


33 
 

 
Figure 2.7. Correlations between GC content and nucleosome patterns.  (A) MNase-seq density 
of PCG grouped by their GC content across the TSS (± 1,000 bp TSS), 1st lowest, 5th highest.  (B) 
MNase-seq density of PCG grouped by their GC content at a window of 1,000 bp upstream of 
the TSS, 1st lowest, 5th highest.  (C) MNase-seq density of PCG grouped by their GC content at a 
window of 1,000 bp downstream of the TSS, 1st lowest, 5th highest. 

Nucleosome patterns are associated with gene expression levels 

To elucidate the relationship between nucleosome patterns and gene expression in rice we 

carried out RNA sequencing (RNA-seq) analysis of the same tissues used for the MNase-seq 

experiments.  Four RNA-seq libraries were generated consisting of two biological replicates for 

control (C1 and C2) and −Pi (P1 and P2).  We obtained on average 97 million uniquely mapped 

reads for each library (Table 2.3).  To assess the reproducibility of mapped RNA-seq reads, we 

calculated Pearson’s correlation coefficient (PCC) of sequencing read abundance at each 

genomic position between C1 and C2 (PCC=0.91) and P1 and P2 (PCC=0.97) (Figure 2.2B).  
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Biological replicates from RNA sequencing were kept separated for data analysis.  Using the 

control samples, PCG were separated into five groups according to their expression levels (1st 

quintile highest and 5th quintile lowest) as determined by their FPKM values (Trapnell et al., 

2012).  The MNase-seq densities of genes grouped by their expression were plotted at the 

window of ± 1,000 bp TSS (Figure 2.8A and B), ± 1,000 bp TTS (Figure 2.8C) and at the gene 

body (Figure 2.8D).  We found that highly expressed genes had wider NDRs upstream of the 

TSS and had relatively lower nucleosome occupancy across the TSS than lower expressed genes.  

Moreover, evenly-spaced nucleosome arrays were more evident in highly expressed genes.  

These observations are consistent with previous studies on rice and Arabidopsis (Li et al., 2014; 

Wu et al., 2014; Liu et al., 2015), and demonstrate that transcription is a strong determinant of 

nucleosome patterning in rice. 

Table 2.3. Summary of RNA-seq data. 
Sample name Input reads Mapped reads Mapping rate 

C1 109,975,468 100,928,054 91.8% 

C2 101,746,188 95,469,826 93.8% 

P1 104,338,118 96,639,613 92.6% 

P2 101,964,123 94,335,655 92.5% 

 

We observed a general negative correlation between nucleosome occupancy and gene 

expression, especially across the TSS of the genes, and at the NDR (Figure 2.8A and B).  

However, it is not clear to what extent nucleosome occupancy correlates with gene expression 

quantitatively.  To address this, I tried to build a regression model by correlating nucleosome 

occupancy across the TSS and TTS of genes and gene expression levels.  Previous studies have 

reported a non-linear relationship between nucleosome occupancy and gene expression, and 

different strategies have been used to normalize the RNA-seq FPKM values to fit in the linear 
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regression model: log-transformation in Arabidopsis (Liu et al., 2015) and percentile-

transformation in human (Ulz et al., 2016). 

 

Figure 2.8. Correlations between nucleosome patterns and gene expression.  (A) Heatmap of 
MNase-seq density of PCG sorted by their expression level under control conditions from RNA-
seq analysis of the same tissue (1st highest, 5th lowest).  The vertical line in the middle of the 
heatmap indicates the TSS.  (B) Average plot of the same data with genes grouped by their 
expression levels.  (C) Same analysis as (B) at the TTS.  (D) Same analysis at the gene body. 

To determine which strategy works best for my datasets, I plotted the regression 

coefficient between nucleosome occupancy and gene expression surrounding the NDR using 

both strategies and the un-transformed data set as control (‘linear’), which is the position where I 

expected to observe the most significant correlation (Figure 2.8B).  Again, to reduce the impact 

of nearby genes on the modeling, ‘ideal’ genes were used across the TSS and the TTS.  I 

observed that the percentile-transformation worked better than log-transformation with a more 

significant correlation coefficient at the NDR (Figure 2.9A).  Hence, I chose to percentile-
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transform FPKM values and fed those into the linear regression model together with the 

nucleosome occupancy read counts in 100-bp binned windows across the TSS and TTS (Figure 

2.9B and C).   

