






Figure 2.4: Distribution of the density of states for small γ = 3t disorder and large γ = 18t disorder.
In the small disorder regime, the distribution is gaussian and largely independent of system size.

Past the transition, in the loalized regime the distribution is log-normal and it an be seen that as

the system size is inreased that the typial value is approahing zero. This motivates the usage of

the typial value as an order parameter for the transition. Figure is taken from [31℄.

of boxes for that α sales, N(α) ∼ (ℓ/L)−f(α)
. See Fig. 2.5.

In general, the q-th moments of α are

α̃q =
〈∑k µ

q
k log µk〉

〈
∑

k µ
q
k〉 log λ

(2.11)

and the proedure to perform the �nite size saling of these moments and �t the ritial parameters

will be desribed in Se.5.2.3 .

Figure 2.5: Shemati piture of α− f(α) pairs. A system of harateristi length L is divided into

boxes of length ℓ. The largest fratal dimension would orrespond to A as it overs the most boxes.

Figure taken form [41℄

29



It has been established that at the ritial point the eigenstates of the 3D Anderson model

exhibit multifratality [158℄. Although interesting, the multifratal analysis depends on knowing the

ritial point a-priori as the multifratal exponents are de�ned only at the ritial point. However,

it has been shown that a very similar analysis an be made on the distributions of these multifratal

exponents for �nite λ(see Fig.2.6) whih allows for a �nite size analysis[167℄ similar to that desribed

in Se.5.2.2 for Λ. This provides another way of determining the ritial disorder strength, but with

additional information of the spatial variation of the wavefuntion.

Figure 2.6: Evolution of the distribution of wave funtion intensities for Anderson Model for λ =
ℓ/L = 0.1. Here α = log µk/ log λ where µk =

∑

i∈k |ψi|2 where the sum denotes a sum over points

i in box k. The rossing of the typial value in the W − α plane that indiates the ritial disorder

strength and shows this quantity an be used to determine the ritial parameters. Figure taken

from [167℄
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Chapter 3

TMDCA Study of O�-diagonal Disorder

Previous work on TMDCA had been restrited to purely diagonal or loal disorder[105℄. The work

in this hapter

1

will show how even non-loal disorder orrelations an be orretly aounted for

within the TMDCA by omparisons with the Kernel Polynomial Method for the density of states

and the TMM for the trajetory of the mobility edge. My ontribution to this result was primarily

the TMM data in Fig. 3.7 and Fig. 3.8 whih shows the evolution of the mobility edge. I developed

a large sale perfetly parallel ode over energy and disorder strength and alulated the Kramer-

MaKinnon saling parameter for the system lengths and widths desribed in the aptions (see

Se.5.2.2 for desription of TMM). I found the ritial point by �nite size saling analysis of the

Kramer-MaKinnon saling parameter as desribed in Se5.2.2.

1

This hapter inludes previously published work published by Amerian Physial Soiety and appears in [37℄ and

is reprodued here under term 3 of Author's rights of the APS Transfer of Copyright Agreement to �The right to use

all or part of the Artile, inluding the APS-prepared version without revision or modi�ation . . . for eduational or

researh purposes.�
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3.1 Introdution

Disorder whih is inevitably present in most materials an dramatially a�et their properties [101,

102℄. It an lead to hanges in their eletroni struture and transport. One of the most interesting

e�ets of disorder is the spatial on�nement of harge arriers due to oherent baksattering o�

random impurities whih is known as Anderson loalization [103, 47℄. Despite progress over the

last deades, the subjet of Anderson loalization remains an ative area of researh. The lak of

quantitative analytial results has meant that numerial investigations [104, 49, 50, 51, 52, 53, 54℄

have provided a signi�ant role in understanding the Anderson transition [55, 98, 57℄.

The simplest model used to study the e�ets of disorder in materials is a single band tight

binding model with a random on-site disorder potential [58℄. Suh a model is justi�ed when the

disorder is introdued by substitutional impurities, as in a binary alloy. The substitution of host

atoms by impurities only leads to hanges of the loal potential on the substitutional site and, on

average, does not a�et the neighbors [58, 59℄. In this situation, the disorder appears only in the

diagonal terms of the Hamiltonian and hene is referred to as diagonal disorder. However, when

the bandwidth of the dopant is very di�erent from the one of the pure host, suh substitution

results not only in the hange of the loal potential but may also a�et the neighboring sites [58℄.

Consequently, a simple model to apture suh e�ets should inlude both random loal potentials

and random hopping amplitudes whih depend on the oupany of the sites. The dependene of the

hopping amplitude on the disorder on�guration is usually referred to as o�-diagonal disorder. It is

apparent that a proper theoretial desription of realisti disordered materials [58, 60, 62, 61, 63℄

(for e.g. many substitutionally disordered alloys and disordered ferromagnets) requires the inlusion

of both diagonal and o�-diagonal randomness. While the role of the diagonal disorder has been

extensively studied over the last several deades [64℄, the e�et of o�-diagonal disorder is not well

studied, although the e�et is expeted to be di�erent. It has been shown [65, 61℄ that o�-diagonal

randomness an lead to the deloalization of the states near the band-enter. Also reently, there

has been a growing interest in the e�et of the o�-diagonal randomness in graphene systems, where

studies show that di�erent types of disorder an indue di�erent loalization behavior. [67, 68, 66℄

The oherent potential approximation (CPA) is a widely used single site mean �eld theory for
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systems with stritly diagonal disorder [59℄. Blakman, Esterling and Berk (BEB) [69℄ have extended

the CPA to systems with o�-diagonal disorder. However, being single-site approximations, the CPA

and the BEB theories neglet all disorder indued non-loal orrelations.

There have been a number of attempts to develop systemati nonloal extensions to the CPA.

These inlude luster extensions suh as the moleular oherent potential approximation (MCPA) [70,

71℄, the dynamial luster approximation (DCA) [72, 73, 74℄, et. Self-onsistent mean �eld studies

of o�-diagonal disorder have been onduted by a number of authors [75, 76, 77, 71℄. However,

all these studies have been performed at the loal single-site BEB level. To inlude the e�ets

of o�-diagonal disorder, Gonis [70℄ extended the Moleular CPA, whih uses a self-onsistently

embedded �nite size luster to apture non-loal orretions to the CPA. However, he ritiized

the MCPA for violating translational invariane and other ritial properties of a valid quantum

luster theory [58, 105℄. In order to take into aount suh non-loal e�ets on o�-diagonal disorder

models while maintaining translational invariane, we extend the BEB formalism using the DCA

sheme [72, 73, 74℄.

While the CPA, DCA, and BEB have shown to be suessful self-onsistent mean-�eld theo-

ries for the quantitative desription of the density of states and eletroni struture of disordered

systems, they an not properly address the physis of Anderson loalization. These mean �eld ap-

proahes desribe the e�etive medium using the average density of states whih is not ritial at the

transition [79, 105, 55, 80℄. Thus, theories whih rely on suh averaged quantities will fail to properly

haraterize Anderson loalization. As noted by Anderson, the probability distribution of the loal

density of states must be onsidered, fousing on the most probable or the typial value [103, 81℄.

Close to the Anderson transition, the distribution is found to have very long tails harateristi of

a log-normal distribution[53, 82, 106℄. In fat, the distribution is log-normal up to ten orders of

magnitude [84℄ and so the typial value [85, 107, 106, 87℄ is the geometrial mean. Based on this

idea, Dobrosavljevi¢ et. al. [100℄ formulated a single site typial medium theory (TMT) for the

Anderson loalization. This approximation gives a qualitative desription of the Anderson loal-

ization in three dimensions. However, it fails to properly desribe the trajetory of the mobility

edge (whih separates the extended and loalized states) as it neglets non-loal orretions and
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so does not inlude the e�ets of oherent baksattering [89℄. It also underestimates onsiderably

the ritial strength of the disorder at whih the loalization happens. In addition, TMT is only

formulated for diagonal disorder.

Reently, by employing the DCA within the typial medium analysis, we developed a system-

ati Typial Medium Dynamial Cluster Approximation (TMDCA) formalism. [105℄ The TMDCA

provides an aurate desription of the Anderson loalization transition for modest luster sizes in

three-dimensional models with diagonal disorder while reovering the TMT for a one-site luster. In

this work, we generalize our reently proposed TMDCA sheme to address the question of eletron

loalization in systems with both diagonal and o�-diagonal disorder.

In this paper, to go beyond the loal single-site CPA-like level of the BEB formalism, we em-

ploy the DCA [72, 73, 74℄ sheme whih systematially inorporates non-loal spatial orrelation

e�ets. We �rst present an extension of the DCA for systems with both diagonal and o�-diagonal

disorder. Comparing our single site and �nite luster results, we demonstrate the e�et of non-loal

orrelations on the density of states and the self-energy.

Up to now, there exist no typial medium formalism for systems with o�-diagonal disorder. So

far, the typial medium analysis has been applied to systems with only diagonal disorder [100, 105℄.

In this paper, we develop a typial medium dynamial luster approximation formalism apable of

haraterizing the loalization transition in systems with both diagonal and o�-diagonal disorder.

We perform a systemati study of the e�ets of non-loal orrelations and o�-diagonal randomness

on the density of states and eletron loalization. By omparing single site and �nite luster results

for the typial density of states and the extrated mobility edges, we demonstrate the neessity

of inluding the non-loal multi-sites e�ets for proper and quantitative haraterization of the

loalization transition. The results of our alulations are ompared with the ones obtained with

other numerial methods for �nite size latties, inluding exat diagonalization, kernel polynomial,

and transfer matrix methods.

The paper is organized as follows: following the Introdution in Se. 5.1 we present the model

and desribe the details of the formalism we used in Se. 4.2. In Se. 3.3.1 we present our results

of the average density of states for both diagonal and o�-diagonal disorder ases. In Se. 3.3.1
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we onsider the e�ets of diagonal and o�-diagonal disorder on the typial density of states, from

whih we extrat the mobility edges and onstrut a omplete phase diagram in the disorder-energy

parameter spae. We summarize and disuss future diretions in Se. 5.4.

3.2 Formalism

3.2.1 Dynamial luster approximation for o�-diagonal disorder

The simplest model widely used to study disordered systems is the single band tight binding Hamil-

tonian

H = −
∑

<i,j>

tij(c
†
i cj + h.c.) +

∑

i

vini, (3.1)

where disorder is modeled by a loal potential vi whih is a random variable with probability

distribution funtion P (vi). We will fous on the binary disorder ase, where some host A atoms

are substituted with B impurities with a probability distribution funtion of the form

P (vi) = cAδ(vi − VA) + cBδ(vi − VB), (3.2)

where cB = 1− cA. For the diagonal disorder ase when the bandwidth of the pure host A is about

the same that the bandwidth of the B system, suh substitution results only in a hange of the

loal potential vi at the replaed site i. This orresponds to hanges in the diagonal elements of

the Hamiltonian. In this ase it is assumed that substitution of impurity atoms on average has no

e�et on hopping amplitudes to the neighboring atoms.

For systems with o�-diagonal disorder, the randomness is introdued not only loally in the

random diagonal potential vi, but also through the hopping amplitudes. To model this, BEB [69℄
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introdued the disorder on�guration dependent hopping amplitude of eletrons tij as

tij = tAA
ij , if i ∈ A, j ∈ A

tBB
ij , if i ∈ B, j ∈ B

tAB
ij , if i ∈ A, j ∈ B

tBA
ij , if i ∈ B, j ∈ A, (3.3)

where tij depends on the type of ion oupying sites i and j. For o�-diagonal disorder BEB [69℄

showed the salar CPA equation beomes a 2 × 2 matrix equation, with orresponding AA, AB,

BA, and BB matrix elements. In momentum spae, if there is only near-neighbor hopping between

all ions, the bare dispersion an be written as (the under-bar denotes matries)

εk =









tAA tAB

tBA tBB









εk (3.4)

where in three dimensions εk = −2t(cos(kx) + cos(ky) + cos(kz)) with 4t = 1 whih sets our unit of

energy, and tAA
, tBB

, tAB
, and tBA

are unitless prefators.

The BEB approah is loal by onstrution, hene all non-loal disorder indued orrelations are

negleted. [69℄ In order to take into aount non-loal physis, we extend the BEB formalism to a

�nite luster using the DCA sheme. Here in the following, we present the algorithm and details of

our non-loal DCA extension of the BEB formalism for o�-diagonal disorder. Just as in the DCA

sheme, [74℄ the �rst Brillouin zone is divided into Nc = LD
(D is the dimension and L is the linear

luster size) oarse-grained ells with enters K surrounded by points k̃ within the ell so that an

arbitrary k = K + k̃.

