On the Relative $K(2)$ of Non Commutative Local Rings.

Robert B. Russell

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/4595
INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
On the relative K_2 of non-commutative local rings

Russell, Robert B., Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1988
ON THE RELATIVE K_2
OF NON-COMMUTATIVE LOCAL RINGS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Mathematics

by

Robert B. Russell
B A , Southern Methodist University, 1982
August 1988
ACKNOWLEDGEMENTS

I thank my advisor, Dr. Jurgen Hurrelbrink, for his guidance and encouragement. I thank my family for their unbounded and unending support and patience, which has made this work possible.

I thank the LSU Alumni Federation for their generous financial support. I thank Dr. Richard Williams for nurturing my initial interest in mathematics. Finally, I would like to thank Dr. Carter Hill, Ruth Berger, Jenna Carpenter, Chen Sheng, Abdul Moghrabi, Alberto Prieto, and Sue Grabbe for their suggestions and encouragement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>111</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>vi</td>
</tr>
<tr>
<td>Chapter I Steinberg Groups and K_2</td>
<td>1</td>
</tr>
<tr>
<td>Chapter II The Mayer-Vietoris Long Exact Sequence</td>
<td>7</td>
</tr>
<tr>
<td>Chapter III Presentations of K_2</td>
<td>16</td>
</tr>
<tr>
<td>Chapter IV Dennis-Stein Presentation - Redundant Relations</td>
<td>19</td>
</tr>
<tr>
<td>Chapter V On a Normal Form for Semilocal Rings</td>
<td>24</td>
</tr>
<tr>
<td>Chapter VI On the Relative K_2 of Non-commutative Rings</td>
<td>32</td>
</tr>
<tr>
<td>Appendix</td>
<td>71</td>
</tr>
<tr>
<td>Bibliography</td>
<td>99</td>
</tr>
<tr>
<td>Vita</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 .. 53
ABSTRACT

This dissertation examines topics in Algebraic K-Theory, concerning the computation of absolute and relative Milnor groups, $K_2(R)$ and $K_2(R,I)$, for both commutative and non-commutative classes of rings, including the relative K_2 of non-commutative (not necessarily commutative) rings, and the absolute K_2 of commutative semilocal rings.

Our main theorem is a natural extension of a result by Maazen and Stienstra [H. Maazen and J. Stienstra, A presentation of K_2 of split radical pairs, J. Pure Appl. Algebra 10 (1977), 271-294] which determines the relative K_2 of rings in a commutative setting. We prove the non-commutative analog of this result for local rings.

Other results proved in this dissertation include the redundancy of two relations given in Dennis and Stein's presentation for K_2 of a discrete valuation ring [R.K. Dennis and M.R. Stein, K_2 of discrete valuation rings, Adv. Math. 18 (1975), 182-238] and a proof that a normal form used by Kolster [M. Kolster, K_2 of Non-Commutative Local Rings, J. Algebra 95 (1985), 173-200] does not apply more generally to semilocal rings.
INTRODUCTION

The study of Algebraic K-Theory is closely related to the study of matrices over rings. As a whole, it is the study of the functors K_0, K_1, K_2, \ldots from rings to groups and derives its name from the notation of these functors originally chosen by A. Grothendieck. The functor K_0 deals with the Grothendieck groups $K_0(R)$ consisting of isomorphism classes of finitely generated projective modules over a ring R. The functor K_1 deals with the Whitehead groups $K_1(R)$, that is, the factor group of the general linear group $GL(R)$ by its elementary subgroup $E(R)$, the subgroup generated by elementary matrices with entries in R.

The functor K_2 deals with the Milnor groups $K_2(R)$ that describe relations among the generators of the elementary group $E(R)$. In fact, it reflects the relations of $E(R)$ which arise due to the choice of R — not one of the "Steinberg relations" which hold in $E(R)$ for any R. More explicitly, we define $K_2(R)$ by the exact sequence

$$1 \rightarrow K_2(R) \rightarrow St(R) \rightarrow E(R) \rightarrow 1,$$

where the Steinberg group, $St(R)$, is an abstract group with generators similar to the generators of $E(R)$, but freer in the sense that its only relations are the three classes of Steinberg relations which hold in $E(R)$ for all R. Thus, intuitively, we may describe $K_2(R)$ as the set of all nontrivial relations in $E(R)$.

The functors K_3, K_4, \ldots are highly motivated by topological concerns. In this dissertation, we concentrate on K_2, and are interested in the other K-groups as they relate to K_2 through a Mayer-Vietoris type long exact sequence involving the relative K-groups. Chapters I and II provide background information about absolute and relative K_2, and about the Mayer-Vietoris long exact sequence.
Chapter III presents some known results concerning the calculation of K_2 for some specific classes of rings. Following Matsumoto's presentation for K_2 of a field using Steinberg symbols [HM], there have been further attempts to generalize this result to more general classes of rings. Some of the important contributions include the Dennis-Stein presentation of K_2 for a discrete valuation ring [DS2], and Rehmann's result for skew fields [UR], which gives K_2 up to a group extension, as do all current computations of K_2 for non-commutative rings. Kolster [MK2] demonstrates some very general results for K_2 in the non-commutative case, but at the cost of using (generalized Dennis-Stein) symbols of greater "length". In the case of non-commutative local rings, however, he is able to sharpen the result to standard Dennis-Stein symbols [MK3].

In Chapter IV, following a suggestion by Kolster in [MK2], we show that two of the longer relations in the Dennis-Stein presentation of a discrete valuation ring are redundant.

Given Kolster's determination of K_2 of a non-commutative local ring, one may naturally wonder whether the normal form for elements of $K_2(R)$ can be applied successfully to the semilocal case. The answer is negative, as we show in Chapter V by counter-example.

The main result of this dissertation is an extension of a theorem by Maazen and Stienstra that computes the relative K_2 of a commutative ring. Maazen and Stienstra [MS] have determined K_2 of split radical pairs, i.e. K_2 of a commutative ring, R, relative to a radical ideal I, such that the canonical projection, $R \longrightarrow R/I$, splits. The presentation given is

$$K_2(R,I) \cong D(R,I),$$

where $D(R,I)$ is the abelian group generated by Dennis-Stein symbols $\langle a,b \rangle$, with $(a,b) \in R \times I \cup I \times R$, and subject to a set of three standard relations.

Our main theorem is the analogous non-commutative result for local rings, and is proved in Chapter VI. Specifically, let R be a local ring, not necessarily commutative, and I be a split proper ideal (i.e. $R \longrightarrow R/I$ splits).
Then the sequence

\[1 \longrightarrow K_2(R,I) \longrightarrow D^*(R,I) \longrightarrow [R^*,1+I] \longrightarrow 1 \]

is exact, where we define \(D^*(R,I)\) to be the (usually non-abelian) group generated by Dennis-Stein symbols \(\langle a,b \rangle\) with \(R \times I \cup I \times R\), and subject to a set of 18 relations. These relations reduce in the commutative case to the three relations used by Maazen-Stienstra and a fourth implying that \(D^*(R,I)\) is abelian, thus yielding the Maazen-Stienstra result as a special case. It should be noted that a theorem by Keune [FK2] proves that Maazen-Stienstra's theorem holds also in the non-split case. A similar extension of our result to the non-split case for the relative \(K_2\) of non-commutative local rings is expected to hold.
The (unstable) Steinberg group $St(n,R)$ is a group modeled after the group generated by elementary matrices over a ring, R, so we begin by defining the general linear group, $GL(n,R)$, and the elementary group, $E(n,R)$

Note: By ring, we shall always mean an associative ring with 1.

Definition 1.1: Let R be a ring. Then $GL(n,R)$ is the multiplicative group of $n \times n$ invertible matrices with entries in R.

Definition 1.2: $E(n,R)$ is the subgroup of $GL(n,R)$ generated by the matrices $e_{ij}(a)$, $i \neq j$, where

$$e_{ij}(a) = (b_{rs}), \quad b_{rs} = \begin{cases} 1, & \text{if } r = s \\ a, & \text{if } r = i \text{ and } s = j \\ 0, & \text{otherwise} \end{cases}$$

Two important classes of matrices in the elementary group are

$$W_{ij}(u) = e_{ij}(u)e_{jj}(-u^{-1})e_{ij}(u), \quad u \in R^*$$

and

$$H_{ij}(u) = W_{ij}(u)W_{ij}(-1), \quad u \in R^*.$$

The matrix $H_{ij}(u)$ is a diagonal matrix with 1's on the diagonal except at locations $1i$ and jj which are u and u^{-1} respectively.

By matrix multiplication, we may easily check that the following relations are satisfied in $E(n,R)$ for $n \geq 3$

$$(E1) \quad e_{ij}(a)e_{ij}(b) = e_{ij}(a+b)$$
In the case $n=2$, E_2 becomes a trivial consequence of E_1, so for $n=2$, we choose to consider the two relations

\[(E_1) \quad e_{12}(a)e_{12}(b) = e_{12}(a+b)\]
\[(E_2') \quad w_{12}(u)e_{21}(a)w_{12}(u)^{-1} = e_{12}(-uau)\]

These relations hold for any ring, R, and will be the basis for our definition of $St(n,R)$.

Definition 1.3: The (unstable) **Steinberg group** $St(n,R)$, for $n \geq 2$, is defined to be the group with generators $x_{ij}(a)$, $a \in R$, $1,j=1, \ldots, n$, $1 \neq j$, and relations

\[(S_1) \quad x_{ij}(a)x_{ij}(b) = x_{ij}(a+b)\]
\[(S_2) \quad [x_{1j}(a), x_{kl}(b)] = \begin{cases} 1, & \text{if } j \neq k \text{ and } i \neq l \\ x_{11}(ab), & \text{if } j = k \text{ and } i \neq l \end{cases}\]

In the case $n=2$, we replace relation S_2 with S_2' and the defining relations are

\[(S_1) \quad x_{12}(a)x_{12}(b) = x_{12}(a+b)\]
\[(S_2') \quad w_{12}(u)x_{21}(a)w_{12}(u)^{-1} = x_{12}(-uau),\]

where $w_{ij}(u) = x_{ij}(u)x_{ji}(-u^{-1})x_{ij}(u)$.

While the case $n=2$ may appear disjoint, it is seen to be natural by noting that S_1 and S_2 imply S_2' when $n \geq 3$.

Clearly, we have a homomorphism defined on generators by

\[\phi \quad St(n,R) \longrightarrow E(n,R)\]
The Steinberg map, of course, maps $h(u)$ to $H(u)$.

We are now in a position to define the (unstable) K_2 of a ring.

Definition 1.4: Let R be a ring and $n \geq 2$. Then $K_2(n, R)$ is defined to be the kernel of the Steinberg map, i.e. it is defined by the exact sequence:

$$1 \longrightarrow K_2(n, R) \longrightarrow St(n, R) \longrightarrow E(n, R) \longrightarrow 1$$

To each of the unstable groups $GL(n, R)$, $E(n, R)$, $St(n, R)$, and $K_2(n, R)$, there corresponds a stable group denoted $GL(R)$, $E(R)$, $St(R)$, and $K_2(R)$ respectively, which are defined as direct limits.

Definition 1.5: Let I be a set. A **partial order** on I is a relation, \leq, satisfying the following conditions:

1. For all $i, j, k \in I$, we have $i \leq i$
2. If $i \leq j$ and $j \leq k$ then $i \leq k$
3. If $i \leq j$ and $j \leq i$ then $i = j$.

We say that I is **directed** if given $i, j \in I$, there exists $k \in I$ such that $i \leq k$ and $j \leq k$.
Let \(\{A_i\} \) be a family of objects in a category \(\mathcal{C} \), and indexed by a directed set, \(I \). For each pair \(i, j \in I \) such that \(i \leq j \), assume there is a morphism

\[
f_j^i : A_i \rightarrow A_j
\]

such that whenever \(i \leq j \leq k \), we have

\[
f_k^j f_j^i = f_k^i \quad \text{and} \quad f_1^i = \text{id}
\]

Then a direct limit for the family \(\{f_j^i\} \) is a universal object consisting of a pair \((A, (f_1^i)) \), where \(A = \text{Ob}(\mathcal{C}) \) and \((f_1^i) \) is a family of morphisms

\[
f_1^i : A_i \rightarrow A, \quad i \in I
\]

such that the following diagram commutes:

\[
\begin{array}{cccc}
\ldots & \rightarrow & A_i & \rightarrow & A_j & \rightarrow & \ldots \\
& \downarrow{f_1^i} & & \downarrow{f_j^i} & & \downarrow{f_j^i} & \\
& A & \rightarrow & A
\end{array}
\]

We define \(\text{GL}(R) \) to be the direct limit of the \(\text{GL}(n, R) \), and \(E(R), \text{St}(R), K_2(R) \) to be the direct limits of \(E(n, R), \text{St}(n, R), K_2(n, R) \) respectively. \(\text{GL}(R) \) may be viewed as the union of the \(\text{GL}(n, R) \) where \(\text{GL}(n, R) \) is included into \(\text{GL}(n+1, R) \) by

\[
f_{n+1}^n : A_n \rightarrow \begin{pmatrix} A \\ 1 \end{pmatrix}
\]

For \(E(R), \text{St}(R) \), and \(K_2(R) \), we have canonical maps:

\[
E(n, R) \rightarrow E(n+1, R) \\
\text{St}(n, R) \rightarrow \text{St}(n+1, R)
\]
Furthermore, we still have a Steinberg map

\[\Phi: \text{St}(R) \to \text{E}(R) \]

\[x_{ij}(a) \mapsto e_{ij}(a) \]

and \(K_2(R) \) is the kernel of the Steinberg map.

We also note that for a ring, \(R \), \(K_2(R) \) may be characterized as the center of \(\text{St}(R) \), and \(\text{St}(R) \) may be characterized as the universal central extension of \(\text{E}(R) \).

In some cases, it may be useful to consider modifications of the standard Steinberg groups we have just defined. For example, stability theorems of Kolster [MK1] show that when \(R \) is semilocal (or any ring which satisfies Bass' stable range condition \(SR_7 \)), \(K_2(R) \) is isomorphic to the groups \(K_2(n,R) \) for \(n \geq 3 \), and (for \(n=2 \)) isomorphic to the modified group \(K_2'(2,R) \) which is defined as follows.

Definition 1.6: \(K_2'(2,R) \) is defined by the exact sequence

\[1 \longrightarrow K_2'(2,R) \longrightarrow \text{St}'(2,R) \longrightarrow \text{E}(2,R) \longrightarrow 1. \]

Definition 1.7: \(\text{St}'(2,R) \) is the quotient group \(\text{St}(2,R)/W(2,R) \), where \(W(2,R) \) is the normal subgroup of \(\text{St}(2,R) \) generated by the elements:

(a) \(tx_1(a)t^{-1}x_1(-ua) \) and \(tx_2(a)t^{-1}x_2(-au^{-1}) \),

where \(t \in S(1,R) \), (defined below)

and \(t \) maps to the matrix \(\begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix} \)

(b) \(xyx_y^{-1} \), where \((x_Y, x_y) \) is a \(y \)-pair with \(x_Y, x_y \in S(1,R) \).
Definition 1.8: \(S(1,R) \) is defined to be the inverse image of \(E(2,R) \cap GL(1,R) \) in \(St(2,R) \), under the Steinberg map.

Definition 1.9: A y-pair in \(St(2,R) \) consists of two elements

\[
\begin{align*}
xy &= p\Pi(x_1(a)y) x_2(b)) \\
x_y &= p\Pi(x_1(a)x_2(yb))
\end{align*}
\]

with \(p = S(1,R) \)

We have used the indices 1 and 2 for 12 and 21 respectively.

We finish this section by listing some useful identities which hold in \(St'(2,R) \)

Theorem 1.10. The following identities hold in \(St'(2,R) \)

1. \(w_2(u) = w_1(-u^{-1}), \quad u \in R^* \),
2. \(h_2(u) = h(u)^{-1}, \quad u \in R^* \),
3. \(x_2(a)x_2(b) = x_2(a+b), \quad a, b \in R \),
4. \(w(u)x_2(a)w(u)^{-1} = x_1(-uau), \quad a \in R, \quad u \in R^* \),
5. \(w(u)w(v)w(u)^{-1} = w(uv^{-1}u), \quad u, v \in R^* \),
6. \(h(u)w(v)h(u)^{-1} = w(uvu), \quad u, v \in R^* \),
7. \(\langle a, b \rangle_2 = \langle a, b \rangle h(\theta^{-1}), \quad a, b \in R, \quad 1+ab \in R^*, \quad \theta = (1+ab)(1+ba)^{-1} \),

Proof: See [MK2]. We have modified the statements slightly by using the first 2 relations to write each identity in terms of \(w(u) = w_1(u) \) instead of both \(w_1(u) \) and \(w_2(u) \), and \(h(u) = h_1(u) \) instead of both \(h_1(u) \) and \(h_2(u) \). Otherwise, the proofs are as in [MK2].

\(\square \)
CHAPTER II: The Mayer-Vietoris Long Exact Sequence

The Mayer-Vietoris long exact sequence of Algebraic K-Theory is an exact sequence which is not only obviously similar in form to the Mayer-Vietoris sequence of Algebraic Topology, but also shares its fundamental importance. In fact, the Mayer-Vietoris sequence motivates the choice of definition for the relative K-functors. One early definition of relative K_2 by Milnor was shown by Swan [SW] to be less desirable by proving the long exact Mayer-Vietoris sequence involving Milnor's relative K_2 was impossible no matter what definition for the relative K_3 functor is chosen.

In this paper we use a definition of relative K_2 which was first introduced by Stein [ST1]. This 'correct' relative Steinberg group, $St(R, I)$, is defined to be the 0th relative derived functor of $St(R)$ relative to the congruence relation in a ring R corresponding to an ideal, I. (See [FK1] and [FK2]) Keune, in [FK2], proves the equivalence of the characterization which we will take as our definition.

Definition 2.1: Let R be a ring with two-sided ideal, I. Then the fibered product, $R(I)_1$, is defined to be

$$R(I)_1 = \{(x_0, x_1) \in R \times R \text{ such that } \pi(x_0) = \pi(x_1)\}$$

where $\pi: R \to R/I$ is the canonical projection.

Now consider the Steinberg group, $St(R(I)_1)$. In particular, we are interested in the elements $x_{13}(r, r)$ and the elements $y_{13}(a)$ which we define as

$$y_{13}(a) = x_{13}(0, a)$$
Keune first gives a presentation of the kernel of the map induced by p_1, deletion of the first component.

$$\text{Ker}(\text{St}(\mathbb{R} \langle I \rangle_1)) \rightarrow \text{St}(\mathbb{R})$$

as a $\text{St}(\mathbb{R})$-group as the following:

Generators are symbols $y_{ij}(a)$, where $a \in I$, $i \neq j$

Defining relations are

1. $y_{ij}(a)y_{ij}(b) = y_{ij}(a+b)$
2. $[y_{ij}(a), y_{ik}(b)] = 1$ if $i \neq l$ and $j \neq k$
3. $[y_{ij}(a), y_{jk}(b)] = y_{ik}(ab)$ if $i \neq k$
4. $x_{1j}(r)y_{ij}(a) = y_{1j}(a)$
5. $x_{ij}(r)y_{ki}(a) = y_{ki}(a)$ if $i \neq l$ and $j \neq k$
6. $x_{ij}(r)y_{jk}(a) = y_{ik}(ra)y_{jk}(a)$ if $i \neq k$
7. $x_{ij}(r)y_{kl}(a) = y_{kj}(-ar)y_{kl}(a)$ if $k \neq j$

where a generator $x_{1j}(r)$ of $\text{St}(\mathbb{R})$ operates on $\text{Ker}(p_1)$ by conjugation with $x_{1j}(r,r)$ in $\text{St}(\mathbb{R} \langle I \rangle_1)$

Definition 2.2: $\text{St}(\mathbb{R}, I)$ is (as an $\text{St}(\mathbb{R})$ group) defined by generators $y_{ij}(a)$, where $a \in I$, $i \neq j$, and relations (1)-(7) above, together with the relation

$$x_{12}(b)y_{21}(a) = y_{12}(b)y_{21}(a)y_{12}(-b).$$

Under this presentation, we may define the Steinberg map on generators in the natural manner as

$$\Phi: \text{St}(\mathbb{R}, I) \rightarrow \text{E}(\mathbb{R}, I)$$

$$y_{ij}(a) \rightarrow e_{ij}(a).$$

Definition 2.3: $\mathbb{K}_2(\mathbb{R}, I)$ is the kernel of the Steinberg map, i.e., is defined by the exact sequence
This definition along with proper definitions for the other K-groups (see [SG2]) gives rise to the exactness of the Meyer-Vietoris long exact sequence

$$1 \rightarrow K_2(R, I) \rightarrow St(R, I) \rightarrow E(R, I) \rightarrow 1$$

An important situation to be considered in the relative case is when the canonical projection $R \rightarrow R/I$ splits.

Definition 2.4. Let R be a ring with a two-sided ideal, I. Then the homomorphism $\pi: R \rightarrow R/I$ is said to split if it admits a section, i.e. if there exists an (injective) group homomorphism $s: R/I \rightarrow R$ such that $\pi s = id_{R/I}$, the identity on R/I.

Clearly, if $R \rightarrow R/I$ splits, then as a group, we have $R \cong R/I \oplus I$, and so every element $r \in R$ may be written uniquely as $r = a + i$, with $a \in s(R/I)$, $i \in I$. We often identify $s(R/I)$ and R/I so that we may refer to R/I as a subgroup, i.e. $R/I \subseteq R$ as a subgroup of R.

In the case when $R \rightarrow R/I$ splits (compare [FK2]), it follows as a consequence of the Mayer-Vietoris sequence that

$$K_2(R, I) = \ker[K_2(R) \rightarrow K_2(R/I)].$$

This is a very natural result. In fact, in [SY], Sylvester chooses this for his definition of relative K_2 and shows how it may be used in the calculation of K_2. Many of the results for relative K_2 are proved in the split case, and some (including Maazen-Steinstra's presentation for K_2 of split radical pairs [MS] and Swan's excision [SW]) may be easily extended to the non-split case as shown by Keune [FK2].
CHAPTER III: Presentations of K_2

In this chapter, we introduce some previous results which lead naturally to the new theorems and observations given in this dissertation. Stated very broadly, we are interested in the determination of the absolute and relative K_2 of certain classes of rings. In the case of commutative rings, R, we look for a presentation of the absolute K-group, $K_2(R)$, or the relative K-group, $K_2(R,I)$, relative to an ideal, I, in terms of generators and relations. In the non-commutative case, we want a presentation for a group $D(R)$ or $D^*(R,I)$ in the absolute and relative cases respectively, such that the appropriate sequence is exact

$$1 \longrightarrow K_2(R) \longrightarrow D(R) \longrightarrow \{R^*, R^*\} \longrightarrow 1$$

or as we generalize to the relative situation in Chapter VI,

$$1 \longrightarrow K_2(R,I) \longrightarrow D^*(R,I) \longrightarrow [R^*, 1+I] \longrightarrow 1$$

where R is local.

A fundamental result, whose generalization has led to most of the results we will consider, is Matsumoto's presentation for $K_2(F)$ of a field, F, in terms of Steinberg symbols, i.e. with Steinberg symbols as generators of $K_2(F)$.

Definition 3.1 Given a ring, R, the Steinberg symbol $(u,v)_{ij}$, $u,v \in R^*$ is defined to be the element

$$(u,v)_{ij} = h_{ij}(uv)h_{ij}(u)^{-1}h_{ij}(v)^{-1}$$

in the Steinberg group, $St(R)$.
If the ring, R, is commutative, then we may omit the indices, because the symbol is independent of the indices i and j [JM]. When we are considering the unstable or the modified Steinberg groups (usually modified in the sense of adding another relation or set of relations as in $\text{St}'(R)$ - see Definition 17) we still have Steinberg symbols defined in the same manner.

