A sociolinguistic perspective toward hiatus resolution in Mexico City Spanish

Matthew Anthony Vuskovich
Louisiana State University and Agricultural and Mechanical College, mvusko1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Arts and Humanities Commons

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_theses/4259

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
A SOCIOLINGUISTIC PERSPECTIVE TOWARD HIATUS RESOLUTION IN MEXICO CITY SPANISH

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
In partial fulfillment of the
Requirements for the degree of
Master of Arts

in

The Department of Foreign Languages and Literatures

by

Matthew Anthony Vuskovich
B.A. Southeastern Louisiana University, 1997
Master of Arts Louisiana State University, 2004
May 2006
ACKNOWLEDGMENTS

I would like to thank Dr. Ramírez for directing this thesis and for sharing a great deal of encouragement and constructive criticism. I would also like to thank Dr. Parker, Dr. Arbujas and Dr. Buckingham for contributing and agreeing to be part of the committee. Special thanks also go out to Dr. Hegarty whose enthusiasm and expertise has served as a great inspiration.

I must also thank Claudia Ceja Pérez, my gatekeeper and fiancée, whose help with this project was immense. I also send a warm thanks to all of the participants who agreed to donate their valuable time in being interviewed.
TABLE OF CONTENTS

ACKNOWLEDGMENTS...ii
LIST OF TABLES..v
LIST OF FIGURES..vi
ABSTRACT..vii

CHAPTER 1. INTRODUCTION..1
 1.1 The Spanish Vowel System..2
 1.2 Sonority Ranking..2
 1.3 Spanish Syllable Structure...3
 1.4 High and Non-high Glides...5
 1.5 Word Boundary Hiatus...7
 1.6 Sonority Ranking and Types of Hiatus..8
 1.7 Hiatus Resolution in Mexico City Spanish...9
 1.7.1 High Glide Formation..10
 1.7.2 Non-high Glide Formation...11
 1.7.3 Vowel Elision...11
 1.7.4 Heterosyllabification..12

CHAPTER 2. REVIEW OF THE LITERATURE...13
 2.1 Studies on Hiatus Resolution in Other Languages...13
 2.2 Studies on Hiatus Resolution in Mexico City Spanish..14
 2.2.1 Earlier Studies..15
 2.2.2 More Recent Studies..17

CHAPTER 3. METHODS AND PROCEDURES...20
 3.1. Research Questions...20
 3.2 Interviews...20
 3.3 Informants..21
 3.4 Linguistic Contexts..23

CHAPTER 4. FINDINGS..24
 4.1 Differences in Hiatus Resolution among Males...24
 4.1.1 General Data from the Male Group..27
 4.2 Analysis by Participant...29
 4.2.1 Male Group 1 (age 16-32)...30
 4.2.1.1 Male Informant 1 of Group 1...30
 4.2.1.2 Male Informant 2 of Group 1...31
 4.2.1.3 Male Informant 3 of Group 1...32
 4.2.2 Male Group 2 (age 33-54)...33
 4.2.2.1 Informant 1 of Male Group 2...34
 4.2.2.2 Informant 2 of Male Group 2...36
4.2.2.3 Informant 3 of Male Group 2 ...37
4.2.3 Male Group 3 (age 55 +) ...39
 4.2.3.1 Informant 1 of Male Group 3 ..39
 4.2.3.2 Informant 2 of Male Group 3 ..40
 4.2.3.3 Informant 3 of Male Group 3 ..42
4.2.4 Summary of Male Group ...44
4.3 Differences in Hiatus Resolution among Females45
 4.3.1 General Data for the Female Group ..45
4.4 Analysis by Participant ...50
 4.4.1 F1 - Female Group 1 (age 16-32) ...50
 4.4.1.1 Participant 1 of Female Group 1 ..51
 4.4.1.2 Participant 2 of Female Group 1 ..52
 4.4.1.3 Participant 3 of Female Group 1 ..53
 4.4.2 Female Group 2 (age 33-54) ...54
 4.4.2.1 Participant 1 of Female Group 2 ..55
 4.4.2.2 Participant 2 of Female Group 2 ..56
 4.4.2.3 Participant 3 of Female Group 2 ..58
 4.4.3 Female Group 3 (age 54+) ...59
 4.4.3.1 Participant 1 of Female Group 3 ..60
 4.4.3.2 Participant 2 of Female Group 3 ..61
 4.4.3.3 Participant 3 of Female Group 3 ..62
 4.4.4 Summary of Female Group ..63

