2017

Novel Design of Nanostructured Material for Advanced Energy Conversion And Storage Devices

Wangwang Xu
Louisiana State University and Agricultural and Mechanical College, wxu26@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Mechanical Engineering Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_theses/4579

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master’s Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
NOVEL DESIGN OF NANOSTRUCTURED MATERIALS FOR ADVANCED ENERGY
CONVERSION AND STORAGE DEVICES

A Thesis
Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Master of Science

in

The Department of Mechanical & Industrial Engineering

By
Wangwang Xu
B.S., Wuhan University of Technology, 2012
M.S., Wuhan University of Technology, 2014
August 2017
ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Ying Wang for her patient and consistent guidance, encouragement, advice and experience necessary for me to work on a research topic that was of great interest to me. An undertaking of my master program cannot be easily progressed without her supervision and instruction.

I also would like to sincerely thank Prof. Guoqiang Li, Prof. Fengyuan Lu for being willing to serve on my committee. I am very thankful to my collaborators, Dr. Liqiang Mai, Dr. Kanging Zhao and Dr. Lei Zhang at Wuhan University of Technology in China; Zhiqiang Xie, Xiaodan Cui and Grant Dietrich at Louisiana State University (LSU).

I would like to acknowledge all the financial support from Research Enhancement Award (REA) and the Research Awards Program (RAP) sponsored by LaSPACE, Graduate Student Travel Award (LSU), LSU Economic Development Assistantship, ECS Travel Grant Award from the Battery Division in The Electrochemical Society.

Last but not least, I really appreciate my parents, old sister in China for their great support and love. I also would like to sincerely thank all my friends at LSU for their support and understanding in dealing with the challenges I have faced.
TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ii

TABLE OF CONTENTS ... iii

LIST OF FIGURES .. iv

LIST OF ABBREVIATIONS .. vi

ABSTRACT .. vii

CHAPTER 1 INTRODUCTION ... 1
 1.1 Background .. 1
 1.2 The Working Mechanism of Lithium-ion Battery ... 4
 1.3 Motivation and Goals ... 5
 1.4 References .. 8

CHAPTER 2 HIERARCHICAL GRAPHENE-ENCAPSULATED HOLLOW SnO$_2$@SnS$_2$ NANOSTRUCTURES WITH ENHANCED LITHIUM STORAGE Capability 11
 2.1 Introduction ... 11
 2.2 Experimental ... 15
 2.3 Characterization ... 16
 2.4 Results and Discussion ... 17
 2.5 Conclusions ... 31
 2.6 References ... 32

CHAPTER 3 INTEGRATED Co$_3$O$_4$/TiO$_2$ COMPOSITE HOLLOW POLYHEDRONS PREPARED VIA CATION-EXCHANGED METAL-ORGANIC FRAMEWORK FOR SUPERIOR LITHIUM-ION BATTERIES ... 37
 3.1 Introduction ... 37
 3.2 Experimental Section ... 42
 3.3 Results and Discussion ... 43
 3.4 Conclusions ... 54
 3.5 References ... 55

CHAPTER 4 CONCLUSIONS .. 62

APPENDICES: PERMISSION TO USE COPYRIGHTED MATERIALS .. 63

VITA .. 64
LIST OF FIGURES

Figure 1-1 Plot of electrochemical energy storage systems ... 2

Figure 1-2 (a) Crystal structure of LiCoO$_2$; (b) the Al$_2$O$_3$-coated nanosized LiCoO$_2$ particles by ALD cycles on the bare powders; (c) LiCoO$_2$ crystal with {001}, {104}, {101}, and {102} faces; (d) the template prepared LiCoO$_2$ nanotubes; (e) concaved cuboctahedron Li$_4$CoO$_2$ particles .. 3

Figure 1-3 Schematic illustration of a lithium-ion battery in charging/discharging process 5

Figure 2-1 Schematic illustrations of SnO$_2$ hollow spheres and hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres during electrochemical cycling. (a) Structural degradation of SnO$_2$ hollow spheres during cycling. SnO$_2$ hollow spheres tend to pulverize. Most of SnO$_2$ hollow spheres crack and crush during cycling, resulting in poor cycling performance. (b) Hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres have better permeability and more surface active sites. In this structure, SnS$_2$ nanosheets and the shells of rGO sheets outside SnO$_2$ hollow spheres can improve electronic conductivity and provide facile strain relaxation during cycling, allowing them to increase in thickness without pulverization and maintaining mechanical integrity ... 13

Figure 2-2 (a) XRD patterns of SnO$_2$@SnS$_2$@rGO; (b) TG analysis of SnO$_2$@SnS$_2$@rGO in air .. 19

Figure 2-3 (a) SEM image and (b) magnified SEM image of SnO$_2$; (c) SEM image and (d) magnified SEM image of SnO$_2$@SnS$_2$; (e) SEM image and (f) magnified SEM image of SnO$_2$@SnS$_2$@rGO ... 23

Figure 2-4 TEM image (a) and HRTEM image (b) of hierarchical SnO$_2$@SnS$_2$ hollow spheres; TEM image (c) and HRTEM image (d) of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres with corresponding SAED ... 24

Figure 2-5 (a) CV curves and (b) galvanostatic charge-discharge profiles of the first three cycles of hierarchical SnO$_2$@SnS$_2$ hollow spheres. (c, d) Cycling performance of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets at a specific current of 200 and 500 mAh/g, respectively. (e) Rate performances of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets at the specific current ranging from 100, 200, 500, 1000, 2000 to 100 mA/g; (f) Nyquist plots of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow
spheres, SnO\textsubscript{2} hollow spheres and SnS\textsubscript{2} nanosheets at 100% depth.

Figure 3-1 The ZIF-67 sample possesses a hollow polyhedron structure. After cation exchange with Ti4+, ZIF-67 is converted into Ti4+/Co2+ composite ZIF-67. Then Co\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} composite hollow polyhedrons are obtained after thermal annealing in air. For comparison purpose, pure Co\textsubscript{3}O\textsubscript{4} hollow polyhedrons are obtained without cation exchange.

Figure 3-2 (a) XPS survey spectrum of ZIF-67 and Ti4+ exchanged ZIF-67 hollow polyhedrons. (b) XRD patterns of Co\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} composite hollow polyhedrons.

Figure 3-3 SEM images of (a) ZIF-67 hollow polyhedrons, (b) Ti4+ exchanged ZIF-67 hollow polyhedrons, (c) Co\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} composite hollow polyhedrons, (d) SEM image of Co\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} composite hollow polyhedrons and corresponding EDS mappings of O, N, C and Sn elements.

Figure 3-4 (a) The TEM image and (b) HRTEM image of Co\textsubscript{3}O\textsubscript{4} / TiO\textsubscript{2} composite hollow polyhedrons.

Figure 3-5 (a) CV curves at scan rate of 0.1 mV/s, (b) cycling performance at 500 mA/g, (c) rate performance at the current density range from 100, 500, 1000, 2000, 2000 and 100 mA/g, (d) charge/discharge profiles of corresponding to the rate performance.

Figure 3-6 (a) Electrochemical impedance spectroscopy of electrodes before and after cycling. (b) SEM of the Co\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} composite hollow polyhedrons after 200 cycles (SEM image of large magnification is inserted).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive spectroscopy</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High-resolution transmission electron microscopy</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>SAED</td>
<td>Select area electron diffraction</td>
</tr>
<tr>
<td>SEI</td>
<td>Solid-electrolyte interphase</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
ABSTRACT

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high energy density are urgently required. The increasing demand for their emerging applications in hybrid electric vehicles (HEVs) and electric vehicles (EVs) requires us to develop LIBs with higher energy density and power density. Significant improvements have been achieved on researching materials with high capacity to replace current commercial cathode material (LiCoO$_2$) and anode material (graphite). In this master thesis, we introduce several research works on novel design and synthesis of nanostructured electrode materials with high performance for lithium-ion batteries.

The exploration of new inexpensive rechargeable batteries with high energy-density electrodes is a key to integrate the renewable sources such as solar and wind, and address the sustainability issues. Herein, we also introduce a scalable method to prepare hierarchical graphene-encapsulated hollow SnO$_2$@SnS$_2$ nanostructures by in-situ sulfuration on the backbones of hollow SnO$_2$ spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO$_2$@SnS$_2$@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cycleability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current
of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the 2nd to the 100th cycle, lower than the capacity degradation of bare SnO$_2$ hollow spheres (0.830%) and single SnS$_2$ nanosheets (0.393%). Even after being cycled at a range of specific current varied from 2000 mA/g to 100 mA/g, hierarchical SnO$_2$@SnS$_2$@rGO nanocomposite maintains a reversible capacity of 664 mAh/g, which is much higher than single SnS$_2$ nanosheets (374 mAh/g) and bare SnO$_2$ hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulted from the lithiation/delithiation process and maintains structural stability during cycling but also reduces aggregation and facilitates ion transportation. This work thus demonstrates the great potential of hierarchical SnO$_2$@SnS$_2$@rGO nanocomposites for application as high-performance anode material in next-generation lithium ion battery technology.

Rational design composite material is a main way to improve the performance of lithium ion batteries. Co$_3$O$_4$, attracted by the high theoretical capacity, has long suffered from low electrical transportation and dramatic large volume variations. Herein, to overcome these challenges, we report a scalable method to fabricate integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons through a cation-exchange approach in metal-organic framework. In this synthesis, well-defined ZIF-67 particles not only serve as the host to accommodate exchanged titanium cations but also act as the template to form the hollow polyhedron structure. The obtained integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons exhibit a high reversible capacity of 630 mAh/g at a rate of 500 mA/g after 200 cycles, accounting for 96.9% of the initial capacity, much higher than that of pure Co$_3$O$_4$ hollow polyhedrons, which can only maintain a specific capacity of 200 mAh/g and a capacity retention of only 40%. The optimized integrated
Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons display significant improvements in electrochemical performance, demonstrating great potential as advanced anodes in future lithium ion batteries.
CHAPTER 1. INTRODUCTION

1.1 Background

Currently, the increasing consumption of fossil fuels has resulted severely environmental problems, such as air pollution and global warming attributing to the emission of carbon dioxide and nitrous oxides. Therefore, renewable energy, such as wind energy, solar energy, geothermal energy and so on have been developed to overcome the above-mentioned challenges.[1] However, no matter on which way to obtain energy, the exploration, storage and transformation of energy needs a reasonable design.[2] Although solar energy, wind energy, geothermal energy and other non-carbon energy are clean and renewable, they are not constant and reliable sources of power. The instability of output and challenges to integrate into the grid severely limit their widespread application.[3] Energy storage technology can be employed to overcome these issues, including a set of ancillary services such as (1) frequency regulation and load following (aggregated term often used is balancing services), (2) contingency reserves, and (3) energy services that shift generation from peak to off-peak periods. In addition, it can provide services to solve more localized power quality issues and reactive power support. Overall, energy storage technology is critical to the future of renewable energy. [4-7]

According to different working mechanisms, electrochemical energy storage/conversion system can be divided into lithium-ion batteries, electrochemical capacitors (supercapacitors) and fuel cells. These three energy storage/conversion systems have three common points: 1) ions and electrons are separated. And the electrochemical reactions and the supply of energy occur between the electrodes and the electrolyte interface; (2) three main components in the systems are: cathodes, anodes, separators; (3) the two electrodes (cathode and anode) are required to have a good
conductivity.[9-12] Figure 1-1 shows kinds of current electrochemical energy storage techniques, such as fuel cells, lithium ion batteries, lead-acid batteries, Ni metal hybrid batteries, and electrolytic capacitors.[13] Among them, lithium ion batteries exhibit greater power density as well as higher energy density than the others.