In the unstable, non-commutative case with $n=2$, we may write Steinberg symbols in $\text{St}(2,R)$, or its modified versions, as $\{u,v\}_1$ and $\{u,v\}_2$ for $\{u,v\}_{12}$ and $\{u,v\}_{21}$ respectively.

Theorem 3.2 (Matsumoto, 1969) If R is a field, then $K_2(R)$ has the following presentation as an abelian group:

Generators

\[\{u,v\} \quad (u,v \in R^*) \]

Relations

\[\{u_1u_2,v\} = \{u_1,v\}\{u_2,v\} \]

\[\{u,v_1v_2\} = \{u,v_1\}\{u,v_2\} \]

\[\{u,1-u\} = 1, \quad u \neq 1 \]

Note that we have not distinguished notationally the Steinberg symbols existing in the Steinberg group from the abstract symbols which are generators in the presentation. In fact, the theorem should be interpreted as an isomorphism between $K_2(F)$, which is the subgroup generated by Steinberg symbols in the Steinberg group, and the group defined by the abstract symbols $\{u,v\}$, $u,v \in F$, as generators and subject to the three relations. This distinction between the two sets of symbols should be clear from context, so we write them identically.

We also point out that Matsumoto's Theorem may be restated in terms of a tensor product over \mathbb{Z}.

Theorem 3.2 (Restated) If R is a field, then

\[K_2(P) \cong (R^* \otimes R^*) / \langle u \otimes (1-u) | u \in R^*, \ u \neq 1 \rangle \]
The following corollary of Matsumoto's Theorem is a simple consequence of elementary properties of finite fields, and the fact that Steinberg symbols generate $K_2(F)$ of a field and are subject to the relations of Matsumoto's Theorem.

Corollary 3.3 Let F be a finite field. Then $K_2(R)$ is trivial.

Proof This is an easy exercise, see [SY].

Dennis and Stein have generalized Matsumoto's theorem in the commutative case to discrete valuation rings with the following [DS2]

Theorem 3.4 (Dennis-Stein, 1975) Let R be a commutative discrete valuation ring with maximal ideal P, then $K_2(R)$ is isomorphic to $S(P)$, the abelian group generated by the Steinberg symbols $\{u,v\}$, $u,v \in R^*$, subject to the relations

\begin{align*}
(S1) \quad & \{u_1u_2,v\} = \{u_1,v\}\{u_2,v\} \\
(S2) \quad & \{u,v\} = \{v,u\}^{-1} \\
(S3) \quad & \{u,-u\} = 1 \\
(S4) \quad & \{u,1-u\} = 1, \text{ if } 1-u \in R^* \\
(S5) \quad & \{v,1-pqv\} = \{-(1-qv)(1-p)^{-1}(1-pqv)(1-q)(1-p)^{-1} \} \\
& \quad \{-(1-pv)(1-q)^{-1}(1-pqv)(1-q)^{-1} \} \\
(S6) \quad & \{-(1-q)(1-p)^{-1},(1-pqr)(1-p)^{-1}\} \\
& \quad \{-(1-pr)(1-q)^{-1},(1-pqr)(1-q)^{-1}\} \\
& \quad \{-(1-pq)(1-r)^{-1},(1-pqr)(1-r)^{-1}\} = 1 \\
(S7) \quad & \{u_1,1+qu_1\}\{u_2(1-qu_1)^{-1},[1+q(u_1+u_2)](1+qu_1)^{-1}\} \\
& \quad = \{v_1,1+qv_1\}\{v_2(1-qv_1)^{-1},[1+q(v_1+v_2)](1+qv_1)^{-1}\}
\end{align*}

for all $p,q,r \in P$, $u,v, u_1, u_2, v_1, v_2 \in R^*$ such that $u_1+u_2 = v_1+v_2 \in P$.

It can be shown (see Chapter IV for a proof) that relations S5 and S6 are direct consequences of relations S1-S4 and S7.
In the case of the principal ideal domains \(\mathbb{Z}/m\mathbb{Z} \), Sylvester [SY] shows that \(K_2(\mathbb{Z}/m\mathbb{Z}) \) is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \) if \(m \equiv 0 \pmod{4} \), and trivial otherwise.

So far, these results have been generalizations of Matsumoto's theorem in the commutative case. On the other hand, Rehmann [UR] generalizes Matsumoto's Theorem to the case of a skew field. But before stating this theorem, we first define Dennis-Stein symbols.

Definition 3.5 Let \(R \) be a ring, and \(a, b \) be elements of \(R \) such that \(\iota = 1 + ab \in R^* \), and \(\iota = 1 + ba \). Then we define the Dennis-Stein symbol,

\[
\langle a, b \rangle_{12} = x_{12}(a) x_{12}(b) x_{12}(-\iota^* a) x_{12}(-\iota b) h_{12}(\iota)^{-1},
\]

where \(a, b \) are such that \(\iota = 1 + ab \in R^* \), and \(\iota = 1 + ba \).

These Dennis-Stein symbols generalize Steinberg symbols in the sense that in the Steinberg group we have the equality [SY]

\[
\{u, v\}_{12} = \langle u(v-1), u^{-1} \rangle_{12}
\]

Now we state Rehmann's determination of \(K_2(R) \) for skew fields in terms of an exact sequence.

Theorem 3.6 (Rehmann, 1978). Given a skew field, \(R \), there is a short exact sequence

\[
1 \rightarrow K_2(R) \rightarrow D_0(R) \rightarrow [R^*, R^*] \rightarrow 1
\]

where \(D_0(R) \) is the group generated by \(\{u, v\} \), \(u, v \in R^* \), subject to the relations...
(V1) \(\{u, 1-u\} = 1 \)

(V2) \(\{uv, w\} = u[v, w] \{u, w\} \)

(V3) \(\{u, v\} \{v, u\} = 1 \)

and where we define \(u[v, w] = \{uv^{-1}, uw^{-1}\} \).

Furthermore, \(D_0(R) \) is (for any local ring with residue class field, \(R/\text{rad } R \), not isomorphic to \(\mathbb{F}_2 \) - see [MK3]) isomorphic to \(D_1(R) \), defined to be the group generated by \(\langle a, b \rangle \), where \(1+ab \in R^* \), subject to the relations

(R1) \(\langle a, b \rangle \langle -b, -a \rangle = 1 \)

(R2) \(\langle ay, b \rangle \langle ba, y \rangle = \langle a, by \rangle \)

(R3) \(\langle a, b \rangle \langle c, d \rangle \langle a, b \rangle^{-1} = \langle \theta c \theta^{-1}, \theta d \theta^{-1} \rangle, \quad \theta = (1+ab)(1+ba)^{-1} \)

(R4) \(\langle a, b \rangle \langle (a^{-1}, (c-b)c^{-1} \rangle = \langle a, c \rangle, \quad \theta = 1+ba \)

Rehmann's result establishes an approach to determining \(K_2(R) \) in the non-commutative case by finding \(K_2(R) \) up to a group extension as a subgroup of the group \(D_0(R) \) or \(D_1(R) \) generated by Steinberg or (standard) Dennis-Stein symbols. In fact, the map

\[K_2(R) \longrightarrow D_0(R) \]

is defined on generators by

\[\{u, v\}_{ij} \longrightarrow \{u, v\}_{ij} \]

and similarly, we have

\[K_2(R) \longrightarrow D_1(R) \]

\[\langle a, b \rangle_{ij} \longrightarrow \langle a, b \rangle_{ij} \]

By exactness, we see that the elements of \(K_2(R) \) are products of symbols \(\Pi[u_1, v_1] \) with \(\Pi[u_1, v_1] = 1 \) or equivalently, \(\Pi\langle a_1, b_1 \rangle \) with \(\Pi \theta_1 = 1 \).
Kolster [MK2] generalizes the result by Rehmann to the case of arbitrary rings, but at the cost of using generalized symbols in place of the standard Dennis-Stein symbols. An invariant related to a measure of stability, the word-length \(l(R) \), is defined. For example, a ring that has stable rank 1, i.e., satisfies Bass’ stable range condition \(SR_2 \), (e.g., a semilocal ring) would have word-length 2 \(K_2'(2,R) \), which behaves well under stabilization with respect to the linear \(K_2 \)-groups. It is then determined up to a group extension in terms of generalized Dennis-Stein symbols. (This reduces to a presentation of \(K_2'(2,R) \) in the commutative case.)

Theorem 3.7 (Kolster, 1984) Let \(R \) be an arbitrary ring. For all \(m \geq l(R) \) the groups \(D_m, D_{m+1}, D_{m+2}, \ldots, D_m \) are isomorphic and the following sequence is exact

\[
1 \longrightarrow K_2'(2,R) \longrightarrow D_m \longrightarrow E(2,R) \cap GL(1,R) \longrightarrow 1,
\]

where the groups \(D_n \) are defined by generators \(\langle a_1, \ldots, a_{2n} \rangle_n \), Dennis-Stein symbols of length \(2n \), and relations

\[
\text{(M1)} \quad \langle a_1, \ldots, a_{2n} \rangle_n \langle -a_{2n}, \ldots, -a_1 \rangle_n = 1
\]

\[
\text{(M2)} \quad \langle a_1y, a_2, \ldots, a_{2n} \rangle_n = \langle a_1, ya_2, \ldots, ya_{2n} \rangle_n \langle p, y \rangle_n^{-1},
\]

where \(1 + py \) is the \(f \) associated to \(\langle a_1y, a_2, \ldots, a_{2n} \rangle_n \)

\[
\text{(M3)} \quad s(\langle a_1, \ldots, a_{2n} \rangle_n)s^{-1} = \langle \theta a_1 \theta^{-1}, \ldots, \theta a_{2n} \theta^{-1} \rangle_n
\]

where \(\theta \) corresponds to \(\langle a_1, \ldots, a_{2n} \rangle_n \),

and \(s \) is a general symbol of length \(2m \)

\[
\text{(M4)} \quad s(ft^{-1}) = z,
\]

where \(s = \langle a_1, \ldots, a_{2n} \rangle_n \),

\[
z = \langle a_1, \ldots, a_n, b_{n+1}, \ldots, b_{2n} \rangle_n,
\]

if \(n \geq 2 \),

\[
t = \langle -a_{2n+1}, -a_{2n}, \ldots, -a_{n+2}, -a_{n+1}, b_{n+1}, b_{n+2}, \ldots, b_{2n} \rangle_n
\]

if \(n = 1 \),

\[
t = \langle -a_3, b_2 - a_2 \rangle_1
\]
If \(n \geq 2 \), then we also need the fifth relation

\[(M5) \langle 1, -1, q, 1 \rangle_n = 1, \text{ for all } q \in R \]

(We refer the reader to \([MK2]\) for a precise definition of the terms \(\theta, r, a_{2n+1} \), in terms of the general symbols, but they are a straightforward generalization of the case of standard Dennis-Stein symbols.)

The standard Dennis-Stein symbols are generalized symbols of length 2, and the group \(D_1(R) \) is the same group \(D_1(R) \) defined above in terms of standard Dennis-Stein symbols. Of course, \(D_0 \) does not continue the pattern as a group of generalized symbols of length zero, but is an group similar to \(D_1(R) \), generated by Steinberg symbols. As we noted earlier, in the case of local rings with large enough residue class fields, \(D_0(R) \) and \(D_1(R) \) are isomorphic.

Corollary 3.8 (Kolster, 1984) Let \(R \) be a ring with stable rank 1. Then the groups \(D_2, \ldots, D_n \) are isomorphic and the following sequence is exact

\[1 \rightarrow K_2^*(2,R) \rightarrow D_2 \rightarrow E(2,R) \cap GL(1,R) \rightarrow 1. \]

This corollary is therefore, in particular, a determination of \(K_2(R) \) for local rings in terms of symbols of length 4, because in this case [MK1],

\[K_2^*(2,R) \cong K_2(3,R) \cong \ldots \cong K_2(R) \]

This result is sharpened to standard (length 2) symbols as follows.

Theorem 3.9 (Kolster, 1985): If \(R \) is local, there is a short exact sequence

\[1 \rightarrow K_2(R) \rightarrow D_1(R) \rightarrow [R^*, R^*] \rightarrow 1, \]
where $D_1(P)$ is as defined above.

The statement of the theorem also makes use of the equality

$$E(2,A) \cap \text{GL}(1,A) = \{R^*, R^*\}$$

to write the exact sequence in terms of a commutator subgroup. In the commutative case, this theorem reduces to an isomorphism.

$$K_2(R) \cong D_1(R)$$

Taking a different approach, instead of determining $K_2(R)$ for wider classes of rings, Maazen and Stienstra [MS] generalize to the relative case, and give a presentation in the commutative case for K_2 of split radical pairs.

Definition 3.10 Let R be a ring and I be a two-sided ideal in R. Then (P, I) is a **split radical pair** if I is a radical ideal, and the canonical projection, $R \rightarrow R/I$, splits.

Theorem 3.11 (H Maazen, J Stienstra) If (R, I) is a split radical pair, then, for any integer $n \geq 3$, the homomorphism

$$\delta : D(R, I) \rightarrow K_2(n, R, I)$$

is an isomorphism. Hence,

$$\delta : D(R, I) \rightarrow K_2(R, I)$$

is also an isomorphism.

where $D(R, I)$ is the abelian group defined by
generators $\langle a, b \rangle$, one for each couple $(a, b) \in R \times I \cup I \cdot R$ such that $1+ab \in R^*$

and relations

(D1) $\langle a, b \rangle \langle -b, -a \rangle = 1$

(D2) $\langle a, b \rangle \langle a, c \rangle = \langle a, b+c+abc \rangle$

(D3) $\langle a, bc \rangle = \langle ab, c \rangle \langle ac, b \rangle$.

Theorem 3.11 gives a presentation of $K_2(R, I)$ for commutative rings only. In this dissertation, we extend this result to some non-commutative local rings (see Chapter VI, Theorem 6.1). We also note here that the result of Theorem 3.11 does not depend upon whether or not the pair (R, I) is a split pair. The proof that the split case implies the general case is given by Keune [FK2].
As discussed in the previous chapter, one presentation for $K_2(R)$ in the commutative case is the Dennis-Stein presentation for K_2 of a discrete valuation ring. A list of seven relations S_1 through S_7 were given. Following a suggestion in [MK3], we show not only that S_5 and S_6 are redundant in the presence of the other relations S_1-S_4,S_7, but also the direct manner in which S_5 and S_6 are consequences of the other relations.

Once again we state the Dennis-Stein presentation.

(Original) Theorem 4.1 If R is a commutative discrete valuation ring with maximal ideal $P = \text{rad } R$, then $K_2(R) \cong S(R)$, where $S(R)$ is the abelian group generated by the Steinberg symbols (u,v), $u,v \in R^\times$ subject to the seven defining relations

\begin{align*}
(S1) \quad & \{u_1u_2,v\} = \{u_1,v\}\{u_2,v\} \\
(S2) \quad & \{u,v\} = \{v,u\}^{-1} \\
(S3) \quad & \{u,-u\} = 1 \\
(S4) \quad & \{u,1-u\} = 1, \text{ if } 1-u \in R^\times \\
(S5) \quad & \{v,1-pqv\} = \{-(1-qv)(1-p)^{-1},(1-pqv)(1-p)^{-1}\} \\
& \quad \quad \quad = \{-(1-pv)(1-q)^{-1},(1-pqv)(1-q)^{-1}\} \\
(S6) \quad & \{-1-(qr)(1-p)^{-1},(1-pqr)(1-p)^{-1}\} \\
& \quad \quad \quad = \{-1-(pr)(1-q)^{-1},(1-pqr)(1-q)^{-1}\} \\
& \quad \quad \quad \quad = \{-1-(pq)(1-r)^{-1},(1-pqr)(1-r)^{-1}\} = 1 \\
(S7) \quad & \{u_1,1+qu_1\}\{u_2(1-qu_1)^{-1},[1+q(u_1+u_2)](1+qu_1)^{-1}\} \\
& \quad \quad \quad = \{v_1,1+qv_1\}\{v_2(1-qv_1)^{-1},[1+q(v_1+v_2)](1+qv_1)^{-1}\} \\
\end{align*}

for all $p, q, r \in P$, $u,v,u_1,u_2,v_1,v_2 \in R^\times$ such that $u_1+u_2 = v_1+v_2 \in P$.\vphantom{1}
We will see that two relations may be omitted by making use of Kolster's more general result for local rings [MK3] as applied to the case of a commutative discrete valuation ring, R. It states that if R is a DVR, then

$$K_2(R) \cong \overline{D}_0(R),$$

where $\overline{D}_0(R)$ is defined to be the abelian group generated by $\{u,v\}$ with $u,v \in R^*$, subject to the relations

\[(V1) \{u,1-u\} = 1 \]
\[(V2) \{uv,w\} = \{v,w\}\{u,w\} \]
\[(V3) \{u,v\}\{v,u\} = 1 \]
\[(V4) \{u,-u\} = 1 \]
\[(V5) \{u_1,1+u_1q\}\{(1+u_1q)^{-1}u_2,(1+qu_1)^{-1}[1+q(u_1+u_2)]\}
= \{v_1,1+qv_1\}\{(1+qv_1)^{-1}v_2,(1+qv_1)^{-1}[1+q(v_1+v_2)]\}, \]
where $q = \text{rad } R$, $u_1+u_2 = v_1+v_2 = \text{rad } R$.

Kolster proves that this group, $\overline{D}_0(R)$, is isomorphic to $D_1(R)$, the abelian group generated by Dennis-Stein symbols $\langle a, b \rangle$ with $1+ab \in R^*$, subject to the relations

\[(R1) \langle a, b \rangle \langle -b, -a \rangle = 1 \]
\[(R2) \langle ay, b \rangle \langle ba, y \rangle = \langle a, yb \rangle \]
\[(R4^{'}) \langle a_1+a_2, b \rangle = \langle \theta^{-1}a_2^{e^{-1}}, fbf \rangle \langle a_1, b \rangle, \quad f = 1+ba, \quad \theta = \phi^{-1} \]

We have used here that $R1-R4$ are equivalent to $R1-R3,R4'$, and that in the commutative case,

\[(R3) \langle a, b \rangle \langle c, d \rangle \langle a, b \rangle^{-1} = \langle \theta c\theta^{-1}, \theta d\theta^{-1} \rangle, \quad \theta = (1+ab)(1+ba)^{-1} \]

is simply a statement of commutativity and is thus unnecessary. (See Chapter III for the more general non-commutative versions of $\overline{D}_0(R)$ and $D_1(R)$.)
It is clear immediately that we have the correspondence

\[S_1 = V_2 \]
\[S_2 = V_3 \]
\[S_3 = V_4 \]
\[S_4 = V_1 \]
\[S_7 = V_5 \]

between the relations of Dennis-Stein and Kolster, from which we infer that relations \(S_5, S_6 \) of the Dennis-Stein presentation are consequences of the remaining relations. Thus, we may restate Theorem 4.1 as follows:

(New) Theorem 4.2 If \(R \) is a commutative discrete valuation ring with maximal ideal \(P = \text{rad} \, R \), then \(K_2(R) = S(R) \), the abelian group generated by the Steinberg symbols \(\{ u, v \} \), \(u, v \in R^* \) subject to the five defining relations

\[
\begin{align*}
(S1) \quad & \{u_1u_2,v\} = \{u_1,v\}\{u_2,v\} \\
(S2) \quad & \{u,v\} = \{v,u\}^{-1} \\
(S3) \quad & \{u,-u\} = 1 \\
(S4) \quad & \{u,1-u\} = 1, \text{ if } 1-u \in R^* \\
(S7) \quad & \{u_1,1+qu_1\}\{u_2(1-qu_1)^{-1},[1+q(u_1+u_2)](1+qu_1)^{-1}\} \\
& \quad = \{v_1,1+qv_1\}\{v_2(1-qv_1)^{-1},[1+q(v_1+v_2)](1+qv_1)^{-1}\}
\end{align*}
\]

for all \(p, q, r \in P, \ u, v, u_1, u_2, v_1, v_2 \in R^* \) such that \(u_1+u_2 = v_1+v_2 \in P \).

We now proceed to show explicitly how \(S_5 \) and \(S_6 \) are consequences of relations \(S_1-S_4, S_7 \). We introduce the map

\[
\Psi \ : \ D_0(R) \longrightarrow D_1(R)
\]

defined on generators by

\[
\Psi(\langle a, b \rangle) = \{1+ab, b\} \quad \text{if } b \in R^*
\]
\(\{-a, 1+ba\} \) if \(a \in R^* \)
\(\langle -1, (1+a)(1-b)^{-1}, -b \rangle \) if \(a, b \in \text{rad } R \)

which is an isomorphism for commutative discrete valuation rings

We note that \(\Psi \) is an isomorphism for any local ring, \(R \), even if \(R \) is non-commutative [MK3]. However, we have stated the groups \(\mathcal{D}_0(R) \) and \(\mathcal{D}_1(R) \) in their commutative form. \(\Psi \) is an isomorphism in the non-commutative case only if we apply it to the more general non-commutative versions of \(\mathcal{D}_0(R) \) and \(\mathcal{D}_1(R) \) which were presented in Chapter III.

To see directly that \(S5 \) is a consequence of \(S1-S4, S7 \), we will show the following:

Step 1 \(S1, S2 \) implies \(\Psi(R2(\geq 2 \text{ units})) \), where \(R2(\geq 2 \text{ units}) \) is the relation \(R2 \) under the condition that at least two of \(a, b, y \) are units, and where \(\Psi(R2(\geq 2 \text{ units})) \) is its image under \(\Psi \).

Step 2 \(S1-S4, S7 \) implies \(\Psi(R4') \)

Step 3 \(R2(\geq 2 \text{ units}), R4' \) implies \(R2(\geq 2 \in \text{rad}) \), so that \(\Psi(R2(\geq 2 \text{ units})), \Psi(R4') \) implies \(\Psi(R2(\geq 2 \in \text{rad})) \).

where \(R2(\geq 2 \in \text{rad}) \) is the relation \(R2 \) under the condition that at least two of \(a, b, y \) are in \(\text{rad } R \). Of course, by exhaustion, \(R2(\geq 2 \in \text{rad}) \) and \(R2(\geq 2 \text{ units}) \) imply \(R2 \), and \(R2(\geq 2 \in \text{rad}) \) implies the relations \(R2(2 \in \text{rad}) \) and \(R2(3 \in \text{rad}) \) as special cases.

and **Step 4** \(\Psi(R2(\geq 2 \text{ units})) \) implies \(S5 \)

from which we conclude that \(S5 \) is a consequence of \(S1-S4, S7 \).

We now proceed by proving steps 1-4.
Step 1: Rewrite the relation \(R_2 \) in the form

\[
\langle -ay, -b \rangle \langle -ba, -y \rangle \langle -yb, -a \rangle = 1,
\]

and assume that at least two of \(a, b, y \) are units. Then its image under \(\Psi \) is

\[
\{ ay, 1+by \} \{ b+ay, -y \} \{ 1+yba, -a \}
\]

so by (S1),

\[
\{ ay, 1+by \} = \{ -y^{-1}ay, 1+by \} \{ -y, 1+by \} = \{ -a, 1+yba \} \{ -y, 1+by \}
\]

which holds by (S2). Thus

\[
S_1, S_2 \text{ implies } \Psi(P_2(\geq 2 \text{ units}))
\]

as desired.

Step 2: If \(b \in R^* \), then \(R_4^* \) maps to

\[
\{ 1+(a_1+a_2)b, b \} = \{ 1+a_1b, b \} \{ 1+(1+a_1b)^{-1}a_2b, b \},
\]

so assume that \(b = \text{rad } R \).