For a given DCA K-dependent e�etive medium hybridization ∆(K,ω) matrix we use an un-

derline to denote a 2× 2 matrix in momentum spae)
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∆(K,ω) =







∆AA(K,ω) ∆AB(K,ω)

∆BA(K,ω) ∆BB(K,ω)






(3.5)

we solve the luster problem, usually in real spae. For this we stohastially sample random

on�gurations of the disorder potential V and alulate the orresponding luster Green's funtion

by inverting Nc ×Nc matrix, i.e.,

Gij =
(

ωI− t′ −∆′ − V
)−1

ij
(3.6)

where V is a diagonal matrix for the disorder site potential. The primes stand for the on�guration

dependent Fourier transform (FT) omponents of the hybridization and hopping, respetively. I.e.,

∆′
ij =















































FT (∆AA(K,ω)), if i ∈ A, j ∈ A

FT (∆BB(K,ω)), if i ∈ B, j ∈ B

FT (∆AB(K,ω)), if i ∈ A, j ∈ B

FT (∆BA(K,ω)), if i ∈ B, j ∈ A

(3.7a)

and

t
′
ij =















































FT (ǫAA(K)), if i ∈ A, j ∈ A

FT (ǫBB(K)), if i ∈ B, j ∈ B

FT (ǫAB(K)), if i ∈ A, j ∈ B

FT (ǫBA(K)), if i ∈ B, j ∈ A

(3.7b)

with

ǫ(K) =









tAA tAB

tBA tBB









Nc

N

∑

k̃ εk, (3.7)
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where∆′
ij and t

′
ij areNc×Nc real-spae matries (whereNc is the luster size), and e.g., FT (∆

AA(K,ω)) =

∑

K ∆AA(K,ω)eiK(ri−rj)
. The hopping an be long ranged, but sine they are oarse-grained quan-

tities are e�etively limited to the luster. Physially, ∆′
ij represents the hybridization between sites

i and j whih is on�guration dependent. For example, the AA omponent of the hybridization

orresponds to both A speies oupying site i and j, while the AB omponent means that site i

is oupied by an A atom and site j by a B atom. The interpretation of the hopping matrix is the

same as for the hybridization funtion.

In the next step, we perform averaging over the disorder 〈(...)〉 and in doing so we re-expand

the Green funtion (Eq. 3.6) into a 2Nc × 2Nc matrix

Gc(ω)ij =









〈

GAA
c (ω)

〉

ij

〈

GAB
c (ω)

〉

ij

〈

GBA
c (ω)

〉

ij

〈

GBB
c (ω)

〉

ij









. (3.8)

This may be done by assigning the omponents aording to the oupany of the sites i and j

(GAA
c )ij = (Gc)ij if i ∈ A, j ∈ A

(GBB
c )ij = (Gc)ij if i ∈ B, j ∈ B

(GAB
c )ij = (Gc)ij if i ∈ A, j ∈ B

(GBA
c )ij = (Gc)ij if i ∈ B, j ∈ A (3.9)

with the other omponents being zero. Beause only one of the four matrix elements is �nite for

eah disorder on�guration (eah site an be oupied by either A or B atom), only the sum of the

elements in Eq. 3.8 is normalized as a onventional Green funtion.

Having formed the disorder average luster Green funtion matrix, we then Fourier transform

eah omponent to K-spae (whih also imposes translational symmetry) and onstrut the K-

dependent disorder averaged luster Green funtion matrix in momentum spae
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Gc(K,ω) =









GAA
c (K,ω) GAB

c (K,ω)

GBA
c (K,ω) GBB

c (K,ω)









. (3.10)

One the luster problem is solved, we alulate the oarse-grained lattie Green funtion matrix

as

G(K,ω) =







G
AA

(K,ω) G
AB

(K,ω)

G
BA

(K,ω) G
BB

(K,ω)







=
Nc

N

∑

k̃

(

Gc(K,ω)
−1 +∆(K,ω)

− εk + ǫ(K)
)−1

, (3.11)

here we use an overbar to denote the luster oarse-grained quantities. It is important to note that

eah omponent of the Green funtion matrix above does not have the normalization of a onven-

tional, i.e., salar, Green funtion. Only the sum of the matrix omponents has the onventional

normalization, so that G(K,ω) ∼ 1/ω, with the total oarse grained lattie Green funtion being

obtained as

G(K,ω) = G
AA

(K,ω) +G
BB

(K,ω)

+ G
AB

(K,ω) +G
BA

(K,ω). (3.12)

Next, to onstrut the new DCA e�etive medium ∆(K,ω), we impose the BEB DCA (2 × 2)

matrix self-onsisteny ondition, requiring the disorder averaged luster and the oarse-grained

lattie Green funtions to be equal

Gc(K,ω) = G(K,ω) . (3.13)
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This is equivalent to a system of three oupled salar equations

G
AA

(K,ω) = GAA
c (K,ω), (3.14a)

G
BB

(K,ω) = GBB
c (K,ω), and (3.14b)

G
AB

(K,ω) = GAB
c (K,ω). (3.14)

Note G
BA

(K,ω) = G
AB

(K,ω) automatially if tAB = tBA
.

We then lose our self-onsisteny loop by updating the orresponding hybridization funtions

for eah omponents as

∆AA
n (K,ω) = ∆AA

o (K,ω)

+ ξ
(

G−1
c (K,ω)AA −G

−1
(K,ω)AA

)

∆BB
n (K,ω) = ∆BB

o (K,ω)

+ ξ
(

G−1
c (K,ω)BB −G

−1
(K,ω)BB

)

∆AB
n (K,ω) = ∆AB

o (K,ω)

+ ξ
(

G−1
c (K,ω)AB −G

−1
(K,ω)AB

)

∆BA
n (K,ω) = ∆AB

n (K,ω) (3.15)

where `o' and `n' denote old and new respetively, and ξ is a linear mixing parameter 0 < ξ < 1.

We then iterate the above steps until onvergene is reahed.

There are two limiting ases of the above formalism whih we arefully heked numerially. In

the limit of Nc = 1, we should reover the original BEB result. Here the luster Green funtion

loses its K dependene, so that







GAA
c (ω) 0

0 GBB
c (ω)






=

1

N

∑

k

(

Gc(ω)
−1 +∆(ω)− ε(k)

)−1

(3.16)
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whih is the BEB self-onsisteny ondition. Here we used that ǫ(K) = 0 for Nc = 1. The seond

limiting ase is when there is only diagonal disorder so that tAA = tBB = tAB = 1. In this ase the

above formalism redues to the original DCA sheme. We have veri�ed numerially both limits.

3.2.2 Typial medium theory with o�-diagonal disorder

To address the issue of eletron loalization, we reently developed the typial medium dynamial

luster approximation (TMDCA) and applied it to the three-dimensional Anderson model. [105℄ In

Ref. [105℄ we on�rmed that the typial density of states vanishes for states whih are loalized and

it is �nite for extended states. In the following we generalize our TMDCA analysis to systems with

o�-diagonal disorder to address the question of loalization and the mobility edge in suh models.

First, we would like to emphasize that the ruial di�erene between TMDCA [105℄ and the

standard DCA [74℄ proedure is the way the disorder averaged luster Green funtion is alulated.

In the TMDCA analysis instead of using the algebraially averaged luster Green funtion in the

self-onsisteny loop, we alulate the typial (geometrially) averaged luster density of states

ρctyp(K,ω) = e
1

Nc

∑

i〈ln ρii(ω)〉

〈

− 1
π ImGc(K,ω)

1
Nc

∑

i(− 1
π ImGii(ω))

〉

, (3.17)

with the geometri averaging being performed over the loal density of states ρii(ω) = − 1
π ImGii(w)

only. Using this ρctyp(K,ω) the luster averaged typial Green funtion is onstruted via a Hilbert

transform

Gc(K,ω) =

∫

dω′ρ
c
typ(K,ω

′)

ω − ω′
. (3.18)

In the presene of o�-diagonal disorder, following BEB, the typial density of states beomes a

2× 2 matrix, whih we de�ne as

ρctyp(K,ω) = exp

(

1

Nc

∑Nc

i=1 〈ln ρii(ω)〉
)

×























〈 − 1

π
ImGAA

c (K,ω)

1
Nc

∑Nc

i=1(−
1

π
ImGii(ω))

〉 〈

− 1
π ImGAB

c (K,ω)
1
Nc

∑Nc

i=1(− 1
π ImGii(ω))

〉

〈 − 1

π
ImGBA

c (K,w)

1
Nc

∑Nc

i=1(−
1

π
ImGii(ω))

〉 〈

− 1
π ImGBB

c (K,ω)
1
Nc

∑Nc

i=1(− 1
π ImGii(ω))

〉























.(3.19)
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Here the salar prefator depits the loal typial (geometrially averaged) density of states, while

the matrix elements are linearly averaged over the disorder. Also notie that the luster Green

funtion (Gc)ij and its omponents GAA
c , GBB

c and GAB
c are de�ned in the same way as in Eqs.

(3.6-3.9).

In the next step, we onstrut the luster average Green funtion Gc(K,ω) by performing Hilbert

transform for eah omponent

Gc(K,ω) =











∫

dω′ ρ
AA
typ(K,ω′)

ω−ω′

∫

dω′ ρ
AB
typ (K,ω′)

ω−ω′

∫

dω′ ρ
BA
typ (K,ω′)

ω−ω′

∫

dω′ ρ
BB
typ (K,ω′)

ω−ω′











. (3.20)

One the disorder averaged luster Green funtion Gc(K,ω) is obtained from Eq. 3.20, the self-

onsisteny steps are the same as in the proedure for the o�-diagonal disorder DCA desribed in

the previous setion: we alulate the oarse-grained lattie Green funtion using Eq. 3.11 whih is

then used to update the hybridization funtion with the e�etive medium via Eq. 3.15.

The above set of equations provide us with the generalization of the TMDCA sheme for both

diagonal and o�-diagonal disorder whih we test numerially in the following setions. Also notie

that for Nc = 1 with only diagonal disorder (tAA = tBB = tAB = tBA
) the above proedure redues

to the loal TMT sheme. In this ase, the diagonal elements of the matrix in Eq. 3.19 will ontribute

cA and cB , respetively, with the o�-diagonal elements being zero (for Nc = 1 the o�-diagonal terms

vanish beause a given site an only be either A or B). Hene, the typial density redues to the

loal salar prefator only, whih has exatly the same form as in the loal TMT sheme.

Another limit of the proposed ansatz for the typial density of states of Eq. 3.19 is obtained

at small disorder. In this ase, the TMDCA redues to the DCA for o�-diagonal disorder, as

the geometrially averaged loal prefator term numerially anels with the ontribution from the

linearly averaged loal term in the denominator of Eq. 3.19.

Finally, we also want to mention that the developed luster TMDCA ful�lls all the essential

requirements expeted of a �suessful� luster theory [58℄ inluding ausality and translational

invariane.
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We note that in our formalism, instead of doing the very expensive enumeration of the disorder

on�gurations whih sales as 2

Nc
, we instead do a stohasti sampling of the disorder on�gurations

whih greatly redues the omputational ost enabling us to study larger systems. Larger system

sizes need fewer realizations. Sine the onvergene riterion is ahieved when the TDOS(ω = 0)

does not �utuate anymore with iteration number, within the error bars, our omputational ost

does not even sale as Nc. For a typial Nc = 64 size luster, about 500 disorder realizations are

needed to get reliable data and this number dereases with inreasing luster size.

3.3 Results and Disussion

To illustrate the generalized DCA and TMDCA algorithms desribed above, we present our results

for the e�ets of diagonal and o�-diagonal disorder in a generalized Anderson Hamiltonian (Eq. 3.1)

for a three dimensional system with binary disorder distribution (VA = −VB) and random hopping

(tAA 6= tBB
, tAB = tBA

) with other parameters as spei�ed. The results are presented and disussed

in Subsetions 3.3.1 and 3.3.1.

