Drug-Related Homicide in Dade County (Miami), Florida; 1978-1980.

James Francis Quinn

Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/4320

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example:

- Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed.

- Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages.

- Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print.

Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography.
Quinn, James Francis

DRUG-RELATED HOMICIDE IN DADE COUNTY (MIAMI), FLORIDA; 1978-1980

The Louisiana State University and Agricultural and Mechanical Col. Ph.D. 1986

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1987 by Quinn, James Francis All Rights Reserved
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark □.

1. Glossy photographs or pages
2. Colored illustrations, paper or print
3. Photographs with dark background
4. Illustrations are poor copy
5. Pages with black marks, not original copy
6. Print shows through as there is text on both sides of page
7. Indistinct, broken or small print on several pages □
8. Print exceeds margin requirements
9. Tightly bound copy with print lost in spine
10. Computer printout pages with indistinct print
11. Page(s) lacking when material received, and not available from school or author.
12. Page(s) seem to be missing in numbering only as text follows.
13. Two pages numbered. Text follows.
14. Curling and wrinkled pages
15. Dissertation contains pages with print at a slant, filmed as received □
16. Other

University Microfilms International
Drug-Related Homicide in Dade County (Miami), Florida; 1978-1980

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in
The Department of Sociology

James F. Quinn
B.A., Florida International University, 1981
M.A., University of Miami, 1983

December, 1986
ACKNOWLEDGEMENTS

This dissertation was prepared under the guidance of Dr. William B. Bankston, to whom I owe my sincerest appreciation for his patient encouragement and direction. I also wish to express my thanks to Dr. H. Hugh Floyd of the University of New Orleans Sociology Department, Drs. F.A. Deseran, Quentin Jenkins and Linda Stearns of the LSU Sociology Department, Dr. Charles Delzell of the Mathematics Department and Graduate School Representative, and Dr. Miles Richardson of the Department of Anthropology for their review of this effort.

I also wish to extend my deepest gratitude to Dr. S.A. Lowery of Florida International University, who began this investigation and introduced me to both Sociology and graduate scholarship. Without her mentorship, this effort would never have been attempted. The cooperation of Dr. Joseph Davis, Dade County Medical Examiner, his chief deputy, Dr. Charles Wetli, and other members of the Dade County Medical Examiner's staff were crucial to the collection of this data. The data collection performed by Officer Mark Werbin of the Coral Gables Police Department was also invaluable to this research.

The author is indebted to Cheryl Thayer-Doyle for her technical assistance and moral support in bringing this project to completion. Jeffery Huffman's patient help with data storage and manipulation issues is deeply appreciated. Carol Thompson also provided ideas crucial to this research effort.

I must also express my deepest gratitude and appreciation to my mother, Laura B. Quinn, for her encouragement, love and support during my years of college and graduate education. Finally, I express my love and appreciation to Carla Mullen for her love, encouragement and patience, as well as for technical assistance in the production of this dissertation.

J.F.Q.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1. JUSTIFICATION OF THE STUDY</td>
<td>1</td>
</tr>
<tr>
<td>Significance of the investigation</td>
<td>2</td>
</tr>
<tr>
<td>Epistemology</td>
<td>6</td>
</tr>
<tr>
<td>11. THEORETICAL BASES</td>
<td>10</td>
</tr>
<tr>
<td>The Concept of Subculture</td>
<td>10</td>
</tr>
<tr>
<td>Social Categories and Types of Homicidal Acts</td>
<td>17</td>
</tr>
<tr>
<td>Social Groupments and Drug-Involvement</td>
<td>23</td>
</tr>
<tr>
<td>Drug Involvement and Murder in the U.S.</td>
<td>30</td>
</tr>
<tr>
<td>Hypotheses to be Tested</td>
<td>35</td>
</tr>
<tr>
<td>The Utility of Components of Subculture</td>
<td>37</td>
</tr>
<tr>
<td>Homicide and Scene Accessibility</td>
<td>39</td>
</tr>
<tr>
<td>Comparing Drug and Alcohol Users</td>
<td>40</td>
</tr>
<tr>
<td>Colombian Victims</td>
<td>41</td>
</tr>
<tr>
<td>Jamaican Victims</td>
<td>42</td>
</tr>
<tr>
<td>American Black Victims</td>
<td>44</td>
</tr>
<tr>
<td>Anglo Victims</td>
<td>45</td>
</tr>
<tr>
<td>Summary</td>
<td>47</td>
</tr>
<tr>
<td>111. METHODOLOGY</td>
<td>49</td>
</tr>
<tr>
<td>Research Design</td>
<td>50</td>
</tr>
<tr>
<td>Limits of the Data</td>
<td>51</td>
</tr>
<tr>
<td>Conceptualisation of the Variables</td>
<td>55</td>
</tr>
<tr>
<td>Groupments of Victims and Offenders</td>
<td>56</td>
</tr>
<tr>
<td>Drug Market Levels</td>
<td>56</td>
</tr>
<tr>
<td>Types of Homicidal Acts</td>
<td>59</td>
</tr>
<tr>
<td>Types of Victim-Offender Relationships</td>
<td>60</td>
</tr>
</tbody>
</table>

iii
Socio-Economic Status of Victims
Accessibility of Crime Scenes
Visibility of Crimes to the Public
Stigmatisation of Victims
Statistical Operations

IV. ANALYSIS OF THE DATA
Hypothesis 1 - The Utility of Subculture
The Utility of Socio-Economic Status
Hypothesis 2 - Homicide and Scene Accessibility
The Visibility of Drug-Related Murder
Hypothesis 3 - Comparing Alcohol and Drug Use
Hypothesis 4 - Colombian Victims
Groupment and Crime Visibility
Offender's Groupment
Drug Use Among Homicide Victims
Hypothesis 5 - Jamaican Victims
Drug Use Among Jamaican Victims
Hypothesis 6 - American Black Victims
Black Homicide Situations
Hypothesis 7 - Anglo Victims
Anglo Circumstances of Death
Non-Primary Anglo Homicides

V. INTERPRETATION OF RESULTS
Hypothesis 1
Hypothesis 2
Hypothesis 3
Hypothesis 4
Hypothesis 5
Hypothesis 6
Hypothesis 7

VI. CONCLUSIONS
Summary
Age and other Analytical Concerns
Implications for Future Research
References
APPENDIX A .. 217
APPENDIX B .. 225
APPENDIX C .. 227
VITA ... 234
LIST OF TABLES

Table 1.1 Victim's Social Groupment by Victim-Offender Relationship..........................70
Table 1.2 Victim's SES by Victim-Offender Relationship..............................72
Table 1.3 Type of Act by Victim's Social Groupment............................73
Table 1.4 Victim's SES by Type of Act..75
Table 1.5 Victim's Social Groupment by Victim-Offender Relationship by Drug Involvement......................76
Table 1.6 Victim's SES by Victim-Offender Relationship by Drug Involvement...78
Table 1.7 Victim's Social Groupment by Type of Act by Drug Involvement..............................80
Table 1.8 Victim's SES by Type of Act by Drug Involvement..................82
Table 1a.1 Victim's Social Groupment by Victim's SES.............................86
Table 1a.2 Victim's SES by Type of Act by Victim-Offender Relationship.................................87
Table 1a.3 Victim's Social Groupment by Type of Act by Victim-Offender Relationship.................................89
Table 1a.4 Victim's SES by Type of Act by Drug Involvement.............93
Table 2.1 Type of Act by Scene Accessibility.................................97
Table 2.2 Type of Act by Victim's Social Groupment by Scene Accessibility.................................98
Table 2.3 Type of Act by Victim's SES by Scene Accessibility...101
Table 2.4 Effects of Type of Act on Scene Accessibility.................104
Table 2.5 Effects of Victim's Social Groupment and Type of Act on Scene Accessibility..........................105
Table 2.6 Multiple Classification Analysis of Victim's Social Groupment and Type of Act on Scene Accessibility with Level of Drug Involvement..............106
Table 2.7 Effects of Type of Act and Victim's SES on Level of Scene Accessibility with Level of Drug Involvement..111
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.8</td>
<td>Multiple Classification Analysis of Type of Act and Victim's SES on Scene Accessibility with Level of Drug Involvement</td>
<td>112</td>
</tr>
<tr>
<td>Table 2a.1</td>
<td>Type of Act by Scene Accessibility by Level of Drug Involvement</td>
<td>114</td>
</tr>
<tr>
<td>Table 2a.2</td>
<td>Effects of Type and Act and Level of Drug Involvement on Scene Accessibility</td>
<td>117</td>
</tr>
<tr>
<td>Table 2a.3</td>
<td>Multiple Classification Analysis of Type of Act and Level of Drug Involvement on Scene Accessibility</td>
<td>118</td>
</tr>
<tr>
<td>Table 2a.4</td>
<td>Effects of Victim's Social Groupment, SES and Level of Drug Involvement on Scene Accessibility</td>
<td>119</td>
</tr>
<tr>
<td>Table 2a.5</td>
<td>Multiple Classification Analysis of Victim's Social Groupment, SES, and Level of Drug Involvement</td>
<td>120</td>
</tr>
<tr>
<td>Table 2a.6</td>
<td>Effects of Victim's Social Groupment, SES, and Level of Drug Involvement on Crime Visibility</td>
<td>124</td>
</tr>
<tr>
<td>Table 2a.7</td>
<td>Multiple Classification Analysis of Victim's Social Groupment, SES, and Level of Drug Involvement on Visibility</td>
<td>125</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Type of Act by Victim-Offender Relationship by Level of Drug Involvement</td>
<td>131</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Type of Act by Victim-Offender Relationship by Alcohol Impairment</td>
<td>133</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Type of Act by Victim-Offender Relationship by Stigma</td>
<td>135</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Alcohol Impairment by Type of Act</td>
<td>137</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Alcohol Impairment by Type of Act</td>
<td>138</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Alcohol Impairment by Victim's Social Groupment</td>
<td>140</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Alcohol Impairment by Level of Drug Involvement</td>
<td>141</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Victim's Stigma by Type of Act</td>
<td>143</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Victim's Stigma by Victim-Offender Relationship</td>
<td>144</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Type of Act by Victim-Offender Relationship by Victim's Social Groupment</td>
<td>145</td>
</tr>
</tbody>
</table>
Table 3.11 Type of Act by Level of Drug Involvement by Victim's Social Groupment.................148
Table 3.12 Level of Drug Involvement by Victim-Offender Relationship by Victim's Social Groupment...........151
Table 3.13 Alcohol Impairment by Victim-Offender Relationship by Victim's Social Groupment........153
Table 4.1 Victim's Social Groupment by Level of Drug Involvement..156
Table 4a.1 Victim's Social Groupment by Crime Visibility............158
Table 4b.1 Victim's Social Groupment by Assailant's Social Groupment...160
Table 4b.2 Victim's Social Groupment by Assailant's Social Groupment by Year...............................162
Table 4c.1 Drug(s) used by Victim's Social Groupment..................164
Table 6b.1 Level of Drug Involvement by Type of Act by Victim-Offender Relationship.........................169
Table 7a.1 Victim's Social Groupment by Drug Diversity Level.....172
Table 7a.2 Statistics describing Drug Diversity for Social Groupments..174
Table 7a.3 Effects of Victim's Social Groupment on Drug Diversity..175
Table 7a.4 Effects of Victim's Social Groupment and Level of Drug Involvement on Drug Diversity............176
Table 7a.5 Multiple Classification Analysis of Victim's Social Groupment and Level of Drug Involvement on Drug Diversity...177
Table 8.1 Statistics describing Victims' Age within Social Groupments, SES levels, Levels of Drug Involvement, and Types of Acts...205
LIST OF FIGURES

Figure 2.1 Mean Levels of Scene Accessibility for Social Groupments................108
Figure 2.2 Mean Levels of Scene Accessibility for Types of Acts..........................109
Figure 2a.1 Mean Levels of Scene Accessibility for Types of Acts..........................121
Figure 2a.2 Mean Levels of Scene Accessibility for Levels of Drug Market Involvement..........................122
Figure 2a.3 Mean Levels of Crime Visibility for Social Groupments.........................126
Figure 2a.4 Mean Levels of Crime Visibility for SES Levels.................................127
Figure 2a.5 Mean Levels of Crime Visibility for Levels of Drug Market Involvement.........................128
Figure 7a.1 Drug Diversity Means for Social Groupments.................................178
Figure 7a.2 Drug Diversity Means for Levels of Drug Market Involvement.........................179
ABSTRACT

This study examines the characteristics of all homicide victims in Miami, Florida between 1978 and 1980 (N=1186). Data was collected from the Medical Examiner's office and local law enforcement agencies. The study relates the distribution of various aspects of homicidal situations to one another and to behavioral, cultural, and structural groupings of victims. Special attention is given to levels of drug market involvement. Inferences are made at an aggregate level relevant to categories of victims.

Social groupings of victims were better predictors of homicidal circumstances than socioeconomic status levels. SES was found to be most relevant to the ecological accessibility of crime scenes. Separation of drug-users from traffickers resulted in a drug-involvement variable with greater predictive utility than social grouping. Low SES persons killed in quarrels and the assassinations of drug traffickers were empirically linked to homicides in open areas. The deaths of traffickers appear to serve social control functions in this illicit market. The frequency of quarrels among low SES persons appears to reflect immediate reactivity to perceived deviance in stateless social settings. While traffickers' deaths tended to be highly visible to the public, those of low SES persons did not. The deaths of drug users were found to be less visible to the public than those of either traffickers or the non-drug involved. Both drug-involved groups tended to die in secluded locations, however.

Analyses indicated that studies of urban homicide might benefit from a conceptualization of subculture that addressed cultural, structural, and behavioral influences. Such a multi-dimensional approach allows the various aspects of the homicidal act to be explored separately. This sort of approach is felt to be crucial in explaining the functions of violence within particular groups.
CHAPTER I
JUSTIFICATION OF THE STUDY

Introduction

"Drug-related" homicides are a relatively new form of violence that have recently become a major concern to law enforcers, the media, and the general public. Because they form an emergent pattern of violence that is closely associated with organized criminal activities, these killings have not been exhaustively researched by social scientists. One study (Heffernan, et al 1982) has pointed out that such killings may inflate the rate of homicide, and thus public fears of victimization, without actually increasing the likelihood of victimization for ordinary citizens. Juxtaposed to this view is the thrust of the subcultural, social learning, and diffusionist schools of thought which argue that violence in one highly visible form is likely to inspire imitation in other areas of social life. In either case, the dramatic impact of drug-related killings in southeastern Florida has been made clear in the popular media and seems to beg for scientific investigation. To date, however, no typology of drug-related killings has been offered and the few studies that examine this phenomenon do not distinguish between the structural levels of the drug market nor the kinds of drug product-markets associated with these killings.

As an initial locus of the cocaine and marijuana traffic in this country, Dade County, Miami, Florida provided "natural laboratory" conditions for the study of this phenomena between 1978 and 1980 as that city’s murder rate rose to a new record high. No research has ever attempted to describe the relation of drug related killings to this increase in violent death, however. Such a
situation is ideal for providing for a description of these cases and their distribution across various cultural, structural, and behavioral groupings of victims.

This study will focus on the analysis of drug-related cases of murder by comparing sub-groups of these cases with one another and with non-drug-related cases that occurred in the same community during the same period of time. This is primarily a study of homicide victims, not offenders. Patterns of association noted between various types of victims and homicide situations are of particular interest to this research. The basic goal of the project is to describe the distribution of drug-related homicide within the constraints of the data made available by the Dade County Medical Examiner's Office and the law enforcement agencies that routinely investigate such cases.

Quantitatively, the effects of drug-related killings on the county's murder rate can be scrutinized and the distribution of these cases across social and situational groupings can be specified with greater precision than is found in earlier studies. Qualitatively, the data are such that hypotheses linking the structural position of an individual in society to settings and other situational factors can be generated from the aggregated data. These induced explanations of crosstabulational cells will pertain to "causal" or "motivational" concerns that are inferred from the relevant professional literature. These descriptions are not intended as discussions of individual motivations to action however, because they are couched at the level of the sub-group, rather than that of the individual actor.

Significance of the Investigation

By use of a descriptive approach to aggregated data, this research attempts to explore a "middle ground" between major theoretical and methodological
dichotomies in criminology. The "clinical" or constructionist approach to theoretical interpretation of data has long argued that official records are more indicative of the social concern with a behavior or trait and its meaning than of the prevalence of a behavior or trait in the population (Schur, 1971; Kitsuse, 1964; Douglas, 1984). This school of thought bases its methodology on the role of meanings and symbols in the social construction of reality (Wilson, 1970). More structurally oriented sociological approaches have traditionally concentrated on the specification and explication of differences in rates of behaviors and traits across the sub-groups that compose the population of interest (e.g. Merton, 1968). This perspective's approach focuses on Durkheim's (1951) assertion of "social facts" as the most central concern of social inquiry.

A parallel division can be noted among data collection and analysis procedures. The qualitative approach, often associated with clinical interests, focuses primarily upon the actions of concrete individuals and the subjective meanings associated with these actions (e.g. Douglas, 1984). Quantitative methodologies are more attuned to the examination of social roles and statuses as they bear upon the distribution of phenomena in various populations and are generally dependent on socio-structural theories (e.g. Durkheim, 1951). Rather than adopting a position which places this study on either side of this division, this inquiry utilizes the insights of both approaches while seeking out multiple sources of, and uses for, data relevant to a particular issue. This position is taken because both of the divisions are pivotal to the issues involved in inquiries that attempt to deal simultaneously with the "causes" of violence and questions about group differences in the distribution of crimes, criminals, and victims. Wolfgang and Ferracuti (1967) used the terms "clinical" and "sociological" to describe the division between studies of motives and rates.
Because these two sorts of inquiries require data collection at very different levels of aggregation, they have traditionally been dealt with in separate studies. This separation of analytical concerns has led to an overall discontinuity in criminological theory.

The depth of analysis afforded by qualitative methods is a virtual prerequisite for the examination of individual meanings and motives. The use of descriptive statistics, along with inferences from the literature, is felt to facilitate this goal. Similarly, the explication of group rates has been bound to the use of quantitative methods at a level of aggregation well above that of the individual actor. For this reason, analysis is focused at the group, rather than individual, level.

While these linkages between theoretical and methodological paradigms are far from absolute, it may be generally asserted that studies of motivation tend to be based on interactionist theory and take a qualitative approach to issues of a fundamentally clinical nature. Conversely, "sociological" studies of differential rates tend to employ structural theories and variables in quantitative analyses.

The causes of individual action are explicable in terms of the means by which actions are justified by their performers (Sykes and Matza, 1957). Such definitions of situations are thought to be differentially distributed across various societies and sub-groups thereof. Merton's (1968) conceptualization of anomie, and modes of adaptation to it, implies much the same idea. Such connective theories, however, tend to avoid the issues raised by the dichotomization of clinical approaches from more socio-structural ones. Individual motives are NOT examined by this study, but a nominalist approach to group tendencies is pivotal to the investigation of these data. Inferences as to
the reasons for such tendencies are sought in the research that follows these introductory discussions, that is, by the researcher's informed, albeit indirect, attachment of "meaning" to homicide events.

This dissertation explores three areas of major significance to sociology. First, the research seeks to bridge the gap between explanations of differential rates of homicide victimization and the aspects of these situations that propel their perpetrators and victims to violence. The empirical connection of actors' traits, aspects of situations, and group victimization rates is an analytical problem that has long plagued criminology.

Secondly, the impact of drugs on social and legal activities has long interested social scientists (e.g. Becker, 1963). The sociological study of homicide is even older and can be traced to the moral statisticians of the 19th century. Thus, the interaction of drugs and homicide is a natural area of concern to the sociology of deviance. Dade County has been the first and main American jurisdiction to be impacted by the "cocaine wars" of this decade (Lupsha, 1981) and thus provides a "natural laboratory" for the study of this interaction. The first year of the study (1978) represents a baseline measure of homicide in that jurisdiction. Drug-trafficking does not seem to have been a major factor in these fatalities according to local authorities. In 1979 the county's murder rate rose from 16.6 to 22.7 and in 1980 it peaked at 35.0 (Wilbanks, 1984). Drug-trafficking made its appearance as a causal factor in 1979, as epitomized in the much publicized "Dadeland Mall" ambush in late 1979, and continues to be seen as a major factor in the crime control problems faced by south Florida.

Thirdly, just as the interaction of drugs and homicide is an interesting socio-criminological area of study, it is also rapidly being recognized as a
major law enforcement problem (Heffernan, et al, 1982). However, it is felt that extant theories of the etiology of violence are quite sufficient to explain this emergent form of violent crime. The attempt to link group rates to vocabularies of motives, as well as the isolation and description of sub-types of drug-related homicides and their comparison with more traditional kinds of murder may also have practical value. This is especially true since some of the variables to be examined here are derived from the "folk wisdom" of police officers working in Dade County.

Epistemology

Despite the fact that some of this study's most crucial concepts are only roughly approximated by combinations of consistently available facts about victims and situations, it is felt that such a weakness is neither peculiar to this effort nor unique to social research. Structural researchers' reliance on concepts like anomie and alienation (e.g. Bonger, 1969) are no less approximate and imperfect than is this study's use of groupings of homicide victims and types of acts. This is to say that virtually all social research is approximate and incomplete when compared to the complexities of the world that is seeks to explain.

One important example of the indefinite nature of social science is the extremely qualitative position taken by Geertz (1974) in anthropology. He asserts that the collection and analysis of ethnographic data is a three stage process in which the analyst 1) makes educated guesses at the meanings of observations, 2) assesses these guesses by weaving between observations and their theoretical implications, and 3) attempts to draw useful and valid conclusions from these "assessed guesses". Much the same approach to the social bases of knowledge and their links with actual behavior is to be found in sociology's
ethnomethodological inquiries (e.g. Garfinkel, 1967). The position taken here asserts that all social research - whether clinical or socio-structural, qualitative or quantitative - follows much the same pattern of observation, guessing at substantive meaning, and finally drawing tentative conclusions or generalizations. It has long been the task of social science to reduce idiographic details to nomothetic generalities as theories of behavior are generated and modified on the basis of empirical observations. The search for parsimony must be balanced against the many contingencies that constrain and guide daily interaction if sociology is to utilize the insights of the most idiographic constructionists along with those of more nomothetic structuralists. This study's use of victims' social categories along with types of homicidal acts, levels of scene accessibility and type of victim-offender relationship as structural indicants of "social world" and "situation" respectively represents an attempt to reduce idiographic detail to a manageable and nomothetic aggregation of data. This goal is to be attained through the use of descriptive statistical procedures.

The clinical bias towards subjectivism is a constant reminder of the transitory nature of social phenomena while the structural tendency towards "objective" indicators points out the regularity with which societies operate. Thus, in the scientific explanation of social phenomena, neither the regular nor the indefinite aspects of social life can be ignored. This study's basic methodology has a nominalistic focus (i.e. social categories, homicide situations) but a structural design (i.e. nationalities, settings) that allows some comparability to other studies of homicide and related phenomena. That is, its theoretical goals have been adapted to the constraints of archival data sources while retaining a nomothetic view of science as a cumulative enterprise.
A nominalistic approach to such data permits the inference of forces affecting group tendencies relevant to homicide victimization but does not provide access to the motives of individuals or the definitions of situations common to various groups of victims.

These ideas have guided the construction of the coding scheme used to describe homicide in Miami (see Appendices A and B). It is felt that much "subjective" data can be coded in a descriptive manner, scrutinized, and then redefined as ordinal or dummy variables to allow both qualitative and quantitative analysis of a single data set. Thus, contradictions between data collection techniques are a minimal problem in this study and aspects of constructionism are incorporated into a design derived largely from the structural approach to criminological research. This approach to the explication of homicide is based on the work of earlier theorists like Wolfgang (1958), Wolfgang and Ferracuti (1967), and Reed (1982).

Analysis of the Miami data will depend on descriptions of the structural position of actors as crude and approximate indicators of homicide as a purposeful social action. To explain patterns found in the data a synthesis of earlier theories of the motives for, and distribution of, violence will be employed.

Miller's (1958) discussion of "lower class culture as a generating milieu of gang delinquency" is similar to this approach in that he uses relative structural position and living conditions to derive a general set of values or "focal concerns" that guide the behavior of a particular structural sub-group. This anthropologist identified concern with autonomy, excitement, trouble, toughness, smartness, and fate as the product of lower class existence. He then used these values as the basis of an explanation of the motives for gang membership. Also
an anthropologist, Lundesgaard (1977) uses a similar strategy to explain the influence of culture on the distribution of homicides and their legal disposition in Houston. His use of the term "culture" is derived from the cognitive or functionalist school of anthropological thought (e.g. Kluckhohn and Kelly, 1945; Weiss, 1972). While the present study is focused on a specific type of homicide in a peculiar social setting, much the same methodological strategy is used here.
CHAPTER II
THEORETICAL BASES

The Concept of Subculture and its Uses in the Study of Violence

Although its roots lie in the social learning perspective (e.g. Tarde, 1898; Sutherland and Cressey, 1966) and in the culture conflict approach to criminology (e.g. Sellin, 1938), the "subculture of violence" thesis is generally associated with the work of Wolfgang (1957, 1958) and Wolfgang and Ferracuti (1967). A version of this thesis has also been applied at a macro-sociological level to explain regional differences in homicide rates across the U.S. (e.g. Reed, 1982; Bankston, et al., 1985). Certain aspects of the regional approach to this concept are also of strategic import to this effort.

Wolfgang (1958) used crosstabular analyses to describe the distribution of Philadelphia homicide cases across situational and demographic categories. By demonstrating that lower class black males accounted for a disproportionate number of victims and assailants in that city, this research alluded to a subculture of violence among that structurally disadvantaged minority.

Crosstabulational analyses of victim-precipitated crimes, subdivided by race, sex, location, circumstances, and weapons further clarify this idea by examining sexual differences in victimized sub-groups (Wolfgang, 1957). This provides a rudimentary model for analysis that will be central to this study of drug-related homicides in Miami.

Wolfgang organized his analyses so as to "determine whether criminal homicide exhibits a definite objective order, regularities, patterns, and if so, what this concatenation of phenomena is" (1958:6). Pivotal to this research is the use of the demographic, behavioral, and cultural traits of homicide victims which Wolfgang used as indicators of subcultural membership. Wolfgang's findings
on racial, sexual, age, and socioeconomic differences among homicide victims and offenders are now established facts in criminology.

Wolfgang stressed the idea that "motives ... must be interpreted in terms of the culture value system in which the offender operates" (1958:186). Such a perspective is not feasibly operationalized in quantitative analyses of large aggregations of archival data, however. Only by the use of crosstabulations of structural indicators of living conditions can his notion of "subculture" be approximately linked with those of the situational aspects of homicide. This is the approach used by the regional theorists (e.g. Reed, 1982) and the anthropologist Lundesgaard (1977:185). Even the best-planned operationalization cannot do justice to the complex details that typify actual cultures, situations, and motives. Wolfgang and the present study are thus forced to use rudimentary classifications for these variables that are based on the demographic traits of actors and the terminology used by police and Medical Examiners in writing their case reports.

In this study various social categories are operationalized in terms of approximate indicators which refer primarily to traits affecting the actor's relationship with the society as a whole. These indicators are assumed to be correlated with certain aspects of socialization. Such operational definitions are congruent, for example, with Kluckhohn and Kelly's (1945) conception of culture. This definition finds further support in the work of Kaplan and Manners (1972) and Weiss (1972) within anthropology and is advocated for sociological use by Swindler (1986).

Besides being this study's analytical exemplar, Wolfgang's research is valuable for its identification of urban blacks, and especially young males, as constituting a subculture of violence. This assertion is justified by his Philadelphia data and explained by reference to the high correlation between
blacks and poverty which, in turn, leads to explanatory devices such as relative deprivation, social disorganization, culture conflict, and differential association. Wolfgang's derivation of subcultural membership from structural descriptions of actors and settings parallels the logic used by Miller (1958) in his analysis of lower class focal concerns. Thus, structural and learning theories are used in combination to explain empirical facts by these writers. The relationship between differing rates of homicide and groups' normative systems is discussed only in embryonic form in Wolfgang's (1958) work, however.

Wolfgang and Ferracuti (1967) used these and other empirical findings as the basis for an "integrated" theory of subcultural violence. By examining group history, living conditions, and values they proposed the use of social psychological methods for linking differentials in rates of violence to group values and socialization processes. It is argued that "there is a potent theme of violence current in the cluster of values that make up a lifestyle, the socialization process, the interpersonal relationships of individuals living under similar conditions" (1967:140). This perspective welds structural traits to basic modes of interaction and accompanying justifications for violence. This position is congruent with Blumer's (1956) view of social structure as a guide, rather than a determinant, of social action since it predicts group distributions rather than individual propensities.

Wolfgang and Ferracuti's advocacy of learning theory based on identification, imitation, and conditioning processes, in combination with their more structural description of participants in the "subculture of violence" results in an "integrated" approach to the criminological investigation of violence. Again, distinct similarities between this strategy and that used by Miller (1958) and Lundesgaard (1977) are notable. Such an operationalization of "subculture" actually infers that the notion has cultural, structural, and
behavioral dimensions.

Whereas Wolfgang and Ferracuti's theory predicts members of violent subcultures to have a heightened proclivity to violence in all sorts of situations, this Miami study hypothesizes that different social categories of victims will be especially associated with violence of particularistic varieties. Reed's (1982) discussion of differences in regional rates of certain types of homicide, grouped according to victim-offender relationship, points out that cultural definitions of appropriate behavior result in proclivities to violence that vary with the kind of relationship that unites the actors. Blau and Blau (1979) and Blau and Golden (1986) make similar points with reference to metropolitan distributions of homicide. These insights also have an implicit similarity to Black's (1983) thesis of violence as a form of "self-help" social control.

Situations associated with lethal violence among specific groups can be explained by reference to the structural position of the group in American society (e.g. Colombian involvement in the drug trade). This so-called "subcultural" approach has been used by several researchers in recent years. Sociologists Swiggert and Farrell (1975) and anthropologist Lundesgaard (1977) provide both baseline data on U.S. urban homicide patterns and methodological improvements on Wolfgang's basic approach to empirical data.

Of special heuristic interest is Lundesgaard's speculative comment that the "rise in killings within (the stranger) category may be attributed in part to an overall increase in narcotics-related crimes" (1977:175). The increase in killings by strangers in Houston between 1969 and 1976 is also felt to be responsible for the decreasing clearance rates for these crimes. Asserting that "science is concerned with theory and probabilistic prediction is a form of engineering," Lundesgaard also used aggregated data to predict "when, where, and
how homicide as a cause of death is most likely to occur" (177). His work is in the same basic tradition as Wolfgang's although its central concern is with "culture" as defined by the anthropologists Kluckhohn and Kelly (1945) and White (1959). These concerns are pivotal to the Miami study in which the sub-set of drug-related murders are focal and great concern is given to the correlation of various sorts of actors with different kinds of settings and types of actions.

Like Wolfgang and Ferracuti (1967) and Lundesgaard (1977), this study does not attempt to "create a new statement of the genesis of the subculture of violence, nor do we find it necessary to adopt a single position" on the reasons for its origination (1967:162). Along with versions of differential opportunity (Cloward and Ohlin, 1958), negative reaction or status frustration (Cohen, 1960), lower class focal concerns (Miller, 1958), differential association (Sutherland and Cressey, 1966), and frustration-aggression (Berkowitz and LePage, 1967) theories utilized by Wolfgang and Ferracuti (1967), this dissertation will adopt the presumptions implied by differential reinforcement (Akers, 1973), self-help social control (Black, 1983, 1984), strain (Hirischi and Gottfredson, 1983), and cultural diffusion (Malinowski, 1945) theories. To Wolfgang's (1958) use of age, sex, race, and socioeconomic status to define subcultural membership, this project adds nationality, toxicological status, and deviant identity. These variables are examined in terms of situational factors like the circumstances of the killing, its visibility to the public, physical setting, and victim-offender relationship. Wolfgang's explanation of high homicide rates among young males of low socioeconomic status as associated with the definition of violence in positive ways can be supplemented along these and related lines of theoretical and practical interest. Thus, knowledge of distinctive group priorities can be employed in a scheme that uses the demographic traits of victims and socio-medical indicators of their lifestyles to predict circumstances and setting of
deaths by homicide.

A principal division made among homicides by these writers is between "premeditated, felonious" killings and murders occurring "in the heat of passion" (1967:140). The thesis of the subculture of violence perspective is clearly drawn from, and directed at, the larger of these two groups - the passion crimes - which most often involve members of the same demographic category and/or primary group. Relative to these lethal acts, Wolfgang and Ferracuti assert that a subcultural affinity to violence appears to be present principally in "large urban communities and increasingly in the adolescent population,(although) some typical evidence of this phenomena can be found, for example, in rural areas and among other adult groups" (1967:153).

Among the rural subcultures of violence discussed by Wolfgang and Ferracuti (1967:153,275-9) is *La Violencia* that pervades rural Colombian society which may be one point of origin for the style and frequency of drug-related killings in south Florida which appear to function as a form of social control in an illegal market. While most of the drug-related killings in Miami, and especially the well-publicized ones (Wilbanks,1984), have been of an apparently premeditated nature, it is argued that the norms prescribing violence as a means of conflict resolution among Colombian males have been employed by organized crime chieftains from that nation to establish normative boundaries, create ferocious reputations, and eliminate real or potential threats (Reuter,1984) as south Florida became a principal importation and sales area for cocaine in 1979. Colombia has for some time been a major growing and processing area for cocaine and marijuana (Lupsha, 1981). The increased flow of these drugs through Miami has impacted American crime rates. Because national origin is a common criteria for selecting syndicate members and establishing group closure (Reuter, 1984), this impact would be most immediately felt in south Florida's extant Hispanic community.
That national origin may influence homicide is supported by Clinard and Abbott (1975), who have asserted that Latino cultural groups, because of their emphasis on male machismo, are associated with high rates of violence. Likewise, Perez (1983) has also suggested that the proclivity to violence of Miami's Hispanics is similar to that attributed to white Southerners by the regional subculture of violence thesis. International homicide data provided by Wolfgang and Ferracuti (1967) show Latin American countries, especially Colombia, to have comparatively high homicide rates. Schorr (1974) and Lupsha (1981) support this finding with ethnographic and structural data on the causes and effects of this tradition of self-help social control and defensive aggression in Colombia.

Regional theories of the subculture of violence are associated with a much higher level of aggregation than is the work of Wolfgang and Ferracuti (1967) but certain of their conceptualizations may be used at a local level also. These writers have concentrated much effort on the attempt to separate the effects of socioeconomic structure from those of cultural socialization. As a result of these efforts, the theoretical distinctions between primary and non-primary victim-offender relationships have been elaborated. Primary relations between the victim and assailant are seen as indicative of the role of cultural training in defining some uses of violence as expected, acceptable, or even desirable. Non-primary relations resulting in death are seen as more structurally motivated (Parker and Smith, 1969; Reed, 1982). This division among homicide cases parallels that made by Wolfgang and Ferracuti (1967) between crimes of passion and premeditated, felonious killings. The regional theorists tend to assume that cultural influences will impact primary types of homicide to a substantial extent while non-primary killings are seen as economic (i.e. structurally induced) in nature and thus only minimally impacted by cultural forces like socialization (Bankston, et al., 1985). Rather than attempting to distinguish the effects of
culture from those of structure as the regional theorists do, this study conceives structure as a guiding influence on the content of group traditions.

While the regional theorists have concentrated much effort on distinguishing "cultural" from "structural" effects on the distribution of homicide, Wolfgang (1958) and Wolfgang and Ferracuti (1967) infer that structure (i.e. living conditions) is a partial determinant of culture, or at least of "subculture". The distinction between the regionalists' use of this term (e.g. Bankston, et al., 1985) and that of Wolfgang (1958), Wolfgang and Ferracuti (1967), Swiggert and Farrell (1975), and Lundesgaard (1977) is seen as analogous to the one between "situation" and "frame" pointed out by Gonos (1977). One aim of the present study is to associate the main components of the multi-dimensional usages of the term "subculture" in the literature with particular aspects of homicide through the study of its victims. An exploratory-inductive approach to the data is required by this goal.

This Miami study is more detailed in the kinds of data recorded than most others in the subcultural literature due to: 1) interest in the effects of drugs, alcohol, and stigmatization on the structural, spatio-temporal, circumstantial, and relational distribution of homicide; 2) the complex and unique composition of this urban center's population; and 3) the relatively consistent availability of data on victims' nationality, occupation, and reputation or police record.

Social Categories and Types of Homicidal Acts

While many of the variables used in this study are derived from Wolfgang, additional dimensions have been added that allow homicide to be conceptualized as a "significant gesture" (Luckenbill, 1977). The most notable types of homicidal actions, and the groups with which they are most associated, can then be examined with the intention of inferring the functions of violence that predominate in each category of victims. This typology of homicide circumstances is used to
examine the interrelationships between variables that describe the setting of the
crime and the nature of the social relationships uniting homicide victims and
offenders.

Gonos (1977) juxtaposed the notion of situation (e.g. Thomas, 1923) as an
interactional variable unique to particular social acts, with the idea of "frame"
(Goffman, 1973) as a structural variable with a finite number of governing rules
and appropriate utilizations within each society. By using broad definitions of
homicidal situations, defined in accordance with the available data, the coding
scheme used here has reduced the unique situations in which homicide occurs to a
more limited number of types of acts. This treatment of situations in this
study's analysis of contextual variables (especially victim-offender
relationship, and place of incident) is similar to the operationalization of
subculture in other studies (e.g., Wolfgang, 1958) in terms of the structural
traits of the involved actors. Each dimension of this taxonomy is
operationalized as a distinct variable (i.e. quarrels, assassinations,
executions, and robberies) so that distinctions between various groupings of
victims can be fully described and compared.

The type of lethal act is pivotal to the study of homicide because it
alludes to a set of group rules for dealing with specific types of situations.
This taxonomy of homicidal acts is used to gain partial access to the most
apparent reason(s) for violence operating on cases grouped together in
crosstabulational cells. That is, the distribution of types of homicidal acts is
used to gain insight into the forces operative within groups that generate the
rates of behavior with which structural social science is concerned. This
strategy parallels Wolfgang's use of location to infer basic motivation in
"victim-precipitated" crimes (1957).

Discussions of motives for violence in the literature can be divided into
interactionist examinations of the "accounts" given by known offenders (e.g. Athens, 1978; Levi, 1980) and Black's thesis of self-help social control. Interactionists tend to view homicide as a "situated transaction" (Shibutani, 1961) in which identity interacts with physical and symbolic aspects of the setting to condition the responses of victims and assailants to one another. The "subcultural" literature infers that some types of victims often provoke their own deaths (Wolfgang, 1957; Lundesgaard, 1977) and Black (1984) sees much violence as representative of individuals' pursuit of justice against perceived rule violators. Viewing homicide as a situated transaction or significant gesture allows a synthesis of interactional and structural concerns in a manner similar to that advocated by Stryker (1980). However the available data permit only nominalistic inferences to be made at the group level of analysis.

Black's (1983, 1984) structurally oriented discussion of law, self-help social control, and dispute participants' social status relative to one another neatly summarizes the expectations of this study in many respects. His thesis implies that violence often occurs in response to an assailant's perception of deviance on the part of his/her victim. This notion of crime as social control is grounded in Hobbesian theory which associates violence with a stateless form of social organization. Black's theoretical framework leads to the expectation that violent social control will be most common "in those contemporary settings where law - governmental social control - is least developed" (Black, 1984:17).

The enforcement of contracts that violate legal proscriptions is the most salient situation for such violence to occur. Examples of such illicit contracts run the gamut of organized crime activities. Since contracts relating to illegal drugs cannot be legally enforced as a matter of public policy, it is expected that their violation will often result in self-help remedies. The severity of these remedies is predicted to be roughly commensurate with the monetary value of
the goods involved but should also be strongly affected by the participants' conception of personal honor and its appropriate defense. The relative valuation of these variables is seen as a function of personal living conditions and identification with a particular social group and its way of life (Swindler, 1986).

Illegal markets are not the only "stateless locations" in modern social structures, however. "Lower status people of all kinds ... enjoy less legal protection, especially when they have complaints against their social superiors, but also when conflict erupts among themselves" (Black, 1984:18). Regardless of socioeconomic status, the stigmatization of a deviant label may be seen as resulting in devalued social status, and thus in reduced access to formal agents of social control for those so labelled.