Definition 4.3. The notation \(\langle \cdot, \cdot \rangle \) is used to denote a Steinberg symbol as follows:

\[
\langle u, q \rangle = \{ u, 1+qu \}, \quad \text{where } u \in R^*, \ q = \text{rad } R.
\]

We now break Step 2 into five cases:

Case 1. \(a_1, a_2, a_1+a_2 \in R^* \).

Then \(R_4^* \) maps to
\[\langle -(a_1a_2), -b \rangle = \langle -a_1, -b \rangle \langle (1 + a_1b)^{-1}a_2, -b \rangle \]

by the following

Claim 4.4 \[\langle u_1 + u_2, q \rangle = \langle u_1, q \rangle \langle (1 + u_1q)^{-1}u_2, q \rangle \]

is a consequence of relations S1-S4, for all \(u_1, u_2, u_1 + u_2 \in R^* \)

Proof (of claim) Let \(\sigma = 1 + u_1q \) Then

\[
\langle \sigma^{-1}u_2, q \rangle = \{ \sigma^{-1}u_2, 1 + \sigma^{-1}qu_2 \} \\
= \{ \sigma^{-1}u_2, 1 + \sigma^{-1}(1 + q(u_1 + u_2)) \} \\
= \{ \sigma, \sigma^{-1}u_2 \} \{ \sigma^{-1}u_2, 1 + q(u_1 + u_2) \} \\
= \{ \sigma, u_1 \} \{ \sigma, \sigma^{-1}u_2 \} \{ \sigma^{-1}u_2, 1 + q(u_1 + u_2) \}
\]

by

\[
\{ u, vw \} = \{ u, v \} \{ u, w \}
\]

which is a direct consequence of S1 and S2

By S1, we see that

\[
\langle u_1 + u_2, q \rangle = \{ u_2^{-1}\sigma(u_1 + u_2), 1 + q(u_1 + u_2) \} \{ \sigma^{-1}u_2, 1 + q(u_1 + u_2) \},
\]

so it is left to see

\[
\{ u_2^{-1}\sigma(u_1 + u_2), 1 + q(u_1 + u_2) \} = \{ \sigma, u_1^{-1}\sigma^{-1}u_2 \}
\]

But,

\[
1 - u_2^{-1}\sigma(u_1 + u_2) = -u_2^{-1}u_1(1 + q(u_1 + u_2)),
\]

so

\[
\{ u_2^{-1}\sigma(u_1 + u_2), 1 + q(u_1 + u_2) \} = \{ u_2^{-1}\sigma(u_1 + u_2), -u_1^{-1}u_2 \} \\
= \{ u_2^{-1}\sigma u_1u_1^{-1}(u_1 + u_2), -u_1^{-1}u_2 \} \\
= \{ u_2^{-1}\sigma u_1, -u_1^{-1}u_2 \} \\
= \{-u_1^{-1}u_2, u_1^{-1}\sigma^{-1}u_2 \}
\]
We finish proving the claim by noting that

\[-u_1^{-1}u_2, u_1^{-1}\sigma^{-1}u_2] = [-u_2u_1^{-1}, \sigma^{-1}]
\[\setminus \{0, -u_2u_1^{-1}\}
\[\setminus \{0, \sigma^{-1}u_2u_1^{-1}\}\]

\[\square\]

Case 2 \(a_1, a_2 \in R^*, a_1a_2 = \text{rad } R\)

Because \(\{1, u\} = 1\) and \(1+v_1q = v_2\), we have

\[\langle (1+v_1q)^{-1}v_2, q \rangle = 1,\]

where we have chosen \(v_1 = (u_1u_2-1)(1+q)^{-1}, v_2 = (1+(u_1u_2)q)(1+q)^{-1}\), so that \(v_1v_2 \in R^*\) and \(v_1v_2 = u_1u_2\).

Then, by S7, we may conclude that

\[\langle u_1, q \rangle \langle (1+u_1q)^{-1}u_2, q \rangle = \langle (u_1u_2-1)(1+q)^{-1}, q \rangle,\]

if \(q, u_1u_2 \in \text{rad } R\). From this, case 2 follows.

Case 3 \(a_1 \in R^*, a_2 \in \text{rad } R\)

We want

\[\langle -(a_1a_2), -b \rangle = \langle -a_1, -b \rangle \langle -(1+(a_1b)^{-1}a_2)(1-b)^{-1}, -b \rangle\]

Let \(u_1 = -a_1, u_2 = -(1+a_1b+a_2)(1-b)^{-1}, v_1 = -(1-b)^{-1}, v_2 = -(a_1+a_2)(1-b)^{-1}\). Then, using that \(1+(1+a_1b)^{-1}a_2 = (1+a_1b)^{-1}(1+a_1b+a_2)\) and \(u_1u_2 = v_1v_2 = -(1+a_1a_2)(1-b)^{-1}\), we get by applying first S7 and then S3 to the right hand side,

\[\langle -a_1, -b \rangle \langle -(1+(a_1b)^{-1}a_2)(1-b)^{-1}, -b \rangle = \langle -(1-b)^{-1}, -b \rangle \langle -(1-b)(a_1+a_2)(1-b)^{-1}, -b \rangle = \langle -(a_1+a_2), -b \rangle\]

Case 4 \(a_1 \in \text{rad } R, a_2 \in R^*\)
We have to show

\[\langle -(a_1+a_2), -b \rangle = \langle -(1+a_1)(1-b)^{-1}, -b \rangle \langle -(1+a_1b)^{-1}a_2, -b \rangle \]

Let \(u_1 = -(1+a_1)(1-b)^{-1} \), \(u_2 = -a_2(1-b)^{-1} \) then
\(u_1 + u_2 = -(1+a_1+a_2)(1-b)^{-1} \) and the right hand side equals

\[\langle u_1, -b \rangle \langle 1-u_1b, -b \rangle, \]

and case 4 follows as in case 3

Case 5 \(a_1, a_2 \in \text{rad } R \)

We have to show

\[\langle -(1+a_1+a_2)(1-b)^{-1}, -b \rangle \]
\[= \langle -(1+a_1)(1-b)^{-1}, -b \rangle \langle -(1+a_1b+a_2)(1-b)^{-1}, -b \rangle \]

Let \(u_1 = -(1+a_1)(1-b)^{-1} \), \(u_2 = -(1+a_1b+a_2)(1-b)^{-2} \), \(v_1 = -(1-b)^{-1} \), \(v_2 = -(1+a_1+a_2)(1-b)^{-2} \), and we are done by applying S7 again

Thus, \(R_4' \) is a consequence of relations S1-S4, S7

We now continue with our four main steps

Step 3: By \(R_4' \), we see that

\[\langle -ay, -b \rangle = \langle -a, -b \rangle \langle (1+ab)^{-1}a(1-y), -b \rangle \]
\[\langle -ba, -y \rangle = \langle -ba, (1+ab)^{-1}(1-y) \rangle \langle -ba, -1 \rangle \]
\[\langle -yb, -a \rangle = \langle -b, -a \rangle \langle (1+ab)^{-1}(1-y)b, -a \rangle \]

Let \(u = -(1+ab)^{-1}(1-y) \). Then \(u \in R^* \) and by R3 (which is a consequence of V6) we can rewrite the relation \(R_2(z2 = \text{rad}) \) as

\[\langle -au, -b \rangle \langle -ba, -u \rangle \langle -ub, -a \rangle \langle -a, -b \rangle \langle -ba, -1 \rangle \langle -b, -a \rangle = 1. \]
Thus we have a product of two relations of type $R_2(\leq 2 \text{ units})$, so we have seen that $R_2(\leq 2 \text{ units})$, R_4' implies $R_2(\leq 2 \cdot \text{rad})$ in the presence of S_1-S_4, S_7, and so

$$\Psi(R_2(\leq 2 \text{ units})), \Psi(R_4') \implies \Psi(R_2(\leq 2 \cdot \text{rad})), \tag{1}$$

as desired.

Step 4: We conclude by showing that $\Psi(R_2(\leq 2 \cdot \text{rad}))$ implies S_5

Let $a \in R$, and $b, y \in P = \text{rad } R$. Then the relation R_2 may be expressed as

$$1 = \langle -ay, -b \rangle \langle -ba, -y \rangle \langle -yb, -a \rangle,$$

which maps under Ψ to

$$1 = \{-(1-ay)(1+b)^{-1}, 1-(1+b)^{-1}(1-ay)b\}
\quad \{-(1-ba)(1+y)^{-1}, 1-(1+y)^{-1}(1-ba)y\} \{1+yba, -a\}$$

so

$$\{-a, 1+yba\} = \{-(1-ay)(1+b)^{-1}, (1+b)^{-1}(1+bay)\}
\quad \{-(1-ba)(1+y)^{-1}, (1+y)^{-1}(1+yba)\}$$

and with $v=-1$, $p=-b$, $q=-y$, we get

$$\{v, 1-pqv\} = \{-(1-qv)(1-p)^{-1}, (1-pqv)(1-p)^{-1}\}
\quad \{-(1-pv)(1-q)^{-1}, (1-pqv)(1-q)^{-1}\}$$

which is just S_5.

This shows directly that S_5 is a consequence of S_1-S_4, S_7. We see that S_6 is a consequence of S_1-S_4, S_7 by noting that $\Psi(R_2(3 \cdot \text{rad}))$ implies S_6.

Let $a, b, y \in P$. Then $R_2(3 \cdot \text{rad})$ maps under Ψ to
\[1 = \langle -(1-ay)(1+b)^{-1}, b \rangle \langle -(1-ba)(1+y)^{-1}, y \rangle \langle -(1-yb)(1+a)^{-1}, a \rangle \]

i.e.

\[1 = \langle -(1-ay)(1+b)^{-1}, 1-(1+b)^{-1}(1-ay)b \rangle \langle -(1-ba)(1+y)^{-1}, 1-(1+y)^{-1}(1-ba)y \rangle \langle -(1-yb)(1+a)^{-1}, 1-(1-yb)(1+a)^{-1}a \rangle \]

so with \(q=-y, r=-a, p=-b \) we get

\[\langle v, 1-pqv \rangle = \langle -(1-qv)(1-p)^{-1}, (1-pqv)(1-p)^{-1} \rangle \langle -(1-pv)(1-q)^{-1}, (1-pqv)(1-q)^{-1} \rangle \]

which is \(S6 \), as desired.

We note that the computations done here concerning the redundancy of the Dennis-Stein relations for a discrete valuation ring are not original, and also plays a role in Kolster's determination of \(K_2(R) \) for not-necessarily commutative local rings.
CHAPTER V: On a Normal Form for Semilocal Rings

In Kolster's calculation of $K_2(R)$ for local rings (not necessarily commutative), the normal form

$$x = p_2 h(u_2) w(v)x_2(c)x_1(d)$$

where p_2 is in the image of $K_2(2,R)$ in $St_1(2,R)$, $u_2 \in R^*$, $c,d,v \in R$, and we use the convention $w(0) = 1$

The discovery of a normal form for elements of the Steinberg group is a crucial step in the calculation of $K_2(R)$, so it is natural to ask if the above normal form holds in the more general case of semilocal rings. This would be a positive step towards the computation of $K_2(R)$ for semilocal rings in terms of the standard Dennis-Stein symbols.

We show by counterexample, that Kolster's presentation for the local case does not apply also in the commutative semilocal case. We begin by noting that any element $x \in St(2,R)$, where R is commutative semilocal, may be written in the normal form

$$x = p_1 h(u_1)x_2(t)x_1(a)x_2(b)$$

where $p_1 = K_2(2,R)$, $u = R^*$, $a, b, t \in R$. Thus, the same presentation holds for the quotient group, $St_1(2,R)$

Suppose any element $x \in St(2,R)$ could be written in the desired normal form

$$x = p_2 h(u_2) w(v)x_2(c)x_1(d)$$

where p_2 is in the image of $K_2(2,R)$ in $St_1(2,R)$, $u_2 \in R^*$, $c,d,v \in R$, and we use the convention $w(0) = 1$. Then there would be solutions to the corresponding matrix equations under the Steinberg map.
On the one hand, we have the known normal form

\[p_1h(u_1)x_2(t)x_1(a)x_2(b) \]

which represents all elements of the modified Steinberg group, and has the image

\[
\begin{pmatrix}
 u_1(1+ab) & a \\
 u_1^{-1}(b+t(1+ab)) & 1+at
\end{pmatrix}
\]

at matrix level. On the other hand, we have the alternative normal form

\[p_2h(u_2)x_2(v)x_1(c)x_1(d) \]

which has the image

\[
\begin{pmatrix}
 u_2cv & u_2(1+cd)v \\
 -u_2^{-1}v^{-1} & -u_2^{-1}dv^{-1}
\end{pmatrix}
\]

if \(v \neq 0 \)

or

\[
\begin{pmatrix}
 u_2c & u_2d \\
 u_2^{-1}c & u_2^{-1}(1+cd)
\end{pmatrix}
\]

if \(v = 0 \)

We now see that \(p_2h(u_2)x_2(v)x_1(c)x_1(d) \) cannot be a normal form for the commutative semilocal ring \(\mathbb{Z}/6\mathbb{Z} \) because there are no values for \(u_2, c, d, v \) in \(\mathbb{Z}/6\mathbb{Z} \) such that

\[
\begin{pmatrix}
 2 & 1 \\
 3 & 2
\end{pmatrix} = \begin{pmatrix}
 u_2cv & u_2(1+cd)v \\
 -u_2^{-1}v^{-1} & -u_2^{-1}dv^{-1}
\end{pmatrix}
\]

if \(v \neq 0 \)
or \[
\begin{pmatrix}
2 & 1 \\
3 & 2
\end{pmatrix} = \begin{pmatrix}
u_2 & u_2d \\
u_2^{-1}c & u_2^{-1}(1+cd)
\end{pmatrix} \quad \text{if } v = 0.
\]

In the first case \((v \neq 0)\), we have \(3 = -u_2v\) and \(2 = (-u_2v)\), so \(2 = 3d\)
But \(3d \equiv 0\) or \(3 \pmod{6}\), so this is impossible
For the second case \((v=0)\), we have \(2 = u_2^2\) and \(3 = u_2c\), so \(3 = 2c\)
But \(2c \equiv 0, 2, \text{ or } 4 \pmod{6}\), so this is impossible

(In fact, by computer analysis, we find that there are 64 examples of coefficients \(a, b, t, u\) for which the corresponding matrix level equations are unsolvable over \(\mathbb{Z}/6\mathbb{Z}\).)

Thus, we conclude that Kolster's normal form for local rings does not apply more generally to the (even commutative) semilocal case.
CHAPTER VI: On the Relative K_2 of Non-Commutative Rings

In this chapter, we present our main theorem, which is an extension of the Maazen-Stienstra presentation of $K_2(R,I)$ of a commutative ring relative to a split radical pair. We retain the assumption that the map $R \rightarrow R/I$ splits, but now allow the ring, R, to be non-commutative. The relative ease with which elements of the Steinberg group may be manipulated in the commutative case has forced most computations of K_2 to be done first in the commutative case. The determination of K_2 depends heavily on finding enough relations in the Steinberg group to be able to first find a normal form for the elements of interest in the Steinberg group, and then finding enough relations among the generators of K_2 to prove the desired result. It is these relations which necessarily become more intricate in the non-commutative case. Often, as we saw even in the commutative case of the Dennis-Stein presentation of a discrete valuation ring, the list of relations among generators may be redundant, but later lead to a refined result. (We saw, in Chapter IV, using some of the computational methods of Kolster [MK3], that two of the Dennis-Stein relations are redundant.)

Here, as in most extensions to the non-commutative case, the complexity of computations grows enormously. But, in our proof of the main theorem, we have been able to confine the necessarily extensive computations to a role which has very little effect on the structure of the proof. This role of the computations is one of the factors which lead us to believe that our assumption that R is local may not be crucial. In fact, we expect that our proof will naturally lead to a determination of the relative K_2 of any ring relative to any radical ideal.

32
One very pleasing effect we gain by limiting computations to a non-structural role in the proof, is that in the midst of an increase in computational complexity, the proof naturally reveals in the normal form, a more explicit view of the structure of elements in the relative K_2, possibly facilitating other results concerning the relative and absolute K_2 of non-commutative (not necessarily commutative) rings.

The idea of our proof is to find a normal form for elements in

$$\ker[St'(2,R) \longrightarrow St'(2,R/I)]$$

and to prove that every element in this kernel can be represented uniquely by the normal form. This is done by creating a group, \mathcal{M}_\triangle, whose image in $St'(2,R)$ is isomorphic to this kernel, and which consists only of elements expressible in the normal form.

After proving that this normal form holds, we form a direct product $St'(2,R/I)\mathcal{M}_\triangle$, where $St'(2,R/I)$ acts on \mathcal{M}_\triangle by conjugation. By explicitly demonstrating an isomorphism

$$\chi: St'(2,R/I)\mathcal{M}_\triangle \longrightarrow St'(2,R)$$

and its inverse, Ψ, we can then restrict Ψ to

$$\ker[St'(2,R) \longrightarrow St'(2,R/I)]$$

to get an isomorphism

$$\ker[St'(2,R) \longrightarrow St'(2,R/I)] \cong \mathcal{M}_\triangle.$$

By uniqueness of the normal form, and a stability theorem due to Kolster, we see that this implies the exactness of

$$1 \longrightarrow K_2(R,I) \longrightarrow D^+(R,I) \longrightarrow [R',1+I] \longrightarrow 1.$$
where $D^+(R,I)$ is a group generated by Dennis-Stein symbols and subject to the 18 relations listed in the statement of the theorem.

Theorem 6.1 Let R be a local ring (associative with 1), not necessarily commutative. Let (R,I) be a split pair, i.e., let I be a two-sided proper ideal in R, and let the canonical projection $R \rightarrow R/I$ split. Then the following sequence is exact:

$$1 \rightarrow K_2(R,I) \rightarrow D^+(R,I) \rightarrow [R^*, 1+I] \rightarrow 1,$$

where $D^+(R,I)$ is the group generated by the symbols $\langle a, b \rangle$ with aI or bI, and subject to the defining relations:

1. $\langle a, b \rangle \langle -b, -a \rangle = 1$
2. $\langle ay, b \rangle \langle ba, y \rangle = \langle a, yb \rangle$
3. $\langle a, b \rangle \langle c, d \rangle \langle a, b \rangle^{-1} = \langle \theta \theta^{-1} \theta \theta^{-1} \rangle$
4. $\langle a_1+a_2, b \rangle = \langle \theta a_2 \theta^{-1}, \theta b \theta^{-1} \rangle \langle a_1, b \rangle$
5. $\langle a+b, c \rangle = \langle b, c \rangle \langle \theta_2^{-1} \theta_2^{-1}, \theta_2 \theta_2^{-1} \rangle \{ \ell_2 \theta_2 \theta_2^{-1}, \ell_2 \theta_2 \theta_2^{-1} \}$
6. $\langle a, b \rangle \langle c, d \rangle \langle a, b \rangle^{-1} = \langle \theta \theta^{-1} \theta \theta^{-1} \rangle$
7. $1 = \langle a, b \rangle \{ \epsilon_5, u \} \langle bu(\epsilon_5)^{-1}, u \epsilon_5 \epsilon_5^{-1} \epsilon_5^{-1} \epsilon_5^{-1} \rangle \{ \theta \theta^{-1} \theta \theta^{-1} \theta \theta^{-1} \}$
8. $\langle a+b, c \rangle \langle -\epsilon_5 \epsilon_5^{-1} a, c \epsilon_5^{-1} \rangle = \{ \epsilon_3 \epsilon_3, \epsilon_3 \epsilon_3 \}$
9. $\{ -uv, -v^{-1} \} \{ -v^{-1} u, z \} = \langle u^{-1} v \theta(z^{-1}+1)u^{-1}, u(vz)^{-1} \rangle \{ \epsilon_1 \epsilon_1, \epsilon_1 \epsilon_1 \}$
10. $\{ -uv, -v^{-1} \} \{ -v^{-1} u, -1 \} \{ -v^{-1} u, -1 \} = \langle u^{-1} v \theta(z^{-1}+1)u^{-1}, u(vz)^{-1} \rangle \{ \epsilon_1 \epsilon_1, \epsilon_1 \epsilon_1 \}$
11. $\{ u, v \} \{ -v, -1 \} = \{ u^{-1} (1+v)u^{-1}, uv^{-1}u \} \{ \epsilon_1 \epsilon_1, \epsilon_1 \epsilon_1 \}$
\[
\begin{align*}
\{-u_{19^{-1}} - \epsilon_{19} \} & \langle -u_{2}^{-1}v^{-1}(z-1)u_{2}^{-1}, -u_{2}v_{u_{2}} \rangle \{ \theta_{19^{-1}} \epsilon_{19}, \epsilon_{19^{-1}} \} \\
\{-u_{19^{-1}} - \epsilon_{19} \} & \langle -u_{2}^{-1}v^{-1}, -v_{u_{2}} \rangle \{ -\epsilon_{17}u_{2}^{19^{-1}}v_{z}^{-1}, -v_{z}^{-1} \} \\
\end{align*}
\]

(12) \[\langle u, v \rangle \{ -v_{u_{z}}, -z^{-1} \} = \langle uv(1+z), -z^{-1}v_{u_{z}}^{-1} \rangle \{ \epsilon_{13}u_{z}^{-1}, \epsilon_{13}^{-1} \} \{ u, -z^{-1}v \} \]

(13) \[\langle -uv, -v^{-1} \rangle \langle (v^{-1}u)(1+z), -z^{-1}v_{u}^{-1}v \rangle \{ -z^{-1}v_{u}, -z \} \{ -v_{u}^{-1}v, -z^{-1}v_{u} \} \]
\[= \langle -u^{-1}(v^{-1}u)(z-1)v^{-1}, -uv_{u}^{-1}v \rangle \{ \theta_{16^{-1}} \epsilon_{16}, \epsilon_{16^{-1}} \} \{ -\epsilon_{16^{-1}}, -u \} \{ -uv_{16^{-1}}, -\epsilon_{16} \} \]
\[\{ -\epsilon_{15}u_{16^{-1}}v_{z}, -(zv)^{-1} \} \]

(14) \[
\begin{align*}
\langle -uv, -v^{-1} \rangle & \langle -v^{-1}u_{a}, -bu^{-1}v \rangle \{ -u_{5}v^{-1}u_{c}^{-1}, \epsilon_{5}^{-1} \} \\
= & \langle a_{2}, b_{2} \rangle \{ \theta_{24^{-1}} \epsilon_{24}, \epsilon_{24^{-1}} \} \{ -\epsilon_{24^{-1}}, -u \} \{ -u_{24^{-1}}, -\epsilon_{24} \} \\
& \langle -u_{3}^{-1} \theta_{20^{-1}}(1-\epsilon_{20})u_{3}^{-1}, -u_{3} \epsilon_{20^{-1}} \theta_{20}u_{3} \rangle \{ \theta_{28^{-1}} \epsilon_{28}, \epsilon_{28^{-1}} \} \\
& \{ -\epsilon_{28^{-1}}, -u_{3} \} \{ -u_{3}^{-1}, -\epsilon_{28} \} \langle u_{4} \epsilon_{20^{-1}}(-v-1)u_{4}^{-1}, u_{4} \epsilon_{20}u_{4} \rangle \\
& \{ \theta_{32^{-1}} \epsilon_{32}, \epsilon_{32^{-1}} \} \{ -\epsilon_{32^{-1}}, -u_{4} \} \{ -u_{4}^{-1}, -\epsilon_{32} \} \\
& \langle u_{6} \epsilon_{20^{-1}}(-\epsilon_{20}-1)u_{6}^{-1}, u_{6} \epsilon_{20}v_{u_{6}} \rangle \{ \theta_{36^{-1}} \epsilon_{36}, \epsilon_{36^{-1}} \} \\
& \{ -\epsilon_{36^{-1}}, -u_{6} \} \{ -u_{6}^{-1}, -\epsilon_{36} \} \{ -u_{6} \epsilon_{5}v_{20}, -(\epsilon_{5}v_{20})^{-1} \} \\
\end{align*}
\]