3.3.1 DCA results for diagonal and o�-diagonal disorder

The e�et of o�-diagonal disorder on the average density of states (DOS) alulated within the

DCA for ubi luster (Nc = 43) is presented in Fig. 3.1. The DOS we present in our results is a

loal density of states alulated as

DOS(ω) = − 1

πNc

Nc
∑

K=1

(

ImG
AA

(K,ω) + ImG
AB

(K,ω)

+ ImG
BA

(K,ω) + ImG
BB

(K,ω)
)

. (3.21)

Notie that our DCA proedure for Nc = 1 redue to the original CPA-like BEB. For a �xed

onentration cA = 0.5, we examine the e�ets of o�-diagonal disorder at two �xed values of

the diagonal disorder potential VA = 0.4 (below the split-band limit) and VA = 0.9 (above the

split-band limit). The o�-diagonal randomness is modeled by hanges in the hopping amplitudes

tAA, tBB
with tAB = 0.5(tAA + tBB). For a diagonal disorder ase (top panel of Fig. 3.1) with
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Figure 3.1: (Color online). The e�et of o�-diagonal disorder on the average density of states

alulated in the DCA sheme with Nc = 43. Our DCA results for Nc = 1 orresponds to a single

site CPA BEB sheme. We onsider two values of loal disorder potential below (VA = 0.4) and
above (VA = 0.9) the band-split limit, and examine the e�et of hanging the o�-diagonal hopping

strength (whih amounts to a hange in the non-loal potential). We start with the diagonal disorder

ase tAA = tBB = tAB = 1.0 and then onsider two o�-diagonal disorder ases: tAA = 1.5, tBB = 0.5
and tAA = 1.8, tBB = 0.2, respetively. We �x tAB = tBA = 0.5(tAA + tBB) and cA = 0.5. For

this parameter range of o�-diagonal disorder, we do not observe a signi�ant di�erene between the

CPA (Nc = 1) and the DCA (Nc = 43) results indiating that non-loal inter-site orrelations are

weak.

tAA = tBB = tAB = tBA
we have two subbands ontributing equally to the total DOS. While as

shown in the middle and bottom panels, the hange in the strength of the o�-diagonal disorder

leads to dramati hanges in the DOS. An inrease of the AA hoping results in the broadening of

the AA subband with the development of a resonane peak at the BB subband. For this parameter

range both the DCA (Nc = 64 ) and CPA (Nc = 1) provide about the same results indiating that

disorder-indued non-loal orrelations are negligible.

In Fig. 3.2 we show the average density of states alulated for �xed o�-diagonal-disorder param-

eters and di�erent diagonal disorder potentials VA. We again ompare the loal CPA (Nc = 1) and
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the DCA (Nc = 43) results. To benhmark our o�-diagonal extension of the DCA, we also ompare
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Figure 3.2: (Color online). The e�et on the average density of states of an inreasing diagonal

disorder potential VA for a �xed o�-diagonal disorder alulated with our modi�ed DCA sheme

with tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB), and cA = 0.5. Results are obtained for Nc = 1
(orresponding to the CPA) and Nc = 43 luster sizes. We also ompare our DCA average DOS

with the DOS obtained using exat diagonalization (ED) for a 123 ubi lattie luster with 48
disorder realizations. For ED results, we used a η = 0.01 broadening in frequeny.

our results with those obtained from exat diagonalization. For small VA, there is no di�erene

between the CPA (Nc = 1) and the DCA (Nc = 43) results. As loal potential VA is inreased,

notieable di�erenes start to develop. We an see that for larger VA a gap starts to open and is

more dramati in the CPA sheme. While in the DCA (Nc = 43) this gap is partially �lled due to

the inorporation of non-loal inter-site orrelations whih are missing in the CPA. Furthermore,

the DOS obtained from the DCA proedure provides �ner strutures whih are in basi agreement

with the DOS alulated with exat diagonalization for a luster of size 12×12×12. The agreement

we get with ED results is a good indiation of the the auray of our extension of the DCA to

o�-diagonal disorder. The additional strutures observed in the DOS for Nc > 1, whih are absent

in the CPA, are believed to be related to the loal order in the environment of eah site. [58, 74℄
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Notie that while the DCA aounts for non-loal baksattering e�ets whih lead to the Anderson

loalization, the average loal DOS does not apture the transition, as it is not an order parameter

for the Anderson loalization.

To further illustrate the important e�et of the non-loal ontributions from the luster, we

also show in Fig. 3.3 the imaginary part of the self-energy ImΣ(K,w) for Nc = 1 (dash line) and

for (Nc = 43) (solid lines) at di�erent values of luster momenta K = (0, 0, 0), (π, 0, 0), (π, π, 0)

and (π/2, π/2, π/2) for small VA = 0.1 (top) and larger VA = 0.6 (bottom) disorder potentials. At
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Figure 3.3: (Color online). The imaginary part of the self-energy vs frequeny ω for Nc = 1 (red

dash-line) and Nc = 43 (solid lines) at various K momenta points: (0, 0, 0), (π, 0, 0), (π, π, 0),
and (π/2, π/2, π/2), for VA = 0.1 (top) and VA = 0.6 (bottom) diagonal disorder potential with

tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB), and cA = 0.5. For small disorder VA = 0.1, the
self-energy for Nc = 1 is essentially the same as that of the various K points of the Nc = 43 luster,
indiating that non-loal e�ets are negligible for suh small disorder. For a larger value of the

disorder VA = 0.6, the single site and the �nite luster data di�er signi�antly, whih illustrates that

at larger disorder, the momentum dependene of the self-energy inreases and beomes important.

small disorder VA = 0.1, there is a little momentum dependene for the Nc = 43 self-energy and

di�erent K momenta urves pratially fall on top of eah other. The results for the Nc = 1 and

Nc = 43 are essentially the same, whih indiates that for small disorder the CPA still presents a

good approximation for the self-energy. On the hand, for larger disorder VA = 0.6 the Nc = 1 and
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Nc = 43 results di�er signi�antly, with the Nc = 43 self-energy having a notieable momentum

dependene, indiating that non-loal orrelations beome more pronouned for larger disorder

values.

3.3.2 Typial medium �nite luster analysis of diagonal and o�-diagonal

disorder

Typial medium analysis of diagonal disorder

To haraterize the Anderson loalization transition, we now explore the typial density of states

(TDOS) alulated within our extension of the TMDCA presented in Se. 3.2.2. In the typial

medium analysis, the TDOS serves as the order parameter for the Anderson loalization transition.

In partiular, the TDOS is �nite for extended states and zero for states whih are loalized.

First we onsider the behavior of the TDOS and ompare it with the average DOS for diagonal

disorder. In Fig. 3.4 we show our results for Nc = 1 (left panel) and Nc > 1 (right panel). To

demonstrate a systemati onvergene of the TDOS with inreasing luster size Nc, we present our

data of the TDOS for Nc = 1, 43, 63. Notie that Nc = 1 results for TDOS orrespond to the single-

site TMT of Dobrosavljevi¢ et al., [100℄ and for average DOS they orrespond to the ordinary CPA.

As expeted, [100, 105℄ for small disorder (VA = 0.15) there is not muh di�erene between the DCA

(Nc = 43) and the TMDCA (Nc = 43) or between the CPA and TMT for Nc = 1 results. However,

there are subtle di�erenes between the results for �nite Nc = 43 and single site Nc = 1 lusters due

to inorporation of spatial orrelations. As the disorder strength VA is inreased (VA = 0.6), the

typial density of states (TDOS) beomes smaller than the average DOS and is broader for the larger

luster. Moreover, the �nite luster introdue features in the DOS whih are missing in the loal

Nc = 1 data. Regions where the TDOS is zero while the average DOS is �nite indiate Anderson

loalized states, separated by the mobility edge (marked by arrows). For Nc > 1 these loalized

regions are wider whih indiates that the loalization edge is driven to higher frequenies. This

is a onsequene of the tendeny of non-loal orretions to suppress loalization. For even larger

disorder VA = 1, a gap opens in both the TDOS and the average DOS leading to the formation

of four loalization edges, but again the region of extended states is larger for the �nite luster,

47



-2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

D
O

S,
 T

D
O

S

-2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

D
O

S,
 T

D
O

S

-2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
O

S,
 T

D
O

S

DOS (Nc=4
3
)

TDOS (Nc=4
3
)

TDOS (Nc=6
3)

-2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
O

S,
 T

D
O

S

DOS
TDOS

-2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

D
O

S,
 T

D
O

S

-2 -1 0 1 2
ω

0

0.1

0.2

0.3

0.4

0.5

D
O

S,
 T

D
O

S

VA=1.0

VA=0.6

VA=0.15

Nc>1Nc=1

Figure 3.4: (Color online). Diagonal disorder ase: The average density of states (dash-dotted

line) alulated within the DCA for Nc = 1 (left panel) and Nc = 43 (right panel) and the typial

density of states shown as shaded regions for Nc = 1 (left panel) and Nc = 43 (right panel)

and dash-line for Nc = 63 (right panel) are alulated within the TMDCA for diagonal disorder

tAA = tBB = tAB = tBA = 1, cA = 0.5, and various values of the loal potential VA = −VB . The

TDOS is presented for several luster sizes Nc = 1, Nc = 43 and Nc = 63 in order to show its

systemati onvergene with Nc. The average DOS onverges for luster sizes beyond Nc = 43. The
TDOS is �nite for the extended states and zero when the states are loalized. The mobility edges

extrated from the vanishing of the TDOS are marked by the arrows (we show arrows for Nc = 43

only). The extended states region with a �nite TDOS is always narrower for Nc = 1 as ompared

to the results of Nc > 1 lusters, indiating that a single site TMT tends to overemphasize the

loalized states.
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indiating that loal TMT (Nc = 1) tends to underestimate the extended states region.

To further benhmark our results for the diagonal disorder, we show in Fig. 3.5 a omparison

of the average and typial DOS alulated with the DCA and the TMDCA (Nc = 43) as ompared

with the kernel polynomial method (KPM). [109, 108, 92, 93℄ In the KPM analysis, instead of
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Figure 3.5: (Color online). Diagonal disorder ase. Comparison of the average and typial DOS al-

ulated with the DCA/TMDCA and Kernel polynomial methods (KPM) [108℄ for diagonal disorder

with tAA = tBB = tAB = tBA = 1 at various values of loal potential VA and onentrations cA for

luster size Nc = 63. The kernel polynomial method used 2048 moments on a 483 ubi lattie, and
200 independent realizations generated with 32 sites randomly sampled from eah realization.

diagonalizing the Hamiltonian diretly, the loal DOS is expressed in term of an in�nite series of

Chebyshev polynomials. In pratie, the trunated series leads to Gibbs osillations. The KPM

damps these osillations by a modi�ation of the expansion oe�ients. Following previous studies

on the Anderson model, the Jakson kernel is used. [109℄ The details of the implementation are

well disussed in Ref. [109℄. The parameters used in the KPM alulations are listed in the aption

of Fig. 3.5. As it is evident from the plots, our TMDCA results reprodued those from the KPM

niely showing that our formalism o�ers a systemati way of studying the Anderson loalization

transition in binary alloy systems. Suh good agreement indiates a suessful benhmarking of the
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TMDCA method. [105℄

Typial medium analysis of o�-diagonal disorder

Next, we explore the e�ets of the o�-diagonal disorder. In Fig. 3.6, we ompare the typial TDOS

from the TMDCA and average DOS from the DCA for several values of the diagonal disorder

strength VA at �xed o�-diagonal disorder amplitudes tAA = 1.5, tBB = 0.5, tAB = 1.0. To show the

e�et of a �nite luster with respet to inorporation of non-loal orrelations, we present data for

the single site Nc = 1 and �nite lusters Nc = 43 and 53. The TMT (Nc = 1) again underestimates

the extended states regime by having a narrower TDOS as ompared to the Nc > 1. We also see

that the mobility edge de�ned by the vanishing of the TDOS (marked by arrows for Nc = 43)

systematially onverges with inreasing luster size Nc. For small disorder VA, both the DOS and

the TDOS are pratially the same. However, as VA inreases, signi�ant di�erenes start to emerge.

Inreasing VA leads to the gradual opening of the gap whih is more pronouned in the Nc = 1 ase

and for smaller disorder VA = 0.6 is partially �lled for the Nc > 1 lusters. As ompared to the

diagonal disorder ase (f. Fig. 3.4), the average DOS and TDOS beome asymmetri with respet

to zero frequeny due to the o�-diagonal randomness.

In Fig. 3.7 and Fig. 3.8 we present the disorder-energy phase diagram for both diagonal (Fig. 3.7)

and o�-diagonal (Fig. 3.8) disorder alulated using the single TMT (Nc = 1) and the non-loal

TMDCA (Nc > 1). To hek the auray of the mobility edge trajetories extrated from our

typial medium analysis, we ompare our data with the results obtained with the transfer matrix

method (TMM). The TMM [149, 150, 98℄ is a well established numerial method for alulating

the orrelation length and determining the mobility edge of the disorder Anderson model. Its

main advantage is in its apability of apturing the e�ets from rather large system sizes. Thus,

TMM provides good data for a �nite size saling analysis to apture the ritial points and the

orresponding exponents. In our alulations, the transmission of states down a three-dimensional

bar of widthsM = [6, 12] and length L = 2×104M are studied by adding the produts of the transfer

matries with random initial states. The multipliation of transfer matries is numerially unstable.

