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Quantum fluctuating geometries and the information paradox

Rodrigo Eyheralde1, Miguel Campiglia1, Rodolfo Gambini1, Jorge Pullin2

1. Instituto de F́ısica, Facultad de Ciencias, Iguá 4225, esq. Mataojo, 11400 Montevideo, Uruguay.

2. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001

We study Hawking radiation on the quantum space-time of a collapsing null shell. We use the
geometric optics approximation as in Hawking’s original papers to treat the radiation. The quantum
space-time is constructed by superposing the classical geometries associated with collapsing shells
with uncertainty in their position and mass. We show that there are departures from thermality
in the radiation even though we are not considering back reaction. One recovers the usual profile
for the Hawking radiation as a function of frequency in the limit where the space-time is classical.
However, when quantum corrections are taken into account, the profile of the Hawking radiation as
a function of time contains information about the initial state of the collapsing shell. More work
will be needed to determine if all the information can be recovered. The calculations show that
non-trivial quantum effects can occur in regions of low curvature when horizons are involved, as for
instance advocated in the firewall scenario.

I. INTRODUCTION

Black hole evaporation is perhaps the salient problem of fundamental physics nowadays, since it tests gravity,
quantum field theory and thermodynamics in their full regimes. Hawking’s calculation showing that black holes
radiate a thermal spectrum initiated the study of this phenomenon. However, the calculation assumes a fixed given
space-time, whereas it is expected that the black hole loses mass through the radiation and eventually evaporates
completely. Associated with the evaporation process is the issue of loss of information, whatever memory of what
formed the black hole is lost as it evaporates in a thermal state characterized by only one number, its temperature.
Having a model calculation that follows the formation of a black hole and its evaporation including quantum effects
would be very useful to gain insights into the process. Here we would like to present such a model. We will consider
the collapse of a null shell. The associated space-time is very simple: it is Schwarzschild outside the shell and flat
space-time inside. We will consider a quantum evolution of the shell with uncertainty in its position and momentum
and we will superpose the corresponding space-times to construct a quantum space-time. On it we will study the
emission of Hawking radiation in the geometric optics approximation. We will see that in the classical limit one
recovers ordinary Hawking radiation. However, when quantum fluctuations of the collapsing shell are taken into
account we will see that non vanishing off-diagonal terms appear in the density matrix representing the field. The
correlations and the resulting profile of particle emission are modulated with information about the initial quantum
state of the shell, showing that information can be retrieved. At the moment we do not know for sure if all information
is retrieved.
The model we will consider is motivated in previous studies of the collapse of a shell [1–3]. In all these, an important

role is played by the fact that that there are two conjugate Dirac observables. One of them is the ADM mass of the
shell. The other is related to the position along scri minus from which the shell was sent inwards. These studies are
of importance because they show that the quantization of the correct Dirac observables for the problem lead to a
different scenario than those considered in the past using other reduced models of the fluctuating horizon of the shell
(see for instance [4]).
The organization of this paper is as follow. In the next section we review the calculation of the radiation with a

background given by a classical collapsing shell for late times in the geometric optics approximation, mostly to fix
notation to be used in the rest of the work. In section 3 we will remove the late time approximation providing an
expression of the radiation of the shell for all times. We will also derive a closed expression for the distribution of
radiation as a function of the position of the detector on scri plus. We will show that when the shell approaches the
horizon the usual thermal radiation is recovered. We will see that the use of the complete expression for all times
is useful when one considers the case of fluctuating horizons in the early (non-thermal) phases of the radiation prior
to the formation of a horizon. This element had been missed in previous calculations that tried to incorporate such
effects. In section 4 we will consider a quantum shell and the radiation it produces, we will proceed in two stages.
First we will compute the expectation value of Bogoliubov coefficients. This will allow to explain in a simple case the
technique that shall be used. However, the calculation of the number of particles produced requires the expectation
value of a product of Bogoliubov coefficients. In section 5 we consider the calculation of the density matrix in terms
of the product of Bogoliubov operators and show that the radiation profile reproduces the usual thermal spectrum
for the diagonal elements of the density matrix, but with some departures due to the fluctuations in the mass of the
shell. In section 6 we will show that it differs significantly from the product of the expectation values, particularly

http://arxiv.org/abs/1705.05722v4
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FIG. 1: The Penrose diagram of a classical collapsing shell. vs indicates the position at scri minus from which the
shell is sent in. Light rays sent in to the left of v0 make it to scri plus, whereas rays sent in to the right of v0 get

trapped in the black hole.

in the late stages of the process. In section 7 we will analyze coherences that vanish in the classical case and show
they are non-vanishing and that allow information from the initial state of the shell to be retrieved. We end with a
summary and outlook.

II. RADIATION OF A COLLAPSING CLASSICAL SHELL

Here we reproduce well known results [5] for the late time radiation of a collapsing classical shell in a certain amount
of detail since we will use them later on. The metric of the space-time is given by

ds2 = −
(
1− 2Mθ(v − vs)

r

)
dv2 + 2dvdr + r2dΩ2, (1)

where vs represents the position of the shell (in ingoing Eddington–Finkelstein coordinates) and M its mass 1.
Throughout this paper we will be working in the geometric optics approximation (i.e. large frequencies). In this
geometry, light rays that leave I− with coordinate v less than v0 = vs−4M can escape to I+ and the rest are trapped
in the black hole that forms. Therefore v = v0 defines the position of the event horizon. We will use that a light ray
departing from I− with v < v0 reaches I+ at an outgoing Eddington–Finkelstein coordinate u given by

u(v) = v − 4M ln

(
v0 − v

4M0

)
, (2)

1 The parameters vs and M are canonically conjugate variables in a Hamiltonian treatment of the system [2]. They will be promoted to
quantum operators in section IV.
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where M0 is an arbitrary parameter that is usually chosen as M0 = M , stemming from the definition of the tortoise
coordinate which involves a constant of integration. On the above metric we would like to study Hawking radiation
corresponding to a scalar field. We consider the “in” vacuum associated with the mode expansion ψlmω′ . The
asymptotic form of the modes in I− is given by,

ψlmω′(r, v, θ, φ) =
e−iω

′v

4πr
√
ω′
Ylm(θ, φ),

and the “out” vacuum corresponding to modes χlmω with asymptotic form in I+ given by

χlmω(r, u, θ, φ) =
e−iωu

4πr
√
ω
Ylm(θ, φ).

The geometric optics approximation consists of mapping the modes χlmω into I− as

e−iωu(v)

4πr
√
ω
Ylm(θ, φ),

where u (v) is determined by the path of the light rays that emanate from I− at time v and arrive in I+ at u(v).
The Bogoliubov coefficients are given by the Klein-Gordon inner products,

αωω′ = 〈χlmω, ψlmω′〉 ,

βωω′ = −〈χlmω, ψ∗
lmω′〉 .

They can be computed in the geometric optics approximation projecting the out modes in I− and substituting the
expression for u(v). Focusing on the beta coefficient we get,

βωω′ = − 1

2π

√
ω′

ω

∫ v0

−∞
dve

−iω
[

v−4M ln
(

v0−v

4M0

)]

−iω′v
. (3)

Since we are considering modes that are not normalizable one in general will get divergences. This can be dealt with
by considering wave-packets localized in both frequency and time. For example,

χlmnωj
=

1√
ǫ

∫ (j+1)ǫ

jǫ

dωeunωiχlmω, (4)

constitute an orthonormal countable complete basis of packets centered in time un = 2πn
ǫ , and in frequency ωj =(

j + 1
2

)
ǫ.

The original Hawking calculation assumes that the rays depart just before the formation of the horizon and arrive
at I+ at late times. In that case one can approximate,

u(v) = v − 4M ln

(
v0 − v

4M0

)
≈ v0 − 4M ln

(
v0 − v

4M0

)
.

Defining a new integration variable x = v0−v
4M0

one gets

βωω′ = −4M0

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

0

dxe−iω[v0−4M ln(x)]−iω′(v0−4M0x)e−ǫx, (5)

where the last factor was added to make the integral convergent since we have used plane waves instead of localized
packets as the basis of modes, following Hawking’s original derivation. Using the identity

∫ ∞

0

dxea ln(x)e−bx = e−(1+a) ln(b)Γ (1 + a) , Re(b) > 0, (6)

and the usual prescription for the logarithm of a complex variable we can take the limit and get

βωω′ = − i

2π

e−i(ω+ω
′)v0

√
ωω′

e−2πMωΓ (1 + 4Mωi) e−4Mωi ln(4M0ω
′). (7)
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Now from the Bogoliubov coefficients we can calculate the expectation value of the number of particles per unit
frequency detected at scri using

〈
NH
ω

〉
=

∫ ∞

0

dω′βωω′β∗
ωω′ =

1

4π2ω
e−4πMω |Γ (1 + 4Mωi)|2

∫ ∞

0

dω′ 1

ω′ ,

where we added the superscript “H” to indicate this is the calculation originally carried out by Hawking.
The pre-factor is computed using the identity

Γ (1 + z) Γ (1− z) =
zπ

sin (zπ)
,

with z = 4Mωi, which leads to,

|Γ (1 + 4Mωi)|2 =
8Mπω

e+4Mωπ − e−4Mωπ
.

To handle the divergent integral we note that

∫ ∞

0

dω′ 1

ω′ = lim
α→0

∫ ∞

0

dω′ 1

ω′ e
i4Mα ln(ω′) =

[
y = ln (ω′)

dy = dω′

ω′

]
=

= lim
α→0

∫ ∞

0

dyei4Mαy =
1

4M
δ (0) .

Therefore,

〈NH
ω 〉 = 1

e8Mωπ − 1

4M

2π

∫ ∞

0

dω′ 1

ω′ =
1

e8Mωπ − 1
δ (0) . (8)

Again, the results is infinite because we considered plane waves. The time of arrival has infinite uncertainty and we
are therefore adding up all the particles generated for an infinite amount of time. To deal with this we can consider
wave-packets centered in time un and frequency ωj for which the Bogoliubov coefficients are,

βωjω′ =
1√
ǫ

∫ (j+1)ǫ

jǫ

dωeunωiβωω′ .

