ber flows. Also, the com putational results 

depend on the  assum ption th a t  u 2 =  r 2 = w 1 . This is not the case in the  acual 

flow. Note further th a t  there is an order of m agnitude difference in the  viscous 

dissipation for R = 4 as com pared to  R = 2.

Correlation functions are of fundam ental im portance for the characterization of 

the tu rbu len t s tructure . The autocorrelation function determ ines the length of the 

past history of velocity fluctuations th a t  is related to a  given event. As discussed 

in C hap te r  3, the calculation of the integral length scale and  Taylor microscale 

depends upon the construction of autocorrelation functions of randomly sampled 

velocity fluctuations in the sparsely seeded flow. This construction has been also 

extensively discussed in the li terature  [64-67]. Edwards and Kolodzy[67j developed a 

m ethod  for m easuring unbiased autocorrelation functions in sparsely seeded flows. 

In practice, the autocorreation function is obtained via a transform  m ethod as
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in troduced in C hapter 3.

A utocorrelation functions of the x-direction velocity fluctuations are constructed 

a t two dow nstream  locations (x /D  = 4 and 8) in the  symmetric plane in Fig. 5.23 

for K - 2  and Fig. 5.24 for R = 4 . For R —2 in Fig. 5.23, the sinusoidal behaviour 

of the autocorrelation function is evident at y /D  = 5 both for x /D  = 4 and x /D  

— 8. A similar observation can be made for R = 4 in Fig 5.24 but in this case at 

y /D  = 7. This periodic na tu re  represents the passage of the vortex s tructures 

downstream . This periodic na tu re  also indicates a preserved eddy s truc tu re  in 

this region of flow. The a ttenuation  of the peaks indicates th a t  the strength  of 

the  vortical s tructures  decreases downstream . T he shapes of the autocorrelation 

functions with no noticeable peaks again reinforce the tu rbu len t wake behaviors 

at the points, typically at y /D  = 3 and  x /D  — 8 for R —2. In a fully turbulent 

region, the  velocity fluctuations are random , and thus the correlation functions do 

not exhibit the presence of prefered coherent s tructures.

An im portan t part of the description of the tu rbu len t flow field is the determ i

nation of the  energy content of wave vectors or frequencies. This can be done by 

reducing the tim e-dependent signal into its harmonic com ponents using a spectrum  

analyzer or o ther transform  m ethods. The spectrum  of instan taneous velocities are 

obtained  by the  Fourier transform  of the autocorrelation function :

S{ J)  = ~  I ^ R ( T ) €Xp ( - j 2 n f r ) d T  (5.5)

The relation is valid only when turbulence in the flow can be considerd a station-
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Figure 5.24: Autocorrelation functions for R=4 at z /D  = 0.0



ary process[68). Here, a stationary process is defined as the case in which the 

statistical functions describing the random process are time-independent { i.e. the 

autocorrelation function is dependent only on the delay time). The F F T  algorithm 

originally developed by Cooley and Tukey[54] is used. All spectra are calculated 

by a fast Fourier transform of autocorrelaton functions with a 5.0 kHz cut-off fre

quency. This cut-off frequency appears as a sharp dip in the spectral density at high 

frequency values and therefore the cut-off frequency is sufficiently large to cover the 

frequency range of interest in this study (see Fig. 5.25 for R = 2  and Fig. 5.26 for 

R = 4  ). Spectral functions are plotted as a function of relative spectral density in 

log S ( f )  versus log /  where /  is the frequency. Note the frequencies of the peaks 

in the spectra correspond to the periodicity of the autocorrelation functions, which 

reveal again the passage of the vortical structures. Also, the decay of the spectra 

is compared to Kolmogorov’s “-5 /3  law” in the inertial subrange of the Universal 

Equilibrium Theory[52].

Turbulent scales are of fundamental importance in the characterization of tu r

bulent flows and also in the formulation of turbulence model. Integral time scales, 

T, are plotted versus the vertical direction, y /D , in the x-y plane of symmetry in 

Fig. 5.27. The integral time scale is an experimental estimate of the largest time 

scale of the turbulent flow field. The magnitude of the time scale increases down

ward and a ls o  increases downstream at a reduced rate. Also, a higher velocity ratio, 

R, generally results in a higher value of the time scale. Physically, this indicates
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th a t  the  wake caused by the jet extends farther downstream.

Integral length scales, L, are graphed versus vertical displacement y /D  in the 

x-y plane of sym m etry  in Fig. 5.28. The integral length scale represents the largest 

turbulent scale in the flow field. As in troduced in C hapter  3 (Eq. 3.15), the integral 

length scale is obtained by integrating the  spatial correlation function up to the 

first zero crossing of the spatial axis. W hen only a one-point m easurem ent system 

is applicable, the spatial correlation function is usually calculated by use of Taylor’s 

hypothesis. The basic tenet of the hypothesis is tha t  a time varing function of any 

statistical property  can be converted to the spatially varing function when the flow 

is s ta tionary  and the  turbulence intensity is not large. Thus, the credibility of the 

Taylor hypothesis is dependent on the local flow situation.