To avoid this instability, we orthogonalized the transfer matrix produt every �ve multipliations
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Figure 3.6: (Color online). O�-diagonal disorder ase. The left panel displays results for Nc = 1
and the right panel for Nc > 1. The average density of states (dash-dotted line) and the typial

density of states (shaded regions) for Nc = 1 (left panel), Nc = 43 (right panel) and blue dash

lines for Nc = 53 (left panel) for various values of the loal potential VA with o�-diagonal disorder

parameters: tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA+ tBB), and cA = 0.5. As in Fig. 3.4, we show the

TDOS for several luster sizes Nc = 1, 43, and = 63 in order to show its systemati onvergene with

inreasing luster size Nc. The average DOS onverges for luster sizes beyond Nc = 43. The TDOS
is �nite for the extended states and zero for loalized states. The mobility edges are extrated as

desribed in Fig. 3.4.

using a Lapak QR deomposition. [50℄ The loalization edge is obtained by alulating the Kramer-

MaKinnon saling parameter ΛM . [149℄ This is a dimensionless quantity whih should be invariant

at the ritial point, that is, ΛM sales as a onstant for M → ∞. [150℄ Thus, we determine the

boundary of the loalization transition vis-à-vis the ritial disorder strength [96℄ by performing a

linear �t to ΛM v. M data: loalized states will have a negative slope and visa versa for extended
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Figure 3.7: (Color online). Disorder-energy phase diagram for the diagonal disorder ase. Parame-

ters used are: tAA = tBB = tAB = 1.0, and cA = 0.5. We ompare the mobility edges obtained from

the TMT Nc = 1 (blak dash line), TMDCA with Nc = 43 (green dot-dashed line) and Nc = 63 (red
solid line), and the transfer-matrix method (TMM) (blue dotted line). The single site Nc = 1 results
strongly underestimate the extended states region when ompare with TMDCA results for Nc > 1.
The mobility edges obtained from the �nite luster TMDCA (Nc > 1) show good agreement with

those obtained from the TMM, in ontrast to single site TMT. See the text for parameters and

details of the TMM implementation.

states. The transfer-matrix method �nite size e�ets are larger for weak disorder where the states

deay slowly with distane and so have large values of ΛM that arry a large variane in the data.

Notie that the CPA and the DCA do not su�er suh �nite size e�et limitation for small disorder

and are in fat exat in this limit.

The mobility edges shown in Fig. 3.7 and Fig. 3.8 were extrated from the TDOS, with bound-

aries being de�ned by zero TDOS. As an be seen in Fig. 3.7 and Fig. 3.8, while the single-site TMT

does not hange muh under the e�et of o�-diagonal disorder, the TMDCA results are signi�antly

modi�ed. The bands for a larger luster beome highly asymmetri with signi�ant widening of

the A subband. The loal Nc = 1 boundaries are narrower than those obtained for Nc > 1 in-

diating that the TMT strongly underestimates the extended states regime in both diagonal and

o�-diagonal disorder. On the other hand, omparing the mobility edge boundaries for Nc > 1 with

those obtained using TMM, we �nd very good agreement. This again on�rms the validity of our
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Figure 3.8: (Color online). Disorder-energy phase diagram for the o�-diagonal disorder ase. Pa-

rameters used are tAA = 1.5, tBB = 0.5, tAB = 1.0, and cA = 0.5. The mobility edges obtained from

the TMT Nc = 1 (blak dashed line), TMDCA Nc = 33 (green dot-dashed line), Nc = 43 (purple

double-dot-dashed line) and Nc = 53 (red solid line), and the transfer-matrix method (TMM) (blue

dotted line). The single site Nc = 1 strongly underestimates the extended states region espeially

for higher values of VA. The mobility edges obtained from the �nite luster TMDCA (Nc > 1) on-
verge gradually with inreasing Nc and show good agreement with those obtained from the TMM,

in ontrast to single site TMT. See the text for parameters and details of the TMM implementation.

generalized TMDCA.

Next, we onsider the e�et of o�-diagonal disorder for various onentrations cA. In Fig. 3.9,

we show the typial and average DOS for several values of cA alulated with the TMDCA and

the DCA, respetively. As expeted, when cA → 0, we obtain a pure B subband ontribution (the

top panel). Upon gradual inrease of the cA onentration, the number of states in the A sub-band

grows until B-subband beomes a minority for cA > 0.5 and ompletely disappears at cA → 1 (the

bottom panel). Again, we see that a �nite luster Nc = 53 provides a more aurate desription

(with �nite details in DOS and broader regions of extended states in TDOS) in both average DOS

and TDOS. The assoiated ontour plots for the evolution of the TDOS in the onentration range

0 ≤ cA ≤ 1 are shown in Fig. 3.10.

The essene of these plots is to show the overall evolution of the typial DOS for a �xed loal
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Figure 3.9: (Color online). The average DOS (dot-dashed lines) and the typial DOS (shaded

regions) for various values of the onentration cA with o�-diagonal disorder parameters tAA = 1.1,
tBB = 0.9 and tAB = 1.0, at �xed loal potential VA = 1.0 for Nc = 1 (left panel) and Nc = 53

(right panel).

potential and o�-diagonal disorder parameters as a funtion of the onentration cA. In the limit

of cA → 0, only the B-subband entered around ω = −VA survives, and for cA → 1, only the

A-subband entered around ω = VA is present. For intermediate onentrations, we learly have

ontributions to the total typial density of states from both speies, as expeted.

Finally, we would like to omment on the possible further development of the presented sheme.

After ertain generalizations our urrent implementation of the typial medium dynamial luster

approximation for o�-diagonal disorder an serve as the natural formalism for multiband (multior-
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Figure 3.10: (Color online). The evolution of the typial density of states for Nc = 1 (left panel)

and Nc = 53 (right panel) with the hange in the onentration 0 < cA < 1 at �xed diagonal and

o�-diagonal disorder parameters: tAA = 1.1, tBB = 0.9, tAB = 1.0 and VA = 1.0

bital) systems. [60℄ Suh an extension is ruial for studying disorder and loalization e�ets in real

materials. Further development towards this diretion will be the subjet of future publiations.

3.4 Conlusion

A proper theoretial desription of disordered materials requires the inlusion of both diagonal and

o�-diagonal randomness. In this paper, we have extended the BEB single site CPA sheme to

a �nite luster DCA that inorporates the e�et of non-loal disorder. Applying the generalized

DCA sheme to a single band tight binding Hamiltonian with on�guration-dependent hopping

amplitudes, we have onsidered the e�ets of non-loal disorder and the interplay of diagonal and

o�-diagonal disorder on the average density of states. By omparing our results with those from

exat numerial methods, we have established the auray of our method. We found that non-loal

multi-site e�ets lead to the development of �nite strutures in the density of states and the partial

�lling of the gap at larger disorder. Utilizing the self-energy, we show as a funtion of inreasing

disorder strengths, the importane of a �nite luster in haraterizing the Anderson loalization

transition. For small disorder the single site and �nite luster results are essentially the same,

indiating that the CPA is a good approximation in the small disorder regime. However, for a

larger disorder we observe a signi�ant momentum dependene in the self-energy resulting from the

non-loal orrelations whih are inorporated in the DCA.
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Eletron loalization for o�-diagonal disorder models had not been studied from the the typial

medium perspetive. The typial medium formalism did not exist for suh disordered systems. In

this paper, we generalized the TMDCA to systems with both diagonal and o�-diagonal disorder.

Our developed method an quantitatively and qualitatively be used to study the e�ets of disorder

on the eletron loalization, e�etively for systems with both diagonal and o�-diagonal randomness.

We demonstrate that within the TMDCA, the typial DOS vanishes for loalized states, and is

�nite for states whih are extended. Employing the typial DOS as an order parameter for Anderson

loalization, we have onstruted the disorder-energy phase diagram for systems with both diagonal

and o�-diagonal disorder. We have also demonstrated the inability of the single site CPA and the

TMT methods to aurately apture the loalization and disorder e�ets in both the average and the

typial DOS, respetively. We note that the single site TMT while being able to apture the behavior

for the diagonal and o�-diagonal disorder, strongly underestimates the extended regions. Also the

TMT is less sensitive to the o�-diagonal randomness with the mobility edges being only slightly

modi�ed as ompared to the diagonal ase. In ontrast, the �nite luster TMDCA results are able

to apture the onsiderable hanges, with a pronouned asymmetry of the extended state region, in

the disorder-energy phase diagram under the e�et of the o�-diagonal disorder as ompared to the

diagonal ase. Most importantly, the TMDCA results are found to be in a quantitative agreement

with exat numerial results. Comparing our results with kernel polynomial, exat diagonalization,

and transfer-matrix methods we �nd a remarkably good agreement with our extended DCA and

TMDCA. To the best of our knowledge, this is the �rst numerially aurate investigation of the

Anderson loalization in systems with o�-diagonal disorder within the framework of the typial

medium analysis. We believe that the extended TMDCA sheme presents a powerful tool for

treating both diagonal and o�-diagonal disorder on equal footing, and an be easily extended to

study loalization in multi-band systems.
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Chapter 4

TMDCA Study of Multi-band Systems

Prior to this work, TMDCA alulations had been restried to model alulations that involve only

a single band. As real materials exhibit multiple bands, it is important to establish that TMDCA

an apture the Anderson transition in a multiband system whih is the result that will be presented

in this hapter

1

. The density of states and preditions of the mobility edge are ompared with

the kernel polynomial method and the TMM for the model two-band system as seen in Fig.4.1.

Also, the method is then applied to the real material KxFe2−ySe2 and found to not be an Anderson

insulator.

My ontribution to this work was primarily in the �gures whih show the mobility edge om-

parisons with the TMM (Fig.4.6 and Fig.4.7). I extended my parallel TMM ode to the multiband

system desribed in this hapter below and performed �nite size saling analysis of the of the

Kramer-MaKinnon saling parameter as a funtion of disorder as seen in Fig.4.2.

1

This hapter inludes previously published work published by Amerian Physial Soiety and appears in [38℄ and

is reprodued here under term 3 of Author's rights of the APS Transfer of Copyright Agreement to �The right to use

all or part of the Artile, inluding the APS-prepared version without revision or modi�ation . . . for eduational or

researh purposes.�
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Figure 4.1: Simple two band model where eah unit ell ontains two orbitals with ouplings as

de�ned in [38℄.
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Figure 4.2: Krammer-Mainnon saling parameter. The rossing denotes the ritial disorder

strength as the saling parameter is invariant as a funtion of system size.
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4.1 Introdution

The role of disorder (randomness) in materials has been at the forefront of urrent researh [101,

102, 110℄ due to the new and improved funtionalities that an be ahieved in materials by arefully

ontrolling the onentration of impurities in the host. At half-�lling and in the absene of any

spontaneous symmetry breaking �eld, disorder an indue a transition in a non-degenerate eletroni

three-dimensional system from a metal to an insulator (MIT) [103, 111℄. This phenomenon, whih

ours due to the multiple sattering of harge arriers o� random impurities, is known as Anderson

loalization [103℄.

The most ommonly used mean-�eld theory to study disordered systems is the oherent potential

approximation (CPA) [112, 113, 114℄, whih maps the original disordered lattie to an impurity

embedded in an e�etive medium. The CPA suessfully desribes some one-partile properties,

suh as the average density of states (ADOS) in substitutional disordered alloys [112, 113, 114℄.

However, being a single-site approximation, the CPA by onstrution neglets all disorder-indued

nonloal orrelations involving multiple sattering proesses. To remedy this, luster extensions of

the CPA suh as the dynamial luster approximation (DCA) [115, 116, 117℄ and the moleular

CPA [118℄ have been developed, where nonloal e�ets are inorporated. Unfortunately, all of

these methods fail to apture the Anderson loalization transition sine the ADOS utilized in these

approahes is neither ritial at the transition or distinguish the extended and the loalized states.

In order to desribe the Anderson transition in suh e�etive medium theories, a proper order

parameter has to be used. As noted by Anderson, the probability distribution of the loal density

of states (LDOS) must be onsidered, and the most probable or typial value would haraterize

it [103, 119℄. It was found that the geometri mean of the LDOS is a good approximation of its

typial value (TDOS) and it is ritial at the transition [120, 106, 107℄, whih makes it an appropriate

order parameter to desribe Anderson loalization. Based on this idea, Dobrosavljevi et al.. [100℄

formulated a single-site typial medium theory (TMT) for Anderson loalization whih gives a

qualitative desription of the transition in three dimensions. In ontrast to the CPA, the TMT uses

the geometrial averaging over the disorder on�guration in the self onsisteny loop. And thus,

the typial not the average DOS is used as the order parameter. However, due to the single-site
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nature of the TMT it neglets nonloal orrelations suh as the e�et of oherent bak sattering.

Thus, the TMT underestimates the ritial disorder strength of the Anderson loalization transition

and fails to apture the reentrant behavior of the mobility edge (whih separates the extended and

loalized states) for uniform box disorder.

Reently, a luster extension of TMT was developed, named the typial medium dynamial lus-

ter approximation (TMDCA) [105℄, whih predits aurate ritial disorder strengths and aptures

the reentrant behavior of the mobility edge. The TMDCA was also extended to inlude o�-diagonal

in addition to diagonal disorder. [121℄. However, like the TMT, the previous TMDCA implemen-

tations have only been developed for single-band systems, and in real materials, there are usually

more than one band lose to the Fermi level. Sen performed CPA alulation on two-band semion-

duting binary alloys [122℄, and the eletroni struture of disordered systems with multiple bands

has also been studied numerially in �nite systems [123, 124℄. But a good e�etive medium theory

to study Anderson loalization transition in multiband systems is still needed to understand the

loalization phenomenon in real systems suh as diluted doped semi-ondutors, disordered systems

with strong spin-orbital oupling, et.

