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Abstract 
 

Land subsidence, defined as a land sinking or a gradual inward caving of land, 

presents a common disturbance observed in many areas of the world. In Louisiana, 

this specific problem posed a serious threat to the populace living there. Considered 

by denizens to be an adverse impact of land use, the extant Louisiana subsidence 

causes serious problems that tend to worsen, such as excessive wetland formation or 

land loss. Unless researchers find appropriate treatments to address this increasingly 

serious problem, the present issues will be exacerbated. 

To visualize the spatio-temporal subsidence patterns, this study used data 

collected by high-precision GPS stations and processed high-accuracy land elevation 

data in coastal Louisiana by means of a GIS-based spatio-temporal data model. I used 

the Kriged Kalman Filter (KKF) to map the spatial temporal field of land elevation 

change in southern Louisiana from 2011 to 2013, which showed a clear subsidence 

area after 2012. The coincidence of the Bayou Corne Sinkhole enabled a validation of 

the GPS data and the spatio-temporal data model. 

In addition, the spatial pattern for subsidence was predicted by 

Regression-Kriging and based on observed GPS data in tandem with the data on 

contributing subsidence factors. The prediction results using Regression-Kriging had 

high and acceptable accuracy. 

I applied the geographically weighted regression (GWR) model to show the 

spatial heterogeneity of contributing factors to subsidence in the study site. The 

statistical results showed that spatial heterogeneity for the data of contributing factors 



vi 
 

would be useful to recognize the agglomeration of communities in the study area. The 

regionalization work of these contributing factors could also be helpful to form 

location-based subsidence mitigation policies. 

This research contributes to the knowledge of GIS data modeling by 

incorporating a spatio-temporal interpolation—the Kriged Kalman filter (KKF)—into 

mapping and monitoring the land elevation change. This technique overcomes the 

problems of traditional spatial interpolation methods that disregard the time 

dependency of the geospatial data. The second contribution of this research is to 

predict the spatial pattern of subsidence using the information in regard to the 

subsidence factors at GPS stations. A cross-scale subsidence prediction, drawn solely 

on point based data from GPS stations, was made possible by Regression-Kriging. 

The third contribution of this research is that the spatial statistical models used for 

data analysis enable location-based policy-making. In other words, the local 

government can embrace smart policies that are specifically effective for certain 

regions to prevent further land loss or subsidence.
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Chapter 1 Introduction 
 

1.1. Background 

The term ―subsidence‖ refers to the downward movement of the earth’s surface 

with respect to a reference point (Dokka 2006; Kent and Dokka 2012), which may be 

produced by both geophysical and anthropogenic factors (Kent and Dokka 2012). The 

subsidence may cause many adverse effects on affected living space, such as 

excessive wetland formation or land loss, depending on whether appropriate 

treatments are applied to the extant irregular subsidence (Kent and Dokka 2012). 

Multiple regions around the world suffer from serious subsidence problems, yet 

for different reasons (Hung et al. 2011). For instance, Italy’s Venice, renowned as a 

historical city, displays a subsidence phenomenon. The city’s local problems include 

issues such as the stability of buildings, waterways, and coastal erosion, thus 

constituting major problems that consistently contribute to subsidence phenomena 

yearly (Bitelli et al. 2000). Other classic areas that show emerging dramatic 

subsidence are inclusive of the United States’ lower Mississippi Valley and northern 

Gulf coast, with multiple contributing factors, such as groundwater withdrawal and 

the extraction of oil by pumping (Abdollahzadeh et al. 2013; Shinkle and Dokka 

2004). The experiential subsidence in this area, deemed a ―slow disaster,‖ threatens 

critical habitats in large and small cities, farms, and economic infrastructures in 

several states and threatens a harbinger of eventual inundation by the Gulf of Mexico 

(Shinkle and Dokka 2004). 
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The State of Louisiana, located in the lower Mississippi Valley and the northern 

Gulf Coast area as well, reflects a gradual, evident subsidence, especially in the 

coastal parishes, thus causing a huge area of wetland to form. To account for this 

serious problem, the following figure shows the vertical displacement of height for a 

Louisiana ground point (point name: 1 LSU) throughout 2012, based on the research 

methods of Shinkle and Dokka in 2004 (Dokka 2006; Shinkle and Dokka 2004). 

 

 
Figure 1. Height changes for one site (1LSU) in Louisiana in 2012, units: day 

(Horizontal axis), meter (Vertical axis) 

 

Figure 1 uses the trendline slope (0.00005) to calculate an annual subsidence rate, 

which equals 18.3 mm or 0.05 mm per day. We must not lose sight of this rate, 

calculating a serious subsidence problem in the area, as the future cumulative 

subsidence found over a long period, such as 50 to 100 years, will be significant, 

should this subsidence rate remain stable. The effects of such a subsidence disaster 

would be felt by the entire country at that time, as the looming inundation would 
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gradually destroy America’s largest coastal wetland and continue on to ravage its 

energy production heartland (Shinkle and Dokka 2004). 

Hence, facing the gravity of the Louisiana situation regarding this serious 

subsidence problem, relevant researchers should increasingly focus on subsidence 

studies of high importance, such as subsidence prediction. Governments should 

assume immediate and powerful actions to control the high speed of adverse 

subsidence. This research may, in fact, substantially serve as a potential and feasible 

attempt to monitor, predict, and treat subsidence in Louisiana. 

1.2. Literature review 

The subsidence study may be done as an interdisciplinary project, applying the 

various methods of geotechnical engineering, geology, geophysics, geography, or the 

geographic information system (GIS). In potential research, the recent geographic 

subsidence study is focused mainly on backgrounds. The literature review results 

indicate that relevant papers on subsidence may be classified into two subsets for 

research topics: 1) how to make a highly accurate subsidence observation and 

prediction, and 2) how to collect relevant contributing factors by means of modeling 

during a dramatic subsidence. 

