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Abstract

We outline three principles that should guide us in the construction of a theory of canonical

quantum gravity: 1) di�eomorphism invariance, 2) implementing the proper dynamics and related

constraint algebra, 3) local Lorentz invariance. We illustrate each of them with its role in model

calculations in loop quantum gravity.
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I. INTRODUCTION

Since at present we do not have unexplained experimental evidence that requires a quan-

tum theory of gravity for its understanding, we �nd ourselves in a rather unconventional

situation. In physics, theory is usually guided by experiment. The situation is perhaps akin

to the one faced by Einstein when developing the general theory of relativity. Although

there were some experiments to be explained, he had to be mostly guided by physical prin-

ciples and intuition. Here we would like to highlight three physical principles that we believe

should provide guidance in canonical quantum gravity, and the implications of their use in

some model situations.

The �rst principle is di�eomorphism invariance. No one believes a fundamental the-

ory of gravity should depend on background structures therefore space-time di�eomorphism

invariance needs to be implemented. The history of how we ended up with background inde-

pendence as a principle throughout the history of physics all the way back to the relational

ideas of Mach is well recounted by Smolin in [1]. Modern gravity theories are, however, com-

plicated. For instance in general relativity one has several layers of structure to consider.

The most elementary is the dimensionality of the space-time. Then its topology. Further-

more there is the di�erential structure, the signature and �nally the metric and �elds. We

will restrict our discussion to approaches that consider the dimension, di�erential structure

and signature as given (although the introduction of certain measures in Hilbert spaces may

imply a change in di�erential structure, one expects that in semiclassical regimes the di�er-

ential structure is unchanged). Only di�eomorphism invariant questions about the metric

and the �elds can be considered physically relevant. Topology change can be accommodated

in various approaches to quantum gravity, including the canonical one [2].

Any physical description involves many entities whose properties the theory has the

task to describe. The standard description involves some absolute framework with respect

to which properties are de�ned. In Newtonian physics, for instance, the background is a

three dimensional Euclidean space and a one dimensional universal time. General relativity

essentially is a background independent theory where the fundamental properties of the

elementary entities consist entirely of relationships between those elementary entities. In

1912 Einstein had found the basic form of the gravitational �eld but it took him three years

longer to write the equations of motion. His covariance principle required that the laws of
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nature were the same in all reference frames. But in a generally covariant theory statements

of the kind of �what is the value of the gravitational �eld at coordinates xa� make no sense.

Indeed, a coordinate transformation can assign a region with large curvature to a coordinate

point that prior had low curvature. In 1915 Einstein solved the problem. The idea is that

it is only possible to describe relations. For example it is invariant to state that in a region

in which certain light rays are present space-time has certain geometric properties (e.g.

curvature). Einstein himself put is this way: �the results of our measuring are nothing but

veri�cations of... meetings of the material points of our measuring instrument with other

material points, coincidences between the hands of a clock and points on the clock dial and

observed point events happening at the same point at the same time.� In our view this

relational vision of background independence is the main guiding principle that must be

followed when constructing a theory of quantum gravity. In such a theory only observable

quantities (that are invariant under general coordinate transformations) can be associated

with physical quantum operators. In the last few years there has been important progress

in the description of the evolution and geometry in terms of such quantities [3].

In the canonical approach, di�eomorphism invariance is re�ected in the algebra of con-

straints. But this is not enough. In particular one has to pay careful attention to modi�ca-

tions that the theory may su�er through the use of non-traditional measures that arises in

loop quantum gravity [4]. We will see that this may restrict the types of di�eomorphisms

that are recovered in the low energy limit of the theory. The non-traditional measures arise

directly as a consequence of di�eomorphism invariance and are fairly unique [5].

Related to the aforementioned principle is the second one: one should properly implement

the dynamics of the theory. Since general relativity is a generally covariant theory, the

Hamiltonian vanishes and one is just left with a set of constraints from which the dynamics

needs to be disentangled. The constraints satisfy an algebra that needs to be implemented

at a quantum level. Enforcing the constraint algebra assures that the canonical framework,

which splits space-time into space and time, represents a space-time di�eomorphism invariant

theory [6]. This poses tight constraints on the quantization process that otherwise contains

a large degree of ambiguity. In particular if one uses lattices to regularize the theory,

reproducing the algebra of constraints can become quite a challenge.

