








Figure 4.6: Example of one iteration of the BRT training process.

From the user’s point of view, the BRT is capable of capturing complex, multi-variate

functions without the knowledge of the underlying distributions. Such knowledge is not

required by BRT. Also, BRT is unaffected by outliers.

The BRT is able to determine the relative importance of variables. The importance is

measured based on the number of times a variable is selected for splitting, weighed by the

squared improvement to the model as a result of each split, and then average over all trees.

A higher number indicates greater importance.

In this chapter, we use the BRT to predict the propagation of errors after a certain

number of time steps. The process is described in Section 4.3.3.
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Algorithm 3: BRT algorithm used in this chapter

1 Initialize f̂0(xi) = ȳ, where ȳ is the average for {yi} ;
2 for m = 1, 2, ...,M do

3 Compute the current residuals rim = yi − f̂m−1(xi), i = 1, ..., n;
4 Partition the input space into H disjoint regions {Rhm}Hh=1 based on {rim, xi}ni=1;

5 For each region, compute the constant fit γhm = argminγ
∑

(rim − γ)2;

6 Update the fitted model f̂m(x) = f̂m−1(x) + v × γhmI(x ∈ Rhm);

7 end

4.4 The Big Data Kernels

In this section we describe the big data kernels and do a simple analysis of the error

propagation characteristics based on our understanding of the underlying algorithms. The

patterns are captured by the statistical model described in Section 4.3.5.

For the benchmarks, The PageRank and Breadth-First-Search (BFS) algorithms are

Big Data algorithms by themselves; the classic K-Means algorithm may serve as an unsu-

pervised clustering algorithm on its own and can also serve as a preprocessing step in more

complex learning tasks; the Stable Fluid Solver is based on linear solvers that are also used

in a variety of programs.

4.4.1 PageRank

• Error Propagation through the Pagerank Loop

The PageRank algorithm computes the importance for each webpage in a network,

which is expressed as a graph. The PageRank loop can be expressed as a linear system

I = GI. The G matrix is the “Google Matrix” which is derived from the graph topology.

The I vector is the importance ranking vector which the algorithm tries to find out.

The algorithm used is a modified Power Method [3], which computes I ← GI in every

iteration.

The algorithm has the following desirable properties:

• As the algorithm makes progress the I will always converge.

• I converges to a value independent of the initial value of I.
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• Information of the graph will not get lost (i.e. I will not be a zero vector.)

The convergence property can be explained with eigenvalues. Assume a vector I0 can

be expressed as the sum of the eigenvectors of G, that is,

I0 = c1v1 + c2v2 + ...+ cNvN

Applying the definition of eigenvectors (Gvn = λnvn), we have:

Ik = GkI0 = c1λ
k
1v1 + c2λ

k
2v2 + ...+ cNλ

k
NvN

Note that the eigenvalues λn are sorted by their magnitudes in descending order. One

characteristic of the Google Matrix is |λ1| = 1 and |λ2| = 0.85 and the magnitude of all other

eigenvalues are smaller than 0.85. This means Ik converges to c1v1. After normalization,

it becomes v1.

When an error is injected it would only affect the convergence speed of the algorithm

rather than the destination of convergence, unless I or the graph data is corrupted. The

modular structure of PageRank is shown in Figure 4.7.

Figure 4.7: Modular structure of Pagerank.

4.4.2 K-Means

The K-Means is an unsupervised and iterative clustering algorithm. In this chapter

we used the K-Means implementation from [29]. The algorithm finds the K clusters by

minimizing the sum of Indra-cluster distance S =
∑k

i=1

∑
x∈Si
||x− µi||2. The algorithm
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consists of a loop of recomputation and reassignment routines which update the cluster

centers (µi) and cluster memberships (Si), as is shown in Figure 4.8.

Figure 4.8: Modular structure of K-Means.

We quantify the correctness of two clustering results with the quantity Error Factor.

Given two clustering results S1 and S2, the Error Factor is defined as EF = 1 −
∑k−1

i=1∑k
j=i+1 [[c1(i) = c1(j)] = [c2(i) = c2(j)]] / k(k + 1), where c1(x) and c2(x) denote the cluster

x belongs to under clustering S1 and S2. The [·] is a boolean function which evaluates to

1 when the condition is satisfied and 0 otherwise. The nominator traverses through all

pairs. If the two pairs belong to the same cluster in both S1 and S2, it is incremented by 1.