This is to say that those least well-served by legal authorities will be most inclined to resort to violence to resolve conflicts and control perceived deviance. The relative social status of homicide victims can be approximately gauged by indicators of socioeconomic status and the measures of substance use and stigmatization used in this study. Group values are thought to intervene by mandating violence in some situations and retarding it in others along lines dictated by status roles and relative structural position (Black, 1984). Presumably, cultural notions of righteousness and honor will be more powerful facilitators of action in emotionally charged situations than are formal rules. Thus, Black's thesis may also be applied to conflicts between intimates, regardless of their social power relative to one another or the mainstream society.

Confounding a complete analysis along these lines is the lack of available information on assailants' socioeconomic status. However, the literature on homicide (e.g. Swiggert and Farrell, 1975; Lundesgaard, 1977) indicates that, in
primary cases at least, victims and offenders are most often from the same socioeconomic strata. Such relationships can often be inferred from the data on victim-offender relationships but will not be scrutinized closely for reasons of parsimony. In non-primary cases, the structural distinctions between victims and assailants cannot be regularly ascertained but assailants are commonly found to be of very similar status to their victims (Swiggert and Farrell, 1975).

The type of lethal action employed is of great import to this research because it facilitates the ranking of various factors in terms of the situation's approximate level of accessibility to control agents. Accessibility is expected to be inversely related to the frequency of homicide in such spatio-temporal settings. "Streets" are somewhat problematic since they must be rated as highly accessible to police but different thoroughfares will vary widely in their actual accessibility to, and frequency of, patrols. However, streets can be predicted to be the scene of large proportions of killings only in economically depressed areas where Black (1984) asserts that formal social control will be inadequate and distrusted. The fact that the economically disadvantaged spend more time socializing on street corners, parking lots, etc. than do members of other classes also supports this expectation. By combining streets with other areas open to the public (e.g. parks, beaches) the effect of this bias can be largely ameliorated. Black’s work guides the study's expectations about the operation of types of homicidal acts as they relate to expectations of control agent behaviors held by homicide participants.

Victim-offender relationship also can be converted into a scale of relative intimacy by use of the primary/non-primary dichotomy suggested by Reed (1982). Whether or not there are multiple victims is seen as a joint function of the social and spatial settings involved in a given case. Inaccessible locations (e.g. residences) associated with social control killings, and especially cases
related to drug-trafficking, are thought to facilitate such acts.

Citing Wolfgang's (1958) and Lundesgaard's (1977) findings on the most common interactional circumstances in which homicides occur (i.e. quarrels, self-defense), Black repeatedly asserts that "most intentional homicide in modern society may be construed as social control, even if it is handled by legal officials as crime" (1984:7). Approximately twenty percent of Philadelphia and Houston homicides involved offenders who were strangers to their victims. These cases, Black infers, may not fall under the rubric of self-help social control of perceived deviance. However, Athens' (1978) data associate "stranger" slayings with "physical defense" motives and Levi (1980) refers to such cases as compelling violence due to the assailant's perception of being "objectively trapped" in the situation. Black himself (1984) argues that some property crimes can be defined as self-help social control. Thus, by extending Black's logic, the great majority of homicides can be seen as self-help reactions to untoward conduct on the victim's part, if the assailant's definition of the situation is used as an orientative perspective.

Types of homicidal acts can be used to aid in distinguishing the various kinds of homicide associated with various groupings of victims. As Wolfgang and Ferracuti (1967) point out, members of the mainstream culture are expected to react violently only under conditions of severe stress and psychopathology. Some premeditated slayings with socio-emotional or pecuniary motives are also expected of these classes. The disenfranchised (i.e. "stateless") are expected to be more immediately reactive in their utilization of violence according to these theorists.

Along with socially relevant groupings of victims, types of homicidal acts are seen as vital in the linkage of group rates of victimization and causal forces operating at the group level. The basic hypothesis under scrutiny here
asserts that, because subculture is a function of "living conditions" (Wolfgang and Ferracuti, 1967), cultural training (Swindler, 1986), and behavioral choices (Zahn and Snodgrass, 1978) and has a large impact on individual values and behaviors, various groups will be differentially associated with different types of lethal acts. Some aspects of the situation (i.e. locational, relational, or circumstantial) may be more variable than others for some categories of victims.

This approach to the Miami data makes three goals simultaneously obtainable: 1) the description of locational and situational patterns occurring within a variety of cross-cutting groups; 2) the comparison of relationships between group memberships and situational proclivities to violence; and 3) the cross-group comparison of the modal types of acts and their relative distribution. Because of the structure of this data, however, such patterns must be operationalized and examined at a meso-structural level so that attributions made about the effects of various aspects of subculture on homicide frequency and circumstances can be considered reliable and valid. Thus, the empirical data can be used to generate statements relating types of acts to various groupings of victims but not to individual motives if fallacious reasoning is to be avoided. This is to say that inferences are made at a nominal level but are relevant to structural, not individual, concerns.

Social Groupments and Drug-Involvement

Significant differences between the types of acts in which users, as opposed to traffickers, die are expected to be found throughout this analysis. These hypotheses are based on the assumption that user deaths are largely a function of the psycho-neurological effects of drug use in combination with membership in a deviant subculture. The types of acts in which users die will reflect immediate reactions to perceived deviance in a stateless location whereas trafficker deaths will reflect much more premeditation on the part of the assailant. It is
postulated that traffickers use violence in a rational manner to maintain and enhance their position in the underground economy (Reuter, 1984; Abadinsky, 1985). The "statelessness" of this economy is seen as a primary causal force that is supplemented by traditions prescribing specific forms of violence in the nations from which traffickers operate. This statelessness, for both users and traffickers, interacts with the cultural composition of the drug product-markets to produce patterns of user- and trafficker-related cases that will be distinct from one another as well as from non-drug-related cases.

Also of concern are a series of overlapping groupings of victims which represent components of a holistic conception of "subculture". Socioeconomic status (SES) is pivotal among these in the work of many writers (e.g. Wolfgang, 1958; Black, 1983). Behavioral operationalizations of "subculture" often focus on deviant behaviors (Zahn and Snodgrass, 1978). Still other writers refer to a cultural version of this notion (Reed, 1982; Clinard and Abbott, 1975).

While victim's SES and level of drug market involvement are straightforwardly defined in this and other research, the cultural components of "subcultures of violence" are operationalized as "social groupments" in this study. These social groupments (Rheinstein, 1954) reflect common social usages of the term ethnicity, or a combination of racial and national denotations of victims. It implies socially perceived differences between categories of victims. Americans are often classified as black or white and the U.S. Census Bureau defines Hispanics on the basis of Spanish surname. However, some anthropologists believe the term "race" should be applied only to discrete gene pools within regularly breeding populations. The use of national origin as an indicator of "ethnic culture" is also inappropriate for some members of this discipline.

However, it is crucial to this research that American whites (Anglos) and
Blacks be compared with Jamaicans, Colombians, and other Hispanics across relevant aspects of homicide situations. Thus, in deference to the often unscientific use of terms like culture or race, Anglos, Blacks, Jamaicans, Colombians, and other Hispanics are here termed "social groupments". It is felt that, despite their great internal diversity, these five groupments may be used to represent some very basic differences in living conditions, socialization processes, values, and behavioral tendencies that are popularly defined as ethnic or cultural distinctions.

The factors that dispose these groupments to drug-involvement, and to various forms of violence, are thought to result from this combination of structural and normative forces. Because they are rather consistently associated with drug-trafficking (Lupsha, 1981), Colombian and Jamaican victims are of special interest to this research.

Due to historical and geographic circumstances, Colombia has long been prominent in smuggling activities in the Caribbean basin and currently plays a most significant role in the production, processing, and shipment of cocaine and marijuana to the American market. Lupsha (1981) and Schorr (1974) demonstrate the structural roots and socio-historical origins of Colombia's long-standing problem with violence. Gross socioeconomic inequality, political corruption, the central government's inability to control the rural provinces, and sharp political divisions among Colombia's citizens are the prominent variables in Lupsha's analysis of drug-trafficking in Colombia. These structural forces are endemic in Colombia's history and can be logically posited as the bases upon which the defensively aggressive organization and outlook described by Schorr (1974) developed.

Schorr's ethnography describes how the rural population of Colombia has adapted its social organization (i.e. ecology) and interactional norms to deal
with this endemic violence. His arguments apply most directly to a rural (cocaine-producing) region of the north Andes mountains in southern Colombia. The theme of this study is the extent to which the threat of violence pervades the behavior and routines of Colombian villagers.

Wolfgang and Ferracuti's (1967) discussion of international homicide rates puts these insights into a comparative-statistical context at the global level and implies that violence is endemic to this nation. Thus, structural forces in Colombian society are seen as the cause of a strong tradition of self-help violence in that country. While Colombia lacks many of the hallmarks of a "subculture of violence" as defined by the regional theorists, e.g. military excellence, artistic glorifications of combat, etc., (Reed, 1982), this nation's social life is cited as a prominent example of a "rural" subculture of violence by Wolfgang and Ferracuti (1967:275-9). While several nations (e.g. Albania, Mexico, Italy) are also noted by these writers as having extremely high rates of violence, Colombia is the only case in which these high rates of murder are not specifically attributed to a distinct regional or ethnic sub-group of the population. Whether this results from a lack of data or from the pervasiveness of violence in Colombia cannot be determined from this work.

In a similar, but less extreme, fashion the structural facts of Jamaican society, along with tendencies toward black supremacist ideology, can be posited as the sources of the Ras Tafari sect on that island. The association of Ras Tafari with the marijuana trade, and hence violence in America, is less direct and more interactional than in the case of Colombia. The disadvantaged structural position of Ras Tafarians in Jamaican society (Simpson, 1955; 1978) is of import here just as it is for the American Black subculture of violence identified by Wolfgang (1958). The Ras Tafarians' use of marijuana as a sacrament, the intensity of in-group solidarity among sectarians, the rejection
of all competing dogmas by millennialists, and the dominance of multiple versions of a black supremacist theme (Simpson, 1955, 1956, 1960) are seen as motivating some groups of Ras Tafarians (e.g., the prison-based Nyibingi cult) toward internecine violence in the context of the illicit cannabis market in the United States.

Langevin, et al. (1982) posit that ethnicity (i.e., termed above as groupment) and socioeconomic status, taken together, are reasonably good predictors of the living conditions experienced by individuals in a given society. Living conditions, they argue, lead to distinctive lifestyles and behavioral patterns. These writers associate substance abuse with lifestyles that predispose individuals to engage in risky behavior and/or to frequent dangerous settings. Such behaviors are seen as leading to increased rates of homicide victimization among substance abusers and, perhaps, other types of deviants.

Hollis' (1974) research demonstrates that alcohol users are at significantly higher risk of homicide victimization than are non-users and that risk of victimization increases in a fairly direct and linear fashion with the volume of alcohol consumed by the user. His data indicate that, at least in cases of primary homicide, it is reasonable to assume that the victim's blood alcohol content is a reliable indicator of the offender's blood alcohol content at the time of the fatal incident.

Both Hollis (1974) and Langevin, et al. (1982) show that a much greater proportion of homicide victims were under the influence of alcohol than were members of the general public. This fact illustrates the practical import of substance use in understanding the context in which violence occurs. This study hypothesizes that greater similarities will be found among drug and alcohol users than among drug users and traffickers.
Weidman and Page's (1982) comparison of Cuban and Anglo drug users in Miami provides a useful dichotomy of "loosening" and "tightening" drugs that is based on the behavioral and physiological effects of various psychoactive substances. This observational study also shows the influence of informal social control mechanisms found in the community and extended family on patterns of drug use. These insights suggest how the machismo norm tempers Cuban drug use with its demand that males be constantly alert and self-assertive. Such a normative expectation can also be seen as a direct cause of violence at the group level. Only marijuana, alcohol, and the tightening drugs, used in moderation, are acceptable to this group's drug-using cliques because of the normatively defined requirement to maintain cautious awareness of the environment and full control of mental and motor functions at all times. The egocentric hedonism of Anglo drug-users stands in sharp contrast to the Cuban pattern across a variety of settings in which drugs are used publicly, at least according to these writers.

Kaestner, et al. (1977) compared Anglo, Black, and Puerto Rican addicts along several dimensions of drug use behaviors in an attempt to separate and analyze ethnic (i.e. groupment), as opposed to psychological, correlates of drug use. This study relied on self-report data and psychometric instruments in a quantitative design. Differences between Blacks and Hispanics were minor; Hispanics sought slightly more "adventure" than did Black Americans but this distinction pales when it is compared with that between minorities and whites. Anglos used significantly more kinds of drugs than did minority group members. Minorities, it appears, use drugs in an attempt to relieve the pressures created by a disadvantaged and overstimulating environment while Anglos use them to obtain greater levels of stimulation. Anecdotal evidence supplied by Weidman and Page (1982) indicates that Anglos may often use drugs in a wider variety of settings than do minorities. These findings can be traced back to the relatively
dangerous living conditions experienced by minorities, as opposed to Anglo-Americans (Kaestner, et al., 1977).

Both Weidman and Page (1982) and Kaestner, et al. (1977) arrive at very similar conclusions about the effects of social groupment on patterns of drug use despite their very different methodologies and populations. These studies represent a bridge between behavioral and ascribed indicants of personal identities and social worlds. If Wolfgang and Ferracuti's (1967) definition of subcultural violence is used, then these studies may be taken as implying that minorities constitute a subculture of violence since their focus is upon the relation of living conditions to the distribution of violence rather than the cultural concomitants of high rates of violence. Anglos are seen as overindulgent and egocentric hedonists whose drug use is jointly guided by the slogans of the hippie era and the self-centered materialism of the current one.

Minority group members are more routinely subjected to violent environments and are more cautious in their selection and use of drugs than are Anglos. It seems likely that minorities are also more cautious in their choice of the spatio-temporal settings in which drugs are used if this logic is correct. Hispanics are more concerned with aggressive self-assertion and control than are Anglos. (Data on this variable is not available for American Blacks but it seems likely that they adhere more closely to the Hispanic pattern than to the Anglo one.) Drug use among Hispanics also has a broader age range but manifests less sexual equality than it does among other groups (Weidman and Page, 1982). Except for the almost exclusive association of males with drug (and alcohol) use among Hispanics, all non-Anglo drug users seem to have similarly cautious (i.e. defensively aggressive) behavioral orientations in this respect. This similarity can logically be traced to the living conditions that are typical of minorities in the United States.
A setting's perceived accessibility to formal control agents is also seen as being moderated by groupment-distinct levels of apprehensiveness about arrest peculiar to Miami Anglos and Cubans (Weidman and Page, 1982) that is ultimately rooted in the relative social power of various ethnic statuses. This is congruent with Black's (1983) predictions about the relationship between relative social status and likelihood of resorting to self-help social control since minorities have the highest rates of involvement in criminal violence.

Drug-Involvement and Murder in the U.S.

Because they are a recent phenomena embedded in secretive criminal groups, drug-related homicides are not a well-researched area within criminology. Two studies have specifically explored this topic, however, and thus are of great heuristic and comparative value to this dissertation. As the most specifically relevant pieces of literature cited, these studies help to summarize what is known about drug-related killings at this time. Zahn and Snodgrass (1978) combined insights gained from the literature on subcultures of violence with work linking aggression to competition over scarce resources to create a framework in which drug-related killings in Philadelphia and Dallas could be described and compared. Heffernan, et al. (1982) examined New York City killings that bear what police describe as the hallmarks of slayings related to drug-trafficking in that city. Both of these studies provide guidance for this dissertation and both have shortcomings upon which the present research seeks to improve.

Zahn and Snodgrass hypothesize that "drug using populations should ... show uniformity in the circumstances of homicide across regions, and those circumstances should reflect participation in a drug-oriented life pattern rather than other involvements" (1978:135). They further predict that the relationship between drug use and lethal violence can be explained in terms of two basic subcultural activities: 1) involvement in thefts by users, and 2) arguments
relating to illicit drug transactions. It is necessary to point out that this conceptualization is oriented to drug use, but includes all deaths related to trafficking in the same "drug-involved" category. This hypothesized relationship also implies that drug users and dealers share, to some extent, a common subculture with recognizable patterns of behavior that transcend individual traits and backgrounds as well as particular product-markets and modalities of use. Such a sweeping assumption is useful for the purposes of a sociostructural examination of drug-related deaths but is inadequate from a nominalistic perspective focusing on the differential functions of violence within basic levels of the drug economy. Failure to segregate drug consumers from distributors may detract from the explanatory value of "drug involvement", especially in the context of the present Miami study.

Unlike these writers, the present study allows the segregation of known addicts and victims with positive toxicologies from other fatalities related to this illegal market. Although this operationalization of drug use probably underestimates the number of drug users who become homicide victims, it does allow the rough division of the drug-involved into "users" and "traffickers".

The analytical goals of the dissertation are also similar to those of Zahn and Snodgrass. Rather than comparing cities in different regions of the country, this research seeks to compare various levels of the drug market and involved social groupments within a single metropolitan county. Discussion of the traits of Miami's victims and offenders, the characteristic settings of different sorts of drug-related killings, and the method and circumstances of these homicides parallel those of Zahn and Snodgrass but retain more descriptive details. The Miami research, as well as that of Zahn and Snodgrass, is heavily indebted to Wolfgang (1958) in this respect.

While these writers compared Dallas and Philadelphia homicides to determine
the effects of regional culture, this dissertation compares market levels and social groupments, crosscut by victim's socioeconomic level. Whereas Zahn and Snodgrass sought the differential impact of drug-related homicides across cities (or regions), the present study seeks to describe their impact across categories pertinent to the settings, actors, and actions involved in murder cases. Thus, the Miami study is couched at a much lower level of aggregation than is that of Zahn and Snodgrass. The findings of this earlier effort are still instructive for the present research, however.

Zahn and Snodgrass report that Philadelphia users were most likely to die in the street, but the difference between users and non-users in this regard was not statistically significant for the Dallas population. Age seems to have played a role in biasing the Philadelphia sample, since analyses controlling for age show that this variable, not drug-involvement, is responsible for the Philadelphia finding. The frequency with which age is mentioned as a significant factor in explaining criminological data (e.g. Hirisci and Gottfredson, 1983) has been explained by Austin (1983) as due in part to "adolescent subcultures of violence". The impact of age was shown not to be a factor in the present analysis however.

The most common victim-offender relationship in both cities was "friend" for both users and non-users. Non-users in both cities were more likely to die at the hands of a relative than were users. Police actions were likely to involve users more often than non-users in Dallas but in Philadelphia equal proportions of users and non-users were killed by police. Shopkeepers, homeowners, and bartenders were much more likely to kill drug users than non-users in Dallas, but no drug-related differentials were found in Philadelphia.

Zahn and Snodgrass interpreted these results as indicating a greater proclivity to self-help social control in Dallas than in Philadelphia; i.e.
Dallas residents were more likely to respond to threats of criminal victimization with violence than were citizens of Philadelphia. This assertion is congruent with the expectations of the regional subculture of violence thesis (Reed, 1982; Bankston, et al., 1985). Lundesgaard's (1977) analysis infers that Texas (or perhaps "Southern") law is quite unlikely to negatively sanction such violence and thus may actually encourage it in domestic as well as criminalistic situations.

Zahn and Snodgrass concluded that, although similar risks are involved in drug use in both cities, Dallas users are more domestically involved than are Philadelphia users. Furthermore, drug-related risks appear to be more often lethal in the northeast than in the south according to these data. The tri-ethnic population of Dallas is not discussed as a factor confounding comparisons in this situation nor is any attempt made to identify the principal drug(s) used by these populations. Given the preceding remarks about the role of familial and community power in Hispanic culture, it may well be that the high proportion of Chicanos in Texas may explain this linkage of drug use to domestic violence in Dallas. Because race is merely dichotomized into white/non-white categories, such a determination cannot be made from Zahn and Snodgrass' data.

On these bases Zahn and Snodgrass assert that "illegal drug use does significantly alter the circumstances of death of those involved" (1978:147). They further speculate that the "circumstances of death by homicide are affected by involvement in illegal drug use as well as by the overall city context in which such life occurs" (Ibid.). They suggest that structural (e.g. size, density, functional type, complexity) and legal (e.g. divorce laws) features of various locales should be the focus of future analyses as should subcultural factors. These factors are included at a fairly microscopic level in this Miami study which primarily addresses the divisions within the most basic levels of the
drug market as well as socioeconomic levels and social groupments.

Heffernan, et al. (1982) combine the perspectives of social scientists (Martin and Romano) with those of a police detective (Heffernan) in their examination of "homicides relating to drug trafficking" in New York City. They are concerned with deaths resulting from "business disputes in the distribution of illegal drugs" rather than with the impact of drug use on group rates of victimization.

Noting that the 46th Precinct is disproportionately associated with both drug sales and drug-related murders, the majority of their analysis is focused on the drug-relatedness of killings in this administrative area. This is especially true of one particular subdivision of that precinct. Non-drug-related killings, in contrast, appear to be randomly distributed throughout this precinct. Drug-related cases inevitably involved high quality handguns, whereas only half of the non-drug-related cases in that precinct involved any firearm at all. Drug-related victims were almost exclusively male while 40 percent of the non-drug-related cases victimized females. Drug-related victims also tended to be clustered between the ages of 16 and 35 years of age while other cases were more randomly distributed.

The Miami data is more detailed but can be collapsed into categories comparable to those of Heffernan, et al. This dissertation pays more attention to racial and national variations among victims than do these researchers. In illustrative vignettes they mention Colombians and Jamaicans but the frequency with which various racial and nationality groups are involved is not specified. This is apparently due to the relatively small number of cases given close scrutiny (N=50) as a result of focusing on only one precinct.

Heffernan, et al. (1982) conclude that drug-related murder will soon be recognized as a major sub-type of urban homicide. They assert that urban areas
are associated with heightened levels of both homicide and drug-trafficking so that these two phenomena vary together. They suggest that drug-related homicides are a by-product of the violence inherent in drug-trafficking and should be understood as a function of market involvement (1982). They further note that while drug-related killings presently account for a substantial portion of urban homicides, these homicides are not a major threat to the welfare of ordinary citizens. These cogent points underline the importance of arriving at, and disseminating, a clear description of drug-related homicides, their sub-types, and their relative visibility to the local public.

By demonstrating the impact of drug-related violence on overall rates of murder in a specific community, Heffernan, et al. (1982) hoped that the fears of law-abiding citizens might be reduced while confidence in the efficiency of law enforcement can be increased. While some of these conclusions obviously go beyond the limits of their data, these authors make logically valid assertions as to the nature of drug-related murder and its impact on the nation’s view of crime.

Hypothesis to be Tested

The preceding discussion outlines the theoretical, ethnographic, and psychological insights from which this study’s hypotheses have been derived. In addition to the descriptive and comparative goals of the dissertation, seven sets of hypotheses have been constructed on the basis of this information. Three of these are concerned with social groupments, types of homicidal acts, types of victim-offender relationships, and deviant statuses. The remaining four examine patterns expected of social groupments and compare the effects of these categories with those of socioeconomic status levels. Of equal importance to the prediction of basic group patterns are exceptions to such general tendencies and the empirical demonstration of their theoretical explanations. After specifying
these hypotheses and their corollaries, a brief discussion of the logic by which they will be tested is offered.

The main assertion being examined here supposes that different groups will be especially violent only in certain kinds of situations. It is for this reason that exceptions to general patterns are felt to be as important as the patterns themselves. Victim-offender relationship, accessibility of ecological setting, and the presence of drugs or stigma are seen as crucial to discovering and explicating such differences. The relative danger of various kinds of homicidal acts will then be explained by reference to the typical living conditions and values of specific groupings of victims. Analysis will depend principally on crosstabulations, but attempts are also made to correlate various kinds of actors with specific types of acts and with different kinds of settings. In some situations, analysis of variance procedures can be employed. After providing a list of the study's deductive hypotheses, the theoretical import and logic of testing these assertions are reviewed.

Hypothesis 1: Social groupments will provide a better predictor of the circumstances and type of relationship involved in killings, especially drug-related ones, than will the victim's socioeconomic status.

Corollary a: Exceptions to this generality will be explicable by reference to relatively great socioeconomic heterogeneity and cultural diversity within certain social groupments.

Hypothesis 2: The frequency of homicide across types of homicidal acts for the overall population will be inversely related to the crime scene's relative accessibility to formal control agents.

Corollary a: The only major exceptions to this general tendency will involve "high visibility" crimes against drug traffickers which can be explained as a function of the illegal marketeers' need to establish normative boundaries and maintain social control.

Hypothesis 3: Within social groupments, the types of homicidal acts and victim-offender relationships in which drug users are killed will closely resemble those in which alcohol-impaired victims die.

Corollary a: The pattern of homicide for non-drug related but stigmatized victims will be similar to this pattern within socioeconomic levels and social groupments.
Corollary b: The pattern for types of homicidal acts and victim-offender relationship for trafficking-related cases will be significantly different from both of the above patterns.

Hypothesis 4: Colombian victims will die almost exclusively in trafficking related contexts.

Corollary a: These killings will be highly visible due to either their occurrence in public settings or their heinous nature.

Corollary b: These killings will be predominantly intra-groupment in 1978 and 1979 but will increasingly involve Hispanics in 1980.

Corollary c: Of all drug-related victims, Colombians will most consistently be associated with cocaine by scene evidence and toxicological findings.

Hypothesis 5: Jamaican victims will show the most consistently intra-groupment pattern of trafficking-related homicide victimization of any social groupment.

Corollary a: Jamaican victims will be associated exclusively with the use and sale of marijuana, as opposed to alcohol, sedative-hypnotics, and cocaine.

Hypothesis 6: American Blacks will be more closely associated with the use and sales of opiates than any other socioeconomic level or social groupment of victims.

Corollary a: Blacks will show the strongest tendency to die in situations implying immediate reactivity to perceived deviance (i.e. quarrels).

Corollary b: This tendency will be manifested in primary relations for the most part and will violate hypothesis 2 almost as frequently as trafficking-related crimes due to the low socioeconomic status of American Blacks which places them in open areas more frequently than members of other groups and deprives them of adequate protection from formal control agents.

Hypothesis 7: Anglos will be more associated with drug use, as opposed to trafficking/distribution, than any other social groupment.

Corollary a: Anglos will be more diverse in their choice of drugs on both the individual and groupment levels than members of any other social groupment.

Corollary b: Anglo victims will be associated with a wider variety of types of homicidal acts when drug-involved than will members of any other social groupments.

Corollary c: Anglos will be the most frequently killed in non-primary relationships of all the social groupments examined within drug-related categories.

The Utility of the Components of the Concept of "Subculture"

Due to the significant distinctions in the living conditions and values of the social groupments examined here it is inferred that their members will
differentially value various sorts of relationships and therefore be more prone to violence in some types of situations than in others. In scrutinizing these data, groupments and types of acts are utilized as approximate indicators of subcultural values and purposes associated with homicide. Black's (1983, 1984) thesis predicts that victims of low socioeconomic status, stigmatized identities, or those involved in illegal markets, as well as those involved in disputes with intimates, will be significantly associated with high rates of self-help violence. This logic holds that low socioeconomic status and stigmatization will be directly correlated with immediate reactions (i.e. quarrels) to perceived deviance while Wolfgang and Ferracuti (1967) associate restraint and rational planning with the more powerful social classes. Thus, quarrels are expected to be most common among drug-users (and low level dealers who are virtually indistinguishable from users), and especially among Blacks and impoverished Hispanics, while assassinations and executions will typify trafficking-related deaths. Robberies will occupy an intermediate position on this dimension of the drug market's hierarchial structure. Groupment valuations of monetary and reputational concerns are seen as the principal variables explaining these distinctions.

It is expected that social groupment and level of drug-involvement will be more adequate predictors of type of homicidal act and victim-offender relationship (i.e. primary or non-primary) than will socioeconomic status levels. Thus, it is implied that social groupment and level of drug market involvement are pivotal variables intervening between societal level determinants, on the one hand, and the type of act and victim-offender relationship associated with homicide victimization on the other.
Homicide and Scene Accessibility to Control Agents

The original variable describing the places in which Miami homicides occurred has been collapsed into four categories that form a rough continuum of locational accessibility to police patrols. Black (1983, 1984) points out that the perception of a scene's accessibility to formal agents of social control is a crucial factor in an offender's decision to use force against a perceived deviant. Thus, it can be deduced that the frequency of homicide should be inversely related to such levels of scene accessibility. The major exception to this general prediction is expected to involve low SES groupments and the public assassination of drug traffickers which functions to announce the presence and enforcement of normative boundaries in an otherwise stateless social location.

To scrutinize the effects of accessibility on groupment patterns of homicide, the accessibility variable will be crosstabulated with one describing the type of homicidal act. This crosstabulation will be presented in two forms. First, drug-related cases will be compared with other cases. Later, attention will turn to the user-trafficker divisions among the former group. This approach compares the dichotomous conceptualization of drug involvement with one using a two-level model of the illicit drug market. This latter crosstabulation will be divided into five social groupments which approximate the ethnic groups of interest to this research - Anglo, American Black, Jamaican, Hispanic, and Colombian. Infrequently encountered nationalities such as Asians and Arabs are denoted as "other" on this variable for reasons of parsimony and are dealt with as missing data.

It is assumed that lower class Miamians spend much time socializing in open areas that are inadequately policed by formal control agents. Therefore, fatal quarrels among low socioeconomic actors may occur in these sorts of areas with greater frequency than is inferred by this operationalization. This likelihood
has been partially taken into account in the operationalization of victim socioeconomic status that is discussed in the following chapter.

Comparing Drug and Alcohol Users

The dissertation's central goal is to describe and theoretically interpret the distribution of Miami's drug-related killings across groupments and types of acts. The relationship between drug-related murders and other kinds of homicide over the three year period being examined is thus of interest to this research. While the phenomenon of the drug-trafficker is relatively unique to this emergent market, the similarities between drug and alcohol abuse are well-known to social science (Glasser, 1965).

This investigation attempts to link the relative structural position of various sub-groups of victims to the types of acts in which they are killed on the basis of the scholarly literature on the particular group(s). Rather than attempting to separate cultural (i.e. nationality) from structural (i.e. socioeconomic status, drug market involvement) forces, the study's principal goal is to describe the interaction of these forces as they pertain to drug-related murder. Thus, alcohol users are a natural reference point for generalizing about the drug-using sub-group of victims. Comparisons will be made across groupments and types of acts for all drug-related cases. These cases are then to be contrasted with those involving alcohol and with those whose victims were known (i.e. stigmatized) deviants not thought to be involved in substance abuse. It is expected that drug and alcohol users will die in very similar types of acts that are largely a function of groupment membership.

The most pivotal crosstabulation used to test this hypothesis will juxtapose drug-user victims with alcohol-impaired (i.e. blood alcohol content of .05 or more) victims, within social groupments. A separate, but equally important, crosstabulation will compare the effects of victim groupment with that of market
level among drug-related cases on the sorts of homicidal acts and relationships in which homicides typically occur. Drug users will be juxtaposed to victims impaired by alcohol use, as well as with the non-substance using, but otherwise stigmatized victims, and with non-labeled victims of non-drug-related cases across these two key variables. Following these analyses, drug users, the alcohol-impaired, and the otherwise stigmatized will be compared on the dimensions of socioeconomic status, accessibility of the crime scene, and visibility of the case. Groupment-specific divisions among these categories are expected to relate most directly to differences in circumstances, places, drug(s) of choice, and types of relationships.

Colombian Victims

Because of the study's focus on drug-related killings, both Colombian and Jamaican nationals are expected to be prominent in many analyses. Hypothesis four predicts that Colombians will be almost exclusively associated with trafficking, as opposed to user and non-drug-related cases. This tendency is attributed to the heavy involvement of Colombians in the cocaine trade (Lupsha, 1981) as well as to the defensive aggression described by Wolfgang and Ferracuti (1967) and Schorr (1974) as typical of Colombian society. This research assumes that this defensive aggression is utilized by drug kingpins to maintain social control and set normative boundaries in the stateless arena of illicit drug trafficking.

Thus, killings of and by Colombians should be highly visible to the public in order to serve these social control functions. Multiple homicides, executions of bound victims, multiple assaults on victims, and public assassinations are seen as typical of such "high visibility" crimes and conform to Black's (1983, 1984) view of the role of violence in establishing social control in a stateless social world. The frequent use of such extreme social control measures
is seen as a joint function of three interrelated factors: 1) the savage violence that is endemic to rural Colombia (Schorr, 1974); 2) the dual role of crime syndicate chieftains as local warlords and patrons, on the one hand (Eisenstadt and Roniger, 1985) and drug traffickers on the other (Lupsha, 1981); and 3) the very high monetary stakes involved in cocaine trafficking (Lupsha, 1981).

It is also hypothesized that in 1978 and 1979 most Colombian victims will have been killed by Colombian assailants. However, as the drug-trafficking problem gained popular and official notoriety it seems that Hispanics already residing in Miami (i.e. Cubans and Puerto Ricans) became increasingly involved as surrogates in the activities of Colombian-controlled syndicates since the latter groupment was increasingly perceived as drug-involved by local and federal law enforcers and were becoming more strictly observed and controlled. Thus, by 1980, a diffusion of Colombian violence seems to have had a significant impact on other Hispanic groups.

Colombian victims are expected to be associated almost exclusively with trafficking-related deaths. They are also expected to be closely associated with the possession and use of cocaine. While Colombia produces and exports both cocaine and marijuana, the monetary value of cocaine far exceeds that of cannabis per unit of volume (Lupsha, 1981). It is also well-known that cocaine use is far more closely tied to acts of violence than is marijuana (Grabowski, 1984). Reuter (1984) has also pointed out that historically the marijuana trade has been the most pacific of all illicit drug product-markets.

Jamaican Victims

Though to a lesser extent than Colombians, Jamaican victims are expected to be predominantly associated with drug-trafficking involvement and associated types of killings. Killings of Jamaicans are expected to be even more consistently intra-groupment than those involving Colombians because of the
closed nature of Ras Tafarian sect membership and interaction (Simpson, 1955, 1956). Exploration of this question may, however, be confounded by both the pacific nature of the marijuana trade (Reuter, 1984) (i.e. low cell frequencies) and the seclusiveness of Ras Tafarians that results in a paucity of data on assailant characteristics. It is expected that Jamaican victims will die primarily in trafficking-related or non-drug-related contexts rather than in use-related situations because of the religious overtones of marijuana use among sect members. When involved with non-Jamaicans, Ras Tafarians will tend to have primary relations only with Blacks, although they will engage in low-level transactions with Anglo-users, whom they often categorically define as "white devils".

The relative frequency of intra-groupment homicide among Jamaicans can be examined by crosstabulating the victims' groupments with those of known assailants. Low cell frequencies may confound attempts to statistically test for the significance of such differentials where intra-groupment killings are predominant but the descriptive value of such crosstabulations easily justifies their use with this sort of research.

Whereas Colombia is associated primarily with cocaine trafficking and has a long history of severe internal strife, Jamaica is a source only of marijuana and has maintained a fair degree of domestic stability in recent years. American-backed crop eradication efforts in Jamaica are seen as encouraging increased Colombian involvement in the marijuana trade while diminishing the extent of Jamaican involvement in marijuana trafficking (Lupsha, 1981). All of these factors explain the low number of Jamaican victims encountered in this study (N=26) but do not obviate the importance of this groupment to the illicit drug trade, and thus to drug-related homicides in Dade County.

Just as Colombian victims have been associated with cocaine, Jamaicans are
similarly associated with marijuana. Members of the millennial Ras Tafari
sect are expected to be more involved in drug use than are Colombians as a result
of their definition of marijuana use as a sacred activity. This hypothesis can
be analyzed by comparing the frequency with which various drugs are found on
crime scenes and in toxicologies across social groupments. Because tests for
cannabinoids were imprecise and quite expensive in 1980, this illegal substance
(i.e. marijuana) will usually have been discovered on crime scenes rather than in
toxicologies when reported, however.

Jamaican homicide victims are expected to be found in non-drug-related as
well as trafficking and user categories. Several factors underlie this
hypothesis: 1) many Miami Jamaicans are in the U.S. illegally for non-drug-
related reasons and are not free to utilize formal social control agencies; 2)
Ras Tafarians, who are known to both use and traffic in marijuana, are drawn from
the lower strata of Jamaican society and are seen as a criminalistic group by
authorities in that nation; 3) many Jamaicans living in the U.S. are
impoverished and thus would be inclined to participate in the lower levels of the
drug market as well as in other forms of crime; and 4) certain areas of Miami
which are heavily populated by Jamaicans are also known for "on-street" drug
sales. The principal concentration of Jamaican homicide victims, however, is
expected to be found in the drug-trafficking category. This prediction can be
verified by scrutinizing the distribution of Jamaicans across levels of drug-
market involvement.

American Black Victims

While Colombians should be primarily associated with cocaine sales and use,
and Jamaicans with marijuana, American Blacks are hypothesized as the principal
users of opiates in Dade County. American Blacks are, of course, also frequently
involved with cocaine and marijuana but not at the high levels of market
structure associated with Colombians and Jamaicans.

American Blacks are conceived of as the second most "mainstreamed" social groupment under scrutiny in this research. That is, their acculturation to the dominant culture is seen as typically more akin to that of Anglos than to that of Jamaicans or Latins. However, Black Americans are a structurally disadvantaged minority group whose living conditions are often associated with violence (Wolfgang, 1958; Swiggert and Farrell, 1975) and retreatism (Merton, 1968; Cohen, 1955). Therefore, it is reasonable to associate members of this group with opiate use and sales to a disproportionate extent. The findings of Kaestner, et al. (1977) also allude to this tendency among Black Americans. Crosstabulation of groupment with type of drugs can be used to examine hypothesis six in detail just as it was used to test hypotheses four and five.

Along with Hispanics of low socioeconomic status (implying lack of anglicization), Blacks are further hypothesized to show the strongest tendency to die in homicidal acts that imply immediate reactivity to perceived deviance. These factors are operationalized as quarrels among primary associates. This hypothesis is based more on Black’s (1983, 1984) correlation of devalued socioeconomic status with violent social control than upon any particular insights into the nature of this social groupment. Therefore, the significance of social groupment, as opposed to socioeconomic status, will be closely examined in crosstabulations with type of homicidal act, victim-offender relationship, and level of crime scene accessibility.

Anglo Victims

Ethnographic (Weidman and Page, 1982) and psychometric (Kaestner, et al., 1977) evidence indicates that Anglo victims will be more closely associated with the use of a greater variety of illicit drugs than members of minority groupments. These findings provide the empirical basis on which hypothesis seven
and its corollaries have been formulated.

Since it has previously been hypothesized that social groupment is a primary selection factor with respect to crime syndicate members (Reuter, 1984), Anglos will, in most cases, be outsiders to the major trafficking syndicates operating in southeast Florida. As outsiders, drug-involved Anglos are predicted to be more vulnerable to violent social control (and robbery) than are insiders. This evidence further indicates that minorities specialize their use of drugs to a greater degree than do Anglos. Thus, it is reasonable to hypothesize that Anglo victims will be predominantly users and will have a greater variety of drugs in their systems at death than any other social groupment.

The main hypothesis concerning Anglo victims can be verified by examining the distribution of victims within this social groupment across drug market levels and across specific types of drugs found in corpses and on crime scenes. This same research (Weidman and Page, 1982; Kaestner, et al., 1977) strongly suggests that Anglos will use a greater variety of drugs in their hedonistic search for stimulation than will members of other groupments. Mean scores for "drug diversity" in drug-involved victims will be used to confirm this insight among homicide victims at the individual level while a crosstabulation of groupments with drugs noted by the Medical Examiner is used to examine drug diversity at the group level.

Since Anglos, as a category, have the most superordinate status of any social groupment in Miami, and are thought to be hedonistic, rather than pecuniary, in their orientation to drugs, non-primary relations between these victims and their assailants are expected to be significantly more common than those among impoverished blacks or family-oriented Latinos. Thus, it can be further hypothesized that drug-involved Anglo victims will die in a wider variety of circumstances than will members of other groupments. Juxtaposition of
victim's social groupment and the type of homicidal act, as well as type of relationship, will be pivotal to scrutinization of this hypothesis. Crosstabulations of groupments with accessibility of location, type of act, and victim offender relationship will be used to confirm and extend the results of this analysis.