![Figure 1-1 Plot of electrochemical energy storage systems](image)

Lithium ion batteries (LIBs), as the most widely used energy storage devices, have dominated the market of commercial energy storage for more than two decades due to their high energy density, long cycle life, environmental friendliness and no memory effects. In 1979, Goodenough and his co-workers first reported the use of LiCoO$_2$ as cathode material. As displayed in Figure 1-2, the intercalation of lithium ion occurs the layers of CoO$_2$ octahedrons. Due to the high operating voltage, high energy density, stable charge/discharge plateau, good cycle performance, LiCoO$_2$ is the most widely used commercial cathode materials. However, the main drawbacks of this
commercial cathode material are low delivery capacity of ~100 mAh/g, high price and poor conductivity, which hinder their large-scale application. [14-17]

Figure 1-2 (a) Crystal structure of LiCoO$_2$; (b) the Al$_2$O$_3$-coated nanosized LiCoO$_2$ particles by ALD cycles on the bare powders; [14] (c) LiCoO$_2$ crystal with {001}, {104}, {101}, and {102} faces; [15] (d) the template prepared LiCoO$_2$ nanotubes; [16] (e) concaved cuboctahedron Li$_x$CoO$_2$ particles; [17]

Graphite materials with a layered structure have been widely used in the current commercial lithium-ion batteries due to their low price and high safety. By reversible insertion mechanism, the graphite anode can supply specific capacity of 372 mAh/g. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high energy density are urgently required. Therefore, the development of new high-performance anode materials has attracted intensive research interest.[18] Base on electrochemical mechanism, anode materials can be divided into the
following three categories: alloying reaction anode materials (such as Si, SnO₂, etc.), carbon anode materials (such as graphite) and conversion reaction anode material (such as Fe₂O₃, Co₃O₄). Silicon is an attractive anode material based on alloying reaction due to the highest known theoretical charge capacity (4,200 mAh/g) and low discharge potential. [19]

1.2 The Working Mechanism of Lithium-ion Battery

Figure 1.3 displays the schematic illustration of lithium-ion battery.[20] As shown in figure 1.3, there are three main components in a lithium ion battery: cathode, anode and electrolyte. Between cathode and anode, there is a separator, which is insulative for electrons but conductive for lithium ions.[21-23] During charging process, lithium ions are extracted out from the cathode material (Li₁₋ₓCoO₂), and inserted into the layered structure of graphite, forming LiₓC₆ compound. In discharging process, lithium ions are delithiated from the graphite and return to the positive electrode material. Electrons are moving in outside circuit, powering electronic devices. In general, in order to achieve lithium ion batteries with high power and high energy, the electrode materials should meet the following requirements: (i) large theoretical specific capacity for both cathode and anode; (ii) excellent conductivity, which supports the fast transportation of electrons in both two electrodes, ensuring the large capacity at high rate; (iii) a superior structural stability, which ensures the reversibility during charge/discharge processes and cycling life of batteries; (iv) high voltage, which is determined by the redox potential between cathode and anode, playing a key role for the energy density of battery.[24-25]
1.3 Motivation and Goals

This master defense report mainly introduces three projects on development of novel cathode and anode materials with high performance for lithium ion batteries. In chapter 2, we developed a facile and scalable method to prepare two-dimensional earth-abundant jarosite-KFe$_3$(SO$_4$)$_2$(OH)$_6$/rGO hybrid via a solution-phase oxidization process at elevated temperature. In this synthesis, single-layer graphene sheets serve as both structure-directing agents and growth platforms to directly grow monocrystalline KFe$_3$(SO$_4$)$_2$(OH)$_6$ nanoplates with unique hexagonal shapes, forming KFe$_3$(SO$_4$)$_2$(OH)$_6$/rGO hybrid that exhibits a high reversible capacity of 120.5
mAh/g after 100 cycles at a specific current of 2 C and thus retains 88% of the maximum capacity. The monocrystalline jarosite-KFe₃(SO₄)₂(OH)₆-nanoplates/rGO hybrid exhibit a discharge capacity of 143.6, 113.9, 98.2, 83.9 and 65.9 mAh/g at 1, 2, 5, 10, and 20 C, respectively, and retain a specific capacity of 134.4 mAh/g when the specific current returns from 20 C to 1 C, displaying an excellent rate capability. At the high rate of 10 C, the jarosite-KFe₃(SO₄)₂(OH)₆/rGO composites maintain 70.7 mAh/g after 300 cycles with a capacity retention of 78.2%, indicating remarkable cycling stability even at a high rate. In comparison with KFe₃(SO₄)₂(OH)₆ particles, the KFe₃(SO₄)₂(OH)₆/rGO nanocomposites exhibit remarkably prolonged cycling life and improved rate capability. Therefore, earth-abundant jarosite-KFe₃(SO₄)₂(OH)₆/rGO hybrid, demonstrates great potential for application as high-performance cathode material in new-generation lithium-ion rechargeable batteries.

The applications of alloying/dealloying materials are hindered by dramatic large volume variations and sluggish kinetics. In chapter 3, to overcome these challenges, we report a facile and scalable approach for fabricating coral-like SnO₂/C composite electrodes through a top-down strategy followed by a sol-gel method of carbon coating. In this synthesis, well-defined SnS₂ nanoflowers serve as a template to obtain monocrystalline interconnected SnO₂ nanoparticles structure, and dopamine is used as the carbon source to integrate SnO₂ nanoparticles to achieve three-dimensional coral-like SnO₂/C composite, which exhibits a high reversible capacity of 648 mAh/g after 50 electrochemical cycles and a low capacity fading of 0.778% per cycle from the 2nd to the 50th cycle, demonstrating outstanding cycling stability. Such coral-like SnO₂/C composite exhibits a discharge capacity of 1294, 784, 658, 532, and 434 mAh/g at a specific current of 100, 200, 500, 1000 and 2000 mA/g, respectively, and retains a specific capacity of 719
mAh/g when the specific current goes back to 100 mA/g, displaying an excellent rate capability. Compared to the electrodes of SnS$_2$ nanoflowers and interconnected SnO$_2$ nanoparticles, the optimized coral-like SnO$_2$/C composite shows significant improvements in electrochemical performance, especially in the rate capability and cycling reversibility, and thus demonstrates great potential as superior anodes in next-generation lithium ion batteries.

Complex heterostructured nanomaterials receive tremendous attention due to their superior physical and chemical performances than single-structured materials. Nevertheless, it remains a great challenge to precisely control the composition (crystalline or amorphous), size and dimension of the building blocks of hierarchical nanostructures. In chapter 4, we report a scalable method for fabricating crystalline-Co$_3$O$_4$-carbon@amorphous-FeOOH interwoven hollow polyhedrons through thermal treatment paired with solution-phase growth for application as anodes in new-generation lithium ion batteries. In this synthesis, well-defined Co$_3$O$_4$-carbon hollow polyhedrons serve as both oxidizing agent and growth platform for amorphous FeOOH nanowires. The obtained heterostructured hollow polyhedrons exhibit a high reversible capacity of 603 mAh/g after 100 cycles at the specific current of 200 mA/g, showing a capacity fading of only 0.158% per cycle between 10 to 100 cycles, much lower than that of pure Co$_3$O$_4$-carbon hollow polyhedrons (0.604%). When the specific current returns from 2000 mA/g to 50 mA/g, Co$_3$O$_4$-carbon@FeOOH heterostructure maintains a specific capacity of 1120 mAh/g, demonstrating remarkable cycleability and high rate capability. Such superior performance is attributed to the synergistic effect of integrated crystal and amorphous components as well as the unique interwoven heterostructure. The design of such an interwoven 3D frame architecture provides new opportunity for obtaining high-performance electrode materials in the field of energy storage.
Rational design composite material is a main way to improve the performance of lithium ion batteries. Co$_3$O$_4$, attracted by the high theoretical capacity, has long suffered from low electrical transportation and dramatic large volume variations. In chapter 5, to overcome these challenges, we report a scalable method to fabricate integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons through a cation-exchange approach in metal-organic framework. In this synthesis, well-defined ZIF-67 particles not only serve as the host to accommodate exchanged titanium cations but also act as the template to form the hollow polyhedron structure. The obtained integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons exhibit a high reversible capacity of 630 mAh/g at a rate of 500 mA/g after 200 cycles, accounting for 96.9% of the initial capacity, much higher than that of pure Co$_3$O$_4$ hollow polyhedrons, which can only maintain a specific capacity of 200 mAh/g and a capacity retention of only 40%. The optimized integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons display significant improvements in electrochemical performance, demonstrating great potential as advanced anodes in future lithium ion batteries.

1.4 References

Chapter 2. Hierarchical Graphene-Encapsulated Hollow SnO$_2$@SnS$_2$
Nanostructures with Enhanced Lithium Storage Capability

2.1 Introduction

The ever-increasing consumer market of portable electronic devices has stimulated the need for high-performance energy storage devices.[1-4] Lithium ion batteries (LIBs) as the most widely used energy storage devices, have dominated the market of commercial energy storage for more than two decades due to their high energy density, long cycle life and environmental friendliness.[5-8] To construct superior LIBs, many factors have to be taken into account, such as high energy density, large capacity with high voltage and long cycling life.[9-15] Tin and tin-based materials have been extensively studied as anodes since 1997. They are deemed as potential alternatives to replace commercial graphite anodes owing to their advantages of low voltage and high theoretical specific capacity of over 650 mAh/g, which is more than twice that of commercial graphite anode (372 mAh/g).[16-18] Unfortunately, commercialization of tin and tin-based anodes in current lithium ion batteries is limited by mechanical integrity degradation and short electrochemical cycling life of these materials, due to their large volume change up to ~250% leading to pulverization during Li-ion insertion/extraction processes.[19-20] One approach to solve this issue is to avoid conversion reaction (Sn to SnO and SnO$_2$) with a lower voltage limit during electrochemical cycling to maintain cycling stability. Such a method is promising, but the exploited capacity is as low as 365 mAh/g.[21]