CHAPTER 5. DISCUSSION OF FINDINGS ...65
 5.1 Research Question I: What Are the Principal Types of Hiatus Resolution in Mexico City Spanish and in What Order of Importance Do They Occur? ...65
 5.2 Research Question II. Do the Sociolinguistic Variables of Age and Gender Affect the Types of Hiatus Resolution in Mexico City Spanish? ...67
 5.2.1 Gender Differences ...67
 5.2.2 Age Differences ...68
 5.3 Conclusion ...68
 5.4 Limitations of the Study ...69

BIBLIOGRAPHY ..70

APPENDIX
 A. QUESTIONNAIRE: CUESTIONARIO LINGÜÍSTICO72
 B. SAMPLE TRANSCRIPT FOR INFORMANT 1 OF FEMALE GROUP 173
 C. LINGUISTIC CONTEXTS AND TYPE OF HIATUS RESOLUTION PER INDIVIDUAL PARTICIPANT ...83

VITA ...87
LIST OF TABLES

1.1 Characteristics of the Spanish vowel system..2

3.1 Percentage of Mexico City population by age and gender...22

3.2 Summary of male and female informant variables..22

3.3 Linguistic contexts..23

4.1 Differences in hiatus resolution among males...25

4.2 Differences in linguistic contexts of hiatus resolution among males..........................26

4.3 Frequency and type of hiatus resolution for /o + e/..27

4.4 Frequency and type of hiatus resolution for /e + a/..28

4.5 Frequency and type of hiatus resolution for /a + e/..28

4.6 Frequency and type of hiatus resolution for /o + a/..29

4.7 Differences in hiatus resolution among females...46

4.8 Differences in linguistic contexts of hiatus resolution among females.......................47

4.9 Frequency and type of hiatus resolution for /o + e/..48

4.10 Frequency and type of hiatus resolution for /e + a/..49

4.11 Frequency and type of hiatus resolution for /a + e/..49

4.12 Frequency and type of hiatus resolution for /o + a/..50
LIST OF FIGURES

1.1 Top tier of sonority ranking for Spanish vowels ...3

1.2 The complete sonority scale adapted from Núñez and Morales-Front (1998: 181) ...3

1.3 Basic Spanish syllable structure ...4

1.4 Most common Spanish syllable sequences ...4

1.5 Examples of diphthongization ...5

1.6 Non-high glide formation of mid and low vowels ...6

1.7 Examples of word boundary hiatus ...7

1.8 Syllabic accommodation from V to CV ...8

1.9 Examples of rising sonority ..8

1.10 Examples of falling sonority ..9

1.11 Examples of sound plateau ...9

1.12 Examples of high glide formation ...10

1.13 Examples of non-high glide formation ...11

1.14 Examples of vowel elision ..12

2.1 Hiatus resolution in Matluck (1951) ...16

4.1 Abbreviations for types of hiatus resolution ..29

5.1 Feature geometry of Elision of V₁ [la.es.kwé.la] > [les.kwe.la] ...67

5.2 Feature geometry of Elision of V₂ [la.es.kwé.la] > [las.kwé.la] ...68
ABSTRACT

Vowels occurring adjacently across word boundaries form what is known as hiatus. In orthographic pronunciation, hiatus is defined by the brief pause between the two vowels as in yo – estoy and la – economía, where `-` represents a pause. However, since speakers of Spanish (or any other natural language) do not always pronounce orthographically when engaging in colloquial speech, the hiatus undergoes a variety of changes in order to accommodate certain phonological constraints. These changes are referred to as hiatus resolution and include vowel weakening, glide formation and vowel elision. As reported by the numerous studies of Spanish dialectology throughout the world, each dialect displays specific preferences for specific types of hiatus resolution. However, many of these investigations do not analyze the issue from a sociolinguistic viewpoint.

The aim of this study is to discover what types of hiatus resolution are present in Mexico City Spanish and what effect the variables of age and gender have on their usage. In order to engage in this process, the language of 18 participants from Mexico City was recorded and analyzed for hiatus resolution. The results were then quantified and organized into gender and age group.
CHAPTER 1. INTRODUCTION

As the world’s largest Spanish-speaking urban population, Mexico City possesses a rich linguistic tradition that has been studied formally since the mid-nineteenth century. As the most important cultural and economic center of Mexico, Mexico City stands as one of the major nuclei of linguistic evolution in the Spanish language. The present study focuses on one of the many phonological features of this dialect; word boundary hiatus resolution.

