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Figure 13. Flowchart of choosing the sample size based on the width of confidence interval. 

The above study shows the statistical properties of the proposed methods by increasing the 

size m. However, in practice we usually don’t know the truth. Hence, the power of the test and 

MSE are unknown. A common way to determine the size of m is by setting the width of the 

confidence interval in advance. Figure 13 shows the flowchart of selecting the size of m in practice 

based on the predetermined width of confidence interval ∆. Basically, we need specify an initial 

value of m, usually a small value like 3, and a threshold for the width of confidence interval ∆. 

Then we sample m measurements for each benchmark and computer. We calculate a bootstrapping 

confidence interval based on the sample data. If the width of confidence interval is greater than the 

threshold Δ, then we increase the size of m and sample more measurements for each benchmark 

and computer. Then we recalculate the confidence interval. We stop sampling when the width of 

confidence interval is no greater than the predetermined threshold ∆. 

Table 13. An illustration of choosing the sample size (m) based on the width of confidence interval. 

m 3 5 7 10 13 15 16 
Bootstrap CI [1.203,  

1.228] 
[1.204,  
1.223] 

[1.207, 
 1.227] 

[1.212, 
 1.228] 

[1.216, 
 1.231] 

[1.216, 
1.232] 

[1.217,  
1.232] 

CI Width 0.0256 0.0198 0.0194 0.0166 0.0153 0.0155 0.0149 

 

For this example, we use two computers: A and C described in Table 4. We would like to 

find the size of m by restricting the width of the bootstrapping confidence interval of the ratio of 
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geometric means of performance speedups to be no greater than 0.015. Table 13 shows the 

bootstrapping confidence intervals and corresponding width with various sizes of m. We see that 

the sample size of m should be at least 16 under the restriction. 
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5. APPLICABILITY INVESTIGATION 

As a generic framework, our proposed methods can be directly applied to arithmetic and 

harmonic means while the HPT framework cannot be applied since it uses rank instead of any 

performance metric. We applied the proposed methods using these three means on an example in 

which we compare SPEC scores of two machines: IBM System x3500 M3 with Intel Xeon E5530 

and CELSIUS R570 with Intel Xeon X5560, which are obtained from SPEC website [30]. Table 

15 shows the confidences and confidence intervals using three metrics on the example. We see 

that both harmonic mean and geometric mean identify the difference between two computers while 

arithmetic mean cannot. This is because the arithmetic mean is subject to extreme values. For 

example, among 29 benchmarks, CELSIUS R570 has 25 benchmarks with a larger mean 

performance score than their counterparts for IBM System x3500 M3. However, IBM System 

x3500 M3 has much higher performance scores in the libquantum and bwaves benchmarks than 

their counterparts in CELSIUS R570. If the two benchmarks are eliminated from the data, then 

changes in the confidence and confidence interval using the arithmetic mean are much larger than 

the ones using the geometric and harmonic means. 

Table 14. Summary of Selected Big Data Workloads. 
ID Domain Operations or Algorithm Types Data Sets 

a Social Networks Connected Components Offline Analytics Facebook Social Network 

b Social Networks Kmeans Offline Analytics Facebook Social Network 

c Search Engine Sort Offline Analytics Wikipedia Entries 

d Search Engine Grep Offline Analytics Wikipedia Entries 

e Search Engine Word Count Offline Analytics Wikipedia Entries 

f E-Commerce NaiveBayes Interactive Analytics Amazon Movie Reviews 

g Search Engine Page Rank Offline Analytics Google Web Graph 
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Table 15. Summary of comparing geometric, harmonic and arithmetic means on confidence and  

confidence interval (CI). 

 G-Mean H-Mean A-Mean 

Confidence >0.99 >0.99 0.492 

CI [0.913, 0.920] [0.887, 0.892] [1.019, 1.031] 

Confidence* >0.99 >0.99 >0.99 

CI* [0.882, 0.889] [0.881, 0.886] [0.880, 0.889] 

* Confidence and confidence interval after eliminating the libquantum and bewaves benchmarks. 

