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ABSTRACT 
 

Tourmaline is a petrologic indicator mineral that is the major repository of boron in the 

earth’s crust. It forms readily when boron is present, accommodating multiple cations and anions 

with multiple possible substitutions for each site in the crystal structure. It is stable over a wide 

variety of pressures and temperatures, from near-surface P/T conditions to greater than 950 C 

and 7 GPa. It records information about conditions of formation, as well as pressure and 

temperature. Due to its resistance to chemical or physical weathering, and the negligible 

diffusion of elements in the crystal lattice, information about provenance is preserved. In Henry 

and Guidotti (1985), major elements of tourmaline were used to construct ternary diagrams that 

classify tourmalines according to provenance. However, this technique does not make use of the 

entirety of available chemical data. New statistical techniques can make use of all available 

chemical information and provide information about element importance. 

 Using a novel application of an existing statistical method, random forests, to high-

dimensional tourmaline data, provenance information is obtained. Existing chemical analyses are 

assembled into a database and labeled with their provenance. A random forest is ‘grown’ using a 

full database of tourmaline data, producing a set of rules for classifying tourmalines according to 

provenance. The random forest method has internal controls on accuracy and fitting of the data, 

and is capable of classifying tourmalines at a level of between 90 and 95% accuracy. As an 

independent test, a random forest built from this database is used to successfully classify 

tourmalines according to provenance.
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CHAPTER 1 – INTRODUCTION 
 

Sedimentary provenance studies are important in reconstructing the geologic history of a 

region by defining the specific source rock or type of source rock of clastic metasedimentary 

materials. Clastic sedimentary provenance studies typically rely on the mineralogical or 

lithologic composition of the detrital grains in the sediment, the whole rock chemical or isotopic 

characteristics, or the mineral and isotopic compositions of specific detrital materials in the 

sediment. (e.g. Morton and Hallsworth 1999). If the primary objective of provenance studies is 

the identification of a rock or mineral’s original source, the secondary objective of provenance 

studies is the application of that provenance to more regional scales. A series of fundamental 

questions asked by early provenance researchers place provenance studies in perspective. “From 

what kind of source rock (or rocks) was the sand derived? What was the relief and climate in the 

source area? How far and in what direction did the source area lie? ...What kinds of observations 

must we make to find an answer to our questions?” (Pettijohn et al. 1987). 

In sedimentary and metasedimentary rocks, as well as modern sediments, the ultimate 

source of material is a function of physical and chemical weathering, transport, sorting, and 

storage, including relief, slope, climate and vegetative cover (e.g. Johnsson 1993). However, the 

large majority of clastic material that is weathered out of the rock and transported is prone to 

chemical breakdown during weathering and transport, physical rounding, dissolution and 

diagenesis after sediment burial and loading (e.g Morton and Hallsworth 1999). Heavy minerals, 

which include garnet, hornblende, epidote, apatite, tourmaline, rutile, and zircon, are more 

resistant to chemical and mechanical weathering, persisting even through multiple weathering 

cycles and reworking of sediments (Morton and Hallsworth 1994, 1999). Among these, 
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tourmaline is one of the most promising candidates for provenance studies because of its stability 

and chemical complexity. It is stable over nearly all crustal pressure and temperature conditions, 

as well as acidic to neutral pH conditions in associated fluids (Dutrow and Henry 2011, Van 

Hinsberg et al. 2011a, 2011b). Tourmaline easily accommodates different cations and anions 

within its structure and offers robust retention of chemical information even after multiple 

weathering cycles, and this feature can complement the geochronological information that is 

accessible from associated detrital zircon. This combined style of investigation permits a more 

holistic approach to provenance. The objective of this study is to evaluate if a statistical 

procedure, random forests, can be used to access the entire range of chemical information 

available from tourmalines to build models that can be used to make increasingly accurate 

predictions of a tourmaline’s provenance.  
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CHAPTER 2 – CRYSTALLOGRAPHIC AND PETROLOGIC BACKGROUND 

OF TOURMALINE 

Tourmaline 

The potential of tourmaline as a robust provenance indicator is derived from the nature of 

its mineralogy and crystallography as well as its wide range of petrologic occurrences. The 

tourmaline supergroup minerals, containing 34 species of tourmaline (Henry et al. 2011, see 

Table 2.1), constitute the most widespread borosilicate minerals in the Earth’s crust. It has a 

Mohs hardness of 7-7 ½ and indistinct cleavage on {110} and {101}. It is frequently prismatic 

and color-zoned; these color zones may correspond to compositional zoning, although 

compositional zoning may be on a much finer scale than suggested by the color zoning. 

Characteristic striations parallel to c-axis and hemimorphic crystal terminations make it easy to 

identify in hand sample.  

Tourmaline is an acentric rhombohedral cyclosilicate (space group = R3m) (e.g. Dietrich 

1985, Henry and Dutrow 1992). The crystal is strongly polar, and exhibits pyroelectric and 

piezoelectric qualities, meaning that the crystal develops charges at the poles when subject to 

temperature variation or pressure changes along the c-axis (see Figure 2.1 for crystal structure). 

When cooled, the antilogous (+c) pole of the crystal develops a positive charge, and the 

analogous (-c) pole a negative one. Application of pressure to the crystal along the c-axis will 

cause the antilogous pole (+c) to develop a positive charge and the analogous (-c) pole to 

develop a negative charge (Barton 1969). Hawkins et al. (1995) found that these properties were 

strongly related to the locations of ions in tourmaline’s structure (Figure 2.1).  
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 General 

formula 

(X) (Y3) (Z6) T6O18 V3 W 

Alkali 

group 

Alkali 

subgroup 1 

R1+ R3
2+ R6

3+ R6
4+O18 S3

1- S1- 

 Dravite Na Mg3 Al6 Si6O18 (OH)3 (OH) 

 Schorl Na Fe3
2+ Al6 Si6O18 (OH)3 (OH) 

 Chromium-

dravite 

Na Mg3 Cr6 Si6O18 (OH)3 (OH) 

 Vanadium-

dravite 

Na Mg3 V6 Si6O18 (OH)3 (OH) 

 Fluor-dravite Na Mg3 Al6 Si6O18 (OH)3 F 

 Fluor-schorl Na Fe2
3+ Al6 Si6O18 (OH)3 F 

 Potassium-

dravite 

K Mg3 Al6 Si6O18 (OH)3 (OH) 

 Tsilaisite Na Mn3
2+ Al6 Si6O18 (OH)3 (OH) 

 Fluor-tsilaisite Na Mn3
2+ Al6 Si6O18 (OH)3 F 

 Alkali 

subgroup 2 

R1+ R1.5
1+R1.5

3+ R6
3+ R6

4+O18 S3
1- S1- 

 Elbaite Na Li1.5
1+Al1.5

3+ Al6 Si6O18 (OH)3 (OH) 

 Fluor-elbaite Na Li1.5
1+Al1.5

3+ Al6 Si6O18 (OH)3 F 

 Alkali 

subgroup 3 

R1+ R3
3+ R4

3+R2
2+ R6

4+O18 S3
1- S2- 

 Povondraite Na Fe3
3+ Fe4

3+Mg2 Si6O18 (OH)3 O 

 Chromo-

alumino-

povondraite 

Na Cr3 Al4Mg2 Si6O18 (OH)3 O 

 Bosiite Na Fe3
3+ Al4Mg2 Si6O18 (OH)3 O 

 Oxy-dravite Na Al3 Al4Mg2 Si6O18 (OH)3 O 

 Oxy-schorl Na Al3 Al4 Si6O18 (OH)3 O 

 Oxy-

chromium-

dravite 

Na V3 Cr4Mg2 Si6O18 (OH)3 O 

 Oxy-vanadium-

dravite 

Na V3 V4Mg2 Si6O18 (OH)3 O 

 Vanadio-oxy-

dravite 

Na V3 Al4Mg2 Si6O18 (OH)3 O 

 Vanadio-oxy-

chromium-

dravite 

Na V3 Cr4Mg2 Si6O18 (OH)3 O 

 Potassium-

povondraite 

K Fe3
3+ Fe3

4+Mg2 Si6O18 (OH)3 O 

 Maruyamaite K (MgAl2) (Al5Mg) Si6O18 (OH)3 O 

 Alkali 

subgroup 4 

R1+ R1
1+R2

3+ R6
3+ R6

4+O18 S3
1- S2- 

Table 2.1 – Currently recognized and predicted tourmaline species grouped by X-site 

occupancy, according to the nomenclature recommendations (Henry et al. 2011.) These named 

tourmaline species are currently recognized by the International Mineralogical Association’s 

Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC). The 

unnamed species have been predicted. 
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 General 

formula 

(X) (Y3) (Z6) T6O18 V3 W 

 Darrellhenryite Na Li1Al2 Al6 Si6O18 (OH)3 O 

 Alkali 

subgroup 5 

R1+ R3
3+ R6

3+ R6
3+O18 S3

2- S1- 

 Fluor-

buergerite 

Na Fe3
3+ Al6 Si6O18 (O)3 F 

 Olenite Na Al3 Al6 Si6O18 (O)3 (OH) 

 Buergerite Na Fe3
3+ Al6 Si6O18 (O)3 (OH) 

 Fluor-olenite Na Al3 Al6 Si6O18 (O)3 F 

 Alkali 

subgroup 6 

R1+ R3
3+ R6

3+ R3
3+R3

4+O18 S3
1- S1- 

 Na-Al-Al-Al 

root name 

Na Al3 Al6 Al3Si3O18 (OH)3 (OH) 

 Na-Al-Al-B 

root name 

Na Al3 Al6 B3Si3O18 (OH)3 (OH) 

 Fluor-Na-Al-

Al-Al root 

name 

Na Al3 Al6 Al3Si3O18 (OH)3 F 

 Fluor-Na-Al-

Al-B root name 

Na Al3 Al6 B3Si3O18 (OH)3 F 

Calcic 

group 

Calcic-

subgroup 1 

Ca2+ R3
2+ R2+R5

3+ R6
4+O18 S3

1- S1- 

 Fluor-uvite Ca Mg3 MgAl5 Si6O18 (OH)3 F 

 Feruvite Ca Fe3
2+ MgAl5 Si6O18 (OH)3 (OH) 

 Uvite Ca Mg3 MgAl5 Si6O18 (OH)3 (OH) 

 Fluor-feruvite Ca Fe3 MgAl5 Si6O18 (OH)3 F 

 Adachiite Ca Fe3 Al6 Si5AlO18 (OH)3 (OH) 

 Calcic-

subgroup 2 

Ca2+ R2
1+R1

3+ R6
3+ R6

4+O18 S3
1- S1- 

 Fluor-

liddicoatite 

Ca Li2
1+Al3+ Al6 Si6O18 (OH)3 F 

 Liddicoatite Ca Li2
1+Al3+ Al6 Si6O18 (OH)3 (OH) 

 Calcic-

subgroup 3 

Ca2+ R3
2+ R6

3+ R6
4+O18 S3

1- S2- 

 Ca-Mg-O root 

name 

Ca Mg3 Al6 Si6O18 (OH)3 O 

 Lucchesiite Ca Fe3
2+ Al6 Si6O18 (OH)3 O 

 Calcic-

subgroup 4 

Ca2+ R1.5
1+R1.5

3+ Al6 R6
4+O18 S3

1- S2- 

 Ca-Li-O root 

name 

Ca Li1.5Al1.5 Al6 Si6O18 (OH)3 O 

Vacant 

group 

Vacant-

subgroup 1 

Vacancy (□) R2
2+R3+ R6

3+ R6
4+O18 S3

1- S1- 

 Foitite Vacancy (□) Fe2
2+Al Al6 Si6O18 (OH)3 (OH) 

 Magnesio-

foitite 

Vacancy 

(□) 

Mg2Al Al6 Si6O18 (OH)3 (OH) 

 Vacant-

subgroup 2 

Vacancy 

(□) 

R1
1+R2

3+ R6
3+ Si6O18 S3

1- S1- 

 Rossmanite Vacancy 

(□) 

Li1+Al2
3+ Al6 Si6O18 (OH)3 (OH) 

 Vacant-

subgroup 3 

Vacancy 

(□) 

R1
2+R2

3+ R6
3+ R6

4+O18 S3
1- S2- 
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 General 

formula 

(X) (Y3) (Z6) T6O18 V3 W 

 □-Mg-O root 

name 

Vacancy 

(□) 

MgAl2 Al6 Si6O18 (OH)3 O 

 □-Fe-O root 

name 

Vacancy 

(□) 

Fe2+Al2 Al6 Si6O18 (OH)3 O 

 Vacant-

subgroup 4 

Vacancy 

(□) 

R0.5
1+R2.5

3+ R6
3+ Si6O18 S3

1- S2- 

 □-Li-O root 

name 

Vacancy 

(□) 

Li0.5Al2.5 Al6 Si6O18 (OH)3 O 

        

        

Tourmaline has a general structural formula XY3Z6(T6O18)(BO3)3V3W, with the X, Y, Z, 

T, V and W sites all capable of varying degrees of chemical substitution (Table 2.2). Each site 

can incorporate different cations and anions (and multiple valences of the same cation). As a 

cyclosilicate, tourmaline’s structure is characterized by a six-membered ring of tetrahedra. The 

tetrahedra’s apical oxygens point toward the analogous (-c) pole (Barton 1969, Henry and 

Dutrow 1992).  

Figure 2.1 – Crystal structure of tourmaline, viewed perpendicular to the c-axis, with the sites 

labeled (Henry and Dutrow 2011.)  
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Site Relative abundance of ions 

with different valence states 

Common cations (R) and anions (S) in order of 

relative abundance 

X R1+ > R2+ > □ (vacancy) R1+: Na1+>>K1+ 

R2+: Ca2+ 

Y R2+>R3+>R1+>R4+ R2+: Fe2+~Mg2+>Mn2+>>>Zn2+, Ni2+, Co2+, Cu2+ 

R3+:Al3+>>Fe3+>Cr3+>>V3+ 

R1+: Li1+ 

R4+:Ti4+ 

Z R3+>>R2+ R3+: Al3+>>Fe3+>Cr3+>V3+ 

R2+:Mg2+>Fe2+ 

T R4+>>R3+ R4+:Si4+ 

R3+:Al3+>B3+ 

B R3+ R3+:B3+ 

V S1- >> S2- S1-: OH1- 

S2-:O2- 

W S1-~S2- S1-:OH1-~F1- 

S2-:O2- 

   

   

The nine-coordinated X site is the largest site, able to accommodate large cations 

(commonly Na+ and Ca2+, with some minor K+ or NH4
+ or remain vacant (Henry and Dutrow 

1996, Henry and Dutrow 2011, Wunder et al.. 2015). The occupant of the X site forms the basis 

for the initial discrimination between primary groups of tourmaline, and thus the root name of 

the tourmaline species, e.g., schorl (Henry et al. 2011). Depending on what is present in the X 

site, compensation involving coupled substitution with ions in other sites may be required 

(Hawthorne and Henry 1999, Henry and Dutrow 2011).  

The octahedral Y site has the greatest variation in cations: Mg2+, Al3+, Mn2+, Fe2+, Fe3+, 

Cr3+, V3+, and Ti4+ as well as many other elements at trace amounts. Li1+ occurs in this site 

typically associated with a coupled substitution with Al3+ (Henry and Dutrow 1992).  There 

seems to be little or no vacancy at the Y site (Hawthorne et al.. 1993). Trivalent cations dominate 

Table 2.2 – Site occupation in tourmaline, after Henry et al. (2011).  Cations are denoted 

with an R, anions with an S. Cations and anions are presented in order of their relative 

abundances. 
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the small, often-distorted Z octahedral site: Al3+, Fe3+, Cr3+ and V3+. However, up to two apfu 

Mg2+ and, possibly, small amounts of Fe2+ can be found in this site (see Table 2.2, Henry and 

Dutrow 1992, Henry et al. 2011). The T site is predominantly occupied by Si4+, with some 

substitutions by Al3+ and B3+ (Schreyer 2000, Marler et al. 2002). This is the only location in the 

structure that can be occupied by Si4+, although Al3+ and B3+ can occupy other sites. 

The three-coordinated BO3 groups oriented perpendicular to the c-axis are exclusively 

occupied by B. There is some evidence for tetrahedrally-coordinated boron in both synthetic and 

natural tourmalines (e.g., Hughes et al. 2000, Ertl et al. 2008). The growth of tourmaline is 

strongly dependent on the availability of boron in the system.  

There are 31 anions in the structural formula of tourmaline; these are present at eight 

distinct sites in the apices of coordination polyhedra, labeled O(1)- O(8) (Donnay and Buerger 

1950). The O(1) and O(4)-O(8) sites contain only O2- (Henry and Dutrow 1992, Hawthorne and 

Henry 1999 and references therein).  