In an a t te m p t  to improve the physical understanding  of the results, the bar 

graphs are also presented in Fig. 5.28. The flow field in the x-y plane of symm etry 

is divided into four distinct region: (1) the wake region, located near the lower wall, 

and  on the leeside of the  je t,  (2) the  en tra inm ent region, where mixing between the 

jet and the free s tream  is dom inant, (3) the central region, serving as a transition 

region between the  wake and en tra inm ent region, and (4) the  free s tream  region, 

located outside the j e t ’s influence. The length scale generally increases as x /D  and R 

increases, and decreases as y /D  increases. The length scale is considerably higher in 

the  wake region and in the  central region than  the free s tream  region. The variations 

of length scales indicate tha t  the flow field is anisotropic and non-homogeneous.
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Profiles of the Taylor microscale, A^, are plotted in Fig. 5.29 as functions of the 

vertical position y /D  for two downstream locations for R = 2 and 4. Physically, 

the Taylor microscale is a measure of the average dimension of the eddies which 

are primarily responsible for energy dissipation. The terminology of the dissipation 

scale or the Taylor microscale aminates from this physical reason. For isotropic 

turbulence[46] :

i _ i / 5 j r k » B( k ) A
\ \  /o ~ £ (k )d k  ' }

where k is a  wave vector of the velocity Auction and f?(k) is the energy spectrum 

function. This expression may be interpreted physically as the ratio of the energy 

dissipation rate of the turbulence to the total turbulent kinetic energy. As \ t 

increases, the dissipation rate therefore decreases. Consider the results shown in 

Fig. 5 .29. The value of Aj increases downward. But, the increasing rate is is slower 

than  the ra te  of the integral scale shown in Fig. 5.28. This implies the relatively 

higher rate of the energy production downward. The Aj- is much more strongly 

influenced by the downstream location, x /D , for the larger velocity ratio, R = 4. 

The microscale consistantly increases with increasing values of x /D  for R =4. The 

microscale of this flow generally ranges from 5 to 40% of the integral scale.

The motivation for determining probability density functions (PD F) in this 

study arises from the non-homogeneous nature of the flow. Before presenting re

sults, the basic relationship between the probability function and the nature  of the 

non-homogeneous turbulent flow field will be discussed.
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According to  Townsend[3], the probability density function is nearly normal in 

homogeneous turbulence, less normal near the  center of a shear flow, and very far 

from norm al near the  edge of a  free tu rbu len t flow such as a jet. T he departures  are 

of two kinds : (1) skewness of the distribution with non-zero odd movements, and  (2) 

distortion leading to abnormally large values for higher order even movements. The 

skewness of the distributions is connected to the convection of tu rbu len t energy 

by tu rbu len t movements. An abnormally large flatness factor indicates th a t  the 

distribution of the  intensity of the quantity is spotty. The probability function 

also effectively illustrates the  na tu re  of in term itten t tu rbu len t flows or mixing cases 

between two or m ore different types of fluids. The turbulent flow field under study 

contains these two types of flow characteristics.

The probability density function of u (t ) occuring in the range of u t < u(t)  < uj 

is defined by

Prob\u\  < u (/)  < u 2j
r q u )  — hm ------------- r— --------------  f 5-7 1Au-0 Au

where Prob\u\ <  u ( t ) < tt2] is the ratio of total time of u(t)  lying within the window 

A u ( -  u 2 — t t ! ) to  the  to ta l observation time. Experimentally, the  probability density 

functions are calculated from 2560 velocity observations at each location using 16 

bins equally spaced over the 4 <r limits of the d a ta  ( A u  — O.Str).

Fig 5.30 presents the typical probability density functions of the longitudinal 

com ponent of the instantaneous velocities measured at x /D  =  4 in the plane of 

sym m etry  for R = 2 . In Fig. 5.31, similar plots for R ~ 4  at y /D  = 3, 5, and 7 are
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presented. The instantaneous velocity U is nondimensionalized with the mean value 

and  s tandard  deviation. At y /D  =  2 for R —2, the  negatively skewed PDF (skewed 

to the  lower velocity direction) indicates th a t  the  contribution of the slowly moving 

fluid elements of the wake flow is higher than  the contribution of the relatively high 

speed fluid elements of the cross flow. The P D F  profile at y /D  — 5 for R — 

4 ( Fig 5.31) is slightly skewed negatively, indicating th a t  the wake region further 

extends upward with the increasing velocity ratio, compared to the profile for R = 2 

at y /D  = 4.