The last principle is local Lorentz invariance. What is meant by this in the context of

canonical quantum gravity is that if one studies the low energy limit, the resulting graviton
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(and other particles if one couples the theory to matter) should have propagators that deviate

from Lorentz invariance at most only slightly. We will illustrate with a calculation what is

meant by �slightly� in this context. In particular, deviations from Lorentz invariance that

become large at the Planck scale are unacceptable as was argued by Collins et. al. [7].

We will provide examples of the three principles in action in the following sections.

II. DIFFEOMORPHISM INVARIANCE

The �rst guiding principle is di�eomorphism invariance, or to put it in other terms, back-

ground independence. Most physicists believe a modern theory of gravity should not depend

on background structures, since then one would have to motivate where the structures came

from, and the whole point of general relativity was to eliminate any preferred observers in

nature.

In canonical gravity one uses a 3 + 1 dimensional split to formulate the equations of the

theory. That split, obviously, violates space-time di�eomorphism invariance. The resulting

framework is still invariant under spatial di�eomorphisms, such symmetry being re�ected

in the presence of the di�eomorphism constraint. Spatial di�eomorphism invariance plays

a key role in loop quantum gravity. It essentially determines the kinematical structure of

the theory through the selection of an inner product that is unconventional from the point

of view of ordinary �eld theories [5]. In turn, this structure implies that physical operators,

like those representing areas and volumes, have discrete spectra [8].

The breakage of space-time di�eomorphisms only means that the equations are not in-

variant, the resulting theory still is. In fact, the algebra of constraints is known to enforce

that the resulting formalism is space-time di�eomorphism invariant [6]. So, in principle, if

upon quantization one ended up with a set of operators representing constraints that under

commutators close an algebra isomorphic to the classical one under Poisson brackets, one

could be con�dent that the resulting quantum theory is space-time di�eomorphism invariant.

But as we mentioned, one faces di�culties in implementing the constraint algebra at

a quantum level. Up to present, no models have met such requirement (loop quantum

cosmology, where there are no spatial degrees of freedom, implements them trivially so

it is really not a strong guiding principle for those models). Moreover, it is customary

to propose to deal with the di�eomorphism and Hamiltonian constraints separately. The
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di�eomorphism constraint is solved via the group averaging technique [9], a procedure that

cannot be implemented for the Hamiltonian constraint. Treating the constraints di�erently

raises the possibility that space-time di�eomorphism invariance will be violated.

One way to deal with the problem is to gauge �x the theory, eliminating some or all

the constraints. Classically, a gauge �xed theory is by de�nition di�eomorphism invariant.

Although it is not manifestly di�eomorphism invariant, since one is dealing with the theory

in a form that has no gauge symmetries, the results are di�eomorphism invariant in the sense

that they can later be translated into any gauge in terms of gauge dependent variables.

But upon quantization, even in gauge �xed scenarios, there are subtleties. For instance,

it can happen that the resulting variables that appear in the models have di�erent ranges

of values than those in the classical theory. That can imply that the set of di�eomorphisms

considered is a restricted one.

An example of this is present in the treatment of the exterior of a vacuum black hole

space-time we discussed in [10]. In that case, one can gauge �x the variables to spherical

symmetry. One is left with two canonical pairs, one �longitudinal� along the radial direction

Ex, Ax and a �transverse� one Eϕ, Aϕ, with the variables depending on the radial coordinate

x and time t. One can further gauge �x the radial variable so that the di�eomorphism

constraint is gone. The resulting Hamiltonian constraint is

H = − Eϕ

(x+ a)γ2

(
A2
ϕ(x+ a)

8

)′
− Eϕ

2(x+ a)
(1)

+
3(x+ a)