We start computing the density matrix

ρHω1,ω2
=

∫ ∞

0

dω′βω1ω′β∗
ω2ω′ =

1

4π2√ω1ω2
e−i(ω1−ω2)v0e−2πM(ω1+ω2)Γ (1 + 4Mω1i) Γ (1− 4Mω2i)×

×
∫ ∞

0

dω′ 1

ω′ e
−4M(ω1−ω2) ln(4M0ω

′) =

[
y = ln (4M0ω

′)

dy = dω′

ω′

]
=

=
1

4π2
√
ω1ω2

e−i(ω1−ω2)v0e−2πM(ω1+ω2)Γ (1 + 4Mω1i) Γ (1− 4Mω2i)

∫ ∞

−∞
dye−4M(ω1−ω2)y =

=
1

4π2ω1
e−4πMω1 |Γ (1 + 4Mω1i)|2 2πδ (4M (ω1 − ω2)) =

1

e8Mω1π − 1
δ (ω1 − ω2) . (9)

Therefore,

〈NH
ωj
〉 =

∫ ∞

0

dω′βωjω′β∗
ωjω′ =

1

ǫ

∫ ∫ (j+1)ǫ

jǫ

dω1dω2e
un(ω1−ω2)iρHω1,ω2

=
1

ǫ

∫ (j+1)ǫ

jǫ

1

e8Mω1π − 1
dω1 ∼ 1

e8Mωjπ − 1
, (10)

which is the standard result for the Hawking radiation spectrum.
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III. CALCULATION WITHOUT APPROXIMATING u(v)

We will carry out the computation of the Bogoliubov coefficients using the exact expression for u(v). This will be
of importance for the case with quantum fluctuations. This is because if one looks at the expression of the time of
arrival,

u(v) = v − 4M ln

(
v0 − v

4M0

)
, (11)

when one has quantum fluctuations, even close to the horizon, the second term is not necessarily very large. For
instance, if one considers fluctuations of Planck length size and a Solar sized black hole, it is around 100M . Therefore
it is not warranted to neglect the first term as we did in the previous section. In this section we will not consider
quantum fluctuations yet. However, using the exact expression allows to compute the radiation emitted by a shell far
away from the horizon.
Starting with the expression:

βωω′ = − 1

2π

√
ω′

ω

∫ v0

−∞
dve

i4Mω ln
(

v0−v

4M0

)

−iω′v
e−iωv,

we change variables to x = v0−v
4M0

and introduce a regulator e−ǫx. We get,

βωω′ = −4M0

2π

√
ω′

ω
e−i(ω+ω

′)v0 lim
ǫ→0

∫ ∞

0

dxei4Mω ln(x)e−(ǫ−i[ω+ω
′]4M0)x. (12)

For ω ≪ ω′ we recover Hawking’s original calculation. However, we can continue without approximating. Using again
(6) we get,

βωω′ = −4M0

2π

√
ω′

ω
e−i(ω+ω

′)v0Γ(1 + 4Mωi)lim
ǫ→0

e−(1+4Mωi) ln(ǫ−i[ω+ω′]4M0).

And taking the limit,

βωω′ = − i

2π

1

ω′ + ω

√
ω′

ω
e−i(ω+ω

′)v0Γ(1 + 4Mωi)e−2πMωe4Mωi ln(4M0[ω′+ω]). (13)

To compare with Hawking’s calculation we first compute

〈NCS
ω 〉 =

∫ ∞

0

dω′βωω′β∗
ωω′ =

1

4π2

1

ω
|Γ(1 + 4Mωi)|2 e−4πMω

∫ ∞

0

dω′ ω′

(ω′ + ω)2
,

where the superscript “CS” stands for classical shell. The difference with the calculation in the previous section is
the argument of the last integral with no divergence in ω′ = 0.
We can formally compute the divergent integral using the change of variable y = ln (ω′ + ω). We get,

∫ ∞

0

dω′ ω′

(ω′ + ω)2
=

∫ ∞

ln(ω)

dye−y (ey − ω) =

∫ ∞

ln(ω)

dy − 1 =

=

∫ ∞

ln(ω)

dyei4Mαy

∣∣∣∣∣
α=0

− 1 =

∫ ∞

0

dyei4Mαyei4Mα ln(ω)

∣∣∣∣
α=0

− 1 =
1

4M

(
πδ (0) + p.v.

(
i

0

))
− 1,

with p.v. the principal value. Therefore,

〈NCS
ω 〉 = 1

e8Mωπ − 1

4M

2π

∫ ∞

0

dω′ ω′

(ω′ + ω)
2 =

1

e8Mωπ − 1

[(
δ (0)

2
+ p.v.

(
i

2π0

))
− 2M

π

]
. (14)

This is an infinite result but it looks different from Hawking’s. To deal with the infinities it is necessary to compute
〈Nωj

CS〉 for a wave-packet of frequency ωj . We start by computing the density matrix:

ρCSω1,ω2
=

∫ ∞

0

dω′βω1ω′β∗
ω2ω′ =

1

4π2√ω1ω2
e−i(ω1−ω2)v0Γ (1 + 4Mω1i) Γ (1− 4Mω2i) e

−2πM [ω1+ω2]×
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×
∫ ∞

0

dω′ ω′

(ω′ + ω1) (ω′ + ω2)
e−4Mi[ω1 ln(4M0[ω′+ω1])−ω2 ln(4M0[ω′+ω2])]. (15)

Since the packet is centered in ωj with width ǫ≪ ωj we introduce ∆ω = ω2−ω1+ and ω̄ = ω1+ω2

2 . As a consequence,
the last integral takes the form,

∫ ∞

0

dω′ω
′e−4Mi[(ω̄−∆ω

2 ) ln(4M0[ω′+ω̄−∆ω
2 ])−(ω̄+∆ω

2 ) ln(4M0[ω′+ω̄+∆ω
2 ])]

(ω′ + ω̄)2 −
(
∆ω
2

)2 =

=

∫ ∞

0

dω′ω
′e4Mi∆ω ln(4M0[ω′+ω̄])

(ω′ + ω̄)
2 +O (∆ω) ,

where we have not expanded the exponential e4Mi∆ω ln(4M0[ω′+ω̄]) since it controls the divergent part of the integral
when ∆ω → 0. Changing variable to y = ln (4M0 [ω

′ + ω̄]) the integral becomes,

∫ ∞

ln(4M0ω̄)

dy
(
1− 4M0ω̄e

−y) e4Mi∆ωy +O (∆ω) =

=

∫ ∞

0

dye4Mi∆ωye4Mi∆ω ln(4M0ω̄) +
e4Mi∆ω ln(4M0ω̄)

−1 + 4M0∆ωi
+O (∆ω) =

=

[
πδ (4M∆ω) + p.v.

(
i

4M∆ω

)]
e4Mi∆ω ln(4M0ω̄) +O

(
∆ω0

)
.

So, the divergent part of the density matrix when ∆ω → 0 is

ρCSω1,ω2
∼ 1

4π2ω̄
ei∆ωv0 |Γ (1 + 4Mω̄i)|2 e−4πMω̄

[
πδ (4M∆ω) + p.v.

(
i

4M∆ω

)]
e4Mi∆ω ln(4M0ω̄).

=
2M

π

e4Mi∆ω ln(4M0ω̄)

e8Mωjπ − 1

[
πδ (4M∆ω) + p.v.

(
i

4M∆ω

)]
. (16)

We proceed to compute 〈NCS
ωj

〉 by integrating both Bogoliubov coefficients in an interval around ωj using the approx-
imation that factors depending on ω̄ are constant since the interval of integration is very small as it ranges between

ωj ± ǫ−|∆ω|
ǫ ,

〈NCS
ωj

〉 = 1

ǫ

∫ (j+1)ǫ

jǫ

∫ (j+1)ǫ

jǫ

dω1dω2e
un∆ωiρCSω1,ω2

∼

∼ 1

4π2ωj

1

ǫ
|Γ (1 + 4Mωji)|2 e−4πMωj

∫ (j+1)ǫ

jǫ

∫ (j+1)ǫ

jǫ

dω1dω2e
− 2πn

ǫ
∆ωiei∆ωv0×

× 1

4M

[
πδ (∆ω) + p.v.

(
ie4M∆ω ln(4M0ω̄)i

∆ω

)]
=

∼ 1

2πǫ

1

e8Mωjπ − 1

∫ (j+1)ǫ

jǫ

∫ (j+1)ǫ

jǫ

dω1dω2e
−[un−v0−4M ln(4M0ω̄)]∆ωi

[
πδ (∆ω) + p.v.

(
i

∆ω

)]
.

Changing variables to ω̄ and ∆ω we get,

〈NCS
ωj

〉 ∼ 1

e8Mωjπ − 1

[
1

2
+

i

2πǫ

∫ ǫ

−ǫ
d (∆ω) p.v.

(
1

∆ω

)∫ ωj+
ǫ−|∆ω|

2

ωj− ǫ−|∆ω|
2

e−[un−v0−4M ln(4M0ω̄)]∆ωidω̄

]
∼
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∼ 1

e8Mωjπ − 1

[
1

2
+

i

2π

∫ ǫ

−ǫ
d (∆ω) p.v.

(
ǫ − |∆ω|
ǫ∆ω

)
e−α∆ωi

]
,

where we defined

α ≡ un − v0 − 4M ln (4M0ωj) . (17)

Notice that there appears the indeterminate parameter M0. This corresponds to the choice of origin of the affine
parameter at scri plus.
A further change of variable t = α∆ω leads us to

〈NCS
ωj

〉 = 1

e8Mωjπ − 1

[
1

2
+

1

π
Si (ǫα) +

1

π

cos (αǫ)− 1

αǫ

]
(18)

where Si is the sine integral. When ǫα→ ∞ we have that Si (ǫα) → π
2 and the expression goes to

〈NCS
ωj

〉 → 1

e8Mωjπ − 1
.