The W [O(1)] site can accommodate three different anions: OH1-, F1-, and O2-. The 

different charges on the ions require coupled substitutions in the structure, such that if O2- > OH1- 

+ F1- , which would require the oxy species, a coupled substitution must take place in response to 

the difference in charge, limiting the potential occupants. The V site [O(3)] can contain OH1- or 

O2-, but is mostly dominated by OH1-.  
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Tourmaline physical and petrologic background 

Tourmaline occurs in igneous, metamorphic and sedimentary environments and supports 

its unique properties as a provenance indicator mineral (e.g. Van Hinsberg et al. 2011b). 

Tourmaline has a large stability range (Figure 2.2). It does not form at surface conditions (25°C, 

1 atm), but it is stable at temperatures and pressures found in diagenetic environments (150°C, 

100 MPa). Upper pressure and temperature limits of stability of tourmaline depend on 

composition but generally are between 5-7 GPa and 725°C-950°C, respectively (Van Hinsberg et 

al. 2011a). Tourmaline is also stable in acidic to neutral pH values (Henry and Dutrow 1996) and 

is not stable in alkaline fluid compositions (Morgan and London 1989). Tourmaline’s resistance 

to mechanical abrasion is comparable with corundum, rutile and zircon (Morton and Hallsworth 

1999 and references therein.) 

Figure 2.2 – Simplified stability field of tourmaline of various compositions from Dutrow 

and Henry (2011).  
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Under most crustal conditions, if boron is available from an internal or external source, 

tourmaline will generally develop. Tourmaline crystals grow faster at the antilogous (+c) end 

than the analogous end (-c) in lower temperature environments. At lower temperatures the 

pyramidal faces at either pole as well as the prismatic faces differentially incorporate certain 

cations, anions and isotopes and can produce sector zoning (e.g., Henry and Dutrow 1996, Van 

Hinsberg and Schumacher 2007). The preferential fractionation diminishes as temperature 

increases (Henry and Dutrow 1996). Rates of diffusion of cations and anions in the tourmaline 

structure are negligible; as such identifiable differences in composition in chemical zoning are 

preserved to the highest grades of metamorphism (e.g., Van Hinsberg and Marschall 2007, Van 

Hinsberg and Schumacher 2007.) The ready accommodation of so many different ions in the 

petrologic environment means that tourmaline can act as a recorder of the conditions in which it 

forms, a kind of ‘geologic DVD’ that records and preserves information (Dutrow and Henry 

2011, Van Hinsberg et al. 2011a, Henry and Dutrow 2012, Dutrow and Henry 2016). Sector 

zoning of tourmaline is a source of information on thermometric conditions of formation (e.g., 

Van Hinsberg and Schumacher 2007), recording the changes of not just fluid composition but 

local temperature as well.  

Provenance 

Provenance studies can reveal the lithologies from a distal area (Krynine 1946), the 

tectonic history of the source area and, thus, the paleogeography, providing invaluable 

information for reconstruction of ancient terranes (Johnsson 1993) and provide criteria for 

correlation and differentiation of source units (Krynine 1946). Early elements of provenance 

studies were more qualitative than quantitative; for example, comparing the optical color of a 

tourmaline clastic grain with its suspected parent rock formation. Since the advent of widely 
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available microanalytical techniques, there has been a push to quantify provenance properties for 

standardized use across industry and research. 

The use of heavy minerals (those minerals with a specific gravity higher than 2.80) as 

indicators of source lithologic units has a long history (e.g. Morton 1991).  This includes 

common rock-forming minerals like pyroxenes, garnets and micas, and accessory minerals like 

zircon, apatite, rutile, and tourmaline. The proportion of these minerals in sands is a function of 

two separate sources of variation: mineral sources (lithologies) and transport sources. Variability 

and concentration of heavy minerals in sediments can be due to intrinsic mineral properties like 

specific gravity, durability and stability. Transport sources of variation in heavy mineral 

distribution include hydraulic sorting, sedimentary basin shape, transport distance and flow 

velocity; Morton and Hallsworth (1994) identified hydraulics and diagenesis as the most 

important controlling factors on developing and maintaining heavy mineral suites in sedimentary 

rocks. They noted that the mechanical behavior of grains in water was dependent on grain size 

and shape (which was in turn reflective of intrinsic mineral properties like habit and cleavage). 

Mineral species with properties that are similar will behave in similar ways hydraulically, so the 

physical mechanisms of transport will tend to concentrate minerals with like habits and densities 

in the same places within sediment storage.  Authigenic and diagenetic processes further modify 

mineral assemblages in sandstones. Heavy minerals in provenance studies are susceptible to 

mechanical concentration, which can create unrealistic analogues for geologic units, and the 

recycling of heavy mineral grains into new sediment loads (and eventually into new units).   

Heavy mineral ratios or provenance-sensitive index values compare amounts of 

chemically and mechanically resistant minerals with more unstable mineral species with the 

same hydraulic properties from the same rock type (Morton and Hallsworth 1994). Using heavy 
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mineral index values is not destructive and may be undertaken in the process of concentrating 

heavy mineral grains for microanalysis. Diagenesis has the “most profound” effect on heavy 

mineral suites, with some species lost entirely to dissolution; thus provenance-sensitive index 

values must contain one mineral that is resistant to dissolution or reaction at both surface 

temperatures and pressure, as well as abundant in detrital sediments. Examples of the 

provenance-sensitive indices include garnet-zircon (GZi) and apatite-tourmaline (ATi), which 

compare the amount of remaining garnet to zircon and apatite to tourmaline, respectively. Based 

on lateral or temporal changes in the ratios of these similar heavy minerals (index values), 

changes in provenance may then also be inferred (Morton and Hallsworth 1994).  

The zircon-tourmaline-rutile (ZTR) maturity index was proposed by Hubert (1962) for 

use in sandstones as a measure of a sandstone’s mineralogical maturity and is the “percentage of 

the combined zircon, tourmaline, and rutile among the transparent, nonmicaceous detrital heavy 

minerals.” Mineralogical maturity can be an indicator of how long sediment has been in 

transport. Along with textural information about sorting, rounding, and authigenic overgrowths, 

maturity indices reflect the erosional and depositional history of a sediment.  

Krynine (1946) examined the occurrence of the tourmaline group in sediments, including 

making inferences about provenance from tourmaline grain morphology, color, overgrowths and 

concentrations in sediments. In this work, he attempted to draw conclusions about the 

relationships between tourmaline color, morphology, and composition, as well as the relationship 

between these qualities and their likely environments of formation. He identified the following 

types of tourmalines: granitic tourmalines, pegmatitic tourmalines, metasomatic tourmalines that 

form as a consequence of fluid injection during regional pegmatite-related metamorphosis, 

authigenic ‘cold water’ tourmalines that form on the sea bottom, and “non-injected bedrock” or 
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detrital tourmalines (which are in turn weathered out from the four ‘primary’ sources, and 

become incorporated into a younger sedimentary rock.) He included several photomicrographs of 

detrital tourmaline in plane-polarized light, pointing out the morphology of grains in different 

stages of transport, the shape of authigenic overgrowths, and the value of color as discriminants 

between several potential sedimentary provinces (see Suttner 1974). 

Although some general correlations between color and tourmaline species exist, using 

color as an indicator of source material is problematic (Dietrich 1985). Tourmaline compositions 

(rather than color) provide a more meaningful basis for source rock discrimination.  With the 

acquisition of large amounts of microanalytical data on tourmaline, the additional dimension of 

composition could be used to establish provenance with tourmaline. Henry and Guidotti (1985) 

demonstrated the usefulness of the chemistry of tourmaline as a petrogenetic indicator that could 

reveal information about source rocks. They used tourmaline analyses from sources in the 

literature to develop two ternary plots (Figures 2.3 and 2.4.) Recognizing the significant ranges 

of calcium, iron, magnesium, and aluminum found in tourmaline, they considered that these 

elements would provide the greatest discrimination among potential source rock types. To 

illustrate these variations they used two ternary diagrams: the Al50Fe(tot)50-Al50Mg50), and Ca-

Fe(total)-Mg (Ca-Fe(tot)-Mg). Analyses with known provenance from the literature were used to 

define fields on these compositional diagrams.  Chemical analyses from measurements were 

plotted on the diagrams and fell into one or more of these fields, yielding a suggested provenance 

for that composition. The strength of this approach is that it is an easy-to-understand AFM-style 

ternary diagram useful for provenance for a wide range of rock types. However, this approach 

only considers four of the many possible cations that are present in the tourmaline, potentially 

limiting our understanding. There are several multivariate statistical methods that could be 
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potentially be used for classification, some of which have already been used in geology for 

classification, e.g., Griffin et al. 1997. Weltje (2002) recommends referring to a geological 

“sample” as a specimen, to avoid confusion with the similar statistical term. 