In this paper, we extend the TMDCA to multiple band disordered systems with both intra-

band and inter-band hopping, and study the e�et of intra-band disorder potential on eletron

loalization. We perform alulations for both single-site and �nite size lusters, and ompare the

results with those from numerially exat methods, inluding transfer matrix method (TMM) and

kernel polynomial method (KPM). We show that �nite sized lusters are neessary to inlude the

nonloal e�ets and produe more aurate results. Sine these results show that the method is

aurate and systemati, we then apply it to study the iron selenide superondutor KxFe2−ySe2

with Fe vaanies, as an example to show that this method an be used to study loalization e�ets

in real materials. In addition, as an e�etive medium theory, our method is also able to treat

interations [125℄, unlike the TMM and KPM.

The paper is organized as follows. We present the model and desribe the details of the formalism

in Se. 4.2. In Se. 4.3.1, we present our results of the ADOS and TDOS for a two-band disordered

system with various parameters, and use the vanishing of the TDOS to: determine the ritial
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disorder strength, extrat the mobility edge and onstrut a omplete phase diagram in the disorder-

energy parameter spae for di�erent inter-band hopping. In Se. 4.3.2, we disuss simulations of

KxFe2−ySe2 with Fe vaanies. We summarize and disuss future diretions in Se. 5.4. In Appendix

4.4, we provide justi�ation for the use of our order parameter ansatz.

4.2 Formalism

4.2.1 Dynamial luster approximation for multiband disordered systems

We onsider the multiband Anderson model of non-interating eletrons with nearest neighbor

hopping and random on-site potentials. The Hamiltonian is given by

H =−
∑

<ij>

lb
∑

α,β=1

tαβij (c†iαcjβ + c†jβciα)

+
N
∑

i=1

lb
∑

α,β=1

(V αβ
i − µδαβ)n

αβ
i

(4.1)

The �rst term provides a realisti multiband desription of the host valene bands. The labels i, j

are site indies and α, β are band indies. The operators c†iα(ciα) reate (annihilate) a quasipartile

on site i and band α. The seond part denotes the disorder, whih is modeled by a loal potential

V αβ
i that is randomly distributed aording to some spei�ed probability distribution P (V αβ

i ),

where nαβi = c†iαciβ , µ is the hemial potential, and tαβij are the hopping matrix elements. Here

we onsider binary disorder, where the random on-site potentials V αβ
i obey independent binary

probability distribution funtions with the form

P (V αβ
i ) = xδ(V αβ

i − V αβ
A ) + (1− x)δ(V αβ

i − V αβ
B ). (4.2)

In our model, there are lb band indies so that both the hopping and disorder potential are lb× lb
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matries. The random potential is

Vi =

























V αα
i · · · V αβ

i

. . .

. . .

. . .

V αα
i · · · V βα

i

























, (4.3)

while the hopping matrix is

tij =

























tααij · · · tαβij

. . .

. . .

. . .

tβαij · · · tββij

























, (4.4)

where underbar denotes lb × lb matrix, tαα and tββ are intra-band hoppings, while tαβ and tβα

are inter-band hoppings. Similar de�nitions apply to the disorder potentials. If we restrit the

matrix elements to be real, Hermitiity requires both matries to be symmetri, i.e., tαβ = tβα and

V αβ
i = V βα

i .

To solve the Hamiltonian of Eq. 4.1, we �rst generalize the standard DCA to a multiband

system. Within DCA the original lattie model is mapped onto a luster of size Nc = L3
with

periodi boundary ondition embedded in an e�etive medium. The �rst Brillouin zone is divided

in Nc oarse grained ells [116℄, whose enter is labeled by K, surrounded by points labeled by k̃

within the ell. Therefore, all the k-points are expressed as k = K + k̃. The e�etive medium is

haraterized by the hybridization funtion ∆(K,ω). The generalization of the DCA to a multiband

system entails representing all the quantities in momentum spae as lb × lb matries.

The DCA self-onsisteny loop starts with an initial guess for the hybridization matrix ∆(K,ω),
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whih is given by

∆(K,ω) =

























∆αα(K,ω) · · · ∆αβ(K,ω)

. . .

. . .

. . .

∆βα(K,ω) · · · ∆ββ(K,ω)

























. (4.5)

For the disordered system, we must solve the luster problem in real spae. In that regard, for

eah disorder on�guration desribed by the disorder potential V we alulate the orresponding

luster Green funtion whih is now an lbNc × lbNc matrix

Gc(V ) =
(

ωI− t(αβ) −∆′(αβ) − V αβ
)−1

. (4.6)

Here, I is identity matrix and ∆
′

ij is the Fourier transform (FT) of the hybridization, i.e.,

∆
′αβ
ij =

∑

K

∆αβ(K)exp[iK · (ri − rj)]. (4.7)

We then stohastially sample random on�gurations of the disorder potential V and average

over disorder 〈(· · · )〉 to get the lbNc × lbNc disorder averaged luster Green funtion in real spae

Gc(ω)ij =



























〈Gαα
c (ω, V )〉ij · · ·

〈

Gαβ
c (ω, V )

〉

ij

. . .

. . .

. . .
〈

Gβα
c (ω, V )

〉

ij
· · ·

〈

Gββ
c (ω, V )

〉

ij



























. (4.8)

We then Fourier transform to K spae and also impose translational symmetry to onstrut the

K-dependent disorder averaged luster Green funtion Gc(K,ω), whih is a lb × lb matrix for eah
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K omponent

Gc(K,ω) =

























Gαα
c (K,ω) · · · Gαβ

c (K,ω)

. . .

. . .

. . .

Gβα
c (K,ω) · · · Gββ

c (K,ω)

























. (4.9)

After the luster problem is solved, we an alulate the oarse grained lattie Green funtion matrix

G(K,ω) =

























G
αα

(K,ω) · · · G
αβ

(K,ω)

. . .

. . .

. . .

G
βα

(K,ω) · · · G
ββ

(K,ω)

























(4.10)

=
Nc

N

∑

k̃

(

Gc(K,ω)
−1 +∆(K,ω) − εk + ǫ(K)

)−1
,

where the overbar denotes luster oarse-graining, and ǫ(K) is the luster oarse-graining Fourier

transform of the kineti energy

ǫ(K) = E0 +
Nc

N

∑

k̃

εk (4.11)

where Eαβ
0 is a loal energy, whih is used to shift the bands. The diagonal omponents of Eq. 4.10

have the same normalization than a onventional, i.e., salar, Green funtion.

The DCA self-onsisteny ondition requires the disorder averaged luster Green funtion equal

the oarse grained lattie Green funtion

Gc(K,ω) = Ḡ(K,ω). (4.12)

Then, we lose our self-onsisteny loop by updating the hybridization funtion matrix using
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linear mixing

∆n(K,ω) = ∆o(K,ω) + ξ[G−1
c (K,ω) − Ḡ−1(K,ω)], (4.13)

where the subsript “o” and “n” denote old and new respetively, and ξ is a linear mixing fator

0 < ξ < 1. The proedure above is repeated until the hybridization funtion matrix onverges to

the desirable auray ∆n(K,ω) = ∆o(K,ω).

We an see that when the inter-band hopping, tαβ , and disorder potential, V αβ
, vanish all the

lb × lb matries beome diagonal, and the formalism redues to single band DCA for lb independent

bands.

4.2.2 Typial medium theory for multiband disordered systems

To study loalization in multiband systems, we generalize the reently developed TMDCA [105℄

where the TDOS is used as the order parameter of the Anderson loalization transition, so the

eletron loalization is aptured by the vanishing of the TDOS. We will use this TMDCA formalism

to address the question of loalization and mobility edge evolution in the multiband model.

Unlike the standard DCA, where the Green funtion is averaged over disorder algebraially,

the TMDCA alulates the typial (geometrially) averaged luster density of states in the self-

onsisteny loop as

ρtypc (K,ω) = e
1

Nc

∑

i〈log ρii(ω)〉

〈

ρ(K,ω)
1
Nc

∑

i ρii(ω)

〉

, (4.14)

whih is onstruted as a produt of the geometri average of the loal density of states, ρii =

− 1
π ImGii(ω), and the linear average of the normalized momentum resolved density of states ρ(K,ω) =

− 1
π ImGc(K,ω). The luster-averaged typial Green funtion is onstruted via the Hilbert trans-

formation

Gtyp
c (K,ω) =

∫

dω′ ρ
typ
c (K,ω′)

ω − ω′
. (4.15)

Generalization of the TMDCA to the multiband ase is not straightforward sine the o�-diagonal

LDOS ραβii (ω) = − 1
πG

αβ
ii (ω) is not positive de�nite. We onstrut the lb × lb matrix for the typial
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density of states as

ρctyp(K,ω) =





























e
1

Nc

∑

i〈lnραα
ii (ω)〉 〈 ραα(K,ω)

1

Nc

∑

i ρ
αα
ii (ω)

〉

· · · e
1

Nc

∑

i

〈

ln|ραβ
ii (ω)|

〉 〈

ραβ(K,ω)
1

Nc

∑

i |ρ
αβ
ii (ω)|

〉

. . .

. . .

. . .

e
1

Nc

∑

i

〈

ln|ρβα
ii (ω)|

〉 〈

ρβα(K,ω)
1

Nc

∑

i |ρ
βα
ii (ω)|

〉

· · · e
1

Nc

∑

i

〈

lnρββ
ii (ω)

〉 〈

ρββ(K,ω)
1

Nc

∑

i ρ
ββ
ii (ω)

〉





























.

(4.16)

The diagonal part takes the same form as the single-band TMDCA ansatz, and the o�-diagonal

part takes a similar form but involves the absolute value of the o�-diagonal `loal' density of states.

We onstrut the typial luster Green funtion through a Hilbert transformation

Gc
typ(K,ω) =

























∫

dω′ ρ
αα
typ(K,ω′)

ω−ω′ · · ·
∫

dω′ ρ
αβ
typ(K,ω′)

ω−ω′

. . .

. . .

. . .
∫

dω′ ρ
βα
typ(K,ω′)

ω−ω′ · · ·
∫

dω′ ρ
ββ
typ(K,ω′)

ω−ω′

























, (4.17)

whih plays the same role as Gc(K,ω) in the DCA loop. One Gtyp is alulated from Eq. 4.17,

the self-onsisteny steps are the same as those in the multiband DCA desribed in the previous

setion: we alulate the oarse grained lattie Green funtion using Eq. 4.10, and use it to update

the hybridization funtion matrix of the e�etive medium via Eq. 4.13.

The proposed ansatz Eq. 4.16 has the following properties. When the inter-band hopping tαβ

and disorder potential V αβ
vanish, it redues to single-band TMDCA for lb independent bands,

sine all the o�-diagonal elements of the Green funtions vanish. When disorder is weak, all the

V αα
are small so the distribution of the LDOS beomes Gaussian with equal linear and geometri

average so it redues to DCA for a multiband disordered system.

When onvergene is ahieved, we use the total TDOS ρtottyp(ω) to determine the mobility edge
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whih is alulated as the trae of the loal TDOS matrix

ρtottyp(ω) = Tr

[

1

Nc

∑

K

ρtyp(K,ω)

]

=
∑

∀α=β

ραβtyp(ω). (4.18)

This onstrution of the order parameter may not seem very physial as the typial value of the

LDOS should serve as the order parameter [103, 119℄, and the LDOS for the multiband system

is the sum of the lb bands in the loal site basis ρtoti =
∑

α=β ρ
αβ
i (ω). Therefore, the real order

parameter should be the typial value of ρtoti de�ned as the geometri average of the total LDOS,

exp
(

1
Nc

∑

i log ρ
tot
i

)

whih is invariant under loal unitary transformations and is not equal to the

ρtottyp de�ned in Eq. 4.18.

However, Eq. 4.18 should also be a orret order parameter as long as it vanishes simultaneously

with the typial value of ρtoti , and we show this in Appendix 4.4. By onsidering the distribution of

the LDOS in eah band, Appendix 4.4 shows that when loalized states mix with extended states

the system is still extended, whih is onsistent with Mott's insight about the mobility edge [126℄.

Intuitively, this makes sense as when all the distributions of ρααi are ritial then the typial values

must behave as |V − Vc|βν
near the transition, and so their sum must as well. If one is not ritial

(on the metalli side) then Eq. 4.18 will not vanish as |V − Vc|βν
, as expeted.

To test our multiband typial medium dynamial luster approximation formulation, we apply

it to the spei� ase of a two band model, unless otherwise stated in Se. 5.3. Throughout the

disussion of our results below, we denote α as a and β as b.