Recently, tin or tin compound (SnO, SnO$_2$, SnS$_2$ et.al) nanostructures have been explored to alleviate their problems of fragile structure and large volume expansion during lithiation/deliation.[22-23] To overcome these drawbacks, tin-based materials with various
morphologies and structures have been obtained, including hollow spheres, nanorod arrays, nanobelts, nanosheets and nanotubes in the past years.[24-29] For example, Lou et. al prepared SnO$_2$ hollow spheres using a hydrothermal method according to the inside-out Ostwald ripening mechanism, which displayed an initial capacity of 1140 mAh/g and a capacity of about 700 mAh/g in the 30th cycle, demonstrating much better electrochemical performance than pristine SnO$_2$ nanoparticles that exhibited an initial capacity of 645 mAh/g and retain almost no capacity after 20 cycles.[21] However, commercialization of tin-based electrodes is still hindered by its severe volume change during cycling and intrinsically poor electronic conductivity. Because of its improved mechanical integrity, larger surface area, better permeabilities and more surface active sites than common nanostructures,[30-35] hierarchical nanostructure has become very appealing as electrodes in energy devices. Wang et al. synthesized ZnO-SnO$_2$ hierarchical nanosheets exhibiting higher photocatalytic activities for degradating methyl orange than ZnO rods or SnO$_2$.[36] Mai et al. prepared hierarchical MnMoO$_4$/CoMoO$_4$ heterostructured nanowires which delivered a much higher capacity and better rate capability than either constituent component.[37]

Both SnO$_2$ and SnS$_2$ are typical tin-based compounds that have been widely studied as anode materials in LIBs. Recently, SnS$_2$/graphene composite materials have received much attention due to their improved accommodating hosting spaces and enhanced guest accessibility for the diffusion of both Li ions and sodium ions, resulting in excellent cycling performance and rate capability.[38-41] On the contrary, SnO$_2$ with a higher theoretical capacity (781 mAh/g) than SnS$_2$ displays worse cycling stability and rate performance due to its severe pulverization upon cycling. Therefore, it is expected that hierarchical SnO$_2$@SnS$_2$@rGO nanocomposite can be a battery electrode material with even better electrochemical performance by combining the advantages of each component.
Figure 2-1 Schematic illustrations of SnO$_2$ hollow spheres and hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres during electrochemical cycling. (a) Structural degradation of SnO$_2$ hollow spheres during cycling. SnO$_2$ hollow spheres tend to pulverize. Most of SnO$_2$ hollow spheres crack and crush during cycling, resulting in poor cycling performance. (b) Hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres have better permeability and more surface active sites. In this structure, SnS$_2$ nanosheets and the shells of rGO sheets outside SnO$_2$ hollow spheres can improve electronic conductivity and provide facile strain relaxation during cycling, allowing them to increase in thickness without pulverization and maintaining mechanical integrity.

Herein, to combine the merits of SnO$_2$ hollow spheres with higher specific capacity, layered SnS$_2$ with better cycling stability and reduced graphene oxide (rGO) with excellent electronic conductivity, we design and synthesize hierarchical novel SnO$_2$@SnS$_2$@rGO hollow spheres via a
facile two-step growth process, for application as anodes in new-generation lithium-ion batteries. Briefly, SnO$_2$ hollowspheres are prepared first via a hydrothermal method. Then SnS$_2$ nanosheets directly grow on SnO$_2$ hollowspheres through facile surface sulfurization, to form a hierarchical hollow structure, which ensures mechanical integrity and electrical connection between SnO$_2$ hollow spheres inside and SnS$_2$ nanosheets and reduced graphene outside. In this structure, both SnS$_2$ nanosheets and reduced graphene outside serve as the protecting shells for SnO$_2$ hollowspheres inside from dramatic volume variation during electrochemical cycling, thus alleviate their disintegration and pulverization during lithiation/delithiation. Additionally, the inner hollow space of this structure releases stress resulted from the volume change. Compared to the fragile mechanical property of SnO$_2$ hollow spheres during lithiation and delithiation, hierarchical SnO$_2$@SnS$_2$ hollow spheres can effectively maintain the integrity during cycling (Figure 1). Through being encompassed with SnS$_2$ nanosheets, hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres combine the merits of large discharge capacity and excellent cycling stability from each component, to achieve improved cycling stability with high discharge capacity. In addition, hierarchical core-shell structure provides good protection of SnO$_2$ hollow spheres, ensuring excellent structural stability. To improve electronic conductivity and rate capability, and further protect the shell of SnS$_2$ nanosheets from cracking, SnO$_2$@SnS$_2$ is further coated with rGO. The resulted hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres are expected to deliver remarkable electrochemical performance. To the best of our knowledge, such novel hierarchical electrode material is obtained for the first time. Owing to the synergic effects of each constituent in the hybrid structure, hierarchical graphene-encapsulated hollow SnO$_2$@SnS$_2$ nanostructure demonstrates great potential for application as anode material in superior lithium-ion batteries.
2.2 Experiment

Materials synthesis

All chemical reagents employed in the study were of analytical grade and used without further purification.

Synthesis of SnO$_2$ hollowspheres

SnCl$_4$•5H$_2$O (1.73 g) and NaOH (1.25 g) were dissolved into 30 mL distilled water under vigorously magnetic stirring for 30 min. The obtained solution was transferred into a Teflon-lined stainless autoclave (50 mL), and the heated at 200°C for 24 h. After cooling to room temperature naturally, the resultant white powder was rinsed with deionized water and ethyl alcohol repeatedly and separated by centrifugation and dried at 60°C for 8 h.

Synthesis of SnS$_2$ nanosheets

SnCl$_4$•5H$_2$O (0.54 g) and thiourea (0.49 g) were dissolved into 30 mL isopropyl alcohol under vigorously magnetic stirring for 30 min. The obtained solution was transferred into a stainless Teflon-lined autoclave and heated at 180°C for 24 h. After cooling to room temperature naturally, the resultant golden precipitate was collected by centrifugation and rinsed with deionized water and ethyl alcohol several times alternatively.

Synthesis of hierarchical SnO$_2$@SnS$_2$

The as-prepared SnO$_2$ (0.28 g) and 1.8 g urea were dispersed into 30 mL isopropyl alcohol by sonication for five minutes. After magnetic stirring for 30 min, the solution was transferred into a
stainless Teflon-lined autoclave (50 mL) and heated at 180°C for 36 h. After cooling to room temperature naturally, the product was collected via centrifuge and rinsed repeatedly.

Synthesis of hierarchical SnO$_2$@SnS$_2$@rGO hollowspheres

The as-prepared SnO$_2$ (0.28 g) were dispersed into 30 mL isopropyl alcohol by sonication for five minutes. Then, 1.8 g urea and 5 ml (6 mol/L) GO (ACS Material, LLC) dispersion colloid were added into the solution. After magnetic stirring for 30 min, the solution was transferred into a stainless Teflon-lined autoclave (50 mL), heated at 180°C for 36 h. The obtained light black product was then reduced in 100 ml hydrazine hydrate solution with a concentration of 10 mmol/L for about three hours. Then the product was collected by centrifugation and rinsed with deionized water and ethyl alcohol several times alternatively. The hierarchical SnO$_2$@SnS$_2$ hollowspheres were prepared by the same method without adding GO.

2.3 Characterization

Crystallographic structures of the obtained products were determined by Rigaku MiniFlex X-ray diffraction (XRD) measurement with Cu K$_\alpha$ radiation in a 2θ range from 10° to 80° at room temperature. Surface morphology, particle size and energy dispersive spectroscopic (EDS) were studied using a FEI Quanta 3D FEG field emission scanning electron microscopy (FESEM). Thermogravimetric (TG) was performed on a SII STA7300 analyzer at a heating rate of 1 °C min$^{-1}$ in air.

Electrochemical Measurements

The anodes were composed of the as-prepared tin based material (hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, or hierarchical SnO$_2$@SnS$_2$ hollow sphere, or SnO$_2$ hollow spheres or SnS$_2$
nanosheets powders) and acetylene black as well as sodium alginate binder mixed at a weight ratio of 7:2:1 in deionized water followed by drying. The anodes were assembled into CR2032-type coin cells in an argon filled glove-box using lithium foil as the cathode and celgard-2320 membrane as separator; electrolyte was 1 M LiPF$_6$ dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) and diethylcarbonate (DEC) at a volumetric ratio of 1:1:1. The coin cells were aged for 12 h before electrochemical measurements to ensure full filtration of the electrolyte into the electrodes. Galvanostatic charge/discharge measurements were performed using an eight-channel battery analyzer (MTI Corporation) in a voltage range of 0.01-2V (versus Li$^+/\text{Li}$). Cyclic voltammetry (CV) measurements were performed using an electrochemical work station (CHI 6504C) over the potential range of 0.01-2.0 V vs Li$^+/\text{Li}$ at a scanning rate of 0.1 mV/s. Electrochemical impedance spectroscopy (EIS) measurements were conducted by applying an AC potential of 5 mV amplitude in the frequency range from 0.01 to 100 kHz. Thermogravimetry (TG) was performed on a SII STA7300 analyzer at a heating rate of 1 °C/min in nitrogen.

2.4 Result and Discussion

To prepare hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, SnO$_2$ hollow spheres are obtained first as described in the experimental section. The formation mechanism of the SnO$_2$ hollow spheres can be attributed to the inside-out Owstald ripening process.[23]

\[
\text{Sn}^{4+} + 6\text{OH}^- = \text{Sn(OH)}_6^{2-} \tag{1}
\]

\[
\text{Sn(OH)}_6^{2-} = \text{SnO}_2 + 2\text{H}_2\text{O} + 2\text{OH}^- \tag{2}
\]

As shown in reaction 1 and 2, Sn$^{4+}$ will hydrolyze to produce primary SnO$_2$ nanocrystals. This process is completed very quickly, therefore, these renascent solid spheres might not be well
crystallized, especially for the nanoparticles inside. Subsequently, these inner nanoparticles with higher surface energy will dissolve and further hydrolyze and condense to form SnO$_2$ nanocrystals on the surface of the spheres. The formation mechanism of hierarchical core shell structure has been proposed. At the initial stage of suffixation reaction in thiourea solution, H$_2$S that is released from the decomposition of thiourea, adsorbs on the metal surrounding SnO$_2$ hollow spheres. Then, S atoms interact with the metal centers and form the surface sulfur species via O\leftrightarrowS exchange by releasing oxygen atoms at the same time. After that, the follow-up S atoms diffuse into the lattice through analogous interstitial mechanism along oxygen vacancies, converting tin oxides into tin sulfides. Finally, the conversion reaches its limit because of the relatively lower diffusion coefficient and the diffusion depth of S atoms in the shell layer. Moreover, the sulfuration product SnS$_2$ tends to nucleate and grow on the reaction sites on the surface of SnO$_2$, because the energy of nucleation required in heterogeneous phase is generally lower than that in homogeneous phase. With the sulfuration process progressing, SnS$_2$ nanosheets are produced encapsulating the rest SnO$_2$ hollow spheres. SnO$_2$ hollow spheres are not only used as tin source but also as the “substrate” guiding the self-assembly growth of SnS$_2$ in aqueous solution without surfactant and stabilizers. Moreover, as they have typical layered structure, SnS$_2$ nanosheets are easily self-assembled around SnO$_2$ hollow spheres to form hierarchical SnO$_2$@SnS$_2$ hollow spheres. The reason that SnO$_2$@SnS$_2$ can be wrapped with graphene is clarified below. During the hydrothermal process, the outer electron orbit of Sn element can bond with the π electron cloud and the residual oxygen-containing functional groups of graphene. In addition, SnS$_2$ is structurally and morphologically analogous to graphene. Therefore, rGO tends to wrap around the surface of SnO$_2$@SnS$_2$ during the hydrothermal process in order to significantly reduce the high surface energy.
Figure 2-2 (a) XRD patterns of SnO$_2$@SnS$_2$@rGO; (b) TG analysis of SnO$_2$@SnS$_2$@rGO in air