 

Figure 2.3 – AFM ternary diagram (in molecular proportions) for provenance discrimination, 

after Henry and Guidotti (1985) and Van Hinsberg et al. (2011b). Fe is considered as the sum of 

Fe2+ and Fe3+. Major tourmaline species are plotted as a guide. Note that the fields associated 

with low-Ca metaultramafics and Cr, V-rich metasediments (the purple field) and 

metacarbonates and meta-pyroxenites (the yellow field) overlap the fields associated with 

metapelites and Fe3+-rich rocks.  
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Figure 2.4 –  Ca-Fe(tot)-M ternary diagram (in molecular proportions) for provenance 

discrimination, after Henry and Guidotti (1985). Major tourmaline species are plotted as a guide. 

The fields correspond to (1) Li-rich granitoid pegmatites and aplites, (2) Li-poor granitoids and 

associated pegmatites and aplites, (3) Ca-rich metapelites, metapsammites, and calc-silicate 

rocks, (4) Ca-poor metapelites, metapsammites, and quartz-tourmaline rocks, (5) 

Metacarbonates, and (6) Metaultramafics. Note that fields 5 and 6 overlap with fields 3 and 4, 

respectively.  
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CHAPTER 3 - STATISTICAL BACKGROUND 
 

Random forests 

There are numerous statistical methods available to evaluate chemical data. Classification 

trees are robust, easy to understand and do not require a lot of computational resources. 

Conceptually, an analysis is placed at the “trunk” of a tree and at branching points, moves 

distally, until it is in its own class with others that are very similar (a terminal node, or “leaf”). 

One classification tree gives one expected classification outcome for each specimen. 

Unfortunately, with a single decision tree, one decision is made about the classification outcome, 

and the discriminatory power of more sensitive classifiers may be lost. Important variables may 

be missed or narrowly outperformed at decision splits.  

Ensemble learning builds prediction models by “combining the strengths of a collection 

of simpler base models” (Hastie et al. 2009). Ensemble methods reduce over-fitting by averaging 

the result of multiple models to produce an outcome; multiple diverse models that are averaged 

together or otherwise collected can obtain better results than a method that only uses one model 

(Dietterich 2000). Classification trees are vulnerable to being over-complex (for example, one 

analysis per terminal node instead of multiple analyses contained in a node) and become more 

computationally resource-intensive as added variables make the ‘best tree’ unfeasible to 

calculate. Pruning a classification tree using a greedy algorithm, which makes the best possible 

decision at a decision switch, is one way to reduce the complexity of trees. Minimal cost-

complexity pruning using the mean square error keeps the largest amount of data in the tree 

possible to avoid loss of resolution and information on interactions between classifiers, while 

maximizing correct predictions. 
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Caruana and Niculescu-Mizil (2006) tested multiple supervised learning methods, and 

suggested bagged trees, random forests and neural nets as the best methods for classification. 

Decision trees are able to capture complex interactions between variables but have a tendency to 

overfit the data, especially in the presence of noise in the data set; this is the tendency of 

classification trees to produce classifiers with low bias but high variance (a familiar feature of 

the bias-variance tradeoff). To reduce variance between models (and therefore improve 

classification results from more than one tree which may split on different variables), averaging 

together multiple outcomes from trees that are all grown to the same depth can lower variance 

without increasing bias (Hastie et al. 2009). One method to do this is called bagging, from 

‘bootstrap aggregating’ and was proposed by Leo Breiman (1996).  

Bootstraps test the distribution of data by using randomly selected portions of that data 

with replacement. The bootstrap method divides a set of data with n samples into a training set, T 

and a learning set, L, by randomly sampling the data set. Each time a bootstrap sample B is 

obtained from that data set, the entire data set is reloaded for random selection in the next 

sampling run, up to n times. Over many sampling runs, a single piece of data may be selected for 

inclusion in a bootstrap more than once. For sufficiently large data sets (n>50), a bootstrap 

sample’s composition approaches 63.2% of the original data set, and is labeled with the correct 

dependent or output value, y, forming training set T. The remaining 36.8% of the original data 

set is left out of the training set and forms the learning set L. The bootstrap sample replicates the 

behavior of the original data set, so fitting the model to the bootstrap data set produces classifiers 

with the same characteristics and behavior of the original data set. To aggregate the bootstrap 

samples, a predictor function Q(x,T) is used to construct classifiers from the original data set 

using bootstrap sampling, such that the kth predictor is based on the kth bootstrap training set 
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(Breiman 1996b). Bootstrap aggregating is often done on classifiers, especially decision trees; 

growing multiple trees and averaging the results (aggregating) will combine the strengths of 

decision trees with the ‘wisdom of crowds’. An additional feature of bagging was the 

development of the ‘out-of-bag’ (OOB) measurement, which determines the rate at which the 

OOB samples (which formed the learning set L) are misclassified and is comparable to the actual 

misclassification rate (Tibshirani 1996, Breiman 2001.) Bylander and Hanzlik (1999) and 

references therein state that OOB estimates of classification error are more ‘pessimistic’ than 

true error rates. Using OOB error rates will allow for a more conservative evaluation of a 

constructed forest, as true misclassification error rates will likely be lower. 

However, including a random perturbation of the system was posited by Ho (1998) to 

improve accuracy of classification in decision forests and was further expanded upon by 

Breiman (1998), who determined that the random sampling in bagging would be a sufficient 

source of randomness (Denil et al. 2014). Revisions of the method also introduced the random 

selection of a feature on which to split the tree, to keep the construction of trees diverse. Random 

forests, which grows hundreds of trees using a random subset of the data in each tree and 

averages the result, was determined to be the best approach for handling tourmaline provenance 

data, because it keeps the largest amount of data in the trees until the voting process, allowing 

the capture of potentially unknown interactions between chemical elements.  

Random forests (RF) is a combination of decision trees and bagging (Figure 3.1), 

developed by Leo Breiman and Adele Cutler in 2001 (please see Breiman 2001 for proofs). 

While Random Forests has been trademarked and is offered as part of a proprietary software 

package distributed by Adele Cutler, other researchers have continued to develop and refine the 

random forests algorithms. Some have developed software packages that are open-source and 
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free to use; one such package is available for the free statistical computer software R 

(http://www.r-project.org) and maintained by Andy Liaw (Liaw and Wiener 2002).  To prevent 

confusion between them, the trademarked software package will be denoted (Random Forests) 

and the R software package as (randomForest). RF or random forests is intended to refer to the 

statistical technique itself and not the trademarked software package or the package for R.  

RF is a nonparametric, supervised ensemble method. It has been used in multiple 

branches of social and medical sciences because of its ability to handle data with high 

dimensionality. This data may be homogenous or heterogeneous, and has the potential to 

accommodate information like petrographic textures, mineral facies or associations, and 

metamorphic grades in addition to ‘real-number’ raw measurements of chemical compositions, 

isotopic ratios, or data from Raman or Mossbauer spectroscopy.   

RF will rank each variable by importance in making predictions of classification; 

knowing which chemical elements are the most important helps us understand how the tree is 

splitting and what other factors might be influencing the splits. This variable importance 

measurement is also useful in model reduction. It may be that some chemical elements are noise 

predictors and can be eliminated in favor of producing a model that is simpler, while still being 

accurate. RF becomes more accurate with large numbers of classifiers, although a point of 

diminishing returns is reached at n =500 classification trees. Accuracy is also increased by the 

use of a training set and test set that are separate. Using unlabeled “never before seen” data 

reduces overfitting in the trees (Hastie et al. 2009.) Random forests are well-suited to the volume 

and complexity of tourmaline chemical data and are capable of accurately identifying distinct 

chemical sources of tourmaline with a low misclassification rate.   

http://www.r-project.org/
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Figure 3.1 – A diagram showing how random forests are constructed from bootstrap aggregated 

decision trees. The different colors of the samples in the original data set represent different types 

of tourmalines. Sampling from the original data set N may lead to some kinds of tourmalines not 

being included in each bootstrap. Parts of this diagram were taken from Verikas et al. 2011. 
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Challenges to using random forests include the lack of a model; the forest is newly grown 

every time the code is loaded, and code must be included to retain a specific forest for future use. 