The denominator is the total number of pairs. If S1 and S2 are identical clusters, EF will

be zero. Note that the clusters need only contain the same data points but not the same

cluster ID. For example, cluster IDs [1,1,2,2] and [2,2,1,1] assigned to four data points are

identical because the first two points belong to the same cluster and so do the last two

points.

With Error Factor, we can quantitatively compare the results from two runs. We also

have the foundations to analyze the correlation between the error in the cluster centers and

the Error Factor.

• Error Propagation through the Reassignment Step

In the reassignment step, data points are assigned to clusters whose centers are the

closest as measured by Euclidean distance. Assume one cluster center is perturbed by
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a small amount ~e towards the direction perpendicular to one of the boundaries of its

Voronoi cell, that boundary would move by an amount of 1
2
~e, because the boundary is the

perpendicular bisector of the line segment connecting to the centers of the adjacent cells.

Assuming the input dimensionality is N , the moving of the boundary sweeps through

an volume in the (N − 1) dimensional space of L|~e|, where L is the area/length of the

boundary.

Assume the data points are evenly distributed in the regions with a probability p, the

swept volume contains Lp|~e| data points. The cluster membership of these points will be

altered. This would cause the nominator in the Error Factor to decrease by Lp|~e|(n − 1),

which is a linear function of |~e|. Thus we expect EF to be the linear function of the square

root of the L2 norm when the error is small.

4.4.3 Stable Fluid Simulation

We implemented a 2D fluid simulation program based on the three algorithms (Jacobi,

Gauss-Seidel and Conjugate Gradient) described in [19]. The solvers update the elements

of a grid repeatedly by solving the Navier-Stokes (NS) equations ∂~u
∂t

= −(~u ·∇)u+v∇2u+f

and ∂d
∂t

= −(u · ∇)d+ k∇2ρ+S, where ~u represents the velocity field, and the d represents

the density field. Since we simulate fluid in 2 dimensions, u may be written as (u, v) where

u and v represent the velocity along the X and Y axis respectively. In this chapter, we

consider them two entities because each of them goes through the routines listed below.

The Fluid Simulation program operates on the discretized form of the NS equation. It

consists the following routines as illustrated in Figure 4.9:

• Diffuse, which solves the first term in the NS equation. It solves a sparse linear

system with elements scattering on a band spanning the main diagonal line. All

elements except the ones on the band are zeroes. This routine is applied on both the

density (d) and velocity (u and v) fields.

• Advect, which moves the density through a static velocity field and solves the second
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Figure 4.9: Modular structure of Stable Fluid Simulation.

term in the NS equation.

• Project, which subtracts the gradient field from the current velocities. It solves

another sparse linear system which is similar to the one in Diffuse.

For the Diffuse and Project routines, one of the Jacobi, Gauss-Seidel and Conjugate

Gradient solvers may be used.

The solutions produced by the Jacobi and Gauss-Seidel solvers are nearly identical.

The solution produced by the Conjugate Gradient is slightly different, with a L2-norm of

around 1e-07. This will affect the characteristics of the initial errors.

We start by discussing the Advect routine because it is a good example of how errors

can propagate between entities.

• Error Propagation through the Advect Routine

The Advect routine propagates the errors from the u and v arrays into the d array and

exhibits an easily understandable error propagation pattern. This is because of the this

routine computes for each cell the density mass which ends up at each of them at the end

of a time step.

For example, the center of the cell (10, 10) is (9.5, 9.5). Assume the velocity field at this

cell is (1, 1) and we use a time step of 1. The Advect routine traces the center backwards

to (9.5, 9.5)− (1, 1) · 1 = (8.5, 8.5), adds up the density at the cells surrounding this point

((8, 8), (8, 9), (9, 8), (9, 9)) weighted by their distance to (8.5, 8.5). If the velocity at this field
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contains an error ~e, the back-tracked point would have become (9.5, 9.5) − ((1, 1) + ~e) · 1.

It can be seen that if the magnitude of the error |~e| is small it will only affect the weights

of the cells surrounding the source cells. Since the weights are a linear function of |~e|, we

can expect the error in ~d to be a linear function of |~e| as well.

If |~e| is larger it will alter the source cells or even make them go out-of-boundary. In

this case the error would not be linear to |~e|. Depending on the way boundary conditions

are enforced, the erroneous subscripts may be clamped at the boundary of the field.

