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Figure 3.2. The Robotarium (left) and the GRITSBot (right)

cm/s, 1 rad/s), i = 1, ..., n, and initial conditions

qd1(0) = (5 cm, 10 cm, π/2 rad) , qd2(0) = (5 + 10 cos π/10 cm, 10 sinπ/10 cm, π/2 rad) ,

qd3(0) = (5 + 10 sinπ/5 cm,−10 cosπ/5 cm, π/2 rad) ,

qd4(0) = (5− 10 sinπ/5 cm,−10 cosπ/5 cm, π/2 rad) ,

qd5(0) = (5− 10 cosπ/10 cm, 10 sinπ/10 cm, π/2 rad) .

The desired formation at t = 0 along with the desired trajectory for the geometric center of the

pentagon is shown in the Figure 3.3. The graph was selected as the spanning tree shown in Figure

3.1 with edge set E = {(1, 2), (2, 3), (3, 4), (4, 5)}. The initial positions and orientations of the

robots were randomly set to

q1(0) = (2.37 cm, 8 cm, 0.0162 rad) , q2(0) = (17.5 cm, 6 cm, 0.0218 rad) ,

q3(0) = (2.06 cm,−1.36 cm,−0.0031 rad) , q4(0) = (−9.9 cm,−11.49 cm, 0.0517 rad) ,

q5(0) = (−4.45 cm, 8.62 cm,−0.0452 rad) .

The control gain in (3.16) was set to λ1 = I5⊗diag(2, 2, 10) where Ik is the k × k identity matrix.

Snapshots of the initial and final formations are given in Figure 3.4 showing that the desired
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Figure 3.3. Experiment: Desired pentagon formation at t = 0 along with desired circular trajectory
for the geometric center.

formation was successfully acquired from a random initial configuration. The path of each robot

as they maneuver in formation is shown in Figure 3.5. Figure 3.6 shows the norm of all tracking

and coordinations errors quickly converging to approximately zero. The errors are not exactly zero

due to measurement noise and the sensor resolution. We can see from the errors that the desired

pentagon formation is acquired after approximately 10 s while simultaneously maneuvering around

the desired circular path. The control inputs are depicted in Figure 3.7, where one can see that

ηi(t) → ηdi as t → ∞ for all i as expected. A video of the experiment can be seen via this link:

https://www.youtube.com/watch?v=4q_rSynUDjA

3.4.2 Adaptive Dynamics Control Simulation

Since Robotarium does not allow the specification of actuator-level commands, a simulation

conducted in MATLAB was used to demonstrate the performance of the adaptive dynamics con-

troller from Section 3.3. The system parameters in (2.7) were set to mi = 3.6 kg, Ji = 0.0405

kg-m2, and Di = diag(0.3 kg/s, 0.004 kg-m2/s) for i = 1, ..., 5. The desired formation maneuver

was similar to the one in the experiment with exception of ηdi = (4 m/s, 1 rad/s), i = 1, ..., 5 and
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t = 0 s t = 50 s

Figure 3.4. Experiment: Snapshots of the initial formation (left) and the formation when the
experiment was stopped (right).
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Figure 3.5. Experiment: Circular maneuver of each robot from the initial formation at t = 0 s to
the formation at t = 50 s.
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Figure 3.6. Experiment: a) Norm of the tracking errors, ‖ei(t)‖, i = 1, .., 5; b) norm of the
coordination errors, ‖εij(t)‖, (i, j) ∈ E.
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Figure 3.7. Experiment: Control input ηi(t) = (vi(t), ωi(t)), i = 1, . . . , 5.
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Figure 3.8. Simulation: Desired pentagon formation at t = 0 along with the desired circular
trajectory for the geometric center.

the initial conditions

qd1(0) = (4 m, 1 m, π/2 rad) , qd2(0) = (4 + cosπ/10 m, sin π/10 m, π/2 rad) ,

qd3(0) = (4 + sinπ/5 m,− cos π/5 m, π/2 rad) ,

qd4(0) = (4− sin π/5 m,− cosπ/5 m, π/2 rad) ,

qd5(0) = (4− cosπ/10 m, sinπ/10 m, π/2 rad) .