 

Subsidence observation and prediction 

Recently, three common kinds of techniques have been widely used in the 

process of subsidence observation: leveling, GPS observation, and Interferometric 

Synthetic Aperture Radar (InSAR) (Lu, C. et al. 2012).  
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In the early 1950s, engineers and researchers initiated subsidence surveys by 

means of leveling, usually quantifying the vertical displacement at relevant 

benchmarks for land subsidence (Shinkle and Dokka 2004). By means of geodesy 

methods, the survey accuracy in leveling has the potential to be high at a millimeter 

level, while the temporal resolution is technically limited (Lu, C et al. 2012); 

conventional survey cycles usually exceed 10 years. However, since the GPS 

technique emerged and expanded widely, the GPS survey has become yet another 

available method to quantify land subsidence by applying millimeter-level point 

heights and relatively higher temporal resolution, whereas the survey point density 

tends to be relatively low (Lu, C. et al. 2012). As an innovation of the new 21st 

century, the InSAR technique provides an alternative to leveling and GPS 

observations, due to the high spatial density (Lu, C. et al. 2012)/ In the entire InSAR 

survey imaging process, the differences in phases of microwaves from repeat-pass 

InSAR satellites are used to calculate the displacements of ground downward 

movements as land subsidence (Extracted from: 

http://treuropa.com/technique/insar-evolution/); in turn, this imaging process will  

definitely produce multiple categories of unwanted errors, especially atmosphere 

effect, topographic distortion, and de-correlation noise (Extracted from: 

http://treuropa.com/technique/insar-evolution/).  

A new, advanced InSAR technique, such as differential InSAR (DInSAR), may 

emerge that presents a differential method with the corresponding digital elevation 

model (DEM). Nevertheless, the present technique has the capability to reduce or 
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eliminate multiple topographic distortions, although errors, such as atmospheric 

effects, may remain unprocessed. Thus, each one of three techniques—leveling, GPS, 

and InSAR—has relatively evident advantages and flaws. The integration or 

combination of such techniques remains a common research trend, necessary for 

developing an accurate land subsidence survey. 

Notably, many researchers initially completed the integration of leveling and 

GPS observations at the inception stage of a techniques-integration study. A paper 

released in 2007 shows that a comparison of historical leveling and recent GPS data 

reveals the subsidence rates on the Thessaloniki Plain of Greece for the past 50+ years 

(Psimoulis et al. 2007). Around 2000, a data information system capable of 

connecting the leveling network with GPS data was operated to monitor the ground 

subsidence in the Southern Po Valley (Bitelli et al. 2000). Additionally, the NOAA 

data report by Shinkle and Dokka in 2004 reveals that the GPS observation data in the 

Continuously Operating Reference Station (CORS) had assisted the integrated 

leveling benchmark data from many epochs, by calculating and interpolating the 

steady state of subsidence rates in the lower Mississippi Valley and Northern Gulf 

Coast; based on these calculated subsidence rates, the increasing land loss areas in the 

Lower Mississippi River Basin from 2011 to 2050 were evaluated by Zou et al. in 

2016 (Shinkle and Dokka 2004; Kent and Dokka 2012; Zou et al. 2016). 

Hence, this method on leveling and GPS combination produces more accurate 

subsidence data and thereby extends the subsidence observation periods from the past 

to the future (Shinkle and Dokka 2004; Kent and Dokka 2012). Nevertheless, it may 
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prove unfeasible to solve the low point-density problem easily, especially in cases 

where observation points are distributed on less of an average or less randomly in the 

study area. 

Recently, many papers on subsidence have indicated that the most acknowledged 

and popular subsidence survey method involves an integration technique between 

InSAR/DInSAR) and GPS. In the entire integration process, DInSAR should be used 

rather than ordinary InSAR, as the DInSAR data display much less topographic error 

when applied with the corresponding DEM (Extracted from: 

http://treuropa.com/technique/insar-evolution/). Moreover, many areas of land 

subsidence (such as Appin Township, located southwest of Sydney, Australia) were 

globally surveyed by means of this popular integration technique (Linlin Ge et al. 

2003). In Appin Township, GPS data over the same study site were used to 

geo-reference the DInSAR results. Further, the differential tropospheric delay 

(atmosphere effect) was estimated by the GPS data for interpolation into an image to 

correct the atmosphere disturbance in the InSAR results (Linlin Ge et al. 2003; Ge 

2000) (Extracted from: http://treuropa.com/technique/insar-evolution/). 

Thus, DInSAR may be regarded as a popular technique to monitor land 

subsidence when combined with GPS. However, this technique may be subject to 

uncertainties induced by errors in atmosphere, satellite orbits, and terrain effects.  

According to research, the land coverage showing various surface properties over 

different seasons will cause spatial de-correlation in DInSAR, as well as degraded 

measurement accuracy (Hung et al. 2011; Hung et al. 2010). Permanent scatterer 
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interferometry (PSI) was proven to reduce the deficiency in DInSAR (Hooper et al. 

2004; Hung et al. 2011). PSI, a relatively recent development from conventional 

InSAR, relies on a study of pixels, which remains coherent over a sequence of 

interferograms, thus providing consistent and stable radar reflections (Burgmann et al. 

2000). In one subsidence case over the Choushui River Alluvial Fan in Taiwan, PSI 

reduced errors affected conventional DInSAR techniques. As a result, PSI was used 

for data fusion work, coupled with high-precision and low point-density leveling data, 

thus producing a smoothed correction to the PSI results (Hung et al. 2011; Lu, C. et al. 

2012). Such fusion work allows the surveyed result to be more representative of 

overall deformation characteristics than the sole use of the PSI field, or leveling 

(Hung et al. 2011). In addition, the fusion work provides a superior, classic study on 

the integration of PSI (InSAR) and leveling. In this fusion process, a simple ―draping‖ 

method was applied to merge the PSI result with that of the leveling (Hung et al. 2011; 

Forsberg and Skourup 2005). Future studies on data fusion will include either an 

improved method that uses wavelet functions or a spectral combination to represent 

various kinds of subsidence data (Hung et al. 2011; Addison 2002). 