Figure 1 compares schematic view of possible structural change of SnO$_2$ hollow spheres and hierarchical SnO$_2$@SnS$_2$@rGO nanostructure during repeated lithiation/delithiation processes. It can be seen that SnO$_2$ hollow spheres tend to crack, crush and pulverize during electrochemical cycling, resulting in structural degradation and poor cycling performance (Figure 1a). However, hierarchical SnO$_2$@SnS$_2$@rGO structure is very promising in delivering excellent electrochemical performance due to the following reasons. First, compared to the easy breaking up of bare SnO$_2$ hollow spheres during cycling due to their large volume variations in Figure 1a, hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, with SnO$_2$ hollow spheres encapsulated by SnS$_2$@rGO nanosheets outside, can effectively relieve the pressure resulted from the outward expansion during intercalation of lithium ions into the interior of anode materials, leading to improved mechanical integrity (Figure 1b). Second, the designed hierarchical structure with enhanced permeability, larger specific surface areas, provides more pathways for lithium ion transport, resulted in more facile and faster lithium ion transport. Meanwhile, with the rGO sheets surrounding the spheres outside, faster reaction kinetics of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres is realized.
To determine crystal structures of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets, X-ray diffraction (XRD) measurements are conducted. Figure 2 and Figure S1 (Supporting Information (SI)) present the XRD patterns of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres and each single component, respectively. Regarding the backbones of SnO$_2$ hollow spheres, their XRD pattern in Figure S1a is identified as tetragonal SnO$_2$ with lattice parameters of $a = 4.7358$ Å, $b = 4.7358$ Å, $c = 3.1851$ Å, P42/mnm space group, which matches well with standard XRD pattern of tetragonal cassiterite SnO$_2$ (JCPDF card no. 01-077-0447). As for pristine SnS$_2$ nanosheets, its XRD pattern (Figure S1b) is identified as hexagonal berndtite SnS$_2$ (JCPDF card no. 00-022-0951) with lattice parameters of $a = 3.6486$ Å, $b = 3.6486$ Å, $c = 5.8992$ Å, P-3m1 space group. The XRD patterns of both hierarchical SnO$_2$@SnS$_2$ (Figure S1c) and hierarchical SnO$_2$@SnS$_2$@rGO (Figure 2a) display the crystallinity combination of bare SnO$_2$ hollow spheres and layered SnS$_2$ nanosheets, suggesting the formation of SnO$_2$@SnS$_2$ heterostructure. It is noted that there are no obvious diffraction peaks from rGO due to its low crystallinity. Then thermogravimetry (TG) measurement is performed to further investigate the content of each component in the hierarchical material. The TG curve of SnO$_2$@SnS$_2$@rGO composite in Figure 2b shows two main steps, corresponding to oxidizations of SnS$_2$ nanosheets and rGO, respectively. Combustion of SnS$_2$ nanosheets starts at around 250 ºC and completes at approximately 425 ºC. The calculated weight loss is 10% which is ascribed to 56 wt % SnS$_2$ in the sample. Combustion of rGO starts at about 500 ºC and completed at 650 ºC, corresponding to a 6% weight loss in the second step, and 6 wt% rGO in the sample.

Figure 3 and Figure S2 present SEM images of the as-prepared SnO$_2$ hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres and SnS$_2$
nanosheets. Figure 3a shows typical SEM image of the as-synthesized SnO\textsubscript{2} nanospheres at low magnification. Large quantities of smooth-faced SnO\textsubscript{2} nanospheres with diameter of about 1 \textmu m can be clearly observed. Additionally, high-magnification SEM image in Figure 3b displays a broken SnO\textsubscript{2} sphere, proving the as-prepared SnO\textsubscript{2} spheres are hollow. The hollow sphere is also shown to have an inner diameter of 400 nm with a thickness of \(~300\) nm. In order to obtain hierarchical SnO\textsubscript{2}@SnS\textsubscript{2} hollow spheres, the as-prepared SnO\textsubscript{2} reacts with thiourea for 36 h. Figure 3c displays an SEM image of hierarchical SnO\textsubscript{2}@SnS\textsubscript{2} hollow spheres at low magnification. It can be seen that each sphere is separated by nanosheets, indicating that aggregation of SnO\textsubscript{2} hollow spheres is effectively prevented by the sulfuration process. In the high-magnification SEM image, it is shown that SnO\textsubscript{2} hollow spheres are completely encapsulated by SnS\textsubscript{2} nanosheets, which directly grow on the surface of SnO\textsubscript{2} hollow spheres via in-situ surface sulfurization. To further study the elemental composition and distribution, EDS mapping was performed. It is clearly observed in Figure S3 that hierarchical SnO\textsubscript{2}@SnS\textsubscript{2} hollow spheres consist of Sn, S and O. The EDS line scan (the inset in Figure S3) confirms that oxygen element is distributed much narrower than sulfur, indicating that oxygen element is inside and SnO\textsubscript{2} hollow spheres are completely encapsulated by SnS\textsubscript{2} nanosheets. For comparison purpose, SnS\textsubscript{2} nanosheets are prepared and investigated as a reference sample to compare with the performance of the composite material. Figure S2 displays SEM images of single SnS\textsubscript{2} nanosheets. Figure S2a shows that the as-prepared SnS\textsubscript{2} nanosheets are quite homogeneous, forming flower-like shapes. The magnified image (Figure S2b) reveals that SnS\textsubscript{2} nanosheets are about a few nanometers thick and \(~2\) \textmu m long. To form hierarchical SnO\textsubscript{2}@SnS\textsubscript{2}@rGO hollow spheres, rGO nanosheets are yielded via reduction of GO nanosheets. As shown in the SEM image at low magnification, most of the
hierarchical SnO$_2$@SnS$_2$ hollow spheres are encompassed by rGO together, forming integrated electron transportation, which can effectively improve rate capability of the sample. It can be seen from the magnified SEM image (Figure 3f) that each sphere is a surrounded completely by rGO in hierarchical SnO$_2$@SnS$_2$@rGO hollow structure. SnS$_2$ and rGO serve as the shell layer outside SnO$_2$ hollow spheres for protection. Moreover, composition of hierarchical SnO$_2$@SnS$_2$@rGO hollow structure is also determined by EDS. As seen in the EDS mapping in Figure S4, hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres are composed of C, O, S and Sn, which confirms successful fabrication of this novel battery electrode material.

In order to further identity the hierarchical structure of the as-prepared samples, TEM and HR-TEM coupled with electron diffraction characterizations are carried out. As shown in Fig. 4a, SnO$_2$@SnS$_2$ core-shell structure is identified, wherein the inner hollow sphere is completely encapsulated by the surrounding nanosheets. The HR-TEM image of nanosheets in Fig. 4b exhibits lattice fringes with a spacing of 5.89, 2.95 and 2.78 Å, which can be assigned to the (001), (002) and (101) planes of SnS$_2$, respectively. In addition, the TEM image in Fig 4c further confirms the hierarchical structure of SnO$_2$@SnS$_2$@rGO sample. The lattice fringes with a spacing of 5.89, 3.16 and 2.78 Å are determined in the HR-TEM image in Fig. 4d, corresponding to (001), (100) and (101) planes of SnS$_2$, respectively. Moreover, it can be clearly observed that SnS$_2$ nanosheets are completely coated with amorphous film, which is recognized as rGO. A selected-area electron diffraction (SAED) pattern in Fig. 4d is well indexed as a hexagonal SnS$_2$ phase. In addition, to evaluate the specific surface area, the N$_2$ adsorption-desorption measurements of all the samples are performed. Hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres displays a Brunauer–Emmett–Teller (BET) surfaced area of 29.32 m2/g, which is higher than that of SnO$_2$@SnS$_2$ hollow spheres (25.0 m2/g) and bare SnO2 hollow spheres (11.9 m2/g).
Figure 2-3 (a) SEM image and (b) magnified SEM image of SnO$_2$; (c) SEM image and (d) magnified SEM image of SnO$_2$@SnS$_2$; (e) SEM image and (f) magnified SEM image of SnO$_2$@SnS$_2$@rGO
Figure 2-4 TEM image (a) and HRTEM image (b) of hierarchical SnO$_2$@SnS$_2$ hollow spheres; TEM image (c) and HRTEM image (d) of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres with corresponding SAED.

To evaluate electrochemical performances of all the samples, coin cells of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow sphere, SnO$_2$ hollow spheres and SnS$_2$ nanosheets were assembled and cycled in a voltage range of 0.01 - 2 V \((\text{versus } \text{Li}^+/\text{Li})\). Generally, electrochemical reactions of SnO$_2$ and SnS$_2$ with lithium can be described as below:

\[
\text{SnO}_2 + 4\text{Li} = 2\text{Li}_2 \text{O + Sn} \quad (3) \\
\text{SnS}_2 + 4\text{Li} = 2\text{Li}_2 \text{S + Sn} \quad (4) \\
\text{Sn} + x\text{Li}^+ + xe^- = \text{Li}_x\text{Sn} \quad (5)
\]
Reaction (3) and (4) are regarded partially reversible. Therefore, theoretical capacities of SnO$_2$ and SnS$_2$ are determined to be 782 and 650 mAh/g, respectively, based on the reaction (5).36-37 Figure S5a displays CV curves of SnO$_2$ hollow spheres, showing two characteristic peaks at 0.9 and 0.1 V vs. Li/Li$^+$ in the first potential sweeping cycle, which are ascribed to decomposition of SnO$_2$ into metallic Sn and Li$_2$S (reaction 3) and generation of Li-Sn alloy (reaction 5), respectively. It is noted that the decomposition reaction is partially reversible. In subsequent cycles, intercalation of lithium ions occurs at 0.1 V and deintercalation of lithium ions occurs at 0.5 V vs. Li/Li$^+$, due to the alloying/dealloying reactions (reaction 5). Additional cathodic peak at 0.9 V and anodic peak at 1.3 V can be attributed to the partially reversible conversion process (reaction 3). The CV curves of SnS$_2$ nanosheets in Figure S5c exhibit three characteristic peaks at 1.7, 1.2 and 0.1 V in the first potential sweeping cycle, which are attributed to lithium intercalation of SnS$_2$ layers without phase decomposition, decomposition of SnS$_2$ into metallic Sn and Li$_2$S (reaction 4) and generation of Li-Sn alloy, respectively. In subsequent cycles, the redox peaks at 0.1 V in the anodic reaction and 0.6 V in the cathodic reaction can be ascribed to the reversible alloying and dealloying reactions of Sn and Li (reaction 5), respectively. In the CV curves of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres (Figure 5a), four broad peaks appear at the potential of 1.7, 1.2, 0.9 and 0.1 V in the first potential sweeping cycle. The peak at ~1.7 V can be attributed to lithium intercalation of SnS$_2$ layers without phase decomposition. The peaks around 1.2 V and 0.9 V are attributed to conversion reaction of SnO$_2$ (reaction 3) and SnS$_2$ (reaction 4), respectively. The peak at 0.1 V is related to generation of Li-Sn alloy. It can be seen that both the CV curves display characteristic peaks of SnO$_2$ hollow spheres and SnS$_2$ nanosheets, confirming the coexistence of SnO$_2$ and SnS$_2$ in the samples.
Figure 2-5 (a) CV curves and (b) galvanostatic charge-discharge profiles of the first three cycles of hierarchical SnO$_2$@SnS$_2$ hollow spheres. (c, d) Cycling performance of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets at a specific current of 200 and 500 mAh/g, respectively. (e) Rate
performances of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets at the specific current ranging from 100, 200, 500, 1000, 2000 to 100 mA/g; (f) Nyquist plots of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets at 100% depth.