This happens when either n → +∞ or ωj → 0. That is, at late times or in the deep infra-red regime. On the other
hand, when n→ −∞ (a detector close to spatial infinity or very early times) we have that Si (ǫα) → −π

2 and therefore

〈NCS
ωj

〉 → 0.

We have obtained a closed form for the spectrum of the radiation of the classical shell along its complete trajectory.
It only becomes thermal at late times. This agrees with previous numerical results [6]. Previous efforts had differing
predictions on the thermality or not of the radiation [7].

IV. RADIATION FROM THE COLLAPSE OF A QUANTUM SHELL

A. The basic quantum operators

A reduced phase-space analysis of the shell shows that the Dirac observables vs and M are canonically conjugate
variables [2]. We thus promote them to quantum operators satisfying,

[
M̂, v̂s

]
= i~Î, (19)

with Î the identity operator. It will be more convenient to use the operator v̂0 = v̂s − 4M̂ which is also conjugate to

M̂ . We call the expectation values of these quantities M ≡
〈
M̂
〉
and v0 ≡ 〈v̂0〉.

In terms of them we define the operator

û
(
v, v̂0, M̂

)
= vÎ − 2

[
M̂ ln

(
v̂0 − vÎ

4M0

)
+ ln

(
v̂0 − vÎ

4M0

)
M̂

]
, (20)

where v is a real parameter andM0 an arbitrary scale. This operator represents the variable u(v). Given a value of the
parameter v the operator û is well defined in the basis {v0}v0∈R

of eigenstates of v̂0 only for eigenvalues v0 > v. This
is the relevant region for the computation of Bogoliubov coefficients. It is however convenient to provide an extension
of the operator û to the full range of v0 so that one can work in the full Hilbert space of the shell. The (quantum)

Bogoliubov coefficients are independent of such extension. For instance, defining the function fǫ(x) =

{
ln(x), x ≥ ǫ
ln(ǫ), x < ǫ

one can construct the operator

ûǫ

(
v, v̂0, M̂

)
= vÎ − 2

[
M̂fǫ

(
v̂0 − vÎ

4M0

)
+ fǫ

(
v̂0 − vÎ

4M0

)
M̂

]
, (21)

which extends û to the full Hilbert space. To understand the physical meaning, we recall that for values of v less than
v0 the packets escape to scri, whereas for v larger than v0 they fall into the black hole. The extension corresponds
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to considering particle detectors that either live at scri or live on a time-like trajectory a small distance outside the
horizon. As we shall see, the Bogoliubov coefficients will have a well-defined ǫ→ 0 limit.
Next we seek for the eigenstates of ûǫ. We work with wave-functions ψ (v0) = 〈v0|ψ〉. The operator M̂ (conjugate

to v̂0) is,

〈
v0|M̂ψ

〉
= i~

∂ψ

∂v0
. (22)

The eigenstates of of ûǫ are given by the equation

〈v0|ûǫψu〉 = uψu (v0) ,

that is,

vψu (v0)− 2i~
∂

∂v0

[
fǫ

(
v0 − v

4M0

)
ψu (v0)

]
− 2i~fǫ

(
v0 − v

4M0

)
∂ψ

∂v0
= uψu (v0) , (23)

vψu (v0)− 4i~fǫ

(
v0 − v

4M0

)
∂ψ

∂v0
− 2i~

4M0
f ′
ǫ

(
v0 − v

4M0

)
ψu (v0) = uψu (v0) .

It is useful to make a change of variable x = v0−v
4M0

which leads to

− 4i~

4M0
fǫ (x)

∂ψ

∂x
− 2i~

4M0
f ′
ǫ (x)ψu (x) = (u− v)ψu (x) .

Defining φu(x) by ψu(x) =
φu(x)√
|fǫ(x)|

we get,

∂φu
∂x

=
iM0

~

u− v

fǫ
φu,

with general solution

φu(x) = φ0 exp

(
iM0

~
(u − v)

∫
ds

fǫ(s)

)
.

Substituting fǫ and going back to the original variables

ψu(x) =





ψI
0√

|ln(x)|
exp

(
iM0

~
(u− v)li(x)

)
, x ≥ ǫ,

ψII
0√

|ln(ǫ)|
exp

(
iM0

~
(u − v) x

ln(ǫ)

)
, x < ǫ,

where φ0, ψ
I
0 and ψII0 are independent, complex, constants and

li(x) =

∫ x

0

dt

ln(t)
, (24)

is the logarithmic integral, which is plotted in figure (2).
The discontinuity of ψu in x = 1 introduces a degeneracy in the eigenstates of û. For each eigenvalue we can choose

two independent eigenstates,

ψ1
u(x) =





1√
8π~|ln(ǫ)|

exp
(
iM0

~
(u − v) x−ǫln(ǫ)

)
, x < ǫ

1√
8π~|ln(x)|

exp
(
iM0

~
(u− v) [li (x)− li (ǫ)]

)
, ǫ ≤ x < 1

0, x ≥ 1

(25)

ψ2
u(x) =

{
0, x ≤ 1

1√
8π~|ln(x)|

exp
(
iM0

~
(u− v) [li (x)− li (ǫ)]

)
, x > 1 (26)

which we have chosen as orthonormal. We will adopt the notation |u, J〉ǫ with J = 1, 2 for these states.
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FIG. 2: The logarithmic integral function.

B. Operators associated with the Bogoliubov coefficients and their expectation values

On the previously described quantum space-time we will study Hawking radiation associated with a scalar field. We
will assume that the scalar field sees a superposition of geometries corresponding to different masses of the black hole.
Therefore, to measure observables associated with the field one needs to take their expectation value with respect to
the wave-function of the black hole. In this subsection we will apply these ideas to the computation of the Bogoliubov
coefficients and in the next we will extend it to compute the density matrix. We will go from the usual Bogoliubov

coefficient βωω′ to the operator β̂ωω′ . We will then compute its expectation value on a wave-function packet associated
to the black hole and centered on the classical values M and v0. We start with the expression (3) and promote it to
a well defined operator

β̂ωω′ = − 1

2π

√
ω′

ω
lim
ǫ→0

∫ +∞

−∞
dvθ

(
v̂0 − vÎ

)
e−iωûǫ(v)−iω′vθ

(
v̂0 − vÎ

)
. (27)

We then consider a state Ψ associated with the black hole and compute the expectation value,

〈
β̂
〉
ωω′

= − 1

2π

√
ω′

ω
lim
ǫ→0

〈Ψ|
∫ +∞

−∞
dv

∫ +∞

−∞
dv0 |v0〉 〈v0| θ

(
v̂0 − vÎ

)
e−iωûǫ(v)−iω′v×

×
∑

J=1,2

∫ +∞

−∞
du |u, J〉ǫǫ 〈u, J |

∫ +∞

−∞
dv′0 |v′0〉 〈v′0| θ

(
v̂0 − vÎ

)
|Ψ〉 ,

where we have introduced bases of eigenstates of v̂0 and û.
Given,

〈
β̂
〉
ωω′

= − 1

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dvdv0dv

′
0duΨ

∗(v0)Ψ(v′0)θ (v0 − v) θ (v′0 − v)×

×e−iωu−iω′v
∑

J=1,2

ψu,J(v0)ψ
∗
u,J (v

′
0),

and changing variables x1 = v0−v
4M0

and x2 =
v′0−v
4M0

we get

〈
β̂
〉
ωω′

= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ∞

0

∫ ∞

0

dx1dx2Ψ
∗(4M0x1 + v)×
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×Ψ(4M0x2 + v)

∫ +∞

−∞
due−iωu

∑

J=1,2

ψJu (x1)ψ
J∗
u (x2). (28)

The definition of the eigenstates ψIu reduces the integral in
∫∞
0

∫∞
0 dx1dx2 to

∫ ǫ

0

∫ ǫ

0

dx1dx2 +

∫ ǫ

0

∫ 1

ǫ

dx1dx2 +

∫ 1

ǫ

∫ ǫ

0

dx1dx2 +

∫ 1

ǫ

∫ 1

ǫ

dx1dx2 +

∫ ∞

1

∫ ∞

1

dx1dx2.

In the appendix we show that the first 3 integrals do not contribute in the limit ǫ → 0. Therefore the calculation
reduces to,

〈
β̂
〉
ωω′

= − (4M0)
2

2π8π~

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

(∫ 1

ǫ

∫ 1

ǫ

dx1dx2 +

∫ ∞

1

∫ ∞

1

dx1dx2

)
Ψ∗(4M0x1 + v)×

×Ψ(4M0x2 + v)

∫ ∞

−∞
due−iωu

1√
|ln(x2)| |ln(x1)|

exp

(
iM0

~
(u− v) [li(x1)− li(x2)]

)
.

Computing the integral in u we get,

〈
β̂
〉
ωω′

= − (4M0)
2

2π8π~

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dv e−iω

′v

(∫ 1

ǫ

∫ 1

ǫ

dx1dx2 +

∫ ∞

1

∫ ∞

1

dx1dx2

)
Ψ∗(4M0x1 + v)×

×Ψ(4M0x2 + v)
2πδ

(
ω − M0

~
[li(x1)− li(x2)]

)
√
|ln(x2)| |ln(x1)|

e−iωv.