 
Figure 2.9. Quantitative correlations between nucleosome occupancy and gene expression.  (A) 
Correlation coefficient between nucleosome occupancy and gene expression surrounding the 
NDR.  RNA-seq FPKM values were either kept as is (linear), log-transformed, or percentile-
transformed.  (B) Correlation coefficient between gene expression and nucleosome occupancy in 
100-bp bins flanking the TSS.  (C) Same analysis as (B) flanking the TTS. 

The correlation coefficient between nucleosome occupancy and gene expression across 

the TSS and TTS is negative (r<0), indicating that there was a negative correlation between the 

two quantitatively (Figure 2.9B and C).  In addition, the correlation was stronger towards the 

TSS and the TTS, and the correlation at the NDR was the strongest, and the correlation at 500 bp 

upstream of the TTS was the weakest (Figure 2.9B and C).  Surprisingly, the correlation at the 

strongly positioned +1 nucleosome was relatively weak, but followed by relatively strong 
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correlations downstream of the +1 nucleosome further into the gene body, indicating the stability 

of the +1 nucleosome during transcription (Figure 2.9B).  These results suggest that nucleosome 

occupancy alone can explain gene expression level to some extent, yet there are other factors 

involved. 

Nucleosome patterns are associated with alternative splicing and gene length 

We next separated all PCGs into four groups based on their number of splice variants and 

plotted their MNase-seq density across the TSS and TTS.  Clearly, genes with only one splice 

variant had higher nucleosome occupancy across the TSS except at the +1 nucleosome (the first 

nucleosome downstream of the TSS) and had weaker nucleosome phasing downstream of the 

TSS compared with genes that have more splice variants (Figure 2.10A), but no particular 

correlation was observed at the TTS (Figure 2.10B).  Studies have shown that there is a 

correlation between gene length and gene expression (Yang, 2009; Grishkevich and Yanai, 2014), 

and since we observed a correlation between nucleosome patterns and gene expression, we next 

investigated the potential correlation between nucleosome patterns and gene length.   

All PCGs were separated based on their length (from TSS to TTS, 1st longest, 5th shortest) 

and MNase-seq density was plotted ± 1,000 bp TSS.  Longer genes had lower nucleosome 

occupancy across the TSS than shorter genes (Figure 2.10C), however we observed the opposite 

pattern at the TTS where longer genes had higher nucleosome occupancy (Figure 2.10D).  

Increasing gene length is associated with higher nucleosome occupancy across the TSS and less 

evident 5’ NDR and the +1 nucleosome, which are the signatures of highly expressed genes.  

Indeed, we found a positive correlation between gene length and gene expression in rice 

(SCC=0.23). 
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Nucleosome patterns are linked to gene functions 

Experiments described above indicate a contribution of both cis- and trans-determinants 

to nucleosome patterning in rice.  To further explore distinct nucleosome patterns across the TSS 

and their possible correlation with gene function, we performed k-means clustering of MNase-

seq profiles ± 500 bp TSS of PCG.   

 
Figure 2.10. Correlations between nucleosome patterns and alternative splicing and gene length.  
(A) MNase-seq density at the TSS of PCG grouped by their number of splice variants, Group_1: 
1 variant, Gourp_2: 2 variants, Group_3: 3 variants, Group_4: ≥4 variants.  (B) Same analysis 
as (A) at the TTS.  (C) MNase-seq density of PCG grouped by their length (from the TSS to the 
TTS, 1st longest, 5th shortest).  (D) Same analysis as (C) at the TTS. 

Six clusters (A through F) of genes with distinct nucleosome patterns across the TSS 

were evident (Figure 2.11A).  GO term enrichment analysis (Du et al., 2010) revealed that each 

of the six clusters had enriched GO terms.  Interestingly, the clusters fell into two contrasting 

groups based on shared similar GO terms.  Genes of clusters A, B, and C (type I, n=15,400) were 
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enriched in GO terms related to key biological processes, whereas clusters D, E, and F (type II, 

n=20,700) were enriched in stress-related GO terms (Figure 2.12).  Hence, we termed type I 

genes “housekeeping” and type II genes “stress-responsive”.  Consistent with a housekeeping 

role, type I genes had on average significantly higher expression levels than type II genes under 

control conditions (type I average FPKM=22.47, type II average FPKM=12.71, p<2.2×10-16, 

Mann-Whitney U test).  In addition, comparison of our type I housekeeping gene group with a 

housekeeping gene list identified by a previous study (Chandran et al., 2016) based on consistent 

expression in multiple cell or tissue types, found that approximately 80% (3,279/4,243) of these 

previously reported housekeeping genes were included in our type I gene group. 