2Eϕ
+ (x+ a)2

(
1

Eϕ

)′
= 0,

where a is a constant and γ is the Barbero�Immirzi parameter. Multiplying by 2(x+a)
Eϕ and

grouping terms as,

H =

(
(x+ a)3

(Eϕ)2

)′
− 1− 1

4γ2
(
(x+ a)A2

ϕ

)′
= 0, (2)

yields an Abelian constraint. Since the constraint is a total derivative, it can immediately

be integrated to yield,∫
Hdx = C =

(
(x+ a)3

(Eϕ)2

)
− x− 1

4γ2
(
(x+ a)A2

ϕ

)
, (3)

with C a constant of integration. At x = 0 one can impose isolated horizon boundary

conditions, which imply 1/Eϕ = 0 and Aϕ = 0, and this implies that the constant of

5



integration C vanishes. Imposing that the metric at in�nity asymptotically approach the

Schwarzschild solution, which in these coordinates means that, Eϕ = x + 3M , Aϕ = 0, one

concludes that a = 2M .

In order to quantize this model, one can discretize the radial variable, and one is essentially

left with a system that is �a loop quantum cosmology at every point� and one can borrow

the techniques used for cosmology to quantize. The discretized Hamiltonian reads,

Hρ
m =

1

ε

[(
(xm + 2M)3ε2

(Eϕ
m)2

− (xm−1 + 2M)3ε2

(Eϕ
m−1)

2

)
− ε

− 1

4γ2ρ2
(
(xm + 2M) sin2 (ρAϕ,m)

−(xm−1 + 2M) sin2 (ρAϕ,m−1)
)]
, (4)

expression that recovers (2) in the limit ε → 0, ρ → 0. In the above expression xm are the

positions of the lattice points and ε is the separation of two points in a �ducial metric. As in

loop quantum cosmology, we have polymerized the variable Aϕ and ρ is the polymerization

parameter. One can show that the discrete constraint constructed is still Abelian and

proceed to quantize. The details are in [10].

One can actually solve the constraint and �nd the physical space of states and recover the

quantization that Kucha° [11] had carried out for the same system using metric variables.

There is only one degree of freedom, given by M and the wavefunctions are functions of M .

To study di�eomorphism invariance, one can reconstruct the non-trivial components of

the metric as evolving constants of the motion that are functions of M and a free parameter

Aϕ. Their explicit form is given by,

g00 = −1 +
2M

x+ 2M
(5)

g0x =
Aϕ

2γ
√

1− 2M
x+2M

+
A2

ϕ

4γ2

(6)

gxx =
1

1− 2M
x+2M

+
A2

ϕ

4γ2

.. (7)

These are Dirac observables that are functions of a parameter, as is usual for evolving

constants of the motion.

The variable Aϕ is free and represents the space-time di�eomorphism freedom left. For

instance, for Aϕ = 0 one has the usual Schwarzschild coordinates and the metric is diagonal.

For non-vanishing values one is considering a non-comoving system of coordinates. The
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same expressions can be recovered as quantum operators. In that case one has

g00 = −1 +
2M

x+ 2M
(8)

g0x =
sin(ρAϕ)

2ργ
√

1− 2M
x+2M

+ sin(ρAϕ)
2

4ρ2γ2

(9)

gxx =
1

1− 2M
x+2M

+ sin(ρAϕ)
2

4ρ2γ2

. (10)

and we see that due to the polymer nature of the representation used, one has the sine

functions appearing in places where Aϕ appeared before. Again Aϕ is a free parameter, but

we now see that we are not recovering all the possible coordinate systems we had in the

classical case due to the �nite range of the sine function. The quantum theory therefore has

a restricted set of symmetries with respect to the classical theory.

The example is too simple to draw too many conclusions from the observed behavior.One

could for instance argue that in quantum gravity it would not be natural to consider dif-

feomorphisms that blow up regions of sub-Planck scale to ordinary scales. Unfortunately

this model is just too simple to conclude anything on that point. But it serves as a warning

that there can be additional subtle issues when one enforces di�eomorphism invariance at

the quantum level.