Applicability to Big Data Benchmarks 

We study the effectiveness of the proposed sampling methods on Big Data benchmarks 

[27], which have been demonstrated to be different from traditional CPU benchmarks like SPEC 

or PARSEC. Big Data Analytics is an emerging field that is driven by the need to find trends in 

increasingly large data sets. Applications include search engines, social networking, e-commerce, 

multimedia analytics, and bioinformatics. Big Data applications require extra layers in the software 

stack due to the use of distributed storage and processing frameworks, such as Apache Hadoop, 

thus creating additional opportunities for variance. We find the execution-time-variance of Big 

Data applications (calculated as the standard deviation divided by the mean) to be about twice as 

large as that of SPEC benchmarks; this is due to these additional virtualization layers used by the 

Big Data Bench (i.e. Hadoop, Spark, Java).  

As listed in Table 14, a set of seven Big Data benchmarks was chosen from the spark 

implementation of the BigDataBench version 3.1.1 [29] and executed on five separate machines 

listed in Table 16. Each benchmark was executed 1000 to 2000 times on each machine and the 

execution time was measured. The larger variance of Big Data application performance makes 
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naïve comparisons of machine performances impractical and mandates a sampling method such as 

the one proposed.  

Table 16. Summary of Selected Computers. 

ID Configurations 

1 Intel Xeon CPU E5-2630 @ 2.6 GHz, 2 processors, each with 12 cores, 192GB DDR3 RAM (1600 MHz) 

2 Intel Xeon CPU X5530 @ 2.40GHz, 2 processors, each with 4 cores, 12GB DDR3 RAM (1333MHz) 

3 Intel Core i7 CPU 3820 @ 3.6  GHz, 1 processor with 8 cores, 24GB DDR3 RAM (1600 MHz) 

4 Intel Core i7 CPU 960 @ 3.20 GHz, 1 processor with 4 cores (Hyperthreading enabled), 10GB DDR3 

RAM(1333MHz) 

5 AMD Opteron CPU 6172 @ 2.1GHz, 2 processors, each with 12 cores, with 12GB DDR3 RAM(1333 

MHz) 

We ran three studies using the big data described above. Studies 1 & 2 are both based on 

the random sampling of Machine 3 and Machine 4. Namely, for each benchmark from each 

computer, five execution times are randomly selected without replacement. Then we (1) compare 

the two computers using HPT, t-test and proposed randomization test; (2) estimate the ratio of the 

geometric means through the proposed bootstrapping confidence interval, t-test confidence 

interval and HPT speedup-under-test estimate based on the randomly selected subset of data. Both 

studies were repeated 100 times. (3) For Study 3, we applied a new visualization tool called a 

Biplot [13] to visually examine the performance of many computers and benchmarks 

simultaneously.  

In Study 1, for a significance level of 0.05, HPT fails to reject null hypothesis as the two 

machines generally have the same performance in terms of the geometric mean, 69% of times, 

while t-test and our randomization test both are 0% (i.e. reject all 100 times). When the significance 

level is 0.01, since HPT uses nonparametric test, their p-value in this case cannot go below 0.01. 

The t-test fails to reject the null hypothesis 4% of the time, while our test still rejects all 100 times.  
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Figure 14. The 95% bootstrapping confidence intervals (solid blue lines), measured ratios of geometric means (solid 

black line within the confidence interval), 95% t-test confidence intervals (solid green lines) and 0.95-speedups from 

HPT test (red dash lines) based on 100 random replications. 

Figure 14 shows the results of Study 2. The black solid line in the center is the observed 

geometric means based on 100 simulations. The blue solid lines show the 95% bootstrapping 

Confidence intervals. The green solid lines show the 95% t-test confidence intervals. The red dash 

line shows the HPT speed-up estimates. Based on the figure, we can see that the t-test confidence 

interval is consistently wider than the bootstrapping confidence interval and that the HPT speedup 

estimates are highly variable bouncing up and below and far away from the observed Geometric 

means.   