(15) \[\{ u, v \} \langle -(vu)^{-1}a(vu)^{-1}, -v_{u}v_{u}^{-1} \rangle \{ \theta_{44^{-1}} \epsilon_{44}, \epsilon_{44^{-1}} \} \{ -\epsilon_{44^{-1}}, -vu \} \]
\[\{ -v_{u} \epsilon_{44^{-1}}, -\epsilon_{44} \} \]
\[= \langle -uv^{-1}av^{-1}, -v_{u}v_{u}^{-1} \rangle \{ \epsilon_{43}u_{43}^{-1}, \epsilon_{43}^{-1} \} \langle u_{43} \theta_{43^{-1}}(1-\epsilon_{43}), \epsilon_{43^{-1}} \theta_{43}u_{43}^{-1} \rangle \\
\{ \epsilon_{44}u_{44}^{-1}, \epsilon_{44}^{-1} \} \langle -u_{43}^{-1}(-v-1), -\epsilon_{43}u_{43}^{-1} \rangle \{ \epsilon_{45}u_{45} \epsilon_{45}^{-1}, \epsilon_{45}^{-1} \} \\
\langle uv_{43}^{-1}(\epsilon_{43}^{-1}1), -\epsilon_{43}v_{u_{43}}^{-1} \rangle \{ \epsilon_{46}u_{46} \epsilon_{46}^{-1}, \epsilon_{46}^{-1} \} \{ u, \epsilon_{5}v_{43}^{-1} \} \\
\]

(16) \[\langle uv(z-1), v_{u}^{-1}v_{u} \rangle \{ \epsilon_{15}u_{15}^{-1}, \epsilon_{15}^{-1} \} \{ u, v \} \{ v_{u}, z \} = \{ u, v \} \{ vu, z \} \]

(17) \[\{ u, 1 \} \langle uv, -v^{-1} \rangle = \langle u^{-1}(v-1)u_{-1}, u_{2} \rangle \{ \theta_{41}^{-1}u_{u}, -v_{u}^{-1}u_{-1} \} \{ -u_{-1}v_{-1}u_{-1}, -u \} \]
\[\{ -v_{u}^{-1}, -uv_{u}^{-1} \} \{ u, v_{u}^{-1} \} \]

(18) \[\langle uu_{u}, u_{1}^{-1}b_{u}^{-1} \rangle \{ u_{1}^{-1}u_{u}, u_{1}u_{u} \} \{ \epsilon_{u_{u}}, \epsilon_{u_{u}}^{-1} \} = \langle u_{1}^{-1}u_{u}, ub_{u} \rangle \{ \theta_{47}^{-1} \epsilon_{47}, \epsilon_{47}^{-1} \} \]
\[\{ -\epsilon_{47}^{-1}, -u \} \{ -u_{47}^{-1}, -\epsilon_{47} \} \langle -u_{7}^{-1} \theta_{5}^{-1}u_{5}^{-1}(u_{5}^{-1}-1)u_{7}^{-1}, -u_{7}(\theta_{5}^{-1}u_{5})^{-1}u_{7} \rangle \\
\{ \theta_{49}^{-1} \epsilon_{49}, \epsilon_{49}^{-1} \} \{ -\epsilon_{49}^{-1}, -u_{7} \} \{ -u_{7} \epsilon_{49}^{-1}, -\epsilon_{49} \} \\
\langle u_{8}^{-1} \epsilon_{5}^{-1}(\epsilon_{5}^{-1}1)u_{8}^{-1}, -u_{8} \epsilon_{5}u_{8} \rangle \{ \theta_{51}^{-1} \epsilon_{51}, \epsilon_{51}^{-1} \} \{ -\epsilon_{51}^{-1}, -u_{8} \} \\
\{ -u_{8} \epsilon_{51}^{-1}, -\epsilon_{51} \} \{ u_{9} \theta_{5}^{-1}, \theta_{5} \} \]

where
\[\varepsilon_2 = 1 + (b)(c), \varepsilon_3 = 1 + (\varepsilon_2^{-1}a\varepsilon_2^{-1})(\varepsilon_2 c), \]
\[\varepsilon_4 = 1 + (a)(b+c), \varepsilon = \varepsilon_5 = 1 + (a)(b), \varepsilon_6 = 1 + (\varepsilon_5^{-1}a)(c) \]
\[\varepsilon_8 = 1 + (-u\varepsilon_5 b u)(-u^{-1}\varepsilon_5^{-1} a u^{-1}), \varepsilon_9 = 1 + (b u(\varepsilon_5^{-1}))(-u\varepsilon_5 u^{-1}\varepsilon_5^{-1} a\varepsilon_5) \]
\[\varepsilon_{11} = 1 + (c)(d), \varepsilon_{12} = 1 + (\varepsilon_5^{-1}c)(d \varepsilon_5) \]
\[\theta_{13} = [v,z], \varepsilon_{14} = 1 + (-u^{-1}v(1+z)u^{-1})(u(vz)^{-1}u) \]
\[\theta_{15} = [v,z], \varepsilon_{16} = 1 + (u^{-1}v(z-1)u^{-1})(uv^{-1}u) \]
\[\theta_{17} = [v^{-1},z], \varepsilon_{19} = 1 + (-u^{-1}(1+v)u^{-1})(uv^{-1}u), \]
\[\varepsilon_{19} = 1 + u_2^{-1}v^{-1}(z-1)u_2^{-1})(u_2 v u_2), \text{ and } u_2 = \varepsilon_3 \varepsilon_4 \varepsilon_9 \]
\[\varepsilon_{20} = 1 + (-v^{-1}a v^{-1})(-v b v), \varepsilon_{21} = \varepsilon_{22} = [\varepsilon_2^{-1},v] \]
\[\theta_{23} = [v \varepsilon_2^{-1}, \varepsilon_20], \varepsilon_{24} = 1 + (a_2)(b_2), \theta_{25} = \varepsilon_{24}^2 \varepsilon_2^3 \varepsilon_{24}, \theta_{26} = [\varepsilon_2^{-1},u] \]
\[\theta_{27} = [u \varepsilon_2^{-1}, \varepsilon_2^4], \varepsilon_{28} = 1 + (u_3^{-1}\varepsilon_{20}^{-1}(1-\varepsilon_{20}u_3^{-1}))(u_3 \varepsilon_{20}^{-1}\varepsilon_{20}u_3) \]
\[\varepsilon_{29} = \varepsilon_{28}^{-1} \varepsilon_{28} \varepsilon_{28}, \theta_{30} = [\varepsilon_2^{-1}, u_3], \theta_{31} = [u_3 \varepsilon_2^{-1}, \varepsilon_2^8] \]
\[\varepsilon_{32} = 1 + (u_4^{-1}\varepsilon_{20}^{-1}(-v^{-1}u_4^{-1}))(u_4 u_4), \theta_{33} = \varepsilon_{32}^2 \varepsilon_{32} \varepsilon_{32}, \theta_{34} = [\varepsilon_{32}^{-1}, u_4] \]
\[\theta_{35} = [u_4 \varepsilon_{32}^{-1}, \varepsilon_32], \varepsilon_{36} = 1 + (u_6^{-1}v \varepsilon_{20}^{-1}(-\varepsilon_{20}^{-1}u_6^{-1}))(u_6 \varepsilon_{20} u_6) \]
\[\varepsilon_{37} = \varepsilon_{36}^{-1} \varepsilon_{36} \varepsilon_{36}, \theta_{38} = [\varepsilon_{36}^{-1}, u_6], \theta_{39} = [u_6 \varepsilon_{36}^{-1}, \varepsilon_{36}] \]
\[\varepsilon_{40} = [u_5 \varepsilon_{31} \varepsilon_{20}^{-1}, (\varepsilon_{31} \varepsilon_{20}^{-1})^{-1}], \varepsilon_{32} \varepsilon_{20}u_2 \varepsilon_{24}. \theta_{41} = u^{-1}v^{-1}a^v u^{-1}\]
\[\varepsilon_{42} = 1 + ((v u)^{-1}a(v u)^{-1})(v b v u), \theta_{43} = [\varepsilon_{43}^{-1}, \varepsilon_{43}], \theta_{44} = [\varepsilon_{43}^{-1}, v], \theta_{45} = [v \varepsilon_{43}^{-1}, \varepsilon_{43}]. \]

Before proving the theorem, we present some comments.

In the exact sequence of the theorem, the inclusion map is the obvious map defined on generators as

\[K_2(R, I) \longrightarrow D^*(R, I) \]
\[\langle a, b \rangle \longrightarrow \langle a, b \rangle. \]

The second map is essentially the Steinberg map, and maps the symbol \(\langle a, b \rangle \) to the 1,1 entry of its image in the elementary group, namely the element \(\theta = \varepsilon^2 \). The commutator subgroup which is the image of
the second map, is related to the correspondence between
Dennis-Stein symbols and Steinberg symbols. In particular, in a
local ring, we may write the symbol \(\langle a, b \rangle\) as a Steinberg symbol as
follows:

\[
\langle a, b \rangle = \begin{cases}
1 + ab, b & \text{if } b \in R^* \\
-a, 1 + ba & \text{if } a \in R^* \\
-(1+a)(1-b)^{-1}, -b & \text{if } a, b \in \text{Rad } R
\end{cases}
\]

Recall that under the Steinberg map, \(\{u, v\}\) maps to the matrix with
\(\{u, v\}\) in the 1,1 position. Thus, by the correspondence between
Dennis-Stein and Steinberg symbols, the 1,1 element of the image of
a Dennis-Stein symbol is also the 1,1 element of the image of a
Steinberg symbol, which is a commutator. When we require that
either \(a\) or \(b\) is in \(I\), then it is easy to see that this commutator
is also in \([R^*, 1 + I]\). The map is clearly surjective because any
product of commutators

\[
\Pi[a_j, 1+1_j] = [R^*, 1+I]
\]

has the product

\[
\Pi[a_j, a_j^{-1}] = D^*(R, I)
\]

as a preimage.

In the case that \(R\) is commutative, Theorem 6.1 reduces to the
Maazen-Stienstra presentation for \(K_2\) of split radical pairs, applied
to a local ring. We, of course, use the obvious fact that a proper
ideal in a local ring is necessarily a radical ideal. The relations
D1-D3 of Maazen-Stienstra's presentation correspond to relations 1-3
in Theorem 6.1, and relation 4 guarantees that the group generated
is abelian. The exact sequence becomes an isomorphism because
\([R^*, 1 + I] = 1\) in the commutative case. The relations 5-18 obviously
hold in \(K_2(R, I)\) because they are direct consequences of fundamental
identities in $\text{St}^*(R,I)$ But in the commutative case, these relations are necessarily consequences of relations 1-4, so we have, as expected, the following restatement of Maazen-Stienstra's result, for a commutative local ring:

Corollary 6.2: If (R,I) is a split radical pair in a local ring, R, then,

$$\delta: D(R,I) \longrightarrow K_2(R,I)$$

is an isomorphism, where $D(R,I)$ is the abelian group defined by

generators: $\langle a,b \rangle$, one for each couple $(a,b) \in R \times I \cup I \times R$ such that $1 + ab \in R^*$

and relations:

- $D1) \langle a,b \rangle \langle -b,-a \rangle = 1$
- $D2) \langle a,b \rangle \langle a,c \rangle = \langle a,b+c+abc \rangle$
- $D3) \langle a,bc \rangle = \langle ab,c \rangle \langle ac,b \rangle$.

As seen in Chapter III, relations 1-4 are common in the non-commutative case, e.g. in the determination of the absolute K_2 of skew fields and non-commutative local rings. One would like to know whether relations 1-4 would also be a defining set of relations for $D^*(R,I)$ in the relative case. It may turn out that not all of the relations 1-18 are necessary to define $D^*(R,I)$. Our theorem determines $D^*(R,I)$, which is a determination of the relative $K_2(R,I)$. This group needs no modification, but we ask the different question of whether a subset of the relations 1-18 defines the same group, $D^*(R,I)$. This type of question is a natural outgrowth of problems concerning the determination of $K_2(R)$ or $K_2(R,I)$ - for example, two of the relations in Dennis-Stein's presentation for $K_2(R)$ of a commutative discrete valuation ring can be removed, but this was not clear until after the more general approach of Kolster, which considered local rings.
There are two clear methods for reducing the set of defining relations for $D^*(R,I)$. The most obvious approach would be to take each relation and use relations 1-4 to show it is a consequence of the first four relations. This may be possible with a very clever and elaborate set of computations.

The other approach would be to use the well-known translational technique of Matsumoto which is used to show a set of relations among symbols is a defining set of relations. One would attempt to define a group of left translations, L, that would the definition of a natural map

$$D^*(R,I) \rightarrow \text{St}'(2,R) \rightarrow L$$

with the goal of proving the injectivity of the composition. In the relative situation, this approach may be feasible if one can determine more precisely how the relative group $D^*(R,I)$ is embedded in $\text{St}'(2,R)$, or find a simple presentation for the relative Steinberg group $\text{St}'(2,R,I)$.

In the more general setting of semilocal rings, this may be an easier question. The first step is to generalize from the commutative to the non-commutative case. We do this in our Theorem 6.1. Using the methods and computations employed in the proof of Theorem 6.1, it seems feasible that a similar result be proved next for semilocal rings. The same stability theorems which allow us to work in $\text{St}'(2,R)$ for local rings, allow the semilocal case to be examined in terms of $\text{St}(3,R)$, which is still manageable in terms of the identities involved, and has additional advantage of being an unmodified Steinberg group. For the most part, our proof only uses the assumption that R is local to allow us to work in $\text{St}'(2,R)$. The generalization from local rings to semilocal rings appears suitable for providing more information about the relations defining $D^*(R,I)$. Similarly the generalization from commutative discrete valuation rings to local rings that allowed us in
Chapter IV, to reduce the list of relations given by Dennis-Stein for a commutative discrete valuation ring

In the important special case, \(I = \text{Rad} \ R \), we may reduce the set of relations to the first four, i.e, show that relations 5-18 are consequences of relations 1-4, thus yielding a determination for the relative \(K_2(R, \text{Rad} \ R) \) of any (not necessarily commutative) split local ring

Corollary 6.3: Let \(R \) be a local ring (associative with 1), not necessarily commutative. Let \((R, \text{rad} \ R) \) be a split pair. Then the following sequence is exact

\[
1 \longrightarrow K_2(R,I) \longrightarrow D_1(R) \longrightarrow [R^*,1+\text{Rad} \ R] \longrightarrow 1
\]

Proof We first observe that in the case \(I=\text{Rad} \ R \), the groups \(D_1(R) \) and \(D^*(R,I) \) have identical sets of generators because in a local ring, an element \(1+ab \) is a unit exactly when either \(a \) or \(b \) is in the maximal ideal, i.e. the radical. Furthermore, we note that the first four relations in \(D^*(R,\text{Rad} \ R) \) are identical to the defining relations \(R1-R4 \) of \(D_1(R) \). Finally, we conclude that because relations 5-18 hold also in \(D_1(R) \), they are consequences of relations 1-4 by Kolster [MK3]. Thus, \(D^*(R,\text{Rad} \ R) \equiv D_1(R) \), and we have the exact sequence

\[
1 \longrightarrow K_2(R,\text{Rad} \ R) \longrightarrow D_1(R) \longrightarrow [R^*,1+\text{Rad} \ R] \longrightarrow 1
\]

as desired.

□

In the interest of possible generalizations of this theorem, we note which of the hypotheses seem to be essential. Most apparent is the dependence of the theorem upon the assumption that \(I \) is a radical ideal (in Theorem 6.1 this is a consequence of the assumption that \(R \) is a local ring). For our proof, it is crucial that \(I \) be a radical
ideal in order to write every element of \(\text{St}'(2,R) \) in the normal form. As we have mentioned, the assumption that \(R \) is local does not seem to be crucial, except in the choice of the commutator subgroup \([R^*, 1+I]\), which may no longer be applicable in generalizations of the short exact sequence. In fact, as we mentioned briefly above, this commutator subgroup fits neatly into the short exact sequence because of the correspondence between Dennis-Stein and Steinberg symbols, which may not hold for more general classes of rings. One reasonable alternative would be to use the normal subgroup generated by the elements \(\theta = (1+ab)(1+ba)^{-1} = R^*, \ a, b = I. \) The assumption that \(R \rightarrow R/I \) splits seems to be non-essential, and a proof along the lines of Keune [FK2] should suffice to see the non-split case.

Before proving the theorem, we prove some identities in \(\text{St}'(2,R) \)

Proposition 6.4 The following identities hold in \(\text{St}'(2,R) \).

\[
\begin{align*}
(P1) \quad x_1(0) &= 1 \\
(P2) \quad x_1(a)x_1(b) &= x_1(a+b) \\
(P3) \quad x_1(a)w(u) &= w(u)x_2(-u^{-1}au^{-1}) \\
(P4) \quad x_2(a)w(u) &= w(u)x_1(-uau) \\
(P5) \quad x_1(a)x_2(b) &= <a, b> w(\ell)w(-1)x_2(\ell b)x_1(\ell^{-1}a) \\
(P6) \quad h(u)h(v) &= \{u, v\}h(\ell u) \\
(P7) \quad h(u)^{-1} &= \{u, u^{-1}\}h(u^{-1}) \\
(P8) \quad w(1)w(-1) &= 1 \\
(P9) \quad w(u)w(-u) &= 1 \\
(P10) \quad w(u)w(v) &= \{-uv, -v^{-1}\}w(-v^{-1}u)w(-1) \\
(P11) \quad \{u, -u\} &= 1 \\
(P12) \quad w(1)w(u)w(1) &= \{-u^{-1}, -1\}w(-u^{-1}) \\
(P13) \quad w(u)w(-1)w(v) &= \{u, v\}w(\ell u) \\
(P14) \quad x_1(c)\langle a, b \rangle &= \langle a, b \rangle x_1(\theta^{-1}c) \\
(P15) \quad x_2(c)\langle a, b \rangle &= \langle a, b \rangle x_2(c\theta) \\
(P16) \quad w(u)w(-1)\langle a, b \rangle &= \langle uau, u^{-1}bu^{-1}\rangle \{u^{-1}f(u, \ell)\{f(u, \ell^{-1})w(u)w(-1)\} \\
&\text{where } \ell = 1+ba \\
(P17) \quad w(u)\langle a, b \rangle &= \langle -u^{-1}au^{-1}, -ubu\rangle \{\theta^{-1}_0, \epsilon^{-1}_0\} \{-\epsilon^{-1}_0, -u\} \{-u\epsilon^{-1}_0, -\ell\}w(\ell u\epsilon^{-1}_0).
\end{align*}
\]
where \(t = 1 + ab \), \(\ell = 1 + ba \), \(\theta = \epsilon \ell^{-1} \),
\(\epsilon_0 = 1 + (u^{-1}au^{-1})(ubu) \), \(\ell_0 = 1 + (ubu)(u^{-1}au^{-1}) \),
and \(\theta_0 = \epsilon_0 \ell_0^{-1} \).

We have abbreviated the index 1,2 by just 1 (similarly 2,1 represents 2). We have also used the index variable \(i \), which may take on the value of 1 or 2, i.e. 1,2 or 2,1.

Proof

See [MK2] for a proof of the identities. Proofs of original relations which are not in [MK2], follow (see also Theorem 1 10).

First P5 We note that

\[
\langle a, b \rangle = x_1(a)x_2(b)x_1(\epsilon^{-1}a)x_2(-\ell b)h(\ell)^{-1}
\]

so we have

\[
\langle a, b \rangle h(\ell)x_2(\ell b)x_1(\epsilon^{-1}a) = x_1(a)x_2(b)
\]

i.e.

\[
\langle a, b \rangle w(\ell)w(-1)x_2(\ell b)x_1(\epsilon^{-1}a) = x_1(a)x_2(b)
\]

i.e.

\[
x_1(a)x_2(b) = \langle a, b \rangle w(\ell)w(-1)x_2(\ell b)x_1(\epsilon^{-1}a)
\]

which is the identity desired.

Next we prove P6

Note that

\[
\{u, v\} = h(uv)h(u)^{-1}h(v)^{-1}
\]

so

\[
\{u, v\}h(v)h(u) = h(uv)
\]

\[
h(v)h(u) = \{u, v\}^{-1}h(uv)
\]

i.e.

\[
h(u)h(v) = \{u, v\}h(vu)
\]
as desired

As for P7, note that by definition of Steinberg symbols,

\[\{u, v\} = h(uv)h(u)^{-1}h(v)^{-1} \]

so

\[\{u, u^{-1}\} = h(1)h(u)^{-1}h(u^{-1})^{-1} = h(u)^{-1}h(u^{-1})^{-1} \]

Thus,

\[\hat{h}(u)^{-1} = \{u, u^{-1}\}h(u^{-1}) \]

as desired

For P10,

\[w(u)w(v) = w(u)w(-1)w(1)w(v) = h(u)h(-v)^{-1} \]

\[= h(u)[\{-v, -v^{-1}\}h(-v^{-1})] = h(u)[\{-v, -v^{-1}\}] \]

\[= \{u, -v^{-1}\}h(-v^{-1}u)[-v, -v^{-1}] = \{u, -v^{-1}\}[-v, -v^{-1}]h(-v^{-1}u) = \{-v\}h(-v^{-1}u)h(-v^{-1}u) = \{-uv, -v^{-1}\}w(-v^{-1}u)w(-1) \]

\[w(1)w(u)w(1) = w(1)w(u)w(-1)w(1)w(1) = w(u^{-1})w(1)w(1) = \{-u^{-1}, -1\}w(-u^{-1})w(-1)w(1) = (-u^{-1}, -1)w(-u^{-1}) \]

P13.

\[w(u)w(-1)w(v) = h(u)h(v)w(1) \]
\[w(u)w(-1)\langle a, b \rangle = h(u)x_1(a)x_2(b)x_1(-\epsilon^i a)x_2(-\epsilon^b)h(\epsilon)^{-1} \]
\[= x_1(uau)x_2(u^{-1}b^{-1}u)x_1(-u^{-1}au)x_2(-u^{-1}b^{-1}u)h(u)h(\epsilon)^{-1} \]
\[= \langle uau, u^{-1}b^{-1}u \rangle h(u^{-1}e^0 u)h(u)h(\epsilon)^{-1} \]
\[= \langle uau, u^{-1}b^{-1}u \rangle (u^{-1}e^0 u, u)h(e^0)h(\epsilon)^{-1} \]
\[= \langle uau, u^{-1}b^{-1}u \rangle (u^{-1}e^0 u, u)w(e^0)w(-\epsilon) \]
\[= \langle uau, u^{-1}b^{-1}u \rangle (u^{-1}e^0 u, u)(e^0, e^{-1})w(u)w(-1) \]

And finally, P17:

\[w(u)\langle a, b \rangle = w(u)x_1(a)x_2(b)x_1(-\epsilon^i a)x_2(-\epsilon^b)h(\epsilon)^{-1} \]
\[= x_2(-u^{-1}au^{-1})x_1(-u^{-1}b^{-1}u)x_2(-u^{-1}e^0 au^{-1})x_1(u^{-1}e^0 b^{-1}u) \]
\[h_2(\epsilon_0)^{-1}h_2(\epsilon_0)w(u)h_1(\epsilon)^{-1} \]
\[= x_2(a_0)x_1(b_0)x_2(\epsilon^0 a_0)x_1(-\epsilon_0 b_0)h_2(\epsilon_0)^{-1}h_2(\epsilon_0)w(u)h_1(\epsilon)^{-1} \]
\[= \langle a_0, b_0 \rangle h_2(\epsilon_0)w(u)h_1(\epsilon)^{-1} \]
\[= \langle a_0, b_0 \rangle h(\epsilon_0^i)h(\epsilon_0^{-1})w(u)h(\epsilon)^{-1} \]
\[= \langle a_0, b_0 \rangle w(\epsilon_0^i)w(-\epsilon_0)w(u)h(\epsilon)^{-1} \]
\[= \langle a_0, b_0 \rangle \{ \theta_0^i e_0, \epsilon_0 \} w(\epsilon_0^i \theta_0^0)w(-1)w(u)w(1)w(-\epsilon) \]
\[= \langle a_0, b_0 \rangle \{ \theta_0^i e_0, \epsilon_0 \} w(\epsilon_0^i \theta_0^0)w(u^{-1})w(-\epsilon) \]
\[= \langle a_0, b_0 \rangle \{ \theta_0^i e_0, \epsilon_0 \} (-\epsilon_0 \theta_0^0, -u)w(-u \epsilon_0 \theta_0^0)w(-1)w(-\epsilon) \]
\[= \langle a_0, b_0 \rangle \{ \theta_0^i e_0, \epsilon_0 \} (-\epsilon_0 \theta_0^0, -u)w(-u \epsilon_0 \theta_0^0)h(-\epsilon)w(1) \]
\[= \langle a_0, b_0 \rangle \{ \theta_0^i e_0, \epsilon_0 \} (-\epsilon_0 \theta_0^0, -u)\epsilon_0 \theta_0^0, -\epsilon)h(u \epsilon_0 \theta_0^0)w(1) \]
\[\langle a_0, b_0 \rangle \{ \theta_0, \epsilon_0 \} \{-\epsilon_0 \theta_0, -u\} \{-u \epsilon_0 \theta_0, -\epsilon\} \omega(\epsilon u \epsilon_0 \theta_0)\]
\[= \langle a_0, b_0 \rangle \{ \theta_0, \epsilon_0 \} \{-\epsilon_0, -u\} \{-u \epsilon_0, -\epsilon\} \omega(u \epsilon_0)\]

where \(a_0 = -u^{-1} au^{-1}\), \(b_0 = -ubu\), \(\epsilon_0 = u^{-1} \epsilon u\), \(\epsilon = uf u^{-1}\), \(\theta_0 = \epsilon 0 \epsilon^{-1}\).

\[\square\]

Proof: (Theorem 6.1)

Let \(\pi\) be a partial order on \([1,2]\). By \(W_\pi\), we denote the words in the letters

\[X_1(a), a \in I\text{ if } "1 \neq \pi"\]
\[W(u), u = 1 \ast I\]

and \(D, D = D^*(R,I)\)

with the condition that at least one "\(W\)" occurs in every word. (Of course, \(W(1)W(-1)\) is allowed.)