4.3 Results

4.3.1 Two band model

As a spei� example, we test the generalized DCA and TMDCA algorithms for a three-dimensional

system with two degenerate bands (ab) desribed by Eq. 4.1. In this ase, both the hopping and
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disorder potential are 2 × 2 matries in the band basis given by

tij = t =







taa tab

tba tbb






, (4.19)

and

Vi =







V aa
i V ab

i

V ba
i V bb

i






, (4.20)

respetively. The intra-band hopping is set as taa = tbb = 1, with �nite inter-band hopping tab.

Here, the hopping matrix is de�ned as dimensionless so that the bare dispersion an be written as

εk = tεk with εk = −2t[cos(kx) + cos(ky) + cos(kz)] in three dimensions. We hoose 4t = 1 to set

the units of energy. We onsider the two bands orthogonal to eah other, where the loal inter-band

disorder V αβ
i vanishes and the randomness omes from the loal intra-band disorder potential V αα

i

that follow independent binary probability distribution funtions with equal strength, V aa = V bb
.

Sine the two bands are degenerate and the disorder strength for eah band is also idential, the

alulated average DOS will be the same for eah band, so we only plot the quantities for one of

the bands in the following results, as it is enough to haraterize the properties of the system.

In our formalism, in order to disorder average instead of performing the very expensive enu-

meration of all disorder on�gurations, whih sales as 22Nc
, we perform a stohasti sampling of

on�gurations whih greatly redues the omputational ost [127℄. This is so we an study larger

systems. For a typial Nc = 64 alulation, 500 disorder on�gurations are enough to produe

reliable results and this number dereases with inreasing luster size.

We �rst ompare the ADOS and TDOS at various disorder strengths V aa(V bb), with a �xed

inter-band hopping tab = 0.3, for di�erent luster sizes Nc in Fig. 4.3. Our TMDCA sheme for

Nc = 1 orresponds to the analog of the TMT for two-band systems, and the ADOS is alulated

with the two-band DCA. To show the e�ets of non-loal orrelations introdued by �nite lusters,

we present data for both Nc = 1 and Nc > 1. We an learly see that the TDOS, whih an be

viewed as the the order parameter of the Anderson loalization transition, gets suppressed as the

disorder inreases . By omparing the width of the extended state region, where the TDOS is �nite,
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we an see that single site TMT overestimates loalization.

From Fig. 4.3, we see that the results of TMDCA for Nc = 64 and Nc = 216 are almost on

top of eah other, showing a quik onvergene with the inrease of luster size. To see this more
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Figure 4.3: Evolution of the ADOS and TDOS at di�erent disorder strengths V aa(V bb), for Nc = 1
(left panel) and Nc > 1 (right panel) for �xed tab = 0.3. For small disorder, the ADOS and TDOS

are almost idential. The TDOS is suppressed as the disorder inreases. The extended states region

with �nite TDOS for Nc = 1 is narrower than the results of Nc > 1 whih indiates that the

single-site TMT overemphasizes loalization.

learly, we plot in Fig. 4.4 the TDOS at the band enter for two di�erent disorder strengths and

various luster sizes. We see that the results for both ases onverge quikly with luster size.

Faster onvergene (around Nc = 38) is reahed for the ase further away from the ritial region

(V aa = V bb = 0.6) than for the one loser (V aa = V bb = 0.7) where onvergene is reahed around

Nc = 98. This is expeted due to the ritial slowing down lose to the transition. To further study

the onvergene, we also plot in Fig. 4.5 the TDOS at the band enter as a funtion of disorder

strength (V aa = V bb
) for several Nc. The ritial disorder strength is de�ned by the vanishing of

the TDOS(ω = 0). The results show a systemati inrease of the ritial disorder strength as Nc

inreases, and the onvergene is reahed at Nc = 98 with the ritial value of 0.74.

To study the e�et of inter-band hopping tab, we alulate the disorder-energy phase diagram
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ritial slowing down loser to the transition region.
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for the ase with vanishing tab and �nite tab = 0.3 in Fig. 4.6. The mobility edge is determined
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Figure 4.6: Disorder-energy phase diagram for vanishing tab (left panel) and �nite tab = 0.3 (right

panel). We ompare the mobility edge obtained from the TMT (Nc = 1), TMDCA (Nc = 64 and

216) and TMM. Parameters for the TMM data are given in the text (the TMM data for tab = 0.0
is reprodued from [121℄). A �nite tab inreases the ritial disorder strength, indiating that tab

results in a deloalizing e�et. The single site TMT overestimates the loalized region.

by the energy where the TDOS vanishes. By omparing the left and right panels, we an see

that introduing a �nite tab makes the system more di�ult to loalize, ausing an upward shift

of the mobility edge. The single site TMT overestimates the loalized region ompared to �nite

luster results. We also ompare our results with those from the TMM [98, 149, 150℄ to hek the

auray of the mobility edge alulated from TMDCA. For the TMM, the Shrödinger equation is

written in terms of wavefuntion amplitudes for adjaent layers in a quasi-one dimensional system,

and the orrelation (loalization) length is omputed by aumulating the Lyapunov exponents of

suessive transfer matrix multipliations that desribe the propagation through the system. All

TMM data is for a 3d system of length L = 106 and the Kramer-MaKinnon saling parameter

Λ(V,M) is omputed for a given disorder strength V and �bar� width M . The transfer matrix is

a 2Mlb × 2Mlb matrix. The system widths used were M = [4 − 12]. The ritial point is found

by identifying the rossing of the Λ(M)vs.V urves for di�erent system sizes. The transfer matrix
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produt is reorthogonalized after every �ve multipliations.

To see the e�et of inter-band hopping more diretly, we now onsider inreasing tab while

keeping the disorder strength �xed (V aa = V bb = 0.71), and study the evolution of the mobility

edge (Fig. 4.7). The loalized region around the band enter starts to shrink as tab is inreased,

leading to a small dome-like shape with the top loated at tab = 0.2. This shows that inreasing

tab deloalizes the system whih is reasonable sine inreasing tab e�etively inreases the bare

bandwidth.
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Figure 4.7: Evolution of the mobility edge as tab inreases, while V aa
and V bb

are �xed. The results

are alulated for Nc = 64. A dome-like shape shows up around the band enter, signaling the

losing of the TDOS gap. Parameters for the TMM data are given in the text.

To further benhmark our algorithms, we plot the ADOS and TDOS alulated with two-band

DCA and TMDCA together with those alulated by the KPM [108, 109, 128, 129℄ (Fig. 4.8). In

the KPM analysis, the LDOS is expanded by a series of Chebyshev polynomials, so that the ADOS

and TDOS an be evaluated. The details for the implementation of KPM are well disussed in

Ref. [109℄ and the parameters used in the KPM alulations are listed in the aption of Fig. 4.8.

The Jakson kernel is used in the alulations [109℄. As shown in the plots, the results from the

generalized DCA and TMDCA math niely with those alulated from the KPM.
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The exellent agreement of the TMDCA results with those from more onventional numerial

methods, like KPM and TMM, suggest that the method may be used for the aurate study of real

materials.
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Figure 4.8: Comparison of ADOS and TDOS alulated with DCA, TMDCA and KPM with �xed

disorder strength V aa = V bb = 0.8 and various values of inter-band hopping tab. The KPM uses

2048 moments on a ubi lattie of size 483 and 200 independent realizations generated with 32

sites randomly sampled from eah realization.

4.3.2 Appliation to KyFe2−xSe2

Next, we demonstrate the method with a ase study of Fe vaanies in the Fe-based superondutor

KxFe2−ySe2, whih has been studied intensely beause of its peuliar eletroni and strutural

properties. Early on it was found that there is a strong

√
5 ×

√
5 ordering of Fe vaanies [130℄.

Later it was disovered that this material also ontains a seond phase[131, 132℄. It is ommonly

speulated that the seond phase is the one that hosts the superonduting state and the phase

with the

√
5×

√
5 vaany ordering is an antiferromagneti (AFM) insulator. Reent measurements

of the loal hemial omposition [133, 134℄ have determined that the seond phase also ontains a

large onentration of Fe vaanies (up to 12.5%). However, these Fe vaanies are not well ordered
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sine no strong reonstrution of the Fermi surfae [135, 136, 137℄ was observed by angle-resolved

photoeletron spetrosopy (ARPES) experiments [138, 139℄.

Interestingly, with suh a disordered struture, this material hosts a relatively high superon-

duting transition temperature of 31 K at ambient pressure [140℄. It was the �rst Fe-based super-

ondutor that was shown from ARPES [138, 139℄ to have a Fermi surfae with eletron pokets only

and no hole pokets, apparently disfavoring the widely disussed S±
pairing symmetry [141℄ in the

Fe-based superondutors. KxFe2−ySe2 is also the only Fe-based superondutor whose parent om-

pound (with perfetly ordered Fe vaany) is an AFM insulator [142℄ rather than a AFM bad metal.

Furthermore from neutron sattering [130℄, it has been observed that the anti-ferromagnetism has

a novel blok type struture with a reord high Neel temperature of TN = 559K and magneti

moment of 3.31µB/Fe. Suh a speial magneti struture is obviously not driven from the nesting

of the simple Fermi surfae, but requires the interplay between loal moments and itinerant arriers

present in the normal state [143, 144℄.

Given that Fe vaanies are about the strongest possible type of disorder that an exist in

Fe-based superondutors and given that the Fe-based superondutors are quasi two-dimensional

materials, it is natural to speulate how lose the seond phase is to an Anderson insulator. If it

is indeed lose, this would have interesting impliations for the strong orrelation physis and the

non-onventional superondutivity in these ompounds.

To investigate the possibility of Anderson loalization in the seond phase of KxFe2−ySe2 we will

employ TMDCA on a realisti �rst priniples model. To this end we use Density Funtional Theory

(DFT) in ombination with the projeted Wannier funtion tehnique [145℄ to extrat the low energy

e�etive Hamiltonian of the Fe-d degrees of freedom. Spei�ally we applied the WIEN2K [146℄

implementation of the full potential linearized augmented plane wave method in the loal density

approximation. The k-point mesh was taken to be 10×10×10 and the basis set size was determined

by RKmax=7. The lattie parameters of the primitive unit ell (.f. Fig. 4.9(b)) are taken from

Ref. [130℄. The subsequent Wannier transformation was de�ned by projeting the Fe-d haraters on

the low energy bands within the interval [-3,2℄ eV. For numerial onveniene, we use the onventional

unit ell shown in Fig. 4.9(a) whih ontains 4 Fe atoms. Sine there are 5 d orbitals per Fe atom,
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we are dealing with a 20-band problem. To simulate the e�et of Fe vaanies we add a loal binary

disorder with strength V and Fe vaany onentration ca:

P (Vi) = caδ(Vi − V ) + (1− ca)δ(Vi). (4.21)

We set the disorder strength to be V = 20eV , muh larger than the Fe-d bandwidth, suh that

it e�etively removes the orresponding Fe-d orbitals from the low energy Hilbert spae. This

will apture the most dominant e�et of the Fe vaanies. The Fe onentration is taken to be

ca = 12.5%, whih is the maximum value found in the experiments.

Figure 4.9: Crystal struture of KFe2Se2.

Fig. 4.10 presents the ADOS and TDOS, obtained from our multiband TMDCA for whih we

onsidered two luster sizes Nc = 1 and Nc = 2
√
2 × 2

√
2 × 2 = 16. Consistent with the model

alulations presented in the previous setions, we �nd that the TMT (Nc = 1) tends to overestimate

the loalization e�ets ompared to TMDCA results (Nc = 16). While the TMT shows loalized

states within [0.6,1.1℄ eV, the TMDCA for Nc = 16 �nds loalized states in the muh smaller energy

region [1.0,1.1℄ eV instead. Apparently a onentration of ca = 12.5% is still too small to ause
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any signi�ant loalization e�ets despite the strong impurity potentials of the Fe vaanies and the

material being quasi-two dimensional. To determine the hemial potential we onsider two �llings.

The �rst �lling of 6.0 eletrons per Fe orresponds to the reported K2Fe7Se8 phase [134℄. Sine

strong eletron doping has been found in ARPES experiments [138, 139℄, we also onsider a �lling

of 6.5 eletrons per Fe. The latter would orrespond to the extreme ase of no vaanies. Clearly

for both �llings the hemial potential remains energetially very far from the mobility edge, and

thus far from Anderson insulating.
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Figure 4.10: The average and typial density of states of KFe2Se2 with 12.5% Fe vaany onentra-

tion alulated by multiband DCA and TMDCA with luster size Nc = 1 and Nc = 16, ompared

with the average density of states of the lean (no vaany) KFe2Se2.