The graph was set to the one in Figure 3.1. The desired formation at t = 0 along with the desired

trajectory for the geometric center of the pentagon is shown in the Figure 3.8.
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The initial conditions for the robots’ position and orientation were randomly chosen as

q1(0) = (0.0940 m, 1.3850 m, 0.2600 rad) , q2(0) = (1.5735 m, 0.1980 m, 0.6210 rad) ,

q3(0) = (1.000 m,−1.0115 m, 0.8475 rad) , q4(0) = (0.0500 m,−0.1415 m, 0.5260 rad) ,

q5(0) = (−0.3845 m, 0.9120 m, 0.0305 rad) .

The initial translational and angular speed of each robot was set to zero. All parameter estimates

in (3.38) were randomly initialized to a value in the interval (0, 1). The control and adaptation

parameters were set to λ1 = 2I15, λ2 = 4I10, Γ = 0.5I30, c = 1, and % = 3.

Figure 3.9 shows the snapshots in time of the unicycle robots as they maneuver in formation.

Only the trajectories of two robots are shown for illustration purposes. Figures 3.10 and 3.11

show the time evolution of ‖ei(t)‖, i = 1, . . . , 5 and ‖εij(t)‖, (i, j) ∈ E, respectively. Despite

the stability analysis of Section 3.3 proving the uniform ultimate boundedness of the errors, the

simulation shows the errors converging to zero. This is not surprising since Lyapunov-type analyses

are generally conservative. We can see from these results that after approximately 17.5 s the robots

converge to the pentagon formation while maneuvering as a rigid body around the circle. Some

of the parameter estimates for robot 1 are shown in Figure 3.12. The parameter estimates for the

other robots had a similar behavior, converging to some constant values.3

In order to illustrate the benefit of the dynamics controller over a pure kinematic one, we also

simulated the kinematic controller as described in Remark 5 with the same gain values for λ1 and

λ2 used in the adaptive control simulation. Figure 3.13 shows the tracking and coordination errors

of the kinematic controller. As one can see, the tracking errors do not converge to zero as they

do in Figure 3.10. Since all tracking errors are converging to the same nonzero value in Figure

3.13, the coordination errors of the kinematic controller nevertheless converge to zero since they

are simply the difference of the tracking errors (see (3.2)).

3Recall that adaptive control does not, in general, guarantee the convergence of the parameter estimates to their
actual values [55] .
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Figure 3.9. Simulation (Adaptive control): Snapshots in time of the formation maneuvering and
the desired trajectory for the geometric center.
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Figure 3.10. Simulation (Adaptive control): Norm of tracking errors, ‖ei(t)‖, i = 1, .., 5.
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Figure 3.11. Simulation (Adaptive control): Norm of the coordination errors, ‖εij(t)‖, (i, j) ∈ E.
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Figure 3.12. Simulation (Adaptive control): Sample of parameters estimates for robot 1.
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Figure 3.13. Simulation (Kinematic control): Tracking and coordination errors.
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Chapter 4. Rigidity-Based Flocking Control

In this chapter, we present a solution to the distance-based formation maneuvering problem of

multiple nonholonomic unicycle-type robots. The control law is designed at the kinematic level and

is based on the rigidity properties of the graph modeling the sensing/control interactions among

the robots. A simple input transformation is used to facilitate the control design by converting the

nonholonomic model into the single-integrator equation. The resulting control ensures exponential

convergence to the desired formation while the formation maneuvers according to a desired, time-

varying translational velocity. An experimental implementation of the proposed control law is

conducted on the Robotarium testbed [62].

4.1 Problem Statement

Consider that the agents’ target formation is modeled by the framework F ∗ = (G∗, q∗) where

G∗ = (V ∗, E∗), dim(V ∗) = n, dim(E∗) = a, p∗ = [p∗1, . . . , p
∗
n], and p∗i = [x∗i , y

∗
i ]. The fixed target

distance separating the ith and jth agents is given by

dij =
∥∥p∗i − p∗j∥∥ > 0, i, j ∈ V ∗. (4.1)

We assume F ∗ is constructed to be infinitesimally and minimally rigid. The actual formation of

the agents is encoded by the framework F (t) = (G∗, p(t)) where p = [p1, . . . , pn] and pi = [xi, yi].

The statement of the control problem of this chapter is the following.