Because studies have shown that the TATA box in the promoter region is associated with 

stress-responsive genes in yeast (Basehoar et al., 2004), we tested whether our type II stress-

responsive gene group was enriched with genes containing a TATA box.  We searched 

promoters of rice genes for the TATA consensus sequence (CTATAWAWA) previously 

reported (Civan and Svec, 2009).  Indeed, we found that type II genes were more likely to 

contain a TATA box within 50 bp upstream of the TSS than type I genes (2.6 fold, p=6.90×10-13, 

Fisher’s exact test).  Moreover, an average profile on type II genes across the TSS showed an 

evident −1 nucleosome where an NDR was found in type I genes (Figure 2.11B), and genes with 

a TATA box within 50 bp upstream of the TSS (n=1,093) had a −1 nucleosome at the same 

region (Figure 2.11C).  Together these results indicate that nucleosome patterns across the TSS 

are suggestive of gene function. 

Discussion 

We found higher nucleosome occupancy surrounding the TSS and the TTS compared to 

the gene body suggesting the role of chromatin organization in defining the initiation and 
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termination of transcription (Figure 2.3).  The presence of evenly-spaced nucleosome arrays 

downstream of the TSS and NDRs immediately upstream of the TSS at PCG further indicates the 

impact of chromatin organization on transcriptional activities (Figure 2.3A). 

 
Figure 2.11. Clustering of genes based on nucleosome patterns across the TSS.  (A) k-means 
clustering of nucleosome patterns ± 500 bp TSS of rice genes under control conditions.  Right, 
individual heatmap profiles for gene clusters A−F at the TSS.  (B) Average profiles for gene 
clusters ABC (type I gene) and DEF (type II gene) at the TSS.  (C) MNase-seq density across the 
TSS of genes that contain TATA box under control (Ctrl) and −Pi conditions (n=1,093).   

The nucleosome patterns we found in rice genes were largely consistent with patterns in 

yeast and human (Lee et al., 2007; Valouev et al., 2011), but as with Arabidopsis, rice genes 

lacked evenly-spaced nucleosome arrays upstream of the TSS (Figure 2.3A).  Studies on yeast 

and human used single cell types but studies on Arabidopsis and rice, including this study, used 

homogenized plant tissues consisting of multiple cell types that could contribute to the 
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heterogeneity of nucleosome patterns in the promoter region due to tissue-specific expression 

differences. 

 

Figure 2.12. Significantly enriched GO terms for clusters ABC (type I gene) and DEF (type II 
gene).  The color of the node represents the corrected p-value with a color scale ranging from 
yellow (corrected p-value=0.05) to dark orange (corrected p-value= 5×10-7). 

However, a genome-wide study on the single-celled protozoan Tetrahymena thermophila 

also showed nucleosome phasing downstream but not upstream of the TSS (Xiong et al., 2016).  

This result is possibly due to cell-to-cell differences within the same T. thermophilia culture, 

since studies on single-cell nucleosome mapping in yeast showed that different cells in the same 
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CHAPTER 3. THE IMPACT OF PHOSPHATE STARVATION ON 
NUCLEOSOME PATTERNS AND GENE EXPRESSION IN RICE2 

 
Introduction 

In budding yeast (Saccharomyces cerevisiae), a combination of transcriptional regulators 

and downstream targets comprising the PHO regulon modulate adaptive responses to deficiency 

of inorganic phosphate (Pi), a primary source of P (Secco et al., 2012).  Early studies examining 

the role of chromatin structure in transcriptional regulation showed that nucleosome remodeling 

also plays a role in modulating PHO regulon genes.  Specifically, nucleosomes are evicted to 

expose the promoter region of the yeast PHO5 secreted acid phosphatase gene in response to 

low-Pi conditions (Almer et al., 1986; Barbaric et al., 2007).  More recent genome-wide studies 

on the remodeling of primary chromatin structure in response to environmental perturbation in 

yeast have shown a connection between global nucleosome dynamics and transcription activities 

(Shivaswamy et al., 2008; Huebert et al., 2012). 