Vowels in Spanish are said to be standing in hiatus when they occur adjacently at word boundaries such as in *y[o e]stoy, per[o e]stá, l[a e]strella*. Hiatus resolution occurs when the hiatus pair undergoes some form of phonological transformation; *yo estoy* > *yo’stoy*, *pero está* > *pero’stá*, *la estrella* > *la’strella*. Depending on the dialect of Spanish and the sociolinguistic variables of the speakers, the changes that occur follow distinct patterns. For example, Harris (1970) states that Mexico City Spanish shortens the first vowel of the hiatus, *yo estoy* > *y[oē]stoy*, while Hutchinson (1974) and Reyes (1976) contend that the same pair in Chicano Spanish would transform the /o/ into /w/ as in *yo estoy* > *y[we]stoy* or *la otra* > *l[aw]tra*. However, these results do not answer important questions relating to the sociolinguistic characteristics of the speakers of the language.

The aim of the present study is to examine the types and patterns of word boundary hiatus resolution in Mexico City Spanish and the influence of the sociolinguistic variables of age and gender. The main research objective is to discover how these variables play a role in the different forms of hiatus resolution in the speech of 18 native speaker informants from Mexico City.

In order to understand the phonological processes involved, the following four sections in this introduction provide a description of the Spanish vowel system, sonority ranking, syllable structure and glide formation. The final 4 sections define word boundary hiatus and discuss the types of hiatus resolution found in Mexico City Spanish.
1.1 The Spanish Vowel System

The vowel system in Spanish is composed of the 5 basic phonemes: i, u, e, o, a. Each one of these items is individually distinguishable based on three fundamental features: 1) height, 2) horizontal position, and 3) lip roundness. Both 1) and 2) are characterized by the placement of the body of the tongue within the oral cavity. If the tongue is set high and pressed forward, it is in the high/front position and forming the /i/ sound. 3) Is characterized by the roundness of the lips. The only vowels in Spanish with a rounded feature are /u/ and /o/. The basic possible classifications for Spanish vowels are illustrated in Table 1.1 according to height, frontness, backness or roundness.

Table 1.1 Characteristics of the Spanish vowel system

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Height</th>
<th>Front/back/central round</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>High</td>
<td>Front</td>
<td>Mil, juicio, dije</td>
</tr>
<tr>
<td>/u/</td>
<td>High</td>
<td>Back</td>
<td>Ustedes, alguna, una</td>
</tr>
<tr>
<td>/e/</td>
<td>Mid</td>
<td>Front</td>
<td>Era, entro, elección</td>
</tr>
<tr>
<td>/o/</td>
<td>Mid</td>
<td>Back</td>
<td>Hoy, no, partido</td>
</tr>
<tr>
<td>/a/</td>
<td>Low</td>
<td>Central</td>
<td>Ahora, hasta, hay</td>
</tr>
</tbody>
</table>

In this study vowels will sometimes be referred to by their distinctive features. For example, “high back rounded” = /u/, “mid back rounded” = /o/, “low central” = /a/, “high front” = /i/ and “mid front” = /e/. It can be seen from the chart that Spanish does not have “low front”, “mid central”, “mid high” or “low back” vowels. The /a/, which at times acts as a back vowel, is considered here as ‘central’.

1.2 Sonority Ranking

If the body of the tongue is in a high position within the oral cavity, less acoustic space is available in the mouth to produce strong vibrant sounds. This is the case with /i/ and /u/ which are characteristically known as the ‘weak’ vowels. When the tongue is set in the middle of the oral cavity, greater sonority is produced. This is the case for /e/ and /o/ which are
considered ‘stronger’ than /i/ and /u/. The /a/, due to its low tongue position, has the greatest acoustic space and thus the greatest sonority potential of all the vowels. Figure 1.1 represents the top tier of what is known as the sonority scale; the universal sound measure that classifies the strongest and weakest sounds of all natural languages.