• Error Propagation through the Linear Solvers

We can view the linear solvers in the Diffuse and Project routines as solving the

equation Axi = xi−1, where x could be substituted with d, u or v and A is the sparse

linear system. When an error e is added to the input xi−1 we are essentially solving

A(xi + ei) = xi−1. This means the system has become the sum of two systems, whose

starting value at time step i− 1 are xi−1 and e.

The characteristics of the linear solver is not relevant to how ei would change unless

it is smaller than the precision bound of the solver. The characteristics of the solver does

affect the initial error e, if the bit flip occurs during its execution.

4.4.4 Breadth First Search (BFS)

Figure 4.10: Modular structure of BFS.

The BFS program is a reference implementation of the Graph500 benchmark [33].

It is divided into two phases. In the first phase the program generates a graph, and in
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the second phase a series of bread-first-search from randomly-chosen starting nodes (the

roots) are performed on the graph. The second phase is completed by building the BFS

tree, which is represented with a precedence list. In each iteration of the tree-building

process, the “frontier” of the current precedence list (p) is being pushed forward using the

topological structure of the graph (G). The modular structure is shown in Figure 4.10.

When the BFS tree is completed, each node will be assigned a level, which is the distance

from the root of the tree.

4.4.5 Error Metric

We list the error metrics used in the entities of the four Big Data kernels in Table 4.3.

The metrics are computed from the most relevant variables in each of the programs.

Program Error Metric(s)

Fluid L2 Norm of the error in the density field (d)

K-Means L2 Norm of the cluster centers vector; Error Factor of
membership

PageRank L2 Norm of the page weights

BFS Proportion of nodes being assigned a wrong level

Table 4.3: Error Metrics Used for the Programs
(The Root Mean Square Deviation, RMSD is by definition the L2-Norm.)

4.5 Experimental Results

4.5.1 Input Configuration and Input Generation

The inputs to the Big Data kernels and the number of iterations of the main loop of

respective programs utilizing the kernels are listed in Table 4.4.

Program Input Iterations Num. Ex-
periments

Fluid A 50x50 grid initialized with a simple pattern 10 24374

KMeans Dimension-reduced data containing 1797 hand-written
characters

15 75075

PageRank Amazon web dump containing 65536 nodes [43] 14 15057

BFS Randomly-generated graph with 8192 nodes and
10650 edges

7 47984

Table 4.4: Program Inputs and Number of Iterations of the Main Loop.
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4.5.2 Propagation of Errors

This section discusses how the error metrics change as the errors propagate during run

time.

• PageRank

Figure 4.11 shows the traces of a subset of injected errors in the PageRank program.

Most errors monotonously decrease in a stable way as the iteration count increases. In

comparison, although using a similar linear-algebraic algorithm, the Fluid Simulation pro-

gram tends to see error metrics that preserve their magnitudes without either magnifying

or dampening.

Figure 4.11: Traces of a subset of injected errors in PageRank. X axis denotes the “age of
a bit flip error”

(number of iterations after error injection). Y axis denotes the error metric. Different
colors represent different runs.

• K-Means

Figure 4.12 shows the traces of a subset of injected errors in the KMeans program. The

age of the error is mapped onto the X axis. The Error Factor is mapped to the Y axis. It

can be seen that the propagation pattern is not uniform; some of the corrupted runs would

re-converge to the correct run in a short number of iterations but some could not.
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Figure 4.12: Trace of a subset of errors injected in KMeans.
Colors represent different runs.

• Fluid Simulation

Figure 4.13 shows the trace of a subset of errors induced by bit flips in the Fluid

Simulation program. The age of the error, which is the number of time steps passed since

error injection, is mapped onto the X axis. The errors are injected at random positions,

which could be in any iteration. The RMSD in the d field is mapped to the Y axis.

From the figure it can be seen that the error magnitudes tend to change gradually

as time step advances. The magnitude also tends to stabilize. The trend at which the

magnitudes change is dependent on the initial magnitudes. To illustrate, the initial mag-

nitude of CG are mainly distributed between [10−7.5, 100], which is different from that of

GS, [10−20, 100]. The final magnitudes are also different.

• Breadth First Search (BFS)

Figure 4.14 shows the trace of 100 errors induced by bit flips in the BFS program.

The age of the error (number of iterations after injection) is mapped to the X axis. The

proportion of nodes that would receive a wrong level based on the intermediate BFS search

tree at individual time steps are mapped to the Y axis.