Newly growing a forest each time may also change variable important measurements between 

features that are narrowly competing for the greatest importance. 

Statistical analytical approaches to provenance studies 

Statistical approaches specifically hold a great deal of power to manage high-dimensional 

data like mineral chemical analyses (e.g. Belousova et al. 2002a). Random forests have been 

used in addressing problems in medicine, life sciences, and the social sciences, but they have 

also been used in forestry (Attarchi and Gloaguen 2014), soil science (Pahlavan Rad et al. 2014), 

mapping (Shruthi et al. 2014), hydrology and aquifer management (Baudron et al. 2013), and ore 

grading and exploration (O’Brien et al. 2015, Sheng et al. 2015).  

Baudron et al. (2013) used random forests as a method to classify and then identify 

natural waters from an aquifer system in Spain. The authors wanted to determine the origin of 

well water samples in a complex aquifer system, using widely available measurements of major 

aqueous chemical constituents. Several statistical methods were tested, including linear 

discriminant analysis (LDA) and classification and regression trees (CART). LDA was able to 

classify groundwater samples with 84% accuracy; CART was able to achieve 88% accuracy. 

Using random forests resulted in a model that classified groundwater origins with 94.3% 

accuracy.  

Clarke et al. (1989) began developing tourmaline as an indicator mineral for 

economically viable deposits in Nova Scotia, Canada; the data they used included chemical 

information as well as boron isotopes. Using both LDA and quadratic discriminant analysis 
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(QDA), the authors were able to distinguish between three different populations of tourmalines 

defined as barren, granite-related mineralized deposits, and non-granite-related mineralized 

deposits with up to 89% accuracy using LDA and 98% accuracy using QDA. Belousova et al. 

(2002a, b) used classification and regression trees on trace element compositions of apatite and 

zircon to determine source rock composition. Using predictions generated by these methods, the 

authors recommended the adoption of a statistical method that could identify a tourmaline’s 

source rock for economic purposes. 

The literature has a large body of tourmaline chemical data with known provenance 

which can be used to develop a database of samples to serve as a starting point for differentiating 

between source rock types.  Using random forests, information about tourmaline chemical 

composition develops a set of “rules” for the classification of tourmalines according to source 

rock type. Further development of the method follows the workflow shown in Figure 3.2. 
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Figure 3.2 – Iterative workflow method for this study, developing tourmaline data set and 

associated random forests. Fine-tuning methods as suggested by Dietterich (2000).  
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CHAPTER 4 – INPUT DATA AND PROGRAMMING ENVIRONMENT 

Tourmaline input data for statistical modeling 

Tourmaline chemical data are used with the random forest method to obtain a statistical 

model for provenance applications. The input used for the random forest method is tourmaline 

mineral-chemical data coupled with its known provenance.  Although any tourmaline parameter 

can be used (e.g., color, shape, etc.) for this type of statistical analysis, mineral chemistry is 

considered the most useful. A relatively comprehensive list of 39 potential tourmaline source 

lithologies was developed by Darrell Henry (personal communication) and serves as a starting 

point for establishing possible provenance classes for this statistical model (see Table 4.1). The 

input data used for this modeling is derived from the literature (see Appendix B for literature 

descriptions). Assignment of a specific tourmaline to a specific lithologic environment can be 

challenging because of several factors that can obfuscate the lithologic assignment including: a 

mixed chemical signal from host rock and infiltrating fluid, strong zoning in the tourmaline, and 

diagenetic and metamorphic overgrowths on detrital tourmaline cores. For each sample, its field 

location was noted from its respective study and used to assign a provenance class.  

Tourmaline mineral chemistry has been typically determined using two different 

analytical approaches—wet chemistry and electron microprobe analysis (EPMA). Wet chemical 

analytical techniques allow all elements and the oxidation states of transition elements to be 

determined. However, this approach is time-consuming and uses entire grains so that any 

chemical zoning is lost. In contrast, analysis using the EPMA can determine tourmaline 

compositions at the micrometer scale, but there are analytical limitations that must be 

considered. One of the most important tourmaline constituents, boron, is not analyzed very 

accurately with EPMA and boron is commonly assumed to be 3 B apfu (Henry et al., 2011). 
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Other light elements such as hydrogen and lithium cannot be analyzed and the oxidation states of 

transition elements cannot be directly evaluated with an EPMA, but there are methods to 

approximate these elements (e.g., Henry and Dutrow 1996, Henry et al. 2011). Nonetheless, light 

elements are more frequently being analyzed at the micrometer scale using techniques such as 

SIMS; these data can be used to check the estimation procedures of light elements and varying 

oxidation states obtained from the EPMA microanalyses.  

Both analytical techniques typically report the compositions of the elements analyzed in 

terms of weight percent (wt%) oxide, with the exception of the anions F and Cl. To calculate a 

structural formula of a mineral, these wt% oxide data are normalized based on an assumed 

number of anions in the structural formula (e.g., 31 oxygens) or a fixed number of cations (e.g., 

Si=6). Next, the calculated ions are distributed into tourmaline structural sites based on several 

assumptions of the appropriate site occupancy (see Henry et al. 2011). There are potential issues 

in using normalized ionic values and structural-site assignments for specific ions as the input for 

the statistical models. In these cases analytical errors in one or more of the measured elements 

can propagate through all of the normalized ions and site-assigned ions, and this can skew the 

data. As such, in this study the measured wt% oxides (or element% F) are directly used as input 

for the statistical model without normalization. Because Li is a very important constituent of 

tourmaline in some granitic pegmatites, Li2O is estimated with a procedure established by 

Pesquera et al. (2016) and used for the Li2O value unless Li2O is directly measured by wet 

chemistry or SIMS.  

To generate random forests, all of the data can be used to create classifiers, but not all 

input parameters used to build classifiers are equally important. Parameters which are not 

important can be eliminated in the model without significantly changing the classification result 



 

26 

 

(Liaw and Wiener 2002). In tourmaline, a relatively comprehensive group of input parameters 

for the statistical model include the following chemical elements, (in wt% oxides and wt% F, 

Cl): B2O3, SiO2, Al2O3, TiO2, Cr2O3, Fe2O3, FeO, MnO, MgO, V2O3, ZnO, SrO, CaO, Li2O, 

Na2O, K2O, F, Cl. In the case of EPMA data, Li2O was estimated using the procedure of 

Pesquera et al. (2016). Because the EPMA cannot directly determine Fe2O3 contents, the Fe data 

are assumed to be all FeO. For those wet chemical analyses in which Fe2O3 was measured, the 

data was recalculated so that all of the Fe2O3 is recast as FeO.  

For specific applications some of the unimportant input parameters (as determined by the 

random forest’s variable importance measurement) can be eliminated, e.g. compared to F, Cl is 

not important in splitting the decision trees and was removed for some forests. In the case where 

there was missing data either the sample is not used or the parameter is assigned a zero for the 

purposes of modeling. As a way of filtering the inferior data, specimens with weight percentage 

totals lower than 92 or higher than 103 were not used. Divisions are made according to general 

rock type, important constituents like lithium or aluminum, and metamorphic grade. Rock types 

containing aluminum-saturated phases (e.g., andalusite, kyanite) are considered aluminum-rich. 

Rocks with lithium measurements higher than 40 ppm are considered to be enriched in lithium.   
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Table 4.1 –  Potential source lithologies containing tourmaline (Darrell Henry, personal 

communication). This ideal classification scheme may not reflect actual provenance classes.   