Define the map \(\beta_\pi : W_\pi \rightarrow St'(2,R)\)

by

\[X_1(a) \rightarrow x_1(a)\]
\[W(u) \rightarrow w(u)\]
\[D \rightarrow D\]

Definition 6.5: Let \(A = A_0 A_1 A_2\) and \(A' = A_0 A_1' A_2\) be juxtapositions of three words. We say that \(A'\) is obtained from \(A\) by **replacing** the subword \(A_1\) by \(A_1'\).

Only the following replacements and their compositions will be allowed:

1. \(X_1(0) \rightarrow 1\)
2. \(D \rightarrow (______), \text{ if } D = 1 \text{ in } D^*(R,I)\)
3. \(D_1 D_2 \rightarrow (D_1 D_2), \text{ where } (D_1 D_2) \text{ is the product in } D^*(R,I)\)
4. \(X_1(a)X_1(b) \rightarrow X_1(a+b)\)
5. \(X_1(a)W(u) \rightarrow W(u)X_2(-u^{-1} au^{-1})\)
If B can be obtained from A by a replacement ($B = A$ allowed) we will write $A \geq B$. By an earlier proposition, these replacements correspond to relations which hold in $St(2, R)$, so $\beta_\Pi(A) = \beta_\Pi(B)$ if $A \geq B$.

By Lemma 6.7, \geq is a partial order relation on W_Π, and for all $A \in W_\Pi$, the set $\{B \in W_\Pi | A \geq B\}$ is finite.

Definition 6.6a: M_Π is defined to be the set of minimal elements of W_Π under the ordering \geq. The elements of M_Π are exactly the words of the form $DW(u)X_2(a)X_1(b)$ or $DW(u)W(-1)X_2(a)X_1(b)$, where $X_2(a)$ (respectively $X_1(b)$) occurs only if $a \neq 0$ (resp. if $b \neq 0$) and D occurs only if $D \neq 1$. (If necessary, we write $W(1)W(-1)$ to insure that a W occurs.)

By Lemma 6.8, minimal elements are unique, i.e. for each $A \in W_\Pi$, there exists exactly one $B \in M_\Pi$ such that $A \geq B$.

Definition 6.6b: M_Π is defined to be the set of elements in M_Π with two W's. We make M_Π into a group by defining $A* B$ to be the unique minimal element in M_Π determined by AB. The unit element is $1 = W(1)W(-1)$. The element $[DW(u)W(-1)X_2(a)X_1(b)]^{-1}$ is the minimal word corresponding to $X_1(-b)X_2(-a)W(1)W(-u)D^{-1}$. By applying the elementary replacements we see that M_Π is closed under multiplication and inverses.
It is also clear that the elements $D W(u) W(-1)$ are closed under multiplication and inverses. Therefore, they form a subgroup of M, and we have a homomorphism

$$\beta_\pi: \mathcal{M}_\pi \longrightarrow \text{St}^\prime(2, R)$$

Suppose next that π' is another order relation on $\{1, 2\}$ such that $\pi \leq \pi'$. Then $W_{\pi'}$ is a subset of W_{π}. The transformation rules on $W_{\pi'}$ are restrictions of the transformation rules on W_{π}. Moreover, if $A = W_{\pi'}$, $B = W_{\pi}$ and $A \supset B$ then $B = W_{\pi'}$. Thus by Lemma 6.10, \mathcal{M}_\triangle is a normal subgroup of \mathcal{M}_π, where \triangle is the order relation corresponding to the diagonal in $\{1, 2\} \times \{1, 2\}$.

The homomorphism β_\triangle maps \mathcal{M}_\triangle to a subgroup of $\text{St}^\prime(2, R)$ which contains the elements $X_1(a)$ with $a=I$. If $A=\mathcal{M}_\triangle$ and $a=R$, one can lift

$$x_1(a)\beta_\triangle(A)x_1(a)^{-1}$$

to

$$X_1(a)A^*X_1(-a)$$

in some \mathcal{M}_π. By normality, the lifted expression is in \mathcal{M}_\triangle, so

$$x_1(a)\beta_\triangle(A)x_1(a)^{-1}$$

is in the image of \mathcal{M}_\triangle. Thus the image of \mathcal{M}_\triangle is a normal subgroup of $\text{St}^\prime(2, R)$ which contains all $x_1(a)$ with $a=I$. Moreover,

$$\beta_\triangle \mathcal{M}_\triangle \subseteq \ker[\text{St}^\prime(2, R) \longrightarrow \text{St}^\prime(2, R/I)].$$

The map
\[\text{defined on generators by} \]
\[x_1(a) \to x_1(a') \]
(where \(a' \) is a representative for \(a \)) is a homomorphism, so
\[\beta \Delta M \Delta = \ker [\text{St}'(2,R) \to \text{St}'(2,R/I)] \]

Now consider an element of \(\ker [K_2'(2,R) \to K_2'(2,R/I)] \)

It is an element of \(\ker [\text{St}'(2,R) \to \text{St}'(2,R/I)] \)

and so it is the image of an element
\[Dw(u)W(-1)x_2x_1 = M \Delta, \]
i.e. an element
\[Dw(u)W(-1)x_2x_1 = \text{St}'(2,R) \]

But it is also in
\[K_2'(2,R) = \ker [\text{St}'(2,R) \to \text{E}(2,R)] \]
so it maps to 1 under the modified Steinberg map. We have.
\[
\begin{pmatrix}
\pi \theta_1 \\
1
\end{pmatrix}
\begin{pmatrix}
-u^{-1} & u \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 \\
1
\end{pmatrix}
\begin{pmatrix}
1 & b \\
1 & 1
\end{pmatrix}
= \begin{pmatrix}
1 \\
1
\end{pmatrix}
\]
so
\[
\begin{pmatrix}
 cu & cub \\
 u^{-1}a & u^{-1}(1+ab)
\end{pmatrix} = \begin{pmatrix} 1 & 0 \\
 0 & 1
\end{pmatrix}, \text{ where } c = \pi \theta_1
\]

Thus, \(a=0, b=0, u=1,\) and \(c=1\) (i.e. \(\Pi \theta_1=1\)). This conclusion is due to the uniqueness of our normal form.

So far, we have shown that any element of
\[
\ker[K_2'(2, R) \to K_2'(2, R/I)],
\]
is the image under \(\beta \triangleleft\) of an element in \(D^+(R,I)\) with \(\Pi \theta_1=1\). I.e., \(\beta \triangleleft\) maps \(\{D^+(R,I) | \Pi \theta_1=1\}\) surjectively onto
\[
\ker[K_2'(2, R) \to K_2'(2, R/I)]
\]

Next, we exhibit an action of \(St'(2, R/I)\) on \(\mathbb{M}_\triangle\). For \(x \in St'(2, R/I)\) and \(A = \mathbb{M}_\triangle\), the result of the action of \(x\) on \(A\) is denoted by \(X_A\). For \(x_1(s) \in St'(2, R/I)\) and \(A = \mathbb{M}_\triangle\), define
\[
x_1(s)A = X_1(s)A \cdot X_1(-s),
\]
computed in some \(\mathbb{M}_\Pi\), with \(i=\pi\). The right hand side is in \(\mathbb{M}_\triangle\) by normality of \(\mathbb{M}_\triangle\). By Lemma 6.9, this defines an action of \(St'(2, R/I)\) on \(\mathbb{M}_\triangle\). We also see that \(\beta \triangleleft\) commutes with this action.

Form the semi-direct product \(St'(2, R/I) \mathbb{M}_\triangle\) according to the action. The elements are pairs \((x, A)\) with \(x = St'(2, R/I)\) and \(A = \mathbb{M}_\triangle\). The multiplication is defined by
\[
(x, A)(y, B) = (xy, Y^{-1}A \ast B).
\]

We have a homomorphism.
defined by

$$(x, A) \longrightarrow x \beta \Delta(A),$$

since

$$(x, A)(y, B) \longrightarrow x \beta \Delta(A)y \beta \Delta(B)$$

and also

$$(xy, Y^{-1}A*B) \longrightarrow xy(Y^{-1}A*B) = xy^{-1} \beta \Delta(A) \beta \Delta(B) = x \beta \Delta(A)y \beta \Delta(B)$$

We construct an inverse to χ.

Each element of R can be written uniquely as $s+a$ with $s \in R/I$ and $a \in I$. Put

$$\Psi(x_1(s+a)) = (x_1(s), x_1(a))$$

and extend to all of $St^\prime(2, R)$. We must check to see that the relations in $St^\prime(2, R)$ are satisfied:

(i) $\Psi(x_1(s+a))\Psi(x_1(t+b)) = (x_1(s), x_1(a))(x_1(t), x_1(b))$

$$= (x_1(s+t), x_1(t)^{-1}x_1(a)*x_1(b))$$

$$= (x_1(s+t), x_1(a+b))$$

$$= \Psi(x_1((s+a)+(t+b)))$$

(11) $\Psi(W(u))\Psi(x_2(s+a))\Psi(W(u))^{-1} = (w(u), 1)(x_2(s), x_2(a))(w(u)^{-1}, 1)$

$$= (w(u)x_2(s), x_2(a)^{-1}*x_2(a))(w(u)^{-1}, 1)$$

$$= (w(u)x_2(s), x_2(a)(w(u)^{-1}, 1))$$

$$= (w(u)x_2(s)w(u)^{-1}, w(u)x_2(a))$$
(iii) and (iv). Note that $\langle a, b \rangle$ is a Steinberg symbol in the Steinberg groups, i.e. a product $h(uv)h(u)^{-1}h(v)^{-1}$. Thus

$$\Psi(\langle a, b \rangle) = \Psi(h(uv)h(u)^{-1}h(v)^{-1}) = (\langle a, b \rangle, 1),$$

and we have:

\begin{enumerate}
 \item $(\text{iii}) \quad \Psi(\langle a, b \rangle)\Psi(x_1(s+a))\Psi(\langle a, b \rangle^{-1})$
 \begin{align*}
 &= (\langle a, b \rangle, 1)(x_1(s), x_1(a))(\langle a, b \rangle^{-1}, 1) \\
 &= (\langle a, b \rangle x_1(s), x_1(s)^{-1}x_1(a))(\langle a, b \rangle^{-1}, 1) \\
 &= (\langle a, b \rangle x_1(s)a, a^{-1}, a, b x_1(a)^{-1}) \\
 &= (x_1(\theta(s)), x_1(\theta(a))) \\
 &= \Psi(x_1(\theta(s+a))), \text{ and similarly for } x_2.
 \end{align*}

 \item $(\text{iv}) \quad \Psi(\langle ay, b \rangle)\Psi(\langle ba, y \rangle) = (\langle ay, b \rangle, 1)(\langle ba, y \rangle, 1)$
 \begin{align*}
 &= (\langle a, yb \rangle, 1) \\
 &= \Psi(\langle a, yb \rangle)
 \end{align*}
\end{enumerate}

Thus Ψ satisfies the relations in $\text{St}'(2, R)$.

Restricting Ψ to $\ker[\text{St}'(2, R) \to \text{St}'(2, R/I)]$ gives an inverse homomorphism to β_\triangle. Thus

$$\beta_\triangle: \mathcal{M}_\triangle \to \ker[\text{St}'(2, R) \to \text{St}'(2, R/I)]$$

is an isomorphism. So

$$\ker[K_2'(2, R) \to K_2'(2, R/I)]$$

is isomorphic to $[D^+(R, I)]\prod \theta_1 = 1$, and we get the short exact sequence.
1 \rightarrow \ker[K_2'(2,R) \rightarrow K_2'(2,R/I)] \rightarrow D^*(R,I) \rightarrow [R^*,1+I] \rightarrow 1.

By the stability theorem of Kolster [MK1], we have

\[K_2'(2,R) \cong K_2(R) \text{ and } K_2'(2,R/I) \cong K_2(R/I). \]

Using also that \(K_2(R,I) \) is isomorphic to

\[\ker[K_2(2,R) \rightarrow K_2(2,R/I)], \]

we get the desired short exact sequence,

\[1 \rightarrow K_2(R,I) \rightarrow D^*(R,I) \rightarrow [R^*,1+I] \rightarrow 1 \]

This completes our proof of the main theorem, subject to Lemmas 6.7 through 6.10, which follow.

□

Lemma 6.7. \(\geq \) is a partial order relation on \(W_\Pi \).
For all \(A \in W_\Pi \), the set \(\{ B \in W_\Pi \mid A \geq B \} \) is finite.

Proof. Consider for a word \(A \), the septuple \(r(A) = (r_1, r_2, \ldots, r_7) \)
defined by:

- \(r_1 = \# \) times an \(X_1 \) appears before an \(X_2 \)
- plus the \# times an \(X_2 \) appears before an \(X_2 \)
- \(r_2 = \# \) times an \(X \) appears before a \(W \)
- \(r_3 = \# \) \(W \)'s
- \(r_4 = \# \) times a \(W \) appears before a \(W(u) \) with \(u \neq -1 \)
- \(r_5 = \# \) times a \(W \) appears before a \(D \)
- \(r_6 = \# \) times an \(X \) appears before a \(D \)
- \(r_7 = \) the total length of the word

Order the tuples lexicographically. By Table 1, we see the effect of any elementary replacement on the tuple. Clearly, \(r(B) < r(A) \) if
B can be obtained from A (B ≠ A) but \(r(A) < \infty \), so the proposition follows

\[\square \]

<table>
<thead>
<tr>
<th></th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_3)</th>
<th>(r_4)</th>
<th>(r_5)</th>
<th>(r_6)</th>
<th>(r_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
</tr>
<tr>
<td>(2)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
</tr>
<tr>
<td>(3)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
</tr>
<tr>
<td>(4)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
</tr>
<tr>
<td>(5)</td>
<td>~</td>
<td>\checkmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>(6)</td>
<td>\checkmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>(7)</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>(8)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>(9)</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>(10)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
<td>\xmark</td>
</tr>
<tr>
<td>(11)</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>\checkmark</td>
<td>\xmark</td>
<td>\xmark</td>
</tr>
</tbody>
</table>

\(\sim \) = does not increase
\(\checkmark \) = decreases
\(\times \) = do not care

* (8) decreases \(r_4 \) only if \(v \neq -1 \), but \(v = -1 \) is not allowed, so need not be considered.

Table 1
Lemma 6.8 For each $A \in W_\Lambda$, there exists exactly one $B \in M_\Lambda$ such that $A \geq B$

Proof: We show that the replacement system W_Λ has the Church-Rosser property.

If A, B, C are words in W_Λ such that $A \geq B$ and $A \geq C$, then there exists a word E such that $B \geq E$ and $C \geq E$.

This suffices to get the proposition. Let A be any word. There exists a word B in M_Λ such that $A \geq B$. If C is another such word, then according to the Church-Rosser property, there will be a word E such that $B \geq E$ and $C \geq E$. By the minimality of B and C, we find $B = E = C$.

Now we prove the Church-Rosser property for W_Λ. Let $A, B, C \in W_\Lambda$ such that $A \geq B$ and $A \geq C$. We look for E such that $B \geq E$ and $C \geq E$.

Since the set $\{F \in W_\Lambda \mid A \geq F\}$ is finite, by an easy induction argument, one can reduce this problem to the case where B and C are obtained from A by elementary replacements. It is obvious that E exists if two distinct subwords are replaced. Since the replacements are now performed within a three letter subword of A (four letter subword if replacement (9) is involved) we may restrict ourselves to the case where A is a three letter word (or a four letter word if replacement (9) is involved).

The property is trivial if either replacement is a (1), (2), (3), or (7), but there are many other cases to be considered which involve the remaining replacements.

The first case we consider involves just the replacement (4), and we will use the replacement numbers as follows to reference the case.

$$[[4,4]]$$

$$(4) \quad X_1(a)X_1(b)X_1(c)$$
In the notation \([4,4]\), used here to describe which case of the Church-Rosser property is being proved, we use the numbers 4,4 to indicate which elementary replacements are being considered. In the letters \(A,B,C,D,E\) from our statement of the Church-Rosser property, the first line of each computation is the word \(A\), and we perform the replacement \((4)\) each time. The second lines correspond to the words \(B\) and \(C\) respectively, which satisfy \(A \rightarrow B\) and \(A \rightarrow C\). By using elementary replacements, we then show that there is an element \(E\) (the bottom line of each part) which satisfies the condition that \(B \rightarrow E\) and \(C \rightarrow E\), as required.

The remaining cases follow the same general pattern, sometimes also requiring relations from \(D^*(R,I)\). The rest of the computations follow:

\[[4,5a]]

\((4)\) \[X_1(a)X_1(b)W(u)\]
\[\rightarrow X_1(a+b)W(u)\]
\[\rightarrow W(u)X_2(-u^{-1}(a+b)u^{-1})\]

\((5a)\) \[X_1(a)X_1(b)W(u)\]
\[\rightarrow X_1(a)W(u)X_2(-u^{-1}bu^{-1})\]
\[\rightarrow W(u)X_2(-u^{-1}au^{-1})X_2(-u^{-1}bu^{-1})\]
\[\rightarrow W(u)X_2(-u^{-1}(a+b)u^{-1})\]

\[[4,5b]]

\((4)\) \[X_2(a)X_2(b)W(u)\]
\[\rightarrow X_2(a+b)W(u)\]
(5b) \(X_2(a)X_2(b)W(u) \)

\[\rightarrow X_2(a)W(u)X_1(-u(b)) \]

\[\rightarrow W(u)X_1(-u(a+b)) \]

\[
[[4,6]](i)
\]

(4) \(X_1(a)X_1(b)X_2(c) \)

\[\rightarrow X_1(a+b)X_2(c) \]

\[\rightarrow \langle a+b, c \rangle W(\ell)W(-1)X_2(\ell c_1)x_1(\ell^1(a+b)) \]

where \(\ell_1 = 1+(a+b)(c) \). Note that when we write a value for \(\ell \), we will write the parentheses in such a way as to indicate the values for \(\ell \) and \(\theta \). For example, here we have \(\ell_1 = 1 + (a+b)(c) \) and \(\theta_1 = \ell_1 \ell_1^{-1} \) as usual

(6) \(X_1(a)X_1(b)X_2(c) \)

\[\rightarrow X_1(a)\langle b, c \rangle W(\ell_2)W(-1)X_2(\ell_2 c)X_1 \]

\[\rightarrow \langle b, c \rangle X_1(\ell_2^{-1}a)W(\ell_2)W(-1)X_2(\ell_2 c)X_1 \]

\[\rightarrow \langle b, c \rangle W(\ell_2)X_2(-\ell_2^{-1}a\ell_2^{-1})W(-1)X_2(\ell_2 c)X_1 \]

\[\rightarrow \langle b, c \rangle W(\ell_2)W(-1)X_1(\ell_2^{-1}a\ell_2^{-1})X_2(\ell_2 c)X_1 \]

\[\rightarrow \langle b, c \rangle W(\ell_2)W(-1)\langle \ell_2^{-1}a\ell_2^{-1}, \ell_2 \rangle W(\ell_3)W(-1)X_2X_1 \]

\[\rightarrow \langle b, c \rangle \langle \ell_2^{-1}a\ell_2^{-1}, \ell_2 \rangle W(\ell_3)W(-1)X_2X_1 \]

\[\rightarrow \langle b, c \rangle \langle \ell_2^{-1}a\ell_2^{-1}, \ell_2 \rangle \{ \ell_2 \ell_3 \ell_3^{-1}, \ell_3^{-1} \} W(\ell_2)W(-1)X_2X_1 \]

\[\rightarrow \langle a+b, c \rangle W(-1)X_2X_1 \]

where \(\ell_2 = 1+(b)(c) \), \(\ell_3 = 1+(\ell_2^{-1}a\ell_2^{-1})(\ell_2 c) \).

\[
[[4,6]](ii)
\]

(4) \(X_1(a)X_2(b)X_2(c) \)

\[\rightarrow X_1(a)X_2(b+c) \]

\[\rightarrow \langle a, b+c \rangle W(-1)X_2X_1 \]
(6) \(X_1(a)X_2(b)X_2(c) \)

\[
\begin{align*}
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)X_2(\epsilon_5b)X_1(\epsilon_5^{-1}a)X_2(c) \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)X_2(\epsilon_5b)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_5)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle X_2(\epsilon_5b\theta_6)W(\epsilon_5)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_6)X_1(-\epsilon_6\epsilon_5b\theta_6\epsilon_6)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_6)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_6)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_5)W(-1)W(\epsilon_5)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_5)W(-1)W(\epsilon_5)W(-1)X_2X_1 \\
&\rightarrow \langle a, b \rangle \langle \epsilon_5 \rangle W(-1)\langle \epsilon_5^{-1}a, c \rangle W(\epsilon_5)W(-1)W(\epsilon_5)W(-1)X_2X_1 \\
&\rightarrow \langle a, b+c \rangle WW(-1)X_2X_1
\end{align*}
\]

where \(\epsilon_4 = 1 + (a)(b+c) \), \(\epsilon_5 = 1+(a)(b) \), \(\epsilon_6 = 1+(\epsilon_5^{-1}a)(c) \)

[[4, 10a]]

(4) \(X_1(c)X_1(d)\langle a, b \rangle \)

\[
\begin{align*}
&\rightarrow X_1(c+d)\langle a, b \rangle \\
&\rightarrow \langle a, b \rangle X_1
\end{align*}
\]