As we can see from the figure, most bit-flip induced errors in BFS monotonously in-

crease. In some cases, the result would become completely incorrect due to critical data
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Figure 4.13: Traces of a subset of errors injected in Fluid Simulation with the Conjugate
Gradient (CG) solver (top) and the Gauss-Seidel (GS) solver (bottom.)

Colors represent different runs.

structure being corrupt.

4.5.3 Model Training and Accuracy

This section discusses the accuracy of Model 1 and Model 2 described in Section 4.3.3.

For Model 1 we quantify how much it is able to model the relationship between the dynamic

fault site information to the distribution of errors, namely how a bit-flip propagates to

program states. For Model 2 we quantify how much it is able to model the propagation of

errors between time steps.

Accuracy for both models is quantified by comparing against ground truth. We com-
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Figure 4.14: Traces of a subset of errors injected in Breadth First Search. Colors represent
different runs.

pute the earth mover distance (EMD) between the predictions and the actual RMSD at the

end iteration, denoted EMD1. We also compute the earth mover distance (EMD) between

the RMSD distribution at the beginning iteration and the end iterations, denoted EMD2.

We compute the ratio EMD1

EMD2
. Thus, a smaller the ratio means a more accurate prediction.

The beginning and ending iteration numbers are (4, 14) for PageRank, (1, 15) for

KMeans, and (4, 10) for Fluid Simulation.

For each application, we vary the proportion of the examples used for training and

see how the prediction quality varies. We pick the traces by their unique combination of

fault injection parameters (DynamicFSID, BitID) into the training and test set. The Static

Fault Site ID (StaticFSID) is implied by DynamicFSID so it doesn’t need be included.

We measure the prediction error on the entire data set. That means the training set

and the prediction output from the test set together make up the error distribution at the

ending iteration.

• Pagerank

Due to the simplicity in the error propagation patterns, a segmented linear regression

model is enough for capturing the error propagation pattern of PageRank, as shown in

Figure 4.15, Model 1 needs 75% of the input data for training to reach the maximum pre-
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Figure 4.15: Model accuracy for PageRank

dictive power while Model 2 needs only a few data points to reach the maximum predictive

power.

• KMeans

Figure 4.16: Model accuracy for KMeans

We had to use a regression tree to capture the error propagation pattern of KMeans,

because there is one segment in the range of the input RMSD that does not have a one-to-

one mapping. The correctness improves as training set size increases, as shown in Figure

4.16, Both Model 1 and Model 2 need 25% of the input data for training to reach maximum

predictive power.

• Fluid Simulation

A segmented linear regression model is used for Fluid as is shown in Figure 4.17 be-

cause the RMSD propagation pattern is simple. Most of the changes in the RMSD are in
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Figure 4.17: Model accuracy for Fluid Simulation

predictable directions. From the results, Model 1 needs 25% of the input data for training

to reach the maximum predictive power. Model 2 needs only a few data points to reach

the maximum predictive power. The performance of Model 2 is very stable. Even with

very few training examples, Model 2 is able to capture the RMSD changes.

• Breadth First Search (BFS)

Figure 4.18: Model accuracy for BFS.

The regression tree is used to capture the error propagation pattern of BFS because of

the non-linear pattern, as is shown in Figure 4.18, Model 1 needs about 60% of the input

data for training to reach the maximum predictive power. Model 2 needs about 50% of the

input for training to reach the maximum predictive power. It is worth noting that Model

2 suffers from over-fitting when the proportion of data used for training is high.
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4.5.4 Factors affecting Model Accuracy

• Model 1

The independent variables of Model 1 are listed in Table 4.2. However, not all of the

variables are equally relevant to the final RMSD:

Program DynamicFSID StaticFSID BitID NumIter

Fluid 0.523348 0.316858 0.118150 0.041644

KMeans 0.016321 0.691838 0.290197 0.001644

Pagerank 0.445098 0.327972 0.129911 0.097019

BFS 0.940505 0 5.949493 0

Table 4.5: Variable Relevance in Model 1.

As Table 4.5 shows, the most relevant variable for Fluid and Pagerank is DynamicFSID,

and for KMeans, the most relevant variables are StaticFSID and BitID.

DynamicFSID being irrelevant in KMeans suggests the shape of the error trajectories

is not affected by which iterations are being injected errors. In other words, it is uncertain

whether the error would be dampened or amplified across iterations. In contrast, the

patterns in Fluid and Pagerank are more stable, as can be seen from Figures 4.13, 4.12 and

4.11.