T he m easured skewness profiles at x /D  = 4 for R = 2 and  4 are shown in 

Fig. 5.32. Recall th a t  the  skewness S u is zero in the isotropic flows. For R —2, 

S u is slightly positive near the bo ttom  wall, changes sign to  become negative and 

then  approaches zero as y /D  increases. For R = 4 , S u is larger and positive initially 

and remains positive farther into the  flow field before eventually becoming nega

tive. Skewed distributions are typical of flows with strong gradients of turbulence 

intensity. A com parison between the skewness variation and turbulence intensities 

(Fig. 5.20 (a) ) a t  x /D  =  4 for R = 4  provides insight into the na tu re  of the flow. In 

fact, the  shapes of the  curves are identical. Increasing skewness occurs in regions 

of increasing tu rbu len t intensity. Conversely, decreasing skewness parallels flow re

gions of decreasing turbulent intensity. Outside of the influence of the wake region, 

the  m ax im a of skewness and tu rbu len t intensity both  occur approximately a t y /D  

-  5.0.
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One effect of the inhomogeneous nature of the turbulent intensity is that the 

flatness factor exceeds its normal distribution value of 3.0. Consider the results 

depicted in Fig. 5.33. For R = 4 , the flatness factor Fu becomes exceptionally large 

in the central region of the flow. The location of FUmasr occurs once again at the 

location of and f f U a\  ( see Fig. 5.20 (a) for turbulence value at x /D
V f m a a t

— 4.0). Large flatness factors usually indicate tha t  the distribution of the turbulent 

quantities is spotty. The small scale components of the velocity field are noticeably 

spotty or in term ittent, and the effect is more pronounced the greater the difference 

in sizes between the energy containing and dissipation regions of the spectrum|3). 

Kolmogorov[69] stated th a t  the transfer of energy from large to small eddies by 

a cascade process means th a t  spatial fluctuations in the rate of energy transfer 

from eddies of a  particular size bias the rate of transfer at the next step in the 

cascade. The result is th a t  some parts  of the flow are regions of large dissipation 

while others have a very low rate of dissipation. The consequence is the spottiness 

indicated by large flatness factors values. The flow of a  turbulent jet in a confined 

crossflow dem onstrates the existence of the spottiness described by Townsend and 

Kolmogorov for the region of highest turbulence intensity.



C h ap ter  6 

S u m m ary

An experimental and computational investigation has been made for the tu r 

bulent flow of the jet in a confined cross flow. The significant results will now be 

summarized.

Detailed mappings of the mean velocities, species concentration and mean vor- 

ticities were made for jet to cross flow velocity ratios (R) equal to 2, 4 and 6. The 

velocity ratio value has a strong influence on the development of the flow field down

stream and the existence of the jet impingement. For the lower velocity ratio (R = 

2), the jet is bent down rapidly by the cross stream. In this case, no impingement 

occurs on the top wall for the separation of the confining surfaces equal to ten jet 

diameters. For the larger velocity ratios (R = 4 and 6), significant upward mo

tion continues downstream, and the jet directly impinges on the top wall, and after 

impingement a three-dimensional wall je t- type  flow develops along the top wall.

A wake region exists immediately downstream of the jet discharge and the wake 

region extends further downstream with increasing velocity ratio. Far downstream,

119
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the fluids in the wake region gradually gain the axial momentum as the cross stream 

carries a higher m om entum  from the outer region to the plane of symmetry. A 

counter*rotating vortex pair is predicted. The vortex structure continues to exist 

after impingement while gradually losing its s trength downstream.

Turbulent intensities and shear stresses were measured at several downstream 

locations in the plane of symmetry. The turbulent flow field is highly anisotropic in 

the initial region. There is a  tendency towards isotropy farther downstream. The 

je t ’s initial condition has a direct influence on the turbulent flow field downstream. 

While the turbulence intensities are not strongly dependent on the velocity ratio, 

the turbulent shear stresses for R = 4  are an order of magnitude higher than those 

for R - 2 .

The s tructured nature  of the turbulent flow field has been documented from 

statistical measurements at two downstream locations (x /D  = 4 and 8) in the plane 

of symmery. The passage of vortical, coherent structures is observed from the 

characteristic behaviors of the autocorrelation functions. Significant variations of 

the integral and Taylor microscales have revealed the strong, anisotopic, and non* 

homogeneous nature  of the turbulent flow field. The turbulent flow field can be 

characterized by large-scale phenonena. The energy generation rate is considerably 

higher than  the dissipation rate of the kinetic energy. Probability density functions, 

skewness and flatness factors point out the large in term ittent and spotty nature of 

the flow field.
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Calculation results were compared to the experimentally determined values. The 

two-equation model generally overestimates the effective value of R. The jet in the 

computational model penetrates further into the outer stream than is the actual 

case. Agreement of mean velocity and turbulent shear stress comparison is only fair 

in the initial region. The agreement improves as the flow field tends towards isotropy 

farther downstream. The relatively coarse grids used, which cannot sufficiently 

resolve the significant variations of varibles in all three-dimensional coordinates, 

are primarily responsible for the difference. Considerable descrepancies between the 

measured and computed dissipation rates are observed. The prim ary reason arises 

in the relatively low resolution of the two equation turbulence model in predicting 

the fine scale turbulence structure.
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