Class General provenance 
Lithologic or 

chemical type 

Specific lithologic association or 

provenance 

1 Granitic Low Li Aplite 

2 Granitic High Li Aplite 

3 Granitic Low Li Pegmatite 

4 Granitic High Li Pegmatite 

5 Granitic Low Li Plutonic 

6 Granitic High Li Plutonic 

7 Granitic gneiss Low Li Metamorphic 

8 Granitic gneiss High Li Metamorphic 

9 Metapelite Diagenetic Monopolar growth 

10 Metapelite Low Al Low grade 

11 Metapelite High Al Low grade 

12 Metapelite Low Al Medium grade 

13 Metapelite High Al Medium grade 

14 Metapelite Low Al High grade 

15 Metapelite High Al High grade 

16 Metapsammite Diagenetic Monopolar growth 

17 Metapsammite Low Al Low grade 

18 Metapsammite High Al Low grade 

19 Metapsammite Low Al Medium grade 

20 Metapsammite High Al Medium grade 

21 Metapsammite Low Al High grade 

22 Metapsammite High Al High grade 

23 Calcareous metasediment Marble Low grade, >50% carbonate 

24 Calcareous metasediment Marble Medium grade, >50% carbonate 

25 Calcareous metasediment Marble High grade, >50% carbonate 

26 Calcareous metasediment Calc-silicate rock Low grade, <5% carbonate 

27 Calcareous metasediment Calc-silicate rock Medium grade, <5% carbonate 

28 Calcareous metasediment Calc-silicate rock High grade, <5% carbonate 

29 Meta-mafics Greenschist  

30 Meta-mafics Amphibolite  

31 Meta-mafics Mafic granulite  

32 Meta-mafics Mafic eclogite  

33 Meta-mafics Blueschist  

34 Meta-ultramafics   

35 Meta-evaporites   

36 Meta-ironstones   

37 Quartz veins Barren  

38 Quartz veins Sn-W deposits  

39 Tourmalinite   
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The R environment 

The randomForest package for R generates variable importance measurements for the 

features each time a forest is grown. Variability in the performance of the forest can be directly 

related to class definitions and how ‘correctly’ a sample is labeled. Liaw and Wiener (2002) 

indicate that although importance measurements may vary from run to run, the ranking of 

importance tends to be stable. Even though there is no model and the trees grown are different 

every time, the competition between attributes in the forest should produce similar results each 

time a forest is grown on a data set. 

 The output for randomForest includes the OOB rate as well as a confusion matrix and a 

ratio of correct to incorrect classifications given as ‘class.error’. The class.error value is the 

number of Type I and Type II errors summed and divided by the total number of specimens in 

the provenance class. Type I errors are ‘false positives’, a specimen assigned to a class when it 

does not belong to that class. Type II errors are ‘false negatives’, or the forest failing to assign a 

specimen the class to which it actually belongs. The confusion matrix allows performance of the 

forest to be evaluated easily and quickly: it is obvious which classes are underperforming, 

because their class.error values approach one (and those values for which accuracy would be 

low; conversely, when accuracy is high, class.error values approach zero). The package also 

includes a ‘predict’ function which generates a probability for any particular specimen to be put 

into each provenance class. Comparing labels with probabilities allowed determination of 

inaccurate assignment of provenance to a specimen. 

Keeping in mind that the decision trees in the forest are weak learners (Schapire 1990), 

probabilities were compared for each specimen’s final classification with the known provenance 

labels.  Most individual specimens showed high probability for a single class, but a few 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Trumbull 2009 (15 YZT 

optimal) 4 37.25 31.08 0.52 4.30 0.03 9.21 0.93 0.00 2.39 0.21 

Trumbull 2009 (15 YZT 
optimal) 4 36.94 31.21 0.47 4.05 0.07 9.21 0.96 0.00 2.36 0.21 

Trumbull 2009 (15 YZT 

optimal) 4 36.89 31.24 0.23 6.40 0.02 7.48 0.35 0.00 2.52 0.30 

Trumbull 2009 (15 YZT 
optimal) 4 37.39 30.64 0.49 4.40 0.03 9.52 0.91 0.00 2.32 0.27 

Trumbull 2009 (15 YZT 

optimal) 4 37.18 31.26 0.57 4.16 0.00 9.33 1.06 0.00 2.24 0.18 

Trumbull 2009 (15 YZT 
optimal) 4 36.56 29.70 0.47 5.74 0.01 8.71 0.77 0.00 2.38 0.14 

Trumbull 2009 (15 YZT 

optimal) 4 37.24 31.52 0.33 3.57 0.00 9.33 0.44 0.00 2.58 0.07 

Trumbull 2009 (15 YZT 
optimal) 4 37.45 31.39 0.24 3.73 0.00 9.04 0.33 0.00 2.51 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.34 31.79 0.12 3.89 0.04 8.95 0.28 0.00 2.55 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.06 31.55 0.32 3.68 0.00 9.14 0.40 0.00 2.45 0.15 

Trumbull 2009 (15 YZT 

optimal) 4 36.00 31.03 0.18 5.84 0.01 8.79 0.32 0.00 2.45 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.46 30.94 0.47 3.60 0.01 9.66 0.77 0.00 2.46 0.17 

Trumbull 2009 (15 YZT 

optimal) 4 37.18 30.02 0.49 4.59 0.02 9.34 0.86 0.00 2.47 0.10 

Trumbull 2009 (15 YZT 
optimal) 4 37.01 29.97 0.38 4.93 0.01 9.13 0.69 0.00 2.58 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.14 30.73 0.60 3.32 0.03 9.61 1.02 0.00 2.35 0.18 

Trumbull 2009 (15 YZT 
optimal) 4 37.30 30.51 0.57 3.62 0.00 9.77 0.94 0.00 2.40 0.17 

Trumbull 2009 (15 YZT 

optimal) 4 37.55 31.50 0.27 3.44 0.05 9.33 0.31 0.00 2.53 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.53 31.04 0.37 3.58 0.00 9.55 0.59 0.00 2.50 0.20 

Trumbull 2009 (15 YZT 

optimal) 4 37.74 31.93 0.18 3.67 0.00 8.88 0.23 0.00 2.46 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.70 30.01 0.56 4.54 0.00 9.34 0.81 0.00 2.47 0.02 

Trumbull 2009 (15 YZT 

optimal) 4 37.03 30.87 0.53 3.54 0.00 9.64 0.91 0.00 2.44 0.18 

Trumbull 2009 (15 YZT 
optimal) 4 37.59 31.73 0.10 3.79 0.02 8.91 0.25 0.00 2.41 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.55 31.33 0.23 3.67 0.05 9.05 0.36 0.00 2.45 0.00 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Trumbull 2009 (15 YZT 

optimal) 4 37.19 30.81 0.19 4.34 0.02 8.83 0.50 0.00 2.53 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.84 30.26 0.57 3.58 0.04 9.38 0.94 0.00 2.27 0.15 

Trumbull 2009 (15 YZT 

optimal) 4 37.18 30.74 0.53 3.57 0.02 9.69 0.99 0.00 2.24 0.25 

Trumbull 2009 (15 YZT 
optimal) 4 37.24 30.36 0.59 4.12 0.00 9.59 0.80 0.00 2.52 0.04 

Trumbull 2009 (15 YZT 

optimal) 4 37.25 30.70 0.47 4.24 0.04 9.67 0.78 0.00 2.55 0.03 

Trumbull 2009 (15 YZT 
optimal) 4 37.20 30.86 0.55 3.54 0.02 9.57 1.00 0.00 2.26 0.21 

Trumbull 2009 (15 YZT 

optimal) 4 37.37 31.62 0.08 4.25 0.03 8.78 0.25 0.00 2.48 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.91 29.73 0.45 5.10 0.01 9.23 0.85 0.00 2.36 0.11 

Trumbull 2009 (15 YZT 

optimal) 4 37.35 30.92 0.54 3.47 0.01 9.75 0.87 0.00 2.41 0.26 

Trumbull 2009 (15 YZT 
optimal) 4 36.85 30.28 0.47 4.28 0.02 9.46 0.78 0.00 2.43 0.05 

Trumbull 2009 (15 YZT 

optimal) 4 36.94 31.29 0.16 4.23 0.01 9.01 0.31 0.00 2.49 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.47 31.54 0.14 4.30 0.00 9.07 0.29 0.00 2.48 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.72 30.52 0.60 3.74 0.01 9.81 0.91 0.00 2.47 0.16 

Trumbull 2009 (15 YZT 
optimal) 4 37.56 30.35 0.51 3.74 0.05 9.69 0.87 0.00 2.52 0.08 

Trumbull 2009 (15 YZT 

optimal) 4 36.89 29.87 0.40 4.91 0.03 9.07 0.73 0.00 2.48 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.09 30.13 0.53 4.79 0.00 9.34 0.87 0.00 2.38 0.06 

Trumbull 2009 (15 YZT 

optimal) 4 36.89 30.71 0.48 3.82 0.05 9.66 0.71 0.00 2.58 0.31 

Trumbull 2009 (15 YZT 
optimal) 4 36.95 30.61 0.51 3.88 0.00 9.75 0.68 0.00 2.52 0.32 