4.4 Conlusion

We extend the single-band TMDCA to multiband systems and study eletron loalization for a

two-band model with various hopping and disorder parameters. We benhmark our method by

omparing our results with those from other numerial methods (TMM and KPM) and �nd good

agreement. We �nd that the inter-band hopping leads to a deloalization e�et, sine it gradually
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loses the ω = 0 disorder indued gap on the TDOS. A diret appliation of our extended TMDCA

ould be done for disordered systems with strong spin-orbital oupling. Combined with eletroni

struture alulations, our method an be used to study the eletron loalization phenomenon in real

materials. To show this, we apply this approah to the iron selenide superondutors KxFe2−ySe2

with Fe vaanies. By alulating the TDOS around the hemial potential, we onlude that the

insulating behavior of its normal state is unlikely due to Anderson loalization. This method also

has the ability to inlude interations [125℄, and future work will involve real material alulations

that fully treat both disorder and interations.
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The order parameter de�ned in Eq. 4.18

We know the system is loalized if the distribution of the total LDOS is ritial, having a probability

distribution p(ρaai + ρbbi ) whih is highly skewed with a typial value lose to zero. So if we an

show that this is true if and only if both ρaai and ρbbi are ritial, then the ritial behavior is basis

independent and we an hoose any partiular basis and use the order parameter de�ned by Eq. 4.18
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to study the loalization transition.

To show this is true, we onsider two probability distribution funtions p1(x1) and p2(x2). The

probability distribution funtion for X = x1 + x2 is

P (X) =

∫ X

0
p1(x)p2(X − x)dx, (4.22)

and we want to show P (X) is ritial if and only if both p1(x1) and p2(x2) are ritial.

4.4.1 Su�ieny

If both p1(x) and p2(x) are ritial, then both p1(x) and p2(x) are dominated by the region 0 < x < δ

where δ → 0+. The ontribution to the integral in P (X) mainly omes from the region 0 < x < δ

and 0 < X−x < δ whih is max(X−δ, 0) < x < min(δ,X). Sine δ is in�nitesimal, we an assume

X > δ, and then we have X − δ < x < δ. To maximize P (X), we want this region to be as big as

possible, so we want δ− (X − δ) = 2δ−X to be as big as possible whih means X must be smaller

than 2δ → 0+. Thus, P (X) is also ritial with the typial value around 2δ whih is in�nitesimal.

4.4.2 Neessity

We now onsider the ase where one of the distributions is not ritial. Without loss of generality,

we assume p2(x) is not ritial and is peaked at some �nite value x0. We alulate

P (x0)− P (δ) =

∫ x0

0
p1(x)p2(x0 − x)dx−

∫ δ

0
p1(x)p2(δ − x)dx

=

∫ δ

0
p1(x)[p2(x0 − x)− p2(δ − x)]dx+

∫ x0

δ
p1(x)p2(x0 − x)dx.

(4.23)

The �rst term is positive sine p2(x) is peaked around x0 and δ ≪ x0. The seond term is positive

obviously, so P (x0) > P (δ). Therefore, P (X) is not ritial.

In this way we argue that P (X) is ritial if and only if both p1(x1) and p2(x2) are ritial. In

other words, when the loalized states hybridize with extended states, only extended states remain

whih is exatly Mott's insight about the mobility edge [126℄. The generalization to the multiple

band ase is trivial.

78



Chapter 5

Multifratal Study of Quasipartile

Loalization in Disordered

Superondutors

In addition to o�-diagonal disorder and multiple bands, materials an also be superonduting. This

adds muh ompliation to the interpretation of loalization in the Anderson sense as one an not

only onsider loalization of the harge arriers (resulting in a standard metal to insulator transition

as has so far been onsidered in this thesis), but of any quasipartile exitations and it is an open

question if the �traditional� methods of numerial analysis of disordered systems an be applied

to apture suh a loalization transition. The purpose of this work was to apply the multifratal

analysis that has been applied to the Anderson model to a model of a disordered superondutor to

establish it an also apture the loalization of bogolons (the exitations of this Hamiltonian), and

the appliation of TMDCA to suh a model is onsidered for future work.

My ontribution to this work that was made in ollaboration with K.-M. Tam, Yi Zhang, and M.

Jarrell that has been submitted to Physial Review B was to �rst determine the ritial parameters

(the ritial disorder strengthWc and orrelation exponent ν) with a TMM ode for a superondutor

with extended s-wave pairing. The reason for this hoie of pairing was to avoid the problem of not

being able to �target� the lowest energy exitations with the TMM in the presene of a gap in the

spetrum whih a more onventional pairing realization would have . I then implemented a large

sale diagonalization ode in order to ompute the bogolon wave funtion |ψi|2 = |ui|2 + |vi|2 and

applied multifratal �nite size saling to also ompute the ritial parameters and �nd agreement

with TMM, establishing the ability of the method to apture loalization of exitations in disordered

superondutors.
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5.1 Introdution

Anderson loalization involves the loalization of single-partile eletroni states in a disordered

metal[147℄. Although this has proved to be a hallenging and omplex problem[148℄, the basi

interpretation of the transition is lear: it is a transition from a metalli phase where eletrons

are able to di�use and transport over long distanes to an insulating phase where this is pre-

vented. Anderson loalization ours in normal eletroni systems (most famously doped[152℄ and

amorphous[153℄ semiondutors). The onduting eletroni states are separated from the insulat-

ing states by a mobility edge in energy and disorder strength. Many features of the loalization

transition have been studied and muh attention has been paid to two in partiular: the multi-

fratality of ritial wave funtions at the transition and the role played by the symmetries of the

Hamiltonian [154, 155, 156, 158℄.

The Anderson transition was �rst and most studied for Hamiltonians of the three Wigner-

Dyson[156℄ symmetry lasses. The identi�ation of additional symmetry lasses (bringing the full

number to ten[154℄) has lead to the study of the e�ets of Anderson loalization beyond the original

three symmetry lasses and the additional rih phenomena[159℄. In this paper, we onsider the

question of quasipartile loalization in the Bogoliubov de Gennes lass for three dimensions with

time reversal and spin rotation symmetry (lass CI) whih we use to model a dirty superondutor

with a �nite density of states at the Fermi level. The exitations of this lass are Bogoliubov

quasipartiles[160℄ (also referred to as bogolons in this paper) with no de�nite harge as they are

a superposition of eletron and hole exitations [161℄, so this is di�erent from the ase of the

Anderson model where the exitations have a well de�ned harge. In this ase, the loalization

transition is interpreted as loalization of bogolons that ours within the superonduting phase.

The two phases are refereed to as a �thermal metal� where the bogolons are extended and a �thermal

insulator� where they are loalized[162℄. As mentioned above, the quasipartiles do not transport

harge and so there is no Weidemann-Franz law between the thermal and eletri transport, but

there is still thermal transport and so on the loalized side of the transition the system will be

thermally insulating and on the extended side it will be thermally metalli [162℄.

The idea of multifratality was introdued by Mandlebrot[164, 165℄ and desribes spatial stru-
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tures that have a ompliated distribution and require an in�nite number of ritial exponents to

desribe the saling of their moments. The multifratal nature of the wavefuntion at ritiality

was realized for Anderson transitions [166, 158℄ and is now reognized as a de�ning harateristi.

A proposed generalization of the multifratal analysis an be used to alulate the ritial parame-

ters of the Anderson transition[168, 167, 169℄ whih has even been applied to alulations of doped

semiondutors[170℄.

In this paper, we apply the generalized multifratal �nite size saling (MFSS) [168, 167℄ analysis

to a simple model of a dirty superondutor. The model Hamiltonian and methods of extrating

ritial parameters whih inlude transfer matrix method and multifratal analysis are desribed

in Se.5.2. We will demonstrate that the multifratal analysis an be used to extrat the ritial

disorder strength by showing agreement with transfer matrix method alulations and on�rms

that this transition falls outside the Wigner-Dyson symmetry lass. Also, we will argue that the

multifratal harater of the wavefuntions an possibly explain some experimental �ndings on dirty

superondutors, suh as the inrease in Tc with disorder. These results are presented in Se.5.3

and disussed in Se.5.3.1. We onlude in Se. 5.4

5.2 Model and Methods

5.2.1 Model of Dirty Superondutor

We study our model of a dirty superondutor within the mean �eld Bogoliubov-de Gennes approx-

imation, and so the Hamiltonian is given by

H =
∑

i,j

[ti,j
∑

σ=↑,↓

(c†i,σcj,σ +H.c) + ∆i,j(c
†
i,↑c

†
j,↓ +H.c.)]. (5.1)

The annihilation operator for site i with spin σ is given by ci,σ, and similarly for the reation

operators. We only onsider spin one-half fermions in this study, so σ =↑ or ↓. ti,j and ∆i,j are the

hopping and pairing between site i and j respetively.

Previous studies of dirty superondutors predominately foused on the pairing with onven-

tional s-wave symmetry with on-site pairing whih has a spetral gap at the band enter. With-
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out disorder, the spetral funtion is given by E(k) =
√

∆(k)2 + ǫ(k)2, and for a ubi lattie

ǫ(k) = −2t
∑

i=x,y,z cos(ki). For the ase of onventional s-wave pairing, we have ∆(k) = ∆0 a

onstant. Sine we do not expet for gap formation to be required for multifratal behavior of the

wavefuntion, we instead fous on a gapless superondutor. A simple hoie is one with extended

s-wave pairing with the same nodal struture as that of the bare dispersion ǫ(k) [163℄, in whih

∆(k) = ∆0
∑

i=x,y,z cos(ki).

Random disorder is introdued via two independent terms, one for the on-site loal potential

and the other for the on-site pairing. Following the onvention in Ref. [163℄, the total Hamiltonian

may be written as

H = H0 +Hdis, (5.2)

H0 =
∑

<i,j>

[
1√
2

∑

σ=↑,↓

(c†i,σcj,σ +H.c) +
1√
2
(c†i,↑c

†
j,↓ +H.c.)], (5.3)

Hdis =
∑

i

[ǫi
∑

σ=↑,↓

(c†i,σci,σ +H.c) + ∆i(c
†
i,↑c

†
i,↓ +H.c.)]. (5.4)

The disorder in onsite potential and onsite pairing is assumed to be uniformly distributed from

−W to W , and so P (ǫi) = P (∆i) = 1/2W ∀ − W < ǫi,∆i < W . The Hamiltonian possesses

time reversal symmetry, spin rotation symmetry and partile-hole symmetry whih ditates that

eigenstates always ome in pairs with energy E and −E. These symmetries put the Hamiltonian

into the CI lass [154℄.

5.2.2 Transfer Matrix Method

We �rst loate the ritial point of the model and its loalization length exponent using the transfer

matrix method. The three dimensional system has a width and height equal to M for eah slie of

a N -slie uboid, forming a �bar� of length N . The Hamiltonian an be deomposed into the form

H =
∑

i

Hi +
∑

i

(Hi,i+1 +H.c.), (5.5)
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where Hi desribes the Hamiltonian for slie i and Hi,i+1 is the oupling terms between the i and

i+ 1 slies. The Shrödinger equation an be written in the form

Hn,n+1cn+1 = (E −Hn)cn −Hn,n−1cn−1 (5.6)

where ci is the M
2
omponents wavefuntion of the slie i. We introdue the transfer matrix

Ti =







H−1
i,i+1(E −Hi) −H−1

i,i+1Hi−1,i

1 0






(5.7)

and Eq.5.6 an be interpreted as the iteration of







ci+1

ci






= Ti ×







ci

ci−1






. (5.8)

The goal of the transfer matrix method is to alulate the loalization length, λM (E), from the

produt of N transfer matriies

τN ≡
N
∏

i=1

Ti. (5.9)

The Lyapunov exponents of the matrix τN is given by the logarithm of its eigenvalues. The small-

est exponent orresponds to the slowest exponential deay of the wavefuntion and thus an be

identi�ed as orresponding to the loalization length, λM (E). The loalization length is omputed

by repeated multipliation of Ti, but sine the multipliation of matries is numerially unstable

periodi reorthogonalization is needed in the numerial implementation[150℄. We use a QR deom-

position for reorthogonalization implemented by LAPACK[151℄, and so at the s reorthogonalization

step the matrix (orresponding to some intermediate L'th multipliation in alulating Eq.5.9) the

matrix is deomposed

τL = QR (5.10)
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where R is an upper triangular matrix and the Lyapunov exponents γs are alulated as

γs = γs−1 + log bs (5.11)

where bs are the 2M2
diagonal elements of R for the s renormalization step. The multipliation of

transfer matries is then ontinued with the Q matrix. The slowest deaying exponent (γℓ) is used

to ompute the loalization length λM (E) = 1/γℓ for a given width M and energy E.

The loalization length is then used to alulate the the Kramer-Makinnon[149℄ saling param-

eter ΛM (E) = λM (E)/M whih is expeted to sale as

ΛM =
λM
M

= f

(

M

ξ

)

, (5.12)

where ξ ∝ |W − Wc|−ν
. The saling funtion f is Taylor expanded about the ritial point Wc

and the ritial parameters Wc and ν enter as �tting parameters and so an be determined by a

least-squares minimization.