The charge and discharge characteristics of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres are investigated between 0.01 and 2.0 V vs. Li/Li$^+$ at a specific current of 100 mA/g (Figure 5b). The first discharge and charge capacities of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres are about 1195 and 826 mA h/g. The potential plateaus at 1.25 and 1.0 V are ascribed to the conversion reaction between SnO$_2$, SnS$_2$ and Li$^+$, leading to formation of Li$_2$O, Li$_2$S and Sn in the first discharge process. The following profiles with long slope indicate generation of Li-Sn alloy (reaction 5). Figure 5c and d summarize cycling performances of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres, hierarchical SnO$_2$@SnS$_2$ hollow spheres, SnO$_2$ hollow spheres and SnS$_2$ nanosheets. When the specific current is 200 mA/g (Figure 5c), the initial discharge capacity of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres is as high as 1150 mAh/g. However, very rapid capacity decaying is observed for all the four samples, which is generally mainly due to partial reversibility of reaction (3) and (4), generation of solid electrolyte interface (SEI) associated with decomposition of electrolyte. After 100 electrochemical cycles, hierarchical SnO$_2$@SnS$_2$@rGO sample maintains a capacity of 583 mAh/g, corresponding to a capacity fading of 0.273% per cycle from the 2nd to the 100th cycles, demonstrating an outstanding cycling stability. In contrast, a drastic capacity fading is observed for pristine SnO$_2$ hollow spheres after 50 cycles, corresponding to a capacity fading of as high as 0.830% per cycle from the 2nd to 100th cycle. This result may be caused by expansion/contraction of SnO$_2$ hollow spheres during charge/discharge, leading to
severe pulverization and delamination from the conductive substrate. Meanwhile, SnS$_2$ nanosheets exhibit a lower initial discharge capacity at about 800 mA/h and stable cycling performance with a capacity fading as high as 0.393% per cycle from the 2nd to the 100th cycle. These may be attributed to the low theoretical capacity of SnS$_2$ nanosheets and stable layered structure of SnS$_2$ with hosting space for swelling accommodation. In comparison with pristine SnO$_2$ and SnS$_2$ nanosheets, both hierarchical SnO$_2$@SnS$_2$ hollow spheres and hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres anodes display larger discharge capacity and longer cycling life, which is attributed to unique hierarchical structure with higher permeability, reduced aggregation and better mechanical integrity. Compared to the specific discharge capacity of 450 mA/h of hierarchical SnO$_2$@SnS$_2$ hollow structure after 100 electrochemical cycles, hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres display a capacity of 583 mA/h, showing a higher discharge capacity and capacity retention, attributing to the rGO layer wrapped outside which not only protects the inner active material from volume change during cycling, but also promotes facile electron transport and prohibits the formation of SEI film.

When the specific current is increased to 500 mA/g, enhanced cycling performance is also obtained. Compared with hierarchical SnO$_2$@SnS$_2$ hollow spheres (345 mA/h), SnO$_2$ hollow spheres (15 mA/h) and SnS$_2$ nanosheets (206 mA/h) (Figure 5d), hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres deliver a discharge capacity of 487 mA/h after 100 cycles, showing the highest discharge capacity and best cycling performance. The rate performances of the as-prepared samples are summarized in Figure 5e. Hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres deliver a discharge capacity of 1195, 722, 637, 527, and 436 mA/h at a specific current of 100, 200, 500, 1000 and 2000 mA/g, respectively in Figure 5e. When the specific current goes
back to 100 mA/g, the discharge capacity is recovered to 664 mAh/g, showing the best rate capability among hierarchical SnO$_2$@SnS$_2$ (587 mAh/g), pure SnO$_2$ hollow spheres (177 mAh/g) and pure SnS$_2$ nanosheets (370 mAh/g). Hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres exhibit improved rate capability due to good mechanical integrity of hierarchical structure during fast lithium intercalation and deintercalation. Moreover, rGO sheets wrapping around SnS$_2$ nanosheets provide a continuous pathway for fast electron transport, as confirmed by the EIS results in figure 5f. EIS technology, one of the most powerful tools for studying electrochemical kinetics, can be used to investigate the processes occurring at the electrode/electrolyte interfaces and Li$^+$ intercalation/de-intercalation within electrode materials in the battery cells. In the Nyquist plots, R_Ω represents the Ohmic resistance of the battery cell, including electrodes, electrolyte and other cell components. R_{ct} represents the charge transfer resistance. CPE and Z_w are the double layer capacitance and the Warburg impedance, respectively. (Figure 4f) All the Nyquist plots are composed of a depressed semicircle in the medium-frequency region followed by a slanted line in the low-frequency region. The electrode of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres shows the lowest charge transfer resistance of 30 Ω compared to hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres (75 Ω), SnO$_2$ hollow spheres (80 Ω) and SnS$_2$ nanosheets (50 Ω), indicating a faster charge transfer at the electrode/electrolyte interface. Specifically, as observed in Fig. 4, the SnO$_2$ sample shows higher capacity but worse cycling stability than bare SnS$_2$. On the contrary, the SnS$_2$ sample exhibits relatively low capacity but much better cycling stability than SnO$_2$. Therefore, the SnO$_2$@SnS$_2$ composite combines the merits of both SnO$_2$ and SnS$_2$, resulting in higher capacity and better cycling stability than either component. In addition, graphene has been widely reported to effectively improve electrical conductivity of the overall electrode and can also serve as a
promising protection for the SnO$_2$@SnS$_2$ active material to restrict large volume change upon cycling. Therefore, in this work, the graphene-encapsulated hollow SnO$_2$@SnS$_2$ sample exhibits the highest specific capacity, the best cycling stability and rate capability among the four anodes (SnO$_2$, SnS$_2$, SnO$_2$@SnS$_2$, and SnO$_2$@SnS$_2$@graphene). Such significantly improved electrochemical performance can be ascribed to the synergic effect of each component in the composite. In addition, compared with most recently reported SnO$_2$ or SnS$_2$ based nanostructured anode materials, our work demonstrates significantly improved discharge capacity and prolonged cycling life even at higher specific current. For example, Guo et al.35 reported that the SnO$_2$@graphene composite can retain only 433 mAh/g after 20 cycles at specific current of 100 mA/g. The SnS$_2$ nanosheets@multiwalled carbon nanotubes composite material can maintain only 400 mAh/g after 50 cycles at specific current of 100 mA/g.38

In this work, the enhanced electrochemical performance of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres is mainly due to the following reasons. (1) The merits of SnO$_2$ hollow spheres with higher specific capacity and layered SnS$_2$ with better cycling stability are revealed in hierarchical SnO$_2$@SnS$_2$@rGO hollow structure. (2) In the hierarchical core-shell hollow structure, SnS$_2$@rGO shells stabilize the inner SnO$_2$ hollow spheres, which effectively alleviate the stress by local empty space to achieve an excellent structure stability and mechanical integrity. (3) The hierarchical structure provides reduced aggregation, large surface area, better permeability and more available charge storage sites, contributing to superior kinetics and excellent rate capability as well as enhanced cycling performance. Table S1 compares cycling performance of our hierarchical hollow SnO$_2$@SnS$_2$@rGO nanostructure with various SnO$_2$ or SnS$_2$ based nanostructured electrodes reported in literature35-40, and it is found that hierarchical
SnO$_2$@SnS$_2$@rGO hollow spheres display obviously prolonged cycling life and increased specific discharge capacity as well as improved rate capability, when cycled at specific current of 200 mA/g. Therefore, such novel hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres are very promising for application as superior electrode material in new-generation lithium-ion batteries, due to their easy preparation and excellent electrochemical performance.

2.5 Conclusions

In summary, hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres are successfully synthesized by a facile and scalable in-situ sulfuration method which involves a simple hydrothermal treatment followed by a solvothermal process. When assembled into lithium-ion battery cells, the as-prepared material delivers a specific capacity of 583 mAh/g after 100 cycles at a specific current of 200 mA/g and a reversible capacity of 664 mAh/g after cycled at a high specific current of 2000 mA/g, demonstrating a significantly increased capacity and enhanced cycling reversibility compared to either bare SnO$_2$ hollow spheres or SnS$_2$ nanosheets. Because of their unique hierarchical hollow structure, the as-prepared hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres can effectively alleviate stress and accommodate large volume change during lithiation/delithiation process, leading to excellent structural stability and mechanical integrity. This structure also provides continuous pathways for faster electron transport. Thus, cycling performance of hierarchical SnO$_2$@SnS$_2$@rGO hollow spheres is prolonged and its rate capability is greatly enhanced. Such hierarchical hollow core-shell structure can be generalized to other materials and find wide applications in high-performance energy storage devices.

Acknowledgement
This work is supported by the Research Enhancement Award (REA) and Research Awards Program (RAP) sponsored by La-SPACE. The authors also want to acknowledge the Shared Instrumentation Facility (SIF) at LSU for using XRD and SEM.