Since li is invertible in (0, 1) and in (1,+∞) we can then integrate in x2 to get

〈
β̂
〉
ωω′

= −2M0

π

√
ω′

ω

∫ ∞

−∞
dve−iω

′v

(∫ 1

0

dx1 +

∫ ∞

1

dx1

)
×

×Ψ∗(4M0x1 + v)Ψ(4M0x2 (x1) + v)

√
|ln(x2)|
|ln(x1)|

e−iωv,

where x2 (x1) = li−1
[
li (x1)− ω~

M0

]
and we have used that ∂tli (t) =

1
|ln(t)| . We redefine x = x1 and

x̄ω(x) = li−1

[
li (x)− ω~

M0

]
. (29)

Therefore,

〈
β̂
〉
ωω′

= −2M0

π

√
ω′

ω

∫ ∞

0

dx

√
|ln(x̄ω (x))|

|ln(x)|

∫ ∞

−∞
dve−i[ω+ω

′]vΨ∗(4M0x+ v)Ψ(4M0x̄ω (x) + v),

where we have inverted the order of the integrals for convenience of subsequent calculations. Finally, the change of
variable s ≡ v + 2M0 [x+ x̄ω(x)] gives us

〈
β̂
〉
ωω′

= −2M0

π

√
ω′

ω

∫ ∞

0

dx

√
|ln(x̄ω (x))|

|ln(x)| ei2M0[ω+ω′][x+x̄ω(x)]

∫ ∞

−∞
dse−i[ω+ω

′]sΨ∗(s+ 2M0∆ω(x))Ψ(s− 2M0∆ω(x)),

with ∆ω(x) ≡ x− x̄ω(x). To better connect this expression with the classical case we can make the general assumption
that the wave-packet Ψ of the shell is centered in time v̄0 and mass M̄ . We define Φ such that

Ψ(v0) ≡ Φ(v0 − v̄0)e
−iM̄ v0−v̄0

~ . (30)
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Now

〈
β̂
〉
ωω′

= −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω

∫ ∞

0

dx

√
|ln(x̄ω (x))|

|ln(x)| ei4M0[ω+ω′]xe−i2M0[ω+ω′]∆ω(x)ei
4M̄M0

~
∆ω(x)×

×
∫ ∞

−∞
dse−i[ω+ω

′]sΦ∗(s+ 2M0∆ω(x))Φ(s − 2M0∆ω(x)). (31)

As a possible wave-function for the black hole we consider a Gaussian centered in v̄0 and M̄0 whose v0 representation
is

Ψb (v0) =
1

(πσ2)
1
4

e−
(v0−v̄0)2

2σ2 e−iM̄
v0−v̄0

~ . (32)

Using this wave-function we get

〈
β̂
〉
ωω′

= −2M0e
−i[ω+ω′]v̄0

π

√
ω′

ω

∫ ∞

0

dx

√
|ln(x̄ω (x))|

|ln(x)| ei4M0[ω+ω′]xe−i2M0[ω+ω′]∆ω(x)ei
4M̄M0

~
∆ω(x)×

× 1

(πσ2)
1
2

e−
4M2

0∆ω(x)2

σ2

∫ ∞

−∞
dse−i[ω+ω

′]se−
s2

σ2 .

Computing the Gaussian integral

〈
β̂
〉
ωω′

= −2M0

π

√
ω′

ω
e−i[ω+ω

′]v̄0e−[ω+ω
′]

2 σ2

4

∫ ∞

0

dx

√
|ln(x̄ω (x))|

|ln(x)| ×

× ei4M0[ω+ω′]xei
4M̄M0

~
∆ω(x)e−

4M2
0

σ2 ∆ω(x)2e−i2M0[ω+ω′]∆ω(x). (33)

To check the consistency of this result we can get the classical limit by taking ~ to zero and the width of the packet
in both canonical variables to zero as well,

~ → 0, σ → 0 with
~

σ
→ 0. (34)

In that limit x̄ω(x) = li−1
[
li(x)− ω~

M0

]
→ x and ∆ω(x)

~
→ ω

M0
ln(x). Therefore,

〈
β̂
〉
ωω′

−→
~→0

−4M0

2π

√
ω′

ω
e−i[ω+ω

′]v̄0
∫ ∞

0

dxe4M0i[ω+ω′]xei4M̄ω ln(x) = βωω′

and we recover the classical expression (12).

C. Corrections to Hawking radiation: a first approach

In the previous subsection we obtained the Bogoliubov coefficients in the full quantum treatment and showed that
we recover the classical result in the classical limit (34). Here we would like to study deviations from the classical
behaviour. For it, we will use the expectation values derived in the previous section. This is only a first approximation
since the correct expression involves the expectation value of products of the operators associated with the Bogoliubov
coefficients. We will later see that this implies an important difference and an interesting example of how the quantum
fluctuations may be determinant and lead to significant departures from the mean field approach.
We will consider the example of a Gaussian wave-packet for the wave-function of the shell and arrive to some general

conclusions. Then, to maintain tractable expressions, we will restrict attention to “extreme” cases of the latter: one
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with the Gaussian very peaked in mass (with large dispersion in v0) and the other with the Gaussian very peaked in
v0 (with large dispersion in the mass).
Let us start with some general considerations about the expectation value of the operator associated with the Bo-

goliubov coefficients. Expression (33) has several differences with the classical limit (12), especially in the dependence
with the frequency ω′. Lets focus in the integrand

√
|ln(x̄ω (x))|

|ln(x)| ei4M0[ω+ω′]xei
4M̄M0

~
∆ω(x)e−

4M2
0

σ2 ∆ω(x)2e−i2M0[ω+ω′]∆ω(x).

Taking into account that

∆ω(x) −→
x→0

li−1

(
− ~ω

M0

)

∆ω(x) ∼
x→+∞

~ω

M0
ln(x),

and remembering that

x̄ω(x) = li−1

(
li(x)− ~ω

M0

)
,

we see it vanishes when x→ 0, also
√

|ln(x̄ω(x))|
|ln(x)| is bounded by 1 and finally

e−
4M2

0
σ2 ∆ω(x)2 ∼

x→+∞
e−

4~2

σ2 ln(x)2 .

Therefore the integral has a bound (independent of ω′) given by

∫ ∞

0

dxe−
4M2

0
σ2 ∆ω(x)2 .

This fact, together with the exponential factor e−[ω+ω
′]2 σ2

4 outside the integral, ensures exponential suppression of
large ω′ contributions. The integral also lacks the 1

ω′+ω dependence that the classical expression has since setting

ω′ = ω = 0 inside the integral still gives us a finite result.
One quantity that is extremely sensitive to these differences is the total number of emitted particles per unit

frequency. If we compute it using the expectation value of the Bogoliubov coefficients it will be given by

〈
NAQS
ω

〉
=

∫ ∞

0

dω′
〈
β̂
〉
ωω′

〈
β̂
〉∗
ωω′

(35)

where the superscript “AQS” stands for Approximate Quantum Shell. The reason to call it approximate is that the
correct way to compute it would be with the expectation value of the product of Bogoliubov coefficients instead of the
product of expectation values. We will address this important issue in the next section, but for now we will assume
that fluctuations are small and this is a good approximation.
Given the previous general remarks about Bogoliubov coefficients we conclude

〈
NAQS
ω

〉
is not divergent as in the

classical expression (14) but finite which is a big departure from eternal Hawking radiation.

A more explicit analysis can be performed with a state that is squeezed with large dispersion in the position of
the shell and very peaked in the mass. Specifically, we will consider the case where the shell is in a Gaussian (32)
squeezed state with large dispersion in v0 and small dispersion in M . The leading quantum correction for such states
is obtained by taking the limit ~ → 0 with

∆v0 = σ = constant = ZℓPlanck , Z ≫ 1 ; ∆M = ~/σ. (36)

Even though this limit is different from the one we took following (33) it has similarities with it. The terms inside the
integral go to their classical values but the external factor involving σ now remains. One then finds that (33) goes to:

〈
β̂
〉
ωω′

→ e−[ω+ω
′]2 σ2

4 βωω′ . (37)
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The deviation from the classical Bogoliubov coefficients is only through a multiplicative factor that disappears in
the classical limit where σ → 0. For non-zero σ the factor suppresses frequencies greater than 1/σ. This produces
important corrections to the calculation of Hawking radiation as we already mentioned. However this calculation is
based in an approximation in which we computed the square of the expectation value of the Bogoliubov coefficients
instead of the expectation value of the square. It turns out this approximation breaks down. We present detailed
calculations in the appendix. Here we just outline the calculation.
Estimating the expectation value of the number operator using expression (37) we get,

〈
NAQS
ω

〉
=

∫ ∞

0

dω′
〈
β̂
〉
ωω′

〈
β̂
〉∗
ωω′

=
1

4π2

1

ω

∣∣Γ(1 + 4M̄ωi)
∣∣2 e−4πM̄ω

∫ ∞

0

dω′ω
′e−[ω+ω

′]
2 σ2

2

(ω′ + ω)
2 =

=
1

e8M̄πω − 1

2M̄

π

∫ ∞

0

dω′ω
′e−[ω+ω

′]2 σ2

2

(ω′ + ω)
2 . (38)

This expression has the same pre-factor Hawking radiation has but with M̄ in the role of mass. However, unlike
(14) this is a finite expression for all ω 6= 0 and has a logarithmic divergence when ω → 0. Furthermore, it has a

exp(−ω2σ2

2 ) dependence when ω → +∞ instead of the usual exp(−8M̄πω) for Hawking radiation.

Since we are interested in the behaviour of the Hawking radiation as a function of time it is convenient to introduce
wave packets as we considered before and therefore to compute the number of particles at time un around ωj given
by,

〈NAQS
ωj

〉 = 1

ǫ

∫ (j+1)ǫ

jǫ

∫ (j+1)ǫ

jǫ

dω1dω2e
−un∆ωi

〈
ρAQSω1,ω2

〉
.

Using the results in appendix 2 it can be computed explicitly, yielding,

〈NAQS
ωj

〉 = M̄ǫ

π

1

e8M̄πωj − 1

∫ ∞

1

dy
e−

ω2
j
σ2

2 y

y

{
sin
[
ǫ
2

(
α− 2M̄ ln (y)

)]
ǫ
2

(
α− 2M̄ ln (y)

)
}2

.