5.2.3 Multifratal Analysis

We onsider the multifratal properties of the bogolon wave-funtion |ψi|2 = |ui|2 + |vi|2 for a three

dimensional simple ubi lattie of linear size L. The method is based on the study of Anderson

models in Wigner-Dyson lass. [168, 167, 169℄ This ubi wavefuntion is partitioned into boxes

of linear size ℓ. We introdue the quantity λ = ℓ/L and so we have Nb = λ−d
as the number of

boxes where d is the dimensionality of the system. In this paper, we shall only onsider d = 3. We

introdue the �oarse grained� box measure

µb(ℓ) =
∑

i∈b(ℓ)

|ψi|2 (5.13)

where b(ℓ) indexes the Nb boxes for a given box size ℓ. We introdue for onveniene[167℄ the

quantity

α ≡ log µ

log λ
(5.14)
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to work with instead of diretly with the box measures given in Eq.5.13. Multifratility implies that

the number of boxes that orrespond to a given α (we denote as N(α)) must sale as

N(α) ∼ λ−f(α)
(5.15)

where f(α) is some fratal dimension that depends on α. For the ase where |ψ|2 are distributed

uniformly in spae, one would expet there to be only a singular α and from the de�nition of λ

above f(α) = d. However, for �nite λ a narrow distribution peaked around f(α) = d would be

expeted and so the above Eq.5.15 is only de�ned in the limit λ→ 0. The fat that there exists an

α dependent spetrum f(α) haraterizes a system as being multifratal[157℄.

We will want to onsider the q-dependent moments of the distribution of α or α(q). We �rst

introdue the generalized inverse partiipation ratios for the oarse grained distributions P (µb(ℓ))

as

Rq =

Nb
∑

b(ℓ)

(

µb(ℓ)
)q

(5.16)

and assume (similarly to Eq.5.15) that the moments of the distribution of eah box measure sale

by the q dependent exponents τ(q) or

〈Rq〉 ∼ λτ(q) (5.17)

where 〈· · ·〉 denotes an ensemble average. It an be shown[157℄ that f(α) and τ(q) an be related

by a Legendre transform

f(α) = −τ(q) + qα , (5.18)

where

α(q) =
dτ(q)

dq
. (5.19)

Carrying out the di�erentiation in Eq.5.19 and using the de�nition of τ(q) in Eq.5.17 leads to the

expression

α(q) = lim
λ→0

〈Sq〉
log λ〈Rq〉

(5.20)
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where

Sq =

Nb
∑

k

µqk log µk. (5.21)

As de�ned above, the multifratal exponents are only stritly de�ned in the limit of in�nite

system size (λ→ 0 as mentioned above) and at the ritial point. However, they an be de�ned for

�xed λ whih we denote with a tilde as

α̃q =
〈Sq〉

log λ〈Rq〉
. (5.22)

The error in α̃q, σα̃, is then estimated from standard propagation of unertainty

(σα̃
α̃

)2
=

(

σ〈Sq〉

〈Sq〉

)2

+

(

σ〈Rq〉

〈Rq〉

)2

− 2

(

σ〈Rq〉〈Sq〉

〈Rq〉〈Sq〉

)2

where the ovariane term σ〈Sq〉〈Rq〉 is kept to aount for orrelations as Rq and Sq are omputed

from the same data set.

The quantity α̃q sales aording to standard one parameter saling for �xed λ in a relevant (ρ)

and an irrelevant (η) saling variable or [168, 167℄

α̃q(W,L) = G(ρL1/ν , ηL−|y|). (5.23)

We expand the saling funtion to �rst order in the irrelevant operator η

α̃q(W,L) = G(0)(ρL1/ν) + ηL−|y|G(1)(ρL1/ν), (5.24)

where the sub-leading term is haraterized by η, y, and G(1)
. The funtion G(s)

(where s = 0, 1

from above) is expanded as a Taylor series

G(s)(L1/ν) =

ns
∑

k=0

askρ
kLk/ν . (5.25)
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The saling �elds ρ and η are likewise expanded in terms of w = (W −Wc)/Wc as

ρ(w) = w +

mρ
∑

m=2

bmw
m

(5.26)

and

η(w) = 1 +

mη
∑

m=1

cmw
m. (5.27)

The ritial parameters (Wc, ν) and the irrelevant saling exponent y are determined by �tting the

data for α̃q(W,L) to Eq.5.24. In addition, we have n0+n1+mρ+mη Taylor expansion parameters.

The orrelation length is ξ = |ρ(ω)|−ν
and so the saled α̃q(W,L) data (whih we denote as α̃corr

q )

ollapses onto two branhes

α̃corr
q = G(0)

q (±(L/ξ)1/ν) (5.28)

5.3 Results

We employ the transfer matrix method to �nd the ritial disorder strength by performing a �nite

size saling analysis as shown in Fig.5.1. We will ompare this result with that predited by

multifratal analysis of the bogolon wavefuntion. The �tting is performed using the SiPy pakage

whih ats as a wrapper to MINPACK to perform the least squares minimization [178, 179℄. The

�tting range used in Fig.5.1 is determined by performing multiple �ts and hoosing the one that

approximately provides the minimum for the sum of squares. This range is then used for 100

bootstrapped resamples of the data to estimate the error bars. Note however that there an still be

error in hoosing the �tting range so the error bars are most likely under-estimated. The alulation

was performed for E = 0 as were are interested in only the lowest energy exitations whih will also

be the fous in the following multifratal analysis.

For the multifratal analysis of the bogolon wavefuntions, we use the JADAMALU pakage

whih implements a Jaobi-Davidson method with preonditioning[176, 177℄ to diagonalize the

Hamiltonian. In ontrast to that of the onventional Anderson model, the disorder terms for the

present model appear in the o�-diagonal elements. This poses as a hallenge for attaining onver-

gene by the iterative algorithm, both in term of the memory storage and �oating point operation.
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Figure 5.1: Kramer-Makinnon saling parameter as a funtion of disorder strength alulated with

the transfer matrix method for a bar of length N = 20000, E = 0 and a QR reorthogonalization

is performed after every 5 multipliations. Note the rossing indiating a ritial disorder strength

around W = 3.2. When the �nite size saling is performed as desribed in 5.2.2 the data ollapses

as is shown in the inset. A bootstrap re-sampling is performed to generate 100 data sets to estimate

the �tting parameters yielding Wc = 3.212 ± 0.008 and a ritial exponent of ν = 1.01 ± 0.05.

Therefore the aessible system sizes are limited in omparison to that of the models with diagonal

disorder terms. [168, 167℄ We keep only one state from eah realization with the losest eigenvalue

(and assoiated eigenvetor) to zero. This is to prevent orrelations in wavefuntions that ome

from the same realization of disorder. The wave funtion an then be oarse grained (as desribed

in Se.5.2.3) and the distribution of α is plotted in in Fig.5.2.

We an then alulate α̃q for q = 0 (given by Eq.5.22 whih we denote as α̃0) and is plotted in

Fig.5.3 as a funtion of system size and disorder strength whih is expeted to show the harateristi

�nite size behavior and exhibit a rossing at the ritial disorder strength[167℄[168℄. We also arry

out multifratal �nite size saling for �xed λ and we assume our data yi (with unertainty σi) is
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unorrelated (as we only onsider �xed λ so eah point is from it's own realization) and thus the χ2

statisti for our model �ts fi is

χ2 =
∑

i

(yi − fi)
2

σ2i
(5.29)

The order of expansion in n0, n1, mη and mρ is determined by hoosing the �t that keeps the χ2

statisti small, keeps the order of expansion small and provides a �good� ollapse of the data into

two branhes. Error bars in �tting parameters are determined by generating new values of 〈Sq〉 and

〈Rq〉 for eah orresponding L and W by pulling from a Gaussian distribution with mean 〈Sq〉 and

variane σ〈Sq〉/
√
N − 1 where N is the number of samples of Sq and this is likewise done for 〈Rq〉.

This allows for a new alulation of αq. The result from this proedure yields Wc = 3.208 ± 0.007

and ν = 0.97± 0.06 in agreement with the above transfer matrix study.
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Figure 5.2: Distribution of the quantity α (de�ned in Eq.5.14) for a �nite value of λ = 1/8 for

various system sizes and two disorder strengths. The behavior of the distributions as a funtion of

L motivates the appliation of the multifratal analysis in the Ref. [167℄ as when the transition is

approahed (∼ 3.2) the distributions beome more sale invariant (not depending on system size).

89



3.15 3.2 3.25 3.3 3.35
W

3.2

3.4

3.6

3.8

4

4.2
α 0

L=64
L=48
L=40
L=24

-2 -1 0 1 2

log(ξ/L)

3.2

3.4

3.6

3.8

4

4.2

α 0co
rr

~

~

Figure 5.3: The multifratal exponent α0 as a funtion of disorder strength W that exhibits saling

behavior around the ritial disorder strength W = 3.2. The inset shows the data ollapse into after
performing the �nite size saling and plotting the saling funtion for both branhes of α̃0 in Eq.

5.28. The ritial parameters used are Wc = 3.21, ν = 1.09, y = 15.94. The orders of expansion

used for G(0), G(1), ρ, and η are n0 = 2, n1 = 2,mρ = 1 and mη = 0 respetively. The resulting

χ2 = 22. The �t was hosen by keeping the order of expansion low and taking the smallest χ2
for

whih the data ollapse lose to the �tting funtion α̃0.

5.3.1 Disussion

It has been established by the work of Ref.[163℄ that the exponent ν is muh di�erent than the

Anderson model. We on�rm this with our multifratal analysis, establishing that this falls outside

the Wigner-Dyson (WD) symmetry lass.

The motivation for studying models of disordered superondutors is the rih variety of unusual
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properties they an exibit suh as an enhaned single partile energy gap that persists even after

superondutivity is destroyed [189℄. Spei� to this paper, the motivation for studying the mul-

tifratal harater of the eigenstates is the proposal that multifratility an lead to enhanements

of the ritial temperature at whih superondutivity is destroyed (Tc)[172, 171℄ whih is observed

in thin superonduting �lms that are weakly disordered, namely Al[193℄[192℄ wih is still not well

understood. An explanation for the enhanement of Tc due to multifratility is that multifratility

implies a broad distribution of exponents for the spatial orrelations at the transition (given by

f(α)). This an be understood by the fat that there are regions of the system that have exponents

that will deay o� more slowly than if there were only a single one, implying stronger orrelations

among bogolon wavefuntion |ψi|2. It is known that the regions of large |ψi|2 for the lowest exita-

tions will orrespond to regions of large loal pairing amplitude ∆i[174℄ [175℄, and so ∆i will also

realize multifratal orrelations. The result of the longer range orrelations would lead to stronger

pairing orrelations, resulting in an inrease in Tc. Given the present alulations are done with

a �xed distribution of ∆i, we annot address quantitatively the relation between the Tc and the

disorder.

Furthermore, it is known that the presene of bogolon exitations is what dissipates momentum

and disrupts the �ow of super urrent, destroying superondutivity[191℄. Therefore, a state in

whih the exitations are loalized would help to �protet� superondutivity at �nite temperatures

and inrease Tc. As the loalization e�et would be very strong in a quasi-2D system, when a

superonduting �lm is made more thin the bogolons must beome loalized. The reason it is not

observed for all thin �lms (it is more typial for Tc to derease) is that if the disorder is strong this

e�et will not be observed beause strong disorder is already destroying the superondutivity as it

destroys the long range phase oherene[194℄.

Finally, we note that the multifratal analysis used here ould be applied to models of onven-

tional s-wave superondutivity with disorder whih has been well studied [183, 182, 184, 173, 185,

186, 187, 188℄. This is important beause the transfer matrix method annot be used to loate

the loalization transition if the pairing must be solved self-onsistently as this reates a orrela-

tion between layers [190℄. However, as all that is needed is the wavefuntion for this method, the
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multifratal �nite size saling analysis ould be applied.

5.4 Conlusion

We onlude that the multifratal analysis that works for the Anderson model an also be used

for models of disordered superondutors to �nd the loalization transition of the quasi partile

exitations. In addition, it also on�rms that the thermal metal to thermal insulator is indeed in a

separate universality lass from the Anderson model. [163℄

Future work would inlude addressing the question of the relation between multifratility of

ritial wavefuntions and the impat on Tc more diretly by �nding the transition temperature for

a model of a onventional s-wave superondutor by solving the pairing �eld ∆i self onsistently

for a given attration interation strength U . [175℄ The multifratal spetrum f(α) ould then be

ompared as a funtion of interation strength and Tc to quantitatively address the role played by

multifratal eigenstates and oupling strength on the ritial temperature. Also, the question of

whether this method an detet the superondutor to insulator transition [183℄ would be of interest

as this model ould not be studied with transfer matrix due to the self onsisteny requirement on

the pairing.
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