(10a) \(X_1(c)X_1(d)\langle a, b \rangle \)

\[
\begin{align*}
&\rightarrow X_1(c)\langle a, b \rangle X_1 \\
&\rightarrow \langle a, b \rangle X_1
\end{align*}
\]

[[4, 10b]]

(4) \(X_2(c)X_2(d)\langle a, b \rangle \)

\[
\begin{align*}
&\rightarrow X_2(c+d)\langle a, b \rangle \\
&\rightarrow \langle a, b \rangle X_2
\end{align*}
\]

(10b) \(X_2(c)X_2(d)\langle a, b \rangle \)

\[
\begin{align*}
&\rightarrow X_2(c)\langle a, b \rangle X_2 \\
&\rightarrow \langle a, b \rangle X_2
\end{align*}
\]

[[5a, 8]]

(5a) \(X_1(a)W(u)W(v) \)

\[
\begin{align*}
&\rightarrow W(u)X_2(-u^{-1}au^{-1})W(v) \\
&\rightarrow W(u)W(v)X_1 \\
&\rightarrow \{-uv, -v^{-1}\} WW(-1)X_1
\end{align*}
\]
(8) \(X_1(a)W(u)W(v) \)
\[\rightarrow X_1(a)\{-uv,-v^{-1}\}W(-v^1u)W(-1) \]
\[\rightarrow \{-uv,-v^{-1}\}X_1WW(-1) \]
\[\rightarrow \{-uv,-v^{-1}\}WW(-1)X_1 \]

\[([5a,9]) \]
(5a) \(X_1(a)W(u)W(-1)W(v) \)
\[\rightarrow W(u)X_2W(-1)W(v) \]
\[\rightarrow W(u)W(-1)W(v)X_2 \]
\[\rightarrow [u,v]WX_2 \]

(9) \(X_1(a)W(u)W(-1)W(v) \)
\[\rightarrow X_1(a)[u,v]W(vu) \]
\[\rightarrow [u,v]X_1W(vu) \]
\[\rightarrow [u,v]WX_2 \]

\[([5a,11]) \]
(5a) \(X_1(c)W(u)<a,b> \)
\[\rightarrow W(u)X_2(-u^{-1}cu^{-1})<a,b> \]
\[\rightarrow W(u)<a,b>X_2 \]
\[\rightarrow \langle -u^{-1}au^{-1},-ubu \rangle \{\theta_7^{-1}e_7,e_7^{-1}\} \{-e_7^{-1},-u\} \]
\[\{-ue_7^{-1},-e_7\}WX_2 \]

(11) \(X_1(c)W(u)<a,b> \)
\[\rightarrow X_1(c)\langle -u^{-1}au^{-1},-ubu \rangle \{\theta_7^{-1}e_7,e_7^{-1}\} \{-e_7^{-1},-u\} \]
\[\{-ue_7^{-1},-e_7\}W \]
\[\rightarrow \langle -u^{-1}au^{-1},-ubu \rangle \{\theta_7^{-1}e_7,e_7^{-1}\} \{-e_7^{-1},-u\} \]
\[\{-ue_7^{-1},-e_7\}WX_2e_7 = 1^+(-u^{-1}au^{-1})(-ubu) \]

where \(e_7 = 1 + (u^{-1}au^{-1})(ubu) \)

\[([5b,6]) \]
(5b) \(X_1(a)X_2(b)W(u) \)
\[\rightarrow X_1(a)W(u)X_1(-ubu) \]
\[\rightarrow WX_2X_1 \]
\[(6) \quad X_1(a)X_2(b)W(u) \]
\[\rightarrow \langle a, b \rangle W(\ell_5)W(-1)X_2(\ell_5 b)X_1(\ell_5^{-1} a)W(u) \]
\[\rightarrow \langle a, b \rangle W(\ell_5)W(-1)W(u)X_1(-u(\ell_5 b)u)X_2(-u^{-1}\ell_5^{-1} a u^{-1}) \]
\[\rightarrow \langle a, b \rangle W(\ell_5)W(-1)W(u)\langle -u\ell_5 b u, -u^{-1}\ell_5^{-1} a u^{-1} \rangle \]
\[W(\ell_8)W(-1)X_2X_1 \]
\[\rightarrow \langle a, b \rangle \{\ell_5, u\} W(uf_5)\langle -u\ell_5 b u, -u^{-1}\ell_5^{-1} a u^{-1} \rangle W(\ell_8)W(-1)X_2X_1 \]
\[\rightarrow \langle a, b \rangle \{\ell_5, u\} \langle bu(uf_5)^{-1}, u\ell_5 u^{-1}\ell_5^{-1} a f_5 \rangle \]
\[\{\ell_9^{-1} \ell_9, \ell_9^{-1}\} \{-\ell_9, -u\ell_5 \} \{-\ell_9 \ell_5 \ell_9^{-1}, -\ell_9 \} \]
\[W(\ell_8 u \ell_5 \ell_9^{-1})W(\ell_8)W(-1)X_2X_1 \]
\[\rightarrow \langle a, b \rangle \{\ell_5, u\} \langle bu(uf_5)^{-1}, u\ell_5 u^{-1}\ell_5^{-1} a f_5 \rangle \]
\[\{\ell_9^{-1} \ell_9, \ell_9^{-1}\} \{-\ell_9, -u\ell_5 \} \{-\ell_9 \ell_5 \ell_9^{-1}, -\ell_9 \} \]
\[\{-\ell_8 \ell_5 \ell_9^{-1} \ell_8, -\ell_8^{-1}\} \{-u\ell_5 \ell_9^{-1}, -1\} \]
\[W(-1)W(-1)X_2X_1 \]
\[\rightarrow \langle a, b \rangle \{\ell_5, u\} \langle bu(uf_5)^{-1}, u\ell_5 u^{-1}\ell_5^{-1} a f_5 \rangle \]
\[\{\ell_9^{-1} \ell_9, \ell_9^{-1}\} \{-\ell_9, -u\ell_5 \} \{-\ell_9 \ell_5 \ell_9^{-1}, -\ell_9 \} \]
\[\{-\ell_8 \ell_5 \ell_9^{-1} \ell_8, -\ell_8^{-1}\} \{-u\ell_5 \ell_9^{-1}, -1\} \]
\[W(\ell_8)W(-1)X_2X_1 \]
\[\rightarrow W(u)X_2X_1 \]

where \(\ell_8 = 1+(-u\ell_5 b u)(-u^{-1}\ell_5^{-1} a u^{-1})\), \(\ell_9 = 1+(bu(uf_5)^{-1})(u\ell_5 u^{-1}\ell_5^{-1} a f_5)\)

[[5b, 8]] \[(5b) \quad X_2(a)W(u)W(v) \]
\[\rightarrow W(u)X_1W(v) \]
\[\rightarrow W(u)W(v)X_2 \]
\[\rightarrow \{-uv, -v^{-1}\} WW(-1)X_2 \]

\[(8) \quad X_2(a)W(u)W(v) \]
\[\rightarrow X_2(a)\{-uv, -v^{-1}\} W(-v^{-1} u)W(-1) \]
\[\rightarrow \{-uv, -v^{-1}\} WWX_2 \]

[[5b, 9]] \[(5b) \quad X_2(a)W(u)W(-1)W(v) \]
\[\rightarrow W(u)X_1(-uau)W(-1)W(v) \]
\[\rightarrow W(u)W(-1)W(v)X_1 \]
\[\rightarrow \{u, v\} WX_1 \]
(9) $X_2(a)W(u)W(-1)W(v)$
 $\rightarrow X_2(a)\{u,v\}W(vu)$
 $\rightarrow \{u,v\}WX_1$

[[5b, 11]]

(5b) $X_2(c)W(u)\langle a, b \rangle$
 $\rightarrow W(u)X_1\langle a, b \rangle$
 $\rightarrow W(u)\langle a, b \rangle X_1$
 $\rightarrow \langle -u^{-1}a^{-1}, -uba \rangle \{\theta_{10^{-1}}\ell_{10^{-1}}, \ell_{10^{-1}}\} \{\ell_{10^{-1}}, -u\} \{\ell_{10^{-1}}, -\ell_{10}\}WX_1$

(11) $X_2(c)W(u)\langle a, b \rangle$
 $\rightarrow X_2\langle -u^{-1}a^{-1}, -uba \rangle \{\theta_{10^{-1}}\ell_{10^{-1}}, \ell_{10^{-1}}\} \{\ell_{10^{-1}}, -u\} \{\ell_{10^{-1}}, -\ell_{10}\}W$
 $\rightarrow \langle -u^{-1}a^{-1}, -uba \rangle \{\theta_{10^{-1}}\ell_{10^{-1}}, \ell_{10^{-1}}\} \{\ell_{10^{-1}}, -u\} \{\ell_{10^{-1}}, -\ell_{10}\}WX_1$

where $\epsilon_{10} = 1+(u^{-1}a^{-1})(ubu)$

[[6,10b]]

(6) $X_1(c)X_2(d)\langle a, b \rangle$
 $\rightarrow \langle c, d \rangle W(\ell_{11})W(-1)X_2(\ell_{11}d)X_1\langle a, b \rangle$
 $\rightarrow \langle c, d \rangle W(\ell_{11})W(-1)X_2(\ell_{11}d)\langle a, b \rangle X_1$
 $\rightarrow \langle c, d \rangle W(\ell_{11})W(-1)\langle a, b \rangle X_2X_1$
 $\rightarrow \langle c, d \rangle \langle \ell_{11}a, b\ell_{11}^{-1} \rangle \{\ell_{11}x_{11}, \ell_{11}^{-1}, \ell_{11}^{-1}\}WW(-1)X_2X_1$

(10b) $X_1(c)X_2(d)\langle a, b \rangle$
 $\rightarrow X_1(c)\langle a, b \rangle X_2(d\theta_5)$
 $\rightarrow \langle a, b \rangle X_1(\theta_5^{-1}c)X_2(d\theta_5)$
 $\rightarrow \langle a, b \rangle \langle \theta_5^{-1}c, d\theta_5 \rangle WW(-1)X_2X_1$
 $\rightarrow \langle c, d \rangle \langle \ell_{11}a, b\ell_{11}^{-1} \rangle \{\ell_{30}\ell_{11}, \ell_{30}^{-1}, \ell_{30}^{-1}\}WW(-1)X_2X_1$

where $\epsilon_{11} = 1+(c)(d)$, $\epsilon_{12} = 1+(\theta_5^{-1}c)(d\theta_5)$

[[8,8]]

(8) $W(u)W(v)W(z)$
 $\rightarrow \{-uv, -v^{-1}\}W(-v^{-1}u)W(-1)W(z)$
\[\{ -uv, -v^{-1} \} \{ -v^{-1}u, z \} W \]

where \(\theta_{13} = [v, z^{-1}] \), \(\epsilon_{14} = 1 + (-u^{-1}v(1+z)u^{-1})(u vz)^{-1}u \)

\[\{ [8,9] \} \]

\[(8) \quad W(u)W(v)W(z) \]

\[\rightarrow \quad [-uv, -v^{-1}]W(-v^{-1}u)W(-1)W(z) \]

\[\quad \rightarrow \quad [-uv, -v^{-1}]W(-v^{-1}u)W(-1)W(z) \]

\[\quad \rightarrow \quad [-uv, -v^{-1}]\{ -v^{-1}u, -1 \}W(vu)W(z) \]

\[\quad \rightarrow \quad [-uv, -v^{-1}]\{ -v^{-1}u, -1 \}W(vu, z^{-1})W(-1) \]

\[(9) \quad W(u)W(v)W(z) \]

\[\rightarrow \quad W(u)\{ v, z \}W(zv) \]

\[\rightarrow \quad [-uv, -v^{-1}]\{ -v^{-1}u, -1 \}W(vu)W(zv) \]

\[\quad \rightarrow \quad [-uv, -v^{-1}]\{ -v^{-1}u, -1 \}W(vu, z^{-1})W(-1) \]

where \(\theta_{15} = [v, z] \), \(\epsilon_{16} = 1 + (u^{-1}v(z-1)u^{-1})(uv^{-1}u) \).

\[\{ [8,9] \} \]

\[(9) \quad W(u)W(-1)W(v)W(z) \]

\[\rightarrow \quad \{ u, v \}W(vu)W(z) \]

\[\quad \rightarrow \quad \{ u, v \}W(vu, z^{-1})W(-1) \]
where $\theta_{19} = [v^{-1}, z]$, $\epsilon_{19} = 1+(-u^{-1}(1+v)u^{-1})(uv^{-1}u)$, $\epsilon_{19} = 1+(u_{2}^{-1}v^{-1}(z-1)u_{2}^{-1})(u_{2}v_{2})$, and $u_{2} = \epsilon_{38u_{19}}^{-1}$
\[-v^{-1}u, z^{-1}\] WW(-1)

where we note \(1 + (-1-z)(z^{-1}) = 1 - z^{-1} - 1 = -z^{-1}\)
and \(1 + (z^{-1})(-1-z) = 1 - z^{-1} - 1 = -z^{-1}\)

(9) \(W(u)W(v)W(-1)W(z)\)

\[
W(u)v(z-1), v^{-1}\rangle W(zv)
\]

\[
\langle -u^{-1}v(z-1)u^{-1}, -uv^{-1}u\rangle \{\theta_{16}^{-1}e_{16}, e_{16}^{-1}\}\{-\epsilon_{16}^{-1}, -u\}
\]

\[
\{-uc_{16}^{-1}, -\epsilon_{16}\}W(\ell_{15}u_{16}^{-1})W(zv)
\]

\[
\langle -u^{-1}v(z-1)u^{-1}, -uv^{-1}u\rangle \{\theta_{16}^{-1}e_{16}, e_{16}^{-1}\}\{-\epsilon_{16}^{-1}, -u\}
\]

\[
\{-uc_{16}^{-1}, -\epsilon_{16}\}W(\ell_{15}u_{16}^{-1})W(zv, -(zv)^{-1})W(-1)
\]

\[
\{-uv, -v^{-1}\} \langle v^{-1}u(1+z), -z^{-1}u^{-1}v \rangle \{-z^{-1}v^{-1}uz, -z\}
\]

\[
\{-v^{-1}u, z^{-1}\}WW(-1)
\]

[[8,11]] (8) \(W(u)W(v)\langle a, b\rangle\)

\[
\{-uv, -v^{-1}\}W(-v^{-1}u)W(-1)\langle a, b\rangle
\]

\[
\{-uv, -v^{-1}\}{-v^{-1}ua, -bu^{-1}v} \{-\epsilon_{5}v^{-1}u_{5}^{-1}, e_{5}^{-1}\}WW(-1)
\]

(11) \(W(u)W(v)\langle a, b\rangle\)

\[
W(u)\langle -v^{-1}av^{-1}, -vbv\rangle \{\theta_{20}^{-1}e_{20}, e_{20}^{-1}\}\{-\epsilon_{20}^{-1}, -v\}
\]

\[
\{-vc_{20}^{-1}, -\epsilon_{20}\}W(\ell_{5}v_{20}^{-1})
\]

\[
\langle a_{2}, b_{2}\rangle \{\theta_{24}^{-1}e_{24}, e_{24}^{-1}\}\{-\epsilon_{24}^{-1}, -u\}\{-uc_{24}^{-1}, -\epsilon_{24}\}
\]

\[
W(u_{3})\{\theta_{20}^{-1}e_{20}, e_{20}^{-1}\}\{-\epsilon_{20}^{-1}, -v\}\{-vc_{20}^{-1}, -\epsilon_{20}\}W(\ell_{5}v_{20}^{-1})
\]

\[
\langle a_{2}, b_{2}\rangle \{\theta_{24}^{-1}e_{24}, e_{24}^{-1}\}\{-\epsilon_{24}^{-1}, -u\}\{-uc_{24}^{-1}, -\epsilon_{24}\}
\]

\[
\langle -u_{3}^{-1}\theta_{20}^{-1}(1-\epsilon_{20})u_{3}^{-1}, -u_{3}e_{20}^{-1}\theta_{20}u_{3}\rangle
\]

\[
\{\theta_{28}^{-1}e_{28}, e_{28}^{-1}\}\{-\epsilon_{28}^{-1}, -u_{3}\}\{-u_{3}e_{28}^{-1}, -\epsilon_{28}\}
\]

\[
W(u_{4})\{-\epsilon_{20}^{-1}, -v\}\{-vc_{20}^{-1}, -\epsilon_{20}\}W(\ell_{5}v_{20}^{-1})
\]

\[
\langle a_{2}, b_{2}\rangle \{\theta_{24}^{-1}e_{24}, e_{24}^{-1}\}\{-\epsilon_{24}^{-1}, -u\}\{-uc_{24}^{-1}, -\epsilon_{24}\}
\]

\[
\langle -u_{3}^{-1}\theta_{20}^{-1}(1-\epsilon_{20})u_{3}^{-1}, -u_{3}e_{20}^{-1}\theta_{20}u_{3}\rangle \{\theta_{28}^{-1}e_{28}, e_{28}^{-1}\}
\]

\[
\{-\epsilon_{28}^{-1}, -u_{3}\}\{-u_{3}e_{28}^{-1}, -\epsilon_{28}\}
\]

\[
\langle u_{4}^{-1}\epsilon_{20}^{-1}, -u_{4}\rangle u_{4}^{-1}\theta_{20}u_{4}\rangle \{\theta_{32}^{-1}e_{32}, e_{32}^{-1}\}
\]

\[
\{-\epsilon_{32}^{-1}, -u_{4}\}\{-u_{4}e_{32}^{-1}, -\epsilon_{32}\}W(u_{6})\{-\epsilon_{20}^{-1}, -\epsilon_{20}\}
\]

\[
W(\ell_{5}v_{20}^{-1})
\]

\[
\langle a_{2}, b_{2}\rangle \{\theta_{24}^{-1}e_{24}, e_{24}^{-1}\}\{-\epsilon_{24}^{-1}, -u\}\{-uc_{24}^{-1}, -\epsilon_{24}\}
\]
\[-u_3^\dagger \theta_20^{-1}(1-\epsilon_20)u_3^{-1}, -u_3\epsilon_20^{-1}\theta_20u_3 \]
\{ \theta_28^{-1}\epsilon_28, \epsilon_28^{-1} \} \{ \epsilon_28^{-1}, -u_3 \} \{ -u_3\epsilon_28^{-1}, -\epsilon_28 \}
\langle u_4^\dagger \epsilon_20^{-1}(-v-1)u_4^{-1}, u_4\epsilon_20u_4 \rangle \{ \theta_32^{-1}\epsilon_32, \epsilon_32^{-1} \}
\{ -\epsilon_32^{-1}, -u_4 \} \{ -u_4\epsilon_32^{-1}, -\epsilon_32 \}
\langle u_6^\dagger \nu_20^{-1}(-\epsilon_20-1)u_6^{-1}, u_6\epsilon_20u_6 \rangle
\{ \theta_36^{-1}\epsilon_36, \epsilon_36^{-1} \} \{ -\epsilon_36^{-1}, -u_6 \} \{ -u_6\epsilon_36^{-1}, -\epsilon_36 \}
W(u_5)W(\epsilon_5\nu_20^{-1})
\rightarrow
\langle a_2, b_2 \rangle \{ \theta_24^{-1}\epsilon_24, \epsilon_24^{-1} \} \{ -\epsilon_24^{-1}, -u \} \{ -u\epsilon_24^{-1}, -\epsilon_24 \}
\langle -u_3^\dagger \theta_20^{-1}(1-\epsilon_20)u_3^{-1}, -u_3\epsilon_20^{-1}\theta_20u_3 \rangle
\{ \theta_28^{-1}\epsilon_28, \epsilon_28^{-1} \} \{ \epsilon_28^{-1}, -u_3 \} \{ -u_3\epsilon_28^{-1}, -\epsilon_28 \}
\langle u_4^\dagger \epsilon_20^{-1}(-v-1)u_4^{-1}, u_4\epsilon_20u_4 \rangle \{ \theta_32^{-1}\epsilon_32, \epsilon_32^{-1} \}
\{ -\epsilon_32^{-1}, -u_4 \} \{ -u_4\epsilon_32^{-1}, -\epsilon_32 \}
\langle u_6^\dagger \nu_20^{-1}(-\epsilon_20-1)u_6^{-1}, u_6\epsilon_20u_6 \rangle
\{ \theta_36^{-1}\epsilon_36, \epsilon_36^{-1} \} \{ -\epsilon_36^{-1}, -u_6 \} \{ -u_6\epsilon_36^{-1}, -\epsilon_36 \}
\{ -u_6\epsilon_5\nu_20^{-1}, -(\epsilon_5\nu_20^{-1}) \}WW(-1)