<table>
<thead>
<tr>
<th>Strongest</th>
<th>/a/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/e/, /o/</td>
</tr>
<tr>
<td></td>
<td>/i/, /u/</td>
</tr>
<tr>
<td></td>
<td>/ʁ/, /ʁʁ/, /l/</td>
</tr>
<tr>
<td></td>
<td>/m/, /n/, /ñ/</td>
</tr>
<tr>
<td>weakest</td>
<td>/p/, /t/, /k/, /b/, /d/, /g/, /ç/, /ʝ/, /s/, /ʃ/</td>
</tr>
<tr>
<td></td>
<td>/x/, /y/</td>
</tr>
</tbody>
</table>

Figure 1.1 Top tier of sonority ranking for Spanish vowels

A full version of the sonority scale is illustrated in Figure 1.2 which includes the entire sound inventory of Spanish.

<table>
<thead>
<tr>
<th>Strongest</th>
<th>/a/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/e/, /o/</td>
</tr>
<tr>
<td></td>
<td>/i/, /u/</td>
</tr>
<tr>
<td></td>
<td>/ʁ/, /ʁʁ/, /l/</td>
</tr>
<tr>
<td></td>
<td>/m/, /n/, /ñ/</td>
</tr>
<tr>
<td></td>
<td>/p/, /t/, /k/, /b/, /d/, /g/, /ç/, /ʝ/, /s/, /ʃ/</td>
</tr>
<tr>
<td></td>
<td>/x/, /y/</td>
</tr>
</tbody>
</table>

Figure 1.2 The complete sonority scale adapted from Núñez and Morales-Front (1998: 181)

All of the stops and fricatives, both voiced and voiceless, represent the less sonorant sounds, followed by nasals, liquids, high vowels (these include the high front and high back glides /j/ and /w/), mid vowels, and the low central vowel.

1.3 Spanish Syllable Structure

The syllable in Spanish, as in most natural languages, consists of 2 basic elements; the onset and the rime. The onset represents the first sound of a syllable if the syllable starts with a consonant. For example, /p/ is the onset of the single syllable word pan. The rime, which is
made up of two sub elements called the *nucleus* and the *coda*, is represented by -an in *pan*.

The syllable hierarchy is illustrated in Figure 1.3. The ‘σ’ symbol stands for ‘syllable’.

![Figure 1.3 Basic Spanish syllable structure](image)

A syllable is correctly formed when the sonority of the nucleus is greater than that of the onset and coda. In *pan*, the sonority scale indicates that /a/ is stronger than /p/ and /n/ because it possesses greater sonority than both of these phonemes.

Syllables are allowed to be void of an onset as occurs in the first syllable, *al*, in the word *al.pe*. Syllables are also allowed to be void of a coda such as the second syllable *pe* in *al.pe*. One element that cannot be excluded is the nucleus. There are no syllables in Spanish made up of a bare ‘C(consonant) + C sequence’. The C must always be accompanied by a V(vowel) nucleus. However, the Spanish language does not disallow the bare V syllable as is evidenced in *o.tro*, *a.to*, and *a.le.gri.a*.

Figure 1.4 illustrates the possible syllable sequences in Spanish from most common to least common as reported in Navarro Tomás (1968: 41).

1. CV: Ca-mi-no 58.45%
2. CVC: mar-tes 27.35%
3. V: y, o, a 5.07%
4. CCV: tri-ple 4.70%
5. VC: él, es 3.31%

Figure 1.4 Most common Spanish syllable sequences (Fig. cond.)
6. CCVC: plan, tres 1.12%
7. VCC: obs-tá-cu-lo 0.00%
8. CVCC: pers-pi-caz 0.00%
9. CCVCC: trans-cri-bir 0.00%
100.00%

In Figure 1.4 one can observe the overwhelming preference that the Spanish language has for CV construction with 58% of the words analyzed resulting in this structure. The second most common structure is CVC which together with CV makes up 85.5% of the most common syllable formations in Spanish. Navarro Tomás does mention, however, that the corpus analyzed for these frequency counts were taken from various sources of the written medium. There is still more investigation to be done on the frequency of syllable structure in the spoken medium.

1.4 High and Non-high Glides

In addition to the distinctive vowel features mentioned in Table 1.1, there is also a set of broader universal features that apply to the 5 Spanish vowels. The one that is of interest to this study is [+syllabic], which means that all vowels in Spanish possess an innate syllabic quality. When high vowels are paired with mid or low vowels it is common for them to lose this syllabic quality and become high glides. The high front vowel becomes /j/ and the high back becomes /w/. For example, in the word [ti.e.ne], the front high vowel loses its syllabic quality to the ‘stronger’ front mid vowel to become [tje.ne] with the disyllabic ti.e converts to the monosyllabic tje. This process is known as diphthongization. Some further examples are given in Figure 1.5.