Flocking Problem: The agents need to acquire and maintain a pre-defined geometric shape in

the plane while simultaneously moving with a given translational velocity. That is,

F (t)→ Iso (F ∗) as t→∞, (4.2)

which is equivalent to

‖pi(t)− pj(t)‖ → dij as t→∞, i, j ∈ V ∗ (4.3)
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due to the framework rigidity, and

ṗi(t)− v0(t)→ 0 as t→∞, i = 1, ..., n (4.4)

where v0 ∈ R2 is any continuously differentiable function of time representing the desired transla-

tional velocity. We assume v0 and v̇0 are bounded for all time.

The proposed control scheme assumes that the velocity v0(t) is known to all agents. This is

not an overly restrictive assumption since in many cases this information is known beforehand and

can pre-programmed into the agents’ onboard computer.

4.2 Control Formulation

Before presenting the control scheme, we introduce several error variables. The relative position

of agents i and j is defined as

p̃ij = pi − pj, (4.5)

while their distance error is captured by the variable [45]

zij = ‖p̃ij‖2 − d2ij. (4.6)

The vector of all zij for which (i, j) ∈ E∗ is defined as z = [..., zij, ...] ∈ Ra, which is ordered as

(1.2). Given that ‖p̃ij‖ ≥ 0, note that zij = 0 if and only if ‖p̃ij‖ = dij. This means that when

z = 0, the frameworks F and F ∗ are equivalent and therefore, F = Iso(F ∗) or F = Amb(F ∗).

Finally, let

θ̃i = θi − θdi (4.7)

where θdi denotes the desired heading direction, which is to be specified later.
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Theorem 5 Let the initial conditions for the distance errors be z(0) ∈ Ω1 ∩ Ω2

Ω1 = {z ∈ Ra | Λ(F, F ∗) ≤ δ}

Ω2 = {z ∈ Ra | dist(p, Iso(F )) < dist(p,Amb(F ∗))}

(4.8)

where δ is a sufficiently small positive constant. Then, the kinematic control law

vi = uix cos θi + uiy sin θi (4.9a)

ωi = −βiθ̃i + θ̇di (4.9b)

ui =

 uix

uiy

 = −k
∑

j∈Ni(E∗)

p̃ijzij + v0 (4.9c)

θdi =

 0, if uix = uiy = 0

atan2(uiy, uix), otherwise,
(4.9d)

where βi and k are positive control gains, ensures (z, θ̃i) = 0 for all i ∈ V ∗ is exponentially stable

and that (4.2) and (4.4) hold.

Proof. We first decompose (2.6) as follows

ṗi =

 vi cos θi

vi sin θi

 (4.10)

θ̇i = ωi. (4.11)

Using (4.7), (4.9a), and (4.9d) in (4.10), one arrives at

ṗi = B(θ̃i)ui. (4.12)

39



where

B(θ̃i) =

 cos2 θ̃i −1

2
sin 2θ̃i

1

2
sin 2θ̃i cos2 θ̃i

 (4.13)

Now, taking the time of derivative of (4.6) gives

żij =
d

dt

(
p̃ᵀij p̃ij

)
= 2p̃ᵀij

(
B(θ̃i)ui −B(θ̃j)uj

)
, (4.14)

which can be rewritten in the following vector form

ż = 2R(p)B(θ̃)u (4.15)

where (3.7) was used, B(θ̃) = diag
(
B(θ̃1), ..., B(θ̃n)

)
∈ R2n×2n, θ̃ =

[
θ̃1, . . . , θ̃n

]
∈ Rn, and u =

[u1, . . . , un] ∈ R2n. Likewise, (4.9c) can be rewritten as

u = −kRᵀ(p)z + 1n ⊗ v0. (4.16)

After substituting (4.16) into (4.15), we obtain

ż = −2kR(p)B(θ̃)Rᵀ(p)z + 2R(p)B(θ̃)(1n ⊗ v0). (4.17)

Next, after taking the derivative of (4.7) and substituting (4.11) and (4.9b), we obtain

·
θ̃i = −βiθ̃i, (4.18)

which indicates that θ̃i = 0, ∀i ∈ V ∗ is exponentially stable.