Summary

To establish and explain the presence of these hypothesized patterns, comparisons of market levels and social groupments will seek to identify the consistent associations between various aspects of homicide situations and different kinds of victims. Groupments of victims will also be examined for the influence of socioeconomic status and behavioral tendencies (i.e. drug and alcohol involvement) on patterns of homicide. Non-parametric tests of independence (Chi Square) and correlations will be the principal statistics used to validate these hypotheses. However, analyses of variance (ANOVA's) and multiple classification analyses (MCA's) will also be employed in the analysis of these data.

The key hypothesis examined here asserts that different social groupments will be especially associated with violent death only in certain situations. Victim-offender relationships, types of homicidal acts, types of settings, and the presence of drugs or other stigmata are seen as crucial to discovering and explicating such differences. The relative danger of various kinds of relations and settings will then be explained by reference to the jist of the literature on the cultural and structural living conditions typical of specific social groupments.

This study has three principal goals: 1) to describe the locational and situational patterns of homicide associated with drug users and traffickers subdivided by victims' social groupment; 2) to compare the regularity of
groupment and behavioral-structural (i.e. drug market involvement, stigma) definitions of subculture in terms of their empirical association with various aspects of homicidal situations; and 3) to examine the types of acts that are typical of these sub-categories of victims with the intention of inferring the principal functions of violence that are associated with drug-related murder in each social groupment.

In general, it is predicted that the types of acts in which users die will reflect the offender's immediate felt need for social control while trafficker's deaths will show a distinctive association with rational premeditation and the "boundary setting" needs of an illicit market. Such a division juxtaposes Athens' (1978) "defensive" motives with "malefic", and perhaps even "frustrative", ones. Thus, within social groupments, drug users are expected to resemble alcohol users and the otherwise stigmatized in their circumstances of death. Trafficking related deaths will show a pattern more typical of conventional organized crime slayings (Abadinsky, 1985). It is expected that a clear relationship between social groupments, on the one hand, and both the drug product-market and market level, on the other, will also be demonstrated in these analyses.
CHAPTER III
METHODOLOGY

The data to be scrutinized comprise a full saturation sample of all known homicides that occurred in Dade County (Miami) Florida between January 1, 1978 and December 31, 1980 (N=1186). These data represent all deaths categorized as homicides by the Dade County Medical Examiner’s Office for this three year period.

The primary source of data for this study were the official files of the Dade County Medical Examiner’s Office. The initial coding scheme (see Appendices A and B) was developed along lines suggested by Wolfgang’s (1958) study of criminal homicide in Philadelphia. The coding form categorized 1) victim characteristics such as race, sex, age, nationality, toxicological findings, victim lifestyle, and arrest record; 2) situational factors that include place of incident, method of killing, date and time of incident, circumstances of death, and number of victims and offenders; and 3) offender traits such as age, race, sex, and lifestyle. Additional details were recorded whenever criminologically relevant so that each coding form contains as full as possible a description of the apparent facts of each case. In addition, the Medical Examiner allowed photocopies to be made of each case summary written for his files.

Information from Medical Examiner files was supplemented with data supplied to police officers working on the project by local investigative agencies. Because of the project’s concern with drug-related killings, these officers were given much greater freedom in collecting police data than the principal investigators ever could have been granted for security reasons. Police data was relayed to this investigator both verbally and in writing. It was then integrated with extant Medical Examiner case data on the original coding sheets. Police data was especially crucial in describing offenders and circumstances of
murder cases. A full description of the kinds of information found in Medical Examiner's and police files is provided in Appendix C.

In addition to these sources of information, data on case dispositions was taken from Wilbanks' (1984) work on *Murder in Miami* which provides summary vignettes of 1980 cases. Wilbanks collected most of his information from the same sources as did this study, but placed greater stress on legal disposition.

Once the fullest possible case descriptions had been assembled, the coding scheme was elaborated to include all consistently available data and/or sociologically interesting details. Numeric codes were then assigned to variable categories and the researcher converted the notes on the original coding forms to a machine readable format. The data were then transferred to a floppy diskette and uploaded onto the LSU-SNCC mainframe computer for analysis.

Research Design

This study was modeled after Wolfgang's (1957, 1958) work but sought to especially emphasize the nature and impact of drug-related killings on criminal homicide in Dade County. Thus, the study's main goals are nominalistic. "Causal" predictions and hypothesis testing are of secondary concern to the project. By rendering as detailed as possible a description of homicides related to drug use and trafficking, this exploratory study hopes to fulfill three basic goals: 1) to increase sociological understanding of the relationships among drug trafficking, illegal market involvement, living conditions, and membership in social groupments; 2) to test the feasibility of variables for use in more causally oriented studies of these phenomena; and 3) to aid in developing a holistic subcultural approach to criminal violence that will be useful in future research.

By providing a detailed description of drug-related homicides in the natural laboratory provided by the situation in Miami between 1978 and 1980, this study
seeks to provide a maximally accurate format in which case-specific observations can be aggregated and scrutinized. Such an approach welds elements of nominalistic theory (e.g. social groupings, situations) to basic socio-structural concerns such as relative social status and the distribution of phenomena across large populations.

In this effort the dissertation is attentive to three basic sociological topics (Denzin, 1978). First, conditions or states of being are examined in terms of socioeconomic status, chemical euphoria, and social stigmatization. Secondly, actions resulting in homicide are defined in terms of illegal market participation and circumstances of death. Finally, orientations are structurally operationalized primarily in terms of social groupments, but also in reference to illegal product markets.

These data are structured in such a way as to facilitate both static (i.e. cross-sectional) and longitudinal insights. The impact of drugs, and especially drug trafficking, on criminal homicide was considered negligible by police and the public in 1978 but grew to epidemic proportions by 1980. For reasons of statistical power it will usually be most desirable to analyze all three years of case data simultaneously. However, some analyses will examine changes occurring over time by sub-dividing cases into year-specific sub-populations.

Limits of the Data

Certain restrictions must be applied to analyses of these data because of the nature of the phenomena under investigation, the auspices under which they were collected, and the exploratory-descriptive goals of the project. These restrictions apply primarily to the completeness of the data collected, the generalizability of analytical findings, and the statistical methods employed in such analyses.

The phenomenon of drug-related homicide is difficult to analyze because of
its doubly criminal nature (i.e. illegal market participation and criminal violence). This fact explains the high rate of missing data on offenders and the moderate rate of unknown circumstances and victim-offender relationships in these data. Dade County was chosen as the focus of study because of its natural laboratory conditions as well as its convenience and accessibility to the researcher at the time these data were collected (i.e. 1980 through 1983). However, Miami is a uniquely multi-ethnic city with a larger proportion of Cuban and Latin American residents and visitors than any other American urban center. Thus, generalizations about Hispanic groupments may not be freely applied to other Spanish-speaking American populations.

Because of sporadic difficulties with missing data and the complex array of cross-cutting groups under scrutiny, and the descriptive intentions of the project, the statistical methods useful in interpreting this information are rather limited. Prior research (e.g. Wolfgang, 1958; Swiggert and Farrell, 1975) has shown that homicide is not normally distributed across urban populations. Research pertinent to killings of drug-involved victims (i.e. Zahn and Snodgrass, 1978; Heffernan, et al., 1982) shows this pattern of age, sex, and racial distinctions to be especially pronounced in this illicit market. Also confounding the statistical rigor of this study is the descriptive structure of the information initially recorded and placed in computerized storage. Most of the original variables are distinctly nominal measures. Many of these variables can be collapsed into dichotomies after descriptive frequency distributions have been obtained (e.g. the social visibility of cases). Others can be reconceptualized in abbreviated form as ordinal scales of pivotal dimensions such as the crime scene's relative accessibility to police. These strategies are also useful in overcoming problems posed by missing data in constructing variables indicative of key analytical dimensions.
The auspices under which the data were collected pose certain problems for the study. Because of the project's primary reliance on information obtained from Medical Examiner's files, the most consistently available variables are those describing victim characteristics. Information on the legal disposition of cases is often missing or ambiguous. This difficulty was only partially overcome by obtaining police data and using Wilbanks' (1984) information on 1980 cases.

Because of temporal and financial restrictions on the Dade County Medical Examiner's Office, complete toxicologies were performed only when drug involvement was strongly suspected and/or a distinct "need to know" the victim's status in this regard existed on the part of one or another law enforcement agency or a concerned life insurance agency. Because of their expense and imprecision, tests for marijuana usage were rarely performed. Thus, data on this variable undoubtedly underestimates the proportion of cases involving victims under the influence of drugs, and especially those who utilized cannabis shortly prior to their demise.

The auspices under which these data were collected are not dissimilar from that of other studies of urban homicide (e.g. Wolfgang, 1958; Swiggert and Farrell 1975; Zahn and Snodgrass, 1978). Therefore they do not pose any serious problems of comparability or generalizability in themselves. However, the study's reliance on Medical Examiner data, and the corresponding lack of attention to State Attorney's Office information, places serious restrictions on the utility of data on case clearance categories and legal dispositions.

The exploratory nature of the project and its fundamentally descriptive goals pose distinct problems for the statistical analysis and generalizability of these data. The hypotheses offered in the preceding chapter serve primarily as a guide for the explanation of these data. The situational facts of each case were deliberately coded in as detailed a fashion as possible so as to provide the
greatest contextual depth feasible in a large sample project. This strategy has the advantage of providing richly detailed descriptions of individual cases that are amenable to computerized storage and manipulation. However, this rather unique coding scheme results in a collection of nominal level variables which severely restricts the range and rigor of applicable statistical tests. Such a design is congruent with the descriptive-exploratory goals of the project but constrains the degree to which causal predictions can be generated and tested.

These descriptive variables have been collapsed and/or combined into composite scales and dummy variables that are more amenable to statistical analyses. As a result of this strategy, certain composite variables (i.e. type of homicidal act or scene's accessibility level and crime visibility) cannot be used jointly when inferential statistical procedures are employed since they employ the same descriptive components and such analyses would constitute a major violation of basic statistical assumptions. In cases where a variable is primary to the construction of one composite variable and fairly marginal in the development of another, such overlaps may be overlooked so long as such a violation of statistical assumptions can be substantively justified. This is especially true in situations where different codes for the same original variable are used in constructing different composite variables.

Since most of the variables under scrutiny constitute ordinal measures, the variety of valid statistical tests applicable to these data remains fairly restricted despite these efforts. Non-parametric statistics require fewer and less stringent assumptions be met than do parametric ones. The analysis relies heavily upon non-parametric statistics for this reason. However, it appears that the use of analysis of variance techniques are justified in explaining the influence of certain background factors on the distribution of highly visible slayings.
Conceptualization of Variables

The following is a list of the composite variables that are central to the analyses of these data. Indented under each composite variable are the original descriptive variable(s) used to construct these ordinal and dummy variables. Variable names given here are those used in the subsequent analytical discussions of these data.

Victim's Social Groupment
Victim's Racial or Cultural classification
(as defined by official investigative agencies)
Victim's Nationality
Offender's Social Groupment
Offender's Racial or Cultural Classification
(as defined by official investigative agencies)
Offender's Nationality
Market Level
Why Drug-Related #1
Level of Certainty of Drug-Relatedness
Drug #1
Why Drug-Related #2
Drug #2
Victim Character
Offender Character
Type of Homicidal Act
Circumstances of Incident
Additional Circumstances
Offender Characteristics
Victim-Offender Relationship
Relationship Type
Victim-Offender Relationship
Circumstances of Incident
Socioeconomic Status
Victim's Occupational Status
Place of Incident
Census Tract Number/Average Income
Visibility of Crime (to public)
Multiple Homicide?
Secondary Assault?
Circumstances of Incident
Place of Incident
Accessibility of Crime Scene
Place of Incident
Dumped?
Groupments of Victims and Offenders

The groupments of victims and offenders used here describe popular social classifications of homicide victims and offenders. These are fairly simple composites of codes for the commonly recognized and acted upon denotations of race and nationality whose construction is identical for victims and offenders. By combining the racial-cultural distinctions used by the authorities and public (e.g. Anglos, Latins) with codes for victim's national origin, these "groupments" (Rheinstein, 1954) connote a significant variable in the societal classifications of homicide victims and offenders. The original category for "Black Latins" has been collapsed into the "Latin" classification. Colombians and Jamaicans are grouped by nationality since they are of particular interest due to their high levels of illicit drug involvement. American nationals are separated into "Anglos" (i.e. whites) and Blacks. The few Europeans and Canadians included in the data are also classified as "Anglos" for the sake of parsimony. The "Hispanic" category subsumes all non-Colombian Latins, the great majority of whom are of Cuban or Puerto Rican ancestry. The category "other" is used to segregate various Asian and Arabic nationals from other social groupments. Victims of "other" groupments are not drug-involved and have been dealt with as missing in these analyses.

Drug-Relatedness and Illegal Market Levels

The composite variable "market level" is used for two purposes: 1) to separate drug-related from other homicide cases; and 2) to roughly divide the drug-related cases into user and trafficker categories. This is a marginally ordinal variable in that it forms a rough continuum of investment in this illegal market. Market level is conservative in its estimation of the proportion of drug-related cases because it is likely that many victims who died while under the influence of drugs (especially marijuana) are denoted as non-drug-related because no
evidence of drug use was noted by police or Medical Examiners. Similarly, some cases about which very few facts can be ascertained bear characteristics (e.g. weapon caliber, binding of victim) associated with trafficking-related killings by police but contain so many "unknown" codes that they cannot be classified as drug-related with confidence. This is most true in cases in which skeletal remains cannot be identified.

Cases with a "level of certainty of drug relatedness" score of zero (see Appendix A) in which the victim had a toxicology positive for illicit or psychoactive drugs are classified as use-related. Similarly, cases in which the main reason (i.e. "why drug-related #1") for a non-zero certainty rating involved the official presumption of drug-induced behavior on the part of the victim or assailant are classed as use-related. If a case's certainty level is considered unratable, the victim's toxicology is positive, and there is no evidence linking the victim to involvement with drug distribution or trafficking, the case is also classified as use-related. Each of these conditions is identical for cases with negative or unknown toxicological statuses if small quantities of drugs were found in the victim's possession by authorities. Victims who were "known addicts" are also classified as use-related unless strong evidence to the contrary was noted. Known prostitutes with positive toxicologies and unknown "certainty level" ratings were denoted as users since all such victims were streetwalkers. Unknown ratings were assigned to such cases only when other plausible motives had been ruled out by police investigators but the case remained unsolved. If a case was held to be possibly or definitely drug-related and the victim's toxicology was negative for illicit drugs, it was classified as trafficking-related. In some instances Drug Enforcement Administration officials had removed all Medical Examiner file contents except death certificates to assure witness/informant security but police information noted the drug-related nature
of the case. Such cases were denoted as drug-related on the "certainty" variable and are coded as "police judgement – reasoning unknown" on the "Why Drug-Related #1" variable. Since D.E.A. task force members consider user and low level dealer deaths to be strictly the concern of local police, these cases are categorized as trafficking-related. If "drugs/equipment found on scene" was given as a reason for classifying a case as drug-related and 1) large amounts of cash found on scene was denoted for "additional circumstances" or 2) the "Victim Character" variable showed the victim to be a known drug dealer/distributor, the case was also classified as trafficking related. Victim's apparently killed as a result of their status as a "known police informant" were similarly categorized.

Remaining cases were those in which either the victim's companion was the killer's intended target, the victim's reputation or police record led police to believe the case was drug-related, or witnesses/informants insisted that the slaying was drug-related. In these cases, if either the victim or the assailant was a known dealer/distributor, the case was considered trafficking-related. However, if such information was not present and the victim had a positive toxicology or was in possession of a fairly small quantity of drugs at the time of death, the case was denoted as use-related.

Having classified cases in this manner, it was found that seventeen cases remained unclassified even though the victims had positive toxicologies and/or the case's "certainty" rating was non-zero and rateable. In order to classify these cases with maximum accuracy, the researcher returned to the original case narrative and made a subjective judgement on the basis of the available facts. In general, cases with relatively high (i.e. apparently or definitely) "certainty levels" and negative toxicologies were classed as traffickers while the reverse situation was usually defined as use-related. These seventeen cases were assigned to "market level" categories on the basis of their case numbers with
SPSSx's "IF" command. Cases in which certainty level was zero or unratable, toxicologies were negative, and victims were not known addicts or dealers were assigned a value of zero to denote a lack of drug-relatedness on the "Market Level" variable.

Types of Homicidal Acts

This composite variable is used to distinguish between quarrels, assassinations, robberies, and executions. It thus represents a simplified version of the "circumstances of incident" variable, supplemented by information on victim-offender relationship and additional circumstances. If circumstances of incident were originally described as a quarrel or assassination, the case was denoted as such on this composite variable.

Cases described as robberies on the "circumstances of incident" variable were defined as "robberies" on type of act if no evidence of the victim's having been bound or otherwise constrained was noted on "additional circumstances". Cases in which the circumstances were initially described as executions were classed as such unless the "additional circumstances" variable noted that robbery was the principal motive. If the circumstances of the incident were unknown but 1) no evidence of binding or robbery existed, and 2) the victim was a relative, lover, or friend of the killer, the case was defined as a quarrel. The same strategy was used in cases where the original "victim-offender relationship" was described as a lover's triangle unless there was evidence to the contrary. If "victim-offender relationship" was described as "business associate", circumstances were unknown, and the victim was bound, the case was considered an execution. Similar cases in which evidence of robbery existed were denoted as "robberies". Circumstances initially described as related to gambling or prostitution were classified as quarrels unless evidence to the contrary was noted on ancillary descriptive variables. Cases not meeting any of these criteria in which
circumstances were known were categorized as "other" and treated as missing data. Cases in which none of these three basic variables were rateable were also placed in this category. Cases in which the victim was killed by an on-duty peace officer are considered as "other" and assigned to this category by use of the "offender characteristics" variable, since they did not fall into any other type of act examined here and were relatively infrequent. Cases traced to the activities of certain police officers acting as "enforcers" for cocaine traffickers (locally known as the "cocaine cops") were classified as executions since these six to eight men had a consistent style (by which they were identified, though never convicted) that was typical of this category.

Types of Victim-Offender Relationships

Following the regional theorists of subcultural violence (Reed, 1982; Bankston, et al., 1985), seventeen descriptive codes for victim-offender relationships were collapsed into primary and non-primary relationship categories. Spouses, ex-spouses, all variety of other relatives, lovers, friends, acquaintances, neighbors, lover's triangles, prostitutes and their clients, and business associates were classified as primary relations. Strangers, hired killers, and killings of and by law enforcers were operationalized as non-primary relationships. If victim-offender relationship was classified as unknown but circumstances were described as a quarrel, the case was denoted as a primary relationship. The same strategy and categorization was applied to gambling and prostitution related cases as well as those with circumstances described as child abuse, mercy killings, or suicide pacts. Where victim-offender relationship was unknown but circumstances were described as robbery-related, riot-related, or political terror, the relationship was categorized as non-primary.

Socioeconomic Status of Victims
This composite variable was operationalized in a two-stage process. First, cases in which the victim’s occupation was known and classifiable in Hollingshead’s (1965) seven point scale of relative occupational statuses were assigned to low, middle, or upper class status on this basis. This step was simply a process of collapsing Hollingshead’s seven divisions into three classes. The unemployed, unskilled, and semi-skilled were denoted as members of the lower class; skilled manual workers, clerks, salespeople, technicians, and small business owners were categorized as middle class; and administrators, managers, proprietors, and professionals were held to be of the upper class.

In situations where the victim’s occupation was not noted on the death certificate or was ambiguous (i.e. housewife, student, retiree) and the fatal incident occurred in a residence, bar, restaurant, or place of business, the relative socioeconomic status of the census tract in which the incident occurred was used to assign cases to one of these three categories. These tract-based assignments were initially made on the basis of the researcher’s knowledge of the area. The validity of these classifications was then confirmed by referring to 1980 census data on the median income of families residing in the tract. While the data under scrutiny refer to individuals, this use of census data is felt to be appropriate since SES is here used to characterize the victim’s general living situation. Tracts with median incomes at or below $14,999 were defined as lower class, those between $15,000 and $34,999 as middle class, and those above $35,000 as upper class. Cases not covered by these criteria were classified as unknown socioeconomic status.

Accessibility of the Crime Scene

The accessibility scale was created by collapsing descriptive codes for place of incident. It represents an ecological scale of scene openness to formal control agents. All residences are held to be minimally accessible to formal
agents of social control. Places of business, including bars and restaurants, are defined as intermediate in their accessibility to police. Maximally accessible locations are denoted as "open areas" and include streets/alleys, vacant/parking lots, airport concourses, city buses, parked automobiles, and wooded areas. "Other/unknown" is a residual category that includes the high seas and public restrooms as well as cases in which the body was dumped by the killer(s) and the sort of place in which the homicide took place remains unknown to authorities. These cases are classified as missing for the purposes of these analyses.

Visibility of Crimes to the Public

Black (1984) suggests that self-help social control is often a more effective deterrent to deviance than formal measures because of its swiftness and severity. He alludes to the heinousness of certain "boundary settings" crimes in these remarks. Wolfgang and Ferracuti's (1967) discussion of violent subcultures provides numerous illustrations of this function of violent crime and implicitly supports Black's view. To be effective as social control devices, it would seem that such acts must be highly visible to the public.

On these bases, crimes involving multiple victims and/or public assassination have been denoted as highly visible while other cases are coded as zero on this dummy variable. Because of their heinousness, executions of bound victims and severe (i.e. overkill) assaults are also denoted as highly visible. Examination of the frequency distribution for this variable showed that neither high nor low visibility cases constitute less than 25% of the overall population. Therefore this variable can be used as a dependent variable in analyses of variance procedures involving socioeconomic status, market level, and social groupment (Cleary and Angel, 1984).
Stigmatization and Deviant Status

In order to compare drug-users and traffickers with members of other stigmatized groups, the variables describing victims' blood alcohol content and "victim character" are of great import. Blood alcohol content is an interval level variable routinely recorded by the Medical Examiner in all cases in which emergency medical procedures have not confounded its validity. The aggregated version of blood alcohol content, referred to as "Alcohol", uses legislated parameters to distinguish victims who were "impaired" (blood alcohol content of .05 or more) from those who were slightly under the influence (.01 to .04), and those with negative blood alcohol contents. Cases in which police or emergency medical personnel noted alcohol on the victim's breath but blood alcohol content was confounded by life-saving efforts are assigned to the "impaired" category.

Victim character has been reduced to a dichotomous variable that is referred to as "Deviant Identity". Victims known by authorities to have been homosexuals, prostitutes or clients thereof, mental patients, non-drug-involved organized crime figures, or alcoholics are grouped together as non-drug-related deviants. These cases, along with victims who were impaired by alcohol are to be subdivided by socioeconomic status and social groupment and compared with drug-involved victims along the dimensions of type of homicidal act, scene accessibility, and type of victim-offender relationship. Alcohol-users are expected to be statistically indistinguishable from drug users within social groupments while non-alcohol-impaired deviants are predicted to be distinct from drug-involved victims along these dimensions.

Statistical Operations

While the primary goals of this project are descriptive, non-parametric correlations will be used to supplement and extend the results of Chi Square tests of the independence of crosstabulated variables where statistically
feasible. The study’s intentions are thus more exploratory and heuristic than they are causal and predictive. However, the use of more rigorous techniques can be justified in some instances as long as this intention is borne in mind.

The hypotheses listed and discussed above have been inferred from the combination of insights provided by the relevant scholarly literature, residence in the area studied, and interactions with police officers and Medical Examiners. The principal analytical method used in testing these hypotheses will rely on interpreting the crosstabulation of variables pertaining to particular questions and concerns that have been previously discussed. In many cases the significance of group differences can be specified with Chi Square statistics. However, some hypotheses predict very low or zero cell frequencies (e.g. Colombian drug user deaths). These predictions, as well those concerning sub-groups with low overall frequencies (e.g. Jamaicans, N=26), are not amenable to such statistical tests and can only be approached in a logical, descriptive, fashion.

As a non-parametric test of independence, Chi Square requires no a priori assumptions as to the shape of the distribution of cases under scrutiny. It assumes only that observations are independent of one another, that nominal data grouped in exhaustive and mutually exclusive categories are examined, and that no cell has a frequency of less than five cases. Only this last assumption is truly problematic in regard to these Miami data. Psychological research often utilizes Chi Square statistics in situations with cell frequencies of four cases (Spence, et al., 1983) so some meaning can be ascribed to this statistic for tables less severely confounded by low cell frequencies.

Chi Square treats each category (i.e. crosstabulational cell) as a separate sample and tests the null hypothesis that group A is randomly associated with (i.e. not related to) group B in a given crosstabulation. The null hypothesis can be rejected if the critical value of Chi Square is less than the statistic
computed for the samples. This is to say that Chi Square compares "expected" frequencies, which are derived from marginal totals, with actual cell frequencies (Champion, 1971; Blalock, 1960, 1979). Yates correction for continuity is applied to Chi Square when 2 x 2 tables are analyzed and cell frequencies are low. This correction factor helps to amend the overestimation of Chi Square that is associated with cell frequencies of less than five cases (Champion, 1970; Norusis, 1983).

Fisher's Exact Test is used with Chi Square as a test of the significance of difference when a 2 x 2 table with expected frequencies of less than five cases is examined. This test requires categorical data be organized into two dichotomous variables and provides a useful alternative to Chi Square when expected cell frequencies are low. This statistic gives the exact probability of obtaining the observed pattern of cell frequencies.

Since very few of the tables examined are of the dimensions required for Fisher's Exact Test, coefficients of contingency are frequently used as measures of the degree of association between variables to supplement Chi Square statistics. While Chi Square helps to determine if observed frequencies differ from chance expectations, the contingency coefficient attempts to specify the magnitude of association between two variables. Contingency coefficients are used with nominal data and make no assumptions concerning the shape of the distribution or the nature of the variables. Unfortunately, contingency coefficients have no precise interpretation and serve only as an "index number" (Champion, 1970:206). These coefficients may be compared with one another only when they have been computed from tables with the same degrees of freedom, sample size, and marginal totals.

Cramer's V is a variation of the contingency coefficient that employs the same statistical assumptions as that statistic. Cramer's V also utilizes Phi
(see below) in its computation. It is preferable to the contingency coefficient because it can attain a maximum of 1.0 for tables of any size. Though more precise than a contingency coefficient, V also is difficult to interpret substantively (Norusis, 1983).

Also closely related to the contingency coefficient is the Phi coefficient which measures degree of association between nominal variables that are operationalized as simple dichotomies. While more popular because of its comparability across tables, the requirement that both variables be "naturally dichotomous" (Champion, 1970:210) severely restricts the use of Phi in this research.

Pivotal to this inquiry is Guttman's coefficient of predictability or lambda. A nominal level measure of association, lambda measures the extent to which one variable can be accurately predicted with knowledge of another. This statistic requires no assumptions be met as to the distribution of the variables under scrutiny and can be used with any sort of nominal data. Unlike contingency coefficients and Cramer's V's, lambda has a direct proportional-reduction-in-error interpretation. Thus it is analogous to Phi and Pearson's r^2 in its substantive utility (Champion, 1970; Norusis, 1983).

In addition to these non-parametric statistics, Analysis of Variance (ANOVA) techniques, and Multiple Classification Analyses (MCA's) will be employed where justifiable. The use of these tests is much more restricted by their assumptions as to the nature of the data under scrutiny than that of the study's principal, non-parametric, methods. MCA's accompany Analyses of Variance (ANOVA's) in terms of both assumptions and computer generation. The dependent variable must be measured at an interval level but the independent variable need only be nominally measured (Bailey, 1975). Since it is common practice in social science to use ordinal measures as approximations of interval data, this technique can be used
with the study's ordinal scales as well as with its measures of age and blood alcohol content. MCA also presumes a normal distribution of cases and randomly selected, independent samples. These data meet such assumptions to no less a degree than do most other criminological data and thus seem amenable to the constrained use of MCA and ANOVA. However, these tests also assume that the variances of the populations being compared for differences are approximately equal. Where major differences in variance are noted between such nominally defined sub-populations, these tests cannot be meaningfully interpreted and will not be used (Champion, 1971; Blalock, 1979).

ANOVA does not, however, indicate which means are significantly different from one another and thus needs to be supplemented with t-tests and/or MCA's to maintain objectivity in interpretive decision-making. Scheffe's technique provides such an analytical aid and is considered more stringent than a t-test by statisticians (Norusis, 1985).

Other statistics generated with MCA programs can be used whenever ANOVA results indicate that interactions between variables are not statistically significant. ETA\(^2\) describes the proportion of variance in the dependent variable that is explained by the independent variable but its interpretation is problematic if sample scores vary widely. Beta provides much the same information but is adjusted for sample size variation. Multiple R\(^2\) specifies the amount of variance in the independent variable that is explained by two or more dependent variables. Where roughly equal variances in alcohol impairment, socioeconomic status, level of drug market involvement, level of scene accessibility, and crime visibility exist across social groupments or categories of homicidal acts, such statistics can be used to identify discernibly different groups and describe the relative import of theoretically relevant variables.

Partial and multiple correlations have even more restrictive assumptions.
than do ANOVA's, restraining their use with these data. All variables must be measured at the interval level, have equivalent variances, and possess some degree of linearity. Multiple correlations measure the degree of association between three or more variables simultaneously. This technique can be used to explain the impact of socioeconomic status, social groupment, and market level on homicide visibility. Partial correlations make the same assumptions but measure the degree of association between two variables while controlling for the influence of other variables (Champion, 1971). These statistics also represent the correlation between errors with respect to the control variable and are pivotal to the construction of path models (Blalock, 1960, 1979). In this sort of exploratory research, these techniques must be used cautiously since collinearity between variables is very likely due to their reciprocal effects on one another and with unmeasured factors like personality. They can, however, be used to verify the relative import of different variables under scrutiny in predicting the sort(s) of actors most likely to be involved in various kinds of slayings.
CHAPTER IV
ANALYSIS

The Predictive Utility of Social Groupment and Socioeconomic Status

Hypothesis 1: Social groupments will provide a better predictor of the circumstances and type of victim-offender relationship involved in killings, especially drug related ones, than will the victim’s socioeconomic status.

Corollary a: Exceptions to this generality will be explicable by reference to relatively great socioeconomic heterogeneity and cultural diversity within certain social groupments.

Hypothesis one can best be tested with a series of crosstabulations and accompanying Chi Square, contingency coefficients and/or lambda statistics.

Table 1.1 juxtaposes victims’ social groupment with the type of relationship that brought the victim and assailant together. This table examines the entire population of Dade County homicide victims without regard to their drug involvement.

Scrutinization of row percentages reveals two basic patterns. The first of these is associated with Anglos and Colombians. Victims of these social groupments are fairly evenly divided between those with primary and those with non-primary relationships with the offenders. American Blacks, Jamaicans, and Hispanics are distinct from this first group in that victim-offender relationships are predominantly (75% to 80%) primary. The Chi Square of 45.835 is significant for this crosstabulation but its interpretation is problematic due to the Jamaican non-primary cell’s frequency of less than five cases. Lambda indicates that knowledge of a victim’s social groupment results in only a slight improvement (2.2%) in predicting type of relationship when groupment membership is known (lambda=0.022). The presence of a slight relationship between social groupments and types of victim-offender relationships is supported by the contingency coefficient for table 1.1 of 0.213 and the Cramer’s V of 0.218.

As a test of hypothesis one for the overall population of victims, table 1.1
Table 1.1: The Distribution of Victims' Social Groupments across Types of Victim-Offender Relationships.

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Victim-Offender Relationship</th>
<th>Primary</th>
<th>Non-Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td></td>
<td>125</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.2%</td>
<td>48.8%</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td>295</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>74.4%</td>
<td>25.3%</td>
</tr>
<tr>
<td>Jamaican</td>
<td></td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80.0%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Colombian</td>
<td></td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.1%</td>
<td>42.9%</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td>209</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.3%</td>
<td>26.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>657</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.9%</td>
<td>32.1%</td>
</tr>
</tbody>
</table>
and the accompanying statistics must be compared with those of table 1.2 which juxtaposes SES levels with type of relationship. High SES victims are evenly divided between primary (48.4%) and non-primary (51.6%) relations with their killers while low status victims are predominantly (74.1%) associated with primary relationships. Middle SES victims are intermediate in their distribution across these categories. The relationship between SES and non-primary relations has a Chi Square of 19.26 which is significant at the .0001 level and can readily be interpreted since all cells have a minimal frequency of well over five cases. This level of significance is slightly less pronounced than is the one associated with table 1.1. Lambda for table 1.2 (0.004) indicates that knowledge of victim's SES improves prediction of relationship type by 0.4%. The existence of a marginal relationship between SES and type of victim-offender relationship is alluded to by the contingency coefficient of 0.159 and the Cramer's V of 0.161. These findings tend to support hypothesis one's contention that social groupment is a better predictor of victim-offender relationship than is SES although neither of these predictor variables has great power in this regard.

The impact of victims' SES and social groupment on the type of homicidal act mirrors their relationship with the primary-non-primary dichotomy. Table 1.3 crosstabulates groupments with such circumstances. Its Chi Square of 165.085 is significant but confounded by low frequencies in three of twenty cells. The symmetric lambda for these variables (0.083) is higher than that for social groupment and relationship type (0.028), providing further support for hypothesis one in the context of the overall population. Table 1.4's Chi Square of 52.593 is statistically significant but its interpretation is confounded by low cell frequencies also.

Table 1.3 shows that Anglos are about equally divided between the categories of quarrels (41.4%) and robberies (45.0%) while American Blacks (72.1%) and
Table 1.2: The Distribution of Victim's Socioeconomic Status across Types of Victim-Offender Realationships.

<table>
<thead>
<tr>
<th>Victim's Socioeconomic Status</th>
<th>Primary</th>
<th>Non-Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>303</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>74.1%</td>
<td>25.9%</td>
</tr>
<tr>
<td>Middle</td>
<td>178</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>65.2%</td>
<td>34.8%</td>
</tr>
<tr>
<td>High</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>48.4%</td>
<td>51.6%</td>
</tr>
<tr>
<td>Total</td>
<td>512</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>68.6%</td>
<td>31.4%</td>
</tr>
<tr>
<td>Victim's Social Groupment</td>
<td>Quarrel</td>
<td>Type of Act</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assassination</td>
</tr>
<tr>
<td>Anglo</td>
<td>79</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>41.4%</td>
<td>5.2%</td>
</tr>
<tr>
<td></td>
<td>16.3%</td>
<td>9.6%</td>
</tr>
<tr>
<td>Black</td>
<td>251</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>72.1%</td>
<td>8.0%</td>
</tr>
<tr>
<td></td>
<td>51.6%</td>
<td>26.9%</td>
</tr>
<tr>
<td>Jamaican</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>41.2%</td>
<td>23.5%</td>
</tr>
<tr>
<td></td>
<td>1.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Colombian</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>18.4%</td>
<td>28.9%</td>
</tr>
<tr>
<td></td>
<td>1.4%</td>
<td>10.6%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>142</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>53.2%</td>
<td>19.1%</td>
</tr>
<tr>
<td></td>
<td>29.2%</td>
<td>49.0%</td>
</tr>
<tr>
<td></td>
<td>486</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>56.4%</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Hispanics (54.2%) are predominantly associated with quarrels. This table demonstrates the association of the most directly drug-trafficking-involved social groupments (i.e., Jamaicans and Colombians) with assassinations and executions. SES is a likely factor in producing the Anglo and American Black patterns since table 1.4 shows a fairly strong association between low SES victims and quarrels (67.0%) and between high SES victims and robberies (46.8%). Middle SES victims are associated with both quarrels (55.2%) and robberies (24.2%).

Having tentatively demonstrated the validity of hypothesis one for the overall population, attention now turns to the affects of drug-involvement on these relationships. Table 1.5 juxtaposes victims' social groupments with types of victim-offender relationships while controlling for drug-involvement as a dichotomous variable.

Among non-drug-related cases the distribution of cell percentages is roughly the same as in table 1.1; Anglos and Colombians are fairly evenly divided between relational groupings but slightly biased towards non-primary victim-offender relationships. American Blacks, Jamaicans, and Hispanics are predominantly associated with primary relationships. Though significant, Chi Square (53.007) is confounded by low cell frequencies in this table. In combination, social groupment and relationship type explain just over 6% of the variance in homicide frequency within this group (lambda=0.061). The contingency coefficient for table 1.5 is 0.267 while Cramer's V is 0.277.

These associations are much less pronounced for drug-involved victims, however, as demonstrated in the second portion of table 1.5. Primary relations account for sixty to eighty percent of the cases in each social groupment but no distinct clustering of these values is notable. This is reflected in the non-significant and confounded Chi Square (2.037; prob=0.729) as well as by the
Table 1.4: The Distribution of Socioeconomic Status across Type of Homicidal Act.*

<table>
<thead>
<tr>
<th>Victim's Socioeconomic Status</th>
<th>Type of Homicidal Act</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarrel</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>235</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>67.0%</td>
<td>60.6%</td>
</tr>
<tr>
<td>Middle</td>
<td>139</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>55.2%</td>
<td>35.8%</td>
</tr>
<tr>
<td>High</td>
<td>14</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>22.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Column Total</td>
<td>388</td>
<td>665</td>
</tr>
<tr>
<td></td>
<td>58.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>10.8%</td>
<td>11.6%</td>
</tr>
<tr>
<td></td>
<td>4.3%</td>
<td>7.1%</td>
</tr>
<tr>
<td></td>
<td>17.9%</td>
<td>23.0%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Table 1.5: The Distribution of Victims' Social Groupments across Types of Victim-Offender Relationship within Drug-Involved Groups.

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Non-Drug Involved</th>
<th>Drug-Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Non Primary</td>
</tr>
<tr>
<td>Anglo</td>
<td>63</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>46.1%</td>
<td>53.9%</td>
</tr>
<tr>
<td>Am. Black</td>
<td>234</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>75.5%</td>
<td>24.3%</td>
</tr>
<tr>
<td>Jamaican</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>75.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Columbian</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>42.9%</td>
<td>57.1%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>142</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>74.3%</td>
<td>25.7%</td>
</tr>
<tr>
<td>Column Total</td>
<td>465</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>67.3%</td>
<td>32.7%</td>
</tr>
</tbody>
</table>
lambda of 0.00. This lack of association between social groupment, SES, and relationship type among drug-involved victims is likely due to differences between user and trafficker deaths that produce an indistinct pattern of victimization when drug involvement is operationalized in a dichotomous fashion. These distinctions are dealt with in greater detail in Hypothesis two.

Table 1.5 shows a clustering of social groupments similar to that of table 1.1 among the non-drug-involved. Anglos and Colombians are fairly evenly divided between primary and non-primary relations while American Blacks, Jamaicans, and Hispanics are much more associated with the former type of relationship. Among drug-related cases, these same variables form an indistinct pattern of association. Colombian victims are the least associated with primary relationships (61.9%); Anglos (65.6%), American Blacks (70.9%), and Hispanics (71.3%) are intermediate; and Jamaicans are most closely associated with primary relations (81.8%). It is reasonable to believe that the juxtaposition of Jamaicans and Colombians in this regard is a function of cultural habits (e.g. Ras Tafarian seclusiveness) as well as the logistics of trafficking-related homicides (i.e. assassinations and executions), the logic of self-help social control in a lucrative but illegal market, and the ability of Colombian drug-lords to hire assassins that is not available to the more impoverished Jamaicans.

Table 1.6 juxtaposes victims' SES with relationship type across the dichotomous operationalization of drug-involvement and is intended for comparison with table 1.5. The first sub-table presented here is concerned with non-drug-involved victims and shows a direct association between victims' SES and non-primary homicide just as did table 1.2. The Chi Square for this portion of table 1.6 (25.783) is statistically significant and Lambda indicates a correlation of 0.024 between SES and relationship type for the non-drug-involved group. Comparison with the lambda for table 1.5 (0.061) indicates that social groupment
Table 1.6: The Distribution of Victims' Socioeconomic Status across Types of Victim-Offender Relationship for Drug-Involved and Non-Drug Involved Groups.