III. THE DYNAMICS AND THE CONSTRAINT ALGEBRA

General relativity is a generally covariant theory. As such, the Hamiltonian vanishes and

the total Hamiltonian is a combination of constraints. If one uses Ashtekar's variables, given

by a set of densitized triads Ẽa
i and connections Aia, one has that the constraints are [12],

G(λ) =

∫
d3xλiDaẼ

a
i = 0, (11)

C( ~N) =

∫
d3xN b

[
Ẽa
i F

i
ab − AiaDbẼ

a
i

]
= 0, (12)

H(M) =

∫
d3xM

[
εijkẼ

a
i Ẽ

b
jF

k
ab + 2

(γ2 + 1)

γ2

(
Ẽa
i Ẽ

b
j − Ẽa

j Ẽ
b
i

) (
Aia − Γia

) (
Ajb − Γjb

)]
= 0.(13)

They are known, respectively as the Gauss law G(λ), di�eomorphism constraint C( ~N) and

the Hamiltonian constraint H(M). We have presented them smeared with arbitrary test

functions λi, Na,M since it makes cleaner the computations of the constraint algebra. As
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before, the parameter γ is the Barbero�Immirzi parameter. Di�erent values of the parameter

represent the same classical theory, expressed in di�erent variables. These constraints satisfy

the algebra,

{G(λ), G(µ)} = G([λ, µ]) (14){
C( ~N), C( ~M)

}
= C(L ~N

~M), (15){
C( ~N), G(λ)

}
= G(L ~Nλ), (16){

C( ~N), H(M)
}

= H(L ~NM), (17)

{H(N), H(M)} = C( ~K) (18)

where Ka = Ẽa
i Ẽ

bi (N∂bM −M∂bN) /(det(q)).

Notice that the vector Ka is not just a combination of derivatives of test functions but

actually involves the canonical variables. That means that although the Poisson bracket of

two Hamiltonian constraints is proportional to a di�eomorphism, the proportionality factor

depends on the canonical variables. This is unlike any of the other Poisson brackets. Since

upon quantization the canonical variables get promoted to operators, to ensure the propor-

tionality of the Poisson brackets to a combination of constraints will become problematic.

In fact, it is known that if one promotes the constraints to self-adjoint operators, there does

not exist a factor ordering that is compatible with the constraint algebra. This means that

de facto the Dirac quantization procedure as originally envisioned cannot treat this type

of system [13]. Extensions are needed. Two of such extensions are the master constraint

program of Thiemann and collaborators [12] and the closely related uniform discretization

approach [14] that we have been developing, based on discretizing the time evolution.

The idea of the master constraint is as follows: consider the unsmeared version of the

Hamiltonian constraint we introduced above (eliminate the spatial integral and the test

function M, and end up with a function of point H̃(x)). One then constructs the master

constraint,

M =
1

2

∫
d3x

H̃2(x)√
det(q)

. (19)

Notice that this is only one constraint whereas H̃(x) were in�nitely many. It is clear that

if M vanishes so do the in�nitely many H̃(x)'s. One may ask if it is legitimate to claim

that the two pictures are equivalent, at least at the classical level. For instance, consider

the Poisson bracket of the master constraint with any quantity. Since the master constraint
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is quadratic in the constraint, when you compute its Poisson bracket with any quantity, the

result is proportional to the constraint, therefore it vanishes when constraints are enforced.

So it seems that the notion of observable is lost. But if you consider

{{M,O} , O} = 0 (20)

this condition is equivalent to O being a Dirac observable. So the master constraint can

capture the information about observables.

The master constraint is di�eomorphism invariant (and su(2) invariant as well). And

being a single constraint it commutes with itself. So if one considers the master constraint

together with the di�eomorphism constraint, they have a very simple constraint algebra,{
C( ~N),M

}
= 0, (21)

{M,M} = 0 (22)

and the usual algebra between di�eomorphisms. This is a huge advantage at the time of

quantization. The task is to promote the master constraint to a quantum operator and

to �nd the quantum states that are annihilated by it. The advantage is that since the

master constraint is a di�eomorphism invariant quantity, there is no doubt that it can be

promoted to an operator on the space of di�eomorphism invariant states. And the issue of

the structure functions in the algebra of constraints is bypassed. The resulting quantization

will not necessarily be equivalent to a canonical quantization in all cases. So this can be

seen as a generalization of Dirac's canonical quantization procedure.