Our overall closed-loop system includes two interconnected subsystems (4.17) and (4.18), which

are in the form of (1.6). Now, we show that (4.17) is input-to-state stable with respect to θ̃ by
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using Theorem 1. Consider the Lyapunov function candidate

V =
1

4

∑
(i,j)∈E∗

z2ij =
1

4
zᵀz. (4.19)

The derivative of (4.19) along (4.17) is given by

V̇ = −kzᵀR(p)B(θ̃)Rᵀ(p)z + zᵀR(p)B(θ̃)(1n ⊗ v0). (4.20)

When θ̃ = 0, B(θ̃) = I2n×2n and (4.20) becomes

V̇ = −kzᵀR(p)Rᵀ(p)z (4.21)

upon application of Lemma 2. Given that F ∗ and F (t) have the same edge set and F ∗ is minimally

rigid by design, then F (t) is minimally rigid for all t ≥ 0. Moreover, from Lemma 1 and the fact

that F ∗ is infinitesimally rigid, we know F (t) is infinitesimally rigid for z(t) ∈ Ω1. Therefore, R (p)

has full row rank and

V̇ ≤ −kλzᵀz for z(t) ∈ Ω1 (4.22)

where λ = inf
t
λmin (RRᵀ) > 0 and λmin represents the minimum eigenvalue. From (4.22), we know

that V̇ (t) ≤ 0 for all t ≥ 0, which implies that V (t) ≤ V (0) for all t > 0. Therefore, since z(t) ∈ Ω1

is equivalent to z(t) ∈ {z ∈ R2n | V (z) ≤ c} according to Lemma 2 of [12], a sufficient condition

for (4.22) is given by

V̇ ≤ −4kλV for z(0) ∈ Ω1. (4.23)

From (4.23), we know that z = 0 is exponentially stable for z(0) ∈ Ω1 [40], which is equivalent

to the input-to-state stability of (4.17) with respect to θ̃. Therefore, [z, θ̃] = 0 is a locally stable

equilibrium point of the interconnected system by Theorem 2.

The exponential stability of z = 0 infers one of two possible occurrences: F (t) → Iso(F ∗) or

F (t)→ Amb(F ∗) as t→∞. Since the initial condition is such that z(0) ∈ Ω1 ∩ Ω2, then we have
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from (4.8) that

dist(q(0), Iso(F ∗(0))) < dist(q(0),Amb(F ∗(0))). (4.24)

It follows from this condition that the energy function (4.19) would necessarily have to increase for

a certain time interval for F (t)→ Amb(F ∗) as t→∞ to occur. This is however contradictory to

the fact that V (t) is nonincreasing for all time. Thus, we conclude that F (t)→ Iso(F ∗) as t→∞

for z(0) ∈ Ω1 ∩ Ω2.

Since z(t) is bounded, we know from (4.6) that p̃ij(t), (i, j) ∈ E∗ is bounded. Therefore, since

z(t)→ 0 and θ̃(t)→ 0 as t→∞, we know from (4.9c) and (4.12) that ṗi(t)− v0(t)→ 0 as t→∞

for ∀i ∈ V ∗.

Remark 6 The time derivative of (4.9d), which is needed in (4.9b), can be calculated as follows

θ̇di =

 0, if uix = uiy = 0

−uiy
u2ix+u

2
iy
u̇ix + uix

u2ix+u
2
iy
u̇iy, otherwise

(4.25)

where

u̇i = −k
∑

j∈Ni(E∗)

(
zij + 2p̃ij p̃

ᵀ
ij

)
(ui − uj) + v̇0 (4.26)

and (4.12) and (4.14) were used.

Remark 7 The control (4.9) is time invariant and discontinuous, which is expected by Brockett’s

condition for stabilization of nonholonomic systems [7]. Interestingly, the experimental study in

[42] has shown that such controllers can yield better performance than time-varying, continuous

controls if carefully implemented on unicycle-type robots.

4.3 Experimental Results

An experiments with five robots were again conducted on the Robotarium system. The desired

formation F ∗ was set to a regular pentagon, which was made infinitesimally and minimally rigid by

introducing seven edges such that E∗ = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)}. The desired

distances between all robots were given by d12 = d23 = d34 = d45 = d15 = λ
√

2(1− c1) and
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