2.6 References

3.1 Introduction

The present increasing energy demand for energy storage system with high efficiency, environmental benignity and low cost has stimulated intense research on lithium-ion batteries (LIBs).[1] Since its invention in 1991, rechargeable LIBs have gradually dominated the market of portable energy storage devices and shown great promise to satisfy the fast-increasing energy demand of a sustainable and environmentally-friendly society.[2-5] However, limited energy density and capacity of LIBs have fallen short of our expectations in expanding their applications to a broader field, especially hybrid electric vehicles (HEVs) and electric vehicle (EVs), where high energy density and large capacity are essential. [6, 7] In order to enhance the capacity and energy density of LIBs, a great deal of research has been centered on the development of novel anode materials with larger theoretical capacity, lower cost, better stability as well as durability.[8, 9]

So far, many materials have been exploited as anode materials for LIBs, such as nitrogen-doped / graphitic carbon,[10] metal oxides (MnO$_2$,[11] Fe$_2$O$_3$,[12] Co$_3$O$_4$,[13] NiO,[14] MoO$_3$,[15] SnO$_2$, [16, 17] TiO$_2$ [18]), metal sulfides (MoS$_2$, [19] SnS$_2$, [20] Co$_9$S$_8$, [21] VS$_2$[22]), and lithium alloys (Sn, Si, Sb)/multinary alloys.[23-25] Among them, Co$_3$O$_4$ is considered as one of the most promising anode material in LIBs due to its large theoretical capacity (890 mAh/g), which is more than two times that of current commercially used graphite anode (372 mAh/g).[26] Therefore, Co$_3$O$_4$ is expected to satisfy the future large energy-storage demand. However, accompanying
superior lithium storage capacity, Co$_3$O$_4$ also suffers from its limitations of (a) poor electronic conductivity, and (b) serious electrode pulverization, resulted from its large volume expansion/contraction during cycling. In the Li insertion and extraction process, severe volume change associated with particle crush, lead to large irreversible capacity loss and poor capacity retention, hindering Co$_3$O$_4$-based anodes from commercial applications. Over the years, extensive efforts have been focused on addressing the first issue of poor electronic conductivity, via fabricating nanostructures hybridized with conducting materials, including amorphous carbon, graphene oxide nanosheet and conductive polymers, in an attempt to improve electronic conductivity and structure stability of Co$_3$O$_4$. For example, as reported by Lin et al., peapod-like Co$_3$O$_4$@Carbon nanocomposites can supply the specific capacity of as high as 1050 mAh/g, which is much higher than that of single Co$_3$O$_4$ nanoparticles (372 mAh/g) after 50 cycles at specific current of 1 C.[27] Moreover, Co$_3$O$_4$@Carbon nanotube arrays, reported by Schth et al., can provide the specific capacity of 700 mAh/g at 10 mA/g after 100 cycles, which is far more than that of the single mesoporous Co$_3$O$_4$ (199 mAh/g).[28] Their work makes great progress on improving the conductivity of Co$_3$O$_4$ and its structural stability to a certain extent. However, insufficient emphasis has been placed on overcoming the second challenge—severe volume change during lithiation and delithiation due to volume expansion of inner Co$_3$O$_4$, which causes the protective coating layer to crack and fracture, rendering the original core–shell structure. The volume change associated with particle crush leads to large irreversible capacity loss and poor capacity retention, hindering commercial applications of Co$_3$O$_4$-based anodes.

Another transition metal oxide, TiO$_2$, more specifically, anatase-TiO$_2$, has received increasing attention as novel anode material for LIBs due to its low cost, good cycling stability as well as
environmental friendly quality. In comparison with most transition metal oxides, anatase-TiO$_2$ displays better cycling ability because of its relatively low theoretical capacity (178 mAh/g) and fewer inserted amount of lithium ions. Moreover, due to its excellent structural stability, TiO$_2$ can also act as a promising protective layer for active material to maintain mechanical integration during cycling. For example, Cui et al. designed sulphur-TiO$_2$ yolk-shell nanoarchitecture. The sulphur-TiO$_2$ yolk-shell nanoarchitecture displays an initial capacity of 1030 mAh/g at 0.5 C and a capacity decay as small as 0.033% per cycle after 1000 cycles, presenting superior cycling ability. Such remarkable performance is attributed to the stable TiO$_2$ shell and novel yolk-shell nanoarchitecture. Moreover, as reported in previous reports, in comparison with pure TiO$_2$ and transition metal oxides, TiO$_2$/transition metal oxides composites exhibit enhanced electrochemical performances due to the positive synergistic effect. The electrochemical performance of the composite with different ratio of TiO$_2$ and transition metal has also been explored. The composite with a higher mass content of TiO$_2$ usually exhibits a relative lower initial capacity with better cyclability. For example, Liu et al. reported that Co$_3$O$_4$/TiO$_2$ composite with a mass ratio of 6:1, exhibits limited improved cyclability over 150 cycles compared to pure Co$_3$O$_4$. Moreover, Jaumann et al. reported the CoO/TiO$_2$ composite with a very high TiO$_2$ content (>50%) that shows excellent cycle ability but very low capacity. In this respect, the strategy of designing composite nanoarchitecture with stable TiO$_2$ and large-capacity metal oxides can help one realize synergic property of electrochemistry.

Metal-organic frameworks (MOFs), composed by metal clusters with electron-donating organic ligands, have been intensively studied as a result of their versatile structural topologies, tunable functionalities, as well as wide applications in catalysis, gas storage, and biomedical imaging. In
recent years, cation exchange has emerged as an effective synthetic route to the modification of secondary building units of MOFs.[36] According to Ringwood’s rule [37], ions with similar electronegativity could replace each other. The ions with the lower electronegativity will be exchanged more easily because it can form stronger bonds with the one with larger ionic character. Recently, it has been widely used to improve chemical/physical properties of molecules and nanocrystals, expanding the applications of MOFs. For example, Rosi et al., reported that their CO$_2$ adsorption properties can be tuned by cation exchange. Because the pore size of MOF-1 can be synthetically modified via straightforward cation-exchange experiments, such modifications can be used to tune the CO$_2$ adsorption capacity of MOF-1.[38] Moreover, the cation exchange process can also be used to synthesize composite heterostructures. Hollingsworth et al. have synthesized PbSe/CdSe core/shell quantum dots using a controllable partial cation exchange method. The resulted core/shell nanocrystal quantum dots are stable against fading and spectral shifting due to the synergic physical properties.[39]

Herein, we report for the first time, the controllable design of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedron nanoarchitecture via cation exchange in zeolitic imidazolate frameworks (ZIF-67), followed by thermal treatment. Co$^{2+}$ cation can be replaced by Ti$^{4+}$ cation more easily than Co$^{3+}$ due to its lower electronegativity. The Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons display prolonged and stable cycling for over 200 cycles as anode material for LIBs. The unique advantage of such composite hollow polyhedrons lies in the synergistic effect of two integrated components as anode material for LIBs. Specifically, Co$_3$O$_4$ can supply durable large capacity at high specific current, due to the integration of TiO$_2$ with stable structure and higher conductivity. Moreover, the internal void space can effectively accommodate large volumetric expansion of Co$_3$O$_4$ during
cycling, maintaining structural integrity of the shell. In addition, owing to better conductivity, the TiO\textsubscript{2} component provides faster pathways for electron transportation, improving electrochemical reaction kinetics of the composite. In comparison with bare Co\textsubscript{3}O\textsubscript{4} hollow polyhedrons, the composite nanostructures are found to exhibit superior capacity retention and rate capability. At a specific current of 500 mA/g, the composite nanostructures provide an initial capacity as high as 662 mAh/g, and maintain a stable capacity of 642 mAh/g after 200 cycles, accounting for 96.9% of the initial capacity, much higher than pure Co\textsubscript{3}O\textsubscript{4} hollow polyhedrons that can only maintain a specific capacity of 200 mAh/g and a capacity retention of only 40%. To the best of our knowledge, this is the first time that Co\textsubscript{3}O\textsubscript{4} with this level of performance has been reported for application as LIB anode material.

Figure 3-1 The ZIF-67 sample possesses a hollow polyhedron structure. After cation exchange with Ti4+, ZIF-67 is converted into Ti4+/Co2+ composite ZIF-67. Then Co\textsubscript{3}O\textsubscript{4}/TiO\textsubscript{2} composite
hollow polyhedrons are obtained after thermal annealing in air. For comparison purpose, pure Co$_3$O$_4$ hollow polyhedrons are obtained without cation exchange.

3.2 Experimental Section

Synthesis of ZIF-67: In a typical synthesis, 2-methylimidazole (1.97 g) was dissolved in a mixed solution of 20 ml methanol and 20 ml ethanol. Co(NO$_3$)$_2$⋅6H$_2$O (1.746 g) was dissolved in another mixed solution of 20 ml methanol and 20 ml ethanol. The above two solutions were then mixed under continuous stirring for 10 minutes, and the final solution was kept for 20 hours at room temperature.[40] The resulted purple precipitate was collected by centrifugation, washed in ethanol several times, and dried at 80 °C.

Synthesis of Composite Co$_3$O$_4$/TiO$_2$ Hollow Polyhedrons via Cation-exchange: Tetrabutyl titanate (6 mmol) was dissolved in 100 mL dry deaerated DMF. After being stirred for 10 mins, 100 mg ZIF-67 was added in the solution. The suspensions were stirred gently for 48 hours at room temperature (25 °C). After the exchange of Ti$^{4+}$ cations, the precipitates were collected by centrifuge and rinsed with DMF and alcohol several times, and dried at 80 °C for 12 h. Finally, the product was obtained by annealing the powder at 300 °C with a heating rate of 2 °C/min and kept at that temperature for 2 h.

Synthesis of Co$_3$O$_4$ Hollow Polyhedrons: The ZIF-67 polyhedrons were dispersed in a crucible, heated to 300 °C with the heating rate of 2 °C/min and kept at that temperature for 2 h in the furnace. After that, the furnace is cooled down to room temperature naturally.

Characterization: The chemical states of obtained products were studied by X-ray photoelectron spectroscopy (XPS). XPS data were collected on an AXIS165 spectrometer using a twin-anode Al
Kα (1486.6 eV) X-ray as the excitation source with the charge neutralization function being turned on. Crystallographic structure were determined by Rigaku MiniFlex X-ray diffraction (XRD) measurement with Cu Kα radiation(λ = 1.5405 Å) in a 2θ range from 10° to 90° with scanning rate of 1 °/min. Energy dispersive spectroscopic (EDS) as well as sample morphology were characterized by a FEI Quanta 3D FEG field emission scanning electron microscopy (FESEM) and a JEM-1400 transmission electron microscope (TEM).

Electrochemical Measurements: The working electrode was prepared by casting a mixture consisting of as-prepared Co₃O₄/TiO₂ composite hollow polyhedrons, or pure Co₃O₄ hollow polyhedrons, carbon black and sodium alginate binder mixed at a weight ratio of 7:2:1 in deionized water onto a copper foil with a doctor blade, followed by drying at 70 °C. CR2032-type coin cells were assembled in an argon filled glove-box, using lithium foil as the counter electrode, Celgard-2320 membrane as the separator, and 1 M LiPF6 dissolved in dimethyl carbonate (DMC)/ethylene carbonate (EC)/diethylcarbonate (DEC) at a volumetric ratio of 1:1:1 as the electrolyte, then followed by 12h aging treatment before electrochemical measurements. Galvanostatic charge/discharge experiment were carried out on an eight-channel battery analyzer (MTI Corporation) between 0.01V and 3.00 V versus Li⁺/Li. Cyclic voltammetry (CV) measurements were conducted on an electrochemical work station (CHI 6504C) over the potential range of 0.01 - 3.00 V vs. Li⁺/Li at 0.1 mV/s scanning rate. Electrochemical impedance spectroscopy (EIS) measurements were operated by applying an AC potential of 5 mV amplitude in the frequency range from 0.01 to 100 kHz.