\rightarrow
\langle -uv, -v^\dagger \rangle \langle -v^\dagger u, -bu^\dagger v \rangle \langle -\epsilon_5v^\dagger u\epsilon_5^\dagger, \epsilon_5^\dagger \rangle WW(-1)

where
\[\epsilon_20 = 1+(-v^\dagger a^\dagger v)(-vbv), \theta_21 = \theta_20^\dagger \epsilon_20 \theta_20, \theta_22 = [\epsilon_20^{-1}, v] \]
\[\theta_{23} = [\nu_20^{-1}, \epsilon_20], \epsilon_{24} = 1+(a_2^\dagger b_2), \theta_{25} = \theta_24^\dagger \epsilon_24 \epsilon_24, \theta_{26} = [\epsilon_24^{-1}, u] \]
\[\theta_{27} = [\nu_24^{-1}, \epsilon_24], \epsilon_{28} = 1+(u_3^\dagger \theta_20^{-1}(1-\epsilon_20)u_3^{-1})(u_3\epsilon_20^{-1}\theta_20u_3) \]
\[\theta_{29} = \theta_{28}^\dagger \epsilon_{28} \epsilon_{28}, \theta_{30} = [\epsilon_{28}^{-1}, u_3], \theta_{31} = [u_3\epsilon_{28}^{-1}, \epsilon_{28}] \]
\[\epsilon_{32} = 1+(u_4^\dagger \epsilon_20^{-1}(-v-1)u_4^{-1})(u_4\epsilon_20u_4), \theta_{33} = \theta_{32}^\dagger \epsilon_{32} \epsilon_{32}, \theta_{34} = [\epsilon_{32}^{-1}, u_4] \]
\[\theta_{35} = [u_4\epsilon_{32}^{-1}, \epsilon_{32}], \epsilon_{36} = 1+(u_6^\dagger \nu_20^{-1}(-\epsilon_20-1)u_6^{-1})(u_6\epsilon_20u_6) \]
\[\theta_{37} = \theta_{36}^\dagger \epsilon_{36} \epsilon_{36}, \theta_{38} = [\epsilon_{36}^{-1}, u_6], \theta_{39} = [u_6\epsilon_{36}^{-1}, \epsilon_{36}] \]
\[\theta_{40} = [u_6f_{11}\nu_20^{-1}, (\epsilon_{11}\nu_20^{-1})^{-1}] \]
\[u_3 = \epsilon_20u_2^\dagger, u_4 = \epsilon_21u_3^\dagger, u_5 = \epsilon_23u_6^\dagger, u_6 = \epsilon_22u_4^\dagger \]
\[a_2 = u^\dagger v^\dagger a^\dagger u^{-1}, b_2 = uvbv \]

\[[[9,9]] \]
\[(9) \hspace{1cm} W(u)W(-1)W(v)W(-1)W(z) \]
\[(1) \hspace{1cm} \rightarrow \hspace{1cm} \{ u, v \}W(vu)W(-1)W(z) \]
\[\rightarrow \hspace{1cm} \{ u, v \} \{ vu, z \} W \]

\[(9) \hspace{1cm} W(u)W(-1)W(v)W(-1)W(z) \]
\[\rightarrow \hspace{1cm} W(u)W(-1)\{ v, z \}W(zv) \]
\[\begin{align*}
\rightarrow & \quad W(u)W(-1)\langle v(z-1), v^{-1}\rangle W(zv) \\
\rightarrow & \quad \langle uv(z-1), v'^{-1}u^{-1}\rangle \{\ell_15u\ell^{-1}_5, \ell_5^{-1}\} W(u)W(-1)W(zv) \\
\rightarrow & \quad \langle uv(z-1), v'^{-1}u^{-1}\rangle \{\ell_15u\ell^{-1}_5, \ell_5^{-1}\} \{u, zv\} W \\
\rightarrow & \quad \{u, v\} \{vu, z\} W \\
\end{align*} \]

\[[9, 9] \]

\[\begin{align*}
(9) & \quad W(u)W(-1)W(-1)W(v) \\
\rightarrow & \quad \{u, -1\} W(-u)W(v) \\
\rightarrow & \quad \{u, -1\} \{uv, -v^{-1}\} WW(-1) \\
\end{align*} \]

\[[11] \]

\[\begin{align*}
(9) & \quad W(u)W(-1)W(-1)W(v) \\
\rightarrow & \quad W(u)\langle -1, v\rangle W(-v) \\
\rightarrow & \quad W(u)\langle 1-v, -1\rangle W(-v) \\
\rightarrow & \quad \langle u'^{-1}(v-1)u^{-1}, u^2\rangle \{\ell_{41}^{-1}uvu^{-1}, uv^{-1}u^{-1}\} \{-u'^{-1}v^{-1}u, -u\} \\
\rightarrow & \quad \langle u'^{-1}(v-1)u^{-1}, u^2\rangle \{\ell_{41}^{-1}uvu^{-1}, uv^{-1}u^{-1}\} \{-u'^{-1}v^{-1}u, -u\} \\
\rightarrow & \quad \{u, -1\} \{uv, -v^{-1}\} WW(-1) \\
\rightarrow & \quad \{u, -1\} \{uv, -v^{-1}\} WW(-1) \\
\end{align*} \]

\[\begin{align*}
1 & \ast (u'^{-1}(v-1)u^{-1})(u^2) \\
& = 1 \ast (u'^{-1}vu - 1)(u^2) \\
& = 1 \ast u'^{-1}vu - 1 \\
& = u'^{-1}vu \\
\end{align*} \]

\[\begin{align*}
1 & \ast (u^2)(u'^{-1}(v-1)u^{-1}) \\
& = 1 \ast (u'^{-1}vu - 1) \\
& = 1 \ast uvu^{-1} - 1 \\
& = uvu^{-1} \\
\theta_{41} & = (u'^{-1}vu)(uvu^{-1})^{-1} = u'^{-1}vu^2vu^{-1} \\
\end{align*} \]

\[[9, 11] \]

\[\begin{align*}
(9) & \quad W(u)W(-1)W(v)\langle a, b\rangle \\
\rightarrow & \quad \{u, v\} W(vu)\langle a, b\rangle \\
\rightarrow & \quad \{u, v\} \langle -(vu)^{-1}a(vu)^{-1}, -(vu)vu\rangle \{\ell_{42}^{-1}, \ell_{42}^{-1}\} \\
& \quad \{-\ell_{42}^{-1}, -vu\} \{-v\ell_{42}^{-1}, -\ell_{42}^{-1}\} W(\ell_{42}v\ell_{42}^{-1}) \\
\end{align*} \]
(11) \(W(u)W(-1)W(v) < a, b \)

\[
\rightarrow W(u)W(-1) < -v^{-1}av^{-1}, -vbv > [\theta_{43}^{-1}e_{43}, e_{43}^{-1}] \{ -\epsilon_{43}^{-1}, -v \} \\
\{ -v\epsilon_{43}^{-1}, -\epsilon_{43} \} W(\epsilon_{5\nu}e_{43}^{-1})
\]

\[
\rightarrow < -uv^{-1}av^{-1}, -vbvu > [\epsilon_{43}e_{43}^{-1}, e_{43}^{-1}] W(u)W(-1) \\
< \theta_{43}^{-1}(1-\epsilon_{43}), e_{43}^{-1}\theta_{43} > \{ -\epsilon_{43}^{-1}, -v \} \{ -v\epsilon_{43}^{-1}, -\epsilon_{43} \} \\
W(\epsilon_{5\nu}e_{43}^{-1})
\]

\[
\rightarrow < -uv^{-1}av^{-1}, -vbvu > [\epsilon_{43}e_{43}^{-1}, e_{43}^{-1}] \\
< u\theta_{43}^{-1}(1-\epsilon_{43}), e_{43}^{-1}\theta_{43}u^{-1} > [\epsilon_{44}ue_{43}^{-1}, e_{44}^{-1}] W(u)W(-1) \\
< -\epsilon_{43}^{-1}(-v-1), -\epsilon_{43} > \{ -v\epsilon_{43}^{-1}, -\epsilon_{43} \} W(\epsilon_{5\nu}e_{43}^{-1})
\]

\[
\rightarrow < -uv^{-1}av^{-1}, -vbvu > [\epsilon_{43}e_{43}^{-1}, e_{43}^{-1}] \\
< u\theta_{43}^{-1}(1-\epsilon_{43}), e_{43}^{-1}\theta_{43}u^{-1} > [\epsilon_{44}ue_{43}^{-1}, e_{44}^{-1}] \\
< -u\epsilon_{43}^{-1}(-v-1), -\epsilon_{43}u^{-1} > [\epsilon_{45}ue_{45}^{-1}, e_{45}^{-1}] \\
< u\epsilon_{43}^{-1}(\epsilon_{43}+1), -\epsilon_{43}vu^{-1} > [\epsilon_{46}ue_{46}^{-1}, e_{46}^{-1}] W(u)W(-1)W(\epsilon_{5\nu}e_{43}^{-1})
\]

\[
\rightarrow < -uv^{-1}av^{-1}, -vbvu > [\epsilon_{43}e_{43}^{-1}, e_{43}^{-1}] \\
< u\theta_{43}^{-1}(1-\epsilon_{43}), e_{43}^{-1}\theta_{43}u^{-1} > [\epsilon_{44}ue_{43}^{-1}, e_{44}^{-1}] \\
< -u\epsilon_{43}^{-1}(-v-1), -\epsilon_{43}u^{-1} > [\epsilon_{45}ue_{45}^{-1}, e_{45}^{-1}] \\
< u\epsilon_{43}^{-1}(\epsilon_{43}+1), -\epsilon_{43}vu^{-1} > [\epsilon_{46}ue_{46}^{-1}, e_{46}^{-1}] \{ u, \epsilon_{5\nu}e_{43}^{-1} \} W \\
< u, v > < -(vu)^{-1}a(vu)^{-1}, -vbvu > \{ \theta_{44}^{-1}e_{44}, e_{44}^{-1} \} \\
< -\epsilon_{44}^{-1}, -vu > \{ -v\epsilon_{44}^{-1}, -\epsilon_{44} \} W
\]

where \(\epsilon_{42} = 1+((vu)^{-1}a(vu)^{-1})(vubvu), \epsilon_{43} = 1+(v^{-1}av^{-1})(\epsilon_{44}) \), \\
\(\theta_{44} = [\theta_{43}^{-1}e_{43}, e_{43}^{-1}], \theta_{45} = [\epsilon_{43}^{-1}, v], \theta_{46} = [v\epsilon_{43}^{-1}, e_{43}] \)

Thus, for all cases the Church-Rosser property is satisfied, and we have proved the uniqueness of minimal elements.

Note: We have repeatedly made use of the fact that the normal form for an element \(w(u)w(-1) < a, b > \) may be determined in the Steinberg group using either elementary relations, or identity P16 of Proposition 6.4. By uniqueness of the normal form at matrix level, we have an identity between the corresponding products of Dennis-Stein symbols in the Steinberg group. By including this as one of the defining relations in \(D^*(R, I) \), we see that the process of using
the elementary replacements followed by relation 18 is equivalent to applying the identity P_16.

$$w(u)w(-1)\langle a,b \rangle = \langle uau,u^{-1}bu^{-1} \rangle \{u^{-1}tu,u\} \{\ell u,\ell^{-1}\} w(u)w(-1), \ell = 1 + ba$$

Relation 18 can thus be determined as follows.

With identity P_16 in mind, we wish to impose in \mathcal{M}_\triangle the equivalence of

$$W(u)W(-1)\langle a,b \rangle$$

$$\rightarrow W(u)\langle -a,-b \rangle \{\varepsilon_5^{-1}\ell_5,\ell_5^{-1}\} \{\varepsilon_5^{-1},-\varepsilon_5\} W(-\varepsilon_5^{-1})$$

$$\rightarrow \langle u^{-1}au^{-1},ubu \rangle \{\theta_47^{-1}\ell_47,\ell_47^{-1}\} \{-\varepsilon_47^{-1},-u\} \{-u\varepsilon_47^{-1},-\ell_47\}$$

$$\langle -u_7^{-1}\theta_5^{-1}\ell_5(\ell_5^{-1}-1)(u_7)^{-1},-u_7(\theta_5^{-1}\ell_5)^{-1}u_7 \rangle$$

$$\{\theta_49^{-1}\ell_49,\ell_49^{-1}\} \{-\varepsilon_49^{-1},-u_7\} \{-u_7\varepsilon_49^{-1},-\ell_49\} \langle u_8^{-1}\ell_8^{-1}(\ell_8^{-1})u_8^{-1},-u\varepsilon_5u_8 \rangle \{\theta_51^{-1}\ell_51,\ell_51^{-1}\} \{-\varepsilon_51^{-1},-u_8\}$$

$$\{-u_8\varepsilon_51^{-1},-\ell_51\} W(u_8) W(-\varepsilon_5^{-1})$$

$$\rightarrow \langle u^{-1}au^{-1},ubu \rangle \{\theta_47^{-1}\ell_47,\ell_47^{-1}\} \{-\varepsilon_47^{-1},-u\} \{-u\varepsilon_47^{-1},-\ell_47\}$$

$$\langle -u_7^{-1}\theta_5^{-1}\ell_5(\ell_5^{-1}-1)(u_7)^{-1},-u_7(\theta_5^{-1}\ell_5)^{-1}u_7 \rangle$$

$$\{\theta_49^{-1}\ell_49,\ell_49^{-1}\} \{-\varepsilon_49^{-1},-u_7\} \{-u_7\varepsilon_49^{-1},-\ell_49\} \langle u_8^{-1}\ell_8^{-1}(\ell_8^{-1})u_8^{-1},-u\varepsilon_5u_8 \rangle \{\theta_51^{-1}\ell_51,\ell_51^{-1}\} \{-\varepsilon_51^{-1},-u_8\}$$

$$\{-u_8\varepsilon_51^{-1},-\ell_51\} W(u_8) W(-1)$$

(which is the normal form using only the elementary replacements to determine the appropriate product of Dennis-Stein symbols)

where $\varepsilon_47 = 1+ (u^{-1}au^{-1})(ubu)$, $\theta_48 = [\theta_5^{-1}\ell_5,\ell_5^{-1}]$,

$\varepsilon_49 = 1+ (u_7^{-1}\theta_5^{-1}(1-\ell_5)u_7^{-1})(-u_7(\theta_5^{-1}\ell_5)^{-1}u_7)$, $\theta_50 = [\varepsilon_5^{-1},-\ell_5]$, $\varepsilon_51 = 1+ (u_8^{-1}\ell_8^{-1}(\ell_8^{-1})u_8^{-1})(-u\varepsilon_5u_8)$,

$u_7 = \ell_5u_47^{-1}$, $u_8 = \ell_49u_749^{-1}$, $u_9 = \ell_50u_8\ell_51^{-1}$

and the much simpler normal form proved earlier in $St^*(2,R)$, which is
\[w(u)w(-1)\langle a, b \rangle \]
\[\rightarrow \langle uau, u^{-1}bu^{-1} \rangle \{ u^{-1}tu, u \} \{ u^{-1}tu, u^{-1} \} w(u)w(-1). \]

Thus the relation which we have chosen to impose in \(D^*(R, I) \) is relation 18.

\[\langle u^{-1}au^{-1}, ubu \rangle \{ \theta_{47}^{-1}e_{47}, e_{47}^{-1} \} \{-e_{47}^{-1}, -u\} \{-we_{47}^{-1}, -e_{47} \} \]
\[\langle -u^{-1}e_{5}^{-1}(e_{5}^{-1} - 1)(-u^{-1})^{-1}, -u^{-1}e_{5}^{-1}(e_{5}^{-1} - 1)u^{-1} \rangle \]
\[\{-e_{49}^{-1}, -e_{49} \} \{-e_{49}, -e_{49} \} \{-e_{49}, -e_{49} \} \]
\[\langle u_{8}^{-1}e_{5}^{-1}(e_{5}^{-1}u_{8}^{-1} - 1), -u_{8}e_{5}u_{8} \rangle \{ \theta_{51}^{-1}e_{51}, e_{51}^{-1} \} \{-e_{51}^{-1}, -u_{8} \} \]
\[\{-u_{8}e_{51}^{-1}, -e_{51} \} \{ u_{9}e_{5}^{-1}, e_{5} \} \]
\[= \langle uau, u^{-1}bu^{-1} \rangle \{ u^{-1}tu, u \} \{ u^{-1}tu, u^{-1} \} \]

\[\square \]

Lemma 6.9 The following identities hold in every \(M_\alpha \) that contains each term of the expression:

\[(1) \quad X_1(a) \ast X_1(b) = X_1(a + b) \]
\[(1i) \quad X_2(a) \ast W(u) = W(u) \ast X_1(-u^{-1}au^{-1}) \]
\[(1ii) \quad X_1(c) \ast \langle a, b \rangle = \langle a, b \rangle \ast X_1(\theta'c) \]
\[X_2(c) \ast \langle a, b \rangle = \langle a, b \rangle \ast X_2(c \theta) \]
\[(1v) \quad \langle ay, b \rangle \ast \langle ba, y \rangle = \langle a, yb \rangle \]

Proof: Follows directly from the elementary replacements. \[\square \]

Lemma 6.10: \(\mathcal{M}_\alpha \) is a normal subgroup of every \(M_\alpha \).

Proof: Every \(M_\alpha \) contains the group \(\mathcal{M}_\alpha \) where \(\alpha \) is the order relation corresponding to the diagonal in \(\{1, 2\} \times \{1, 2\} \), and \(\mathcal{M}_\alpha \) is a subgroup of every \(M_\alpha \), so we need only show normality. It is sufficient to see that:

\[(1) \quad X_1(a)DX_1(a)^{-1} = \mathcal{M}_\alpha, \forall i \in \{1, 2\}, a \in R, D \in D^*(R, I) \]
and \((\text{iii})\) \(X_i(a)X_j(b)X_i(a)^{-1} \in \mathcal{M}_\Delta\), \(\forall i,j \in \{1,2\}\), \(a \in R, b \in I\).

and that \(X(DWWX_2X_1)X\) corresponds to a minimal element with two \(W\)'s.

Before we prove that these elements are in \(\mathcal{M}_\Delta\), we first note that for the symbol \(\langle b, c \rangle = D^*(R,I)\), we have \(b = I\) or \(c = I\), so that \(bc, cb = I\). Furthermore,

\[
bc, cb = I \implies 1 - (1+bc) = I \\
\implies [1 - (1+bc)](1+bc)^{-1} = I \\
\implies (1+bc)^{-1} - 1 = I \\
\implies (1+bc)^{-1} + cb(1+bc)^{-1} - 1 = I \\
\implies (1+cb)(1+bc)^{-1} - 1 = I \\
\implies \theta^{-1} - 1 = I
\]

and similarly, \(bc, cb = I \implies \theta - 1 = I\).

Now, we see that \((1)\) follows because

\[
X_1(a)<b, c> X_1(-a) = <b, c> X_1((\theta^{-1}-1)a) = \mathcal{M}_\Delta
\]

and \(X_2(a)<b, c> X_2(-a) = <b, c> X_1(a(\theta-1)) = \mathcal{M}_\Delta\).

The second, \((11)\), follows by noting that

\[
X_1(a)W(u)W(-1)X_1(a)^{-1} = X_1(a-uau)W(u)W(-1) = \mathcal{M}_\Delta, \text{ because u} = 1+1 \implies u = 1+b, \text{ some } b = I, \text{ so we have a-ua} \]
\[
a-ua = a - (1+b)a(1+b) = a - a(1+b) - ba(1+b) = a - a - ab - ba - bab = I,
\]

and \(X_2(a)W(u)W(-1)X_2(a)^{-1} = W(u)W(-1)X_2(ua-a) = \mathcal{M}_\Delta, \text{ because a-ua} = I\) as above.

The third, \((111)\), is trivial when \(i = j\), so we only need consider (for \(b = I\)).
\[x_1(a)x_2(b)x_1(-a) = \langle a, b \rangle W(\ell)W(-1)x_2(\ell b)x_1(c^{-1}a-a) = M_\triangle, \]

because \(\varepsilon^{-1} - 1 = 1 \)

and

\[x_2(a)x_1(b)x_2(-a) = x_2(a)\langle b, -a \rangle W(\ell)W(-1)x_2(-\ell a)x_1(c^{-1}b) \]
\[= x_2(a)\langle b, -a \rangle x_2(-\varepsilon^{-1}\ell a\varepsilon^{-1})W(\ell)W(-1)x_1(c^{-1}b) \]
\[= x_2(a)x_2(-\ell^{-1}\ell^{-1})\langle b, -a \rangle W(\ell)W(-1)x_1(c^{-1}b) = M_\triangle, \]

because \(a-a\ell^{-1}\ell^{-1} = a(1-\ell^{-1}\ell^{-1}) = a(1-1) = 1 \).

In addition, by straightforward application of the elementary replacements, it is easy to see that any element, \(X(DWXX)X \), corresponds to an element with two \(W \)'s. Thus \(M_\triangle \) is normal in \(M_\Pi \)

\[\square \]

This finishes completely the proof of the Theorem 6.1, and all necessary supporting lemmas.
APPENDIX

This appendix consists of a computer program used as an aid in the completion of the computations necessary to determine a statement of the 16 relations in Theorem 6.1. The program takes a series of letters, $X_1(a), X_2(a), W(u), \langle a, b \rangle, \{u, v\}$, and uses the elementary replacements defined in the proof of Theorem 6.1 (see Definition 6.5) to reduce the series of letters to the associated normal form. While the program uses a reasonably good decision process concerning the best route for reduction of the word to the normal form, in many cases, the process may be optimized greatly by an awareness of the interrelationships among the replacements. Thus, while this program is sufficient to independently generate the computations, the computations shown in this Dissertation are more refined. The program served as a valuable aid by allowing the author the opportunity to do a great deal of fine tuning by means of trial and error.

The program is written in the programming language of Pascal, and was developed and debugged using a combination of Apple Pascal, and Turbo Pascal, running on an Apple Macintosh Plus computer. The final version is written for Turbo Pascal. Due to constraints imposed by Turbo Pascal, the arrays are dimensioned too small for some of the longer computations, but these computations are easily broken up into smaller segments. By porting this program to other Pascal compilers, one may extend the array dimensions and do the computations each as a whole. On a non-Macintosh computer, one may choose to define a function that fulfills the need for superscripts and subscripts (done with a specially designed font in this version.) The structure of the program should allow it to be easily modified for use on other computations of a similar nature.

We conclude this appendix with the complete program listing.
program Compute;

 type
 argument = string[100],
 info = record
 l : string[1],
 s : array[1..2] of integer,
 a : array[1..2] of argument,
 e : integer
 end,
 anelist = array[1..45] of string[80],
 line = array[1..45] of info,

 var
 f : line,
 efirst, enext, last, laste : integer,
 done : boolean,
 elist : anelist,
 a char,
 sl, filename : string,
 outfile : text;

 function dash (sign integer) string;
 begin
 if sign = -1 then
 dash := '-'
 else
 dash := '
 end,
 end;

 function dashplus (sign : integer) : string;
 begin
 if sign = -1 then
 dashplus := '-'
 else

function digit(n : integer):string, {make into string}
begin
if n < 10 then
 case n of
 1: digit := '1',
 2: digit := '2',
 3: digit := '3',
 4: digit := '4',
 5: digit := '5',
 6: digit := '6',
 7: digit := '7',
 8: digit := '8',
 9: digit := '9';
 end
end,

function str(n integer):string, {make into string}
var
 strtemp, string,
begin
if n < 10 then
 str := digit(n)
else
 begin
 strtemp := concat(digit(n div 10), digit(n mod 10));
 if n mod 10 = 0 then
 strtemp := concat(digit(n div 10), digit(n mod 10), '0');
 str := strtemp,
 end,
end,
procedure doxlx2 (var f : line,
 var last, i, enext : integer).

var
j : integer,
s1, s2 : string.
begin
{copy i to last into i+3 to last+3}
for j := last downto i do
 f[j + 3] := f[j],
 last := last + 3,
{create <a,b> at i}
 f[1] := 'd',
 f[i].a[1] := f[i + 3].a[1],
 f[i].a[2] := f[i + 4].a[1],
{create w at i+1}
 f[i + 1].1 := 'w';
 f[i + 1].s[1] := 1,
 f[i + 1].a[1] := ooncat('f', str(enext)),
{create w at i+2}
 f[i + 2].1 := 'w';
 f[i + 2].s[1] := -1;
 f[i + 2].a[1] := '1',
{create x2 at i+3}
 f[i + 3].1 := '2';
 f[i + 3].s[1] := f[i].s[2];
 f[i + 3].a[1] := ooncat(f[i + 1].a[1], '1', f[i].a[2], ')'),
{create x1 at i+4}
 f[i + 4].1 := '1';
 f[i + 4].s[1] := f[i].s[1];
 f[i + 4].a[1] := ooncat('e', str(enext), '1', f[i].a[1], ')');
{create epsilon for <a,b> at i}
 f[i] e := enext,
 s1 := dash(f[i] s[1]).
\[s2 := \text{dash}(f[1], s[2]), \]

\[\text{elist}[\text{enext}] := \text{concat}(', s1, f[1], a[1], ')(', s2, f[1], a[2], ')'). \]

\{ next \ enext \}

\[\text{enext} := \text{enext} + 1; \end; \]

\textbf{procedure getf (var f : line; \quad \text{[input the orig line]}} \begin{align*}
\text{begin} \\
\quad f[1].1 &:= 'w', \\
\quad f[1].s[1] &:= 1, \\
\quad f[1].a[1] &:= 'u', \\
\quad f[2].1 &:= 'w', \\
\quad f[2].s[1] &:= 1, \\
\quad f[2].a[1] &:= 'v', \\
\quad f[2].s[2] &:= 1, \\
\quad f[2].a[2] &:= 'v', \\
\quad f[2].e &:= 1, \\
\quad f[3].1 &:= '2', \\
\quad f[3].s[1] &:= 1, \\
\quad f[3].a[1] &:= 'c', \\
\quad f[4].1 &:= 'w', \\
\quad f[4].s[1] &:= 1, \\
\quad f[4].a[1] &:= 'v', \\
\quad \text{last} &:= 2; \\
\end{align*} \text{end;}