<table>
<thead>
<tr>
<th>Victim's Socioeconomic Status</th>
<th>Non-Drug Involved</th>
<th>Drug-Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Non</td>
<td>Primary Non</td>
</tr>
<tr>
<td>Low</td>
<td>230 79 74.4%</td>
<td>73 27 73.0%</td>
</tr>
<tr>
<td>Middle</td>
<td>116 70 62.4%</td>
<td>62 25 71.3%</td>
</tr>
<tr>
<td>High</td>
<td>18 28 39.1%</td>
<td>13 5 72.2%</td>
</tr>
<tr>
<td>Column Total</td>
<td>364 177 67.3%</td>
<td>148 57 72.8%</td>
</tr>
</tbody>
</table>
is more closely related to type of relationship than is SES however.

The second sub-table in 1.8 makes the same comparison for drug-involved victims and, like table 1.5, reveals no statistically discernible association between type of victim-offender relationship and victims' social groupment among these cases. Though interpretable, Chi Square (0.070) is not significant and lambda (0.00) indicates a lack of association between these variables as well. This sub-table demonstrates that, as SES rises among the non-drug-involved victims, the likelihood of being killed in a non-primary relationship also increases. This distinction is much less pronounced between lower and middle class victims than it is between middle and upper SES victims. This relatively direct relationship between SES and type of relationship does not hold among drug-involved victims, however. Indeed, there is very little difference in the type of relationships that pertain to these cases; i.e., they are predominantly primary regardless of victim SES. This may be tentatively attributed to the relative caution that would be expected of members of such an illicit behavioral grouping in their daily patterns of activity.

Table 1.7 juxtaposes social groupment and type of homicidal act for victims grouped by the presence/absence of drug-involvement. Chi Squares for both sub-tables are significant at the 0.05 level but are confounded by low cell frequencies. The non-drug-involved sub-table has a non-parametric correlation of 0.130 between these variables. The presence of a minor association between these variables is also discernible in the contingency coefficient for this table of 0.428 and the Cramer's V of 0.171. The correlation of these variables among drug-involved victims is much less pronounced (Lambda=0.021), most likely as a result of grouping users and traffickers in the same crosstabulation. This is also reflected in the contingency coefficient for this sub-table of 0.284 and the Cramer's V of 0.171.
Table 1.7: The Distribution of Social Groupments of Victims across Types of Homicidal Acts with Drug-Involved and Non-Drug Involved Groups.*

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Quarrel</th>
<th>Non-Drug Involved</th>
<th>Robbery</th>
<th>Drug-Involved</th>
<th>Assasination</th>
<th>Execution</th>
<th>Robbery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quarrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>56</td>
<td>3</td>
<td>6</td>
<td>75</td>
<td>23</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>40.0%</td>
<td>2.1%</td>
<td>4.3%</td>
<td>53.6%</td>
<td>45.1%</td>
<td>13.7%</td>
<td>19.6%</td>
</tr>
<tr>
<td></td>
<td>15.6%</td>
<td>6.8%</td>
<td>33.3%</td>
<td>49.3%</td>
<td>18.1%</td>
<td>11.7%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Am. Black</td>
<td>206</td>
<td>13</td>
<td>6</td>
<td>40</td>
<td>45</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>77.7%</td>
<td>4.9%</td>
<td>2.3%</td>
<td>15.1%</td>
<td>54.2%</td>
<td>18.1%</td>
<td>10.8%</td>
</tr>
<tr>
<td></td>
<td>57.4%</td>
<td>29.5%</td>
<td>33.3%</td>
<td>26.3%</td>
<td>35.4%</td>
<td>25.0%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Jamaican</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>16.7%</td>
<td>33.3%</td>
<td>0.0%</td>
<td>36.4%</td>
<td>27.3%</td>
<td>9.1%</td>
</tr>
<tr>
<td></td>
<td>.8%</td>
<td>2.3%</td>
<td>11.1%</td>
<td>0.0%</td>
<td>3.1%</td>
<td>5.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Colombian</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14.3%</td>
<td>28.6%</td>
<td>14.3%</td>
<td>42.9%</td>
<td>19.4%</td>
<td>29.0%</td>
<td>41.9%</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>4.5%</td>
<td>5.6%</td>
<td>2.0%</td>
<td>4.7%</td>
<td>15.0%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>93</td>
<td>25</td>
<td>3</td>
<td>34</td>
<td>49</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>60.0%</td>
<td>16.1%</td>
<td>1.9%</td>
<td>21.9%</td>
<td>43.8%</td>
<td>23.2%</td>
<td>15.2%</td>
</tr>
<tr>
<td></td>
<td>25.9%</td>
<td>56.8%</td>
<td>16.7%</td>
<td>22.4%</td>
<td>38.6%</td>
<td>43.3%</td>
<td>34.0%</td>
</tr>
<tr>
<td>Column Total</td>
<td>359</td>
<td>44</td>
<td>18</td>
<td>152</td>
<td>127</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>62.7%</td>
<td>7.7%</td>
<td>3.1%</td>
<td>26.5%</td>
<td>44.1%</td>
<td>20.8%</td>
<td>17.4%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row.
The second percentage refers to the proportion of cases in the column row.
Table 1.7 shows Anglos not involved with illicit drugs to be principally associated with robberies (53.6%) and quarrels (40.0%). Hispanics and American Blacks are associated mainly with quarrels (60.0% and 77.7% respectively). While non-drug-involved Colombians are killed most frequently in robberies (42.9%) and assassinations (28.6%), and Jamaicans in quarrels (50.0%) and executions (33.3%), the extremely small number of cases associated with these cells make their substantive interpretation problematic.

Among drug-involved victims a similar, but less distinct, pattern can be noted. Anglos in this sub-group died principally in quarrels (45.1%) as did American Blacks (54.2%) and Hispanics (43.8%). Colombians, however, died mainly in executions (41.9%) and assassinations (29.0%) as would be predicted by the social control needs of this trafficking-involved social groupment. Jamaican victims are more evenly distributed across quarrels (36.4%), assassinations (27.3%), and robberies (27.3%). This distribution probably reflects Jamaican involvement in both drug use and trafficking as well as their devalued SES relative to Colombians. (Table 1a.1 shows that most Jamaican victims were of lower class SES while Colombian victims were more evenly divided across SES levels.)

Table 1.8 crosstabulates SES with type of homicidal act after controlling for a dichotomous sub-division of cases by drug-involvement. The sub-table for non-drug-involved victims has a Chi Square of 51.789 that is significant but uninterpretable. Lambda for this table (0.054) reflects the explanatory power of these variables within this behavioral grouping. Further support for the presence of a relationship between the type of act and the victim's SES is found in the contingency coefficient for this sub-table (0.322) and its Cramer's V (0.240).

The second sub-table in 1.8 describes the distribution of drug-related
Table 1.8: The Distribution of Victims Socioeconomic Status Levels across Types of Homicidal Acts within Non-Drug-Involved and Drug Involved Groups.*

<table>
<thead>
<tr>
<th>Victim's Socioeconomic Status</th>
<th>Non-Drug Involved</th>
<th>Drug-Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarrel</td>
<td>Assasination</td>
</tr>
<tr>
<td>Low</td>
<td>176</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>70.7%</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>63.3%</td>
<td>52.8%</td>
</tr>
<tr>
<td>Middle</td>
<td>95</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>60.1%</td>
<td>8.9%</td>
</tr>
<tr>
<td></td>
<td>34.2%</td>
<td>38.9%</td>
</tr>
<tr>
<td>High</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17.1%</td>
<td>7.3%</td>
</tr>
<tr>
<td></td>
<td>2.5%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Column Total</td>
<td>278</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>62.1%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the column row.
cases across these variables. Although similarly uninterpretable, its Chi Square (11.311) is not statistically significant (prob=0.079). As might be expected, lambda for this table (0.041) is less than that of the first sub-table (0.054). The contingency coefficient for the drug-involved sub-table is 0.223 while Cramer's V is 0.161.

The sub-table for drug-related cases shows that most lower and middle class victims die in quarrels (70.7% and 60.1% respectively) but that middle SES victims are more associated with robberies (28.5%) than are lower class victims. As was expected, the upper class victims were most often killed in robberies (65.9%).

Among drug-involved victims, a different pattern can be identified. Quarrels are less prominent among the lower class (57.8%) and assassinations occur more frequently among this population (18.6%). The same is true of middle class, drug-involved, victims. Upper SES victims are more often killed in quarrels (33.3%) when drug-involved and executions are also more frequent under this condition among the high SES group (33.3%). Robberies, however, are less frequent among high SES victims who are drug-involved (9.5%) than among those who are not drug-involved (65.9%). These results probably indicate the influence of drug-trafficking on the structure of homicide in Miami.

As indicated by the lambdas for these tables, the pattern for drug-involved victims is less distinct. Lower and middle class victims are predominantly associated with quarrels but to a lesser extent than for the overall population (see table 1.1) or the non-drug-involved. Assassinations are much more frequent among the drug-involved (18.9%) in these SES groups than they are for the non-drug-involved cases (8.0%).

Two tentative conclusions can be drawn from these results before attention is directed to the corollary of hypothesis one. First, victim's social groupment
appears to be a better predictor of the kind of homicidal act and type of victim-offender relationship than does SES. Lambdas relating groupment to types of acts and victim-offender relationships are consistently stronger than those describing the correlation of SES with these two variables. Although interpretation of many of the Chi Squares is confounded by low cell frequencies, these statistics are more often significant, and generally higher, when social groupment is used as a predictor variable. Correlational results further support this inference.

Secondly, the division of cases according to drug-relatedness improves the correlation of these relationships but its effects are beneficial only with regard to the non-drug-involved half of this dichotomy. Although all conclusions drawn here are tentative, these correlations indicate that hypothesis one is substantially correct; social groupment appears to be a better predictor of circumstances and relationships in homicidal situations than is SES. That inclusion of drug-involvement, conceived simplistically as it was by Zahn and Snodgrass (1978), appears to improve these correlations can be taken as initial and tentative support for the assertion made in hypothesis two as well. However, it is believed that further specification of level of drug market involvement will serve to further increase the predictive utility of these variables.

The Utility of SES

Hypothesis 1a posits that, when victim's social groupment fails to provide a better level of prediction of the frequency of homicide than does SES, the affected group(s) will be especially heterogeneous in terms of their "cultural" and "structural" composition. To review this prediction's contextual validity, victim's social groupment will first be crosstabulated with SES to ascertain the nature of the interaction between these variables. This juxtaposition of social groupments with SES levels will then be subdivided into relational subgroups so as to determine the relevance of these factors to the findings associated with
hypothesis one.

Table 1a.1 crosstabulates victims' social groupment with SES level. Its Chi Square of 185.217 is statistically significant but confounded by low frequencies in two of fifteen cells. Lambda (0.188) is the strongest correlation thus far encountered, indicating that groupment explains 18.8% of the variance in SES. The presence of such a relationship is further supported by the contingency coefficient for this table of 0.420 and the Cramer's V of 0.327.

American Blacks are the most frequently victimized social groupment (35.8%) but are closely followed by Hispanics (33.7%). Lower class persons are more frequent victims of homicide (53.7%) than are middle (37.0%) or upper class (9.4%) persons. The relationship between SES and homicide frequency is inverse, as would be expected, for Blacks and Jamaicans but middle class victims predominate in the Anglo, Colombian, and Hispanic groupments. The distribution of lower class homicides suggests that self-help social control methods are operative among these communities while that of middle and upper class victims can be taken as indicative of illegal market contingencies among Colombians and structural or normative ones for Hispanics and Anglos. These distinctions are based on the various types of homicidal acts associated with these groups as well as the proportion of victims in each known to be drug-involved.

The sub-tables of 1a.2 represent the primary and non-primary categories of victim-offender relationship respectively. The sub-table for primary homicides has a Chi Square of 93.832, but its interpretation is confounded by low frequencies in seven of fifteen cells. Lambda (0.151), however, indicates that, for primary homicides, victims' social groupment and SES level explain over 15% of the variance in homicide frequency. This interpretation of the primary cases' distribution is bolstered by table 1a.2's contingency coefficient of 0.396 and Cramer's V of 0.305.
<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Victim's Socioeconomic Status</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td></td>
<td>67</td>
<td>99</td>
<td>48</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.3%</td>
<td>46.3%</td>
<td>22.4%</td>
<td>24.7%</td>
</tr>
<tr>
<td>Am. Black</td>
<td></td>
<td>251</td>
<td>58</td>
<td>1</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.0%</td>
<td>18.7%</td>
<td>.3%</td>
<td>35.8%</td>
</tr>
<tr>
<td>Jamaican</td>
<td></td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55.6%</td>
<td>38.9%</td>
<td>5.6%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Colombian</td>
<td></td>
<td>10</td>
<td>16</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.3%</td>
<td>50.0%</td>
<td>18.8%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td>127</td>
<td>140</td>
<td>25</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.5%</td>
<td>47.9%</td>
<td>8.6%</td>
<td>33.7%</td>
</tr>
<tr>
<td>Column Total</td>
<td></td>
<td>465</td>
<td>320</td>
<td>81</td>
<td>866</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.7%</td>
<td>37.0%</td>
<td>9.4%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Table 1a.2: The Distribution of Social Groupments of Victims across Levels of Socioeconomic Status within Types of Victim-Offender Relationships.

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Primary Relationship</th>
<th>Non-Primary Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Middle</td>
</tr>
<tr>
<td>Anglo</td>
<td>33</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>33.0%</td>
<td>52.0%</td>
</tr>
<tr>
<td>Am. Black</td>
<td>175</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>81.8%</td>
<td>17.8%</td>
</tr>
<tr>
<td>Jamaican</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Colombian</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>37.5%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>46.9%</td>
<td>45.7%</td>
</tr>
<tr>
<td>Column Total</td>
<td>298</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>59.0%</td>
<td>35.0%</td>
</tr>
</tbody>
</table>
Fifty-two percent of the Anglos killed in primary relationships were of middle class SES. However, the majority of Colombians (50.0%) and Hispanics (46.9%) killed in such relational contexts were of lower class status. Black victims (81.8%) follow the same inverse relationship between homicide frequency and SES that was described in table 1a.1. Jamaicans dying in the context of primary relations are evenly divided between lower and middle class standing.

The second sub-table of 1a.2 deals with these variables in the context of non-primary relationships. Though confounded, its Chi Square of 50.831 is significant. Lambda (0.192) for this table exceeds that for either table 1a.1 or the primary cases in table 1a.2. The contingency coefficient for this table is 0.428 while Cramer's V is 0.335.

Review of column totals shows that the difference in frequency of homicide victimization between lower and middle class persons is less pronounced in non-primary relationships than it is in primary ones. The same pattern of interaction between SES and social groupments noted in table 1a.1 is also evident here - Anglos (42.9%), Colombians (55.6%), and Hispanics (54.2%) killed in non-primary relationships are predominantly middle class while Blacks and Jamaicans tend to be of lower class status. Since only one Jamaican was killed in a non-primary relationship, little can be said in regards to this social groupment however. To help ascertain the cause of these distributions, analysis proceeds to examine the effects of drug market involvement and type of homicidal act on these variables.

Table 1a.3 crosstabulates types of homicidal acts with types of victim-offender relationships while controlling for victims' social groupment. The Anglo sub-table has a confounded Chi Square of 87.606 that is statistically significant at all traditional levels of alpha. Lambda (0.614) indicates that type of act and relationship explain over 60% of the variance in the frequency of
<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Primary Relationships</th>
<th>Non-Primary Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarrel</td>
<td>Assasination</td>
</tr>
<tr>
<td>Anglo</td>
<td>68</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>73.1%</td>
<td>6.5%</td>
</tr>
<tr>
<td></td>
<td>15.2%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Am. Black</td>
<td>235</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>88.7%</td>
<td>6.8%</td>
</tr>
<tr>
<td></td>
<td>52.5%</td>
<td>32.7%</td>
</tr>
<tr>
<td>Jamaican</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>66.7%</td>
<td>11.1%</td>
</tr>
<tr>
<td></td>
<td>1.3%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Colombian</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>46.2%</td>
<td>30.8%</td>
</tr>
<tr>
<td></td>
<td>1.3%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>133</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>76.0%</td>
<td>14.9%</td>
</tr>
<tr>
<td></td>
<td>29.7%</td>
<td>47.3%</td>
</tr>
<tr>
<td>Column Total</td>
<td>448</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>80.7%</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row.
The second percentage refers to the proportion of cases in the column row.
homicide among Anglos. The presence of such a strong relationship is further supported by the contingency coefficient of 0.582 and the Cramer's V of 0.715.

As with other social groupments, quarrels are the modal type of homicidal act among Anglos killed by primary associates (73.1%). However, robberies are clearly predominant among non-primary homicides (80.0%) within this groupment. Anglo victims are almost evenly divided between primary (50.8%) and non-primary (49.2%) victim offender relationships. Among primary cases, robberies (12.9%) are second only to quarrels in this order of frequency with executions (7.5%) and assassinations (6.5%) being almost equally represented. For non-primary cases, quarrels (12.2%) follow robberies in terms of relative frequency and assassinations (1.1%) are rare in comparison to executions (6.7%).

Modal categories for American Blacks are similar to those for Anglos but less pronounced. Quarrels (88.7%) predominate among primary cases and robberies (65.7%) among non-primary ones. Assassination is proportionately as frequent among Blacks killed by primary associates (6.8%) as among Anglos, but robberies (3.0%) and executions (1.5%) are much rarer among Blacks killed in primary relationships. Among non-primary cases, robberies were less frequent among Blacks than among Anglos but quarrels (22.9%) and assassinations (5.7%) are more common. Executions are almost as frequent among Blacks (5.7%) as among Anglos (6.7%).

Chi Square (171.244) is, by some standards, confounded for this sub-table by several cells with frequencies of four cases. Chi Square, however, is statistically significant at the .001 level. Type of relationship and homicidal act explain 44% of the variance in the frequency of homicide among Blacks (\(\lambda = 0.442\)). This relationship is also supported by the contingency coefficient of 0.592 and the Cramer's V of 0.715.

The Jamaican sub-table has a Chi Square that fails to attain statistical
significance (prob=0.089) and is severely confounded by low cell frequencies.
However, lambda (0.429) indicates that almost as much variance in homicide
frequency among Jamaicans is explained by the type of homicidal act and the type
of victim-offender relationship as is among Blacks. Like the second sub-table,
this section of table 1a.3 has a strong contingency coefficient (0.611) and
Cramer's V (0.770).

Jamaicans killed in the context of a primary relationship died principally
in quarrels (66.0%) but robberies, assassinations, and executions (11.1% each)
are also represented. Possibly because of their seclusiveness, the few killed in
non-primary relationships (N=2) died in robberies. Though little can be inferred
from this distribution because of low cell frequencies, it must be noted that, of
any social groupment Jamaican victims have the highest proportion of primary
homicides (89.1%) followed by American Blacks (79.1%) and Hispanics (74.5%).
Categorically opposed to these groups are the more evenly divided Colombians
(54.2% primary) and Anglos (50.8%).

While quarrels are the modal circumstance of primary homicide among
Colombians (46.2%), assassinations (30.8%) are much more prominent here than in
any other group examined. Executions are also more common in primary
relationships among Colombians (15.4%) than elsewhere. Colombians dying by the
acts of a non-primary associate were most often robbed (36.4%) or executed
(36.4%). Assassination was the third most frequent type of act (18.2%) resulting
in death among this group of Colombian victims.

The Chi Square for the Colombian sub-table (6.584) is uninterpretable and
fails to attain statistical significance (prob=0.086). Lambda for this groupment
(0.286) is the lowest for any examined in table 1a.3. Thus, it appears that
types of acts and victim-offender relationships are less closely related among
Colombians than among other social groupments examined here. This sub-table has
a contingency coefficient of 0.464 and a Cramer's V of 0.524.

Among Hispanics, quarrels (76.0%) and assassinations (14.9%) outstrip executions (2.9%) and robberies (6.3%) among primary cases while robberies predominate the non-primary category (71.7%). Executions are more heavily represented among non-primary cases with Hispanic victims (50.0%) than among other social groupments but constitute only a small proportion (8.3%) of this relational category.

This sub-table's Chi Square is marginally interpretable (117.850) and statistically significant at the .001 level. Type of homicidal act and victim-offender relationship explicate almost 44% of the variance in the frequency of homicide (Lambda=0.435) within this social groupment. The presence of such a strong relationship is also evidenced in the contingency coefficient of 0.578 and the Cramer's V of 0.708.

Two subdivisions are worthy of note among these groupments. The first was referred to above. Here, Jamaicans, Blacks, and Hispanics are strongly associated with primary victim-offender relationships while among Anglos and Colombians primary relationships are only slightly more frequent than non-primary ones. Secondly, it is evident that, among primary relationships, quarrels play a considerably larger role in the Anglo, Black, and Hispanic communities' homicide rates than they do among Jamaicans and Colombians. While the first grouping seems logically and empirically attributable to the proportion of victims in low SES situations (see table 1a.1), the second set of groupments is thought to be a function of Jamaican and Colombian drug involvement. The effect of victim's SES on the type of victim-offender relationship and the type of homicidal act remain to be analyzed in table 1a.4.

As with social groupments, quarrels are the modal category for primary homicides across all SES levels. However, this is much truer of the lower
Table 1a.4: The Distribution of Socioeconomic Status Levels across Types of Homicidal Acts within Non-Drug-Involved and Drug Involved Groups.*

<table>
<thead>
<tr>
<th>Victim's Socioeconomic Status</th>
<th>Non-Drug Involved</th>
<th></th>
<th></th>
<th></th>
<th>Drug-Involved</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarrel</td>
<td>Assassination</td>
<td>Execution</td>
<td>Robbery</td>
<td>Quarrel</td>
<td>Assassination</td>
<td>Execution</td>
<td>Robbery</td>
</tr>
<tr>
<td>Low</td>
<td>218</td>
<td>21</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>2</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>86.2%</td>
<td>8.3%</td>
<td>1.2%</td>
<td>4.3%</td>
<td>21.6%</td>
<td>2.7%</td>
<td>5.4%</td>
<td>70.3%</td>
</tr>
<tr>
<td></td>
<td>81.4%</td>
<td>51.2%</td>
<td>27.3%</td>
<td>50.0%</td>
<td>51.6%</td>
<td>40.0%</td>
<td>26.7%</td>
<td>40.6%</td>
</tr>
<tr>
<td>Middle</td>
<td>126</td>
<td>16</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>81.3%</td>
<td>10.3%</td>
<td>3.2%</td>
<td>5.2%</td>
<td>16.2%</td>
<td>2.7%</td>
<td>10.8%</td>
<td>70.3%</td>
</tr>
<tr>
<td></td>
<td>35.5%</td>
<td>39.0%</td>
<td>45.5%</td>
<td>36.4%</td>
<td>38.7%</td>
<td>40.0%</td>
<td>53.3%</td>
<td>40.6%</td>
</tr>
<tr>
<td>High</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>52.4%</td>
<td>19.0%</td>
<td>14.3%</td>
<td>14.3%</td>
<td>9.7%</td>
<td>3.2%</td>
<td>9.7%</td>
<td>77.4%</td>
</tr>
<tr>
<td></td>
<td>3.1%</td>
<td>9.8%</td>
<td>27.3%</td>
<td>13.6%</td>
<td>9.7%</td>
<td>20.0%</td>
<td>20.0%</td>
<td>18.8%</td>
</tr>
<tr>
<td>Column Total</td>
<td>355</td>
<td>41</td>
<td>11</td>
<td>22</td>
<td>31</td>
<td>5</td>
<td>15</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>82.8%</td>
<td>9.6%</td>
<td>2.6%</td>
<td>5.1%</td>
<td>17.3%</td>
<td>2.8%</td>
<td>8.4%</td>
<td>71.5%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the column row.
Among non-primary cases, robberies are only slightly more common among the upper class (77.4%) than elsewhere. Among lower (77.4%) and middle (67.7%) class victims, primary relationships are most common. However, non-primary relationships predominate among high SES victims (59.6%). This distribution roughly parallels that between Jamaicans, Blacks, and Hispanics as opposed to Anglos and Colombians that was noted in table la.3. Thus, the attribution of this later division to socioeconomic factors appears to be supported by the data.

Among low SES victims killed in quarrels (93.2%) and assassinations (91.3%), primary relations are most common. Executions (57.1%) and robberies (82.5%) are principally associated with non-primary victim-offender relationships. The pattern for the middle SES category is the same. Primary relations are modal among victims of quarrels (91.3%) and assassinations (88.9%) while most middle class victims of executions 961.5%) and robberies (86.7%) died at the hands of a non-primary associate. The high SES group is also distributed in this fashion except that robberies occur with equal regularity within both relational categories.

Chi Square for each of these sub-tables is confounded by low cell frequencies. However, each of these statistics is significant at the .001 level. The explanatory power of the type of act and relationship involved in a case is greatest among middle SES victims (lambda=0.527) and weakest for those of the upper class (lambda=0.413). Low SES victims (lambda=0.467) are intermediate but all of these correlations are rather strong.

Lambda values for SES levels are felt to be of roughly equivalent strength to those for social groupments. Perusal of row frequencies in tables 1a.3 and 1a.4 leads to the conclusion that SES is a major factor in explaining the distribution of quarrels and robberies across types of relationships but the
frequency of executions and assassinations within these relational categories is
more often a function of victim's groupment. The latter pair of act-types are
associated with social control killings by Black's logic (1984) and Reuter's

HOMICIDE AND SCENE ACCESSIBILITY

Hypothesis 2: The frequency of homicide across types of homicidal acts for the
overall population will be inversely related to the crime scene's relative
accessibility to formal control agents.

Corollary a: The only major exceptions to this general tendency will involve
"high visibility" crimes against drug traffickers which can be explained as a
function of the illegal marketeers' need to establish normative boundaries and
maintain social control.

Hypothesis two relates the frequency of different types of homicidal acts
to the relative accessibility of the crime scene to formal control agents. The
analysis will first crosstabulate types of acts with levels of accessibility.
Then the association of these types of acts with social groupments and SES levels
will be examined in the context of the three basic levels of relative crime scene
accessibility. Finally a series of ANOVA's will be used to statistically clarify
these relationships. After specifying the amount of variance in accessibility
that is explained by type of homicidal act, ANOVA will be used to compare the
relative explanatory power of victims' social groupment and SES. Then attention
will turn to the corollary of hypothesis 2 which introduces the theoretical
import of drug market levels and crime visibility. Types of homicidal acts are
crosstabulated with levels of relative accessibility across the three levels of
the illicit drug market. Then the impact of market levels, along with types of
lethal acts, on accessibility is estimated using ANOVA procedures. Then the
effects of social groupments, SES levels and Market levels on accessibility are
similarly described. Finally, the impact of victim's social groupment, SES, and
market level on visibility is analyzed.
Table 2.1 is a crosstabulation of types of homicidal acts with levels of scene accessibility to control agents. The Chi Square of 32.348 is statistically significant. In combination these two variables explain almost 7% of the variance in the frequency of homicide (lambda=0.068). Both the contingency coefficient and Cramer's V for this table equal 0.191.

Quarrels are bimodal in their distribution across accessibility levels with residences (45.2%) and open areas (35.5%) being the predominant settings for these fatal interactions. Assassinations are associated primarily with open areas (53.8%) while executions occurred mainly within residences (61.8%). Robberies are associated mainly with open areas (47.5%) and residences (33.3%).

Table 2.2 examines the groupment influences on this distribution by juxtaposing victims' groupment with the circumstances of the killing for each level of scene accessibility. Its first five columns deal with crimes occurring in residences. Its confounded Chi Square of 73.496 is statistically significant. Over nine percent of the variance in the frequency of residential homicide is explained by groupment and type of act (lambda=0.092). The contingency coefficient for these residential killings is 0.420 while Cramer's V equals 0.291.

The next sub-group of cases in table 2.2 examines crimes occurring in various places of business. Its Chi Square of 40.444 is significant but uninterpretable since most cells have a frequency of less than five cases. Victim's groupment and the type of homicidal act have slightly less explanatory power for this intermediate level of accessibility (lambda=0.071) than they did for residential cases. This is also evident in this table's Cramer's V of 0.291 and contingency coefficient of 0.450.

Open areas are examined in the last sub-table of 2.2. Chi Square (87.515) for this table is again significant but severely confounded. The victim's social
Table 2.1: The Distribution of Types of Homicidal Acts across Levels of Crime Scene Accessibility.*

<table>
<thead>
<tr>
<th>Type of Homicidal Act</th>
<th>Level of Accessibility</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Residence)</td>
<td>(Business)</td>
<td>(Open Areas)</td>
</tr>
<tr>
<td>Quarrel</td>
<td>220</td>
<td>45.2%</td>
<td>19.3%</td>
<td>35.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63.2%</td>
<td>58.8%</td>
<td>50.6%</td>
</tr>
<tr>
<td>Assassination</td>
<td>26</td>
<td>25.0%</td>
<td>21.2%</td>
<td>53.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5%</td>
<td>13.8%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Execution</td>
<td>34</td>
<td>61.8%</td>
<td>9.1%</td>
<td>29.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.8%</td>
<td>3.1%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Robbery</td>
<td>68</td>
<td>33.3%</td>
<td>19.1%</td>
<td>47.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.5%</td>
<td>24.4%</td>
<td>28.4%</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>40.9%</td>
<td>18.8%</td>
<td>40.2%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the column row.
Table 2.2: The Distribution of Types of Homicidal Acts across Social Groupings of Victims within Levels of Crime Scene Accessibility.*

<table>
<thead>
<tr>
<th>Type of Act</th>
<th>Residence</th>
<th>Business</th>
<th>Open Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anglo</td>
<td>Black</td>
<td>Jamaican</td>
</tr>
<tr>
<td>Quarrel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>117</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19.0%</td>
<td>54.2%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>23.1%</td>
<td>23.1%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Execution</td>
<td>4</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12.1%</td>
<td>33.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Robbery</td>
<td>30</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>44.1%</td>
<td>57.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Column Total</td>
<td>81</td>
<td>146</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>23.6%</td>
<td>42.5%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the column row.
groupment and the type of homicidal act have greater explanatory power here than for any other level of accessibility (lambda=0.131) in that they explain 13% of the variance in frequency of homicide for this sub-population of cases. This sub-table has a contingency coefficient of 0.455 and a Cramer's V of 0.295.

Perusal of the residential sub-table indicates that American Blacks (54.2%) and, to a lesser extent Hispanics (23.6%) and Anglos (19.0%), are most closely associated with quarrels. Assassination victims are most likely to be Hispanics (53.8%), Anglos (23.1%), or American Blacks (15.4%) when the crime occurs in a residence. Executions are more evenly distributed among Hispanics (33.3%), Colombians (21.2%), and Anglos (12.1%) but Jamaicans are not represented in this sub-category. Anglos (44.1%) and Hispanics (30.9%) are the most frequent victims of residential robberies, followed by American Blacks (19.1%). Jamaicans and Colombians are not often victimized in this sort of scenario (2.9% each). Blacks are the most frequently victimized in the home. This finding is consistent with those of Wolfgang (1957, 1958).

A somewhat divergent pattern of groupment associations with types of acts is to be noted among cases occurring in places of business. Hispanics are more closely associated with quarrels in this intermediate level of accessibility (54.5%) than are American Blacks (35.1%). The same is true of assassinations. Only Anglos were executed in such locations. Blacks (36.8%) and Anglos (31.6%) dominate the robbery classification for this table but Hispanics (26.3%) are also represented as are two Colombians (5.3%). Hispanics are heavily represented among quarrel victims in this sub-table (50.0%) due to the number of barroom disputes that involve firearms in the poorer section of "Little Havana". The last sub-table in 2.2 examines all deaths occurring in areas open to police scrutiny. As with other accessibility levels, quarrels are the modal category (42.6%). As in residential crimes, American Blacks constitute the majority of
victims killed in quarrels in open areas (57.6%). Hispanics are also well represented here (25.9%). Hispanics (45.5%), and Blacks (34.5%) were most often assassinated in areas open to police patrols but Colombians were also killed with some regularity (10.6%) in this scenario. Anglos, Blacks, and Hispanics were executed with equal (25.0%) frequency in open areas but Colombians are also associated with this type of homicidal act (18.8%). Anglos (45.7%) were by far the most frequent victims of robberies in open areas, followed by Black Americans (28.7%) and Hispanics (23.4%). Blacks (43.9%) and Hispanics (27.9%) were the most frequent victims of homicide in open areas. Reference to table 1a.1 indicates that SES is the likely factor in explaining this tendency. This explanation is further explored in the analysis of table 2.3 which crosstabulates SES levels with types of lethal acts, sub-divided by levels of accessibility.

The first sub-table in 2.3 juxtaposes type of act with victim's SES level for all residential killings. Though confounded by low cell frequencies, the Chi Square of 34.729 is statistically significant. This table's lambda (0.065) is smaller than the comparable one for table 2.2 (0.092). The presence of a weak relationship between these variables is also inferred from the contingency coefficient of 0.326 that is augmented by its Cramer's V of 0.244.

The second sub-table in 2.3 is comparable to the second third of 2.2 in that it examines cases occurring in places of business. Its lambda of 0.092 is considerably less than that for table 2.3 (0.084), however, demonstrating the superior predictive power of social groupment relative to SES. Lower class victims are the modal social group involved here also while quarrels are the most frequent circumstance of death. The Chi Square for this table (15.039) is not significant at the .01 level and is confounded by low cell frequencies. The contingency coefficient for this sub-table is 0.303 and Cramer's V equals 0.225.

The last sub-table of 2.3 scrutinizes the effects of type of act and
Table 2.3: The Distribution of Types of Homicidal Acts across Victims' Socioeconomic Status Level within Levels of Crime Scene Accessibility.*

<table>
<thead>
<tr>
<th>Type of Act</th>
<th>Low</th>
<th>Residence</th>
<th>Middle</th>
<th>High</th>
<th>Low</th>
<th>Business</th>
<th>Middle</th>
<th>High</th>
<th>Low</th>
<th>Open Areas</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarrel</td>
<td>110</td>
<td>73</td>
<td>5</td>
<td>46</td>
<td>37</td>
<td>6</td>
<td>76</td>
<td>27</td>
<td>3</td>
<td>110</td>
<td>73</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>58.5%</td>
<td>38.8%</td>
<td>2.7%</td>
<td>51.7%</td>
<td>41.6%</td>
<td>6.7%</td>
<td>71.7%</td>
<td>25.5%</td>
<td>2.8%</td>
<td>58.5%</td>
<td>38.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td></td>
<td>74.3%</td>
<td>60.8%</td>
<td>20.8%</td>
<td>62.2%</td>
<td>64.9%</td>
<td>33.3%</td>
<td>61.8%</td>
<td>39.7%</td>
<td>16.7%</td>
<td>74.3%</td>
<td>60.8%</td>
<td>20.8%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>17</td>
<td>12</td>
<td>4</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>47.8%</td>
<td>47.8%</td>
<td>4.3%</td>
<td>47.6%</td>
<td>38.1%</td>
<td>14.3%</td>
<td>51.5%</td>
<td>36.4%</td>
<td>12.1%</td>
<td>47.8%</td>
<td>47.8%</td>
<td>4.3%</td>
</tr>
<tr>
<td></td>
<td>7.4%</td>
<td>9.2%</td>
<td>4.2%</td>
<td>13.5%</td>
<td>14.0%</td>
<td>16.7%</td>
<td>13.8%</td>
<td>17.6%</td>
<td>22.2%</td>
<td>7.4%</td>
<td>9.2%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Execution</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>#</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>32.1%</td>
<td>46.4%</td>
<td>21.4%</td>
<td>40.0%</td>
<td>0.0%</td>
<td>60.0%</td>
<td>#</td>
<td>3</td>
<td>0</td>
<td>32.1%</td>
<td>46.4%</td>
<td>21.4%</td>
</tr>
<tr>
<td></td>
<td>6.1%</td>
<td>10.8%</td>
<td>25.0%</td>
<td>12.7%</td>
<td>0.0%</td>
<td>16.7%</td>
<td>2.4%</td>
<td>4.4%</td>
<td>0.0%</td>
<td>6.1%</td>
<td>10.8%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Robbery</td>
<td>18</td>
<td>23</td>
<td>12</td>
<td>16</td>
<td>12</td>
<td>6</td>
<td>27</td>
<td>26</td>
<td>11</td>
<td>18</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>34.0%</td>
<td>43.4%</td>
<td>22.6%</td>
<td>47.1%</td>
<td>35.3%</td>
<td>17.6%</td>
<td>42.2%</td>
<td>40.6%</td>
<td>17.2%</td>
<td>34.0%</td>
<td>43.4%</td>
<td>22.6%</td>
</tr>
<tr>
<td></td>
<td>12.2%</td>
<td>19.2%</td>
<td>50.0%</td>
<td>21.6%</td>
<td>21.1%</td>
<td>33.3%</td>
<td>22.0%</td>
<td>38.2%</td>
<td>61.1%</td>
<td>12.2%</td>
<td>19.2%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Column Total</td>
<td>148</td>
<td>120</td>
<td>24</td>
<td>74</td>
<td>57</td>
<td>18</td>
<td>123</td>
<td>68</td>
<td>18</td>
<td>148</td>
<td>120</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>50.7%</td>
<td>41.1%</td>
<td>8.2%</td>
<td>49.7%</td>
<td>38.3%</td>
<td>12.1%</td>
<td>58.9%</td>
<td>32.5%</td>
<td>8.6%</td>
<td>50.7%</td>
<td>41.1%</td>
<td>8.2%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the column row.
victim's SES in highly accessible (i.e. open) areas. Chi Square (20.566) is significant but confounded. Lambda equals only 0.042 in this instance while the analogous table for social groupments had a lambda of 0.131. Cramer's V is 0.222 for this crosstabulation while the contingency coefficient is 0.299.

The first five columns of table 2.3 are concerned with residential killings. As predicted by earlier studies of urban homicide (Wolfgang, 1957, 1958; Swiggert and Farrell, 1975) the low SES group (50.7%) of victims is the modal category. They are also the predominant victims of quarrels (58.5%). Assassinations in residential settings, however, affected the low and middle classes equally (47.8%). Executions were most common among the middle class (46.4%) when they occurred in residences with the lower (32.1%) and upper (21.4%) classes also being represented. Robberies also followed this pattern of distribution across the middle (43.4%), lower (34.0%), and upper (22.6%) classes. The greater security precautions taken by the affluent can be seen as a likely explanation of this group's low rates of victimization relative to the middle class in residential settings.

The intermediate sub-table of 2.3 deals with the effects of SES on types of acts for killings in places of business. Except for executions, the frequency of all types of acts is inversely related to SES in this table. It is suspected that this anomalous pattern is attributable to the social control needs of the illicit drug market. No middle SES victims were executed in places of business and slightly more upper (60.0%) than lower (40.0%) SES victims died in these settings. As many upper class victims died in places of business as in open areas (N=18 each).

The last sub-table of 2.3 deals with deaths occurring in open areas. Executions are equally divided between lower and middle class victims, but the frequency of homicide in all other types of acts is inversely related to SES.
Robberies, however, are nearly equal in their distribution across lower (42.2%) and middle (40.6%) class groups.

The sub-tables of 2.2 showed the relationship between circumstances and victims' groupment to be strongest at the extremes of the accessibility continuum. Although similar, this relationship is less pronounced when SES is substituted for groupment, as in the sub-tables of 2.3. This finding tends to support hypothesis one's contention that groupment, though rather collinear with SES for many groups, is a better predictor of homicidal frequency and circumstances than is SES. However, these results do not take into account the level of the illicit drug economy in which the victim was involved.

Table 2.4 uses ANOVA procedures to examine the effects of the type of homicidal act on the accessibility of the crime scene. It is intended to more precisely delineate the relationship between these two variables before attention turns to the impact of drug market levels on the nature and frequency of homicide. The accompanying Scheffe procedure is pivotal in specifying which types of homicidal action differ significantly in their distribution across accessibility levels.

This F-ratio of 9.79S is statistically significant at any traditionally employed level of alpha. This is to say that the mean level of scene accessibility is not the same for all types of homicidal acts. However, the Scheffe procedure is required to specify which means diverge from others to a statistically discernible extent. Assassinations and robberies are notably different from quarrels, and executions, according to these Scheffe results. Assassinations and robberies, according to table 2.1 are primarily associated with open areas. However, robberies are more frequently associated with places of business than are any other kind of homicidal act.

Table 2.5 analyzes the effects of type of act and victim's social groupment.
Table 2.4: The Effects of the Type of Homicidal Act on Levels of Crime Scene Accessibility.