In addition, with the exception of leveling, other subsidence survey techniques, 

such as GPS and InSAR, were used in recent research cases, such as Analog weather 

charts (AWC), which was applied to the high-precision Grid point value of 

Meso-Scale Model(GPV-MSM) and combined with water vapor data (Zheng et al. 

2014). In this instance, the spatial distribution of the atmospheric delay by water 

vapor was quantified using AWC by permitting the atmosphere effect of DInSAR data 
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to be reduced, thus rendering GPV-MSM data effective for DInSAR analysis (Zheng 

et al. 2014; Lu, C. et al. 2012). 

Although the integration of such techniques tends to result in high accuracy in 

subsidence surveys, recent media announcements indicate that NASA is in the process 

of developing a new, airborne interferometer system named UAVSAR, which will 

provide much higher spatial resolutions and accuracy for future subsidence surveys in 

the future (Blom et al. 2009). 

Furthermore, with the exception of common techniques and their integration, 

some methods from geo-statistics models may also be used to process subsidence data 

for higher prediction accuracy, such as the Kriged Kalman Filter (Mardia et al. 1998). 

The Kriged Kalman filter (KKF), regarded as a combination or integration of Kalman 

filter and Kriging interpolation, may be used to process and predict spatio-temporal 

data, such as long-term point data on subsidence (Kalman 1960; Mardia et al. 1998; 

Shang et al. 2011; Olea 1999). The long-term GPS subsidence data may be especially 

applied to KKF due to characteristics of high temporal resolution, as well as low point 

density, and based on the GPS points’ input, raster data may be produced; large areas 

of subsidence data near these scatter GPS points may then be interpolated and 

predicted accurately for a long-term period (Shang et al. 2011; Lu, C. et al. 2012). 

Thus, KKF may provide a possible and accurate method for surveying and predicting 

long-term subsidence data (Shang et al. 2011). 
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Modeling of contributing factors to subsidence 

The factors for subsidence may be classified as both geophysical and 

anthropogenic (Kent and Dokka 2012). A recent study on subsidence in southern 

coastal Louisiana indicates that sediment compaction, low-angle faulting, and the 

regional subsidence associated with mass loading may display the major factors 

controlling subsidence in the delta, coupled with a finding that the coastal regions 

outside the delta tend to undergo slower subsidence, probably related to factors such 

as fluid withdrawal encompassing ground water, petroleum, and natural gas extraction 

(Abdollahzadeh et al. 2013).In other words, the natural process of subsidence in many 

active areas can be mainly attributed to the following factors: a) sediment compaction, 

b) faulting, c) anthropogenic mass loading, d) groundwater withdrawal, e) oil 

pumping, and f) natural gas extraction (Abdollahzadeh et al. 2013; Kent and Dokka 

2012). Thus, the methodology on how to use an appropriate model to establish 

relationships between subsidence and factors and how to quantify such factors will be 

prevailing topics for subsidence researchers from a variety of academic backgrounds. 

Geophysical factors that contribute to subsidence (Kent and Dokka 2012) 

indicate that faulting emanating from a series of dramatic crust movements is 

popularly considered a vital study topic on subsidence, especially for geological and 

geophysical researchers (Abdollahzadeh et al. 2013; Dolezalova et al. 2009; Brodie et 

al. 2007). A strong example in this context comes from an evaluation project 

regarding a mining subsidence in Karvina, located in the Czech Republic, which used 

GPS data as well (Dolezalova et al. 2009). In the Karvina project, the subsidence 



10 
 

depression acquired from two years of GPS survey data revealed that the complicated 

tectonic situation importantly influenced the behavior of surface subsidence 

(Dolezalova et al. 2009). Tectonic faults evidently shaped the subsidence depression 

in an irregular form; yet importantly, on sites without a tectonic fault, the subsidence 

depression experienced a smooth and regular development. Consequently, this 

research instance strongly corroborates a close correlation between the shape of a 

subsidence, as well as the characteristics of a fault on the same site (Dolezalova et al. 

2009). 

As a commonly anthropogenic factor relating to subsidence (Kent and Dokka 

2012), groundwater withdrawal (Kent and Dokka 2012; Abdollahzadeh et al. 2013) 

remains a common indicator to researchers from many backgrounds, notably because 

groundwater can be the most direct factor leading to subsidence (Shang et al 2011; 

Abdollahzadeh et al. 2013). A classic hydrology and GIS case involves a spatial and 

temporal prediction system for groundwater flow and subsidence in the Japanese 

coastal plain (Zhou et al. 2003). In this case, by means of hydrology and GIS 

knowledge, the required data were converted to GIS data in the database, while the 

surface water cycle was simulated to obtain the spatial and temporal groundwater 

infiltration quantity (Zhou et al. 2003). A 3D groundwater flow model based on 

hydrology then was established a) to simulate the groundwater flow, and b) to 

calculate or predict the corresponding subsidence in different water pumping 

scenarios (Zhou et al. 2003). Another recent GIS instance involving water withdrawal 

(Abdollahzadeh et al. 2013) shows the spatial and temporal characteristics of a 
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subsidence induced by groundwater over-exploitation in Beijing (Chen et al. 2011; 

Abdollahzadeh et al. 2013). Using data collected by GPS and InSAR, a model on the 

dynamic variation from hydro-dynamics was established to analyze the subsidence 

response to groundwater withdrawal (Chen et al. 2011). 

In addition to such models that form hydrology, many geo-statistics models can 

be even more available for quantifying the factors related to subsidence, such as 

geographically weighted regression (GWR) (Fotheringham et al. 2002). The most 

recent GWR case on subsidence was released by a research group from Taiwan, 

which involved the groundwater factor for modeling (Shang et al 2011). 