Biplots for the Visualization of Benchmark Effectiveness 

Finally, we use a Biplot visualization tool [13] for computer performance comparisons. 

Biplot is a useful tool to visualize the projections of high-dimensional data onto a low dimensional 

space through principal component analysis. In this section, we will first briefly describe the 

principal component analysis technique and introduce the Biplot method through an illustrative 

example. Then we will apply the Biplot method to the performance results of all five machines 

described in Table 16 with seven Big Data benchmarks and explain the results that may shed new 

insights on comparing computer performance.  
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Principal component analysis is a time-honored method for dimension reduction and data 

visualization. Figure 15 shows a randomly generated dataset with 1000 points from a bivariate 

Gaussian distribution. Figure 15(a) shows the raw data with the two principal components. The 

first principal component (PC1), shown as the red arrow in the plot, is the direction in feature space 

(e.g. X1 and X2 in this case) along which projections have the largest variance. The second PC 

(PC2), shown as the blue arrow in the plot, is the direction which maximizes variance among all 

directions orthogonal to the first PC. The principal components are the linear combination of all 

the features. The value of the coefficients for the PC is called the loading vector of the 

corresponding PC. The value for the sample point of the PC is called the score for the 

corresponding PC. For example, PC1 is equal to 0.996X1+0.258X2; hence the loading vector for 

PC1 is (0.996, 0.258). For a sample point with X1=1 and X2=0, the PC1 score is equal to 

0.996×1+0.258×0=0.996.  

 

Figure 15. Illustrative example for principal component analysis and biplot: (a) raw data with PC1 and PC2; (b) PC 
scores on the PC1 and PC2; (c) Lower left: biplot of the data.(d) proportion of total variance explained by PC1 and 

PC2. 
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Instead of plotting the data on its raw scales, an alternative way to visualize the data is to 

project the data onto PC1 and PC2. In this example, since the data contains only two variables, X1 

and X2, projecting onto PC1 and PC2 is equivalent to rotating the data to use PC1 and PC2 as the 

horizontal and vertical axes. This is shown in Figure 15(b). For each point, the projected value on 

the horizontal axis is its PC1 score, while the projected value on the vertical axis is its PC2 score.  

A Biplot graph, which is shown in Figure 15(c), presents not only the PC scores but also 

the loading vectors in a single display. The red arrow shows the coefficient values for X1 on the 

PC1 and PC2 loading vectors. As can be seen, the coefficient value for X1 in PC1 (i.e. 0.966) is 

larger than its counterpart in PC2 (i.e. 0.258) and the coefficient value for X2 in PC2 is negative 

(i.e. -0.966), with its absolute value being larger than its counterpart in PC1. Hence, we can see 

PC1 reflects mainly the variation in the X1 direction, and PC2 mainly reflects variation in the X2 

direction.  

Figure 15(d) shows the proportion of variance that is explained by each PC. Since the data 

has only two variables, there are at most two PCs. The first PC explains about 95% of the total 

variance of the data, while PC2 explains the remaining 5%. 

Figure 16 shows the Biplot of the performances of all five machines described in Table 16 

with all seven Big Data benchmarks. Note that for each machine and each benchmark, we have 

measured about 1000 times. To create the Biplot in Figure 16, we use the median value of the 

performance measure for each benchmark and machine. The median values for all five machines 

and all seven Big Data Benchmarks are listed in the Table 17. Since we have five machines and 

seven benchmarks, there are up to five PCs. The right panel of Figure 16 shows the proportion of 

total variance explained by each PC. As we can see, the first two PCs explained more than 99.7% 
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of the total variance. Hence, using the leading two PCs in the Biplot keeps almost all the 

information in the data. Based on the Biplot, which is shown on the left panel, we have the 

following remarks.  