For BFS, DynamicFSID is most relevant, followed by BitID. StaticFSID and NumIter

are completely irrelevant. The reason is because error injected into all but only a few of

the static faults are masked and will not result in any observable error in program states.

• Model 2

Model 2 takes the error distribution at the beginning and end iterations. As a result, the

relationship between the errors, visualized in Figure 4.19, determines the model’s prediction

quality.

Visually, there is linear correlation between the errors: greater errors at the beginning

iteration means greater errors at the ending iteration. The only exception is when the error

at the beginning iteration is small enough, the output error would be constant in Fluid.

Same for Pagerank if the error at the beginning iteration is large enough. For these cases

segmented linear regression would be enough for capturing the shapes. To fix the effects

53



Figure 4.19: Errors in program variables at the beginning and ending iterations (X and Y
axes). Dashed lines are prediction intervals of segmented linear models.

caused by outliers, we have removed the top and bottom 5% of the input data.

Figure 4.20: Undesirable choices of variables for Model 2

However, there exists a non-linear region in K-Means which affects the predictive power

of the segmented linear regression. The region is highlighted in Figure 4.19. One X coor-

dinate in this region may correspond to two Y axis, which forces the predictive interval to

become larger and results in greater error in the predicted errors. To fix this we decided to
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use the regression tree, which is more complex than line segments and can better capture

the shape by further subdividing the input data set.

Since there exists multiple program variables, we should find the ones that most ac-

curately capture the error propagation patterns with the best accuracy. Actually, certain

variable combinations may make prediction more difficult. Figure 4.20 shows the choices

that are not desirable for building Model 2.

• Cost Saved by the Inter-Iteration Efficient Fault Characterization Algorithm

Consider performing a NF fault injection experiments into a program that runs for N

iterations. Algorithm 1 runs all instances to completion, and the cost measured in number

of program iterations is NF ·N . Algorithm 2 picks a fraction from each iteration and run to

completion, and the cost measured in number of program iterations is
∑i=N

i=1 i+ (N − i) · µ,

where µ is the proportion between instances in an iteration run to completion and the total

number of instances with faults injected at that iteration.

With results from Section 4.5.3 we set µ to 0.01 for Fluid and Pagerank and 0.25 for

KMeans. By plugging in the numbers we could obtain the costs in Table 4.6:

Program Iter Fraction Alg. 1
Cost

Alg. 2
Cost

Saving

Fluid 10 1% 100 55.45 45.6%

KMeans 15 25% 225 146.25 35.0%

Pagerank 14 1% 196 105.91 45.9%

BFS 7 50% 49 42.00 14.3%

Table 4.6: Cost to characterize the effect of soft faults on a program

4.5.5 Applying Fault Resilience Techniques

With the results obtained in Section 4.5, ErrorSight produces the error profile of a

program and shows the expected error metric caused by a bit flip on the instructions that

correspond to each source line. With this information, the developer can use to decide

how to apply fault resilience techniques. In this table, column Mean Error (ME) shows the

expected error that would appear in the final output if a bit flip is injected into a dynamic

instruction that corresponds to this line of source code. The column Probability (P) shows
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the probability that a dynamic fault site belongs to this line. The column Product (Prod)

is a product of ME and P. Intuitively, the sum of all the entries in the Prod column is

the weighted sum of the ME column, which is the expected error in the final output of

the program should a bit flip occurs randomly during its run time. Columns without and

with “FT” represent the metrics from the original and the fault-tolerant versions of the

program.

Line
No.

Source Code Mean
Error
(ME)

Proba-
bility
(P)

Product
(Prod)

Mean
Error
FT

Proba-
bility
FT

Product
FT

120 for(i=0; i<nlocalverts;

++i) pred[i]=-1

2.41e-1 1.23e-1 2.98e-2 1.22e-4 5.26e-2 6.42e-6

192 for(i=0; i<oldg count;

i++) {
1.06e-1 7.10e-2 7.51e-3 1.06e-1 1.0e-3 1.06e-4

200 for(j=g->rowstarts[

VERTEX LOCAL(oldg[i])];

j<j end; j++) {

6.59e-3 3.32e-1 2.19e-3 3.63e-3 4.80e-1 1.74e-3

208 if(!TEST VISITED(tgt)) { 4.08e-3 3.67e-1 1.5e-3 3.32e-3 3.09e-1 1.03e-3

209 SET VISITED(tgt); 1.43e-3 6.53e-2 9.35e-5 1.06e-3 4.60e-2 4.90e-5

(Other) N/A N/A 2.45e-4 N/A N/A 5.18e-4

(Sum) 4.13e-2 3.44e-3

Table 4.7: Static Fault Site to Source Code Mapping of Breadth First Search.