In the GWR case from Taiwan, the study site was selected in the Choshuichi 

Alluvial Fan, using ground subsidence data collected by GPS observation. The data 

were inclusive of groundwater levels from three underground aquifers, obtained from 

the Water Resources Agency (Shang et al. 2011). By means of interpolation, the 

spatial distribution of subsidence in the study site and the groundwater levels at each 

GPS station may be estimated for GWR (Shang et al. 2011; Shepard and Donald 

1968). 

In the GWR modeling process, the changes in groundwater levels from three 

aquifers were selected as predictors, applying subsidence as the dependent variable 

(Shang et al 2011). GWR is more advantageous than other geo-statistics models in 

this instance, as the other models used for subsidence research usually involve a 

―global‖ approach, thus lacking spatial heterogeneity of the data. On the other hand, 

GWR definitively displays a spatial variation of predictors, as well as spatially varied 
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coefficients of predictors (Shang et al. 2011; Fotheringham et al. 2002). Thus, by the 

GWR model, all four of the spatially varied coefficients may be calculated; as a result, 

by using these coefficients, land subsidence in the study site may be predicted (Shang 

et al 2011). As a result, an important comparison between the prediction result from 

GWR and the one from ordinary least squares (OLS) was made, showing that GWR 

can better approach the real subsidence distribution by means of a higher accuracy 

and an adjusted R-square (Shang et al 2011; Hayashi and Fumio 2000). Although this 

GWR case for subsidence may be classic, it still has many drawbacks, including the 

lack of long-term or seasonal GPS data for showing a more detailed correlation 

between groundwater levels and subsidence (Shang et al. 2011). Further, multiple 

kinds of important factors, with the exclusion of groundwater levels, may be collected 

to access GWR for more accurate modeling results. These drawbacks are expected to 

improve through future research (Shang et al. 2011; Fotheringham et al. 2002; 

Abdollahzadeh et al. 2013). 

Many of the subsidence cases discussed refer to a natural process of subsidence; 

however, in some small site areas, subsidence may be produced by loadings from 

certain human activities, such as mining. For such cases, especially for a mining 

subsidence, the factors related to subsidence should largely differ, such as a) depth 

and distance from drift, b) DEM and slope gradient, c) groundwater permeability, d) 

geology, and e) land use (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 

2011). 
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Hyun-Joo Oh’s researchers from Korea initiated a series of studies on mining 

subsidence by collecting relevant contributing factors and using many classic models 

from general statistics (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 

2011). The case study sites, located in abandoned coal mines, modeled a) frequency 

ratios, b) logistic regression, c) weights of evidence, and d) artificial neural networks; 

these were tested successively. The testing sought possible relationships between 

subsidence and contributing factors by calculating factor ratings/weights to map 

subsidence hazards; this was accomplished by means of overlaying the ratings or 

weights. The results for most of the tested models showed predicted accuracies of 

over 90% (Kim et al. 2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; 

Freedman 2009). This series of studies on mining subsidence evidenced a maximum 

progress, yet also revealed evident drawbacks. The tested models involved the global 

approach on subsidence prediction, as the spatial heterogeneity of factors was not yet 

considered (Shang et al 2011; Kim et al 2006; Kim et al 2009; Oh and Lee 2010; Oh 

et al 2011). Moreover, the dependent variable of subsidence was regarded initially as a 

dichotomous or categorical one (presence/absence). In fact, subsidence is a numerical 

variable; therefore, the modeling process by a dichotomous variable as a subsidence 

may tend to cause a coarser prediction with much less detailed information (Kim et al. 

2006; Kim et al. 2009; Oh and Lee 2010; Oh et al. 2011; Freedman 2009). 

1.3. Research questions 

According to the drawbacks of recent techniques and methods on subsidence, as 

discussed in the literature review chapter, KKF and GWR will be selected as the two 
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main methods of this research to process the Louisiana subsidence data. Therefore, 

research questions are proposed as follows: 

In this research, GPS subsidence data in the coastal area of Louisiana were 

collected and processed by KKF, rather than benchmark subsidence data collected to 

interpolate in the former research (Zou et al. 2016; Kent and Dokka 2012). Then, 

further work will serve to validate the KKF raster results. 

1. Do the results processed by KKF validly reflect the real spatio-temporal 

distribution of subsidence patterns in the study site? 

In the modeling process, multiple factors that may cause subsidence were 

collected, and the GWR model and the Regression-Kriging model were selected to 

process these kinds of data (Pebesma 2006). 

2. Do the GWR results reflect the spatial heterogeneity of Louisiana subsidence? 

3. Can the Regression-Kriging results accurately predict the spatial pattern of 

Louisiana subsidence? 

1.4. Research significance 

The KKF method may be used to process GPS subsidence data for the long term 

in Louisiana to overcome the flaw of low point density, thereby accurately 

interpolating a large area of subsidence; KKF, as a combination of the Kalman filter 

and Kriging interpolation, has features of both (Mardia et al. 1998; Lu, C. et al. 2012). 

Therefore, it may be considered more advantageous to interpolate and predict 

subsidence accurately, due to the optimal prediction with time for the Kalman filter 

(Mardia et al. 1998; Kalman 1960; Zhang 2008). Results by KKF may show the 



15 
 

spatio-temporal subsidence pattern which is varied each year, rather than the spatial 

pattern of subsidence which is not varied each year in the former benchmark 

subsidence research, because GPS subsidence data can be collected every year while 

benchmark subsidence data can only be collected every many years (Zou et al. 2016; 

Kent and Dokka 2012; Mardia et al. 1998). In addition, multiple kinds of subsidence 

factors may be modeled and analyzed using GIS to map the spatial heterogeneity for 

each kind of subsidence factor. Mapping the regression coefficients should serve as 

the theoretical foundation for government and administrative agencies to make 

location-based decisions for mitigating subsidence in Louisiana. Additionally, the 

spatial pattern of Louisiana subsidence can be modeled by Regression-Kriging based 

on observations from GPS stations in the study site and multiple contributing factors 

to subsidence (Pebesma 2006; Hengl et al. 2004). Thus, spatial prediction for 

Louisiana subsidence may be made accurately from contributing factors by 

Regression-Kriging; to date, such spatial points-to-area prediction based on OLS 

regression has not yet been accomplished in existing subsidence research. 
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Chapter 2 Research Methods 
 

2.1. Research workflow 

Based on the above proposed research questions, added to the research methods 

by Mardia et al. in 1998 and Fotheringham et al. in 2002, and strengthened by the 

characteristics of collected data, permit the methods used in this research to be 

summarized into a research workflow as follows (Mardia et al. 1998; Fotheringham et 

al. 2002): 

Data collection and preprocessing 

↓ 
KKF processing of GPS subsidence data. 