As sessile organisms, plants constantly encounter environmental challenges and must 

shape themselves for adaptation.  Many studies have been carried out to investigate Pi starvation 

responses (PSRs) in plants.  These studies have identified morphological and physiological 

responses aimed at enhancing Pi acquisition and recycling, as well as key regulators of these 

responses (Rouached et al., 2010; Hu and Chu, 2011; Wu et al., 2013; Wang et al., 2014).  

Transcript profiling studies have shown that transcriptional regulation plays an important role in 

modulating PSRs (Wu et al., 2003; Zheng et al., 2009; Secco et al., 2013; Secco et al., 2015), and 

emerging data from our laboratory and others are indicating that chromatin-level mechanisms are 

also involved in regulating PSRs (Smith et al., 2010; Iglesias et al., 2013; Kuo et al., 2014).  

                                                            
Portions of this chapter previously appeared as Zhang, Q., Oh, D.H., DiTusa, S.F., RamanaRao, 
M.V., Baisakh, N., Dassanayake, M., and Smith, A.P. (2018). Rice nucleosome patterns undergo 
remodeling coincident with stress-induced gene expression. BMC Genomics 19, 97. 
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Quantification of total phosphorus (P) and inorganic phosphate (Pi) 

Plant tissues were rinsed thoroughly in distilled water before analyses.  Quantification of 

total phosphorus was conducted by an acid digestion method as described previously (Jones, 

2001).  Briefly, 0.5 g of the dried leaf and root tissues were digested with 5.0 mL of concentrated 

HNO3 in a heat block at 125 °C for 2.5 h followed by repeated addition of 3 mL 30% H2O2 until 

the digest was clear.  The temperature of the heat block was reduced to 80 °C for the residue to 

dry.  Colorless dry residue was dissolved in 20 mL deionized water and analyzed by inductively 

coupled plasma emission spectroscopy (ICP) using (NH4)2HPO4 as the standard in the LSU Soil 

Testing & Plant Analysis Laboratory. 

Quantification of inorganic phosphate (Pi) was conducted by grinding plant tissue in 

liquid nitrogen and dissolving in distilled water.  Pi was quantified by the molybdate assay 

(Ames, 1966), and a standard curve was generated using KH2PO4. 

Results 

Pi starvation induces large-scale nucleosome dynamics 

To assess the impact of environmental perturbation on nucleosome patterns, we 

compared the nucleosome profiles identified in control shoot tissues with those in shoots 

harvested from plants subjected to a 24-hour Pi starvation treatment.  We measured total 

phosphorus and inorganic phosphate concentrations in rice seedlings from control and –Pi 

treatments prior to nucleosome and transcription profiling.  Shoot P concentrations significantly 

decreased (p<0.01, t-test) while the root P concentrations remained similar to that of the control 

(p>0.05, t-test) after 24 hours of Pi starvation (Figure 3.1A and B).  In contrast, Pi concentration 

in shoots was unchanged (p>0.05, t-test) while the root Pi concentration decreased (p<0.05, t-test) 

after 24 hours of Pi starvation (Figure 3.1C and D).  These changes in Pi concentrations after 24 
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hours of Pi starvation agree with a previous study which reflects the initiation of Pi starvation in 

rice seedlings (Secco et al., 2013). 

 
Figure 3.1. Changes of total phosphorus and inorganic phosphate concentrations in response to 
phosphate starvation.  All values are the mean ± standard error of the mean; n=3 biological 
replicates with 3 technical repeats each. DW, dry weight; FW, fresh weight.  (A) Total 
phosphorus (P) concentrations for shoots of 5-week-old seedlings grown under full nutrient (Ctrl) 
and Pi-starvation (−Pi) conditions.  (B) Total P concentrations for roots of 5-week-old seedlings 
grown under full nutrient (Ctrl) and Pi-starvation (−Pi) conditions.  (C) Inorganic phosphate (Pi) 
concentrations for shoots of 5-week-old seedlings grown under full nutrient (Ctrl) and Pi-
starvation (−Pi) conditions.  (D) Pi concentrations for roots of 5-week-old seedlings grown under 
full nutrient (Ctrl) and Pi-starvation (−Pi) conditions. 