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Ratio</th>
<th>Significance of F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3</td>
<td>23.1609</td>
<td>7.7203</td>
<td>9.7951</td>
<td>0.0000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>846</td>
<td>666.7698</td>
<td>0.7882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>849</td>
<td>689.9576</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.5: The Effects of Victim's Social Groupment and Type of Homicidal Act on Level of Crime Scene Accessibility Controlling for Level of Drug Market Involvement.

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Ratio</th>
<th>Significance of F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate Market Level</td>
<td>1</td>
<td>2.307</td>
<td>2.307</td>
<td>2.952</td>
<td>0.086</td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupment</td>
<td>7</td>
<td>24.194</td>
<td>3.456</td>
<td>4.442</td>
<td>0.0000</td>
</tr>
<tr>
<td>Type of Act</td>
<td>4</td>
<td>2.090</td>
<td>0.522</td>
<td>0.668</td>
<td>0.614</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22.974</td>
<td>7.658</td>
<td>9.799</td>
<td>0.0000</td>
</tr>
<tr>
<td>Two-Way Interactions</td>
<td>12</td>
<td>13.700</td>
<td>1.142</td>
<td>1.461</td>
<td>0.133</td>
</tr>
<tr>
<td>Explained Variance</td>
<td>20</td>
<td>40.200</td>
<td>2.010</td>
<td>2.572</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual Variance</td>
<td>816</td>
<td>637.723</td>
<td>0.782</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>836</td>
<td>677.924</td>
<td>0.811</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6: Multiple Classification Analysis of the Effects of Victim's Social Groupment and Type of Homicidal Act on the Level of Crime Scene Accessibility Controlling for Level of Drug Market Involvement.

<table>
<thead>
<tr>
<th>Variable and Categories</th>
<th>N</th>
<th>Unadjusted Deviation</th>
<th>ETA</th>
<th>Adjusted Deviation</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>184</td>
<td>-0.04</td>
<td></td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>345</td>
<td>0.02</td>
<td></td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>15</td>
<td>0.14</td>
<td></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Columbian</td>
<td>32</td>
<td>-0.05</td>
<td></td>
<td>-0.00</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>261</td>
<td>0.00</td>
<td></td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Type of Homicidal Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarrel</td>
<td>490</td>
<td>-0.09</td>
<td></td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>Assassination</td>
<td>103</td>
<td>0.29</td>
<td></td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Execution</td>
<td>54</td>
<td>-0.31</td>
<td></td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>Robbery</td>
<td>200</td>
<td>0.14</td>
<td>0.18</td>
<td>0.15</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Multiple R² = 0.039
Multiple R = 0.198
on scene accessibility with level of drug market involvement used as a control variable. Since this table shows that no interactions between variables are statistically significant, table 2.6 presents the results of an MCA which are graphically portrayed in figures 2.1 and 2.2.

These variables explain 5% of the variance in scene accessibility \((R^2=0.050) \). The overall main effects (\(F=3.456 \)) and the main effects for the type of homicidal act (\(F=9.799 \)) are statistically significant as is the total explained variance (\(F=2.572 \)). A relatively large proportion of cases (29.4%; \(N=349 \)) have not been included in this analysis because scene accessibility, victim's social groupment, and/or circumstances of death could not be ascertained. Since there are no statistically significant interactions noted in this ANOVA, the use of Multiple Classification Analysis is justified by these results.

On the basis of these statistics it can be readily discerned that victim's groupment explains only 0.09% of the variance in scene accessibility once level of drug involvement has been controlled for (\(ETA=0.03 \)) while type of act explains over 3% of the variance in the independent variable under these circumstances (\(ETA=0.18 \)). Together these variables explicate almost 4% of the variance in scene accessibility to police.

Category means were derived using the formula "Grand Mean + Unadjusted Deviation = Group Mean". These means were used to plot the relation between various categories of both independent variables with scene accessibility. These graphs are shown below as figures 2.1 and 2.2.

The figures represent a graphic illustration of information previously noted in discussions of crosstabulations relevant to this hypothesis. In addition, victims' level of drug involvement has been introduced as a control variable. Jamaicans (\(X=2.16 \)), according to figure 2.1, die most frequently in
Figure 2.1 Mean Levels of Crime Scene Accessibility for Social Groupments of Victims.
Figure 2.2: Mean Levels of Crime Scene Accessibility for Types of Homicidal Acts.
locations accessible to authorities while Hispanics, Colombians (x=1.99 each) and Anglos (x=1.91) die in the least accessible ones. Blacks (x=2.03) are intermediate between these extremes.

By implication, figure 2.2 demonstrates the logistics of the crime scene’s impact on the circumstances of death, or the modus operandi of the killer. Assassinations (x=2.32) were associated with the opposite extreme in accessibility. Executions (x=1.77) were associated with inaccessible locations while quarrels were only marginally (x=1.88) associated with secluded crime scenes Robberies were intermediate (x=2.14) in their association with accessible areas. The results of these ANOVA’s, and their graphic presentations, were borne out by examination of the cell means.

For purposes of comparison relevant to hypothesis one, as well as to further explore the impact of variables thought pertinent to hypothesis two, an analogous ANOVA was performed in which victims’ SES was substituted for their groupment. These findings are presented in table 2.7. Only the overall main effects (F=6.987), and the total explained variance (F=3.580) are statistically significant. This reflects the results of correlations discussed previously in regards to hypothesis one as well as the abnormal distribution of cases across these variables. Figures 2.3 and 2.4 graph these results and are thus analogous to figures 2.1 and 2.2. These figures are discussed in terms of the relationship between SES and scene accessibility with market level as the control variable.

Whereas figure 2.1 shows substantial groupment variation in scene accessibility, figure 2.3 illustrates the lack of such variability between SES levels. Similarly, scene accessibility means for types of acts shown in table 2.10 have a range of 0.93 while the range for table 2.13 is 0.87. While this difference is not large, it results in a much flatter line in figure 2.4 than was noted in figure 2.2. The only difference between these two ANOVA’s was the
Table 2.7: The Effects of Type of Homicidal Act and Victim's Socio-economic Status on Level of Crime Scene Accessibility Controlling for Level of Drug Market Involvement.

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Ratio</th>
<th>Significance of F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate Market Level</td>
<td>1</td>
<td>2.917</td>
<td>2.917</td>
<td>4.022</td>
<td>0.045</td>
</tr>
<tr>
<td>Main Effects</td>
<td>5</td>
<td>23.783</td>
<td>4.757</td>
<td>6.558</td>
<td>0.0000</td>
</tr>
<tr>
<td>Type of Act</td>
<td>3</td>
<td>21.337</td>
<td>7.112</td>
<td>9.806</td>
<td>0.0000</td>
</tr>
<tr>
<td>SES</td>
<td>2</td>
<td>3.299</td>
<td>1.649</td>
<td>2.274</td>
<td>0.1040</td>
</tr>
<tr>
<td>Two-Way Interactions</td>
<td>6</td>
<td>1.702</td>
<td>0.284</td>
<td>0.391</td>
<td>0.885</td>
</tr>
<tr>
<td>Explained Variance</td>
<td>12</td>
<td>28.402</td>
<td>2.367</td>
<td>3.263</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual Variance</td>
<td>637</td>
<td>461.999</td>
<td>0.725</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.8: Multiple Classification Analysis of the Effects of the Type of Homicidal Act and Victim's Socioeconomic Status on the Level of Crime Scene Accessibility Controlling for Level of Drug Market Involvement.

<table>
<thead>
<tr>
<th>Variable and Categories</th>
<th>Unadjusted Deviation</th>
<th>ETA Deviation</th>
<th>Adjusted Deviation</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarrel</td>
<td>383</td>
<td>-0.09</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td>Assassination</td>
<td>77</td>
<td>0.26</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Execution</td>
<td>39</td>
<td>-0.44</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>Robbery</td>
<td>151</td>
<td>0.20</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Socioeconomic Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>345</td>
<td>0.06</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>245</td>
<td>-0.08</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>60</td>
<td>0.03</td>
<td>0.08</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Multiple $R^{2} = 0.054$
Multiple $R = 0.233$
substitution of victim's SES for groupment in the latter analysis.

The Visibility of Drug-Related Murders

The corollary to hypothesis two asserts that 1) trafficking-related killings will tend to be highly visible, and 2) these crimes will inflate the frequency of homicide in highly accessible areas. Table 2a.1 juxtaposes the type of homicidal act with the level of scene accessibility for each level of the victim's involvement in the drug market. Then ANOVA and related procedures are used to specify the effects of market level and type of act on accessibility level. A second ANOVA procedure is used to examine and specify the effects of victim's social groupment, SES level, and market level on accessibility. These variables are then used to analyze the components of homicide that are most distinctly related to the public visibility of the crime.

Table 2a.1 examines the distribution of types of homicidal acts across levels of accessibility. The Chi Square for its first sub-table (17.593) is significant. This table informs the analysis that, in combination, social groupment and type of act explain almost 5% of the variance in accessibility of the crime scene for non-drug-involved victims (lambda=0.047). The contingency coefficient for this part of table 2a.1 is 0.172 and Cramer's V is 0.123.

It can be noted that, among non-drug-related homicides, areas open to formal agents of control are slightly more frequent scenes of death (41.6%) than are inaccessible ones (38.3%) or places of business (20.1%), the intermediate level on this scale. Quarrels are the predominant circumstance of death for this sub-population (62.9%), followed by robberies (27.9%), assassinations (7.6%) and executions (2.9%). Assassinations (59.1%) and robberies (48.1%) are associated mainly with open areas. Quarrels are associated with residences (44.1%) and open areas (37.5%) for non-drug-involved cases. Executions are primarily associated with residences (31.3%) and open areas (37.5%) but are also well-represented in
Table 2a.1: The Distribution of Types of Homicidal Acts across Levels of Crime Scene Accessibility within Levels of Drug market Involvement.*

<table>
<thead>
<tr>
<th>Type of Homicidal Act</th>
<th>Non-Drug Involvement</th>
<th>Drug Users</th>
<th>Drug Traffickers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residence</td>
<td>Business</td>
<td>Open Areas</td>
</tr>
<tr>
<td>Quarrel</td>
<td>160</td>
<td>69</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>44.1%</td>
<td>19.5%</td>
<td>36.9%</td>
</tr>
<tr>
<td></td>
<td>72.4%</td>
<td>59.5%</td>
<td>55.3%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>11</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>25.0%</td>
<td>15.9%</td>
<td>59.1%</td>
</tr>
<tr>
<td></td>
<td>5.0%</td>
<td>6.0%</td>
<td>10.8%</td>
</tr>
<tr>
<td>Executed</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>31.3%</td>
<td>31.3%</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td>2.3%</td>
<td>4.3%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Robbery</td>
<td>45</td>
<td>35</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>29.2%</td>
<td>22.7%</td>
<td>48.1%</td>
</tr>
<tr>
<td></td>
<td>20.4%</td>
<td>30.2%</td>
<td>30.3%</td>
</tr>
<tr>
<td>Column Total</td>
<td>221</td>
<td>116</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>38.3%</td>
<td>20.1%</td>
<td>41.6%</td>
</tr>
</tbody>
</table>

*The first percentage refers to the proportion of the grouping in the table row.
The second percentage refers to the proportion of cases in the column row.
the intermediate level of accessibility (31.3%).

The second portion of table 2a.2 is concerned with the killings of known drug-users. Robberies were the second most frequent circumstance of death (22.4%), exceeded only by quarrels (63.5%). Executions are evenly divided between residences (N=1) and open areas (N=1) while assassinations are most closely linked with open areas (60.0%). Robberies are associated primarily with open areas (42.1%) but also with residences (36.8%) and business (21.1%). Residences were the most common type of setting for drug-using victims (50.6%).

The confounded Chi Square for this sub-table is not statistically significant (6.424; prob=0.378), but lambda (0.041) indicates that type of act and level of scene accessibility explain 4% of the variance in the frequency of homicide victimization among drug-users. The presence of a weak relationship between these variables finds support in this sub-table's contingency coefficient of 0.265 and its Cramer's V of 0.194.

The last of these sub-tables deals with drug traffickers. Though confounded its Chi Square (37.746) is statistically significant. Lambda (0.063) indicates that type of homicidal act and accessibility of location explain 6% of the variance in the frequency of homicide at this level of the drug market. The contingency coefficient for this table is 0.409 and Cramer's V is 0.317.

Among traffickers, as elsewhere, residences and quarrels are the modal categories of accessibility and type of act respectively. The predominance of these categories is much less pronounced in this table than in those for non-drug-involved victims and users, especially in regards to the type of homicidal act. Assassinations are much more common among traffickers (22.0%) than among users (9.7%) or the non-drug-involved (6.4%). Thus, it can be said that, as level of drug-involvement rises, so does the frequency of this mode of death.

This difference is much more striking between traffickers and users than it is
between users and the non-drug-involved. This same pattern is even more pronounced for executions - 17.6% of all traffickers were executed whereas only 1.9% of murdered users and 2.5% of non-drug-related victims were killed in this fashion.

Traffickers dying by assassination (48.0%) were most often killed in open areas. Executions (75.7%) were almost entirely associated with residential locations for this behavioral-structural category of victims. Robberies were slightly more common in residential (51.6%) settings than in open areas (48.4%) among these victims.

To better specify the effects of type of act and level of drug involvement on accessibility of crime scene, analytical attention now turns to the ANOVA/MCA results given in tables 2a.2 and 2a.3. Table 2a.2 shows that the overall main effects (F=6.857) as well as those for type of act (F=10.082) and the total explained variance (F=3.555), are statistically significant. There is no statistically discernible interaction between type of act and market level and the F-ratio for market level (2.420; prob=0.090) is not significant. The multiple R^2 of 0.039 indicates that market level and type of act explain almost 4% of the variance in accessibility levels.

Statistics given in table 2a.3 indicate that market level explains only 0.49% of the variance in accessibility (ETA=0.07) while type of homicide explicates another 3.24% of this variance (ETA=0.18). The relationship between market and accessibility levels are graphically presented in figure 2a.1 and that between types of acts and scene accessibility is shown in figure 2a.2.

Table 2a.4 and 2a.5 present the results of an ANOVA in which the effects of victim's social groupment, SES, and market level on scene accessibility are examined. None of the F-ratios in table 2a.4 are statistically significant although the one for SES (F=2.802; prob=0.061) is the most nearly so. According
Table 2a.2: The Effects of Type of Homicidal Act and Levels of Drug Market Involvement on Levels of Crime Scene Accessibility.

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Ratio</th>
<th>Significance of F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effects</td>
<td>5</td>
<td>26.968</td>
<td>5.394</td>
<td>6.857</td>
<td>0.000</td>
</tr>
<tr>
<td>Type of Act</td>
<td>3</td>
<td>23.792</td>
<td>7.931</td>
<td>10.082</td>
<td>0.000</td>
</tr>
<tr>
<td>Market Level</td>
<td>2</td>
<td>3.807</td>
<td>1.904</td>
<td>2.420</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Way Interactions</td>
<td>6</td>
<td>3.792</td>
<td>0.632</td>
<td>0.803</td>
<td>0.567</td>
</tr>
<tr>
<td>Explained Variance</td>
<td>11</td>
<td>30.760</td>
<td>2.796</td>
<td>3.555</td>
<td>0.000</td>
</tr>
<tr>
<td>Residual Variance</td>
<td>838</td>
<td>659.198</td>
<td>0.787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Variance</td>
<td>849</td>
<td>689.958</td>
<td>0.813</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2a.3: Multiple Classification Analysis of Effects of Types of Homicidal Acts and Level of Drug Market Involvement on Levels of Crime Scene Accessiblity.

<table>
<thead>
<tr>
<th>Variable and Categories</th>
<th>N</th>
<th>Unadjusted Deviation</th>
<th>ETA</th>
<th>Adjusted Deviation</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Act</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarrel</td>
<td>487</td>
<td>-0.09</td>
<td>-0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assassination</td>
<td>104</td>
<td>0.30</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution</td>
<td>55</td>
<td>-0.32</td>
<td>-0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robbery</td>
<td>204</td>
<td>0.15</td>
<td>0.18</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>Market Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Drug Involved</td>
<td>577</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug-Users</td>
<td>85</td>
<td>-0.13</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffickers</td>
<td>188</td>
<td>-0.06</td>
<td>-0.08</td>
<td></td>
<td>0.08</td>
</tr>
</tbody>
</table>

Multiple $R^2 = 0.039$
Multiple $R = 0.198$
Table 2a.4: Effects of Victims' Social Groupment, Victim's Socioeconomic Status Level, and Victim's Level of Drug Market Involvement on Crime Scene Accessibility Level.

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Ratio</th>
<th>Significance of F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groupment</td>
<td>4</td>
<td>2.313</td>
<td>0.578</td>
<td>0.744</td>
<td>0.562</td>
</tr>
<tr>
<td>SES</td>
<td>2</td>
<td>4.353</td>
<td>2.176</td>
<td>2.802</td>
<td>0.061</td>
</tr>
<tr>
<td>Market Level</td>
<td>2</td>
<td>2.460</td>
<td>1.230</td>
<td>1.583</td>
<td>0.206</td>
</tr>
<tr>
<td>Explained Variance</td>
<td>8</td>
<td>8.906</td>
<td>1.113</td>
<td>1.433</td>
<td>0.179</td>
</tr>
<tr>
<td>Residual Variance</td>
<td>822</td>
<td>638.533</td>
<td>0.777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>830</td>
<td>647.439</td>
<td>0.780</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2a.5: Multiple Classification Analysis of the Effects of Victim's Social Groupment, Victim's Socioeconomic Status, and Victim's Level of Drug market Involvement on Levels of Crime Scene Accessibility.

<table>
<thead>
<tr>
<th>Variable and Category</th>
<th>N</th>
<th>Unadjusted Deviation</th>
<th>ETA</th>
<th>Adjusted Deviation</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>203</td>
<td>-0.05</td>
<td>-0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am. Black</td>
<td>306</td>
<td>0.02</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>16</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td>29</td>
<td>-0.18</td>
<td>-0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>277</td>
<td>0.04</td>
<td>0.07</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Socioeconomic Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>450</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>304</td>
<td>-0.10</td>
<td>-0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>77</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Market Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Drug Involved</td>
<td>568</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug User</td>
<td>89</td>
<td>-0.00</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trafficker</td>
<td>174</td>
<td>-0.10</td>
<td>-0.11</td>
<td></td>
<td>0.07</td>
</tr>
</tbody>
</table>

Multiple $R^2 = 0.014$
Multiple $R = 0.117$
Figure 2a.1: Mean Levels of Crime Scene Accessibility for Types of Homicidal Acts.
Figure 2a.2: Mean Levels of Crime Scene Accessibility for Levels of Drug Market Involvement.
to table 2a.5, victim's social groupment explains only 0.36% of the variance in accessibility (ETA=.06), market level explains 0.36% of this variance (ETA=.06), and SES explains 0.64% (ETA=.08). In total these variables explicate only 1.4 of the variance in the independent variable (R^2=0.014).

Hypothesis 2a is most directly addressed by tables 2a.6 and 2a.7 which are graphed in figures 2a.3 and 2a.4. Here ANOVA was used to assess the impact of victim's social groupment, SES, and market level of drug involvement on crime visibility to the media and public. All F-ratios in table 2a.8 are significant except for the one associated with SES (F=0.233). Due to problems created by empty cells, computations of F-ratios for variable interactions were suppressed by SPSSx.

It is easily discerned that SES explains 2.56% of the variance in visibility (ETA=.16) while social groupments explain 4% (ETA=.20) and market level explains 5.3% (ETA=.23). Combined, these variables explicate 8.1% of the variance in crime visibility (R^2=0.081). The relationship between categories of these variables and visibility, the main object of hypothesis 2a, are graphed in figures 2a.3 through 2a.5.

As figure 2a.3 shows, the killings of Jamaicans (x=.26) and, to a lesser extent, American Blacks (x=.35), are not especially visible to the public. Killings of Hispanics (x=.48) and Colombians (x=.48) are of slightly above average visibility, but those involving Anglos (x=.57) have the highest visibility of any social groupment regularly examined by this research. Figure 2a.4 shows that the deaths of low SES victims (x=.43) are of below average visibility while middle SES victims (x=.46) are slightly above average (x=.45) on this variable. Upper SES victims, however, died in highly visible (x=.55) scenarios. These distinctions are not as dramatic as those noted for market level however.
Table 2a.6: Effects of Victim's Social Groupment, Victim's Socioeconomic Status, and Level of Drug Market Involvement on the Visibility of Homicide to the Public.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>D.F.</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Ratio</th>
<th>Significance of F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effects</td>
<td>8</td>
<td>17.430</td>
<td>2.179</td>
<td>9.477</td>
<td>0.000</td>
</tr>
<tr>
<td>Groupment</td>
<td>4</td>
<td>6.212</td>
<td>1.553</td>
<td>6.755</td>
<td>0.000</td>
</tr>
<tr>
<td>SES</td>
<td>2</td>
<td>0.876</td>
<td>0.438</td>
<td>1.905</td>
<td>0.149</td>
</tr>
<tr>
<td>Market Level</td>
<td>2</td>
<td>4.950</td>
<td>2.475</td>
<td>10.765</td>
<td>0.000</td>
</tr>
<tr>
<td>Explained Variance</td>
<td>8</td>
<td>17.430</td>
<td>2.179</td>
<td>9.477</td>
<td></td>
</tr>
<tr>
<td>Residual Variance</td>
<td>857</td>
<td>197.033</td>
<td>0.230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Variance</td>
<td>865</td>
<td>214.463</td>
<td>0.246</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2a.7: Multiple Classification Analysis of the Effects of Victim's Social Groupment, Socioeconomic Status, and Level of Drug Market Involvement on the Visibility of the Crime to the Public.

<table>
<thead>
<tr>
<th>Variable and Category</th>
<th>N</th>
<th>Unadjusted Deviation</th>
<th>ETA</th>
<th>Adjusted Deviation</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>214</td>
<td>0.12</td>
<td>0.12</td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Am. Black</td>
<td>310</td>
<td>-0.14</td>
<td>-0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>18</td>
<td>-0.12</td>
<td>-0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td>32</td>
<td>0.14</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>292</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Socioeconomic Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>465</td>
<td>-0.06</td>
<td>-0.02</td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>Middle</td>
<td>320</td>
<td>0.04</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>81</td>
<td>0.20</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of Drug-Market Involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Involved</td>
<td>583</td>
<td>-0.03</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug-Users</td>
<td>31</td>
<td>-0.12</td>
<td>-0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffickers</td>
<td>192</td>
<td>0.16</td>
<td>0.14</td>
<td></td>
<td>0.16</td>
</tr>
</tbody>
</table>

Multiple $R^2 = 0.081$
Multiple $R = 0.285$
Figure 2a.3: Mean Levels of Crime Visibility for Social Groupments of Victims.
Figure 2a.4: Mean Levels of Crime Visibility for SES Levels.
Figure 2a.5: Mean Levels of Crime Visibility for Levels of Drug Market Involvement.
Figure 2a.5 is concerned with market levels. The deaths of users are less visible (X=.32) than those of the non-drug-involved (X=.42) while trafficker deaths are of an extremely visible nature (X=.59). While the distinctions between Anglos, Colombians, and Hispanics, as opposed to Blacks and Jamaicans, that were presented in figure 2a.3 are dramatic, the differences in mean visibility between traffickers and other market levels shown in figure 2a.5 are even more pronounced. Given the high co-relation between Colombians and trafficking that is demonstrated in table 4.1, figure 2a.5 can be seen as an explication of the high visibility of Colombian deaths illustrated in figure 2a.3.

HYPOTHESIS THREE - THE EFFECTS OF ALCOHOL AND DRUG USE

Hypothesis 3: Within social groupments, the types of homicidal acts and relationships in which drug users are killed will closely resemble those in which alcohol impaired victims are killed.

Corollary a: The pattern of homicide for non-drug-related but stigmatized victims will be similar to this pattern within socioeconomic levels and social groupments.

Corollary b: The pattern for types of homicidal acts and victim-offender relationships for trafficking-related cases will be significantly different from both of the above patterns.

Hypothesis three requires that the types of acts and victim-offender relationships in which the drug-involved, as well as the alcohol-impaired and those with stigmatized (i.e. known and deviant) identities, be compared within and across groupment and situational variables. Because the corollaries to this prediction are so entwined with the main hypothesis, no distinctions between groups of tables are made. Table 3.1 examines the distribution of types of acts across types of victim-offender relationships while controlling for levels of drug market involvement. Table 3.2 utilizes these same variables but controls for alcohol impairment. Table 3.3 provides an analysis of those with stigmatized identities across types of acts and types of relationships. These tables are
used to describe the basic patterns of homicide associated with these three sub-populations. The relations between alcoholic impairment and type of act, type of relationship, social groupment, and level of drug involvement are then described in tables 3.4, 3.5, 3.6 and 3.7 respectively. Tables 3.8 and 3.9 describe the relationships between stigmatization and types of victim-offender relationships and types of lethal acts. Table 3.10 is especially crucial to testing this hypothesis since it crosstabulates types of homicidal acts with types of victim-offender relationships while controlling for victim's social groupment. Table 3.11 juxtaposes types of homicidal acts with drug market levels across social groupments while table 3.12 examines the relations between market level and type of victim-offender relationship within social groupments. Finally, table 3.13 scrutinizes the interaction of alcoholic impairment with types of relationships while controlling for social groupments.

Tables 3.1, 3.2, and 3.3 compare the drug-involved, alcohol-impaired, and stigmatized victims of homicide, respectively, across types of acts and types of victim-offender relationships. Table 3.1 uses the market level variable to divide victims into sub-groups in which types of acts and relationships are juxtaposed. Within each level of the drug market, quarrels account for over ninety percent of the cases in which victim and offender are linked by a primary relationship. Similarly, robberies are the modal type of act among offenses occurring in the context of non-primary relationships. This is less true of traffickers (64.5%) than it is of users (84.2%) or the non-drug-involved (87.7%), however. Only one user was executed as were fourteen non-drug-involved victims. Twenty-three traffickers, however, died in this fashion. Assassinations were also relatively uncommon among users and occurred only in the context of primary victim-offender relationships within this group (9.6%). This type of homicide was most common among traffickers (15.0%) and least frequent among the non-drug-
Table 3.1: The Distribution of Types of Homicidal Acts across Types of Victim-Offender Relationships within Levels of Drug Market Involvement.*

<table>
<thead>
<tr>
<th></th>
<th>Non-Drug Involved</th>
<th>Users</th>
<th>Traffickers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
</tr>
<tr>
<td>Quarrel</td>
<td>336</td>
<td>29</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>92.1%</td>
<td>7.9%</td>
<td>90.9%</td>
</tr>
<tr>
<td></td>
<td>84.4%</td>
<td>17.0%</td>
<td>80.6%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>33</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>91.7%</td>
<td>8.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>8.3%</td>
<td>1.8%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Execution</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>71.4%</td>
<td>28.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>2.5%</td>
<td>2.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Robbery</td>
<td>19</td>
<td>135</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>12.3%</td>
<td>87.7%</td>
<td>15.8%</td>
</tr>
<tr>
<td></td>
<td>4.6%</td>
<td>78.9%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Column Total</td>
<td>298</td>
<td>171</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>69.9%</td>
<td>30.1%</td>
<td>74.7%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
involved (6.3%).

Although confounded by low cell frequencies in every case, Chi Squares were significant for the non-drug-involved (336.096), users (45.583), and traffickers (52.684). Lambda values appear to be inversely related to level of drug market involvement. Type of act and victim-offender relationship explain just over 59% of the variance in frequency of homicide among the non-drug-involved (lambda=0.592), while they explicate 48% of this variance for users (lambda=0.490) and 27% of the variance among traffickers (lambda=0.270). The contingency coefficient for the non-drug-involved was 0.609 while Cramer's V was 0.769. Drug-users had a contingency coefficient of 0.595 and a Cramer's V of 0.741. Traffickers had a contingency coefficient of 0.514, and Cramer's V of 0.599.

These results may be tentatively attributed to 1) the preponderance of quarrels within primary relationships among the non-drug-involved; 2) the high number of robberies associated with non-primary relationships among cases in this same group; 3) the similarity of drug-users to the non-drug-involved in these respects; and 4) the relatively high levels of assassination within primary relationships among drug traffickers.

Table 3.2 crosstabulates types of homicidal acts with types of victim-offender relationship while controlling for alcohol impairment. Among primary relationships, quarrels are responsible for over 90% of deaths regardless of whether the victim was impaired by alcohol or not. Robberies are more common among the unimpaired (74.7%) than among the impaired (58.5%) when non-primary relationship columns are compared. Executions are more often committed in the context of non-primary relationships among the unimpaired (57.1) than among the impaired (45.5%). Assassinations are linked only with primary relationships among the impaired although the same tendency is found in less distinct form.
Table 3.2: The Distribution of Types of Homicidal Acts across Types of Victim Offenders Relationships for Levels of Alcohol Impairment.*

<table>
<thead>
<tr>
<th>Type of Act</th>
<th>Unimpaired</th>
<th>Impaired</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Nonprimary</td>
</tr>
<tr>
<td>Quarrel</td>
<td>213</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>92.6%</td>
<td>7.4%</td>
</tr>
<tr>
<td></td>
<td>76.9%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>33</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>78.6%</td>
<td>21.4%</td>
</tr>
<tr>
<td></td>
<td>11.9%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Execution</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>42.9%</td>
<td>57.1%</td>
</tr>
<tr>
<td></td>
<td>3.2%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Robbery</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>16.4%</td>
<td>83.6%</td>
</tr>
<tr>
<td></td>
<td>7.9%</td>
<td>74.7%</td>
</tr>
<tr>
<td>Column Total</td>
<td>277</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>64.9%</td>
<td>35.1%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Chi Square is both interpretable and statistically significant for the unimpaired group (223.626). Types of homicidal acts and victim-offender relationships explain 54% of the variance within this sub-category of homicide victims (\(\lambda = 0.542\)). The contingency coefficient for this sub-table is 0.586 and Cramer’s V is 0.724.

Due to the lack of assassinations by non-primary associates among the alcohol impaired, Chi Square for this sub-table is not readily interpretable despite its statistical significance (121.914). Only 31% of the variance in the distribution of homicide is explained by these variables for the alcohol-impaired (\(\lambda = 0.311\)). This sub-table has a contingency coefficient of 0.547 and a Cramer’s V of 0.653. It can be inferred from these lambdas that the interaction of type of act with victim-offender relationship is less pronounced among the alcohol impaired than among those not under the influence of this drug.

Table 3.3 crosstabulates types of acts and relationships for non-drug-involved victims while controlling for stigmatization of the victim’s identity. Quarrels are the predominating circumstances in all primary relationships, as are robberies in non-primary ones. Those with stigmatized identities were more likely to die in the context of a non-primary relationship (38.9%) than were the non-stigmatized (29.7%). Assassinations were associated principally with primary relationships for both groups but this tendency was more pronounced among the non-stigmatized (90.7%) than the stigmatized (63.6%). Eleven percent of all stigmatized victims and eight percent of all non-stigmatized victims were killed by assassination. Executions are more associated with primary relations among the non-stigmatized (55.6%) but with non-primary relations among the stigmatized (63.6%). Robberies were associated with non-primary relationships among both groups but were slightly more common among the stigmatized (30.6%) than among the
Table 3.3: The Distribution of Types of Homicidal Acts across Types of Victim Offenders Relationships for Stigmatized and Non-Stigmatized Victims.*

Type of Act	Non-Stigmatized			Stigmatized								
	Primary	Nonprimary	Primary	Nonprimary	Primary	Nonprimary						
Quarrel	324	28	48	5	92.0%	8.0%	90.6%	9.4%	82.4%	16.9%	72.7%	11.9%
Assassinated	39	4	7	4	90.7%	9.3%	63.6%	36.4%	9.9%	2.4%	10.6%	9.5%
Execution	10	8	4	7	55.6%	44.4%	36.4%	63.6%	2.5%	4.8%	6.1%	16.7%
Robbery	20	126	7	26	13.7%	86.3%	21.2%	78.8%	5.1%	75.9%	10.6%	61.9%
Column Total	393	166	66	42	70.3%	29.7%	61.1%	38.9%				

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Chi Squares for the stigmatized (44.318) and the non-stigmatized (314.212) are statistically significant but confounded. Lambda for the non-stigmatized (0.547) is stronger than for the stigmatized (0.443). The sub-table for stigmatized victims has a contingency coefficient of 0.539 and a Cramer's V of 0.641. The contingency coefficient for the non-stigmatized was 0.600 while Cramer's V for this group was 0.750. On the basis of these results it can be tentatively asserted that no major distinctions involving types of acts and victim-offender relationships can be discerned between the stigmatized and the "normal" populations when drug-related cases are excluded from analysis.

Table 3.4 simplistically juxtaposes alcohol impairment with types of homicidal acts. This Chi Square (48.885) is both interpretable and significant but lambda shows no correlation between these variables. Cramer's V is 0.250 and the contingency coefficient is 0.243.

Quarrels (57.6%) and robberies (22.5%) are the most frequent circumstances of death across both levels of alcohol usage. Quarrels are fairly evenly divided between unimpaired (51.1%) and impaired (48.9%) groups but all other types of homicidal acts are much more associated with the unimpaired group. This distribution, along with the non-existent lambda, indicates that type of victim-offender relationship probably has a closer relationship with alcoholic impairment than does the type of act.

Therefore, attention turns to the relationship between alcohol impairment and type of relationship which is shown in table 3.5. Chi Square (19.360) for this table is significant and interpretable. Lambda, however, again shows no discernible correlation between victim-offender relationship and level of alcohol impairment. Non-primary relations are more closely linked with unimpaired victims (36.8%) than with the impaired (22.2%) but primary relationships (68.6%)
Table 3.4: The Distribution of Alcohol Impairment across Types of Homicidal Acts.*

<table>
<thead>
<tr>
<th>Alcohol Impairment</th>
<th>Types of Homicidal Acts</th>
<th>Quarrel</th>
<th>Assassination</th>
<th>Execution</th>
<th>Robbery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimpaired</td>
<td></td>
<td>230</td>
<td>71</td>
<td>43</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.9%</td>
<td>14.8%</td>
<td>9.0%</td>
<td>28.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51.1%</td>
<td>75.5%</td>
<td>70.5%</td>
<td>77.3%</td>
</tr>
<tr>
<td>Impaired</td>
<td></td>
<td>220</td>
<td>23</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.1%</td>
<td>7.6%</td>
<td>6.0%</td>
<td>13.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.9%</td>
<td>24.5%</td>
<td>29.5%</td>
<td>22.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450</td>
<td>94</td>
<td>61</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.6%</td>
<td>12.0%</td>
<td>7.8%</td>
<td>22.5%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Table 3.5: The Distribution of Alcohol Impairment across Types of Victim-Offender Relationships.*

<table>
<thead>
<tr>
<th>Alcohol Impairment</th>
<th>Victim-Offender Relationship</th>
<th>Primary</th>
<th>Non-Primary</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>345</td>
<td>201</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>63.2%</td>
<td>36.8%</td>
<td>63.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.1%</td>
<td>73.9%</td>
<td></td>
</tr>
<tr>
<td>Impaired</td>
<td>249</td>
<td>71</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77.8%</td>
<td>22.2%</td>
<td>37.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.8%</td>
<td>26.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>594</td>
<td>272</td>
<td>866</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58.6%</td>
<td>31.4%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
and lack of impairment (63.0%) are the modal categories in this table. Since this table juxtaposes two dichotomous variables, Phi is an appropriate non-parametric correlation. This statistic indicates that level of alcohol impairment and type of relationship explain 15% of the variance in the frequency of homicide (Phi=0.152). The contingency coefficient for this table is 0.150 and gamma (a non-parametric correlation for ordinal data) is -0.343. The association of homicide victimization with primary relations is congruent with the findings of Wolfgang (1958) but alcohol seems to play a lesser role than would be expected on the basis of that Philadelphia study.

To further inform analysis, alcohol impairment is crosstabulated with victims' social groupments in table 3.6. Black (42.0%) and Hispanic (37.6%) victims are more often impaired by alcohol than are members of other social groupments. Jamaican (26.1%) and Colombian (26.5%) victims are least associated with alcoholic impairment.

This table's Chi Square (14.408) is both statistically interpretable and significant. Lambda (0.00) indicates a lack of correlation for these variables. The contingency coefficient for table 3.6 is 0.118 and Cramer's V is 0.119.

Table 3.7 scrutinizes the relationship between level of drug market involvement and alcoholic impairment at the time of death. The majority of both impaired (70.9%) and unimpaired (61.6%) groups were non-drug-involved. Similarly, both users (68.1%) and traffickers (70.0%) were more likely to be unimpaired when killed. This table indicates that levels of alcoholic impairment are not substantially different across these three basic levels of the drug market.

Table 3.7 has an interpretable Chi Square of 9.410 which is significant at the .01 level of alpha. Lambda, however, equals zero for this table. Cramer's V is 0.095, and the contingency coefficient equals 0.095, implying a relationship
Table 3.6: The Distribution of Alcohol Impairment across Victim's Social Groupments.*

<table>
<thead>
<tr>
<th>Alcohol Impairment</th>
<th>Victim's Social Groupment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anglo</td>
</tr>
<tr>
<td>None</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>24.9%</td>
</tr>
<tr>
<td></td>
<td>70.2%</td>
</tr>
<tr>
<td>Impaired</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>17.9%</td>
</tr>
<tr>
<td></td>
<td>29.8%</td>
</tr>
<tr>
<td></td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>22.3%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Table 3.7: The Distribution of Alcohol Impairment across levels of Drug Market Involvement.*

<table>
<thead>
<tr>
<th>Alcohol Impaired</th>
<th>Level of Drug Market Involvement</th>
<th>None</th>
<th>User</th>
<th>Trafficker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>404</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Unimpaired</td>
<td>51.6%</td>
<td>11.7%</td>
<td>86.7%</td>
</tr>
<tr>
<td></td>
<td>Impaired</td>
<td>59.9%</td>
<td>68.1%</td>
<td>70.0%</td>
</tr>
<tr>
<td></td>
<td>70.9%</td>
<td>36</td>
<td>75</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>Impaired</td>
<td>40.1%</td>
<td>31.9%</td>
<td>30.0%</td>
</tr>
<tr>
<td></td>
<td>675</td>
<td>113</td>
<td>250</td>
<td>1038</td>
</tr>
<tr>
<td></td>
<td>65.0%</td>
<td>10.9%</td>
<td>24.1%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
between these variables.

Table 3.8 examines the distribution of types of homicidal acts across the dichotomous stigma variable. Non-stigmatized victims are much more likely to die in quarrels (61.3%) than are the stigmatized (37.7%). The stigmatized are more often killed by execution (19.0%) or assassination (17.6%) than are the non-stigmatized (3.8% and 9.2%). Robberies victimize members of these groupings in approximately equal proportions (25.6% and 24.6%).

The Chi Square of 55.925 is both interpretable and significant for table 3.8. Stigmatization and type of homicidal act explain only 1.1% of the variance in homicide frequency (lambda=0.011). The contingency coefficient for these variables is 0.269 and Cramer's V is 0.279.

Table 3.9 juxtaposes the presence/absence of stigmata with types of victim-offender relationships. No substantive differences between groups can be noted here. Primary killings are distinctly more common among both groups of victims. Though interpretable, Chi Square (0.039) is not significant even when Yates correction factor in introduced (0.010). Phi (0.006) is interpretable and valid for this juxtaposition of dummy variables but demonstrates their weak explanatory value. Other statistics generated with this table support the same substantive conclusion of no predictive value for the presence of stigmata on type of victim-offender relationship. Crosstabulations of stigmatization with market levels and social groupments showed the same lack of statistical or substantive association and are not presented or discussed here for reasons of parsimony.