↓ 
Validation of results 

↓ 

Modeling of contributing factors 

↓ 

Visualization of modeling results, accuracy evaluation, results 

analysis, and comparisons 

Figure 2. Research workflow 
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2.2. Data collection 

The entire study site has been confined within the geographic boundaries of the 

State of Louisiana, USA. The data collection work was comprised of the following 

two parts: GPS data collection and data collection for contributing factors. 

2.2.1. GPS data collection 

For the GPS data collection on subsidence, an ftp server from National Geodetic 

Survey (NGS) websites is available online to download all sites of GPS data required 

since 1994 for this research. The corresponding link is shown as follows: 

ftp://www.ngs.noaa.gov/cors/rinex/ 

From this link and NGS websites, findings indicate that 18 GPS observation sites 

representing an entire CORS system were installed in Louisiana. The distribution map 

of all GPS sites in the study area may be shown as follows: 

 

 

Figure 3. Distribution map for all GPS stations, green points: GPS stations 
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The 18 stations of GPS data for the last five years to the present were 

downloaded by this NGS link. The original format for this dataset is kept as a 

compressed Rinex and is unavailable for direct use on a subsidence survey. As a result, 

this original set of downloaded data must be preprocessed by geodetic software, such 

as GIPSY by NASA Jet Propulsion Laboratory (JPL), to be converted to a format with 

longitude, latitude, and height of sites. Changes in height were used for quantifying 

the subsidence for GPS sites; by using this GIPSY software by NASA JPL, the height 

accuracy for all GPS sites may be controlled within 2mm. 

2.2.2. Data collection for contributing factors 

According to previous research on subsidence factors in Louisiana, multiple data, 

such as a) groundwater, b) oil, c) natural gas, d) sediment, and e) faulting, were 

selected for collection (Abdollahzadeh et al. 2013).  

For groundwater collection, the data on groundwater levels for observation wells 

in Louisiana may be collected and recorded online from the USGS website (Extracted 

from: http://groundwaterwatch.usgs.gov/). Additionally, for data collection, the 

Louisiana Department of Natural Resources provides a website to collect desired data 

in GIS format, such as oil, gas, and sediment (Abdollahzadeh et al. 2013). This 

website is as follows: http://sonris.com. Further, the distribution map of the data for 

oil and gas in Louisiana parish units are shown on the following map; maps for other 

data, such as sediment, were obtained as well. 
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Figure 4. Distribution of oil and gas wells in Louisiana (Extracted 

from:http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateI

D=181) 

 

Figure 5. Distribution of sediment measurement sites in Louisiana (Extracted 

from:http://sonris-www.dnr.state.la.us/gis/agsweb/IE/JSViewer/index.html?TemplateI

D=181) 
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For the data collection on anthropogenic mass loading, the data after image 

classification from the National Land Cover Database (NLCD) website were used to 

collect the data of buildings cover in Louisiana, thus allowing researchers to extract 

useful classified information on the mass loading of buildings in the study site 

(Abdollahzadeh et al. 2013; Kent and Dokka 2012).  

2.3. Main methods 

As discussed in the research workflow above, the main methods used in this 

research had three parts as follows: 

2.3.1. Kriged Kalman Filter 

The Kalman filter, proposed by Kalman in 1960, may provide a feasible process 

for dynamically changing data in a time series by calculating each state of the optimal 

estimation for the data (Kalman 1960; Zhang 2008; Mardia et al. 1998). As a 

recursive process to make estimations in general state models, the Kalman filter 

minimizes the converged errors the data contains (Kalman 1960; Mardia et al. 1998; 

Zhang 2008). 

Conversely, the Kriging interpolation method from geo-statistics may be used for 

estimating a large area of spatial data from some spatially correlated scatter points 

nearby, thus providing a possible means to predict data in a spatial domain (Mardia et 

al. 1998; Zhang 2008; Olea 1999). 

Based on the respective characteristics for two such methods above, a 

combination of the Kalman filter and Kriging interpolation may be possible for data 

prediction in a spatio-temporal domain. KKF has proven to be an applicable model to 



21 
 

process spatio-temporal data (Mardia et al. 1998; Kalma 1960; Zhang 2008; Olea 

1999). 

The fundamental model of KKF: 

First, consider the state space model from the Kalman filter as follows (Mardia et 

al. 1998; Kalman 1960; Zhang 2008): 

x(t) = 𝒉𝑻α(t) + ε(t) 

α(t) = Pα(t - 1) + Kη(t) 

The upper equation is the observation equation, and the lower one is the system 

equation; moreover, x(t) is the observation variable at state t, h is the parameter 

p-vector, α(t) is the state p-vector, ε(t) is the scalar observation error, P : p p is 

the transition matrix, K : p x d is the innovation coefficient matrix, andη(t) is the 

innovation (or system error or state noise) d-vector (Mardia et al. 1998; Kalman 

1960). 

Then, in a spatio-temporal domain, the observation variable x(t) should be 

extended to x(s, t) for spatio-temporal data (Mardia et al. 1998).  

In addition, x(s, t) can be decomposed and expressed as follows (Mardia et al. 

1998): 

x(s, t) = ｕ(s, t) + ε(s, t) 

ｕ( s , t ) = ( s ) ( t )+ ( s ) ( t ) + . . . + (s) ( t ) = 

α( t ) 
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Thus, the observation equation of KKF can be shown as follows (Mardia et al. 