3.3 Result and Discussion

Synthesis and Characterization of the Co₃O₄/TiO₂ composite hollow polyhedrons
The fabrication procedure of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons is illustrated in Figure 1. The ZIF-67 hollow polyhedrons were prepared by a precipitation method with the precursors of cobalt nitrite and 2-methylimidazole in methanol for 20 hours at room temperature. Then, cation exchange took place on the surface of ZIF-67 in the solvent of dimethyl formamide. Ti$^{4+}$ has much lower electronegativity than that of Co$^{2+}$. Therefore, it is remarkable that they can undergo the cation exchange,[36] which is described in the following steps. First, when ZIF-67 hollow polyhedrons are completely surrounded by the solvent of dimethyl formamide, the inorganic clusters of ZIF-67, also called secondary-building units, will be partially solvated. Then, the bond between the cluster and Co$^{2+}$ cations starts to break, and gradually bound with Ti$^{4+}$ cations. In this process, the solvent molecules step-wisely connect to Co$^{2+}$ cations as they remain partially bound to the cluster. Next, Ti$^{4+}$ cations partially replace Co$^{2+}$ cations in the secondary building units, forming Ti$^{4+}$-exchanged ZIF-67.[12] Finally, the composite Co$_3$O$_4$/TiO$_2$ hollow polyhedrons are yielded through decomposition and oxidization of Ti$^{4+}$ exchanged ZIF-67 via sintering in air for two hours. For comparison purpose, pure Co$_3$O$_4$ hollow polyhedrons are synthesized by annealing ZIF-67 directly.

In order to examine the stability of Ti$^{4+}$ exchanged ZIF-67, crystal structure of the products formed at each step is determined by XRD, as shown in Figure S1. Figure S1 displays XRD pattern of ZIF-67 and Ti$^{4+}$ exchanged ZIF-67 hollow polyhedrons. It is found that all the typical diffraction peaks from (011), (002), (112) and (222) planes, are consistent with previous reports.[40] Moreover, the Ti$^{4+}$ exchanged ZIF 67 displays the same peak positions as those from ZIF-67, indicating that ZIF 67 is stable and flexible enough to accommodate the exchanging Ti$^{4+}$ cations. To confirm the Ti$^{4+}$ cations exchanged in ZIF-67, XPS studies were carried out and the results are shown in Figure
Figure 2a displays the survey scan spectra of ZIF 67 and Ti$^{4+}$ exchanged ZIF 67. The XPS spectrum of ZIF-67 from XPS analysis exhibits the principal C1s, O1s, N1s and Co2p$_{3/2}$ core levels, with no impurities. After exchanging with Ti$^{4+}$ cations, the XPS spectrum of Ti$^{4+}$ exchanged ZIF-67 reveals the addition of Ti p$_{3/2}$ peak, confirming successful exchanging of Ti$^{4+}$ cations in ZIF-67. Detailed scans of the Co 2p range and Ti 2p range are illustrated in Figure S2a and S2b respectively. In the Co 2p XPS spectra, the Co 2p$_{3/2}$ and Co 2p$_{1/2}$ components are distinct along with two satellite peaks. The Co 2p$_{3/2}$ and Co 2p$_{1/2}$ peaks, located at binding energies of 780.5 and 795.4 eV, respectively, are characteristic of Co$^{2+}$ species. In the Ti 2p spectra, there are two peaks, Ti 2p$_{3/2}$ and Ti 2p$_{1/2}$, centering at 457.9 and 463.7 eV respectively, in accordance with Ti$^{4+}$ species.

Figure 3-2 (a) XPS survey spectrum of ZIF-67 and Ti$^{4+}$ exchanged ZIF-67 hollow polyhedrons. (b) XRD patterns of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons.

The crystal structures of Co$_3$O$_4$ hollow polyhedrons and Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons are also determined by XRD, as shown in Figure 2b. After sintering in air, XRD analysis indicates ZIF-67 hollow polyhedrons are completely converted into Co$_3$O$_4$ hollow polyhedrons, as displayed in Figure 2b. Co$_3$O$_4$ hollow polyhedrons are identified as cubic cobalt.
oxide with lattice parameters $a = b = c = 8.056 \, \text{Å}$, Fd-3m space group, which is in good agreement with standard XRD patterns of cubic Co$_3$O$_4$ (JCPDF card no.03-065-3103).[41] As for the Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons, their XRD pattern displays mixture of cubic Co$_3$O$_4$ and anatase TiO$_2$. The as-formed TiO$_2$ is identified as cubic anatase TiO$_2$, with lattice parameters of $a = 3.6486 \, \text{Å}$, $b = 3.6486 \, \text{Å}$, $c = 5.8992 \, \text{Å}$, which match well with those of standard XRD patterns of cubic anatase TiO$_2$ (JCPDF card no. 01-076-1802).[42] The co-existence of cubic Co$_3$O$_4$ and anatase TiO$_2$ confirms the formation of Co$_3$O$_4$/TiO$_2$ composite structure.

Figure 3-3 SEM images of (a) ZIF-67 hollow polyhedrons, (b) Ti$^{4+}$ exchanged ZIF-67 hollow polyhedrons, (c) Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons, (d) SEM image of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons and corresponding EDS mappings of O, N, C and Sn elements.
In order to investigate the morphology of the products in each step, their FESEM images have been taken and displayed in Figure 3. Figure 3a manifest the SEM image of the well-defined ZIF-67 hollow polyhedrons. In Figure 3a, the size and polyhedral shape of ZIF-67 nanoparticles are quite uniform. As can be seen in the inset magnified SEM image in Figure 3a, ZIF-67 hollow polyhedrons are about 200 nm in width. As displayed clearly in Figure 3b, the size and polyhedral shape of ZIF-67 nanoparticles are retained well after the cation exchange with Ti$^{4+}$ for about two days, except that the surface of the polyhedrons becomes slightly rougher. To explore the influence of the concentration of titanium source, the cation-exchange process was also taken in a tetrabutyl titanate concentration as high as 12 M. As seen in Figure S3, the polyhedral shape of the sample is maintained at a high concentration of titanium source, indicating that ZIF-67 particles are stable enough to accommodate the inserted titanium cations. After thermal treatment, the Co$_3$O$_4$/TiO$_2$ composite is obtained with the retained hollow-polyhedron shape, as displayed in Figure 3c. Also in Figure 3c, many tiny nanoparticles are observed on the rough surface. Moreover, in Figure 3d, some broken polyhedral particles display open voids, indicating well maintained hollow structures of ZIF-67. It can be seen that the Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons, with a thickness of about 20 nm, are composed of closely interconnected nanoparticles. The composition of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons is also confirmed by EDS mapping. EDS of the elemental mappings is performed on the sample of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons and the results are shown in Figure 3d, S4. The cobalt, titanium, and oxygen signals overlap uniformly across the entire sample, indicating uniform formation of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons. The mass ratio of Co$_3$O$_4$ and TiO$_2$ is about 8:2. The corresponding SEM image, EDS,
and XRD pattern clearly demonstrate the morphology and structure of \(\text{Co}_3\text{O}_4/\text{TiO}_2 \) composite hollow polyhedrons.

![Image](image.png)

Figure 3-4 (a) The TEM image and (b) HRTEM image of \(\text{Co}_3\text{O}_4/\text{TiO}_2 \) composite hollow polyhedrons.

In order to further identify the microstructure and crystallographic relationship of \(\text{TiO}_2 \) and \(\text{Co}_3\text{O}_4 \), TEM and HRTEM imaging are carried out on the samples. The TEM images of \(\text{Co}_3\text{O}_4/\text{TiO}_2 \) composite hollow polyhedrons in Figure 4a reveal their microstructure, confirming the uniform polyhedral morphology and the inner void of the composite hollow polyhedrons. To explore more details of the sample, Figure 4b presents the corresponding HRTEM image of the circled area in the insert TEM image. The HRTEM image reveals the polycrystalline nature of \(\text{Co}_3\text{O}_4/\text{TiO}_2 \) composite hollow polyhedrons, which are composed of interconnected nanoparticles with a diameter of about several nanometers. The HRTEM image in Figure 4b exhibits lattice fringes with different d-spacings of 4.66 Å, 2.85 Å and 2.33 Å, corresponding to the (111), (220) and (222) planes of cube \(\text{Co}_3\text{O}_4 \) crystals. On the edge of composite hollow polyhedrons, lattice fringes with the d-spacings of 2.37 Å are in good agreement with the interplanar spacings of anatase \(\text{TiO}_2 \), indicating the formation of \(\text{TiO}_2 \) grains during thermal treatment.
Electrochemical Performance

To evaluate electrochemical performances of all the samples, coin cells of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons and pure Co$_3$O$_4$ hollow polyhedrons cycled in a voltage range of 0.01 - 3 V versus Li$^+$/Li. As a novel composite anode material for LIBs, cyclic voltammetry (CV) profile of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons is carried out at a scan rate of 0.1 mV/s in a potential region of 0.01 - 3 V to explore the lithium insertion/extraction behaviors. The electrochemical reactions of Co$_3$O$_4$ and TiO$_2$ with lithium are described below:

\[
\text{Co}_3\text{O}_4 + 8\text{Li}^+ + 8\text{e}^- = 4\text{Li}_2\text{O} + 3\text{Co} \quad (1)
\]
\[
\text{TiO}_2 + x\text{Li}^+ + xe^- = \text{Li}_x\text{TiO}_2 \quad (x \leq 1) \quad (2)
\]
Figure 3-5 (a) CV curves at scan rate of 0.1 mV/s, (b) cycling performance at 500 mA/g, (c) rate performance at the current density range from 100, 500, 1000, 2000, 2000 and 100 mA/g, (d) charge/discharge profiles of corresponding to the rate performance.