Where α is the same quantity defined in equation (17) with M and v0 replaced by their respective expectation values
in the Gaussian state given above. The presence of the factor sin2(a)/a2 and the decreasing exponential imply that
the integral decreases when α grows and also drastically decreases when α < 0. The latter is a result we already
knew from the classical case, but the former is a result of the quantum nature of the black hole since it is not present
if σ = 0. Figure (3) shows the departure from the classical result that appears when one computes the frequency

distribution starting from
〈
β̂
〉
. We can estimate the time of emission for each frequency using both extremes. In the

appendix we also show that the features are robust with respect to the choice of the quantum state by considering
squeezed states with large dispersion in the mass, which is the opposite of the choice we considered here. However, as
we shall see in the next section, the decrease in emission for late time is an artifact of the approximation considered
that neglects the fluctuations of the number of particles.

V. COMPUTING THE EXPECTATION VALUE OF THE DENSITY MATRIX IN THE COMPLETE

QUANTUM TREATMENT

In this section we will obtain an exact expression for the expectation value of the density matrix with the same
technique used to compute the expectation value of Bogoliubov coefficients. From its diagonal terms we can compute
the number of particles produced as a function of frequency.
From expression (27) for the operator associated to a Bogoliubov coefficient we can compute the expectation value

of the density matrix as

〈
ρQSω1ω2

〉
=

∫ ∞

0

dω′
〈
β̂ω1ω′ β̂∗

ω2ω′

〉
.
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FIG. 3: This plot shows the departure from the classical result of NAQS
ωj

/NH
ωj
. We have considered ωj corresponding

to the λ of maximum emission (λm ∼ 16Rs), the frequency interval ǫ = c/Rs and the shell’s position uncertainty
σ = 5Rs × 10−38 (∼ 3lP for Rs = 1km). Note that the time step is 2π/ǫ.

where QS stands for quantum shell. The full expression is

〈
ρQSω1ω2

〉
=

1

(2π)2

∫ ∞

0

dω′ ω′
√
ω1ω2

〈Ψ|
∫ ∫ +∞

−∞
dvdv′

∫ +∞

−∞
dv0 |v0〉 〈v0| θ

(
v̂0 − vÎ

)
e−iω1û(v)−iω′v×

×
∑

J=1,2

∫ +∞

−∞
du |u, J〉 〈u, J |

∫ +∞

−∞
dv′′0 |v′′0 〉 〈v′′0 | θ

(
v̂0 − vÎ

)∫ +∞

−∞
dv′′′0 |v′′′0 〉 〈v′′′0 | θ

(
v̂0 − v′Î

)
×

×
∑

L=1,2

∫ +∞

−∞
du′ |u′, L〉 〈u′, L| eiω2û′(v′)+iω′v′

∫ +∞

−∞
dv′0 |v′0〉 〈v′0| θ

(
v̂0 − v′Î

)
|Ψ〉 .

Here we have considered bases of eigenstates of v̂0 and û and we have omitted the ǫ dependence in û eigenstates.
Identical arguments as the ones used in the appendix allow us to do so. Simplifying the expression we get

〈
ρQSω1ω2

〉
=

1

(2π)2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

−∞
dvdv′dv0dv

′
0dv

′′
0dv

′′′
0 θ (v0 − v) θ (v′′0 − v) θ (v′′′0 − v′) θ (v′0 − v′) δ (v′′0 − v′′′0 )×

×
∫ +∞

−∞
dudu′e−iω1u−iω′v

∑

J=1,2

ψu,J(v0)ψ
∗
u,J (v

′′
0 )e

iω2u
′+iω′v′

∑

L=1,2

ψu′,L(v
′′′
0 )ψ∗

u′,L(v
′
0)Ψ

∗(v0)Ψ(v′0),

The change of variables x1 = v0−v
4M0

, x2 =
v′′0 −v
4M0

, x3 =
v′′′0 −v′
4M0

y x4 =
v′0−v′
4M0

take us to

〈
ρQSω1ω2

〉
=

(4M0)
4

(2π)2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

−∞
dvdv′

∫ +∞

0

dx1dx2dx3dx4δ (4M0 [x2 − x3] + v − v′)×

×
∫ +∞

−∞
dudu′e−iω1u−iω′v

∑

J=1,2

ψu,J (x1)ψ
∗
u,J(x2)e

iω2u
′+iω′v′

∑

L=1,2

ψu′,L(x3)ψ
∗
u′,L(x4)Ψ

∗(4M0x1 + v)Ψ(4M0x4 + v′).



15

Using expressions (25) and (26) for the eigenfunctions of the û operator

〈
ρQSω1ω2

〉
=

(4M0)
4

(16π2~)2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

−∞
dvdv′

∫ +∞

0

dx1dx2

∫ +∞

0

dx3dx4δ (4M0 [x2 − x3] + v − v′)

∫ +∞

−∞
dudu′×

×e−iω1u−iω′veiω2u
′+iω′v′ exp

(
iM0

~
(u− v) [li(x1)− li(x2)]

)
exp

(
iM0

~
(u′ − v′) [li(x3)− li(x4)]

)
√
|ln(x1)| |ln(x2)| |ln(x3)| |ln(x4)|

Ψ∗(4M0x1+v)Ψ(4M0x4+v
′).

Integrating in u y u′ we get,

〈
ρQSω1ω2

〉
=

(4M0)
4

(8π~)2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

−∞
dvdv′

∫ +∞

0

dx1dx2

∫ +∞

0

dx3dx4δ (4M0 [x2 − x3] + v − v′)×

×e−i[ω′+ω1]vei[ω
′+ω2]v′ δ

(
ω1 − M0

~
[li(x1)− li(x2)]

)
δ
(
ω2 +

M0

~
[li(x3)− li(x4)]

)
√
|ln(x1)| |ln(x2)| |ln(x3)| |ln(x4)|

Ψ∗(4M0x1 + v)Ψ(4M0x4 + v′).

Since li is invertible in (0, 1) and in (1,+∞) we can integrate in x2 and x3 to get

〈
ρQSω1ω2

〉
=

(2M0)
2

π2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

−∞
dvdv′

∫ +∞

0

dx1

∫ +∞

0

dx4δ (4M0 [x2(x1)− x3(x4)] + v − v′)×

×e−i[ω′+ω1]vei[ω
′+ω2]v′

√
|ln(x2(x1)| |ln(x3(x4))|

|ln(x1)| |ln(x4)|
Ψ∗(4M0x1 + v)Ψ(4M0x4 + v′),

where x2 (x1) = li−1
[
li (x1)− ω1~

M0

]
, x3 (x4) = li−1

[
li (x4)− ω2~

M0

]
and we have used that ∂tli (t) =

1
|ln(t)| . We redefine

x = x1, x
′ = x4 and then

〈
ρQSω1ω2

〉
=

(2M0)
2

π2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

−∞
dvdv′

∫ +∞

0

dxdx′δ (4M0 [x̄ω1(x) − x̄ω2(x
′)] + v − v′)×

×e−i[ω′+ω1]vei[ω
′+ω2]v′

√
|ln(x̄ω1(x))| |ln(x̄ω2(x

′))|
|ln(x)| |ln(x′)| Ψ∗(4M0x+ v)Ψ(4M0x

′ + v′).

Integrating in v′

〈
ρQSω1ω2

〉
=

(2M0)
2

π2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

0

dxdx′e−i4M0[ω′+ω2]x′

ei4M0[ω′+ω2]xei4M0[ω′+ω2]∆ω1ω2(x,x
′)×

×
√

|ln(x̄ω1 (x))| |ln(x̄ω2(x
′))|

|ln(x)| |ln(x′)|

∫ +∞

−∞
dve−i[ω1−ω2]vΨ∗(4M0x+ v)Ψ(4M0x+ v + 4M0∆ω1ω2(x, x

′))

where ∆ω1ω2(x, x
′) = ∆ω2(x

′)−∆ω1(x). Now, changing variable v to s = v + 4M0x+ 2M0∆ω1ω2(x, x
′)

〈
ρQSω1ω2

〉
=

(2M0)
2

π2

∫ ∞

0

dω′ ω′
√
ω1ω2

∫ +∞

0

dxdx′e−i4M0[ω′+ω2]x′

ei4M0[ω′+ω1]xei4M0[ω′+ω̄]∆ω1ω2(x,x
′)×
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×
√

|ln(x̄ω1(x))| |ln(x̄ω2(x
′))|

|ln(x)| |ln(x′)|

∫ +∞

−∞
dse−i[ω1−ω2]sΨ∗(s− 2M0∆ω1ω2(x, x

′))Ψ(s+ 2M0∆ω1ω2(x, x
′))

where ω̄ = ω1+ω2

2 . Finally, using definition (30) we get

〈
ρQSω1ω2

〉
=

(2M0)
2
e−i[ω1−ω2]v̄0

π2
√
ω1ω2

∫ ∞

0

dω′ω′
∫ +∞

0

dxdx′e−i4M0[ω′+ω2]x′

ei4M0[ω′+ω1]xei4M0[ω′+ω̄]∆ω1ω2(x,x
′)×

× e−i
4M0M̄

~
∆ω1ω2(x,x

′)

√
|ln(x̄ω1(x))| |ln(x̄ω2(x

′))|
|ln(x)| |ln(x′)|

∫ +∞

−∞
dse−i[ω1−ω2]sΦ∗(s− 2M0∆ω1ω2(x, x

′))Φ(s+ 2M0∆ω1ω2(x, x
′)).