1) We see that the benchmark b has the largest impact (i.e. coefficient value) on the PC1. 

This indicates that PC1 roughly reflects the performance measure on benchmark b. This can be 

verified by the dominant value of the loading coefficient for benchmark b in PC1 (i.e. equal to 

0.91).   

2) For PC2, the remaining six benchmarks measures are clustered together and have about 

the same impact (i.e. coefficient value). This indicates that these six measures (from benchmark a, 

c, d, e, f, g) are highly correlated to each other and PC2 mainly reflects the average performance 

on these six benchmarks. Table 18 shows the pairwise correlation among all seven benchmarks. 

We see that most of the pairwise correlations among benchmarks a, c, d, e, f, g are over 0.95 

(shown in red fonts).  

3) The PC1 score for machine 5 is far greater than the other four machines. This is due to 

its higher performance on all seven benchmarks and particularly on benchmark b (i.e. 92291). 

4) The PC2 score for machine 2 is the smallest among all. This is due to its lower 

performance on benchmark a, c, d, e, f, g, for which is has the lowest values among all five 

machines, and relatively large value on benchmark b, which for which it has the third largest value 

among all.  

5) Overall, machines 1, 3 and 4 have similar performance over all seven benchmarks. 

Machine 5 has the highest overall performance, while machine 2 has the lowest overall 

performance.     
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Figure 16. Biplot on big data benchmark example: (a) Biplot on PC1 and PC2 together with the loading values for 
seven benchmarks; (b) proportion of total variance explained by five PCs. 

 

Table 17. Median values of all five machines on seven Big-Data benchmarks 

 a b c d e f g 

1 12746 53600 14182 12785 14473 13292 19774 

2 7265 53581 9157 7427 9154 7718 14602 

3 10945 44492 12101 10894 12379 11184 16028 

4 11499 47084 12318 11205 13062 11444 16997 

5 18429 92291 18867 16448 18915 17429 29271 

 

Table 18. Pairwise correlation among all seven big data benchmarks 
 a b c d e f g 

a 1.00 0.82 1.00 0.99 1.00 1.00 0.96 

b 0.82 1.00 0.83 0.76 0.80 0.78 0.94 

c 1.00 0.83 1.00 0.99 1.00 1.00 0.97 

d 0.99 0.76 0.99 1.00 1.00 1.00 0.93 

e 1.00 0.80 1.00 1.00 1.00 1.00 0.95 

f 1.00 0.78 1.00 1.00 1.00 1.00 0.95 

g 0.96 0.94 0.97 0.93 0.95 0.95 1.00 



41 
 

 6. REVIEW OF LITERATURE 

Over decades, the debate over the method and metrics for computer performance 

evaluation has never ended [5][16][20]. Fleming and Wallace [10] argued that using geometric 

mean to summarize normalized benchmark measurements is a correct approach while arithmetic 

mean will lead to wrong conclusions in this situation. Smith [26], however, claimed that geometric 

mean cannot be used to describe computer performance as a rate (such as mflops) or a time by 

showing counter examples. Furthermore, John [17] advocated using weighted arithmetic mean or 

harmonic mean instead of geometric mean to summarize computer performance over a set of 

benchmarks. Hennessy and Patterson [14] described the pros and cons of geometric mean, 

arithmetic mean, and harmonic mean. Eeckhout [7] summarized that arithmetic and harmonic 

means can clearly describe a set of benchmarks but cannot apply the performance number to a full 

workload space, while geometric mean might be extrapolated to a full benchmark space but the 

theoretic assumption cannot be proven. 