Table 3.10 crosstabulates types of homicidal acts with types of victim-offender relationships while controlling for victim's social groupment. Along with tables 3.11 and 3.12, which examine market levels and types of relationships across types of acts with the same control variable, it is especially important to the scrutinization of hypothesis three. Primary relations account for the
Table 3.8: The Distribution of Victim's Non-Drug Related Stigmatization across Types of Homicidal Acts.*

<table>
<thead>
<tr>
<th>Identity Type</th>
<th>Type of Homicidal Act</th>
<th>Quarrel</th>
<th>Assassination</th>
<th>Execution</th>
<th>Robbery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Stigmatized</td>
<td></td>
<td>352</td>
<td>53</td>
<td>22</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61.3%</td>
<td>9.2%</td>
<td>3.8%</td>
<td>25.6%</td>
</tr>
<tr>
<td>Stigmatized</td>
<td></td>
<td>55</td>
<td>25</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.7%</td>
<td>17.6%</td>
<td>19.0%</td>
<td>24.6%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Table 3.9: The Distribution of Stigmatization across Types of Victim-Offender Relationships.*

<table>
<thead>
<tr>
<th>Identity Type</th>
<th>Victim-Offender Relationships</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Non-Primary</td>
<td></td>
</tr>
<tr>
<td>Non-Stigmatized</td>
<td>460</td>
<td>226</td>
<td>686</td>
</tr>
<tr>
<td></td>
<td>67.1%</td>
<td>32.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.7%</td>
<td>82.2%</td>
<td></td>
</tr>
<tr>
<td>Stigmatized</td>
<td>96</td>
<td>49</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>66.2%</td>
<td>33.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.3%</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>556</td>
<td>275</td>
<td>811</td>
</tr>
<tr>
<td></td>
<td>66.9%</td>
<td>32.1%</td>
<td></td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Table 3.10: The Distribution of Types of Homicidal Acts across Types of Victim-Offender Relationships for Social Groupments of Victims.*

<table>
<thead>
<tr>
<th>Type of Act</th>
<th>Anglos</th>
<th>Blacks</th>
<th>Jamaicans</th>
<th>Colombian</th>
<th>Hispanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
</tr>
<tr>
<td>Quarrel</td>
<td>68</td>
<td>11</td>
<td>235</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>86.1%</td>
<td>13.9%</td>
<td>93.6%</td>
<td>6.4%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>6</td>
<td>1</td>
<td>18</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>85.7%</td>
<td>14.3%</td>
<td>81.8%</td>
<td>16.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Execution</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>53.8%</td>
<td>46.2%</td>
<td>50.0%</td>
<td>50.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Robbery</td>
<td>12</td>
<td>72</td>
<td>8</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>14.3%</td>
<td>85.7%</td>
<td>14.8%</td>
<td>85.2%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Column Total</td>
<td>93</td>
<td>90</td>
<td>265</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>50.8%</td>
<td>49.2%</td>
<td>79.1%</td>
<td>20.9%</td>
<td>81.8%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
great majority of homicides among Blacks (79.1%), Jamaicans (81.8%), and Hispanics (74.5%). Anglos are almost evenly divided between primary (50.8%) and non-primary (49.2%) categories as are Colombians. This can be interpreted as a reflection of the frequency with which Anglos are killed in robberies by strangers (39.3%). Executions and robberies account for most of the Colombian victims killed in non-primary relationships. Only two Jamaicans, both robbery victims, were killed by non-primary associates.

Quarrels are strongly associated with primary relations in all social groupments. Assassinations also follow this pattern although it is less pronounced among Colombians than among other social groupments. Executions are evenly divided between relationship types among Blacks, Hispanics, and, to a lesser extent, Anglos. They are associated with primary relations among Jamaicans (100%; N=1) and with non-primary relations among Colombians (66.7%). As can be inferred from table 3.11, this distribution is likely a function of differing groupment approaches to involvement in the drug market. The pattern for assassinations is more consistently biased toward primary relations. This association is least pronounced among Colombians.

The sub-table for Anglos has a significant but uninterpretable Chi Square of 87.606. The correlation between type of fatal act and victim-offender relationship is stronger for this social groupment (lambda=0.614) than for any other. The contingency coefficient for this sub-table is 0.569 and Cramer's V is 0.692.

The Chi Square for the second sub-table (i.e. Blacks) is significant but slightly confounded (171.245). Lambda (0.442) for this group indicates that types of homicidal acts and types of victim-offender relationships explain 44% of the variance in homicide frequency. Cramer's V for this sub-table is 0.715 while the contingency coefficient equals 0.582.
The Chi Square for Jamaicans is both severely confounded by empty cells in the non-primary relationship column and statistically non-significant (6.519; prob=0.089). Lambda equals 0.429 for this social groupment. The contingency coefficient for this sub-table is 0.610 but Cramer's V is 0.770. These statistics indicate the strong association of Jamaican victims with primary homicides which was expected.

The Colombian sub-table has an insignificant and confounded Chi Square of 6.584 (prob=0.086). Lambda (0.286) indicates that this social groupment has the weakest correlation between type of lethal act and victim-offender relationship of any social groupment of victims examined. Cramer's V is 0.524 for this sub-table and the contingency coefficient equals 0.464.

The sub-table for Hispanics has an uninterpretable Chi Square of 117.861 that is statistically significant. Lambda for this social groupment (0.435) is of similar strength to those for Blacks and Jamaicans. This sub-table has a contingency coefficient of 0.578 and a Cramer's V of 0.708.

Table 3.11 juxtaposes types of homicidal acts with drug market levels for each social groupment under scrutiny. Non-drug-involved victims predominate among Blacks (76.1%), Anglos (73.3%), and, to a lesser degree, Hispanics (58.1%). No Jamaican users are noted and most members of this social groupment are categorized as traffickers (64.7%). Two Colombians (5.3%) are classed as users and over seventy-five percent of these victims were considered traffickers.

Among Anglos, quarrel victims are disproportionately non-drug-involved (70.9%). This is also true of Blacks (82.1%) and Hispanics (65.5%). Assassinations are slightly more common among Anglo drug users (40.0%) than among traffickers (30.0%) or the non-drug-involved (30.0%) but low cell frequencies make substantive interpretation of this distribution problematic. Among Blacks, assassinations are almost equally split between the non-drug-involved (46.4%) and
Table 3.11: The Distribution of Types of Homicidal Acts across Levels of Drug Market Involvement for Social Groupings of Victims.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarrel</td>
<td>56</td>
<td>14</td>
<td>9</td>
<td>206</td>
<td>26</td>
<td>19</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>70.9%</td>
<td>17.7%</td>
<td>11.4%</td>
<td>62.1%</td>
<td>10.4%</td>
<td>7.6%</td>
<td>42.9%</td>
<td>36.8%</td>
<td>14.3%</td>
<td>14.3%</td>
<td>71.4%</td>
</tr>
<tr>
<td>Assassinated</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>30.0%</td>
<td>40.0%</td>
<td>30.0%</td>
<td>46.4%</td>
<td>10.7%</td>
<td>42.9%</td>
<td>25.0%</td>
<td>27.3%</td>
<td>18.2%</td>
<td>0.0%</td>
<td>61.8%</td>
</tr>
<tr>
<td>Execution</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>37.5%</td>
<td>6.3%</td>
<td>55.6%</td>
<td>40.0%</td>
<td>6.7%</td>
<td>53.3%</td>
<td>66.7%</td>
<td>9.1%</td>
<td>14.3%</td>
<td>0.0%</td>
<td>92.9%</td>
</tr>
<tr>
<td>Robbery</td>
<td>75</td>
<td>6</td>
<td>5</td>
<td>40</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>87.2%</td>
<td>7.0%</td>
<td>5.8%</td>
<td>74.1%</td>
<td>13.0%</td>
<td>13.0%</td>
<td>0.0%</td>
<td>100.0%</td>
<td>50.0%</td>
<td>16.7%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Column Total</td>
<td>140</td>
<td>25</td>
<td>26</td>
<td>265</td>
<td>37</td>
<td>46</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>73.3%</td>
<td>13.1%</td>
<td>13.6%</td>
<td>76.1%</td>
<td>10.6%</td>
<td>13.2%</td>
<td>35.3%</td>
<td>64.7%</td>
<td>18.4%</td>
<td>5.3%</td>
<td>76.3%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
traffickers (42.9%). The same is true of Hispanics. Colombians (81.8%) and Jamaicans (75.0%) dying by assassination were predominantly traffickers. Only among Jamaicans were the majority of execution victims not related to drug-trafficking (66.7%). Anglo (87.2%), Black (74.1%), and Hispanic (63.0%) robbery victims were primarily non-drug-involved.

Anglo drug-users died primarily in robberies (24.0%) or quarrels (56.0%). This pattern also holds for Blacks, Colombians, and Hispanics. No Jamaican users were encountered. Anglo traffickers died mainly in quarrels (34.6%) or by executions (34.6%) but robberies (19.2%) are also well-represented in this social groupment of victims. Black traffickers were killed primarily in quarrels (41.3%) with assassinations (26.1%) also being fairly common. Jamaican traffickers were rather evenly divided across each of these four types of killing styles. Colombians involved in the drug-traffic were slain mostly by execution (44.8%) and assassination (31.0%) while Hispanic traffickers were more associated with quarrels (38.5%) as well as assassinations (26.4%).

The Chi Square for Anglos (45.012) is significant but uninterpretable. Type of homicidal act and level of drug involvement explain over ten percent of the variance in homicide frequency for this group (lambda=0.103). This sub-table has a contingency coefficient of 0.437 and a Cramer's V of 0.343 that confirm the presence of this relationship.

Chi Square for American Blacks (50.455) is both interpretable and statistically significant. However, the type of act and the victim's level of drug market involvement explain only 1.1% of this groupment's frequency of victimization (lambda=0.011). The contingency coefficient for this group is 0.356 but Cramer's V is 0.269.

Chi Square for the Jamaican sub-table is neither interpretable nor statistically significant (3.290; prob=0.349). Lambda for this groupment of
victims (0.063) is intermediate between those for Anglos and Blacks. The presence of a relationship between types of acts and levels of drug market involvement for Jamaican victims is supported by this sub-table’s contingency coefficient of 0.403 and the Cramer’s V of 0.440.

The Chi Square for the Colombian sub-table is similarly uninterpretable and non-significant (10.181; prob=0.117). However, type of act and market level have more explanatory value here (lambda=0.121) than for any other social groupment. This sub-table has a contingency coefficient of 0.460 and a Cramer’s V of 0.366.

Chi Square is significant but uninterpretable for Hispanics (34.185). Lambda (0.059) indicates that the type of act and market level explicate only about 6% of the variance in the frequency of homicide within this groupment. The contingency coefficient for this sub-table is 0.366 and Cramer’s V equals 0.253.

Table 3.12 crosstabulates market levels with relationships across social groupments. Primary relations predominate in all social groupments except Anglos and Colombians who are more evenly divided on this dimension. Among non-drug-involved Anglos (53.9%) and Colombians (57.1%) more non-primary than primary victim-offender relationships are notable. Drug users were more often killed by primary associates in each social groupment in which this behavioral category was represented. The same is true of drug traffickers. Anglo robbery victims and Colombian victims of execution and assassination are likely the main factor in this anomaly. Thus, only among Anglos and Colombians does social groupment appear to outweigh level of drug involvement as an explanatory variable.

The Anglo sub-table has a Chi Square of 7.648 that is statistically significant (prob=0.022) and interpretable. Lambda (0.077) indicates that level of drug market involvement and type of victim-offender relationship account for almost 8% of the variance in the frequency of homicide among members of this social groupment in Dade County. The existence of such an association between
Table 3.12: The Distribution of Drug Market Levels across Types of Victim-Offender Relationships for Social Group-ments of Victim's.*

<table>
<thead>
<tr>
<th>Level of Drug Involvement</th>
<th>Anglos</th>
<th>Blacks</th>
<th>Jamaicans</th>
<th>Colombians</th>
<th>Hispanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
</tr>
<tr>
<td>Non-Drug Related</td>
<td>83</td>
<td>97</td>
<td>234</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>46.1%</td>
<td>53.9%</td>
<td>75.5%</td>
<td>24.3%</td>
<td>75.0%</td>
</tr>
<tr>
<td></td>
<td>66.4%</td>
<td>81.5%</td>
<td>79.3%</td>
<td>75.0%</td>
<td>25.0%</td>
</tr>
<tr>
<td>User</td>
<td>19</td>
<td>12</td>
<td>30</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>61.3%</td>
<td>38.7%</td>
<td>69.8%</td>
<td>30.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>15.2%</td>
<td>10.1%</td>
<td>10.2%</td>
<td>13.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Traffic</td>
<td>23</td>
<td>10</td>
<td>31</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>69.7%</td>
<td>30.3%</td>
<td>72.1%</td>
<td>27.9%</td>
<td>81.8%</td>
</tr>
<tr>
<td></td>
<td>18.4%</td>
<td>8.4%</td>
<td>10.5%</td>
<td>12.0%</td>
<td>75.0%</td>
</tr>
<tr>
<td>Column Total</td>
<td>125</td>
<td>119</td>
<td>295</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>51.2%</td>
<td>48.8%</td>
<td>74.7%</td>
<td>25.3%</td>
<td>80.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
type of relationship and market level among Anglos is further supported by the
contingency coefficient of 0.174 and the Cramer's V of 0.177.

This relationship does not appear to hold among Blacks, however, since their
Chi Square of 0.881 is not statistically significant (prob=0.664). Lambda (0.0)
indicates that type of victim-offender relationship and level of market
involvement have no explanatory power in dealing with homicides among members of
this social groupment. The contingency coefficient and Cramer's V both equal
0.047 and are of unascertainable substantive significance for this sub-table.

Because no Jamaicans were classified as users, this sub-table can be treated
as a 2 x 2 crosstabulation, making Fisher's Exact Test and Phi the primary test
statistics. Fisher's exact test for a two-tailed hypothesis is 1.000 while it
equals 0.637 in a one-tailed context. Although lambda is 0.0, Phi indicates that
over 7.5% of the variance in homicide frequency among Jamaicans is explained in
this table. The contingency coefficient of 0.075 further supports the presence
of such a relationship.

Although uninterpretable, the Chi Square (0.810) for Colombian victims is
not statistically discernible from zero (prob=0.667). The presence of a weak
relationship between type of victim-offender relationship and market level is
indicated by the lambda of 0.045 for this social groupment. The Cramer's V for
this sub-table supports such an indication (0.170) as does the contingency
coefficient (0.168).

The relationship between these variables is even weaker among Hispanics, as
indicated by the Chi Square of 0.889 (prob=0.641) and the lambda of 0.0. Both
Cramer's V and the contingency coefficient for this sub-table equal 0.056.

Table 3.13 examines the association between alcohol impairment and type of
victim-offender relationship within social groupments. The unimpaired are
clearly the modal category for each of these groupments with the exception of
Table 3.13: The Distribution of Alcohol Impairment across Types of Victim Offender Relationships for Social Groupings of Victims.*

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>Anglos</th>
<th>Blacks</th>
<th>Jamaicans</th>
<th>Colombians</th>
<th>Hispanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
<td>Non-Primary</td>
<td>Primary</td>
</tr>
<tr>
<td>Unimpaired</td>
<td>67</td>
<td>47.2%</td>
<td>52.8%</td>
<td>66.6%</td>
<td>68.6%</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>63.8%</td>
<td>80.6%</td>
<td>51.9%</td>
<td>69.6%</td>
</tr>
<tr>
<td>Impaired</td>
<td>38</td>
<td>67.9%</td>
<td>32.1%</td>
<td>82.3%</td>
<td>17.7%</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>36.2%</td>
<td>13.8%</td>
<td>48.1%</td>
<td>30.4%</td>
</tr>
<tr>
<td>Column Total</td>
<td>105</td>
<td>53.0%</td>
<td>47.0%</td>
<td>74.6%</td>
<td>25.4%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
American Blacks killed in the context of a primary relationship (51.9%). Across all social groupments of victims, primary relations are more common than non-primary ones.

Among Anglos, alcohol impairment was more common among victims killed by primary associates (36.2%) than among those killed in non-primary relationships (19.4%). This relationship is also found among Blacks and Colombians. Among Hispanics a weak relationship of this same direction may also be noted. However, alcohol-impaired Jamaicans were more often slain by non-primary associates (33.3%).

Chi Squares for all social groupments were statistically interpretable with the exception of that for Jamaicans. Since each sub-table has only four cells, Phi is an appropriate measure of correlation between victim-offender relationship and alcohol impairment. Chi Squares for Anglos (6.087; prob=0.012) and Blacks (8.048; prob=0.005) are statistically significant while those for Colombians (1.157; prob=0.282) and Hispanics (0.361; prob=0.548) are not discernible from zero. Fisher's Exact Test is a more appropriate measure of independence for the Jamaican sub-table. This statistic has a two-tailed value of 1.000 and a one-tailed value of 0.706.

The correlation of alcohol-impairment with type of victim-offender relationship is stronger among Anglos (lambda=0.054; Phi=0.187) than among Blacks (lambda=0.0; Phi=0.156) or Jamaicans (lambda=0.0; Phi=0.030). The Anglo sub-table has a contingency coefficient of 0.183 and a Gamma of -0.405 while the one for Blacks has a Gamma of -0.359 and a contingency coefficient of 0.154. The Jamaican sub-table has a contingency coefficient of 0.030 and a Gamma of 0.077.

Among Colombian victims, these variables explain almost 6% of the variance in homicide frequency (lambda=0.059) and Phi is quite large (0.309). Hispanics, however, have a lambda of 0.0 and a Phi coefficient of 0.047. The contingency
coefficient for Hispanics is 0.047 also while Gamma equals -0.112 for this group.

Gamma has a value of -0.695 among Colombians and the contingency coefficient for that sub-table is 0.296.

COLOMBIAN VICTIMS

Hypothesis 4: Colombian victims will die almost exclusively in trafficking-related contexts.

Corollary a: These killings will be highly visible due to either their occurrence in public settings or their heinous nature.

Corollary b: These killings will be predominantly intra-groupment in 1978 and 1979 but will increasingly involve Hispanics in 1980.

Corollary c: Of all drug-related victims, Colombians will most consistently be associated with cocaine by toxicological findings and scene evidence.

To adequately examine hypothesis four and its corollaries, six tables are required. Since social groupment is the key independent variable in hypotheses five through seven as well as hypothesis four, these tables will be used for all of these predictions. Hypothesis four can be easily tested with a single crosstabulation of victims' social groupment with level of drug market involvement. The first corollary requires the juxtaposition of social groupments with levels of crime visibility to the public. The second corollary is examined by scrutinizing the relations between victim and offender groupments before introducing the year of incident as a control variable. The third corollary demands a crosstabulation of victims' groupments with drugs found in toxicological investigations for all drug involved victims.

Table 4.1 crosstabulates the social groupments of homicide victims with their level of involvement in the drug market. Perusal of the "trafficker" column shows that, of all the social groupments examined, Colombians (78.8%) are most associated with this high level of drug market involvement. Forty-one of fifty-two Colombian victims (78.8%) were classified as traffickers for the purposes of this investigation. Another eight Colombians (15.4%) were considered
Table 4.1: The Distribution of Social Groupments of Victims across Levels of Drug Market Involvement.*

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Non-Drug Related</th>
<th>User</th>
<th>Trafficker</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td>202</td>
<td>37</td>
<td>44</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>71.4%</td>
<td>13.1%</td>
<td>15.5%</td>
<td>24.3%</td>
</tr>
<tr>
<td></td>
<td>26.2%</td>
<td>29.8%</td>
<td>16.2%</td>
<td></td>
</tr>
<tr>
<td>Am. Black</td>
<td>232</td>
<td>50</td>
<td>55</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>76.0%</td>
<td>11.4%</td>
<td>12.6%</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td>43.1%</td>
<td>40.3%</td>
<td>20.3%</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>9</td>
<td>0</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>34.6%</td>
<td>0.0%</td>
<td>65.4%</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>1.2%</td>
<td>0.0%</td>
<td>6.3%</td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td>8</td>
<td>3</td>
<td>41</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>15.4%</td>
<td>5.8%</td>
<td>78.8%</td>
<td>4.5%</td>
</tr>
<tr>
<td></td>
<td>1.0%</td>
<td>2.4%</td>
<td>15.1%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>220</td>
<td>34</td>
<td>114</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>59.8%</td>
<td>9.2%</td>
<td>31.0%</td>
<td>31.6%</td>
</tr>
<tr>
<td></td>
<td>28.5%</td>
<td>27.4%</td>
<td>41.2%</td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>771</td>
<td>124</td>
<td>271</td>
<td>1166</td>
</tr>
<tr>
<td></td>
<td>66.1%</td>
<td>10.6%</td>
<td>23.2%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
non-drug-involved but only three (5.8%) were denoted as users. Thus, Colombians were the least represented of these five groupments among the non-drug-involved (1.0%) and, with Jamaicans, are rarely associated with drug use (5.8%) in the absence of more serious economic investment in this illegal market. Although they constitute only 4.5% of the population under scrutiny, Colombians account for 15.1% of all trafficking-related victims. This finding tends to substantiate the predicted association of Colombians with drug-trafficking even though more frequently victimized groups (Blacks, Anglos, Hispanics) contribute larger numbers of victims to this level of the drug market.

Social Groupments and Crime Visibility

Hypothesis 4a is directly examined by the juxtaposition of victims' social groupment with crime visibility levels. Colombian victims tend to die in highly visible crime scenarios (67.3%) more often than members of any other such social groupment. Anglos (54.8%) and Hispanics (50.0%) are the next most visible groups of crime victims. This distribution of cases provides direct support for the validity of the assertion made in hypothesis 4a.

This crosstabulation has a Chi Square of 49.527 that is statistically interpretable and significant. Thus, the victim's social groupment and crime visibility are not independent of one another. Lambda for this table (0.067) indicates that victim's social groupment explains almost 7% of the variance in crime visibility to the public. The presence of an empirical association between social groupment and visibility is supported by the contingency coefficient of 0.202 and the Cramer's V of 0.206. It should be further noted that ANOVA results pertinent to hypothesis 2a (see table 2a.6 and 2a.7) also provide statistical support for this linkage of Colombian victims to high visibility crimes.

Offender Groupments

Table 4b.1 crosstabulates victim's social groupment with that of offenders
Table 4a.1: The Distribution of Social Groupments of Victims across Levels of Crime Visibility.*

<table>
<thead>
<tr>
<th>Groupment</th>
<th>Low Visibility</th>
<th>High Visibility</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>128</td>
<td>155</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>45.2%</td>
<td>54.8%</td>
<td>24.3%</td>
</tr>
<tr>
<td></td>
<td>20.2%</td>
<td>29.2%</td>
<td></td>
</tr>
<tr>
<td>Am. Black</td>
<td>292</td>
<td>145</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>66.8%</td>
<td>33.2%</td>
<td>37.5%</td>
</tr>
<tr>
<td></td>
<td>46.0%</td>
<td>27.3%</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>14</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>53.8%</td>
<td>46.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>2.2%</td>
<td>2.3%</td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td>17</td>
<td>35</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>32.7%</td>
<td>67.3%</td>
<td>4.5%</td>
</tr>
<tr>
<td></td>
<td>2.7%</td>
<td>6.6%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>184</td>
<td>184</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td>50.0%</td>
<td>50.0%</td>
<td>31.6%</td>
</tr>
<tr>
<td></td>
<td>29.0%</td>
<td>34.7%</td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>635</td>
<td>531</td>
<td>1166</td>
</tr>
<tr>
<td></td>
<td>54.5%</td>
<td>45.5%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
for all drug-related cases in which the offenders' social groupment is known. Anglo victims were killed primarily by Anglo assailants (58.6%) but Black offenders (35.1%) also had a significant impact on the rate of Anglo deaths. Of all the social groupments examined, Colombians were most often killed by other Colombians (88.5%). Intra-groupment killings also predominated among Blacks (87.9%), Jamaicans (80.0%), and Hispanics (71.0%), however.

It should also be noted that no Anglos were killed by Colombians and only one Anglo (0.9%) died at the hands of a Jamaican. Blacks were not killed by Colombians either. Jamaicans appear to have had fatal interactions only with other Jamaicans and occasionally with American Blacks (20.0%; N=2). Colombians were infrequently killed by Anglos (3.8%; N=1) and never by Blacks or Jamaicans. Hispanics were not often killed by Jamaicans or Colombians (2.8% each) but had the greatest variability in offender social groupments of any group of victims.

A different pattern among social groupments is evident when offenders are examined. Anglos (72.2%), Blacks (76.0%), Colombians (88.5%), and Hispanics (88.4%) killed members of their own groupments to a disproportionate extent. However, only half of the known Jamaican assailants killed other Jamaicans. Jamaicans also killed Blacks (25.0%) and Hispanics (18.8%) with some regularity. Anglo assailants did not kill Colombians except for once in the role of police officer. No Jamaicans were killed by Anglos. Similarly, American Black assailants are not known to have killed any Colombians. Members of this group killed only one Anglo. Assailants known to be Colombians killed only other Colombians and Hispanics. Hispanic assailants were most diverse in their distribution across victim social groupments but none were known to have killed Jamaicans.

Although it is not statistically interpretable, Chi Square (915.813) is significant for this table at the .001 level. Victim's social groupment explains
Table 4b.1: The Distribution of Social Groupments of Victims across Social Groupments of Assailants.*

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Offender's Social Groupment</th>
<th>Anglo</th>
<th>Am. Jamaican</th>
<th>Colom-</th>
<th>Hispanic</th>
<th>Other</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td>Anglo</td>
<td>65</td>
<td>39</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>58.6%</td>
<td>35.1%</td>
<td>.9%</td>
<td>0.0%</td>
<td>3.6%</td>
<td>1.8%</td>
<td>24.6%</td>
</tr>
<tr>
<td></td>
<td>72.7%</td>
<td>17.0%</td>
<td>6.3%</td>
<td>0.0%</td>
<td>4.7%</td>
<td>40.0%</td>
<td></td>
</tr>
<tr>
<td>Am. Black</td>
<td>Am. Black</td>
<td>15</td>
<td>174</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7.6%</td>
<td>87.9%</td>
<td>2.0%</td>
<td>0.0%</td>
<td>2.0%</td>
<td>.5%</td>
<td>43.8%</td>
</tr>
<tr>
<td></td>
<td>16.7%</td>
<td>76.0%</td>
<td>25.0%</td>
<td>0.0%</td>
<td>4.7%</td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>Jamaican</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>20.0%</td>
<td>80.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>2.2%</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>.9%</td>
<td>50.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td>Colombian</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3.8%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>88.5%</td>
<td>7.7%</td>
<td>0.0%</td>
<td>5.8%</td>
</tr>
<tr>
<td></td>
<td>1.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>88.5%</td>
<td>2.3%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>Hispanic</td>
<td>9</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>76</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8.4%</td>
<td>13.1%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>71.0%</td>
<td>1.9%</td>
<td>23.7%</td>
</tr>
<tr>
<td></td>
<td>10.0%</td>
<td>6.1%</td>
<td>18.8%</td>
<td>11.5%</td>
<td>88.4%</td>
<td>40.0%</td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td>Column Total</td>
<td>90</td>
<td>229</td>
<td>16</td>
<td>26</td>
<td>86</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>19.9%</td>
<td>50.7%</td>
<td>3.5%</td>
<td>5.8%</td>
<td>19.0%</td>
<td>1.1%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
56% (lambda=0.560) of the variance in offenders' groupment membership. The strong tendency toward intra-groupment homicide that is evident in this table is also reflected in the contingency coefficient of 0.814 and the Cramer's V of 0.701. In this way also, drug related deaths are very similar to those of non-drug-involved victims of violence. These data also indicate that trafficking-involved social groupments pose no direct threat to the non-drug involved members of society.

Table 4b.2 examines the distribution of victims' and offenders' social groupments across each of the three years examined in this research. Only three Colombians died in 1978, two of these were killed by fellow Colombians and the third died at the hands of an Anglo police officer. In 1979, four Colombians died, all at the hands of fellow countrymen. In contrast to these small annual totals, 1980 data includes seventeen Colombians killed by other Colombians (89.5%) and two who died at the hands of other Hispanics (10.5%). Because of the low number of known assailants (and hence the high number of missing cases), little of substance can be said of any "trend" in these data. The social groupment of the killers of Colombians and Jamaicans, however, was more likely to be known than that of members of other groupments. It seems reasonable to postulate that if the trend predicted in hypothesis 4b occurred, it had only begun in 1980, the last year for which data was collected. These figures do indicate a tendency toward intra-groupment killings among this group of victims, however. Jamaican assailants, in contrast to Colombians, were more likely to kill victims of social groupments other their own.

Chi Squares for each year examined by this table are statistically significant but severely confounded by empty cells and low frequencies. Lambdas for 1978 (0.629) and 1979 (0.692) are of very similar strength and indicate that victim's social groupment explains over 6% of the variance in offenders'
Table 4b.2: The Distribution of Victim’s Social Groupments across Offender’s Social Groupments for Each Year Studied.

<table>
<thead>
<tr>
<th>Victim’s Social Groupment</th>
<th>1978</th>
<th>1979</th>
<th>1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td>15</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Am. Black</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Jamaican</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Colombian</td>
<td>1</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Column Total</td>
<td>21</td>
<td>38</td>
<td>54</td>
</tr>
</tbody>
</table>

Notes:
The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
groupment. Lambda for 1980 (0.486) is smaller despite this group's larger size, indicating a slight trend toward inter-groupment killings in this last year of study. This tendency may be due to the riot-related deaths which were unique to 1980 and bear no relation to the illicit drug market. Because these tables are of the same dimensions, comparisons of Cramer's V's and contingency coefficients are marginally valid. Cramer's V for 1978 is 0.814 while the contingency coefficient for this sub-table is 0.852. The Cramer's V for 1979 is 0.816 while the contingency coefficient is 0.853. As with lambda, both the contingency coefficient (0.798) and Cramer's V (0.663) indicate a weaker relation between the victim's social groupment and that of offenders in 1980.

Drug Use among Homicide Victims

Table 4c.1 examines the distribution of drugs used by the drug-involved members of these five social groupments. No drugs were discerned in the bodies of most Colombian victims (48.6%) by the Medical Examiner. The majority of Colombians with toxicologies positive for illicit or psychoactive drugs had used cocaine (25.7%) shortly prior to their demise. A surprising number of Colombians (17.1%) were associated with hypnotic or tranquilizing drugs. This probably reflects Colombian involvement with illegally manufactured (i.e., "bootleg") Quaaludes in 1978 and 1979. One Colombian was under the influence of a barbiturate (2.9%) and another was found to have quinine (a substance used to "cut" heroin and other illegal drugs) in his system.

The majority of cocaine users were Hispanics (42.9%), followed by American Blacks (31.0%) and Anglos (13.1%). Colombians constitute 10.7% of all cocaine-positive homicide victims. These results indicate both the general popularity of this drug in Dade County and the Latino preference for "tightening" drugs alluded to by Weidman and Page (1982).

Though severely confounded, Chi Square for this table (82.106) is
Table 4c.1: The Distribution of Drugs Used across Social Groupments of Victims.*

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>None</th>
<th>Opalite</th>
<th>Coke</th>
<th>Hyptranq</th>
<th>Barb</th>
<th>Speed</th>
<th>Marij</th>
<th>Quinine</th>
<th>Solvent</th>
<th>Euphoric</th>
<th>Robaxln</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td>15</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>25.0%</td>
<td>5.0%</td>
<td>18.3%</td>
<td>30.0%</td>
<td>16.7%</td>
<td>0.0%</td>
<td>1.7%</td>
<td>1.7%</td>
<td>1.7%</td>
<td>1.7%</td>
<td>1.7%</td>
<td>20.2%</td>
</tr>
<tr>
<td>Am. Black</td>
<td>32</td>
<td>86</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.3%</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>41.6%</td>
<td>6.5%</td>
<td>33.8%</td>
<td>9.1%</td>
<td>5.2%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>1.3%</td>
<td>25.9%</td>
</tr>
<tr>
<td>Jamaican</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2.9%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>40.0%</td>
<td>10.0%</td>
<td>20.0%</td>
<td>20.0%</td>
<td>20.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4%</td>
</tr>
<tr>
<td>Colombian</td>
<td>17</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2.9%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>2.9%</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>48.6%</td>
<td>9.1%</td>
<td>10.7%</td>
<td>13.3%</td>
<td>2.9%</td>
<td>9.1%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>54</td>
<td>1</td>
<td>36</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>4.3%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>47.0%</td>
<td>9.1%</td>
<td>31.3%</td>
<td>12.2%</td>
<td>1.7%</td>
<td>1.7%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>4.3%</td>
<td>38.7%</td>
</tr>
<tr>
<td>Column Total</td>
<td>122</td>
<td>11</td>
<td>84</td>
<td>45</td>
<td>17</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>41.1%</td>
<td>3.7%</td>
<td>28.3%</td>
<td>15.2%</td>
<td>5.7%</td>
<td>0.7%</td>
<td>3.0%</td>
<td>3.0%</td>
<td>3.0%</td>
<td>3.0%</td>
<td>3.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
statistically significant. Lambda (0.062) indicates that victims' social
groupment explains over 6% of the variance in drugs used by these homicide
victims. The presence of such a relationship is also supported by the
contingency coefficient of 0.465 and Cramer's V of 0.263.

JAMAICAN VICTIMS

Hypothesis 5: Jamaican victims will show the most consistently intra-groupment
pattern of trafficking-related homicide victimization of any social groupment.

Corollary a: Jamaican victims will be associated exclusively with the use and
sale of marijuana, as opposed to alcohol, sedative-hypnotics, and cocaine.

The predictions made in hypothesis five and its corollaries are analogous
to hypotheses 4b and 4c except that they deal with Jamaican victims and predict a
strong association with marijuana among members of that group. Hypothesis five
is approached by scrutinization of the distribution of Jamaican victims in table
4b.1 while its corollary is dealt with in table 4c.1. Since summary statistics
for these tables were discussed when the crosstabulations were introduced under
hypothesis four, they will not be detailed here or in subsequent analytical
discussions.

Perusal of the Jamaican row in table 4b.1 shows that the social groupment of
the assailants of ten Jamaican victims was ascertainable. Eight of these victims
(80.0%) were killed by other Jamaicans while two died at the hands of American
Blacks. Next to their fellow Jamaicans, members of this social groupment most
often victimized American Blacks (25.0%), and Hispanics (18.8%). One Anglo also
fell victim to a Jamaican assailant during a street-corner drug deal.

Examination of other intra-groupment cells in this table shows that
Colombians were most often victimized by their own countrymen (88.5%), followed
by American Blacks (87.9%), Jamaicans (80.0%), Hispanics (71.0%) and Anglos
(58.6%). While Jamaican victims die in intra-groupment contexts more often than
Anglos or Hispanics, Jamaican assailants have a higher proportion of inter-
groupment killings than do assailants of any other groupment of assailants except Hispanics. Thus, hypothesis five is not supported by these data because killings of Jamaicans are less often intra-groupment than are those of Colombians or American Blacks and known Jamaican killers are rather heterogeneous in the groupment of their victims.

Jamaican Drug Use

Hypothesis 5a predicts that Jamaicans will more often be associated with marijuana than with any other drug. This prediction can be tested by examination of the row for Jamaicans in table 4c.1. Of the twenty-six Jamaicans killed during the period under scrutiny, toxicological findings are available on fifteen. However, only ten of these cases are reported in table 4c.1 since the other five were not drug-related and, by definition, toxicologies were negative.

The distribution of victims in this table indicates that four Jamaican victims (40.0%) were not linked to any drug by toxicological findings or scene evidence. One (10.0%) had opiates in his system, another had used an inhaled solvent (acetone) shortly before dying, and two (20.0%) had used cocaine. Two Jamaican victims (20.0%) were found to be under the influence of cannabis when killed.

Because marijuana is the hardest and most expensive of all illicit drugs to locate toxicologically, this lack of a definitive association between Jamaicans and marijuana cannot be taken as a refutation of hypothesis 5a. Indeed, both Jamaicans known to have used marijuana were identified as such on the basis of evidence found in their stomachs or mouths rather than by standard toxicological inquiries. However, these data clearly fail to support the predicted association of Jamaicans with the relatively exclusive use of marijuana. Instead, they tend to indicate that Jamaicans in Dade County follow the same basic patterns of drug use as does the general population.
AMERICAN BLACK VICTIMS

Hypothesis 6: American Blacks will be more closely associated with the use and sale of opiates than any other social groupment or socioeconomic group of victims.

Corollary a: Blacks will show the strongest tendency to die in situations implying immediate reactivity to perceived deviance (i.e. quarrels).

Corollary b: This tendency will be manifested in primary relations for the most part and will violate hypothesis two almost as frequently as trafficking-related crimes due to the low socioeconomic status of American Blacks which places them in open areas more frequently than members of other groups and deprives them of adequate protection from formal control agencies.

Hypothesis six is concerned with Black Americans and deals with a prediction covered in table 4c.1. Corollaries to this hypothesis are dealt with by re-examination of findings presented in table 1a.3, 2.2, and 2a.1. An additional table, relevant to the second corollary to hypothesis six is also introduced.

The distribution of Black American homicide victims across types of drugs in table 4c.1 shows that no drugs were discerned by the Medical Examiner in most of these cases (41.6%). Cocaine was the most frequently discerned drug among Black victims (33.8%), followed by Hypnotics and tranquilizers (9.1%), opiates (6.5%), barbiturates (5.2%), amphetamines (1.3%), marijuana (1.3%), and solvents (1.3). As a group, Black victims were thus more diverse in their choice of drugs, but this was apparently not true of individuals, as is shown in analysis of hypothesis seven.

Among opiate users Blacks are clearly the modal groupment of victims (45.5%) followed by Anglos (27.3%). One Jamaican (1.9%), one Colombian, and one Hispanic are also noted among those victims using opiates when killed. Thus, while opiates are not the most frequently encountered drug among Black drug-involved victims, Blacks are more frequently associated with these drugs than any other groupment examined. This finding is thus congruent with the prediction made by hypothesis six.
Black Homicide Situations

Hypothesis 6a predicts that Blacks will be more associated with quarrels than members of other social groupments while hypothesis 6b predicts that primary relations and open areas will be maximally associated with American Blacks.

Table 1a.3 crosstabulates victim's social groupment with types of homicidal acts while controlling for type of victim-offender relationship. American Blacks are the most frequently encountered groupment (52.5%) among victims of primary quarrels. Though less pronounced, this relationship also holds in the non-primary sub-table where Blacks constitute 44.4% of all quarrel victims. Hispanics are the next most frequently encountered group of primary quarrel victims (29.7%) followed by Anglos (15.2%). Among victims of non-primary quarrels, Anglo victims (30.6%) are the second most frequently encountered groupment, followed by Hispanics (22.2%).

While the distribution of primary cases is congruent with the assertion made in hypothesis 6a, that of the non-primary sub-table is not since Anglo victims are more frequently encountered than are Hispanics. This could reflect the primacy of familial and community ties among the Hispanic population and/or a tendency to mislabel some Anglo robbery deaths as quarrels by police and Medical Examiners. This latter possibility would infer that witnesses misinterpreted resistance to robbery attempts as quarrels with great regularity however.

Hypothesis 6b predicts that the tendency for Blacks to die in situations that imply immediate reactivity to perceived deviance (i.e. quarrels) will be manifested mainly in primary relationships. This was demonstrated in the scrutinization of table 1a.3 above. This hypothesis also predicts that Blacks will die in open areas with at least as much regularity as do drug traffickers. Examination of this hypothesis requires the comparison of table 1a.3 and 2.2 with
Table 6b.1: The Distribution of Drug Market levels across Types of Homicidal Acts for Types of Victim-Offender Relationships.*

<table>
<thead>
<tr>
<th>Level of Drug Market Involvement</th>
<th>Primary Homicides</th>
<th>Non-Primary Homicides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quarrel</td>
<td>Assassinated Executions</td>
</tr>
<tr>
<td>Non-Drug Related</td>
<td>336</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>84.4%</td>
<td>8.3%</td>
</tr>
<tr>
<td></td>
<td>74.0%</td>
<td>60.0%</td>
</tr>
<tr>
<td>Users</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>80.6%</td>
<td>12.9%</td>
</tr>
<tr>
<td></td>
<td>11.0%</td>
<td>14.5%</td>
</tr>
<tr>
<td>Traffickers</td>
<td>68</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>67.3%</td>
<td>13.9%</td>
</tr>
<tr>
<td></td>
<td>15.0%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Column Total</td>
<td>454</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>80.9%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
Table 1a.3 shows that 70.2% of all American Blacks died at the hands of a primary associate during a quarrel. Table 2.2 indicates that 28.4% of all Blacks died in quarrels in open areas and that 42.9% of all Blacks died in areas open to police scrutiny. Table 2a.1 shows that 37.8% of all traffickers died in open areas while 12.2% of all traffickers died in quarrels in such highly accessible areas. Table 6b.1 indicates that 46.3% of all trafficking related deaths occurred at the hands of a primary associate of the victim during a quarrel. It can be ascertained from examination of these tables that no other group is as frequently associated with situations implying immediate reactivity, primary victim-offender relationships, or homicide in highly accessible areas, as are American Blacks. Thus, hypothesis 6b’s contention that Blacks, as a low SES sub-group, tend to die in settings open to control by legal authorities is supported by these data.