(39)
where ∆ω = ω2 − ω1. Taking again the Gaussian wavepacket (32) as an example, we get

〈
ρQSω1ω2

〉
=

(2M0)
2
ei∆ωv̄0e−

∆ω2σ2

4

π2√ω1ω2

∫ ∞

0

dω′ω′
∫ +∞

0

dxdx′ei4M0[ω′+ω1]xe−i4M0[ω′+ω2]x′×

× ei4M0[ω′+ω̄]∆ω1ω2(x,x
′)e−i

4M0M̄

~
∆ω1ω2 (x,x

′)

√
|ln(x̄ω1 (x))| |ln(x̄ω2(x

′))|
|ln(x)| |ln(x′)| e−

4M2
0∆ω1ω2 (x,x′)2

σ2 . (40)

This is the final result for the expectation value of the density matrix in the complete quantum treatment.
From this expression we can compute the classical limit (34). In that limit x̄ω1(x) → x, x̄ω2(x

′) → x′ and
∆ω1ω2(x,x

′)

~
→ ω2 ln(x′)−ω1 ln(x)

M0
. Therefore,

〈
ρQSω1ω2

〉
=

(2M0)
2
ei∆ωv̄0

π2
√
ω1ω2

∫ ∞

0

dω′ω′
∫ +∞

0

dxei4M0[ω′+ω1]xei4M̄ω1 ln(x)

∫ +∞

0

dx′e−i4M0[ω′+ω2]x′

e−i4M̄ω2 ln(x′)

which is the classical expression for the density matrix

ρCSω1,ω2
=

∫ ∞

0

dω′βω1ω′β∗
ω2ω′

with βωω′ given by (12).
We analyze the consequences of these calculations in the next section.

VI. CORRECTIONS TO HAWKING RADIATION DUE TO THE QUANTUM BACKGROUND

We have studied the corrections to Hawking radiation using the approximate expression (44) discussed in appendix
2. Now we can do the same calculation from the exact expression (40). As in the previous section we begin with
some general remarks about the result for a Gaussian state and then explore the same squeezed states we considered
before.
Unlike the density matrix constructed from (33), expression (40) has a double integral that can not be separated

in x and x′ variables. But the most significant differences are the missing ω′ dependence in the exponential

e−
∆ω2σ2

4 ,

and the exponential inside the double integral

e−
4M2

0 [∆ω1ω2 (x,x′)]2

σ2 .

The first point significantly changes the ω′ integral. The second expression does not make the integrand fall rapidly
when x, x′ → +∞ because the exponential remains constant in the directions give by the equation

∆ω1ω2(x, x
′) = ∆ω2(x

′)−∆ω1(x) = const.

As we will see in better detail with the following examples, the consequence of the above remarks are that radiation
does not end at a finite time as predicted by evaluations of the expectation value of Bogoliubov coefficients. However,
the significant difference between

〈
NQS
ω

〉
and

〈
NAQS
ω

〉
is also generically associated with the appearance of fluctuations

in the Bogoliubov coefficients at finite time. We will see that may leads to new correlations in the Hawking radiation
that are not present in the classical calculation.
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A. States peaked in the mass recover the classical results

Let us consider first the case of a squeezed state with large dispersion in the position of the shell. Taking the limit
(36),

〈
ρQSω1ω2

〉
→ e−

∆ω2σ2

4

〈
ρCSω1ω2

〉
. (41)

It is clear that there are no corrections to the total number of particles
〈
NQS
ω

〉
=
〈
ρQSωω

〉
since the exponential

factor is one if ω1 = ω2. Also, for late times
〈
ρCSω1ω2

〉
is diagonal so the are no non-vanishing correlations for different

frequencies. We therefore recover the classical results in their entirety for the particular case of squeezed states we
consider that are highly peaked in the mass and with large dispersion in the position of the shell.

B. States with dispersion in the mass

To illustrate this point let us consider now a squeezed state with large dispersion in the mass of the shell. To
compare with the previous result let us compute the number of particles taking the limit (47). We get,

〈
NQS
ω

〉
=
〈
ρQSωω

〉
→ (2M0)

2

π2ω

∫ ∞

0

dω′ω′
∫ +∞

0

dxdx′e−ǫ(x+x
′)e−i4M0[ω′+ω](x′−x)e

−i4M̄ω ln
(

x′

x

)

e
−4∆M2ω2 ln

(

x′

x

)2

(42)

where we introduced the same ǫ regulator used for the integration of Bogoliubov coefficients. The change of variables
x = r cos(θ), x′ = r sin(θ) allow us to compute the double integral as

∫ π/2

0

dθ

∫ +∞

0

rdre−ǫr[sin(θ)+cos(θ)]e−i4M0[ω′+ω]r[sin(θ)−cos(θ)]e−i4M̄ω ln[tan(θ)]e−4∆M2ω2 ln[tan(θ)]2 .

The r integral can be computed, leading to,

− 1

[ω′ + ω]
2
(4M0)2

lim
ǫ→0

∫ π/2

0

dθ
e−i4M̄ω ln[tan(θ)]e−4∆M2ω2 ln[tan(θ)]2

[
tan(θ)−1
tan(θ)+1 − iǫ

]2
1 + tan(θ)2

[1 + tan(θ)]
2 ,

where we have redefined ǫ conveniently. A final change of variable y = ln [tan(θ)] turns the integral into

− 1

[ω′ + ω]
2
(4M0)2

lim
ǫ→0

∫ +∞

−∞
dy

1

2 cosh(y/2)

e−i4M̄ωye−4∆M2ω2y2

[tanh(y/2)− iǫ]
2 .

This expression can be rewritten as

− 1

4 [ω′ + ω]
2
(4M0)2

[
lim
ǫ→0

∫ +∞

−∞
dy

1

cosh2(y/2)

e−i4M̄ωy

[tanh(y/2)− iǫ]
2 −

∫ +∞

−∞
dye−i4M̄ωy 1− e−4∆M2ω2y2

sinh2(y/2)

]
.

Now the first integral can be computed by contour integration to obtain the classical result (14) with the expectation
value M̄ in the role of mass,

lim
ǫ→0

∫ +∞

−∞
dy

1

cosh2(y/2)

e−i4M̄ωy

[tanh(y/2)− iǫ]
2 =

−32M̄ωπ

e8M̄ωπ − 1

The second term,

f(M̄, ω,∆M) ≡
∫ +∞

−∞
dye−i4M̄ωy 1− e−4∆M2ω2y2

sinh2(y/2)
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is a finite correction which vanishes in the classical limit. Regarding the dependence in ω, unlike the leading term it
vanishes for ω → 0 and also as the Fourier transform of a smooth and rapidly falling function it falls rapidly with
ω → +∞. Finally,

〈
NQS
ω

〉
=

[
1

e8M̄ωπ − 1
+
f(M̄, ω,∆M)

32πωM̄

]
4M̄

2π

∫ ∞

0

dω′ ω′

[ω′ + ω]
2 .

This expression is clearly divergent, with the same divergent integral that appears in the classical case but with a
small departure from thermality given by f . It could be made finite considering packets as we did before. Notice that
the expression has the thermal spectrum plus a term that only vanishes when there are no fluctuations in the mass.
The extra term essentially depends on the Fourier transform of the initial state of the shell and suggests that the
complete information of the initial state could be retrieved from the radiation. Recall that in order to recover finite
results one needs to compute the number expectation value for wave packets localized in time and frequency. We are
therefore led to an expression that departs more and more from ordinary Hawking radiation when the uncertainty in
the mass increases.

VII. COHERENCE

Hawking radiation stemming from a classical black hole is incoherent. This manifests itself in the vanishing of the
off-diagonal elements of the density matrix in the frequency basis. We will see that the density matrix of the Hawking
radiation of the quantum space-time of the collapsing null shell has non-vanishing off-diagonal coherence terms which
gives additional evidence that it contains quantum information from the initial state of the shell that gave rise to the
black hole. While they vanish for standard Hawking radiation on classical space-times they are nonvanishing here.
Starting from expression (40) for the density matrix of a Gaussian packet we already discussed the case of a state

extremely peaked in mass and we found no corrections to the number of particles and no correlations between different
frequencies for late time radiation. On the other hand we studied the somewhat opposite case of a state with dispersion
in the mass and well defined position. For that state we found corrections to the number of particles and now we will
study corrections to density matrix ρCSω1,ω2

due to these fluctuations. We will only calculate corrections to the late

time density matrix ρHω1,ω2
. In this limit the classical matrix is diagonal and therefore the only source of non diagonal

terms will be from the quantum nature of the shell. In the limit (47) the late time density matrix takes the form

〈
ρQSω1ω2

〉
=

(2M0)
2
ei∆ωv̄0

π2

√
ω̄2 − ∆ω2

4

∫ ∞

0

dω′ω′
∫ ∫ +∞

0

dxdx′ei4M0ω
′(x−x′)e−i4M̄ω̄ ln( x′

x
)e−i2M̄∆ω ln(x′x)×

×e−ǫ(x+x′)e
−4∆M2ω̄2

[

ln
(

x′

x

)

+∆ω
2ω̄ ln(x′x)

]2

,

where we introduced ∆ω = ω2 − ω1 , ω̄ = ω1+ω2

2 and the regulator ǫ as before. With the change of variables
x = r cos(θ), x′ = r sin(θ) the double integral in x, x′ becomes,

∫ π/2

0

dθe−i4M̄ω̄ ln[tan(θ)]e−i2M̄∆ω ln[sin(θ)cos(θ)]e−4∆M2ω̄2[ln(tan(θ))2+∆ω
ω̄

ln(tan(θ)) ln(cos(θ) sin(θ))]×

×
∫ +∞

0

rdre−i4M0ω
′[sin(θ)−cos(θ)]re−i4M̄∆ω ln(r)e−ǫ[sin(θ)+cos(θ)]re−8∆M2ω̄∆ω ln[tan(θ)] ln(r),

where we are using the same ∆ω << ω̄ approximation used for the study of the classical case in order to simplify the
calculation.
The r integral can be computed using formula (6) to obtain

∫ π/2

0

dθΓ
(
2− 8∆M2ω̄∆ω ln [tan(θ)]− 4M̄∆ωi

)
e−i4M̄ω̄ ln[tan(θ)]e−i2M̄∆ω ln[sin(θ)cos(θ)]×
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×e−4∆M2ω̄2[ln(tan(θ))2+∆ω
ω̄

ln(tan(θ)) ln(cos(θ) sin(θ))]e−(2−8∆M2ω̄∆ω ln[tan(θ)]−4M̄∆ωi) ln(ǫ+4M0iω
′[sin(θ)−cos(θ)]).