1998; Kalman 1960): 

x(s, t) = ( s ) ( t )+ ( s ) ( t ) + . . . + (s) ( t ) + ε(s, t) = 

α( t ) + ε(s, t) 

The system equation of KKF can also be same as that of the classic Kalman filter 

as follows (Mardia et al. 1960; Kalman 1960): 

α(t) = Pα(t - 1) + Kη(t) 

Moreover, in the observation equation of KKF, the error term ε(s, t) should be 

spatially correlated (Mardia et al. 1998) and shown as follows (Mardia et al. 1998): 

cov(ε(s, t), ε(s', t' ) = 0 for t  t' all s, s' 

Applying these two key equations above, the KKF observation equation and the 

KKF system equation may be regarded as the general format of the KKF model 

(Mardia et al. 1998). As applications to process spatio-temporal data, the principle 

fields should be calculated by the Kriging predictor, in tandem with the transition 

matrix and other parameters also specified by the expectation–maximization (EM) 

algorithm (Mardia et al. 1998; Dempster et al. 1977; Olea 1999). 

2.3.2. GWR modeling 

GWR is proposed to solve problems on spatial heterogeneity in geo-statistics, 

using a linear multiple regression model with varied coefficients in different 

geographic areas (Fotheringham et al. 2002; Shang et al. 2011). By calculating varied 

coefficients as respective weights for predictors, GWR can also be an effective tool to 
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show relationships between the dependent variable and predictors, by showing which 

factor contributes most to the dependent variable in a special geographic area 

(Fotheringham et al. 2002; Shang et al. 2011). 

The fundamental model of GWR: 

As a linear multiple regression model, GWR may be shown as follows (Shang et 

al. 2011; Fotheringham et al. 2002): 

y(g) = (g)+ (g) + (g) +…+ (g) + ε 

The varied coefficients β may be calculated in the following way (Fotheringham 

et al. 2002; Shang et al. 2011): 

β=  

W(g) is the Gaussian weight function (Fotheringham et al. 2002; Shang et al. 

2011) (Extracted from: http://www.cs.cmu.edu/~schneide/tut5/node12.html).  

GWR modeling on subsidence 

Multiple kinds of collected data displaying useful attribute information 

contribute to the subsidence in Louisiana, such as groundwater, oil, natural gas, 

sediment, faulting, and anthropogenic mass loading. These data should be totally 

quantified to numeric data as important inputs to predictors in the GWR model, such 

as the groundwater level of each aquifer in a certain site (Fotheringham et al. 2002; 

Shang et al. 2011; Abdollahzadeh et al. 2013). After GWR modeling, the varied 

coefficients as GWR results should be identified in a census tract unit (Fotheringham 

et al. 2002; Shang et al. 2011). 
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The calculating process of GWR may be made by ArcGIS software, and the 

results on varied coefficients may be visualized as raster files (Fotheringham et al. 

2002; Shang et al. 2011). 

To analyze the results, GWR results may be compared with OLS results with 

respect to prediction accuracy on subsidence to show the advantage of GWR 

(Fotheringham et al. 2002; Shang et al. 2011; Hayashi and Fumio 2000). Thus, after 

the GWR modeling process, researchers could identify the possible distribution of 

major factors on fast subsidence rates for each census tract in the Louisiana study site, 

which in turn could be used for making special and correct treatments on subsidence 

in certain areas (Shang et al. 2011). 

2.3.3 Regression-Kriging 

The GWR model may be used to show the spatial heterogeneity of factors, which 

contributes to subsidence in Louisiana (Fotheringham et al. 2002; Shang et al. 2011). 

Unlike GWR, the regression-kriging model may be used based on OLS regression and 

kriging interpolation of the regression residuals to predict the spatial pattern of 

Louisiana subsidence (Pebesma 2006; Hengl et al. 2004). 

OLS regression model 

In modeling any dataset with no clear spatial autocorrelation or spatial 

dependency with the samples, the OLS model is used to show the relationship 

between the dependent variable and the independent variables (Wang 2006; Wang et 

al. 2014; Hayashi and Fumio 2000; Knegt et al. 2010).  

The fundamental model is as follows: 
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y = Xβ+ ε 

y is the dependent variable vector, and X is the independent variables vector, β

is the regression coefficients vector, and εis the errors vector (Hayashi and Fumio 

2000; Wang 2006; Wang et al. 2014). Based on OLS regression, the dependent 

variable y at one spatial position s can be predicted in the fundamental 

Regression-Kriging model as follows (Hengl et al. 2004): 

y(s) = m(s) + e(s) 

m(s) is the drift term by OLS regression, and e(s) are the interpolated value of 

OLS regression residuals by Kriging (Hengl et al. 2004). 

Thus, the dependent variable y(s) can also be calculated as follows: 

y(s) = X β +  

β is the vector for the regression coefficient by OLS, and  are the kriging 

weights (Wang 2006; Hengl et al. 2004). 

In this dissertation, the subsidence rates observed from GPS stations in the study 

site will be collected as the independent variable y, and likewise, the contributing 

factors to subsidence will be collected and quantified as the dependent variable X. 

Then, by OLS, the regression coefficient vector β and the residuals may be generated. 

Based on these generated residuals, the interpolated raster may be made by 

Kriging, and the spatial pattern of the subsidence rate may be predicted by summing 

the OLS drift, together with the interpolated value from this raster (Hengl et al. 2004). 