\textbf{function takesign (var s:argument): integer; \quad \begin{align*}
\text{begin} \\
\quad \text{takensign} &:= 1; \\
\quad \text{if} \ (\text{length}(s) \geq 1) \ \text{and} \ (\text{copy}(s, 1, 1) = ' - ') \\
\quad \text{then begin} \\
\quad \quad \text{takensign} &:= -1, \\
\quad \quad \text{delete}(s, 1, 1) \\
\end{align*} \text{end;}} \]
procedure find2 (let : string;
 [find a letter looking]
 f : line,
 [right to left, and]
 last : integer,
 [skipping 'last']
 var i : integer,
 var found : boolean);
begin
 found := false,
 i := last - 1,
while (i >= 1) and (not found) do
 if f[i].l = let then
 found := true
 else
 i := i - 1,
end,

function pairx1 (f : line;
 last : integer;
 var i : integer) : boolean; [find a pair of xl's]
 var
gotit : boolean;
begin
 pairx1 := false;
gotit := false;
i := last;
while (i > 1) and not gotit do
 begin
 if (f[i].l = '1') and (f[i - 1].l = '1') then
 begin
 pairx1 := true,
function pairx2 (f : line,
 last : integer;
 var i : integer) : boolean; {find a pair of x2's}
var
 gotit : boolean,
begin
 pairx2 := false,
 gotit := false,
 i := last,
 while (i > 1) and not gotit do
 begin
 if (f[i] 1 = '2') and (f[i - 1] 1 = '2') then
 begin
 pairx2 := true,
 gotit := true
 end,
 i := i - 1,
 end,
end;

procedure dox1w (var f : line;
 var last,i,enext : integer);
var temp : info,
begin
 temp := f[1];
 f[i] := f[i+1],
 f[i+1] 1 := '2',
 f[i+1] s[1] := -1 * temp s[1],
 f[1] := f[1] + 1,
end;
procedure doxld (var f : line,
 var last,l,enext : integer);
var temp : info,
begin
 temp = f[l],
 f[i] := f[i+1];
 f[i+1] = temp,
 f[i+1] a[1] := concat(
 '0',str(f[i] e), '1',f[i+1] a[1], '),
end,

procedure doxls (var f : line,
 var last,l,enext : integer).
var temp : info,
begin
 temp := f[i],
 f[i] := f[i+1];
 f[i+1] = temp,
 f[i+1] a[1] := concat(
 '0',str(f[i] e), '1',f[i+1] a[1], '),
end,

procedure dox2w (var f : line;
 var last,l,enext : integer);
var temp : info,
begin
 temp := f[i];
 f[i] := f[i+1];
 f[i+1] := '1';
 f[i+1] s[1] := -1 * temp s[1];
 f[i+1] a[1] := concat(
 f[i] a[1], '1',temp a[1], '),f[i] a[1]),
end.
procedure dox2d (var f : line,
 var last,i,enext : integer);
var temp : info,
begin
 temp := f[i];
 f[i] := f[i+1];
 f[i+1] := temp;
 f[i+1].a[1] := concat('[' ,f[i+1].a[1] ,']' ,str(f[i].e));
end;

procedure dox2s (var f : line,
 var last,i,enext : integer);
var temp : info,
begin
 temp := f[i];
 f[i] := f[i+1];
 f[i+1] := temp;
 f[i+1].a[1] := concat('[' ,f[i+1].a[1] ,']' ,str(f[i].e));
end;

procedure domr(var f line,
 var last,i,enext integer);
var j integer,
s1,s2: string[5];

begin
 copy i to last into i+1 to last+1
 for j := last downto i do
 f[j+1] := f[j],
 last := last + 1;
 create Steinberg symbol at i
 f[1].l = 's';
\[
\begin{align*}
\text{f[i] a[1]} &= \text{concat(f[i + 1].a[1], f[i + 2].a[1])}, \\
\text{f[i] a[2]} &= \text{concat('(', f[i + 2].a[1], ')^{-1}')}, \\
\{\text{create } w \text{ at } i+1\} \\
\text{f[i + 1].1} &= 'w', \\
\text{f[i + 1].s[1]} &= -1 * f[i + 2].s[1] * f[i + 1].s[1], \\
\text{f[i + 1].a[1]} &= \text{concat('(', f[i + 2].a[1], ')^{-1}', f[i + 1].a[1])}; \\
\{\text{create } w \text{ at } i+2\} \\
\text{f[i + 2].1} &= 'w'; \\
\text{f[i + 2].s[1]} &= -1; \\
\text{f[i + 2].a[1]} &= '1'; \\
\{\text{create epsilon for symbol at } i\} \\
\text{f[i].e} &= \text{enext}, \\
\text{s1} &= \text{dash(f[i].s[1])}, \\
\text{s2} &= \text{dash(f[i].s[2])}, \\
\text{elist[enext]} &= \text{concat('[' , s1, f[i].a[1], ', ', s2, f[i].a[2], '])}. \\
\{\text{next } enext\} \\
\text{enext} &= \text{enext + 1}, \\
\text{end.}
\end{align*}
\]

procedure down(var f . line; \\
\quad var last, i, enext : integer), \\
var \\
\quad j : integer, \\
\quad s1, s2 : string[5], \\
begin \\
\{\text{copy } i+2 \text{ to } last \text{ into } i+1 \text{ to } last-1\} \\
\quad \text{for } j = i+2 \text{ to last do} \\
\quad \quad \text{f[j-1]} = f[j], \\
\quad \text{last} := \text{last - 1}, \\
\{\text{create steinberg symbol at } i\} \\
\quad \text{f[i].1} := 's', \\
\quad \text{f[i] s[1]} := f[i].s[1], \\
\quad \text{f[i] s[2]} := f[i + 1].s[1], \\
\end{align*}
\]
procedure dowd(var f : line,
 var last,i,enext : integer);

var
 a,b,u : string,
 s1,s2,z,zprev : string[5],
 sa,sb,su,j : integer;

begin
 a := f[i+1].a[1]; sa := f[i+1].s[1];
 b := f[i+1].a[2]; sb := f[i+1].s[2];
 u := f[i].a[1]; su := f[i].s[1];
 zprev := str(f[i+1].e);
 {copy i to last into i+3 to last+3}
 for j := last downto i do
 f[j+3] := f[j];
 last := last + 3;
 {create a D-S symbol at i}
 f[i].l := 'd';
 f[i].s[1] := -1 * sa,
\[f[i].s[2] = -1 \ast sb, \]
\[f[i].a[1] = \text{concat}('(','u,',')\text{'}^{-1},a,\text{'(','u,',')'}^{-1}); \]
\[f[i].a[2] = \text{concat}(u,b,u); \]

{create epsilon for \(<a,b> \) at \(i \)}
\[f[i].e := \text{enext}, \]
\[s1 := \text{dash}(f[i].s[1]); \]
\[s2 := \text{dash}(f[i].s[2]); \]
\[\text{elist[enext]} := \text{concat}('1+',s1,f[i].a[1],')(',s2,f[i].a[2],')'); \]
\[z := \text{str(enext)}; \]

{next enext}
\[\text{enext} := \text{enext} + 1; \]

{create a Steinberg symbol at \(i+1 \)}
\[f[i+1].l := 's', \]
\[f[i+1].s[1] = 1, \]
\[f[i+1].s[2] = 1, \]
\[f[i+1].a[1] := \text{concat}('\theta',z,'\text{'}^{-1}'f',z), \]
\[f[i+1].a[2] := \text{concat}('f',z,'\text{'}^{-1}'); \]

{create epsilon for symbol at \(i+1 \)}
\[f[i+1].e := \text{enext}, \]
\[s1 := \text{dash}(f[i+1].s[1]); \]
\[s2 := \text{dash}(f[i+1].s[2]); \]
\[\text{elist[enext]} := \text{concat}('1',s1,f[i+1].a[1],',',s2,f[i+1].a[2],')'); \]

{next enext}
\[\text{enext} := \text{enext} + 1; \]

{create a Steinberg symbol at \(i+2 \)}
\[f[i+2].l := 's'; \]
\[f[i+2].s[1] := -1; \]
\[f[i+2].s[2] := -1 \ast su; \]
\[f[i+2].a[1] := \text{concat}('t',z,'\text{'}^{-1}'); \]
\[f[i+2].a[2] := u; \]

{create epsilon for symbol at \(i+2 \)}
\[f[i+2].e := \text{enext}, \]
\[s1 := \text{dash}(f[i+2].s[1]). \]
s2 := dash(f[i+2].s[2]).
elist[enext] := concat('[', s1, f[i+2].a[1], ', ', s2, f[i+2].a[2], ']

{next enext}
enext := enext + 1;
{create a Steinberg symbol at i+3}
f[i+3].s[1] := -1 * su;
f[i+3].s[2] := -1;
f[i+3].a[1] := concat(u,'ε',z,-'1');
{create epsilon for symbol at i+3}
f[i+3].e := enext;
s1 := dash(f[i+3].s[1]),
s2 := dash(f[i+3].s[2]),
elist[enext] := concat('[', s1, f[i+3].a[1], ', ', s2, f[i+3].a[2], ']

{next enext}
enext := enext + 1;
{create w at i+4}
f[i + 4].s[1] := su;
f[i + 4].a[1] := concat('f',zprev,u,'ε',z,-'1');
end.

procedure dows(var f : line;
 var last,i, enext : integer),
{just change the Steinberg symbol at i+1 to a D-S}
var
 a,b : string;
s1,s2 : string[5],
sa,sb,j : integer,
begin
{change to D-S symbol and then use dowd automatically next round}
a := f[i+1].a[1]; sa := f[i+1].s[1];
b := f[i+1].a[2]; sb := f[i+1].s[2],
{create a D-S symbol at i+1}
f[i+1].1 := 'd';
f[i+1].s[1] := sa,
f[i+1].s[2] := sa;
f[i+1].a[1] := concat(a, '(' , dash(sb), b, '-1')),
f[i+1].a[2] := concat('(? , a , ?') 1);
{epsilon stays as is}
end,

procedure dohs(var f . line, var last, i, enext : integer),
{just change the Steinberg symbol at i+1 to a D-S}

var
a, b : string;
s1, s2 : string[5];
sa, sb, j : integer,

begin
{change to D-S symbol and then use dowd automatically next round}
a := f[i+1].a[1]; sa := f[i+1].s[1];
b := f[i+1].a[2]; sb := f[i+1].s[2],
{create a D-S symbol at i+1}
f[i+1].1 := 'd';
f[i+1].s[1] := sa,
f[i+1].s[2] := sa;
f[i+1].a[1] := concat(a, '(' , dash(sb), b, '-1')),
f[i+1].a[2] := concat('(? , a , ?') 1);
{epsilon stays as is}
end,
procedure dohd(var f : line,
 var last, i, enext : integer),
var
 a, b, u : string;
 s1, s2, zprev : string[5],
 sa, sb, su, j : integer,
begin
 a := f[i+1].a[1]; sa := f[i+1].s[1];
 b := f[i+1].a[2]; sb := f[i+1].s[2];
 u := f[i-1].a[1]; su := f[i-1].s[1];
 zprev := str(f[i+1].e);
 copy i+2 to last into i+3 to last+1
 for j := last downto i+2 do
 f[j+1] := f[j],
 last := last + 1,
 move W(u)W(-1) into new position
 f[i+2] = f[i],
 f[i+1] := f[i-1],
 create a D-S symbol at i-1
 f[i-1].l := 'd',
 f[i-1].s[1] := su * sa,
 f[i-1].s[2] := su * sb,
 f[i-1].a[1] := concat('(',u,')(',a,')'),
 f[i-1].a[2] := concat('(',b,')(',u,')^{-1}'),
 create epsilon for <a,b> at i-1
 f[i-1].e := enext;
 s1 := dash(f[i-1].s[1]),
 s2 := dash(f[i-1].s[2]),
 elist[enext] := concat('1+(',s1,f[i-1].a[1],')(',s2,f[i-1].a[2],')'),
 next enext
 enext := enext + 1,
 create a Steinberg symbol at 1}
\[f[1].l := 's', \]
\[f[i].s[1] := \text{'zu',} \]
\[f[i].s[2] := \text{'1'}, \]
\[f[i].a[1] := \text{concat('f',zprev, ('0, u,')f',zprev)}, \]
\[f[i].a[2] := \text{concat('f',zprev)}, \]

{create epsilon for symbol at 1}
\[f[1].e := \text{enext}; \]
\[s1 := \text{dash(f[1].s[1])}; \]
\[s2 := \text{dash(f[1].s[2])}; \]
\[\text{elist[enext]} := \text{concat('[', s1, f[i].a[1], ',', s2, f[i].a[2], '}').} \]

{next enext}
\[\text{enext} := \text{enext + 1}; \]

end.

procedure movexl (var f : line;
 var last, enext : integer,
 var done : boolean);
 var
 l : integer,
 found : boolean,
begin
 find2('1', f, last, l, found);
 if found then
 case f[i + 1].l[1] of
 '1' :
 writeln(outfile, 'error');
 '2' :
 begin
 dox1x2(f, last, i, enext);
 done := false
 end,
 w :
 begin
 dox1w(f, last, i, enext),
done := false
end,
'd'
begin
doxld(f, last, i, enext);
done := false
end;
's'
begin
doxls(f, last, i, enext);
done := false
end;
end,
end;

procedure movex2 (var f : line,
 var last, enext : integer,
 var done : boolean);
var
 didone boolean;
 i integer;
begin
 didone := false;
i := last - 1;
while (i>=1) and not didone do
begin
 if f[i].1 = '2' then
 case f[i+1].1[1] of
 '1',
 '2': writeln(outfile, 'error'),
 'w': begin
 dox2w(f, last, i, enext);
done := false;
didone := true,
 end,
'd': begin
doxd(f, last, i, enext);
done := false,
didone := true;
end;
's': begin
doxs(f, last, i, enext);
done := false;
didone := true;
end,
end;
i := i - 1.
end;

procedure refineww (var f : line,
var last, enext : integer,
var done : boolean);
var
didone boolean,
i integer,
begin

didone := false,
i = 1,
while (i<last) and not didone do
begin [look for WW that's not a WW(-1)]
if (f[i].l = 'w') and (f[i+1].l = 'w') and
((f[i+1].s[1] <> -1) or
 ((f[i+1].a[1] <> '1') and (f[i+1].a[1] <> ' ')))
then

begin
doww(f, last, i, enext);
done := false,
didone := true,
end,
1 := 1 + 1,
end,
end;

procedure multw (var f line,
var last, enext : integer,
var done : boolean);

var

didone : boolean;
1 integer;

begin

didone := false;
1 := 1,
while (i<=last-2) and not didone do

begin

if (f[i].l[1] = 'w') and (f[i+1].l[1] = 'w') and
(f[i+2].l[1] = 'w') then

if (f[i+1].s[1]=-1) and ((f[i+1].a[1] = '') or
(f[i+1].a[1] = '1'))

then begin

dowww(f, last, i, enext);

done := false;
didone := true
end

else begin

dowww(f, last, i, enext);
done := false;
didone := true
end;
i := i + 1,
end

procedure movew (var f line,
\begin{verbatim}
var last, enext : integer;
var done : boolean);

var

didone : boolean;

i : integer;

begin

didone := false,
i := 1,

while (i<last) and not didone do

begin

{check 1st for \texttt{ww(-1)d/ww(-1)s} for an \texttt{hd/hs}}

if (f[i].l[1] = 'w') and (i>1) then

if (\texttt{(f[i].a[1]='' or \texttt{f[i].a[1]}'1')} and (f[i].s[1]=-1) and (f[i-1].l[1]='w'))

then

if f[i+1].l[1] = 'd' then begin

dohd(f, last, i, enext),
done := false,
didone := true
end

else if f[i+1].l[1] = 's' then begin

dohs(f, last, i, enext),
done := false,
didone := true
end

{check 2nd for a regular \texttt{wd} or \texttt{ws}}

if (didone = false) and (f[i].l[1] = 'w') then

begin

case f[i+1].l[1] of

'd': begin

dowd(f, last, i, enext),
done := false,
didone := true
end,

's' begin

\end{verbatim}
doxx(f, last, i, enext);
done := false,
didone := true
end;
end;
end;
i := i + 1,
end;
end;

procedure doxx (var f : line,
 var last, i : integer), {combine xixi ---> xi}
begin
 f[1] a[1] := concat(f[1], a[1], dashplus(f[i+1] s[1]),
 f[i+1] a[1]),
 i := i + 1,
 last := last - 1,
 while i <= last do
 begin
 f[i] := f[i + 1],
 i = i + 1;
 end,
end,

procedure smash (var f : line;
 var last : integer;
 var done : boolean),
var
 smashed : boolean;
 i : integer;
begin
 smashed := false,
 repeat
 if pairxl(f, last, i) and (last > 1) then
 begin
doxx(f, last, i),
done := false
end
else if pairx2(f, last, i) and (last > 1) then
begin
doxx(f, last, i);
done := false
end
else
smashed := true;
until smashed
end,

procedure reduce (var f : line; [main
 reduction alg]
 var enext, last : integer;
 var noop : boolean);
begin
noop := true,
smash(f, last, noop); {combine all x1's and combine all x2's}
if noop then movex1(f, last, enext, noop), {move an x1 to the
 right}
if noop then movex2(f, last, enext, noop); {move an x2 to the
 right}
if noop then multw(f, last, enext, noop); {multiply leftmost
 three W's}
if noop then movew(f, last, enext, noop); {move a W to right of
 a D}
if noop then refinewir(f, last, enext, noop); {WW becomes WW(-1)]
(* if didn't do anything, then noop := true *)
end;

procedure printe (var f : line; {print epsilon number num}
 var num : integer);
begin
if copy(elist[num], 1, 1) = '[' then
 begin
 writeln(outfile, '0', str(num), ' = ', elist[num])
 end
else
 begin
 writeln(outfile, '1', str(num), ' = ', elist[num])
 end
end;

procedure printes (var f : line; {print list of epsilons}
 var efirst, laste : integer);
 var
 j : integer,
 begin
 for j = efirst to laste do
 printe (f, j),
 end,

 procedure printf (var f : line; {print out current line}
 var last : integer);
 var
 l : integer,
 begin
 for l = 1 to last do
 case f[l].l[1] of
 '1' : begin
 write(outfile, 'X1(', dash(f[l].s[1]), f[l].a[1], ', '));
 end,
 '2' : begin
 write(outfile, 'X2(', dash(f[l].s[1]), f[l].a[1], ', '));
 end,
 'd' : begin
 write(outfile, '<', dash(f[l].s[1]), f[l].a[1], ',',
 dash(f[l].s[2]), f[l].a[2], ' > ');
end,
's' : begin
write(outfile, '{', dash(f[i].s[1]), f[i].a[1], ',',
dash(f[i].s[2]), f[i].a[2], '}'),
end;
end;

'w' : begin
if f[i].a[1] = '' then s1 := '1' else s1 := f[i].a[1];
write(outfile, 'W(', dash(f[i].s[1]), s1, '),'),
end
end,
writeln, writeln(outfile);
end,

procedure inputf (var f line, var last, enext, efirst: integer),
var
s1, s2 : string[5],
al, a2 string,
lnum, fop, loc integer;
begin
lnum := 0,
write('begin with epsilon #'), readln(efirst), enext := efirst,
repeat
lnum := lnum + 1,
writeln('input letter #', lnum:3);
write('letter '), readln(f[lnum].l);
if f[lnum].l <> '' then
if f[lnum].l <> 'r' then
begin
write('(first) argument = '),
readln(f[lnum].a[1]),
f[lnum].s[1] := takesign(f[lnum].a[1]);
if (f[lnum].l = 's') or (f[lnum].l = 'd') then
begin
write('second argument = '),
readln(f[lnum].a[2]);
\[f[lnum].s[2] := \text{take sign}(f[lnum].a[2]) \]

\{create epsilon or theta\}

\begin{align*}
\text{begin} \\
s1 := \text{dash}(f[lnum].s[1]) \\
s2 := \text{dash}(f[lnum].s[2]) \\
a1 := f[lnum].a[1] \\
a2 := f[lnum].a[2] \\
\text{if } f[lnum].l = \text{'s'} \text{ then} \\
\text{elist}[enext] := \\
\quad \text{concat}('[,s1,a1,\text{'},s2,a2,\text{'})') \\
\text{else} \\
\text{elist}[enext] := \\
\quad \text{concat}'1\text{+}(',s1,a1,\text{'})(',s2,a2,\text{'})') \\
\text{end,} \\
f[lnum].e := enext, \\
enext := enext +1, \\
\text{end;} \\
\text{if } (f[lnum].l = \text{'w'}) \text{ and } (f[lnum].s[1] = -1) \text{ and} \\
\quad (f[lnum].a[1] = \text{'1'}) \\
\text{then } f[lnum].a[1] := \text{''}, \\
\text{end} \\
\text{else lnum := 0,} \\
\text{until f[lnum].l = \text{'\text{'})} \\
\text{last := lnum-1;} \\
\text{\{get and do the first operation\}} \\
\text{writeln('first op => location (NO COMMAS) : ');} \\
\text{readln(fop, loc),} \\
\text{case fop of} \\
\text{4: if } ((f[locl].l = \text{'1'}) \text{ and } \text{(f[locl+1].l = \text{'1'})}) \text{ or } ((f[locl].l = \text{'2'}) \text{ and } \text{(f[locl+1].l = \text{'2'})}) \text{ then} \\
\text{begin} \\
\quad \text{printf(f, last);} \\
\quad \text{doxx(f, last, loc);} \\
\text{end} \\
\text{else writeln('error in input').} \]
5: if ((f[loc].l = '1') and (f[loc+1].l = 'w')) then begin
 printf(f, last);
 dox1w(f, last, loc, enext)
end
else if ((f[loc].l = '2') and (f[loc+1].l = 'w')) then begin
 printf(f, last);
 dox2w(f, last, loc, enext)
end
else writeln('error in input'),
6: if ((f[loc].l = '1') and (f[loc+1].l = '2')) then begin
 printf(f, last),
 dox1x2(f, last, loc, enext)
end
else writeln('error in input'),
8: if (f[loc].l = 'w') and (f[loc+1].l = 'w') and ((f[loc+1].s[1] <> -1) or
 ((f[loc+1].a[1] <> '1') and (f[loc+1].a[1] <> ' '))) then begin
 printf(f, last),
 doww(f, last, loc, enext)
end
else writeln('error in input'),
9: if (f[loc].l = 'w') and (f[loc+1].l = 'w') and (f[loc+1].s[1] = -1)
 and ((f[loc+1].a[1] = ' ') or (f[loc+1].a[1] = '1'))
 and (f[loc+2].l = 'w') then begin
 printf(f, last),
 dowww(f, last, loc, enext)
end
else writeln('error in input');

10: if (f[loc].l = 'l' and f[loc+1].l = 'd') then
begin
 printf(f, last);
 doxld(f, last, loc, enext)
end
else if (f[loc].l = 'l' and f[loc+1].l = 's') then
begin
 printf(f, last);
 doxls(f, last, loc, enext)
end
else if (f[loc].l = '2' and f[loc+1].l = 'd') then
begin
 printf(f, last);
 dox2d(f, last, loc, enext)
end
else if (f[loc].l = '2' and f[loc+1].l = 's') then
begin
 printf(f, last);
 dox2s(f, last, loc, enext)
end
else writeln('error in input');

11: if (f[loc].l = 'w' and f[loc+1].l = 'd') then
begin
 printf(f, last);
 dowd(f, last, loc, enext)
end
else if (f[loc].l = 'w' and f[loc+1].l = 's') then
begin
 printf(f, last);
 dows(f, last, loc, enext)
end
else writeln('error in input');

otherwise writeln('No operation performed before reduction');
begin
writeln('What is the output file's name: ');
readln(filename);
rewrite(outfile, filename),
enext := 1,
inputf(f, last, enext, efirst); \{get the target word\}
done := FALSE;
repeat
 printf(f, last);
 reduce(f, enext, last, done);
until done,
la ste := enext-1,
printes(f, efirst, laste);
close(outfile)
end
Bibliography

[MA] M Atiyah and I MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969

Vita

Name: Robert B. Russell
Birth Date: September 30, 1962
Birth Place: Madison, Wisconsin

Degrees: B.A., Southern Methodist University, 1982
DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: Robert B. Russell

Major Field: Mathematics

Title of Dissertation: ON THE RELATIVE K_p OF NON-COMMUTATIVE LOCAL RINGS

Approved:

[Signatures]

Major Professor and Chairman
Dean of the Graduate School

EXAMINING COMMITTEE:

[Signatures]

[Signatures]

[Signatures]

Date of Examination:
May 1, 1988