Another change of variable y = ln (tan(θ)) simplifies the expression to

−e
4M̄∆ωi ln(4M0ω

′)e−2M̄∆ωπ

(4M0ω′)2

∫ +∞

−∞
dyΓ

(
2− 8∆M2ω̄∆ωy − 4M̄∆ωi

)
e−i4M̄ω̄ye−4∆M2ω̄2y2×

×e−(2−8∆M2ω̄∆ωy−4M̄∆ωi) ln(sinh(y/2)−iǫ)e8∆M
2ω̄∆ωy ln(4M0ω

′)ei4π∆M
2ω̄∆ωy.

Using again the approximation ∆ω << ω̄ the integral can be further simplified to

−e
4M̄∆ωi ln(4M0ω

′)e−2M̄∆ωπ

(4M0ω′)2
Γ
(
2− 4M̄∆ωi

) ∫ +∞

−∞
dye−i4M̄ω̄ye−(2−4M̄∆ωi) ln(sinh(y/2)−iǫ)×

×e−4∆M2ω̄2y2e8∆M
2ω̄∆ωy ln(4M0ω

′).

The last two terms are responsible for the corrections. The Gaussian changes the profile of the number of particles
as we discussed before and the other exponential introduces non diagonal terms in the density matrix. Without these
terms, the integral in ω′ produces the δ(4M̄∆ω) dependence seen in Hawking radiation.

VIII. SUMMARY AND OUTLOOK

We have studied the Hawking radiation emitted by a collapsing quantum shell using the geometric optics approxi-
mation. After reviewing the calculation of the radiation for a classical collapsing null shell, we proceeded to consider
a quantized shell with fluctuating horizons. A new element we introduce is to take into account the canonically
conjugate variables describing the shell, its mass and the position along scri minus from which it is incoming. In order
to allow arbitrary superposition of shells with different Schwarzschild radii the calculation is also performed without
assuming from the beginning that we are considering rays that are close to the horizon.
We find the following results:
1) Given that we deal with a quantum geometry, the Bogoliubov coefficients become quantum operators acting on

the states of the geometry. We discover that for computing the Hawking radiation it is not enough to assume the
mean field approximation and consider the square of the expectation value of the Bogoliubov coefficients evaluated on
the quantum geometry. Such a calculation misleadingly suggests the Hawking radiation cuts off after a rather short
time (the “scrambling time”). One needs to go beyond mean-field and consider the expectation value of the square of
the Bogoliubov coefficients to see that the radiation continues forever and that there are departures from thermality
that depend on the initial state of the shell.
2) The resulting Hawking radiation exhibits coherences of the density matrix, with non vanishing off-diagonal

elements for different frequencies that vanish for the usual calculation on a classical space-time. The new correlations
that arise in the quantum case have an imprint of the details of the initial quantum state of the shell. This indicates
that at least part of the information that went into creating the black hole can be retrieved in the Hawking radiation.
It should be kept in mind that our calculations do not include back reaction, so to have information retrieval at this
level is somewhat surprising.
3) The non-trivial correlations can be made to vanish taking a shell with arbitrarily small deviations in the ADM

mass. However, such a shell would have large uncertainties in its initial position. Therefore such a quantum state
would not correspond to a semi-classical situation. A semi-classical shell will generically have uncertainty in both the
initial position and the ADM mass and will therefore have non-trivial corrections to the Hawking radiation through
which information can be retrieved.
In our computations we used three simplifying assumptions which should be improved upon: First, we worked in

the geometric optics approximation which neglects back-scattering. Moreover, no back-reaction was considered. This
has two implications. On one hand, information can fall into the black hole and also leak out, violating no-cloning, in
particular the quantum state of the shell is not modified by the Hawking radiation, which nevertheless gains an imprint
of its characteristics. Moreover, the lack of back reaction eliminates possible decoherence effects for the shell, which
may also lead to information leakage. Finally, the collapsing system is a very simple one: a massless shell. However,
the idea that non-trivial commutation relations between some indicator of the position of the collapsing system and
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its ADM mass are expected generically [12] and therefore effects similar to the ones found here are expected in other
collapsing systems. All in all our calculations suggests that some level of “drama at the horizon” is taking place that
allows to retrieve information from the incoming quantum state.
Summarizing, using the simple example of collapsing quantum shells to model a fluctuating horizon we have shown

that non-trivial quantum effects can take place, which in particular may allow to retrieve information from the
incoming quantum state at scri plus. A more careful study is required to determine if the complete information of
the incoming state can be retrieved and if the model generalizes to more complicated models of horizon formation.

Appendix 1: Integrals on I
− that contribute in the case of a quantum black hole

The generic expression of interest for the Bogoliubov coefficient (28) is,

〈
β̂
〉
ωω′

= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ∞

0

∫ ∞

0

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)

∫ ∞

−∞
due−iωu

∑

I=1,2

ψIu(x1)ψ
I∗
u (x2)

and the expressions for ψIu(x) are (25) and (26). Let us show that the integrals,

∫ ǫ

0

∫ ǫ

0

dx1dx2 +

∫ ǫ

0

∫ 1

ǫ

dx1dx2 +

∫ 1

ǫ

∫ ǫ

0

dx1dx2

do not contribute in the limit ǫ→ 0.

1. The integral
∫ ǫ
0

∫ ǫ
0 dx1dx2 is

〈
β̂
〉
ωω′

= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

∫ ǫ

0

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

∫ ǫ

0

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)
1

4~ |ln(ǫ)|δ
(
M0

~

x1 − x2
ln(ǫ)

− ω

)
e−iωv =

= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

∫ ǫ

0

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)
1

4M0
δ

(
x1 − x2 −

ω~ ln (ǫ)

M0

)
e−iωv.

This integral vanishes because one can choose ǫ small, in such a way that the argument of the Dirac delta never
vanishes.

2. The integral
∫ ǫ
0

∫ 1

ǫ dx1dx2 is

〈
β̂
〉
ωω′

= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

∫ 1

ǫ

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)

∫ ∞

−∞
due−iωu

exp
(
iM0

~
(u − v) x1

ln(ǫ)

)
exp

(
− iM0

~
(u− v)li (x2)

)

8π~
√
|ln(x)| |ln(ǫ)|

=
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= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

∫ 1

ǫ

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)
δ
(
M0

~

x1−ǫ
ln(ǫ) − M0

~
[li (x2)− li (ǫ)]− ω

)

4~
√
|ln(x)| |ln(ǫ)|

e−iωv =

= − (4M0)
2

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

∫ 1

ǫ

dx1dx2Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 + v)
δ
(
x1−ǫ
ln(ǫ) − li (x2) + li (ǫ)− ω~

M0

)

4M0

√
|ln(x2)| |ln(ǫ)|

e−iωv =

= −4M0

2π

√
ω′

ω
lim
ǫ→0

∫ ∞

−∞
dve−iω

′v

∫ ǫ

0

dx1Ψ
∗(4M0x1 + v)×

×Ψ(4M0x2 (x1) + v)

√
|ln(x2)|
|ln(ǫ)| e

−iωv

with x2(x1) = li−1
(
x1−ǫ
ln(ǫ) + li (ǫ)− ω~

M0

)
. In the integrand

√
|ln(x2)|
|ln(ǫ)| is bounded above by 1 since x2 ∈ (ǫ, 1) and

Ψ is a wave-packet that we can take to be bounded in all the range of its variable. Therefore the integral
∫ ǫ
0 dx1

tends to zero when ǫ→ 0.

3. The integral
∫ 1

ǫ

∫ ǫ
0 dx1dx2 yields the same result that

∫ ǫ
0

∫ 1

ǫ dx1dx2 since the only change is to substitute x1 for
x2.

Appendix 2

Here we present details of the evaluation of the square of the expectation value of the Bogoliubov coefficients as an
approximation to the number of particles produced.
If we estimate the expectation value of the number operator using expression (37) we get,

〈
NAQS
ω

〉
=

∫ ∞

0

dω′
〈
β̂
〉
ωω′

〈
β̂
〉∗
ωω′

=
1

4π2

1

ω

∣∣Γ(1 + 4M̄ωi)
∣∣2 e−4πM̄ω

∫ ∞

0

dω′ω
′e−[ω+ω

′]2 σ2

2

(ω′ + ω)
2 .