ANGLO VICTIMS

Hypothesis 7: Anglos will be more associated with drug use, as opposed to trafficking/distribution, than any other social groupment.

Corollary a: Anglos will be more diverse in their choice of drugs on both the individual and groupment levels than members of any other social groupment.

Corollary b: Anglo victims will be associated with a wider variety of types of homicidal acts when drug involved than will members of any other social groupment.

Corollary c: Anglos will be the most frequently killed in non-primary relationships of all the social groupments examined within drug-related categories.

Table 4.1 is central to the scrutinization of hypothesis seven.

Examination of the Anglo cells in this table reveals that 24.3% of all homicide victims were Anglos. Of these, 71.4% were non-drug-involved, 13.1% were users, and 15.5% were traffickers. While Blacks (40.3%) constitute the majority of known drug users, users are encountered more frequently among Anglos than within
any other social groupment of victims examined. Thus, while trafficking-related deaths are more common among Anglos than are use-related ones, users make up a larger proportion of the Anglo population than of any other. This can be taken as a marginal validation of hypothesis seven if it is recalled that low level dealers are often imprecisely categorized and that error is more likely to occur in investigations of the deaths of Blacks than of whites in Dade County.

Analyses discussed in reference to Black opiate use (hypothesis six) showed that Anglo victims used a smaller number of drugs, as a group, than did Blacks (see table 4c.1) and equivalent to that of Hispanics. The individual diversity in drugs used simultaneously is scrutinized by examining "drug diversity" scores for members of each social groupment. Drug diversity scores are simple measures of the number of drugs found in a victim's system at the time of autopsy. These scores may range from zero to four. No victim had more than four different drugs in his/her system when killed. Non-psychoactive drugs such as aspirin are not used in computing these scores. Table 7a.1 examines the distribution of these scores across social groupments while table 7a.2 displays means and standard deviations for drug diversity within each social groupment. Figures 7a.1 and 7a.2 graphically display these results.

Table 7a.1 shows that frequency of homicide declines as drug diversity increases within all social groupments. Only twenty-four victims were under the influence of more than two drugs when killed. The great majority of these were Anglos, Blacks, or Hispanics. Among victims with two drugs in their systems, Anglos (33.3%), are especially prominent although Blacks (25.0%) and Hispanics (25.0%) are also well-represented. This is congruent with the corollary to hypothesis seven under scrutiny here.

Chi Square for this table (38.860) is significant but confounded by empty and low cell frequencies. Victim's social groupment explains almost three
Table 7a.1: The Distribution of Victim's Social Groupment across Levels of Drug Diversity

<table>
<thead>
<tr>
<th>Victim's Social Groupment</th>
<th>Drug Diversity Levels</th>
<th>None</th>
<th>One</th>
<th>Two</th>
<th>Three</th>
<th>Four</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td></td>
<td>139</td>
<td>25</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.5%</td>
<td>13.6%</td>
<td>6.5%</td>
<td>2.7%</td>
<td>1.6%</td>
<td>24.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.5%</td>
<td>20.0%</td>
<td>33.3%</td>
<td>26.3%</td>
<td>60.0%</td>
<td></td>
</tr>
<tr>
<td>Am. Black</td>
<td></td>
<td>222</td>
<td>35</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.0%</td>
<td>12.6%</td>
<td>3.3%</td>
<td>2.9%</td>
<td>0.0%</td>
<td>36.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.1%</td>
<td>28.0%</td>
<td>25.0%</td>
<td>41.2%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td></td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.3%</td>
<td>33.3%</td>
<td>6.7%</td>
<td>0.0%</td>
<td>6.7%</td>
<td>2.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4%</td>
<td>4.0%</td>
<td>2.8%</td>
<td>0.0%</td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td></td>
<td>24</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.1%</td>
<td>31.0%</td>
<td>11.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>5.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2%</td>
<td>10.4%</td>
<td>13.9%</td>
<td>0.0%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td>175</td>
<td>47</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73.5%</td>
<td>19.7%</td>
<td>3.8%</td>
<td>2.5%</td>
<td>.4%</td>
<td>31.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.8%</td>
<td>37.6%</td>
<td>25.0%</td>
<td>31.6%</td>
<td>20.0%</td>
<td></td>
</tr>
<tr>
<td>Column Total</td>
<td></td>
<td>568</td>
<td>125</td>
<td>36</td>
<td>19</td>
<td>5</td>
<td>753</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.4%</td>
<td>16.6%</td>
<td>4.8%</td>
<td>2.5%</td>
<td>.7%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

*The first percentage given refers to the proportion of the grouping in the table row. The second percentage refers to the proportion of cases in the table column.
percent (\(\lambda = 0.027\)) of the variance in drug diversity. The presence of such a relationship is supported by the contingency coefficient of 0.222 and the Cramer's V of 0.114.

Table 7a.2 summarizes the content of this crosstabulation by displaying drug diversity means and other summary statistics for each social groupment's drug-involved sub-population. Although Hispanics (\(N = 114\)) and Blacks (\(N = 77\)) were more often found to be under the influence of drugs when killed, Anglos have the highest level of drug diversity for any social groupment (\(x = 1.186\)). This finding supports the prediction of greater drug diversity among Anglo victims that was inferred from the literature. American Blacks have the next highest mean for drug diversity (\(x = 0.831\)) followed by Hispanics (\(x = 0.711\)) and Jamaicans (\(x = 0.700\)). Colombians showed the lowest level of drug diversity (\(x = 0.657\)). Standard deviations follow this same rank order fairly closely but there is greater variability in the number of drugs used by Colombians (\(S^2 = 0.725\)) than among Jamaicans (\(S^2 = 0.675\)). Statistically this may be attributed to the relative size of these groups but substantively it may well reflect the use of "downers" (i.e. barbiturates, hypnotics, or tranquilizers) by cocaine-using Colombians and the absence of Jamaicans from the upper levels of the drug diversity scale.

To further examine the effects of social groupment on drug diversity two ANOVA's were performed. The results of the first, a oneway analysis of victim's social groupment effect on drug diversity, are given in table 7a.3. The F-ratio (3.549) for this ANOVA (\(prob = 0.008\)) is statistically significant but the Scheffe procedure indicates that the mean for Anglos is significantly different only from that for Hispanics.

Table 7a.4 summarizes the results of the second ANOVA in which the effects of both victim's social groupment and level of drug market involvement on drug diversity are analyzed. The F-ratios for explained variance (\(F = 14.877\)), overall
Table 7a.2: Statistics Describing the Diversity of Drugs Used Simultaneously by Victims of Key Social Groupments.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Std. Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglos</td>
<td>1.186</td>
<td>.955</td>
<td>59</td>
</tr>
<tr>
<td>Am. Blacks</td>
<td>0.831</td>
<td>.880</td>
<td>77</td>
</tr>
<tr>
<td>Jamaicans</td>
<td>0.700</td>
<td>.675</td>
<td>10</td>
</tr>
<tr>
<td>Colombians</td>
<td>0.657</td>
<td>.725</td>
<td>35</td>
</tr>
<tr>
<td>Hispanics</td>
<td>0.711</td>
<td>.828</td>
<td>114</td>
</tr>
</tbody>
</table>
Table 7a.3: The Effect of Social Groupments of Victims on Drug Diversity Levels Recorded by the Medical Examiner.

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>Analysis of Variance</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D.F.</td>
<td>Sum of Squares</td>
<td>Mean Squares</td>
<td>F Ratio</td>
<td>F Prob.</td>
</tr>
<tr>
<td>Between Groups</td>
<td>4</td>
<td>10.3380</td>
<td>2.5845</td>
<td>3.5490</td>
<td>.0076</td>
</tr>
<tr>
<td>Within Groups</td>
<td>290</td>
<td>211.1874</td>
<td>.7282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>294</td>
<td>211.5254</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7a.4: The Effects of Victim’s Social Groupment and Level of Drug Market Involvement on Drug Diversity

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>DF</th>
<th>Mean Square</th>
<th>F of F</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnic</td>
<td>62.883</td>
<td>5</td>
<td>12.577</td>
<td>22.994</td>
<td>0.000</td>
</tr>
<tr>
<td>Market Level</td>
<td>4.635</td>
<td>4</td>
<td>1.159</td>
<td>2.119</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>52.545</td>
<td>1</td>
<td>52.545</td>
<td>96.068</td>
<td>0.000</td>
</tr>
<tr>
<td>2-Way Interactions</td>
<td>2.214</td>
<td>3</td>
<td>0.783</td>
<td>1.349</td>
<td>0.259</td>
</tr>
<tr>
<td>Explained</td>
<td>65.096</td>
<td>8</td>
<td>8.137</td>
<td>14.877</td>
<td>0.000</td>
</tr>
<tr>
<td>Residual</td>
<td>156.429</td>
<td>286</td>
<td>0.547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>221.525</td>
<td>294</td>
<td>0.753</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7a.5: Multiple Classification Analysis of the Effects of Victim's Social Groupment and Level of Drug Market Involvement on Drug Diversity.

<table>
<thead>
<tr>
<th>Variable and Category</th>
<th>N</th>
<th>Unadjusted Deviation</th>
<th>ETA</th>
<th>Adjusted Deviation</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groupment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>59</td>
<td>0.36</td>
<td></td>
<td></td>
<td>0.19</td>
</tr>
<tr>
<td>Am. Black</td>
<td>77</td>
<td>0.00</td>
<td></td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>Jamaican</td>
<td>10</td>
<td>-0.13</td>
<td></td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Colombian</td>
<td>35</td>
<td>-0.17</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>114</td>
<td>-0.12</td>
<td>0.22</td>
<td>-0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>Market Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>104</td>
<td>0.60</td>
<td></td>
<td></td>
<td>0.61</td>
</tr>
<tr>
<td>Trafficker</td>
<td>191</td>
<td>-0.33</td>
<td>0.51</td>
<td>-0.33</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Multiple $R^2 = 0.284$
Multiple $R = 0.533$
Figure 7a.1: Drug Diversity Means for Social Groupments of Victims.
Figure 7a.2: Drug Diversity Means for Levels of Drug Market Involvement.
main effects (F=22.994), and market level of involvement (F=96.068) were statistically significant at the .001 level. The F-ratio for social groupment (2.119) failed to attain statistical significance (prob=0.079) in this analysis, however. The contradictory significance levels for victims' social groupment in these two ANOVA's are probably best attributed to the association of various social groupments with level of drug market involvement that was noted earlier.

In combination, victims' level of drug involvement and social groupment explain about 28.4% of the variance in drug diversity (R^2=0.284). The results of the MCA that accompanies the second ANOVA indicate that Anglos (x=1.19) are far above average (Grand Mean=0.83) in the diversity of drugs used while Blacks (x=0.83) were average and all other groups are below average. Users (x=1.43) are even farther above average while traffickers show the least diversity (x=0.50) of any group examined. Non-drug-involved victims, by definition, have a mean of zero for drug diversity. These findings are displayed graphically in figures 7a.1 and 7a.2.

The Diversity of Anglo Circumstances of Death

The second corollary to hypothesis seven asserts that drug-involved Anglos will die in a wider variety of homicidal acts than will members of other social groupments. Examination of this hypothesis requires scrutinization of drug user cells in table 3.11 which crosstabulates types of homicidal acts with levels of drug market involvement while controlling for victim's social groupment.

Anglo users, like non-drug-involved victims, die primarily in quarrels (56.0%) or robberies (24.0%). Assassinations (16.0%) are also fairly well represented within this sub-population. In contrast, Black users are more likely to die in quarrels (70.3%) as are Hispanic users (66.7%). Black users are also less likely to be robbed (18.9%) or assassinated (8.1%) than are Anglo users. Hispanic users are almost as likely as Anglos to die in robberies (23.8%) but
assassinations are less frequent among Hispanic users (9.5%) than among Anglo users (16.0%). The lack of Jamaican users and the low cell frequencies for this category of Colombians make comparisons with these groups unfeasible. However, Anglos do appear to show more diversity in the types of acts in which they are killed than do American Blacks or Hispanics. However, these distinctions are relatively minor. This rather high level of drug diversity may reflect the great variety of drugs available in Miami more than it specifies groupment predilections.

Non-Primary Anglo Homicides

The last corollary to hypothesis seven is based on 1) prior analysis of urban homicide that associate whites with victimization by robbery and 2) the "outsider" status in the Miami drug market that is attributed to Anglos relative to other groupments. To test this prediction, the drug-involved cells of table 3.12 must be examined for groupment differences. Anglo users die in non-primary homicides (38.7%) slightly more often than do Colombian (33.3%) or Black (30.2%) users and much more often than do Hispanic ones (23.1%). The comparison with Colombians is questionable however, due to the low number of users (N=3) associated with this level of the drug market. Furthermore, the distinction between Anglos and Blacks is rather negligible. Thus, support for this hypothesis among users is best described as marginal.

Anglo traffickers died at the hands of a non-primary associate (30.3%) more often than did Jamaican traffickers (18.2%) and less often than Colombians (38.9%). The proportion of Anglos in this category is approximately equal to that of Hispanics (30.9%) or Blacks (27.9%). Thus, the data do not support hypothesis 7c among traffickers. Since results among users are so marginal and prediction is refuted among traffickers, it can be said that these data fail to support this hypothesis.
CHAPTER V
INTERPRETATION OF RESULTS

Hypothesis One

Hypothesis one predicted that victim’s social groupment, as opposed to SES level, would have superior power in predicting the type of homicidal act and victim-offender relationship among all homicides, and especially drug-related ones. In its essence, this is the same argument used by many regional theorists of "subcultural" violence (e.g. Gastil, 1969; Reed, 1982; Bankston, et al., 1985) in their attempts to distinguish cultural from structural factors.

It was noted that Anglo and Colombian victims were rather evenly divided between primary and non-primary relationships with their killers. Jamaicans, Blacks, and Hispanics were disproportionately the victims of primary homicides. It was also observed that as victims' SES increased, the predominance of primary homicide declined to an almost even division with non-primary relations among high SES victims.

More importantly, these data indicate that while Anglo victims are divided between quarrels with primary associates and robberies by non-primary ones, Blacks and Hispanics are predominantly the victims of primary quarrels. The social groupments known to be heavily involved in the drug traffic – Colombians and Jamaicans – were found to be closely associated with assassinations and executions. These types of acts have very direct social control functions and are linked to this function by many writers (e.g. Black, 1983; Wolfgang and Ferracuti, 1967; Lundesgaard, 1977). Thus, their prominence among these trafficking involved groupments was expected. Structural factors (i.e. SES, living conditions, police patrol procedures) are thought to be responsible for the relative prominence of the association of Blacks with quarrels and of Anglos
with robberies.

Coefficients of predictability (lambdas) accompanying tables using victims' social groupments as the explanatory variable are consistently higher than those for tables using SES for this purpose. Because analyses using groupment consistently produced higher correlations and more identifiable groupings of cases, the data can be said to support this hypothesis.

However, the correlations between types of acts and victim-offender relationships were consistently weaker among the drug-involved sub-population when this group of victims was merely segregated from the non-drug-involved. Neither explanatory variable had any discernible predictive power when used in analyzing divisions among drug-involved victims when users, dealers, and traffickers were grouped in a single category as has been done in prior research (e.g. Zahn and Snodgrass, 1978).

While the examination of hypothesis one revealed no major exceptions to the prediction that victim's social groupment was more closely related than SES to types of acts and victim-offender relationships, the tables associated with its corollary did help to explain the interactive effects of groupment and SES on the distribution of homicide situations. Blacks and Jamaicans were predominantly of low SES while Anglos and Colombians were more often of middle or upper class status. Hispanics were almost evenly divided between the lower and middle classes. It was also shown that non-primary victim-offender relationships were more associated with upper class victims than with other SES groups. Quarrels were the predominant mode of primary homicide for all groups while robberies dominated virtually all non-primary groupings. However, assassinations and executions appeared to vary more in their distribution across social groupments than across other categories of victims. It was finally concluded that, because
of its collinearity with groupment, SES was relevant to the leading types of homicidal acts - primary quarrels and non-primary robberies. However, victim's social groupment, not SES level, appears to be most closely related to the distribution of assassinations and executions across victim-offender relationships. SES undoubtedly effects this last distribution just as groupment also effects the former one, but subsequent analyses showed that behavior-specific categories of victims (i.e. drug market involvement) were superior to even groupments in predicting types of homicidal acts and victim-offender relationships.

Hypothesis Two

Hypothesis two predicts that the frequency of homicide will be inversely related to the relative accessibility of the crime scene to police patrols. This hypothesis is seen as a strictly ecological application of Black's (1983) notion that violence serves as an informal social control mechanism in unpoliced locations. Scrutinization of this prediction revealed that the least accessible areas (residences) along with those maximally accessible to official control (open areas) were the scenes of the great majority of all killings. The victim's social groupment and the type of act involved were found to have the most explanatory power in reference to open areas. Although patterns of association between victims' social groupment and types of lethal acts varied somewhat across accessibility levels, the extremes of this scale were predominant across all groups and circumstances. It was demonstrated that members of social groupments associated with low SES (i.e. Blacks and Hispanics) were the most frequent victims of homicide in open areas. This finding is congruent with Black's (1983) notion of self-help social control among the structurally disadvantaged. It was also shown, once again, that social groupments are a better predictor of
homicidal frequencies across types of homicidal acts than is SES.

Scheffe procedures showed that assassinations and robberies are statistically discernible from quarrels and executions in terms of their distribution across levels of accessibility. The former pair of types of acts are empirically and logically associated with open areas while the latter pair are more often linked to residential killings.

Analysis of variance techniques demonstrated that when level of drug market involvement is controlled for, the type of homicidal act has a significant impact on accessibility level but social groupment does not. Victim's SES failed to attain statistical significance in its effect on scene accessibility level by an even larger margin than groupment. While differences between groups were statistically insignificant, groupment means for accessibility associated Jamaicans, Blacks, and low SES victims with areas open to police scrutiny while Anglos, Colombians, and middle SES victims tended to be killed in the least accessible areas.

While involvement in trafficking can be empirically linked to the Colombian population of victims, SES appears to play a major role in determining the type of setting in which victims die. These analytical results do not support hypothesis two and its corollary fails to explain these deviations. Further research will be required to explicate the factors determining offenders' choice of crime scenes and resultant levels of accessibility. Victims' habits and offenders' initial intentions are likely pivotal factors here, but these data do not examine such variables. The collinearity between Colombian nationals and involvement in drug trafficking is also seen as a major factor in explaining these results. However, these results imply that SES, through its association with choice of areas in which to socialize, and social groupment, through its
effects on choice of homicidal act, are important variables in predicting the
distribution of crime scenes across levels of accessibility.

Hypothesis Three

This hypothesis predicts that the distribution of types of acts and
victim-offender relationships in which drug and alcohol users are killed will be
very similar when social groupment is used as a control variable. Correlations
between type of act and victim-offender relationship were inversely related to
the victim's level of drug market involvement. This can be taken as indicative
of the fact that, among the non-drug-involved, type of victim-offender
relationship has great predictive power but among dealers and traffickers it is
the exigencies of the illegal market, not the type of victim-offender
relationship, that determine the homicidal circumstances. Among non-drug-
involved victims, primary homicides were disproportionately associated with
quarrels while non-primary homicides were predominantly associated with robbery
motives. The similarities between the non-drug-involved and drug users in this
regard were of great interest. It was also noted that assassinations were
closely linked to traffickers' deaths.

Among victims killed by primary associates, quarrels were the modal category
regardless of whether or not the victim was impaired by alcohol. Among non-
primary cases, robberies were much more common among the unimpaired than the
impaired. Assassination was most closely associated with primary homicides among
the impaired while executions were linked to non-primary cases among the
unimpaired. It was found that the interaction of type of victim-offender
relationship and type of act was less pronounced among the alcohol impaired,
indicating that the scenarios in which these victims died were distributed
somewhat more randomly than they were for the unimpaired.
The effects of stigmatization (other than drug involvement) were also analyzed in testing this group of predictions. As elsewhere, quarrels predominate among primary cases as do robberies among non primary ones. The stigmatized, like the unimpaired, were more likely to die in non primary relationships than were the non stigmatized. This same pattern was also found across all levels of the drug market. In general, it was observed that stigmatization per se had little utility in predicting homicide situations.

Further scrutiny of the effects of alcohol impairment showed that this variable was more closely related to type of victim-offender relationship than to type of act. Primary relations were found to predominate among the impaired to a greater extent than among the unimpaired. This tendency was also noted among drug users regardless of their social groupment. It was also found that level of drug-market involvement had a negative correlation with alcohol impairment. This implies that these two populations are divergent in their membership and thus suitable for comparison.

The correlation between level of drug involvement and type of victim-offender relationship was relatively strong among Anglos and Jamaicans, but virtually non existent for Blacks and Hispanics. This correlation was of intermediate strength for Colombians. Roughly the same pattern of groupment association was observed for correlations of victim-offender relationships with alcohol impairment. Colombians however, had a much stronger correlation here, placing them in the same category as Anglos. Alcohol impairment was less closely associated with victim-offender relationship than was drug-involvement among Jamaicans, but the opposite was true for American Blacks.

Hypothesis three thus appears to have marginal support in these findings. It is reasonable to assert that both drinking and drug using groups are self-
selected by participants and thus are disproportionately associated with primary
homicides. Both of these activities increase individuals' vulnerability to
murderous assault by simultaneously impairing judgement, heightening confidence,
and generally tending to place participants in relatively hazardous situations.
Both behaviors are seen as having socially defined norms and definitions which
lead to groupment-level variations in types of homicidal acts, however.

Hypothesis Four

Colombian victims of homicide in Dade County were expected to be more
associated with drug trafficking than were members of other social groupments.
The significance of direct Colombian involvement in the cocaine trade (Lupsha,
1981) is seen as directly related to the relatively high visibility of these
victims' deaths. The use of victim's groupment as a selection-closure criteria
for drug-trafficking syndicates is easily inferred from the literature on illegal
markets (e.g. Reuter, 1984) as well as that on conflict resolution in stateless
societies (Nader, 1969).

This literature leads to the expectation that drug-related homicides will
disproportionately involve victims and assailants of the same social groupment.
A reduction of this tendency in 1980 is predicted as a result of the tendency to
label Colombians as trafficking suspects that accompanied the increased
popularity of cocaine in the U.S. Because of the Latino emphasis on self-
control (Weidman and Page, 1982) and aggressiveness (Clinard and Abbott, 1975) as
well as the linkage of Colombian traffickers with the cocaine market (Lupsha
1981), it was expected that Colombian victims would be the most consistently
associated with cocaine use of any groupment examined.

It was found that the great majority of Colombian homicide victims were drug
traffickers. Non-drug-involved Colombians were also represented in the data, but
very few Colombian victims were identified as users. This pattern, though even
more pronounced among Jamaicans, is quite different from that noted for Anglos,
Blacks, and Hispanics. Among these three groupments, most victims are non-drug-
involved. The proportion of traffickers to users is nearly equal among Anglos
and Blacks, while traffickers are much more frequent victims of homicide among
Hispanics and Colombians than are users.

Thus, the data clearly support hypothesis four's contention that Colombian
victims of homicide in Dade County die mainly as a result of their trafficking
activities. The fact that these deaths are not exclusively related to these
activities may be due to 1) the general Latino predilection toward violent
conflict resolution noted by Clinard and Abbott (1975) and/or 2) the
misclassification of victims on their level of drug market involvement due to
inadequate information.

The high degree of drug-trafficking involvement among Colombian victims is
felt to be responsible for the high visibility of these cases to the public. It
was found that Colombians died in highly visible crime scenarios more often than
did members of other social groupments. It was also noted that victims involved
in the drug traffic had the highest level of crime visibility of any grouping
examined. Thus, while victim's social groupment was a good predictor of case
visibility even when market level was controlled for, trafficking involvement was
an even better one. Therefore, the data can be said to fully support this
corollary to the fourth hypothesis.

It was also hypothesized that Colombian victims would be killed almost
exclusively by Colombian assailants in the first two years of the study period,
but that Hispanics would increasingly be involved as assailants in 1980 due to
the labeling of Colombians as likely drug-traffickers. Examination of the
relationship between the groupment of all drug-related victims and the groupment of known offenders shows that intra-groupment homicides were predominant in all of these categories. This was least true for Anglos while it was most clear for Colombian, Black, and Jamaican victims. Colombian victims were most likely to be killed by their fellow countrymen just as Colombian assailants were most likely to kill Colombian victims. The proportion of intra-groupment killings is slightly higher among Colombians than American Blacks. Hispanic assailants were the most likely to kill members of other groupments of any sub-category of victims examined regardless of drug-involvement. Thus, the structure of the drug market (Soref, 1981), like the structure of lower class life (Wolfgang, 1958; Miller, 1958) and Latin values (Clinard and Abbott, 1975), is seen as contributing factors in the explanation of rates of intra-groupment homicide.

When year of homicide was introduced as a control variable in this analysis, no clear differences could be discerned in the pattern of assailants associated with Colombian victims because of low cell frequencies. The number of Colombians was greater in 1980 than in previous years as was the number of associated assailants whose groupment could be discovered. However, Hispanics did play a greater role in the killings of Colombians in 1980 than in earlier years according to the available data. Thus, the assertion of intra-groupment homicide predominating among Colombians is tentatively validated and attributed to the social control needs of the illicit drug market. The prediction that this pattern would be less obvious in 1980 than in earlier years is marginally supported by these data but will require further data from the 1980's for validation.

The last corollary to the fourth hypothesis predicts Colombian victims to be more closely associated with cocaine than members of other social groupments.
Scrutinization of the distribution of types of drugs across social groupments revealed that almost half of the Colombian victims had no discernible traces of drugs in their systems when autopsied. Since cocaine continues to be metabolized after death (Grabowski, 1984), the time period between death and autopsy is a critical, but unknown, factor in evaluating this finding.

Colombians with toxicologies positive for psychoactive drugs were most often associated with cocaine. However, hypnotics/tranquilizers were much more prominent among this groupment than was anticipated. This is attributed to Colombian involvement in the illegal manufacture and distribution of "Quaaludes" (a hypnotic drug for which tranquilizers are often substituted by "bootleg" manufacturers) in the late 1970's. This involvement was well known to local law enforcers, but is not referred to in the professional literature. Thus the third corollary to this hypothesis is validated but with some unexpected qualifications. Further research on the pattern(s) of drug use among drug traffickers should examine more recent data since cocaine was still in competition with Quaaludes in the Colombian market during the time period examined by this research. The professional literature on Quaalude/tranquilizer use should also be more closely consulted for its implications as to the significance of groupment membership on patterns of use and associated behavior(s).

Hypothesis Five

Due to the suspected prominence of Ras Tafarianism among Jamaican traffickers and users, drug-related killings among this social groupment were hypothesized to be more intragroup than those of any other such category of victims examined. Intra-groupment killings of Jamaicans, however, were found to be less frequent than those of other groupments. Only Hispanic assailants were
more heterogeneous than Jamaicans in the groupment of their victims. While their distinctively British accents make Jamaican assailants rather identifiable as such, the same is true, among Spanish-speakers, of the distinction between Colombian and Cuban or Puerto Rican dialects. Thus, comparison of cell percentages for these groupments appears to be valid despite the large number of assailants of unknown groupment affiliation which prevents the drawing of firm conclusions from these data. It would appear, however, that there is no empirical support whatsoever for hypothesis five.

Analysis of the corollary to hypothesis five is also largely negative, but inconclusive due to low cell frequencies. Cocaine was noted as frequently as marijuana among Jamaican victims. Because of the difficulty of ascertaining marijuana for the Medical Examiner in 1980 and before, little can be said of the substantive meaning of these negative results. The Jamaican predilection for marijuana is much older and probably more widespread (Simpson, 1956, 1978) than is the Latino preference for any illegal drug (Weidman and Page, 1982) if the literature (or this writer's impressions on the basis of four years residence in Miami) is a valid guide to these questions.

Hypothesis Six

It was predicted that American Blacks would be more associated with opiates than would members of other social groupments. Unlike marijuana, opiates are fairly easy to detect through toxicological procedures available in 1980 and, unlike cocaine, opiates can be detected in the body long after death has occurred.

These data reflect that, while many drugs are used by American Blacks, members of this groupment constitute the great majority of victims found to have been under the influence of opiates. Exploration of drug diversity scores showed
that Blacks accounted for a rather small proportion of victims using two or more
drugs when killed. Their mean level of drug diversity is inflated by the large
number of Black victims with a single psychoactive substance in their system.
Thus, the empirical evidence appears to support hypothesis six with the caveat
that cocaine is far more popular than are opiates among Black homicide victims.
Logically, however, opiate use should be related to violence only through the
pressure to maintain a supply of drugs that is brought on by addiction rather
than the direct inspiration of violence that is associated with cocaine
(Grabowski, 1984) or alcohol (Hollis, 1974).

It was also predicted that Blacks would be associated with quarrels to a
disproportionate extent. The second corollary infers that the disproportionate
number of Blacks dying in quarrels will help explain this group's strong
association with primary homicides and killings in open areas. These
expectations are deduced from Black's (1983, 1984) discussion of the effects of
self-help social control on the structure of violence.

It was found that American Blacks were more often killed in primary
homicides resulting from quarrels than were members of any other groupment.
Anglos, however, more often died in non-primary quarrels. Hispanics were
strongly associated with primary quarrels, but were more diverse in the types of
acts associated with their killings than were Blacks. These results fully
support the first corollary to hypothesis six and partially confirm the validity
of the second corollary to that hypothesis.

Further analysis showed that no other groupment of victims was more
associated with primary quarrels or areas open to police patrols than were
Blacks. These results complete the evidence that rather unequivocally supports
all of the predictions made in hypothesis six.
Thus, Black's (1983, 1984) structural conceptualization of the causality of most urban violence is supported despite evidence discussed earlier that demonstrated social groupment to be a better predictor of homicide frequency across many pivotal dimensions than SES. The high degree of collinearity between Black victims and low SES victims is likely at the root of this analytical problem. Blacks were more often associated with killings in open (i.e. highly accessible) areas than were drug traffickers. Given their low average visibility, relative to the superordinate visibility of Anglos, Colombians, and traffickers, these results strongly support Wolfgang's (1958) and Black's (1983, 1984) identification of low SES urban communities as "stateless social locations." The association of American Blacks with opiate use is seen as another symptom of the structurally disadvantaged position of this group in Miami (Dunn, 1983).

Hypothesis Seven

The last hypothesis examined by this research predicted that drug-involved Anglo murder victims would be more frequently associated with drug use, as opposed to trafficking, than victims from other social groupments. This expectation was based on the expectation of hegemony by non-Anglos in marijuana, cocaine, and opiate drug markets as well as the anthropological (Weidman and Page, 1982) and psychological (Kaestner, et al., 1977) evidence for greater thrill-seeking by Anglo drug users. Greater thrill-seeking, as opposed to attempts to reduce stimulation through drug use, would logically create an exacerbated need for informal social control measures.

Although slightly fewer Anglo users than traffickers were encountered, users made up a larger proportion of the Anglo population of homicide victims than they did of other social groupments. Despite the fact that Anglos are second only to
Hispanics in overall population, Blacks and Hispanics were more frequent murder victims than Anglos. However, Anglos were more often represented among users than Hispanics and almost as frequently encountered as Blacks at this level of the drug market. Thus, if murder is used as an indicator of dangerousness, the data appear to provide substantial support for the assertion that drug use is relatively more dangerous among Anglos than it is for members of other social groupments.

The first corollary to this hypothesis predicts greater diversity in the drugs used by Anglo victims at both the individual and group levels relative to other groupments. Discussion of results concerning Black drug use refuted the assertion of a greater number of drugs being associated with Anglos at the group level. However, drug diversity scores for individual victims had to be introduced to examine this hypothesis at the individual level. Anglos had the highest mean and standard deviation in drug diversity scores of any social groupment examined. However, from a conservative statistical perspective, they were discernably different only from Hispanics on this measure.

While the frequency of homicide declined as drug diversity increased for all social groupments, Anglos are the most prominent groupment among the simultaneous users of three or more drugs. However, groupment was found to explain very little of the variance in drug diversity scores. Market level appears to be much more closely related to drug diversity, with users having higher scores than traffickers. This set of results points to the idea that clinical explanations of drug diversity may have greater weight than sociological ones.

It was further predicted that greater variety in the circumstances of death for drug-involved Anglo victims would be observed. This hypothesis was based on the inference that the hedonistic and egocentric pattern of Anglo drug use
(Weidman and Page, 1982) would result in heightened level of frequency and intensity in the informal social control methods employed against drug users in this social groupment. It is also supported by many studies of urban homicide (e.g. Wolfgang, 1958; Swiggert and Farrell, 1975; Lundesgaard, 1977) that associate Anglo victims with non-primary and robbery situations.

This literature also supports the last corollary to hypothesis seven which associated drug-involved Anglo victims with non-primary homicides to a greater extent than other groups. It is based primarily on the consistent association of Anglo victimization with pecuniary or "structural" motives and secondarily on the relative "outsider" status that is apparently attributable to Anglos in south Florida drug product markets. Because type of homicidal act and type of victim-offender relationship are such pivotal components in the conceptualization of homicidal situations, these last two corollaries to hypothesis seven are reviewed jointly.

Like members of other social groupments, Anglo users were most likely to be killed in quarrels with primary associates or robberies involving non-primary assailants. However, assassinations and non-primary killings more frequently involved Anglo users than they did users of other groupments. Executions were too infrequent among users to allow inferences to be drawn, but they were proportionately more common among Anglos than elsewhere. Thus, while causality remains unclear, the empirical predictions made in the last two corollaries to this hypothesis are supported by the data but in a marginal way that will require further research to fully confirm, extend and explain.
CHAPTER VI

CONCLUSIONS

Hypothesis one asserted, with the regional theorists of subcultural violence, that groupment-specific factors were of greater utility in predicting the distribution of homicidal situations than were structural factors like socioeconomic status (SES). This assertion was validated by these data, but the results indicate that victim's level of drug involvement, victim's social groupment, victim's SES, and the presence of alcohol impairment are all relevant to the situational patterns of homicide noted in Dade County. It was further observed that, while the relative degree of socioeconomic heterogeneity and culture diversity within groupings are of some importance in explaining variations in recognized patterns, victim's level of drug market involvement has the most utility of any variable examined. These findings allude to the need for a multi-dimensional conceptualization of the notion of subculture that includes indicators of individuals' structural position in society, socialization, living conditions, and behavior. In essence, such a definition would synthesize the more structural usages of this term (e.g. Wolfgang, 1958), with cultural (e.g. Lundesgaard, 1977), and behavioral (Weidman and Page, 1982; Zahn and Snodgrass, 1978) usages to create a single, comprehensive definition of subculture.

The study's second hypothesis predicted that the frequency of homicide would decline as the accessibility of the crime scene to formal control agents increased. Since open areas were found to be roughly as common as residences in the frequency of their association with homicide, this hypothesis was refuted by the data. However, it was inferred that the logistical exigencies of the case's circumstances were a principal factor in determining the crime scene's relative accessibility. The type of homicidal act is seen as a function of both the
victim's relative accessibility to the killer and the killer's initial intentions in the fatal interaction. A holistic operationalization of subcultural influences on offenders as well as victims will be required to further delineate this issue, but the present analysis is felt to be of heuristic value in reaching that goal.

While the second hypothesis was basically refuted, the accompanying expectation that the deaths of traffickers would help in explaining exceptions to it was supported. The need for killings that are highly visible to the local public in the illicit drug trade is a function of the stateless economic arena's need for boundary-setting and norm-enforcing symbols. In this fashion, homicide seems to function as a very explicit "significant gesture" in the social world of the drug-trafficker.

For logical reasons supported the literature (Hollis 1974; Langevin, et al., 1982), hypothesis three predicted that the main situational aspects of the murders of drug users would resemble those of the alcohol-impaired within social groupments. The data supported this expectation in a marginal but consistent fashion. Deaths of users were found to parallel those of the non-drug-involved and/or alcohol-impaired in most respects, but the magnitude of many of these distinctions was negligible. Users resembled traffickers only in their tendency to be killed in residential (i.e., inaccessible) locations. Those victims with stigmatized identities who were not drug-involved were virtually indistinguishable from the non-drug-involved. Therefore, the first corollary to the third hypothesis can be rejected. This also implies that the use of psychoactive substances is demonstrably more related to homicide victimization than is stigmatization.

The second corollary to this hypothesis proposed that the pattern of deaths among drug traffickers would be discernibly different from that of users and the
alcohol-impaired. Due mainly to the relatively high frequency of assassinations and executions among traffickers and/or trafficking-involved social groupments, this expectation was confirmed by the data.

The fourth set of predictions concerned Colombian victims and was based mainly on the professional literature relevant to this nationality and its association with drug trafficking and savage violence. The expectation that most Colombian homicide victims were associated with drug trafficking was clearly confirmed. The accompanying hypothesis that such deaths would be highly visible was also supported by the data. Victim's level of drug market involvement was found to be more associated with high visibility killings than was Colombian national origin, but the difference was negligible.

Theoretical conceptualization of illicit markets as stateless locations explains the frequency of highly visible homicides among drug traffickers. However, the literature on Colombian violence (Wolfgang and Ferracuti, 1967; Schorr, 1974; Lupsha, 1981) also associates high visibility modes of killings (i.e. heinous, public and multiple) with La Violencia and Colombian history. The separation of cultural and behavioral (i.e. drug market) forces relevant to this issue is not permitted by these data, however. As predicted by the last hypothesis pertinent to Colombian victims, cocaine appears to be the main drug of choice among members of this social groupment. However, the data indicate that whatever drug this trafficking-involved group is dealing heavily in (e.g. bootleg quaaludes) will be well-represented in its homicide victims. It must also be noted that, as a group, traffickers use fewer drugs with less frequency than do their consumers. This is typical of the rationality associated with organized crime (Abadinsky, 1985) as well as the Latino emphasis on self-control (Weidman and Page, 1982).

Similarly, Jamaican victims were expected to die more often at the hands of
other Jamaicans and be almost exclusively associated with the sale and use of marijuana. These predictions were based on the dynamics of sect membership in general and the belief system peculiar to Ras Tafarianism in particular. Both of these hypotheses were refuted by the data. Jamaicans died more often as a result of conflicts with American Blacks than was expected and Jamaican killers were rather widely dispersed across categories of victim's social groupment. These results are tentatively attributable to Jamaican participation in low level (especially "street corner") drug dealing. However, it would require a qualitative, case-by-case, inquiry into the homicide deaths of Jamaicans to validate this suspicion. Given the relatively small number of Jamaican victims and assailants encountered, any conclusions drawn about this group would have to be considered tentative and preliminary. A more detailed delineation of drug market levels might help resolve this issue by distinguishing dealers from traffickers, users, and the non-drug-involved. Indeed, Soref (1981) refers to a three to four level hierarchy of drug distributors as a standard model of this market's structure. However, too little information is available on homicide victims to allow such distinctions to be made in these data. The simplistic model used here was demonstrated to be superior to the mere segregation of "drug-involved" victims used by earlier writers (e.g. Zahn and Snodgrass, 1978).

As a group, Jamaicans were found to be much more heterogeneous in their choice of drugs than was expected. Ras Tafari doctrine encourages, or at least condones, marijuana use but discourages the use of other intoxicating substances. Jamaican victims appear to have taken on the attitudes of the surrounding (Black) community towards drug use rather than adhering to Ras Tafari doctrine. Whether this is typical of Jamaican emigres or if it is a selection factor relevant to their mode of death (i.e. homicide) cannot be determined from these data. It may be that these victims, even when identified as Ras Tafarians by the authorities,
are more imitators of that faith than true believers. Simpson (1956) asserts that many Jamaican criminals and beggars adopt the symbols of Ras Tafari and claim sect membership without ever becoming affiliated with a practicing group.