The only caveat is, what happens if one discovers that as a quantum operator the master

constraint does not have zero among its eigenvalues? In that case the proposal is to consider

the smallest eigenvalue. One would not be dealing with a theory where the constraints are

enforced exactly but with a theory where the constraints are small 1. Therefore the theory

will not have the same exact symmetries as the classical theory one started with but will

have symmetries that approximate those of the classical theory. On the other hand, getting

zero as an eigenvalue for the master constraint will be a guideline to deal with the types of

ambiguities that one faces when discussing the Hamiltonian constraint.

1 Dittrich and Thiemann propose subtracting the minimum eigenvalue. Even in that case, in the models

studied, the quantization does not completely agree with the re�ned algebraic quantization method [15]
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But one need not limit oneself to using a master constraint constructed only with the

Hamiltonian constraint. One could in principle build a master constraint by considering

the �sum of squares� of all constraints. That would help treating all of the constraints

on the same footing. It might surprise the reader that one would attempt to treat the

di�eomorphism constraint in this way, but it actually can be done. We have shown in it

a simple model, the 1 + 1 dimensional version of the Kucha°�Husain [16] model. There

the only constraint is the di�eomorphism constraint. We applied the uniform discretization

approach.

The uniform discretization approach [14] is based on discretizing the theory and construct-

ing the master constraint and using the considerable freedom one has when discretizing a

theory to cast the evolution equations into a form in which evolution is generated by the

master constraint,

An+1 = An + {An,M}+ {{An,M} ,M}+ · · · (23)

where A is any of the canonical variables of the theory. We have shown that this evolution

corresponds to the one generated by Hamilton's principal function of the continuum theory

while taking a discrete time step. This idea has been further developed by Bahr and Dittrich

into the notion of �perfect action� [17].

The beauty of this particular form of the evolution equations is that the value of the

master constraint M is preserved exactly. So if one starts with a small value (meaning that

one is close to the continuum theory where the master constraint vanishes), one remains

close to the continuum theory upon evolution. Suppose we choose that small value to be

δ/2 and let us say we are dealing with a theory with N constraints φi(q, p) = 0. If you de�ne

λi = φi/δ (which means
∑N

i=1 λ
2
i = 1) then the evolution of one of the dynamical variables,

say, q can be expanded in δ and one gets,

qn+1 = qn +
N∑
i=1

{qn, φi}λiδ +O(δ2) (24)

and we recognize in the second term the usual evolution one would get with a total Hamilto-

nian HT =
∑N

i=1 λiφi. So we are getting to leading order the traditional evolution equation

for a totally constrained system like the ones we discussed in Chapter 4, only discretized.

The �step� in the evolution is controlled by the value of δ and we choose that value by

picking initial data such that the master constraint evaluated on them is δ/2. So we see we

have complete control over the approximation.
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We tested these ideas in a version of the 1+1 dimensional Kucha°�Husain model [18]. The

model consists of considering spherically symmetric gravity and ignoring the Hamiltonian

constraint. One only has the di�eomorphism constraint. There are two pairs of canonical

variables, one �radial� Ex, Kx (x is the radial coordinate)2 and �transverse� Eϕ, Kϕ. The

di�eomorphism constraint reads φ = − (Ex)′Kx +EϕK ′ϕ. One builds the master constraint

out of it, like one would do for a set of constraints φa,

H =
1

2

∫
dxφaφb

gab
√
g
, (25)

which motivates in our example to choose,

H =
1

2

∫
dxφφ

√
Ex

(Eϕ)3
. (26)

The quantum states of the theory are given by the direct product of the �point holonomies�

for the variables Kϕ and Kx, and denoted graphically as,

〈Kx, Kϕ

∣∣∣∣
µι

ki-1 ki ki+1

i i+1

µι+1
〉

= exp

(
i
∑
j

kjKx,jε

)
exp

(
i
∑
j

µj,vKϕ,j

)
(27)

where k and µ are polymerization parameters (the parameters that appear in point

holonomies), ε as before the lattice spacing and the sums go through all the points on

the lattice. For simplicity we consider a �nite lattice ignoring at the moment boundary

issues.