Trumbull 2009 (15 YZT 

optimal) 4 37.27 30.31 0.49 4.35 0.03 9.39 0.53 0.00 2.66 0.25 

Trumbull 2009 (15 YZT 
optimal) 4 37.18 30.23 0.57 3.74 0.03 9.58 1.08 0.00 2.24 0.23 

Trumbull 2009 (15 YZT 

optimal) 4 37.16 31.03 0.21 4.64 0.04 8.81 0.34 0.00 2.53 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.07 30.65 0.34 4.83 0.01 8.97 0.56 0.00 2.59 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.23 30.78 0.56 3.32 0.00 9.65 0.99 0.00 2.29 0.29 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Trumbull 2009 (15 YZT 

optimal) 4 37.09 30.81 0.64 3.69 0.03 9.66 1.07 0.00 2.35 0.21 

Trumbull 2009 (15 YZT 
optimal) 4 36.99 30.25 0.51 3.48 0.05 9.59 0.96 0.00 2.38 0.28 

Trumbull 2009 (15 YZT 

optimal) 4 37.23 29.83 0.66 4.02 0.04 9.78 0.94 0.00 2.45 0.37 

Trumbull 2009 (15 YZT 
optimal) 4 37.26 30.68 0.39 3.29 0.02 9.59 0.72 0.00 2.42 0.37 

Trumbull 2009 (15 YZT 

optimal) 4 37.06 30.25 0.48 3.30 0.00 9.68 1.00 0.00 2.27 0.35 

Trumbull 2009 (15 YZT 
optimal) 4 37.32 30.38 0.57 3.57 0.03 9.67 1.14 0.00 2.30 0.32 

Trumbull 2009 (15 YZT 

optimal) 4 37.40 31.39 0.18 3.83 0.00 8.88 0.35 0.00 2.44 0.13 

Trumbull 2009 (15 YZT 
optimal) 4 37.45 31.50 0.16 3.91 0.04 8.75 0.28 0.00 2.45 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.14 30.34 0.55 3.44 0.02 9.64 1.07 0.00 2.30 0.31 

Trumbull 2009 (15 YZT 
optimal) 4 37.08 30.34 0.49 3.42 0.00 9.49 1.07 0.00 2.25 0.20 

Trumbull 2009 (15 YZT 

optimal) 4 36.96 30.48 0.46 3.23 0.02 9.60 1.07 0.00 2.24 0.30 

Trumbull 2009 (15 YZT 
optimal) 4 37.27 30.00 0.47 3.69 0.00 9.81 0.85 0.00 2.51 0.34 

Trumbull 2009 (15 YZT 

optimal) 4 37.32 30.82 0.64 3.77 0.00 9.92 1.26 0.00 2.19 0.29 

Trumbull 2009 (15 YZT 
optimal) 4 37.10 30.25 0.75 3.65 0.03 9.79 1.19 0.00 2.30 0.31 

Trumbull 2009 (15 YZT 

optimal) 4 37.10 30.22 0.84 3.68 0.00 9.80 1.14 0.00 2.20 0.31 

Trumbull 2009 (15 YZT 
optimal) 4 37.13 30.17 0.82 3.75 0.01 9.64 1.14 0.00 2.31 0.30 

Trumbull 2009 (15 YZT 

optimal) 4 36.99 29.91 0.68 3.83 0.01 9.75 1.15 0.00 2.30 0.38 

Trumbull 2009 (15 YZT 
optimal) 4 37.33 30.12 0.69 3.83 0.03 9.89 1.21 0.00 2.14 0.36 

Trumbull 2009 (15 YZT 

optimal) 4 36.85 30.14 0.80 3.61 0.02 9.80 1.33 0.00 2.03 0.26 

Trumbull 2009 (15 YZT 
optimal) 4 36.90 30.15 0.49 3.45 0.08 9.48 1.03 0.00 2.29 0.35 

Trumbull 2009 (15 YZT 

optimal) 4 37.03 30.28 0.47 3.57 0.00 9.43 1.05 0.00 2.21 0.26 

Trumbull 2009 (15 YZT 
optimal) 4 37.19 29.88 0.42 4.01 0.06 9.63 0.51 0.00 2.73 0.43 

Trumbull 2009 (15 YZT 

optimal) 4 37.81 31.77 0.24 3.60 0.04 9.21 0.49 0.00 2.36 0.19 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Trumbull 2009 (15 YZT 

optimal) 4 37.62 31.98 0.24 3.61 0.03 8.93 0.47 0.00 2.32 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.69 31.83 0.26 3.64 0.02 8.95 0.48 0.00 2.31 0.06 

Trumbull 2009 (15 YZT 

optimal) 4 37.52 31.41 0.39 3.55 0.01 9.25 0.60 0.00 2.35 0.29 

Trumbull 2009 (15 YZT 
optimal) 4 37.67 31.62 0.29 3.76 0.05 9.01 0.54 0.00 2.34 0.17 

Trumbull 2009 (15 YZT 

optimal) 4 37.64 31.65 0.15 3.79 0.02 9.12 0.35 0.00 2.49 0.10 

Trumbull 2009 (15 YZT 
optimal) 4 37.39 31.23 0.24 3.86 0.02 9.03 0.39 0.00 2.38 0.22 

Trumbull 2009 (15 YZT 

optimal) 4 37.35 31.43 0.24 3.88 0.02 8.91 0.41 0.00 2.40 0.17 

Trumbull 2009 (15 YZT 
optimal) 4 37.46 31.24 0.26 3.49 0.03 9.29 0.39 0.00 2.51 0.24 

Trumbull 2009 (15 YZT 

optimal) 4 37.70 31.61 0.23 3.81 0.00 9.11 0.33 0.00 2.49 0.28 

Trumbull 2009 (15 YZT 
optimal) 4 37.07 30.57 0.48 3.61 0.02 9.65 0.88 0.00 2.40 0.33 

Trumbull 2009 (15 YZT 

optimal) 4 37.51 31.40 0.26 3.81 0.00 9.01 0.39 0.00 2.49 0.18 

Trumbull 2009 (15 YZT 
optimal) 4 37.55 30.70 0.48 3.39 0.02 9.86 0.88 0.00 2.36 0.32 

Trumbull 2009 (15 YZT 

optimal) 4 37.43 31.57 0.22 3.81 0.00 8.87 0.35 0.00 2.38 0.05 

Trumbull 2009 (15 YZT 
optimal) 4 37.52 31.77 0.12 3.88 0.01 8.87 0.25 0.00 2.44 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.50 31.41 0.16 3.91 0.04 8.84 0.29 0.00 2.47 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.41 30.29 0.48 3.54 0.02 9.78 0.87 0.00 2.48 0.32 

Trumbull 2009 (15 YZT 

optimal) 4 37.54 31.00 0.44 3.52 0.02 9.74 0.90 0.00 2.34 0.38 

Trumbull 2009 (15 YZT 
optimal) 4 36.90 30.63 0.55 3.76 0.02 9.70 1.07 0.00 2.33 0.26 

Trumbull 2009 (15 YZT 

optimal) 4 37.35 30.57 0.36 3.76 0.06 9.55 0.81 0.00 2.49 0.22 

Trumbull 2009 (15 YZT 
optimal) 4 37.48 30.22 0.37 3.62 0.04 9.89 0.68 0.00 2.52 0.33 