Predictions about Black Americans were largely supported by these data. While Blacks are heterogeneous in their drug use they are the predominant social groupment among opiate users. Had heroin been distinguished from percodan in the coding scheme, this association would probably have been even clearer.

Black's (1983, 1984) thesis of violence as a social control measure predicts that structurally disadvantaged groups will show a proclivity to informal means of social control which will exceed that of more empowered groups. This prediction was validated by the strong and consistent association of American Black victims with primary homicides resulting from quarrels and occurring in open areas. These findings imply that formal social control is absent from, and/or distrusted by, Dade County's Black community. Thus, self-help social control appears to have strong normative support among many Blacks and, in combination with a structurally-induced tendency to be involved in non-primary robberies (Parker and Smith, 1967; Swiggert and Farrell, 1975), results in a disproportionally high association of Blacks with homicide victimization and perpetration.

The last set of hypotheses was concerned with Anglo victims. Because groupment membership is a common selection and closure criteria for illegal syndicates (Reuter, 1984), Anglos were conceptualized as a socially valued (i.e. empowered) group within the general community but as relative "outsiders" to the major drug product markets operative in South Florida (Lupsha, 1981; Reuter, 1984). Thus, drug use was expected to be more prominent than trafficking among these victims. While Anglo traffickers were slightly more often encountered than users, Anglo users are more often the victims of homicide than users of other
social groupments.

On the basis of both ethnographic (Weidman and Page, 1982) and psychometric (Kaestner, et al., 1977) evidence, greater hedonism among Anglo drug users was expected to be manifested in relatively high levels of multiple drug use. Such an approach to drug use would 1) make Anglos especially vulnerable to predatory crimes, and/or 2) tend to instigate informal control measures against such blatant hedonists more often than against more controlled substance users.

Results showed that Anglo victims were more often diverse in their individual drug use than members of other social groupments, but Blacks were found to be more diverse as a group in their choices of drugs. The view of Anglos as thrill-seekers is largely supported by the data, although drug use of all varieties appears to be more common, at least in its association with homicide victimization, in the Black community.

The self-help social control predictions as to the greater variability of Anglo circumstances of death were partially supported, since robberies and assassinations accounted for a larger proportion of Anglo deaths than they did for other groups. However, non-primary robberies are commonly attributed to structural factors (Parker and Smith, 1967) and this situation was especially common among Anglo victims. Anglo drug users did not, however, attain any special predominance among non-primary quarrel victims as would have been expected by this theoretical perspective. The association of Anglos with robberies is attributed to the relatively high SES of Anglos in Dade County.

Summary

These analytical results provide strong support for Black's self-help social control thesis (1983, 1984) along socioeconomic, behavioral, and cultural dimensions. The distribution of homicides across levels of ecological accessibility appears to follow patterns dictated by structural and cultural
forces rather than being directly related to the need for violent social control measures.

In regards to the illicit drug market's effect on homicide distribution and visibility, it can be concluded that trafficking-related cases do much to raise public salience of violent crime without posing a major threat to non-drug-involved citizens. This situation was anticipated by Heffernan, et al., (1982) who feared that rising urban crime rates, though a result of illegal trafficking conflicts, would erode public confidence in law enforcement and inspire undue fear in the public.

Of great interest were the many similarities between the deaths of the non-drug-involved and those of drug-users, as opposed to traffickers. This research conceived of drug market involvement as a relatively linear variable. The data show that qualitative distinctions probably exist between users and trafficker-distributors. Low level dealers probably constitute a distinctive third level of drug-involved homicide victims. Only in their ecological seclusiveness (i.e. association with residential killings) were users' deaths more often similar to those of traffickers than to those of the non-drug-involved.

This analysis also had direct implications for delineating the pivotal dimensions of the notion of "subculture". Since market level of drug involvement proved to be superior to even social groupment in these analyses, the conclusion can be drawn that the dichotomous operationalization of drug-involvement used in earlier research (e.g. Zahn and Snodgrass, 1977) tends to confuse and nullify, rather than clarify and extract, the substantive implications of these sorts of data. Although dividing cases into non-drug-related, use-related, and trafficking-related groups is operationally problematic and tends to reduce cell/category frequencies, it seems to have great benefits in terms of improving the predictive utility of analyses. Therefore, it can be said that 1) social
groupments are distinctly more relevant to the sorts of circumstances and relationships associated with homicide than is SES; 2) the dichotomous operationalization of drug-involvement is inferior to the more elaborate trichotomous one; and 3) a fully accurate conceptualization of subculture must employ both ascribed (e.g. nationality) and achieved (i.e. level of drug market involvement) statuses in analyses of case specific data. Thus, "subculture" may best be conceptualized as including structural limits on living conditions, cultural norms that guide conflict resolution attempts (Swindler, 1986), and behavioral affinities that unite actors through common interests.

Relationship of Victim's Age to Other Analytical Categories

The age of these victims is a potentially confounding factor in these analyses. The distribution of victim's age within social groupments, SES levels, drug market levels, and types of acts will therefore be reviewed to determine the nature of age differences between these categories in table 8.1.

Mean ages for social groupments indicate that Anglos ($\bar{x}=42.28$) tend to be somewhat older than other victims. The means for the other four groupments range from 29.46 for Jamaicans to 35.66 for Hispanics. These measures are close to those noted for homicide victims by Swiggert and Farrell (1975) and Zahn and Snodgrass (1978). However, Anglo homicide victims in Miami appear to be older, on average, than those of other groupments or in other cities. Ranges and standard deviations for these groupments appear to vary with sample size although Anglos show greater variability in age than this factor would predict.

The next sub-table in 8.1 examines the distribution of age within SES levels. As could be expected, mean age increases with SES according to these data. Middle SES victims ($\bar{x}=39.47$) show slightly less variability on this factor than do lower class ($\bar{x}=33.81$) or upper class ($\bar{x}=47.193$) victims. The relative youth of lower SES victims is congruent with Black's (1983) expectation of
Table 8.1: Statistics Describing the Distribution of Victims' Age within Social Groupments, SES Levels, Drug-Market Levels and Types of Homicidal Acts.

<table>
<thead>
<tr>
<th>Victims' Social Groupment</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglos</td>
<td>42.28</td>
<td>20.69</td>
<td>1-90</td>
<td>283</td>
</tr>
<tr>
<td>Am. Blacks</td>
<td>32.25</td>
<td>13.72</td>
<td>0-81</td>
<td>436</td>
</tr>
<tr>
<td>Jamaicans</td>
<td>29.46</td>
<td>6.73</td>
<td>21-44</td>
<td>26</td>
</tr>
<tr>
<td>Colombians</td>
<td>30.54</td>
<td>9.147</td>
<td>19-63</td>
<td>52</td>
</tr>
<tr>
<td>Hispanics</td>
<td>35.66</td>
<td>13.69</td>
<td>0-81</td>
<td>366</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Victims' SES Levels</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>33.81</td>
<td>16.02</td>
<td>0-89</td>
<td>476</td>
</tr>
<tr>
<td>Medium</td>
<td>39.474</td>
<td>15.24</td>
<td>8-89</td>
<td>325</td>
</tr>
<tr>
<td>High</td>
<td>47.193</td>
<td>16.77</td>
<td>20-90</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Victims' Level of Drug-Market Involvement</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Drug-Related Users</td>
<td>37.69</td>
<td>17.63</td>
<td>0-90</td>
<td>785</td>
</tr>
<tr>
<td>Users</td>
<td>29.18</td>
<td>12.39</td>
<td>1-85</td>
<td>125</td>
</tr>
<tr>
<td>Traffickers</td>
<td>32.50</td>
<td>10.11</td>
<td>8-72</td>
<td>273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Act</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarrel</td>
<td>34.53</td>
<td>12.93</td>
<td>13-89</td>
<td>493</td>
</tr>
<tr>
<td>Assassination</td>
<td>34.61</td>
<td>11.69</td>
<td>8-68</td>
<td>105</td>
</tr>
<tr>
<td>Execution</td>
<td>33.26</td>
<td>12.00</td>
<td>15-72</td>
<td>69</td>
</tr>
<tr>
<td>Robbery</td>
<td>44.08</td>
<td>20.85</td>
<td>14-90</td>
<td>206</td>
</tr>
</tbody>
</table>
immediate reactivity to perceived deviance among the structurally disadvantaged as well as Wolfgang and Ferracuti's (1967) expectation of the prominence of "crimes of passion" within this category of victims. The relatively high means for middle and upper class victims suggest a greater proportion of robbery-related homicides within these categories of victims.

Statistics describing the distribution of age across levels of drug-market involvement show the non-drug involved (x=37.69) to be older than either drug traffickers (x=32.50) or users (x=29.18). The relative youth of murdered traffickers is suspected to be a reflection of the inconsistency in classifying minor dealers on this variable. The fact that over twice as many traffickers (N=273) as users (N=125) were encountered supports this suspicion, as does the lack of Jamaican users noted in the previous chapter. The relative youth of the drug-involved was expected on the basis of Zahn and Snodgrass' (1978) results.

When statistics describing age for victims grouped by type of act are examined, the impact of robberies on SES, and thus on social groupments, becomes clear. Robbery victims (x=44.08), like Anglos high SES victims, and the non-drug-involved, are older than other categories of victims. Persons killed in quarrels (x=34.53), assassinations (x=34.61), and executions (x=33.26) showed little variation in average age. It should be noted that robbery victims showed much more variability in age than did victims of other types of acts.

From these results it can be concluded that victims' social groupments are closely related to their SES levels and that high SES people are disproportionate in the frequency with which they die in robberies. This finding is fully in accord with Wolfgang and Ferracuti's (1967) perspective on subcultural violence and was expected on the basis of earlier studies performed by Wolfgang (1958), Swiggert and Farrell (1975), and Zahn and Snodgrass (1978). If these analyses had been concerned with the explication of differential group rates of homicide,
age would certainly be an intervening, if not confounding, factor. However, it is the distribution of victims across social categories, as well as within categories of various aspects of the homicidal act, that is of concern here. Thus, age does not appear to be a major factor in these analytical considerations.

Implications for Future Research

These findings show that a more thorough conceptualization of the qualitative distinctions between levels of the illicit drug market are needed to clarify the effects of the behavioral dimension of subculture on the impact of this illegal market on violent crime rates. It seems clear, however, that trafficking is directly related to homicide frequency and visibility while drug use seems to have a neutral or negative effect on these variables. Though of great concern to this issue, the interaction of non-drug-related and high visibility trafficking-related crimes must await further investigation also.

The interaction of broad cultural (e.g. ethnic), structural (e.g. SES) and behavioral (e.g. type of drug-involvement) aspects of subculture in producing various kinds of homicidal situations could also be further elaborated by such inquiries. The behavioral aspects of subculture (e.g. drug and alcohol use) seem to be more closely related to the type of victim-offender relationship than to types of homicidal acts. The cultural (e.g. groupment) and structural (e.g. SES) aspects of this concept thus appear to jointly affect the style of, and motives for, homicide. Future inquiry should further specify these effects and work to include the temporal settings of homicide in its system of explanation as well. Further investigation of the processes involved in crime scene selection would also be of benefit in such research.

It is felt that Black's thesis of violence as a form of social control has been demonstrated to be quite useful in explicating the distribution of homicide
across a variety of kinds of groups and situations. Extensions of this thesis should be directed at the temporal and relational aspects of homicidal interactions. A more thorough and descriptive operationalization of victim-offender relationships might facilitate such a goal. Ecological use of this thesis was shown to be invalid by these data, but analysis of police patrol procedures (both formal and informal) would be of great value in explaining the findings relevant to scene accessibility.

Finally, it should be pointed out that, while Miami did provide "natural laboratory" conditions for the study of drug-related homicide, it is, like other laboratories, difficult to generalize beyond the specific population under scrutiny. The area is uniquely multi-ethnic and the Hispanic population is unusually prosperous. Cuban and Puerto Rican mores and traditions appear to be divergent from those of other Latin groups in many ways. While socially powerful, the Anglo community constitutes a minority in Dade County’s overall population and this fact also affects the generalizability of this research. As a tourist center and international port serving the Caribbean basin, Miami also has a rather unusual seasonal fluctuation in population that was ignored by this investigation. This is another temporal element in the study of homicide’s distribution that deserves further attention. (It should, however, be noted that most homicide victims (95.3%) were residents of Dade or neighboring counties and very few (4.7%) were from outside Florida.)

This study has provided information on drug-related homicide that can be used to frame future research into this emergent phenomenon. Through a more thorough comprehension of the forces affecting homicide frequency and distribution, public fears may be rendered more realistic and confidence in law enforcement thus increased. This study provides the sort of insights that can be used to calm public fears of homicide victimization while recognizing the
severity of the crime problems created by the large flow of illicit drugs through Miami. Comparisons of users and traffickers made in this research show that it is the trafficker's structural position in the illicit market, not mere participation or spatial proximity, that determine risk of homicide victimization.

While the generalizability of this research is questionable in some respects, it has shown the utility of the professional literature for creating group-specific predictions about the nature and frequency of homicide. It has also demonstrated the empirical validity of Black's self-help thesis of violence as social control.

The study's findings point to the need for a synthesis of cultural (e.g. Gastil, 1969; Lundesgaard, 1977; Reed, 1982), structural (e.g. Wolfgang, 1958), and behavioral (e.g. Zahn and Snodgrass, 1978) operationalizations of the notion of subculture. While such a synthesis may be impractical for many research designs and data sets, acknowledgement of the cultural, structural and behavioral aspects of this concept seems a readily attainable goal, since these dimensions of subculture are relevant to different aspects of homicidal actions. It is perhaps the main contribution of this study to begin delineating which aspect of subculture is most associated with which dimension of the homicidal transaction between victim and offender.
REFERENCES

Akers, R. Social Deviance New York: Wadsworth. 1973

Becker, E. The Birth and Death of Meaning New York: Free Press. 1971

Champion, D. **Basic Statistics for Social Research** Scranton, Pa.: Chandler. 1970

Cohen, A. **Delinquent Boys** New York: Free Press. 1955

Denzin, N. **The Research Act** Chicago: Aldine. 1978

Douglas, J. **The Sociology of Deviance** Boston: Allyn and Bacon. 1984

Durkheim, E. **Suicide** New York: Free Press. 1951

Edgerton, R. **Alone Together: Social Order on an Urban Beach** Berkeley: University of California Press. 1979

Faris, R. & Dunham, H. "Natural Areas of the "City" in Traub & Little's **Theories of Deviance** New York: Peacock (1980).

Geertz, C. **The Interpretation of Culture** New York: Basic Books. 1974

Hollingshead, A. "Two-Factor Index of Social Position" New Haven, Conn.: Privately Printed. 1965

Lundesgaard, H. Murder in Space City New York: Oxford University Press. 1977

Merton, R. Social Theory and Social Structure Glencoe, Ill.: Free Press. 1968

Nader, L. Law in Culture and Society Chicago: Aldine. 1969

Reed, J. One South Baton Rouge: Louisiana State University Press 1982

Sellin, T. Culture, Conflict and Crime Bulletin 41, Social Science Research Council. 1938

Smith, M.D. & Parker, R.N. "Type of Homicide and Variation in Regional Rates" Social Forces 59:136-47. 1967

Tarde, G. *Etudes de Psychologie* Paris: Giard and Briere.

APPENDIX A

CODE BOOK FOR RECORDING DATA ON HOMICIDE CASES
HOMICIDE CODE BOOK

1. Year (last 2 digits)

2. Medical Examiner’s Case Number

3. Investigating Agency
 1) Hialeah Police Dept.
 2) Miami Beach Police Dept.
 3) City of Miami Police Dept.
 4) Metro-Dade Public Safety Dept.

4. Time of Incident
 1) 0001 - 0300 4) 0901 - 1200 7) 1801 - 2100
 2) 0301 - 0600 5) 1201 - 1500 8) 2100 - 2400
 3) 0601 - 0900 6) 1501 - 1800 9) unknown

5. Day of Incident
 1) Monday 4) Thursday 7) Sunday
 2) Tuesday 5) Friday 9) unknown
 3) Wednesday 6) Saturday

6. Month of Incident
 1) Jan. 5) May 9) Sept. 99) unknown

7. Date of Incident (enter numerical value)

8. Level of Certainty that Case is Drug-Related:
 0) None 2) Suspected 4) Definite
 1) Possible 3) Apparent 9) Case not rateable

9. Why is Case Drug-Related?
 0) Case not Drug-Related
 1) Victim’s Reputation/Record
 2) Witness/Confidential Informant Statements
 3) Drugs/Equipment on Scene
 4) Drug-Induced Behavior
 5) Police Judgement - Reasoning Unknown
 6) Narcotics Arrest Attempted
 7) Victim a Confidential Informant
 8) Companion’s Character
 9) Case Not Rateable

10. Multiple Homicide:
 1) No 5) Links to Other Cases
 2) Two Victims 6) Murder-Suicide Attempted
 3) Three Victims 7) Murder-Suicide
 4) Four Victims 9) Unknown
11. Place of Incident:

01) Bar
02) Restaurant
03) Victim's Residences
04) Assailant's Residences
05) Other Places of Business
06) Victim's Places of Business
07) Assailant's Places of Business
08) Other
09) Motel/Hotel
10) Street/Alley
11) Vacant Lot/Parking Lot
12) Auto/Bus
13) Wooded Area/Groves
14) Abandoned Building
15) Ocean/Boat (unmoored)
16) Airport Concourse
17) Gambling Parlor
18) Public Restroom
99) Unknown

12. Was Victim's Body Dumped?

0) No
1) Yes, Hidden from View
2) Yes, in Ocean/Canal
3) Yes, in Car Trunk
4) Yes, in Public View
5) At Hospital
9) Unknown if Body Dumped

13. Method of Killing:

01) Rifle
02) Shotgun
03) Machine Gun
04) Sm. Revolver (.22-.32)
05) Sm. Automatic (.22-.32)
06) Large Revolver (.38 +)
07) Large Automatic (.38 +)
08) Unknown Type of Pistol
09) Unknown Firearm
10) Stabbing
11) Beating w/o Weapon
12) Blunt Instrument
13) Strangled/Suffocated
14) Arson/Burns
15) Vehicular
16) Drowning
17) Pushed and Fell
18) Fall from Height/Moving Vehicle
19) Heart Failure
20) Hemmoraghick Shock

14. Caliber of Principal Firearm: (enter numerical value)

00) No Firearm Involved
99) Caliber Unknown

15. Secondary Assault:

00) None
01) Victim also Beaten
02) Victim also Stabbed
03) Victim Struck by Auto
04) Second Firearm Used
05) Victim Sexually Molested
06) Companion of Victim Sexually Assaulted
07) Scene Suggests Sexual Molestation Occurred
08) Burned After Death
09) Unknown if Secondary Assault Occurred
10) Victim Robbed After Death by Police
16. Circumstances of Incident:
01) Quarrel
02) Assassination
03) Execution
04) Robbee-Home Invasion
05) Robbee-Armed/Strong Arm
06) Robbee-Burglary
07) Robber-Home Invasion
08) Robber-Armed/Strong Arm
09) Robber-Burglary
10) Gambling Related
11) Shoot-Out
12) Prostitution-related (hetero)
13) Prostitution-related (homo)
14) Child Abuse
15) Officer Killed on Duty
16) Sex Offense (chief motive)
17) Accidental
18) Mercy Killing
19) Mentally Deranged
20) Riot-Related
21) Political Terror
22) Robbee-Auto Theft
23) Despondency of Assailant
24) Witness to other Crime
25) Robber-Shoplifter
26) Attempted Abduction
27) Robber-Auto Theft
28) Resisted Minor Arrest
29) Attempted Fraud by Victim
30) Suicide Pact
31) Unknown

17. Additional Circumstances:
00) None
01) Bullets/casings ritualistically placed on scene
02) Sugar/salt/flowers ritualistically placed on scene
03) Large amount of cash on scene
04) Victim robbed (secondary to homicide)
05) Death occurred during/subsequent to auto chase
06) Victim was fleeing attacker on foot
07) Co-victim wounded
08) Victim apparently bound prior to death
09) Victim in stolen car
10) Attacker in stolen car
11) Victim dismembered
12) Victim hitchhiking
13) Traffic altercation
14) Booby-trap used
15) Identity of victim not ascertained
16) Not intended victim
17) Victim intended to rape assailant
18) Victim with prostitute at time
19) Victim killed his assailant
20) Killed by accomplice
21) Unknown

18. Victim-Offender Relationship
01) Spouse
02) Other nuclear family/same household
03) Other relatives
04) Ex-spouse
05) Lovers-Heterosexual
06) Lovers-Homosexual
07) Friend/Acquaintance
08) Neighbors
09) Lover's Triangle
10) Business associate
11) Police suspect
12) Peace officer in performance of lawful duty
13) Victim a prostitute
14) Victim a "trick"
15) Stranger
16) Paid killer
17) Killer led Santeria group
18) Unknown
19. Victim Characteristics:
00) None known
01) Known alcoholic
02) Known addict
03) Known prostitute
04) Known trick
05) Known homosexual
06) Known drug-dealer
07) Known organized crime figure
08) Past record of mental illness
09) Rastafarian
10) Physically handicapped
11) In poor health
12) Cab driver
13) Convenience store clerk
14) Black passing for white
15) Cuban coffee swindle
16) Female becoming male
17) Victim a C.I.
18) Victim in gambling parlor-resisted robbery
19) Political prisoner in Cuba
20) Victim a pimp
21) Victim involved in South American politics
22) Fence
23) Gang member
24) Off-duty peace officer
99) Insufficient data on victim

20. Was Victim Armed?
0) No
1) Impromptu-blunt instrum.
2) Impromptu-knife, etc.
3) Impromptu-firearm
4) A Priori-blunt instrument
5) A Priori-knife, etc.
6) A Priori-firearm
7) Victim had previously assaulted assailant
9) Unknown

21. Level of Victim’s Active Contribution to Incident:
0) None
1) Slight
2) Moderate
3) Substantial
4) Complete
9) Unknown

22. Victim’s Race:
1) Black
2) Black Latin
3) Latin
4) Oriental
5) White
9) Unknown

23. Victim’s Nationality:
01) American
02) Canadian
03) Cuban
04) Puerto Rican
05) Colombian
06) Mexican
07) Other Latin American
08) Phillipino
09) European
10) Jamaican
11) Bahamainian
12) Haitian
14) Arabic/Pakistani
15) Singapore
99) Unknown

24. Victim’s Sex:
1) Female
2) Male
25. Victim's Occupation:
 00) None
 01) Unskilled
 02) Semi-skilled
 03) Skilled-manual
 04) Clerical, sales, technicians, very small business owners
 05) Administrators, small business owners, minor/semi-professionals
 06) Business managers, medium-size business owners, lesser professionals
 07) Major executives, proprietors, professionals
 08) Students
 09) Retirees
 10) Housewives
 11) Disabled
 99) Unknown

26. Victim's Permanent Residence:
 1) Dade/Broward County
 2) Other South Florida
 3) Other Florida
 4) Other U.S.
 5) Transients/migrants
 6) Canada
 7) Latin America
 8) Europe/Asia
 9) Unknown

27. Victim's Prior Arrest Record:
 00) None
 01) Non-traffic misdemeanors (includes minor gambling)
 02) Non-violent sex offense
 03) Drug offense
 04) Theft
 05) Weapons
 06) Violence/violent theft
 07) Drugs & theft
 08) Drugs & weapons
 09) Drugs & violence/violent theft
 10) Weapons & violence
 11) Murder
 12) Extensive mixed record
 13) Marielito
 99) Record unknown

28. Toxicology Results/Status:
 0) No drugs
 1) Positive for drugs
 2) Drugs on body/scene only
 3) Toxicology delayed/confounded
 4) Decomposed toxicology
 9) Toxicology results unknown/No toxicology performed
29. Drugs Found:
00) None
01) Morphine, Morphinans, Opiates
02) Cocaine, Benzoylecgonine
03) Methaqualone, Diazepam, Oxazepam, Benzodiazepines
04) Barbituates
05) Amphetamines
06) Marijuana, Cannabis
07) Quinine
08) Solvents (acetone, etc.)
09) Victim euphoric—no tox.
10) Carbon Monoxide
11) Thorazine, Phenothiazines
12) Robaxin
13) Dilantin
14) Xanthine
15) Salicyclates, Acteomeniphen
17) Empirim w/ codeine
20) Acid Phosphatase
99) Unknown

30. Blood Alcohol Content: (enter numerical value)
00) B.A.C. negative
98) Alcohol on breath
99) Unknown

31. Number of Offenders:
1) One
2) Two
3) Three
4) Four or more
9) Unknown

32. Offender’s Race:
1) Black
2) Black Latin
3) Latin
4) Oriental
5) White
6) Mixed pair/group
9) Unknown

33. Offender’s Nationality:
01) American
02) Canadian
03) Cuban
04) Puerto Rican
05) Columbian
06) Mexican
07) Other Latin American
08) Oriental
09) European
10) Jamaican
11) Bahamainian
12) Haitian
14) Arab
99) Unknown

34. Offender’s Sex:
1) Female
2) Male
3) Couple/mixed group
9) Unknown

35. Offender’s Age: (enter numerical value)

36. Estimated Offender’s Age: (also enter #2 assailant’s age cat.)
0) not needed
1) Young (10 – 34)
2) Mature (35 – 60)
3) Senior (61 +)
9) Unknown
37. Offender Characteristics:
 00) None known
 01) Offender implicated in unrelated cases
 02) Police shooting - no data
 03) Organized crime figure
 04) Pimp
 05) Adjudicated insane/incompetent
 06) Out-of-state resident
 07) Handicapped assailant
 08) Sought racial vengeance
 09) Cocaine cops robbed victim
 10) Cocaine cops killed victim
 11) Offender a convenience store clerk/cab driver
 12) Hired by spouse (insurance $, etc.)
 13) Assailant institutionalized as retardate
 14) Offender a drug dealer
 15) Offender a prostitute
 16) Offender a Mariel
 17) Outlaws Motorcycle Club
 18) Retribution for kidnapping
 19) Retribution for other case
 20) Gang member
 99) Nothing known about offender

38. Disposition of Case:
 01) Justified
 02) Charge less than murder
 03) Murder
 04) Assailant killed by police
 05) Killer killed by other assailant
 06) Murder-Suicide
 07) Killer known but not indictable
 08) Killer unknown to police
 09) Disposition unknown
 10) Felony murder - accomplice of victim charged
 11) Killer died under unknown circumstances
APPENDIX B

CODING FORM USED TO RECORD DATA ON HOMICIDE CASES
HOMICIDE CODING FORM

Victim Characteristics (Circle)
- **Sex:** Male, Female
- **Race or Ethnic Group:** White, Black, Latin, Other
- **Age:**
- **Method of Killing (Circle or Check):**
 - Gun: Handgun, Rifle, Shotgun, Other, Unk.
 - Knife
 - Other Stabbing Instrument
 - Blunt Instrument
 - Suffocation/strangulation
 - Beating W/O Weapon
 - Poison
 - Arson
 - Other (Specify)
 - Unknown
- **Circumstances of Killing (Check):**
 - Accidental Homicide
 - Drug Related
 - Robbery
 - Quarrel: Stranger(s)
 - Friend/Acq.
 - Family
 - Business
 - Other
 - Lovers: Heterosexual
 - Homosexual
 - Gang Killings
 - Mentally Deranged
 - Political Terrorism
 - Child Abuse
 - Other
 - Unknown
- **Time of Incident (Check):**
 - 0001-0300
 - 0301-0600
 - 0601-0900
 - 0901-1200
 - 1201-1500
 - 1501-1800
 - 1801-2100
 - 2101-2400
 - Unknown
- **Weekday of Incident (Circle):**
 - Monday
 - Tuesday
 - Wednesday
 - Thursday
 - Friday
 - Saturday
 - Sunday
 - Unknown
- **Month of Incident (Circle):**
 - January
 - February
 - March
 - April
 - May
 - June
 - July
 - August
 - September
 - October
 - November
 - December
 - Unknown
- **Alcohol Present (Check):**
 - Specify Level:
 - 0.12
 - Above 0.12
 - Below 0.1%
 - Neg. Alcohol
 - Unk.
- **Victim Precipitated:** Yes, No, Unk.
- **Victim a resident of Fla.?** Yes, No
- **Victim/Offender Relationship:**
 - X Husband/Wife
 - Spouse
 - Common Law Spouse
 - Lovers
 - Other Family
 - Friend/Acq.
 - Police Suspect
 - Stranger(s)
 - Unknown
 - Other
- **Place of Incident:**
 - Victims Residence
 - Relatives Residence
 - Friend/Acq. Residence
 - Other Residence
 - Place of Business
 - Bar
 - Restaurant
 - Street/Parking lot
 - Other
 - Unknown
- **Occupation:**
- **Drugs Present:** Yes, No, Unk.
- **If yes, Specify Drugs:**
- **Specify Level:**

Case Info
- **Case #:** 19
- **Total Cases:**

The form includes various categories for which information is collected, including victim characteristics, method of killing, circumstances of killing, time of incident, place of incident, and occupation. Each category is designed to capture specific details about the circumstances surrounding a homicide case.
APPENDIX C

DESCRIPTION OF THE CONTENTS OF MEDICAL EXAMINER FILES

AND POLICE REPORTS FROM WHICH DATA WERE COLLECTED
These data were collected from the Dade County Medical Examiner's office, the Dade County States Attorney's Office, and three of the four police agencies that routinely investigate homicide cases in that jurisdiction. The study is based on the information regularly available from the Medical Examiner's files but this data is supplemented with facts supplied by law enforcement agencies.

A typical case file in the Medical Examiner's office contains 1) a death certificate; 2) scene notes; 3) photos of the victim and/or crime scene; 4) toxicological reports; 5) subpoenas for the Medical Examiner; 6) newspaper articles and/or notes detailing the arrest and/or conviction of the assailant and other relevant and legally ascertained facts of the case; 7) a copy of the victim's police record; and 8) a summary or "blue book" sheet describing the basic facts of the incident.

Besides listing the victim's name, sex, age, racial category, and residential address, a Florida death certificate gives the victim's place of birth and last known occupation. Scene notes describe the physical setting in which the body was discovered, the condition of the corpse, and the police and medical investigators present at the crime scene. These notes also contain a summary of all relevant facts ascertained by investigators at the crime scene. Such summaries provide data on the circumstances of the case, the assailant's identity or description, Medical Examiner's speculation as to whether the killing took place where the body was found, witnesses' statements as to the assailant's motivation and the etiology of the crime, and any potentially relevant insights into the victim's lifestyle (e.g., homosexuality, drug use, prostitution involvements).

Photos of the victim show the nature of the trauma to the body and the immediate environment in which the body was found. These photos aid Medical
Examiners in ascertaining the trajectory and number of bullets fired, in which hand the attacker held the knife, etc. Subpoenas for the Medical Examiner assigned to the case provide the sex, date of birth, and name of the accused offender. Toxicological reports detail the kind of chemical analysis performed on the victim's tissues and bodily fluids, as well as the foreign substances (e.g., drugs) discovered by these procedures. If no toxicology was requested, the Medical Examiner nonetheless records the victim's blood alcohol content on a report summarizing the known facts of the case unless life-saving efforts by medical personnel involved measures that would confound the validity of such an analysis.

In many cases, Medical Examiner's staff clipped newspaper articles summarizing the circumstances of the crime and/or the assailant's traits rather than amending forms already in the file (e.g. scene notes). When this was done, details relevant to the case were checked with the investigating Medical Examiner and/or police agency and underlined in indelible ink before being placed in the file. If the case was not covered by the print media, notes describing such details were inserted into the file on a separate sheet of paper or types on the bottom of the scene notes as an amendment to these observations.

In some cases, copies of computer printouts of the victim's arrest record, obtained from the National Crime Information Center by the police, are also included in the file. Hospital charts may also be included if a prior medical condition contributed to the death or the victim received such care after the fatal assault.

Each file also contains a summary description of case details which is known as the "blue book sheet" because of the mimeograph ink used to make duplicates for police, insurance companies, etc. The Medical Examiner's office was kind
enough to allow this investigation to make and keep photocopies of each "blue book sheet" for all homicides recorded in the three years under analysis here. Most of these summaries describe the victim and what was known of the case's circumstances at the time of autopsy (usually within three days of death). Some summaries were amended to include information subsequently obtained by the police. A few contain only medical details provided by the hospital. This occurs in cases where the victim was brought to the hospital with no police involvement and investigation did not commence until death occurred. The victim's past medical history, when locally available or provided by relatives, is often briefly summarized on either this sheet or on the scene notes if death occurred in a hospital. It should be noted that these files are very detailed in their treatment of the victim's physical traits and condition(s).

The amount of information on offenders varies with the contingencies of the case; if the suspect was identified and/or arrested during the initial investigation, his/her traits are listed and both the homicidal act(s) and the motive is described. In more mysterious cases, no data on the offender is present. If witnesses on the scene provide a description of the offender(s), these details are recorded by the Medical Examiner on the scene notes form.

Data was also collected directly from the City of Miami Police Department, the Hialeah Police Department, and the Miami Beach Police Department. The fourth major Dade County police agency, the Metro-Dade Public Safety Department, declined to cooperate with this research effort. However, data on cases handled by this agency was obtained from the investigative division of the Dade County States' Attorney's Office. Police data was censored by sworn police officers to remove the traits and identities of witnesses/informants prior to being used in this research.
The City of Miami Police Department and that of Hialeah would allow only perusal of case reports on their premises. Those agencies did, however, provide summaries of homicide cases in their jurisdictions for the permanent records of this research effort. The researcher gave assurances that such documents would not be made public and would be used only for research at an aggregated level of analysis, however, since some still contained sensitive information. These summaries were used for internal administrative purposes by these departments. They contained the time, date, and location of the incident, a description of the victim and the (suspected or convicted) offender as well as the kind of weapon used, and a very brief description of the motive for the crime if this was known. These descriptions of motives usually inferred the type of victim-offender relationship also.

Full police reports were perused at the Miami and Hialeah Police Departments and photocopies of Miami Beach Police Department’s reports were supplied to this investigator after assurances were given that would remain strictly confidential. Police homicide reports are written (typed) by all officers who devote time to a given case. They include a painstaking description of the crime scene, an inventory of the victim’s clothing and belongings, the substance of statements made by witnesses, informants, suspects, relatives, and others concerned with the case, and information on known or suspected offenders. These reports strive to document all of the information available to police that is, or could become, relevant to the prosecution of the offender(s). They also detail how the officers spent their time in collecting this data and how it was obtained. In essence, police reports provide a hour-by-hour narrative of the investigation of the homicidal incident, its precursors, and, sometimes, its aftermath. Descriptions of victims and offenders refer not only to social categories (e.g.}
"race", nationality, etc.) but also to their habits, reputations, and lifestyle whenever such information can be obtained. The more difficult a case was to solve, the more lengthy and detailed the report. Officers (especially detectives) freely provide their opinions as to the identity of the assailant(s) and the likelihood of a successful prosecution of the case. Where officers were convinced of a suspect's guilt but could not muster sufficient information to obtain an arrest warrant (usually because witnesses would provide information but refused to publicly testify), data on the suspect is recorded as relevant to the "offender" in this research.

It is apparent that both police and Medical Examiners provided their own (re)constructions of the event and the participants in it. However, data provided by the Medical Examiner was oriented primarily to the victim and associated details that were amenable to testing with chemical procedures. The police are more concerned with the offenders and their apprehension. The quality of evidence is also of concern to both types of investigators and is commented on in this regard in this written reports. This research used the view of homicide cases provided by these agencies without seriously questioning its validity. While some information may be less than accurate, no evidence was encountered that would indicate any systematic bias in these data. Indeed, the researcher was quite impressed with the professionalism displayed in the reports of both police and Medical Examiners as they investigated these cases. Even if some bias in these information sources could be discovered, it must be pointed out that the police and Medical Examiner are the primary sources of information on crime for the media, and thus for the general public. Thus, this research is, at the very least, dealing with the reality of homicide in Dade County as both law enforcers and the public perceive it. It can also be noted that use of police and Medical
Examiner files is fairly common in socio-criminological research (e.g. Wolfgang, 1958; Swiggert and Farrell, 1975; Zahn and Snodgrass, 1978) and this study is no more or less valid in its use of these resources than are prior efforts.
VITA

JAMES F. QUINN
(October 1986)

Personal Data

Date of Birth: August 31, 1955
Place of Birth: Cheverly Chase, Maryland
Marital Status: Single, No children

Address:
Office: Department of Sociology
 126 Stubbs Hall
 Louisiana State University
 Baton Rouge, LA 70803

Home: 8247-C Skysail Avenue
 Baton Rouge, LA 70820

Telephone: (504) 388-5382 (Office)
 (504) 766-6198 (Home)

Education

A.A. Florida Keys Community College, Key West, FLA, December 1980

B.A. Florida International University, Miami, FLA, May 1981

M.A. University of Miami, Coral Gables, FLA, May 1983
 Major: Sociology
 Thesis: "Outlaw Motorcycle Clubs: A Sociological Analysis"
 Major Professor: Melvin L. DeFleur

A.B.D. Ph.D. candidate at Louisiana State University
 Major: Sociology Minor: Anthropology
 General Examination completed February 19, 1986
 Major Professor: William B. Bankston
Membership in Professional Organizations

American Criminological Society
American Sociological Association
Mid-South Sociological Association
Society for the Study of Social Problems
Southern Sociological Association
Southwestern Social Science Association
Alpha Kappa Delta - Honor Society

Areas of Professional Interest

Sociology of Deviance/Criminology
Social Psychology
Clinical Sociology
Social Problems

Professional Experience

Research Associate and Staff Coordinator for Dade County Homicide Project headed by Dr. S.A. Lowery of Florida International University, from November 1980 through December 1982.

Co-Principal Investigator on Dade County Homicide project with Dr. S.A. Lowery of Florida International University, from January 1983 through the present.

Graduate Assistant in the Department of Sociology, University of Miami, from August 1981 through December 1982.

Substance Abuse Counselor at The Village South, 5810 Biscayne Blvd., Miami, Florida, from December 1982 through June 1983.

Graduate Teaching Assistant in the Department of Sociology, Louisiana State University, from August 1983 through the present. Course taught: "Contemporary Social Problems"

Publications in Refereed Journals

Quinn, J.F. "Sex Roles and Hedonism Among Members of 'Outlaw' Motorcycle Clubs" forthcoming in Deviant Behavior vol. 8, no. 1.

Other Publications:

Papers Under Review for Publication

Quinn, J.F. and Bankston, W.B. "The Macro-Organizational Implications of Meadian Theory"

Work in Progress

"Drug-Related Homicides in Miami, Florida, 1978 - 1980"
Proposed Dissertation

Papers Presented at Professional Meetings

"Toward a Social History of the One-Percent Motorcycle Club" Presented at the 1984 Annual Meeting of the Mid-South Sociological Association, October; Monroe, Louisiana.

"Prostitution-Related Homicides in Miami, Florida; 1978-1980" Presented at the 1985 Annual Meeting of the Mid-South Sociological Association, October; Little Rock, Arkansas.

"The Effects of the Illegal Drug Market on the Visibility of Homicide in Dade County (Miami) Florida: An Examination of a Social Control Hypothesis" with Dr. S. A. Lowery. Presented at the 1986 Annual Meeting of the Mid-South Sociological Association, October; Jackson, Mississippi.

Other Participation in Professional Activities

Chairperson, Section of Social Inequality, 1984 Annual Meeting of the Southwestern Social Science Association, April; Fort Worth, Texas.

References

Dr. William B. Bankston
Associate Professor
Department of Sociology
Louisiana State University
Baton Rouge, LA 70803
(504) 388-5312

Dr. H. Hugh Floyd
Professor of Sociology
Department of Sociology
University of New Orleans
New Orleans, LA 70418
(504) 286-6301

Dr. Melvin L. DeFleur
Professor of Sociology
Department of Sociology
University of Miami
Coral Gables, FL 33124
(305) 284-6762

Dr. Shearon A. Lowery
Associate Professor
Department of Sociology
Florida International University
Miami, FL 33172
(305) 554-2247
Candidate: James F. Quinn

Major Field: Sociology

Title of Dissertation: Drug-Related Homicide in Dade County (Miami), Florida; 1978-1980

Date of Examination: November 19, 1986