Relying on only a single number is difficult to describe system variability stemming from 

complex hardware and software behaviors. Therefore, parametric statistic methods such as 

confidence interval and t-test have been introduced to evaluate performance [19][1]. Nevertheless, 

Chen et al. [3] demonstrated that these parametric methods in practice require a normal distribution 

of the measured population which is not the case for computer performance. In addition, the 

number of regular benchmark measurements from SPEC or PARSEC is usually not sufficient to 

maintain a normal distribution for the sample mean. Therefore, Chen et al. [3] proposed a non-

parametric Statistic Hypothesis Tests to compare computer performance. As demonstrated in the 
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paper, our proposed resampling methods can identify smaller differences between two computers 

even in a situation where a single test is not enough to reveal it.  

Oliveira et al. [24] applied quantile regression to the non-normal data set and gained 

insights in computer performance evaluation that Analysis of variance (ANOVA) would have 

failed to provide. Our approach considers different variation sources (non-deterministic or 

deterministic behaviors) for the fixed computer configurations and handles the non-normality by 

using a resampling technique such as bootstrapping and permutation. 

Patil and Lilja [25] demonstrated the usage of resampling and Jackknife in estimating the 

harmonic mean of an entire dataset. Unlike their approach, we applied resampling methods on a 

more complicated situation - comparing two computers on multiple benchmarks with multiple 

measurements. Hence, the bootstrapping method in our paper is different from the one in [25]. 

Namely, we bootstrap the samples within each benchmark instead of on the entire dataset.  

Much research has been conducted in an effort to identify and remove sources of 

performance variation (and thus increase Quality of Service) in cloud computing systems 

performing many concurrent tasks. Iosup et al. [33] study the impact of workload on performance 

variability in cloud services via program trace analysis. Similarly, Leitner et al. [34] profile 

Infrastructure-as-a-Service (IaaS) cloud systems seeking the cause of performance variation, 

especially inter-task interference. In contrast, our Big Data Benchmark performance study uses 

only one active task. 

Previous work has been conducted on profiling applications to predict performance 

variation in multi-threaded systems. Zhang et al. [35] propose VarCatcher for measuring the 
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performance variation of individual execution paths within an application; execution patterns are 

then clustered in an effort to explain performance variability. Pusukuri et al. [36] use runtime 

performance metrics (i.e. cache misses, thread context-switches) to throttle inter-thread 

interference and thereby reduce performance variation. Jimenez et al. [37] predict the performance 

variation bounds for compute intensive applications and propose to limit variation by reducing 

bandwidth at the cost of reduced performance. Our research similarly studies the relationship 

between hardware and OS-level events, but we data collected from many different hardware 

configurations to predict variation in advance. 

This work is an extension of a prior ISPASS publication [17] which was limited in scope 

to statistical resampling methods for measuring computer performance on SPEC benchmarks 

without the use of Biplot visualization tools. 
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7. CONCLUSION 

We propose a randomization test framework for achieving a both accurate and practical 

comparison of computer architectures performance. We also propose a bootstrapping confidence 

interval estimation framework for estimating a confidence interval on a quantitative measurement 

of comparative performance between two computers. We illustrate the proposed methods through 

both Monte Carlo simulations where the truth is known and real applications.  

Interestingly, even though geometric mean as a single number cannot describe the 

performance variability, we find that the ratio of geometric means between two computers always 

falls into the range of Boosted Confidence Intervals in our experiments.  

In cases where two computers have very close performance metrics, we propose using 

empirical distribution to evaluate computer performance and using five-number-summary to 

summarize the computer performance. 

We investigate the source of performance variation by using hardware and environment 

descriptions to predict performance and relative variation with a predicted and measured 

correlation of 0.992 and 0.5 respectively. The best predictors of relative variation are found to be 

the degree of parallelism and the size of the shared memory space, suggesting performance 

variation comes in large part from thread interference. 

  We demonstrate that the proposed sampling method is effective at differentiating the 

performances of machines running Big Data benchmarks, which have higher variance than 
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traditional CPU benchmarks. Our analysis of Big Data benchmark variance was extended using a 

Biplot to visualize machine performance similarities and benchmark correlation.  
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