Trumbull 2009 (15 YZT 

optimal) 4 37.35 30.13 0.55 3.79 0.00 9.82 0.97 0.00 2.41 0.34 

Trumbull 2009 (15 YZT 
optimal) 4 36.84 32.42 0.89 7.42 0.08 6.32 1.10 0.00 1.91 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.06 32.72 0.42 6.92 0.03 6.53 0.86 0.00 2.16 0.00 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Trumbull 2009 (15 YZT 

optimal) 4 36.88 31.25 1.18 7.75 0.07 6.32 0.86 0.00 2.13 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.82 30.73 1.17 8.08 0.05 6.18 0.67 0.00 2.24 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 36.49 31.11 1.30 7.66 0.06 6.17 0.97 0.00 2.08 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.92 34.27 0.53 6.39 0.04 5.69 0.73 0.00 1.73 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.27 33.51 0.40 6.35 0.01 6.07 0.76 0.00 1.92 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.15 31.30 0.81 7.44 0.03 6.52 0.77 0.00 2.22 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.19 31.58 0.79 7.67 0.01 6.29 0.71 0.00 2.18 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.10 30.45 1.88 7.49 0.05 6.75 0.78 0.00 2.06 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.46 32.54 0.60 7.09 0.06 6.32 0.69 0.00 2.05 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.98 32.98 0.61 7.00 0.03 6.14 0.79 0.00 2.05 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 36.88 32.98 0.85 5.94 0.03 6.75 1.12 0.00 1.83 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.20 33.15 0.72 5.84 0.08 6.53 1.01 0.00 1.88 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.26 33.25 0.53 6.13 0.11 6.52 0.84 0.00 2.00 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.84 31.99 1.29 7.20 0.03 6.32 1.15 0.00 1.84 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.20 32.54 0.65 7.32 0.08 6.43 0.66 0.00 2.22 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.56 32.86 0.39 7.08 0.05 6.20 0.54 0.00 2.03 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.43 32.98 0.47 6.98 0.06 6.28 0.60 0.00 2.13 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.07 31.37 0.81 7.77 0.07 6.47 0.64 0.00 2.34 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 36.85 32.36 1.06 7.11 0.04 6.28 1.06 0.00 1.89 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.09 32.29 0.86 7.21 0.08 6.34 0.85 0.00 2.07 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.09 33.79 0.53 6.40 0.06 6.44 0.98 0.00 1.84 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.16 34.16 0.26 5.79 0.02 6.33 0.71 0.00 1.88 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.00 33.05 0.62 6.28 0.06 6.34 0.90 0.00 1.98 0.00 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Trumbull 2009 (15 YZT 

optimal) 4 36.89 32.73 0.59 6.46 0.03 6.51 0.90 0.00 2.11 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 36.79 32.54 0.64 6.69 0.05 6.52 0.80 0.00 2.01 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 36.70 33.60 0.54 6.26 0.01 6.35 0.94 0.00 1.95 0.00 

Trumbull 2009 (15 YZT 
optimal) 4 37.10 32.93 0.66 6.86 0.04 6.34 0.93 0.00 2.00 0.00 

Trumbull 2009 (15 YZT 

optimal) 4 37.12 33.10 0.77 6.36 0.06 6.37 1.06 0.00 1.86 0.00 

VandenBleeken 2007 (15 YZT 
optimal) 4 37.27 34.70 0.19 10.62 0.07 2.13 0.03 0.00 0.76 0.01 

VandenBleeken 2007 (15 YZT 

optimal) 4 37.20 35.06 0.13 10.53 0.08 2.27 0.02 0.00 0.71 0.00 

VandenBleeken 2007 (15 YZT 
optimal) 4 36.78 34.92 0.14 10.99 0.09 2.12 0.02 0.00 0.64 0.00 

VandenBleeken 2007 (15 YZT 

optimal) 4 36.89 34.31 0.09 9.55 0.04 3.54 0.01 0.00 0.95 0.00 

VandenBleeken 2007 (15 YZT 
optimal) 4 36.58 34.02 0.15 10.39 0.07 2.99 0.03 0.00 0.88 0.00 

VandenBleeken 2007 (15 YZT 

optimal) 4 36.51 33.97 0.10 11.27 0.10 2.55 0.04 0.00 0.89 0.00 

VandenBleeken 2007 (15 YZT 
optimal) 4 37.42 34.08 0.06 10.17 0.08 2.96 0.02 0.00 0.88 0.01 

VandenBleeken 2007 (15 YZT 

optimal) 4 36.88 34.40 0.10 9.48 0.14 3.42 0.06 0.00 0.91 0.00 

VandenBleeken 2007 (15 YZT 
optimal) 4 36.55 30.12 0.49 9.68 0.05 6.09 0.23 0.00 2.06 0.04 

Zacek (1998) 7 31.96 5.71 2.31 32.04 0.00 6.65 0.00 0.00 1.64 0.00 

Zacek (1998) 7 32.66 7.71 1.46 29.21 0.00 7.95 0.00 0.00 2.13 0.00 

Zacek (1998) 7 33.11 7.19 2.05 29.08 0.11 7.70 0.00 0.00 1.66 0.00 

Zacek (1998) 7 32.12 5.15 3.48 32.47 0.00 6.24 0.00 0.00 1.58 0.00 

Zacek (1998) 7 31.06 2.39 0.38 38.13 0.00 6.19 0.00 0.00 1.55 0.00 

Zacek (1998) 7 32.17 2.93 1.26 36.17 0.00 7.02 0.05 0.00 1.48 0.00 

Zacek (1998) 7 32.13 4.11 2.04 34.71 0.09 6.72 0.00 0.00 1.61 0.00 

Zacek (1998) 7 32.41 6.57 2.20 31.68 0.10 6.72 0.00 0.00 1.82 0.00 

Zacek (1998) 7 33.22 10.91 2.34 26.60 0.00 6.75 0.00 0.00 2.02 0.00 

Zacek (1998) 7 36.46 24.58 1.67 12.18 0.00 7.85 0.00 0.00 3.05 0.00 

Zacek (1998) 7 36.63 24.49 1.71 12.10 0.00 7.93 0.08 0.00 2.97 0.00 
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ource 

Numeric 

provenance 
class for R SiO2 Al2O3 TiO2 Total as FeO MnO MgO CaO 

best Li2O - 

measured or 
calculated Na2O F 

Zacek (1998) 7 37.35 28.15 0.12 7.98 0.08 9.37 0.34 0.00 2.91 0.00 

Zacek (1998) 7 37.11 28.16 0.00 8.00 0.00 9.38 0.27 0.00 3.07 0.00 

Zacek (1998) 7 37.20 28.49 0.08 7.69 0.00 9.39 0.32 0.00 3.03 0.00 

Zacek (1998) 7 37.32 27.72 0.25 8.89 0.00 9.24 0.28 0.00 2.92 0.00 

Zacek (1998) 7 37.58 30.17 0.22 6.21 0.00 9.22 0.14 0.00 3.05 0.00 

Zacek (1998) 7 37.19 25.92 0.69 8.68 0.00 10.23 0.07 0.00 3.23 0.00 

Zacek (1998) 7 36.78 26.13 0.49 8.25 0.00 10.40 0.34 0.00 3.11 0.00 

Zacek (1998) 7 36.37 26.32 0.49 9.77 0.00 9.26 0.00 0.00 3.02 0.00 

Zacek (1998) 7 31.46 2.90 0.79 36.46 0.00 6.36 0.24 0.00 1.47 0.00 

Zacek (1998) 7 31.78 2.62 1.15 34.67 0.09 7.87 0.00 0.00 1.98 0.00 

Zacek (1998) 7 31.10 2.71 2.66 34.94 0.00 5.62 0.00 0.00 1.81 0.00 

Zacek (1998) 7 30.24 2.76 3.44 33.21 0.15 5.85 0.00 0.00 1.62 0.00 

Zacek (1998) 7 33.79 13.96 3.60 21.43 0.00 7.38 0.00 0.00 2.73 0.00 

Zacek (1998) 7 33.64 14.03 3.32 21.64 0.00 7.44 0.00 0.00 2.60 0.00 

Zacek (1998) 7 34.18 14.82 3.56 20.69 0.19 7.77 0.07 0.00 2.81 0.00 

Zacek (1998) 7 36.29 26.90 0.22 8.52 0.00 9.33 0.10 0.00 3.02 0.00 

Zacek (1998) 7 36.61 29.56 0.17 9.96 0.00 6.86 0.16 0.00 2.91 0.00 

Zacek (1998) 7 37.03 26.64 0.51 8.33 0.00 9.71 0.00 0.00 3.03 0.00 
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APPENDIX D – VIATOR DATA TABLE 
 

This data was taken from Viator (2003).  Each entry is an individual chemical analysis of a 

tourmaline. They are arranged alphabetically by author. The ‘provenance class’ column is which 

of the 8 provenance classes it was assigned in Forest J.  

Forest J provenance classes are provided here for faster reference. 

1 Granites, pegmatites and aplites, Li-poor 

2 Pegmatites, granites and aplites, Li-rich 

3 Pegmatites, granites and aplites, Li-rich with calcareous host 

4 Metapelites and metapsammites 

5 Calcareous 

6 Meta-mafic 

7 Meta-evaporites 

8 Hydrothermal 

 

Information on Lithium content is not often directly measured (e.g., in a wet chem analysis), so 

this was calculated according to the Pesquera method.. If a specimen had both measured lithium 

content and calculated lithium content, the greater value was used. Iron content is given in terms 

of FeO. 
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