Changing variable to y = [ω + ω′]2 σ
2

2 ,

〈
NAQS
ω

〉
=
M̄

π

1

e8M̄πω − 1

∫ ∞

ω2σ2

2

dy

(
y−1 − ωσ√

2
y−3/2

)
e−y =

=
M̄

π

1

e8M̄πω − 1

∫ ∞

ω2σ2

2

dy
e−y

y
− ωσ√

2

∫ ∞

ω2σ2

2

dyy−1−1/2e−y =

=
M̄

π

1

e8M̄πω − 1

[
−Ei

(
−ω

2σ2

2

)
− ωσ√

2
Γ

(
−1

2
,
ω2σ2

2

)]
,

where Ei is the exponential integral and Γ (s, x) is the upper incomplete Gamma function. Taking into account the
identities Γ (s+ 1, x) = sΓ (s, x) + xse−x and Γ

(
1
2 , x
)
=

√
π erfc (x), with erfc the complementary error function, we

get

〈NAQS
ω 〉 = M̄

π

1

e8M̄πω − 1

[
−Ei

(
−ω

2σ2

2

)
+ 2

{
ωσ√
2

√
π erfc

(
ωσ√
2

)
− e−

ω2σ2

2

}]
, (43)
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which is finite for ω 6= 0 and is suppressed as e−
ω2σ2

2 for ω → +∞ (exhibiting in this approximation a decay that is
not present in ordinary thermal radiation). In fact, the total radiated energy would be finite since the integral

E =

∫ ∞

0

dω~ω
〈
NAQS
ω

〉
,

is convergent.
In the previous calculation we do not have information about the dependence of intensity of the radiation as a

function of time nor its luminosity, which could be very relevant since the energy loss by the black hole leads to
increased radiation if one were to take into account back-reaction in the calculations.
As in the classical case (15) we start by computing the density matrix

〈
ρAQSω1,ω2

〉
=

∫ ∞

0

dω′ 〈β〉ω1ω′ 〈β〉∗ω2ω′ =
1

4π2
√
ω1ω2

e−i(ω1−ω2)v̄0Γ
(
1 + 4M̄ω1i

)
Γ
(
1− 4M̄ω2i

)
e−2πM̄ [ω1+ω2]×

×
∫ ∞

0

dω′ω
′e

−
{

[ω1+ω
′]

2
+[ω2+ω

′]
2
}

σ2

4

(ω′ + ω1) (ω′ + ω2)
e−4M̄i[ω1 ln(4M0[ω′+ω1])−ω2 ln(4M0[ω′+ω2])], (44)

with the same approximation used to compute its diagonal elements (the number of particles emitted). We assume
ω1 and ω2 are close and we expand in ∆ω = ω2 − ω1 ≪ ω1 and use ω̄ = ω1+ω2

2 . We obtain,

〈
ρAQSω1,ω2

〉
=

2M̄

π

1

e8M̄πω̄ − 1
ei∆ωv̄0

∫ ∞

0

dω′ω
′e−[ω̄+ω

′]2 σ2

2

(ω̄ + ω′)2
e4M̄i∆ω ln(4M0[ω′+ω̄]) +O (∆ω) .

Changing variable to y =
[ω̄+ω′]

2

ω̄2 we go to

〈
ρAQSω1,ω2

〉
∼ M̄

π

1

e8M̄πω̄ − 1
ei∆ωv̄0e4M̄i∆ω ln(4M0ω̄) 1

2

∫ ∞

1

dy
(
y−1 − y−3/2

)
e−y

ω̄2σ2

2 e2M̄i∆ω ln(y).

Finally,

〈
ρAQSω1,ω2

〉
∼ lim

δ→0

M̄

π

1

e8M̄πω̄ − 1
ei∆ωv̄0e4M̄i∆ω ln(4M0ω̄)

1

2
×

×
[
e(
δ−2M̄i∆ω) ln

(

ω̄2σ2

2

)

Γ

(
−δ + 2M̄i∆ω,

ω̄2σ2

2

)
− e(

1
2−2M̄i∆ω) ln

(

ω̄2σ2

2

)

Γ

(
−1

2
+ 2M̄i∆ω,

ω̄2σ2

2

)]
.

The divergent part of the density matrix when ∆ω → 0 is due to the first term so,

〈
ρAQSω1,ω2

〉
∼ lim

δ→0

M̄

2π

1

e8M̄πω̄ − 1
ei∆ωv̄0e4Mi∆ω ln(4M0ω̄)e(

δ−2M̄i∆ω) ln
(

ω̄2σ2

2

)

Γ

(
−δ + 2M̄i∆ω,

ω̄2σ2

2

)
.

Now we can calculate the number of particles at time un and around ωj as

〈NAQS
ωj

〉 = 1

ǫ

∫ (j+1)ǫ

jǫ

∫ (j+1)ǫ

jǫ

dω1dω2e
−un∆ωi

〈
ρAQSω1,ω2

〉
.

To carry out the integrals we change variables from ω1,2 to ∆ω and ω̄. The result is,

〈NAQS
ωj

〉 ∼ M̄

2π

1

e8M̄πωj − 1
lim
δ→0

∫ ǫ

−ǫ
d (∆ω)

[
1− |∆ω|

ǫ

]
e
δ ln

(

ω2
j
σ2

2

)

e−iφ∆ωΓ

(
−δ + 2M̄i∆ω,

ω2
jσ

2

2

)
,

with φ =
[[

2πn
ǫ

]
− v̄0 + 4M̄ ln

(
ωjσ√

2

)
− 4M̄ ln (4M0ωj)

]
. In order to interpret the result we use an integral represen-

tation of the incomplete Gamma function and reverse the integration order. Then,

〈NAQS
ωj

〉 = M̄

2π

1

e8M̄πωj − 1
lim
δ→0

e
δ ln

(

ω2
j
σ2

2

)∫ ∞

ω2
j
σ2

2

dt
e−t

t

∫ ǫ

−ǫ
d (∆ω)

[
1− |∆ω|

ǫ

]
e−i∆ω[φ−2M̄ ln(t)]e−δ ln(t) =
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=
M̄ǫ

π

1

e8M̄πωj − 1
lim
δ→0

e
δ ln

(

ω2
j
σ2

2

)∫ ∞

ω2
j
σ2

2

dt
e−[t+δ ln(t)]

t

{
sin
[
ǫ
2

(
φ− 2M̄ ln (t)

)]
ǫ
2

(
φ− 2M̄ ln (t)

)
}2

.

The change of variable y = t/
ω2

jσ
2

2 clarifies the interpretation of the integral. We get,

〈NAQS
ωj

〉 = M̄ǫ

π

1

e8M̄πωj − 1
lim
δ→0

∫ ∞

1

dy
e−

ω2
j
σ2

2 ye−δ ln(y)

y

{
sin
[
ǫ
2

(
α− 2M̄ ln (y)

)]
ǫ
2

(
α− 2M̄ ln (y)

)
}2

,

where α is the same quantity defined in (17) with M and v0 replaced by M̄ and v̄0. Due to the decreasing exponential
we can take the limit in δ → 0 getting,

〈NAQS
ωj

〉 = M̄ǫ

π

1

e8M̄πωj − 1

∫ ∞

1

dy
e−

ω2
j
σ2

2 y

y

{
sin
[
ǫ
2

(
α− 2M̄ ln (y)

)]
ǫ
2

(
α− 2M̄ ln (y)

)
}2

.

The presence of a factor sin2(a)/a2 and the decreasing exponential imply that the integral decreases when α grows
and also drastically decreases when α < 0. The latter is a result we already knew from the classical case, but the
former is a result of the quantum nature of the black hole since it is not present if σ = 0. Figure (3) shows the

departure from the classical result that appears when one computes the frequency distribution starting from
〈
β̂
〉
. We

can estimate the time of emission for each frequency using both extremes. On the one hand the start of the emission
happens when α− 2M̄ ln (y) = 0 for y ∼ 1 that is,

ui − v̄0 − 4M̄ ln (4M0ωj) ∼ 0.

We can estimate the end of the emission when α− 2M̄ ln (y) = 0 for y ∼ 2
ω2

j
σ2 since larger y′s are suppressed by the

exponential. For ω >
√
2/σ this value of y is outside the integration range and the total integral is suppressed. For

ω <
√
2/σ we find the condition,

uf − v̄0 − 4M̄ ln (4M0ωj)− 2M̄ ln

(
2

ω2
jσ

2

)
∼ 0,

or,

uf − v̄0 − 4M̄ ln

(
4M0

√
2
1

σ

)
∼ 0.

Note that the time for the end of the emission does not depend on the frequency. Finally,

∆t = uf − ui ∼ 4M̄ ln

(
4M0

√
2
1

σ

)
− 4M̄ ln (4M0ωj) = −4M̄ ln

(
σωj√
2

)
.

Restoring the appropriate dimensions,

∆t ∼ −2Rs
c

ln

(√
2πσ

λj

)
, (45)

where Rs is the Schwarzschild radius and λj is the wavelength of frequency ωj. Recall we are considering frequencies

such that ωj <
√
2/σ so that ∆t > 0. For ωj >

√
2/σ the radiation is suppressed at all times. One can see that if one

integrates
∑

j ~ωj

〈
NAQS
ωj

〉
with that time interval one obtains a total emitted energy that is finite. Note that this

result corresponds to a deep quantum regime since we are not considering σ to be very small.
Interestingly, the time (45) corresponds, for the dominant wavelengths of emission (RS), with the scrambling time

[9]

tscr ∼ Rs ∗ ln
(

Rs
ℓPlanck

)
. (46)
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Quantum information arguments indicate this is precisely the time of information retrieval [10].
It should be noted that the result we are obtaining is not due to the choice of a particular quantum state. To

demonstrate this, let us now consider a somehow opposite state to the one considered previously: the case where the
shell is in a Gaussian (32) squeezed state with large dispersion in M and small dispersion in v0. The leading quantum
correction for such states is obtained by taking the limit ~ → 0 with

∆M = constant = ZℓPlanck , Z ≫ 1 ; ∆v0 = ~/∆M. (47)

In this limit (33) goes to:

〈
β̂
〉
ωω′

→ −2M0

π

√
ω′

ω
e−i[ω+ω

′]v̄0
∫ ∞

0

dxei4M0[ω+ω′]xei4M̄ω ln(x)e−4∆M2ω2Ln(x)2 (48)

If we extend the integrand in this expression to 0 for x < 0 we recognize the integral as the Fourier transform
in 4M0 [ω

′ + ω] of a smooth and rapidly falling function. This implies the Bogoliubov coefficient is a rapidly falling
function of 4M0 [ω

′ + ω]. It also vanishes for ω′ = 0 so the total number of emitted particles,

〈
NAQS
ω

〉
=

∫ ∞

0

dω′
〈
β̂
〉
ωω′

〈
β̂
〉∗
ωω′

is finite for ω 6= 0 as in the previous case.
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