To investigate the impact of Pi starvation on genome-wide nucleosome patterns, we 

compared MNase-seq results from control and –Pi samples.  We first examined nucleosome 

patterns across the TSS of genes.  We found that nucleosome phasing remained largely the same 

between the control and –Pi samples, whereas –Pi samples had higher nucleosome occupancy 

1,000 bp upstream of the TSS (p<2.2×10-16, Wilcoxon signed-rank test) but lower nucleosome 
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occupancy 1,000 bp downstream of the TSS (p<2.2×10-16, Wilcoxon signed-rank test) as 

compared to control samples (Figure 3.2A and C).  This raised the question of whether Pi 

starvation decreased nucleosome occupancy in coding regions but increased nucleosome 

occupancy in non-coding regions.  To address this, we examined nucleosome occupancy changes 

in exons of genes under Pi starvation.  Since longer exons allow the occupancy of more 

nucleosomes, we separated exons according to length: 170−240 bp, 315−350 bp, 480−550 bp, 

and 645−715 bp, which allows for the occupancy of one, two, three or four nucleosomes, 

respectively (Chodavarapu et al., 2010).  Both the control and –Pi samples showed strong 

nucleosome peaks and NDRs that marked intron-exon and exon-intron junctions (Figure 3.3).  

However, nucleosome occupancy was lower in exons and greater in introns of –Pi samples 

relative to the control samples (Figure 3.3), further supporting a major “redistribution” of 

nucleosomes from coding regions to non-coding regions in response to Pi starvation.  A notable 

exception was at the TTS of PCG, at which the –Pi samples contained greater nucleosome 

occupancy relative to the controls (Figure 3.2B). 

 
Figure 3.2. Changes in nucleosome patterns in response to phosphate starvation.  (A) MNase-seq 
density across the TSS from 24-hour control and −Pi rice shoot tissues.  (B) Same analysis as (A) 
across the TTS.  (C) Same analysis as (A) at the GB. 
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Figure 3.3. Changes in nucleosome occupancy at the exons of rice genes in response to 
phosphate starvation.  MNase-seq density of exons grouped according to their length: (A) 
170−240 bp; (B) 315−350 bp; (C) 480−550 bp (D) 645−715 bp under control and −Pi conditions.  
Plots are centered at the 5’ boundaries of the exons. 

To better illustrate nucleosome dynamics in response to Pi starvation, we employed 

DANPOS, which defines accurate nucleosome maps and detects dynamic nucleosomes between 

samples (Chen et al., 2013).  This analysis revealed a substantial impact of Pi starvation on 

nucleosome occupancy and positioning.  Using the nucleosome profile from control samples as a 

baseline, DANPOS identified 313,769 dynamic nucleosomes with either a position shift (range: 

50-95 bp), occupancy change (FDR<0.05), or fuzziness change (FDR<0.05) associated with Pi 

starvation from two biological replicates (Figure 3.4A).  We analyzed the locations of the 

dynamic nucleosomes in the rice genome and found they were widely distributed in gene-related 
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regions (1,000 bp upstream of the TSS to 200 bp downstream of the TTS), and a large number of 

dynamic nucleosomes were mapped within 200 bp upstream of the TSS, 5’-UTR and exons 

(Figure 3.4B). 

 
Figure 3.4. Nucleosome dynamics detected by DANPOS in response to Pi starvation.  (A) Three 
types of nucleosome dynamics identified by DANPOS: position shift (range: 50-95 bp), 
occupancy change (FDR<0.05) and fuzziness change (FDR<0.05).  Each averaged MNase-seq 
density graph is centered at the dyad of nucleosome that is found to house the change.  (B) 
Number of different types of dynamic nucleosomes per kilo base (kb) per 100 nucleosomes 
called by DANPOS at the promoter (500−1,000 bp upstream of the TSS, 200−500 bp upstream 
of the TSS and 200 bp upstream of the TSS), intragenic (5’UTR, exons, introns and 3’UTR), 200 
bp downstream of the TTS, and intergenic regions. 

Nucleosome dynamics are enriched at differentially expressed genes 

The significant negative correlation between NDR nucleosome occupancy and gene 

expression (Figure 2.9) renders a question of whether the changes in NDR nucleosome 

occupancy correlate with changes in gene expression.  To address this, I plotted the log2-fold 