1. [pru.é.βa] > [prwé.βa]
2. [du.én.de] > [dwén.de]

Figure 1.5 Examples of diphthongization (Fig. cond.)

1 However, the glottal stop would be an emphthetic onset (Roca & Johnson 1999: 597).
2 For a complete list of distinctive features the reader is refered to Cressey (1978: 40).
3. [ti.én.da] > [tjén.da]
4. [di.úr.no] > [djúr.no]

In example 4 in figure 1.5 there is modification when two high vowels form a vowel sequence. In these cases, it is normally the unstressed vowel of the pair that becomes a high glide.

Similar to high vowels, mid vowels can also lose their syllabic quality but do not typically become full high glides in certain dialects. Instead, these vowels often become non-high glides (Cressy 1978: 27), which means they form a diphthong with an adjacent mid/low vowel by becoming slightly shorter than the underlying pronunciation of the phoneme. In this study the non-high glides are represented by vowels written with the diacritic [˘] as illustrated in the examples provided in Figure 1.6.

1. [te.a.tro] > [těa.tro]
2. [li.ne.a] > [li.něa]
3. [to.a.ya] > [tôa.ya]
4. [pro.e.za] > [prôe.sa]

Figure 1.6 Non-high glide formation of mid and low vowels

As is mentioned above, mid vowels can convert to high glides, especially in fast colloquial speech defined as *andante* and *allegretto* by Harris (1969). An example of such a case is when the word *teatro* becomes [tjá.tro] and *proesa* becomes [prwé.sa].
1.5 Word Boundary Hiatus

Word boundary hiatus\(^3\) is defined as the occurrence of 2 adjacent vowels between words that are pronounced as two individual syllables. Figure 1.7 gives some examples of word boundary hiatus.

1. m[e a]legro
2. y[o e]stoy
3. d[e o]tros
4. dig[o a]sí

Figure 1.7 Examples of word boundary hiatus

In Spanish, as in many other languages, there are certain processes which take place between vowel pairs when speakers are engaged in fast colloquial speech. These processes are referred to as hiatus resolution and can be broken down to the following; 1) high glide formation, \(m[e a]legro > m[ja]legro\), 2) non-high glide formation, \(m[e a]legro > m[ēa]legro\) and 3) vowel elision, \(m[e a]legro > m[a]legro\).

The term resolution as related to vowels standing in hiatus asserts the hypothesis that two adjacent vowels pronounced as two separate syllables make up a melodically deficient syllable sequence. As was shown in Figure 1.4 of section 1.3, the ideal melodic syllable structure in Spanish is CV at 58.45% followed by CVC at 27.35%. In the example of \(me\) alegro the underlying four syllables \([me.a.lé.gro]\) is CV.V.CV.CCV. In this structure there are two undesirable syllabic formations, the bare V syllable forming a hiatus between itself and the word initial CV, and the final CCV which has the complex gr onset. If the Spanish syllable is attempting to achieve the more rhythmic CV formation, the hiatus resolves itself and accommodates the global structure by either becoming a high or non-high glide, or by eliding. Figure 1.8 illustrates this syllabic reorganization.
1.6 Sonority Ranking and Types of Hiatus

As demonstrated in section 1.2, the sounds of natural languages form syllables by following the rules of sonority. In order for a language to have rhythm and to distinguish itself from other languages, this form of tonal contrast is necessary. If this were not the case, all languages would consist of dull monotonic humming with little individual variation.

Sonority ranking plays a key role in understanding the three types of hiatus; 1) rising sonority, 2) falling sonority, and 3) sound plateau.

In rising sonority, the V_1 (first vowel of the hiatus) has less sonority than the V_2 (second vowel of the hiatus) as dictated by the sonority scale. Examples of these are given in Figure 1.9.