A detailed calculation [18] shows that if one considers a normalized state obtained by

superposing all possible states with a given insertion (such a state would be the analogue in

the discrete theory of a �group averaged� state)

|ψ1〉 =
1√
N

N∑
i=0

∣∣∣∣
µ1

k k1 k1

i i+1

〉
. (28)

one can show that

Ĥ |ψ1〉 = 0. (29)

One can show that similar results hold for larger number of insertions. The master constraint

does not vanish but the contributions go as O(1/N) and therefore if one takes the continuum

2 We changed notation from section 2, using Kx instead of Ax and Kϕ instead of Aϕ in order to be

compatible with the published literature.
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limit they vanish. It is quite remarkable that from such a di�erent picture group averaging

arises. Again this is because in order to implement the (in this case very limited) dynamics

one has to choose the discretization carefully and that limits signi�cantly what one can do.

And it also shows that the master constraint need not be zero if one is not considering the

continuum limit. In that case one does not have di�eomorphism invariance, but the closest

thing to it on a lattice.

IV. LOCAL LORENTZ INVARIANCE

Local Lorentz invariance (LLI) has been established with enormous accuracy through

particle physics experiments. This makes any deviation from it very problematic for a the-

ory. It creates severe constraints for theories that may include elements that break LLI, for

instance, invoking a fundamental lattice structure for space-time. Loop quantum gravity

does not automatically violate Lorentz invariance. Some have argued that the presence of

a discrete minimum non-vanishing value for the area operator may cause problems but this

has been debunked [19]. Essentially the situation is similar to that of angular momentum

in quantum mechanics. The fact that its eigenvalues can only take discrete values does not

mean that rotational invariance is broken. However, some proposals (in loop quantum grav-

ity and other approaches) include the use of a lattice regularization in which the limit of the

lattice spacing going to zero, like one considers in lattice QCD, is not taken. A �nite Planck-

scale lattice remains. That could lead to breakage of Lorentz invariance. When one takes

the low energy limit one will end up with propagators that are not Lorentz invariant. There

have been a lot of explorations of possible forms of violation of LLI from a phenomenological

point of view (see for instance [20]), up to now with no positive experimental evidence.

Collins et al. [7] have studied a model in which one considers a propagator

G(k,m) =
1

m2 + k2 + f(k/kPlanck) + k20
(30)

where kPlanck is the Planck momentum and we are consider Euclidean 1 + 1 dimensions

for simplicity. f(x) is a function such that f(0) = 0 that represents deviations from LLI.

One may think, since one has k/kPlanck in it that this will not contribute signi�cantly at

low energies and therefore will avoid the experimental constraints. But this is incorrect. In

perturbative quantum �eld theory the propagator appears in loops, and there it is integrated
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in momentum from zero to a cuto�, that in this case we can take to be the Planck scale. In

those integrals the propagator deviates importantly from LLI and this leads to unacceptable

deviations in experimental predictions.

Does such a propagator emerge in the low energy limit of loop quantum gravity? Cur-

rently we do not know. We have argued that perhaps not [21]. For instance, if one considers

quantum �eld theory on a lattice the LLI violating type of propagator that arises is given

by

G(k,m) =
1

m2 + a−2
∑3

j=1 (2− 2 cos2 (akj)) + (b a)−2 (2− 2 cos2 (b ak0))
, (31)

with a, ab the lattice spacings in space and time respectively. The presence of the trigono-

metric functions breaks LLI but implies that in the integrals that appear in loop calculations

the deviations are small (provided b is close to one). Should a propagator like that emerge

in the low energy limit, one could have violations of LLI that are acceptable experimentally.

This example has been criticized [22] in that by working in Euclidean space one introduces

an additional symmetry that is not there in the Lorentzian case, in which the contributions

would still be large. Other examples can be presented, for instance based on supersymmetry

[23] or a modi�ed Pauli�Villars regularization [21] that also lead to propagators that do

not introduce large contributions. The jury is still out about what is the situation in loop

quantum gravity. But this (the contact with perturbative quantum �eld theory) is a point

that loop quantum gravity at some point will have to address.

V. SUMMARY

We have argued that local Lorentz invariance, enforcement of the constraint algebra and

di�eomorphism invariance are three basic principles that one should have in a canonical

quantization of gravity and illustrated in all cases the implications of enforcing them. Loop

quantum gravity is barely starting to deal with models where these issues can be probed in

full. We expect in the next few years that we will see these principles playing a stronger

guiding role in the constructions of quantum gravity models of increasing complexity.
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