Chapter 3 Spatio-temporal Pattern Visualizations of Subsidence 
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3.1. The general equations for KKF and the main processing steps 

As the research workflow shows, the KKF processing for GPS subsidence data 

may be operated after the data collection. The research methods chapter also displays 

the fundamental model of KKF as follows: 

x(s, t) = ( s ) ( t )+ ( s ) ( t ) + . . . + (s) ( t ) + ε(s, t) 

= α( t ) + ε(s, t) 

α(t) = Pα(t - 1) + Kη(t) 

The upper equation above is the observation equation for KKF, and the lower 

equation is the state equation (Kalman 1960; Mardia et al. 1998), where x(s, t) is the 

observation variable for spatio-temporal data, h is the parameter p-vector,α(t) is the 

state p-vector,ε(t) is the scalar observation error, P : p p is the transition matrix, K : 

p x d is the innovation coefficient matrix, andη(t) is the innovation (or system error 

or state noise) d-vector (Mardia et al. 1998; Kalman 1960). 

In the application of KKF processing, the study should specify all essential and 

intermediate parameters, such as the GPS subsidence data processing (Mardia et al. 

1998). Mardia et al.’s findings showed the specification method for the KKF model 

parameters. This method can help to determine which essential variables or 

parameters should be summarized. These essential parameters are the covariance 

matrix, the bending energy matrix B, the principal fields, the parameter matrix h, and 

the transition matrix P (Mardia et al. 1998; Kalman 1960). 

Additionally, based on these specified parameters, the main steps for KKF 

processing can be summarized as follows (Mardia et al. 1998; Kalman 1960): 
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Step 1: Based on the characteristics of the collected data, construct a variogram 

and fit a model to the variogram (Mardia et al. 1998; Olea and Ricardo 1991). 

Step 2: Use the variogram model to generate the covariance matrix for this set of 

data (Mardia et al. 1998; Olea and Ricardo 1991). 

Step 3: Use the covariance matrix to calculate the bending energy matrix B 

(Mardia et al. 1998). 

Step 4: Use the B matrix from the last step to generate the principal fields 

(Mardia et al. 1998). 

Step 5: Use the principal fields from the last step to calculate the parameter 

matrix h from the Kalman filter (Mardia et al. 1998). 

Step 6: Use the Kalman filter and EM algorithm to generate the transition matrix 

P, as well as the spatio-temporal fieldα(s, t) (Mardia et al. 1998; Dempster et al. 

1977; Shumway and Stoffer 1982; Olea 1999). 

Step 7: Use the spatio-temporal fieldα(s, t) from the last step to make an 

interpolation in a time series (Mardia et al. 1998; Dempster et al. 1977; Shumway and 

Stoffer 1982; Olea 1999). 

Step 8: Use the interpolation result to make a raster, showing the distribution of 

subsidence rates of the study site (Mardia et al. 1998). 

Before processing the collected data by GPS observation, this set of original data 

should be preprocessed by geodetic software, such as NASA’s GIPSY. The final data 

format by preprocessing will show the longitude, latitude, and height for the GPS 

station, thus allowing the study to use the change in heights to calculate the 
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subsidence rate. In this research, the preprocessing work by GIPSY (version 6.2) was 

done by Mr. Zhengsong Chen from the Hubei Earthquake Administration in China. 

The GPS subsidence data may be processed by KKF to show the distribution of 

subsidence rates in the study site. Thus, the following discussion will focus on how to 

generate the variogram model for subsidence research and will additionally show the 

final processing results by KKF (Mardia et al. 1998; Olea and Ricardo 1991). 

3.2. Variogram 

The semi-variogram (or variogram) modeling is essential for KKF processing 

(Mardia et al. 1998; Olea and Ricardo 1991; Olea 1999). The calculation formula for 

the semi-variogram (or variogram) is as follows: 

γ(h) = ∑(  

The variable h is the distance between each pair of points in the study site, while 

N is the total number of point pairs (Olea and Ricardo 1991). 

GPS data were collected from 18 coastal stations in Louisiana, using a particular 

set of data to calculate the average subsidence rate each year from 2011 to 2013. The 

distribution map of coastal stations in the study site is shown in Figure 6. 
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Figure 6.  Distribution of 18 GPS stations in the study site, green points: GPS 

stations 

Next, with the whole set of original data preprocessed through GIPSY, the 

calculation of the average yearly subsidence rate for each GPS station in the study site 

can be initiated. The preprocessing results found by GIPSY show the daily height 

value in one year for each GPS station, permitting the use of the total height values 

for one GPS station in one year; these data generate a straight line by OLS, and the 

slope for this straight line was used to calculate the yearly subsidence rate for the GPS 

station (Shinkle and Dokka 2004; Hayashi and Fumio 2000). Thus, we can summarize 

the calculation formula for the subsidence rate as follows: 

Each year’s subsidence rate = the slope * one year 

(Shinkle and Dokka 2004; Hayashi and Fumio 2000) 

Based on this calculation formula and the research methods by Shinkle and 

Dokka in 2004 as well as Hayashi and Fumio in 2000, I calculated each year’s 

subsidence rate from 2011 to 2013 for all the GPS stations as follows (Shinkle and 

Dokka 2004; Hayashi and Fumio 2000): 
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Table 1. Each year’s subsidence rate (2011–2013) for all the GPS stations in the study 

site, marked by Rate 2011, Rate 2012, and Rate 2013 (Unit: m/year) 

Site Longitude Latitude Slope 2011 Slope 2012 Slope 2013 Rate 2011 Rate 2012 Rate 2013 