Figure 5a displays the CV curves of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons. In the first cathodic scan, a small peak at around 1.08 V vs. Li/Li$^+$ is ascribed to the irreversible insertion of lithium ions to form the Li$_x$Co$_3$O$_4$ phase. During the continuous discharge process, the prominent potentials at around 0.85 V is observed, corresponding to destruction of crystal structure and formation of solid–electrolyte interphase (SEI) films. During the following anodic scan, a broad peak located at about 2.13 V vs. Li/Li$^+$ is ascribed to the re-oxidization of metallic cobalt and the decomposition of Li$_2$O according to the reversible conversion mechanism described by the equation (reaction 1). In subsequent cycles, three cathodic peaks and one broad anodic peak can be clearly observed. The characteristic cathodic peak at 1.7 V and anodic peak at 2.0 V are attributed to the lithium intercalation/extraction into/from anatase TiO$_2$ (reaction 2). The broad anodic peak at 2.13 and two cathodic peaks at 1.3 and 0.9 V are associated with the reversible oxidation/reduction of Co/Co$_3$O$_4$ (reaction 1). The anodic peak of TiO$_2$ at 2.0 V is overlapped by the anodic peak of Co$_3$O$_4$, forming a broad peak located at 2.13 V. Figure S5 exhibits the voltage profiles of the Co$_3$O$_4$/TiO$_2$ composite for the first three cycles. The identified charge-discharge platforms are consistent with the result of the CV analysis above. In Figure S5, the broad sloping plateau at 0.8 - 1.1 V may be related to the initial reduction of Co$_3$O$_4$ to Co, and the formation of irreversible solid electrolyte interphase (SEI) film. It is observed that the initial discharge and charge capacities of the Co$_3$O$_4$/TiO$_2$ composite are 662 and 535 mAh/g, respectively. The initial
capacity loss of 19% may be mainly ascribed to the irreversible processes such as electrolyte decomposition, the formation of SEI films and undecomposed Li$_2$O phase, which are commonly observed for most anode materials. [43-47] Figure 5b compares cycling performances of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons and pure Co$_3$O$_4$ hollow polyhedrons when cycled at a specific current of 500 mA/g. It is found that Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons exhibit an unexpected but interesting cycling performance. It is observed that at a specific current of 500 mA/g, the initial discharge capacity of pure Co$_3$O$_4$ hollow polyhedrons is 730 mAh/g, higher than that of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons (662 mAh/g). Such phenomenon is attributed to the larger theoretical capacity of Co$_3$O$_4$ than that of TiO$_2$. After 200 cycles, Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons keep a reversible capacity of 642 mAh/g, maintaining 96.9% of the initial capacity, demonstrating a very large discharge capacity and outstanding cycling stability. In contrast, the reversible capacity of pure Co$_3$O$_4$ hollow polyhedrons electrode drops rapidly from 730 to 350 mAh/g, corresponding to a very low capacity retention of 44.9%. This serious capacity fading of pure Co$_3$O$_4$ hollow polyhedrons may be caused by expansion/contraction during charge/discharge, leading to severe pulverization and delamination from the underlying current collector. Notably, the specific capacity of the Co$_3$O$_4$/TiO$_2$ composite electrode decreases for the initial 10 cycles and then increases in subsequent cycles. For various nanostructured transition metal-oxide electrodes, this phenomenon of the initial increased capacity is widely observed.[45-47] During the charge-discharge process, the decomposition of the electrolyte leads to formation of an electrochemically gel-like polymer layer on the surface of active materials, which can enhance the Li-ion storage capacity through a so called “pseudo-capacitance-type behavior”.[48] Another possible reason is that Co nanoparticles may be formed at the interface of Co$_3$O$_4$/TiO$_2$
due to some irreversible electrochemical reaction and the presence of Co may improve the reversibility of electrochemical reaction of active material, resulting in improved specific capacity.[49] In Figure 5c, the rate performance of the two samples is evaluated at various specific current ranging from 50 to 2000 mA/g. Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons exhibit a better rate capability than that of pure Co$_3$O$_4$ hollow polyhedrons, especially at high rates. They deliver average discharge capacities of 710, 630, 550, 480 and 400 mAh/g at 50, 200, 500, 1000, and 2000 mA/g, respectively. It is clearly observed that even when the specific current is as high as 2000 mA/g, about 390 mAh/g of the capacity is still retained, much higher than pure Co$_3$O$_4$ as well as commercial graphite anode. More importantly, when the specific current returns from 2000 mA/g to 50 mA/g, its discharge capacity recovers to 710 mAh/g immediately and maintains a good capacity retention in the following cycles, indicating very good rate capability of the material. Figure 5d displays galvanostatic charge/discharge curves of the Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons electrode at specific currents of 100, 500, 1000, 2000, 2000 and 100 mA/g, corresponding to the rate performance. The discharge and charge potential plateaus of each cycle are consistent with corresponding CV redox peaks. The high capacity, long cycling life and excellent rate capability of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons can be attributed to the stable composite structure and high conductivity.

Moreover, structural integrity after repeated cycling is a major issue in rechargeable lithium batteries. To examine this aspect, the impedance of the electrode is evaluated after 100 electrochemical cycles, and the EIS results are shown in Figure 6a. EIS technology, one of the most powerful tools for studying electrochemical kinetics, can be used to investigate the processes occurring at the electrode/electrolyte interfaces and Li$^+$ intercalation/de-intercalation within
electrode materials in the battery cells. In the Nyquist plots, R_Ω represents the Ohmic resistance of the battery cell, including electrodes, electrolyte and other cell components. R_{ct} represents the charge transfer resistance. CPE and Z_w are the double layer capacitance and the Warburg impedance, respectively. The Nyquist plots of all the three electrodes are composed of a depressed semicircle in the medium-frequency region followed by a slanted line in the low-frequency region. The charge transfer resistance of Co$_3$O$_4$ hollow polyhedrons is around 125 Ω. After being integrated with TiO$_2$, the resistance is decreased to 100 Ω, indicating faster charge transfer at the electrode/electrolyte interface for Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons. After 100 electrochemical cycles, the charge-transfer resistance is further decreased to 75 Ω, owing to the formation of cobalt after irreversible reactions. As for the morphology change, SEM images of Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons after 200 cycles are shown in Figure 6b. It can be seen the electrode retains its original hollow polyhedrons architecture after 200 cycles. Although the repeated lithiation and delithiation of Co$_3$O$_4$ can result in large volume change during cycling, the hollow polyhedral shape is well maintained. In comparison with usually observed collapse of Co$_3$O$_4$ electrode, Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons is remarkably stable.
Figure 3-6 (a) Electrochemical impedance spectroscopy of electrodes before and after cycling. (b) SEM of the Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons after 200 cycles (SEM image of large magnification is inserted).

Finally, the advantages of the novel composite nanostructure electrode are described below. The remarkable performance of the new electrode is attributed to the composite hollow polyhedron structure. First, the uniform integration of titanium ions by cation exchange in ZIF-67, and the simultaneous decomposition and crystallization of TiO$_2$ contribute the formation of integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons during sintering. The integration of Co$_3$O$_4$/TiO$_2$ composite promotes the robust stability of hollow polyhedrons nanostructure. Second, the void hollow structure not only facilitates penetration of electrolyte, but also accommodates large volumetric expansion of Co$_3$O$_4$ during cycling. Third, the strategy of integration of Co$_3$O$_4$ and TiO$_2$ can realize synergic property of electrochemistry. As a result of these beneficial factors, the Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons improve the cycling life up to 200 cycles.

3.4 Conclusion

In summary, this report has demonstrated a scalable and controllable approach for fabricating Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons through a cation-exchange strategy followed by thermal treatment. During the synthesis process, ZIF-67 polyhedrons not only act as a host for the exchanged titanium cations, but also serve as the template for the formation of the hollow framework of Co$_3$O$_4$/TiO$_2$ composite. In such a structure, TiO$_2$ provides a stable backbone to supply the high capacity of Co$_3$O$_4$ durably. In addition, TiO$_2$ also served as conductive path for higher transportation of electrons. The as-prepared Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons exhibit long cycling life and remarkable rate capability. At a specific current of 500 mA/g, the
composite nanostructures can provide the initial capacity as high as 662 mAh/g, and maintain a stable capacity of 642 mAh/g after 200 cycles, accounting for 96.9% the initial capacity, much higher than that of pure Co$_3$O$_4$ hollow polyhedrons, which can only maintain a specific capacity of 200 mAh/g and a capacity retention of only 40%. Furthermore, the novel cation exchange strategy in this work can be extended to construction of more complex composite nanostructure for broader applications in solar cells, supercapacitor and fuel cells.

3.5 REFERENCES

CHAPTER 4. CONCLUSIONS

In this thesis, two strategies have been developed to improve the electrochemical performance of anode materials for lithium ion batteries. The 1st strategy is to design hierarchical graphene-encapsulated hollow SnO$_2$@SnS$_2$ nanostructures by in-situ sulfuration on the backbones of hollow SnO$_2$ spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO$_2$@SnS$_2$@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cycleability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the 2nd to the 100th cycle, lower than the capacity degradation of bare SnO$_2$ hollow spheres (0.830%) and single SnS$_2$ nanosheets (0.393%). Even after being cycled at a range of specific current varied from 2000 mA/g to 100 mA/g, hierarchical SnO$_2$@SnS$_2$@rGO nanocomposite maintains a reversible capacity of 664 mAh/g, which is much higher than single SnS$_2$ nanosheets (374 mAh/g) and bare SnO$_2$ hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulted from the lithiation/delithiation process and maintains structural stability during cycling but also reduces aggregation and facilitates ion transportation. This work thus demonstrates the great potential of hierarchical SnO$_2$@SnS$_2$@rGO nanocomposites for application as high-performance anode material in next-generation lithium ion battery technology. The 2nd strategy is to fabricate integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons through a cation-exchange approach in metal-organic framework. In this synthesis, well-defined ZIF-67 particles not only serve as the host to accommodate exchanged titanium cations but also the template to form hollow polyhedron structure. The obtained integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons exhibit a high reversible capacity of 642 mAh/g at a rate of 500 mA/g after 200 cycles, accounting for 96.9% of the initial capacity, much higher than that of pure Co$_3$O$_4$, which only maintain a specific capacity of 200 mAh/g and a capacity retention of 40%. The optimized integrated Co$_3$O$_4$/TiO$_2$ composite hollow polyhedrons display significant improvements in electrochemical performance, demonstrating great potential as advanced anode material for future lithium ion batteries.
PERMISSION TO USE COPYRIGHTED MATERIALS

Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability

Wangwang Xu, Zhiqiang Xie, Xiaodan Cui, et al

Applied Materials
American Chemical Society
Oct 1, 2015

Copyright © 2015, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.
ELSEVIER LICENSE TERMS AND CONDITIONS

Jun 23, 20

This Agreement between Wangwang Xu ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4134850978240</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Jun 23, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Electrochimica Acta</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>Integrated Co304/TiO2 Composite Hollow Polyhedrons Prepared via Cation-exchange Metal-Organic Framework for Superior Lithium-ion Batteries</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Wangwang Xu, Xiaolan Cui, Zhiqiang Xie, Grant Dietrich, Ying Wang</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Dec 20, 2016</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>222</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>n/a</td>
</tr>
<tr>
<td>Licensed Content Pages</td>
<td>8</td>
</tr>
<tr>
<td>Start Page</td>
<td>1021</td>
</tr>
<tr>
<td>End Page</td>
<td>1028</td>
</tr>
<tr>
<td>Type of Use</td>
<td>reuse in a thesis/dissertation</td>
</tr>
<tr>
<td>Portion</td>
<td>full article</td>
</tr>
<tr>
<td>Format</td>
<td>both print and electronic</td>
</tr>
<tr>
<td>Are you the author of this Elsevier article?</td>
<td>Yes</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>No</td>
</tr>
<tr>
<td>Order reference number</td>
<td></td>
</tr>
<tr>
<td>Title of your thesis/dissertation</td>
<td>NOVEL DESIGN OF NANOSTRUCTURED MATERIALS FOR ADVANCED ENERGY CONVERSION AND STORAGE DEVICES</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Aug 2017</td>
</tr>
<tr>
<td>Estimated size (number of pages)</td>
<td>70</td>
</tr>
<tr>
<td>Elsevier VAT number</td>
<td>GB 494 6272 12</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Baton Rouge, LA 70820</td>
</tr>
</tbody>
</table>
VITA

Wangwang Xu obtained his Bachelor's degree in 2012 and Master's degree in 2014 from Wuhan University of Technology. He is currently a Ph.D. student in the Mechanical & Industrial Engineering Department at Louisiana State University under the supervision of Dr. Ying Wang. His research interests are in the development of advanced materials for lithium-ion batteries and supercapacitors. Wangwang Xu’s professional publications in master program at LSU are listed as follows:
