


2. TWO-PARTICLE DISTRIBUTIONS

The number of particles produced in the forward and backward
hemispheres is summarized in Table IV, which shows that the relative
numbers of particles produced in the two hemispheres is constant from 67
GeV up to 800 GeV. It is evident that the number of particles produced in
each hemisphere scales, i.e., is approximately constant with energy when

divided by Bs . This indicates that n_ and EB depend on energy in the

F
same way as Es' i.e. proportional to In{S) as was shown in Chapter V.

Previously the LRC parameter was defined as the slope b of the
equation connecting HB(Ef) to ne(ng). e.g. FB = bng + a. This parameter b
has been studied in proton-proton collisions at the ISR and SPS[48] in
proton-emulsion data[23] and in the Dual Parton Mode1l22]. The observed
long range correlation is much higher in proton-nucleus collisions than in
proton-proton collisions. This is demonstrated in Figure 39 where values
of b for proton-proton and proton-emulsion collisions are shown as a
function of the c.m. energy, vs. Even at the SPS energy of

/s = 540 GeV, b = 0.4 which is only one half of the value observed in
proton-emulsion data at much lower energies.

In the context of the Dual Parton Model this long range correlation
increases with energy since it depends on the dispersion D which is
increasing with energy (see Chapter V). In addition, the mode}
predictions are target mass dependent. for example, this model predicts
for 40Ca that b increases from 0.20 at 400 GeV to b = 0.39 at 1000 GeV.
Similar behavior holds for other target nuclei, as shown in Table V. The
authors of this model calculate the long range correlation for small but
widely separated n windows of * 1 unit to eliminate the effects of short

range correlations. This is why their values of b are smaller than the
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values just quoted for our data. If n windows are selected as in the DPM
model one obtains b = 0.41 + ,03. This value is consistent with the

model, as seen in Table V.



Table IV.

Energy
67 GeV
200 GeV
800 GeV

Table V.

Source

89

Number of particles produced in forward/backward hemisphere.

N8
5.31 ¢
7.19 +

-+

10.79 ¢+

Dual Parton Model

pCa
pCa
pXe
pXe
our data:

pEm

n
0.14 4.50
0.21 6.29

0.35 8.85

0.20
0.39
0.27

0.56

F

EJ

-

i+

0.09
0.10

0.29

"r /Mg "g/"s Ny /Ng
0.85 + 0.03 0.57 + .02 0.48 ¢ .01
0.87 + 0.03 0.57 + .02 0.45 + .01
0.82 + 0.04 0.54 + .03 0.44 * .02

Long Range Correlation parameter

o
.

Energy (GeV)
c.m. lab
~20 200
43 1000
“20 200
"43 1000
20 200
"39 800

n _regions

F: 0.25 <y < -1.25

B:-2.25 <y < -1.25

full hemispheres

as in DPM model
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The Dual Parton Model further assumes that the parameter b is related

to the number of particles in an emitted cluster by:

2
Dep
b = 5= (20)
Der
with
02 = Fh. - A o and D2, = nn (21)
FB F e F'B FF c F
where'ﬁk = the average number of particles per cluster. From our data a
value of n_ = 3.09 + 1.6 is obtained. This is consistent with the gap

C
distribution analysis shown above.

Some qualitative features of Rz(”l'”2) are discussed by Davidenko and
Nikolaev in Reference [38] in the framework of the Additive Quark Model,
They predict that there is a critical value of rapidity Ye below which R,
for proton-nucleus interactions is smaller than R, for proton-proton
interactions. Our values of Rz are always positive and greater than the
corresponding values for proton-proton data, as seen in Figure 40. In
This is

calcutating R, vs n, one finds that R, decreases with larger n

9 g-
in agreement with both the Dual Parton Model and Additive Quark Model. A
plot of Rz(n1=3-?2.n2=3-?2) versus ng, shown in Figure 41, gives good
agreement with both the Additive Quark Model and the Coherent Tube Model,
where n = 3.72 is the pseudorapidity of the proton-proton c.m. system,

To sum up the results so far, it seems that ample evidence exists for
stating that particle production occurs in clusters. The multiplicity

distribution, gap distributions, and forward/backward correlations all

predict consistent values for the number of particles produced in each
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cluster. The single particle properties are best described by the quark
models. The Coherent Tube Model and the Additive Quark Model both provide
a good fit to the D/n; ratio and Rz(nl=3.72.n2=3.?2) as functions of

n This is somewhat surprising since these models employ very different

g
assumptions,

To facilitate the analysis from the point of view of cluster
production, two Monte Carlo simutations of our experiment were made.
Appendix 1 contains a general description of what a Monte Carlo simulation
is, a5 well as the specifics of the simulations done here. One of these
simulations, refered to as M(Cl, assumed al) particles are emitted
independently of each other. The other simulation, MC2, assumed that the
particles are emitted in clusters with the average number of particles per
cluster, Nes AN adjustable parameter. MWith these simulations one can
examine the two-particle correlation function, R2. and the gap
distributions.

To verify that the Monte Carlo program is working correctly the
single particle multiplicity distributions and dispersion for our Monte
Carlo generated events are compared to the 800 GeV data. The results of
the simulation Es = 19.85 + 0.29 and D = 12.15 + .20 are in agreement
with the actual data (see Table II). It was found that the experimental
distributions could be reproduced with approximately 1500 simulated
events. In various runs, up to 3000 events were used but the results
changed less than 1¥ from what we obtained after 1500 events. The Monte
Carlo results for R, are shown in Figure 42 for three cases: (1) using a
Poisson multiplicity distribution and assuming independent emission; (2)

using the experimental multiplicity distribution with independent
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emission; (3) using the experimental multiplicity distribution and
assuming cluster emission. The results indicate no correlations for case
(1), i.e., R, = 0.0. In case (2), a constant positive correlation is
found, while in case (3) a varying positive correltion is indicated. The
results of two cluster calculations are compared to the actual data in
Figure 43. Agreement with the data for a cluster size of 3.5 particles is
reasonably good in the forward region (nl— n2) >0, but the calculation
falls below the data in the backward hemisphere (n1 - n2) < 0, The
other curve indicates the trend for larger size clusters - the peak value
increases and the shape of the function narrows. A 3 - 5 particle cluster
provides a reasonable fit to the data. The fact that the simulation is
low in the most backward region may indicate that the correlations
observed in the backward hemisphere are between clusters,

Figures 44 and 45 compare the data, respectively, with Monte Carlo
calculations of the k = 0 and 10 gap distribution for a cluster size
of ﬁé = 3.5. In both cases the agreement is satisfactory. Ffigure 46
demonstrates, however, the insensitivity of the cluster simulation to the
average number of particles per cluster (ﬁc). Shown are the k = 0
simulated distributions for n. = 3.5 and 8.5. The observed tendency is

C

toward stightly larger slopes, as expected, but either value of n. is

C
consistent with the data. As discovered by other authors.lqg] a simple
cluster simulation is not sensitive enough to n. to allow one to determine

unequivocally the cluster size,
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VIII. SUMMARY AND CONCLUSIONS

The emerging picture of high energy proton-nucleus interactions
indicates that the data are consistent with models using a superposition of
proton-proton interactions and with a quark collective production model.
Descriptions of these models were presented in Chapter [1. It was shown
how the normalized multiplicity for each model depends on atomic mass A and
how they differ in their predictions of the pseudorapidity distributions.
The lack of cascading implied by the data was identified as a major
weakness of the simple Cascade Model, while, the problem of matching the
quantum numbers of the collectively participating nucleons with a single
nucleon was pointed out as a difficulty in irterpretating data with the
Collective Model.

A description of the single particle data in proton-nucleus
interactions was presented in Chapter V. The multiplicity distributions of
heavily ionizing particles were seen to be equal to those obtained at lower
energies. A small deviation from linearity was observed in Es vs In s, the

1501 It was seen

onset of which had been expected from cosmic ray data.
that n_ vs v increases slightly faster than linearly, in contrast to
strict superposition models such as the Dual Parton Model.

The mean and dispersion of the multiplicity distribution have been
related to the integrated two particle correlation function, fo, and its
positive value indicates correlated particle production. For the

multiplicity distrubtion, n it was shown that adequate fits can be

S!
obtained using either the KNO scaling variable or a Negative Binomial

Distribution. This indicates positive correlations among the produced

1011
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particles, which is consistent with a cluster production mechanism and
cascading. The correlation function R,, was determined to be positive
except in the most forward pseudorapidity region where kinematical effects
predominate, and further, R, is consistent with lower energy data.

Positive long range correlations were shown to exist among the
particles produced in the forward and backward direction. These
correlations extend out to 3 units of pseudorapidity. The long range
correlation slope of 0.86 and the approximately constant value of

R2(n1.n2) in the backward hemisphere are evidence of long range
correlations in the data. These values are much higher than in proton-
proton collisions at the same c.m. energy {ss = 39 GeV), Therefore, they
must be related to the multiple scattering of the projectile in the
target. That R, has the same value at 200 and 400 GeV, where v is the
same, also gives credence to this conclusion,

Based upon the long range correlations, and using the Dual Parton
Model predictions, we find an average cluster multiplicity of 3.1
particles. This is consistent with the results obtained by analyzing the
pseudorapidity gap distributions for our data. These distributions for k =
0, 1, 2, 3, 4, 5, and 10 are 211 satisfactorily described if we assume a
cluster density of o = 1.2 and an average cluster size of . 2.8 charged
partictes. The data do not rule out a value of o = 1, however, consistency
with the results of the Negative Binomial Distribution analysis
imply o = 1.2. Based upon the k = 0 distribution the cluster range is -
1.5 units of 1.

With approximately 3 particles per cluster it may be concluded that
the number of clusters per event must be about six for our 800 GeVv data.

While we cannot determine the exact percentage it is clearty not necessary
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that all particles be produced in clusters. [f one assumes that the
minimum number of cluster eguals (v + 1) (i.e., the number of clusters is
at least equal to the number of interacting nuclecons), then the conclusion
is that on average 4 clusters are produced per event.

An 3% enhancement in pair production over a uniform pair background
was found. This is less than what is seen in nucleus-nucleus collisions
where excesses of up to 10% have been reported.

Because this data is very new and involves a composite material,
emulsions, we have been able to compare the results with only a few
theoretical predictions. [t is hoped that theorist will soon provide both
additional and more precise computations. Specifically, it would be useful
to have predictions at B0OO GeV of the two particle correlation function
from the Dual Parton Model, and of the forward/backward correlations from
the Additive Quark Model. This experiment has allowed us to study hadron-
nucleus collisions in a systematic way and with high statistics. Such
information can be used for refinement of existing theories, to confirm
results seen in cosmic ray data, and as a basis for studying nucleus-

nucteus interactions.
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APPENDIX 1
Here [ provide a complete description of pseudorapidity. Imagine
two coordinate systems {unprimed and primed) moving in the z (z2')
direction with a relative velocity 8 with respect to one another. The

coordinates of a point in the primed system are given by

b4
)

o Y(xu - BXJ)

»
n
-
—
b Y
1
™
=
Lo]
e

when (xo,xl,xQ,xa) are the coordinates of the same point in the unprimed
2, -
system. In these equations, x, = ct and y = (1 - 8 ).sﬁ If we define

the rapidity y by 8 = tanh{y) then y = cosh(y) and the transformation

equations become

X, = x,cosh{y) - x,sinh(y)
le = -x,sinh{(y) + x cosh(y)
X.‘, =X‘,

le = X,

One can see that these equations express the primed coordinates as a
rotation through the angle y of the unprimed coordinates. It then
follows that the sum of two successive Lorentz transformations will be
the sum of two rotations, i.e., rapidity will be additive in passing
from one reference frame to another. Thus, the rapidity is a convenient

parameter for use in expressing Lorentz transformations between
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coordinate systems. Because of the properties of hyperbolic functions,
che can express energy and momentum in terms of

rapidity, p = m,sinh(y) and £ = mtcosh(y), where the transverse mass

t
2

is defined as mi =m + ptg. This implies y = tanhy"(p /E). Using an

jdentity between inverse hyperbolic tangent and natural logarithm, it is

also possible to write

E+p E+p
) = Int5—)-

1
y=§]n(E-p
In the limit when m' << pt?. and noting that tane = (pt/p ), one can

derive the following approximation for the rapidity

- ]n((l + sece) )

tane

y = -1n(nj—1&ﬁ"—sﬂ)
or, finally,

y = - In[tan{e/2)}].
In the last step, an identity for the tangent of a half angle has been
used. This expression is referred to as the pseudorapidity, and is
denoted by n. The pseudorapidity ranges from + =, for particles which
are emitted along the direction of the incident projectile, i.e. with
a 0° emission angle, to - « for particles emitted at 180° to the
direction of the incident projectile. HNotice that particles emitted in
the center of mass system at 90° with respect to the direction of the
incident particle will have a pseudorapidity of 0. From the definition
of rapidity, y = tanh_]{B). it is obvious that high momentum particles

will have large rapidity (or pseudorapidity), while slower particles



will have rapidities near zero (in the center of mass system).

Figure 47 provides a schematic illustration of the center of mass
pseudorapidity distribution, and of the terminology used to fdentify the
various regions of pseudorapidity. Particles having large positive
values of pseudorapidity, values near that of the projectile, are said
to be in the projectile fragmentation region. The backwardly produced
particles, which are most likely to be influenced by the target nucleus,
have large negative pseudorapidities and are said to belong to the
target fragmentation region. The central region is simply referred to
as the pionization region because this is where most of the observed

pions are produced.
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distribution showing the projectile fragmentation region at
large positive n, the target fragmentation region at large
negative n, and the central pionization region.

1]



APPENDIX 2

RAPIDITY GAP DISTRIBUTIONS

- ph_r
C

(1} Derivation of P(r} = e : where,

P{(r) = probability of finding gap r between two particles; p =

cluster density; Ne = number of particles per cluster.

If we assume independent cluster production, then in an event where
the available rapidity space is Y, the probability for a cluster to fall

in some range r_. is just rc/Y. In an N-cluster event, the probability

C

is (1 - rC/Y)N. Assuming the
—N

multiplicity distribution of clusters is E, e'ﬂ

that no clusters fall inside r.

{Poisson), the total

probability is

r

<N r C -Nr /Y T
-R N c,N _ _-R N{(1 - %) o N
NE €W (1 - v Yy = e e Y or P(r.) = e But M is
_Qrc
Jjust the density of clusters, p, SO P(rc) = e . However, this gap

distribution between clusters is not what we can measure
experimentally. What we can measure is the gap distribution between
particles, P(r). If r, the gap between particles is large, then widely
spaced particles belong to different clusters and re = Te Then

P(r) = e ° r. If r is small, then the probability that n. particles

fall inside a gap r. is just n.r. Then, following through with the same

C

few steps as above, we arrive at the gap distribution between particles,

-on_T
emitted in clusters of size n., as P(r) - e <. The exact derivation



of this follows from the complete equations given in section (2) below.

(2} Show that if we have a "gap" with k particltes in it, the peak of

the probability distribution is given by (approximately):

k
"max " pn. + (2k - 1)/2k -
Assume particles in a cluster are produced with some distribution
D(y-;) centered at ; . Then the probability for a particle to occupy
y -
the space r = y, - y; will be g =C fyz D(y,y) dy, with
- R 1
D{y,y) = D{y - y) assumed to be a Gaussian. The probability that in
n
an n. particle cluster no particles fall in r will be: (l1-q) ©. Now we
can integrate over the cluster center position, ; and multiply through
by g, .the probability of a cluster having Ne particles. We get the
C
probability that particles emitted from a single cluster do not fall
into the region r:
+Y/2 n -
c d
B9, 7 [1-q] —71 .
c Cc -Y/2
When many clusters are produced we must sum over the cluster

multiplicity distribution, assumed to be Poissonian:

NN +Y/2 n -
NN Lo g s (1-a) €y )

L N.
N ) Y C c -Y/2

But N/Y is just the cluster density, p, SO that this sum yields:

o I n n
6(r) = & exply f g, [ (1-a 1 = exp o § 9, [ dy'[(1-0)° -1D).
c C cC C
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The probability for finding a particle at y, will be given by:

. ne nc-l -

- a_yl”“” = n. [1-q] D{y,- ¥).

And the gap distribution P, (r) for a gap between two particles, one at
A2 the other at Yo is:

2

d
P(r)y=-2L 2 gy . & G(r).
0 ayl Y5 dr2

We can re express this as a generating function by replacing (-1} in
front of q by o and differentiating k times with o« to find the gap
distribution when k particles lie in the gap. You can see this is so by
looking at the simplified case as in section (1} where you may put for

er.n
_) .

Y.n
(1-D" . (et

Lo aenmidy |

Y Y e ==1

which is the same probability as for finding (k=1} 1 particle in the

gap r.(g), and (n-1) outside the gap r, (1 - i)n_l ., apart from a
constant.
We get
k , n
Pk(r) - 4 [ 1 _d expio [ dy'[(l + a Ig D(y-y')}dy) C. ll}li : 1



2

(the 1/a° accounts for the boundary particles that are not counted in
the number k),
+Y/2 nc -
Let us examine G(r) = exp{ p f {|l1 + ag] "- 1 )}dy }. When r is
-Y/2

small, we note that q is small which allows us to expand as

follows: {1 + aq)ncz 1 + an g . We can now do the integral over

d; first (before the integral in q), and taking the outer limits to
extend to t =. This is just a Gaussian integral which yields the value

1. Thus
G(r) = exp (DnCQOF dy ) = exp(oncurﬂ&:_1

It is now straightforward to calculate P _(r) from the formula above.

n -pn_r
p o} C

C k
Pk(r) = X7 (oncr) e .

We then find the maximum of this distributiion by taking the derivative

with respect to r and setting that equal to zero.

-pn_r -ph _Tr

|k(oncr)k'1once c. (oncr)konce “1=o0.

This yields: “max - k/pnc. Because of the boundary particles, a smal!?

correction is made to this formula, giving the result we have used in

the text:



11¢

K
"max(®) = Gn S (2-T)72k¢

The effect of this correction is to reduce the miltiplicity of the

cluster.



APPENDIX 3

MONTE CARLO SIMULATION

Monte Carlo techniques are being used more and more in physics in
studying problems where analytic treatment is difficult, or perhaps
impossible; in conjunction with other analytic techniques; and in the
calibration of complex, multidetector systems. The Monte Carlo method
operates in the following manner. Consider the ocutcome of a problem to
be a number for which one assumes some type of distribution. A Monte
Carlo calculation determines the solution to the problem by using random
numbers to generate a sample distribution. From this sample,
statistical estimates of the sclution may be obtained. One may repeat
this process, generating many different sample populations, and so
obtain estimates of the variance of the solution as well. In this
experiment a Monte Carlo method is used to generate random proton-
nucleus collisions. The correlations measured in these random events
are compared to the correlations seen in the actual data. Two Monte
Carlo simulations are described in the following paragraphs. The first
one, referred to as MC1l, assumes an independent emission of secondary
particles; the second, called MCZ2, assumes secondary particle emission
in clusters.
MCl: This simulation is straight forward in its approach, and has two
separate parts. As input to the first part, the experimentally measured
probabilities for Ngs ng, Ny » and n are used. For the second part the
experimental Ne distribution is not used, but is replaced by a
Poissonian multiplicity distribution. These distributions, which are

the hypothetical parent populations, are used to weight the random



number choices in each event generated. Since Ngs» Ng and n, are not all

independent, different distributions for Ng & ng are used for each

choice of Ny - The simulation proceeds as follows. First, h is

selected at random. Based upon n, we chose values randomly from the

and n.. Then, independently, n

appropriate distributions for N s ngs s

S
values of n are selected, weighted by either the experimental
multiplicity distribution or a Poisson distribution with the same
average value. In this way, one can match all the single particle

characteristics of the actual data:

Table 2.1: Characteristics of individual particle emission Monte Carlo

simulation (based upon 1800 events) generated from the experimental ng

distribution.

¢ = 19.85 * 0.28 D = 12.15 *+ 0.20
—g =2.47 + 0.08 D= 3.48 + 0.06
Fb = 4,27 £ 0.11 0 =4.81 ¢+ 0.08

MC2: This simulation proceeds in the same way as MCl in choosing ny,

ng. Ny and ng from the experimental distributions. However one also
inputs (besides the random number seeds) two additional parameters: (1)
the average number of particles per cluster denoted by ﬁc and (2) the

width of the cluster n distributions, s. For the input value of ﬁc a

Poisson distribution is gererated. This serves as the probability of

generating a cluster of n. particies. From this distribution n. is

C

chosen followed by the cluster pseudorapditiy center "o [from the

experimental n distribution]. We choose n. values of n from gaussian

C
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distribution centered at o with width 4. This forms a cluster. This
process is repeated, choosing Nes Ny » and n; (i =1, ... nc) until all
ng particles have been assigned, which completes the event. This method

also reproduces the single particle distributions.

Table 2.2 Characteristics of a cluster emission Monte Carlo Simulatign.

(generated from 1800 events, with Fc= 3.5.)

ng = 20,13 * 0.37 D=11.84 *+ 0.26
ﬁg = 2.53 £ 0.11 D= 3.48 = 0.08
ﬁb = 3.98 £ 0.10 D= 3.12 £ 0.07

Similar agreement was obtained with other cluster sizes with up to
8 particles per cluster. The main text shows the results of using both
both of the Monte Carlo generated data sets to calculate two-particle

correlations.

NOTE: In all these simulations, random numbers are found by use of the
VAX 11/750 RAN utility. This function, RAN, produces a set of pseudo-
random numbers based upon an input seed value which must be a large,
negative integer. Random numbers are generated with equal probabilities

on the interval [0,1].
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APPENDIX 4

COMPUTER PROGRAMS

Here I provide a brief description of the computer programs which
were used in the data analysis for this experiment. The analysis
package consists of 7 programs, including the two Monte Carlo
similations. Each program is independent of the others in the sense
that each requires for input only the data itself. The programs read
each event in sequence and input, for each track, its signature and
trajectory angles, theta and phi. In all the programs, the option exist
to read in only events which meet certain criteria, e.g., only events
g° etc, This allows one to make different
"cuts" on the data set. Within each program one also has, where

with a specific value of n

appropriate, the option to work in either the laboratory, the center of
mass, or the projectile reference frame. This is one of the nice
features of using pseudorapidity for a variable the ability to move from
ocne reference frame to another by the simple addition or subtraction of
some offset value. The two Monte Carlo simulations use as input the
single particle distributions which are taken from the output of one of
the other programs.

One program (ANALYZEM) performs the calculations of the single

particle distributions: n "g' Aps Nhe DEs DRy 0o, 3S well as the

5
averages of ng and ng for "full hemispheres”. For the n distribution
the user can vary the bin size. The program looks at each n value,
"bins it", and sums over all particles. For the particle distributions,
the program counts the number of events with n

tracks, n_ tracks,

s g
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etc. To calculate np and ng (and their averages) we first input

the n‘ value that divides the two hemispheres. Ffor ng {nB) the program
simply counts the number of particles in the forward (backward) region
for each event, For EF Vs ng (or EB Vs nF) the program first counts
for each event the number of particles in the forward (backward)
region. It then goes back and calculates the average number of
particles in the backward (forward} region for all events with the same
number of particles in the forward (backward) reqgion. From this we can
calculate the long range correlation slope for the full hemispheres.

A second program {WINODW) calculates EF vs ng (or EB vs nc ) as
described above, except in this case the limits of forward and backward
regions must be specified, i.e. you can take "windows" in n of any
width you wish, From this we determine the long range correlation slope
versus separation of pseudorapidity windows in the two hemispheres,

A program exists to calculate the two-particle correlation function
(CORREY):

Ne No(nqyan,)
. _E 20712
Rplnene) = WM GSY

1.0.

First, Nl(“l) is calculated as the number of shower particles at " in
each event, summed over all events. In the next step, Nz(nl.nz) is
calculated as the number of pairs of particles, one at n and the other
at Mo in the same event, summed over all events. The total number of
events in the data set is Nc. Calculation of Ry, then proceeds in an
obvious fashion.

In another program {RAPGAP) the pseudorapidity gap distributions

are calculated. First, the value of k, the number of particles in the



gap, is input. The program calculates the distribution of the

1th and the (1+k+1)th particle. Note that

separation in n between the
all the input data is sorted by increasing values of angle theta to
begin with (which corresponds to decreasing values of n ). The output
distribution is normalized by the total number of gaps in all events,
Ngap = Np(p - k - 1).

The fifth analysis program (DELPHIC) is used to calculate the
distribution of the number of pairs of particles in terms of their
separation in angle ¢. At the beginning of the program, the user must
set the definition of pair, i.e. the allowable separation of two

particles in n. The output is a distribution of number of pairs vs ae.

This distribution is not normalized.

MONTE CARLO PROGRAMS:

These Monte Carlo simulation programs are described in Appendix
3. They take as the input single particle distributions calculated from
the data and output N random events. The number of events to simulate,
N, is input at the beginning. Typically, I chose N between 1500 and
3000. Along with the input distributions one must input a random number
seed for each variable that must be picked at random. The RAN function
used on the VAX only requires these seeds to be large, negative
integers. The "data" from these simulations is then put through
programs 1 through 5, described above, and the results can be compared

to the results derived from the true data.

A1l of the programs used here may be of use in other studies of

hadron-hadron, hadron-nucleus, or even nucleus-nucleus interactions.
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Anyone interested in obtaining this computer code may contact:

Louis M. Barbier
Dept. of Physics and Astronomy

Baton Rouge, Louisiana 70803.
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