1LSU -91.1803 30.40742 0.000002 -0.00005 -0.00003 0.00073 -0.0183 -0.01095 

AWES -90.983 30.10027 0.000005 -0.00002 -0.00003 0.001825 -0.00732 -0.01095 

BVHS -89.4064 29.33681 -0.000007 -0.000004 -0.000002 -0.002555 -0.001464 -0.00073 

CAMR -93.3251 29.7985 0.00009 0.000008 -0.000004 0.03285 0.002928 -0.00146 

COVG -90.0955 30.47591 0.000002 0.0000007 0.000003 0.00073 0.0002562 0.001095 

DQCY -93.4453 30.45118 0.00012 0.00002 -0.00002 0.0438 0.00732 -0.0073 

DSTR -90.3822 29.96456 0.000001 -0.00001 -0.000005 0.000365 -0.00366 -0.001825 

ENG5 -89.9417 29.87896 -0.000001 -0.000009 0.000009 -0.000365 -0.003294 0.003285 

ENG6 -89.9421 29.87918 0.0000003 -0.000008 -0.00001 0.0001095 -0.002928 -0.00365 

FSHS -91.5022 29.80531 -0.000004 0.000001 -0.00001 -0.00146 0.000366 -0.00365 

GRIS -89.9573 29.26553 -0.00002 -0.00002 0.00002 -0.0073 -0.00732 0.0073 

GVMS -90.9036 30.31439 0.000003 -0.000006 -0.000002 0.001095 -0.002196 -0.00073 

HAMM -90.4676 30.51308 0.00017 0.000005 0.000002 0.06205 0.00183 0.00073 

LMCN -90.6613 29.25498 -0.00002 -0.00002 0.00004 -0.0073 -0.00732 0.0146 

LWES -90.3494 29.90037 -0.00002 0.000002 0.00001 -0.0073 0.000732 0.00365 

MCNE -93.2177 30.18057 0.0000003 0.000007 -0.00002 0.0001095 0.002562 -0.0073 

THHR -92.0806 30.52935 0.00011 0.000009 0.0000002 0.04015 0.003294 0.000073 

TONY -92.0451 30.22138 0.000006 0.00002 0.000009 0.00219 0.00732 0.003285 

 

The calculations of subsidence rates for all the GPS stations are as shown in 

Figure 7, 8, 9. 
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problems. Based on the GWR results, the regionalization work classified the entire 

study site into six sub-regions, which in turn represent six different combinations for 

contributing subsidence factors. Thus, the regionalization results show that although 

the combination of contributing factors for each sub-region may be unique, a policy 

can also become unique to deal with an adverse subsidence for each sub-region. This 

process would permit location-based policies. 

6.2. Final summary and future work 

The land subsidence problem has received much attention in Louisiana. For this 

research, GPS data mapped the adverse situation of land subsidence, particularly in 

coastal Louisiana. Based on the data analyses estimation, this study suggests that in 

the near future, the State of Louisiana will experience substantial land loss caused by 

land subsidence. Thus, the people of Louisiana should focus keenly on this subsidence 

study, taking positive actions to prevent serious subsidence in the coastal area. 

After the subsidence problem was presented, the literature review revealed the 

recent research progress on subsidence done by researchers. A major section of the 

literature review involves subsidence observation and prediction. This section 

presents three kinds of common observation techniques. These techniques consisting 

of leveling, GPS, and InSAR were previously discussed with respect to the different 

advantages and flaws (Lu, C. et al. 2012). Additionally, combinations of these 

techniques focused on improving the observation levels for subsidence. The KKF 

model has also been introduced as a new method to process subsidence data (Mardia 

et al. 1998). 
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Another section of the literature review involved modeling the factors 

contributing to subsidence. The findings indicated that the contributing factors 

presented by prior research were the groundwater level, oil and gas pumping, 

sediment compaction, faulting, and mass loading (Abdollahzadeh et al. 2013). 

Previous modeling methods on subsidence factors were discussed; most of the 

modeling processes either lacked local views or drew a conclusion for spatial 

heterogeneity (Fotheringham et al. 2002; Shang et al. 2011). 

Based on the literature review, research questions and a research workflow were 

proposed. The main research workflow involves two important research techniques of 

KKF processing and factor modeling, such as Regression-Kriging and GWR. Thus, in 

the following chapters, these two techniques and their subsequent applications on 

subsidence data were discussed, together with instructions on how to use these 

techniques to process Louisiana’s subsidence data. 

Chapter 3 shows that KKF can be a valid method to interpolate subsidence rates 

in coastal Louisiana by means of incorporating time series GPS data in a Kriging 

interpolation (Mardia et al. 1998; Kalman 1960). 

Regression-Kriging, used in Chapter 4, was based on OLS regression to predict 

the spatial pattern for subsidence rates in 2013. This study modeled contributing 

factors, thus providing a subsidence prediction work and thereby achieving acceptable 

prediction results. 

In Chapter 5, the modeling results showed that GWR can be advantageous for 

factor modeling. As a result, the regionalization work based on these GWR results 
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could be instrumental in forming location-based policies toward mitigating adverse 

subsidence. 

Although this study has produced new progress on subsidence research in coastal 

Louisiana, there are also flaws or defects in the data and models that could be 

improved in future research. The first instance is found in the collection of oil and gas 

data for factor modeling, as only the well data on the distribution online could be 

collected. In the future, should the production data for each well be collected, the 

modeling results may then reflect an explainable coefficient for the oil and gas 

pumping factor, showing a more significant level. 

The second instance is that the faulting data were not considered in the factor 

modeling process due to the fact that spatial heterogeneity for faulting data could not 

be found in the study site; thus, future work may focus on how to quantify the faulting 

data with other knowledge. This improvement could produce more contributing 

factors for the factor modeling process. 

The third instance is that the building mass loading data were approximated 

using the land cover data from the National Land Cover Database. However, the land 

cover data only indicate whether the land is highly constructed and the accuracy is 

questionable. Thus, future work may choose to focus on how to more accurately 

quantify the loading, based on better sources of remote sensing images. 

The fourth instance is that the KKF results were only checked by the Bayou 

Corne Sinkhole knowledge for a consistency to validate these results. The consistency 

was checked in a small area around Bayou Corne, while the KKF results were not 
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validated in the whole study site due to the lack of available subsidence data from the 

other kinds of observations. Thus, for future work, the InSAR data in the same study 

site can be collected to show the subsidence pattern, and the validation of the whole 

study site can be made if this subsidence pattern by InSAR is available. 

The fifth instance is that only six GPS stations as the standard points were used 

to calculate the prediction accuracy using Regression-Kriging. Thus, more GPS 

stations as standard points can be used to calculate the prediction accuracy in future 

work, and this work may show higher accuracy. 
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