<table>
<thead>
<tr>
<th>Original form</th>
<th>Hiatus resolution</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV.CV.CV.CCV</td>
<td>C(G) ← V.CV.CV.CV</td>
<td>CV.CV.CV.CCV</td>
</tr>
<tr>
<td>Mē-a-le-gro</td>
<td>Mē ←a-le-gro</td>
<td>Mē.a-le-gro</td>
</tr>
</tbody>
</table>

Figure 1.8 Syllabic accommodation from V to CV (C=Consonant, V=Vowel, G=Glide)

Figure 1.9 Examples of rising sonority

a) es[e a]pecto
b) porqu[e a]unque
c) s[e a]rrima
d) m[e a]saltaron
e) fues[e a]si
f) dig[o a]sí
g) otr[o a]tentado
h) per[o a]sí
i) alg[o a]reglado
j) blanc[o a]político

In falling sonority, the V_2 is lower on the sonority scale than the V_1 as shown below in Figure 1.10.

1 When hiatus or hiatus resolution is mentioned in this study it is taken to be across word boundaries unless
In sound plateau, both vowels of the hiatus share the same level of sonority. The examples in Figure 1.11 illustrate mid/front and mid/back as well as identical vowel pairs.

1.7 Hiatus Resolution in Mexico City Spanish

Mexico City Spanish has three basic methods for resolving hiatus; 1) high glide formation, 2) non-high glide formation, and 3) vowel elision. In the following items, there may appear some forms of hiatus resolution that are no longer in use in Mexico City Spanish, but have been reported in previous analyses. The objective of this section is to demonstrate what forms are possible in this dialect, even though some may not occur in the data.
1.7.1 High Glide Formation

High glide formation occurs when the higher of the 2 vowels of the hiatus is raised to the point where it becomes a glide - /w/ or /j/. The vowels that can undergo high glide formation are /i, u, e/ and /o/. Because /a/ is the lowest vowel it cannot physically be raised to a high glide. V₁ normally undergoes glide formation in rising sonority /e + a/ > [ja] and V₂ in falling sonority /a + e/ > [aj]. Some examples are shown in figure 1.12.

Rising sonority

a) d[e a]yudar > d[ja]yudar
b) porqu[e a]unque > porqu[ja]unque
c) veint[e a]ños > veint[ja]ños
d) dig[o a]sí > dig[wa]sí
e) mate[o a]tenco > mate[wa]tenco
f) otr[o a]specto > otr[wa]specto

Falling sonority

a) v[a e]xistir > v[aj]xistir
b) miser[i a e]xtrema > miseri[aj]xtrema
c) un[a e]ncrucijada > un[aj]ncrucijada
d) otr[a o]pción > otr[aw]pción
(Fig. Cond.)
e) l[a o]posición > l[aw]posición
f) teng[a o]tro > teng[aw]tro

Sound Plateau

a) d[e o]tros > d[jo]tros
b) es[e o]dio > es[jo]dio
c) tiemp[o e]xtra > tiemp[we]xtra
d) per[o e]spero > per[we]spero
e) m[e e]xpico > m[je]xplico

Figure 1.12 Examples of high glide formation
1.7.2 Non-high Glide Formation

Non-high glide formation is the most common method of hiatus resolution in Mexico City Spanish. In the vowel pair, it is normally the V₁ that shortens across all rising, falling and sound plateau contexts. This shows a tendency for standard Mexican Spanish to preserve V₂ no matter what the level of sonority V₁ possesses. Examples are provided in figure 1.13.

Rising sonority

a) d[e a]yudar > d[ěa]yudar
b) porqu[e a]unque > porqu[ěa]unque
c) veint[e a]ños > veint[ěa]ños
d) dig[o a]si > dig[őa]si
e) mate[o a]tenco > mate[őa]tenco
f) otr[o a]specto > otr[őa]specto

Falling sonority

a) v[a e]xistir > v[ăe]xistir
b) miseri[a e]xtrema > miseri[ăe]xtrema
c) un[a e]ncrucijada > un[ăe]ncrucijada
d) otr[a o]pción > otr[ăo]pción
e) l[a o]posición > l[ăo]posición
f) teng[a o]tro > teng[ăo]tro

Sound Plateau

a) d[e o]tros > d[ěo]tros
b) es[e o]dio > es[ěo]dio
c) tiemp[o e]xtra > tiemp[őe]xtra
d) per[o e]spero > per[őe]spero

Figure 1.13 Examples of non-high formation

1.7.3 Vowel Elision

Mexico City Spanish vowel elision is commonly found in identical vowel pairs. However, Hutchinson (1974) and Reyes (1976)⁴, offer data on Chicano Spanish demonstrating

⁴ As appears in Clements and Keyser (1983)
vowel elision taking place both in identical vowel pairs and in falling sonority where /a/ is the V₁. Figure 1.14 supplies examples of both types.