We choose to make the source code lines that are most vulnerable to the Breadth First

Search (BFS) shown in Table 4.7. In this Table the greatest value in the Prod column

belongs to Line 120 of the source code of BFS. This means that this line is the most

significant contributing factor to the overall resilience of the program.

We manually triplicated the pointer dereferencing and value assignment operations in

the loop, and performed a Byzantine error check [34] before incrementing the loop index

and writing to the pred array, namely, if one replica of a pointer is corrupt, the other two

are used to correct it, and if two or more replicas are corrupt, the loop is restarted from

the beginning. This effectively reduced the occurrence of out-of-loop-boundary errors and

the assignment of wrong values.

Figure 4.21 shows the fault-resilience source code and the resultant change in the mean

error of the entire program after fault resilience is applied to Line 120. The mean error
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Original Line 120 | Fault-Resilient Line 120

|

for (i = 0; i < nlocalverts; ++i) | int64_t* p1 = pred, *p2 = p1, *p3 = p2;

pred[i] = -1; | int64_t* end1 = &(pred[nlocalverts]),

| *end2=end1, *end3=end2;

| while (p1 < end1 || p2 < end2 || p3 < end3) {

| if ( !(p1 == p2 && p1 == p3) ) {

| if (p1 == p2) { p3 = p2; }

| else if(p2 == p3) { p1 = p2; }

| else if(p1 == p3) { p2 = p3; }

| else { goto retry; }

| } else { *p1 = -1; }

| p1++; p2++; p3++;

| if ( !(end1 == end2 && end2 == end3) ) {

| if (end1 == end2) { end3 = end1; }

| else if (end2 == end3) { end1 = end2; }

| else if (end3 == end1) { end2 = end3; }

| else { goto retry; }

| }

| }

Figure 4.21: Triplication fault resilience mechanism used on Line 120 and the resultant
change in the mean error of the entire BFS program.

of the application is reduced by a magnitude, from 4.13e-2 to 3.44e-3. Table 4.7 indicates

the Mean Error resulting from the fault-resilient version of Line 120 has been reduced from

2.98e-2 to 6.42e-6. After this, Line 120 is no longer the main contributor of errors in this

BFS. In addition, the modification does not introduce significant overhead because Line

120 was not a hotspot in the original program.

4.6 Conclusion

In this chapter we have proposed ErrorSight, a tool aimed at helping the developers

to write fault-resilient programs. We demonstrated with four Big Data kernels that it can

efficiently capture the error propagation patterns that a human developer can analytically

obtain, and use the patterns to construct a predictive model to save the error characteriza-
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tion cost, and showing the application developer which part of the source code is the most

significant vulnerable part of a numerical program. With this information, the developer

can then apply fault resilience mechanisms to the program and significantly improve its

resilience under a faulty environment.
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Chapter 5
Summary and Future Work

With exascale high performance approaching and big data analytics becoming a reality,

along with the increasing density of computational units, we will be expecting more and

more soft faults during long-running operations, which could threaten the accuracy of

the outputs and impact the quality of service. Understanding the faults and developing

countermeasures for them helps us to minimize the vulnerability of programs.

We proposed two tools to help achieve this goal. FaultTelescope builds a comprehensive

fault profile of a program in question and helps the programmer to focus efforts on the most

vulnerable code regions. ErrorSight further reduces the cost in building such fault profiles

by leveraging modular analysis. Both tools used statistical algorithms to ensure the results

are well-grounded.

The tools are used on a series of numerical routines and a few scientific computing and

big data programs. The tools are proven to be able to effectively detect the vulnerabilities

to soft errors. By focusing on the vulnerable parts and applying the algorithmic invariants,

the overall resilience of the programs in question can be greatly improved.

The evolution of big data programs in terms of workloads and tools calls for updated

approaches in fault resilience research. This project will be continued with the exploration

of more big data programs and software stacks (for example, map-reduce based algorithms

running on the Spark software stack.) The future works will aim at developing updated

tools and fault resilient software.
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