Identical vowel pairs

a) s[e e]xpresa > s[e]xpresa
b) d[e e]legir > d[e]legir
c) qu[e e]s > qu[e]s
d) un[a a]venida > un[a]venida
e) l[a a]tención > l[a]tención
f) l[a a]cababa > l[a]cababa

Falling sonority

a) un[a e]xpótación > un[a]xpótación
b) v[a e]xistir > v[a]xistir
c) v[a e]star > v[a]star
d) l[a o]tra > l[o]tra
e) est[a o]rden > est[o]rden
f) l[a o]posición > l[o]posición

Figure 1.14 Examples of vowel elision

1.7.4 Heterosyllabification

When vowel hiatus undergoes no resolution at all the pair is considered to be in
heterosyllabification, meaning that each vowel is pronounced as the nucleus of its own syllable. Spanish vowel hiatus either remains *heterosyllabic* or undergo one of the above-mentioned forms of hiatus resolution. The term heterosyllabification is borrowed here from Casali (1997: 497) and will be employed throughout the present study to refer to hiatus pairs that undergo no change.

In the following section, some literature of analysis of hiatus resolution from languages other than Spanish is looked at, followed by some of the earliest to most recent investigations of hiatus resolution in the Spanish of Mexico City.
CHAPTER 2. REVIEW OF THE LITERATURE

In the first section of this chapter vowel hiatus resolution is observed in research from Casali (1997), Bisol (2003) and Trudgill (1990) where African languages, Brazilian Portuguese and British English are focused on to give some examples of hiatus resolution in languages besides Spanish. The second section deals exclusively with studies having to do with Mexico City Spanish, and is divided into two sub-sections; the earliest works 1896-1970, and some of the most recent, 1975-1990.

2.1 Studies on Hiatus Resolution in Other Languages

Casali (1997) lists the set of possible strategies utilized to resolve vocalic hiatus across word boundaries in several African tongues. It is mentioned in his article that most of the world’s languages do not “tolerate” vowel hiatus and thus find ways of getting rid of it in certain contexts. The main types of hiatus resolution mentioned are; heterosyllabification, epenthesis, diphthong formation, vowel elision, glide formation, and coalescence. The only types that have not been explained thus far in the present study are those of epenthesis and coalescence. An example of epenthesis in Casali is shown in the utterance /no-N-pisi-i/ > .nom.pisi.si.ti (‘I will sweep’ in Axininca, Payne 1981) where N (representing a nasal sonorant) is elided and then replaced by an epenthetic /m/. Coalescence takes place when the two vowels of the hiatus completely convert into a totally distinct sound. Some observations have seen coalescence occur in Mexico City Spanish in the greeting ¿qu[é o]nda? that often times can be heard as ¿qu[ã]nda? In informal register. Since these two forms of hiatus resolution are extremely rare in Spanish, they are not included in the present study. The example of coalescence illustrated by Casali is taken from the Anufô language via Adjekum et al.(1993); /fa-i/ > .feë where the disyllabic /a + e/ coalesces to the monosyllabic /ee/. In the remainder of his study Casali sets out to establish linguistic constraint rankings via an
Optimality Theoretic framework, the likes of which go beyond the relevance of the present investigation.

Bisol (2003) looks at the phenomena of hiatus resolution (referred to as Sandhi), in Brazilian Portuguese. Like Casali, Bisol was mainly interested in analyzing the hierarchy of linguistic constraints involved in the processes of degemination, elision and diphthongization. Degemination is simply the method of hiatus resolution employed at the boundaries of identical vowel sequences such as menin[a a]/máda > menin[a]/máda (‘beloved girl’). Bisol concludes that the main phrasal stress of an utterance in this dialect blocks the type of hiatus resolution that would have occurred in either V₁ or V₂. However, it does not stop the formation of high glide formation of the V₁. This basically states that if the hiatus pair is /a + a/ or /a + e/ and the vowel in the V₂ position receives main phrasal stress, the hiatus will not be resolved and remains heterosyllabic. However, in an example such as /e + a/ where V2 receives phrasal stress, there is no constraint to refrain /e/ from becoming a high glide resulting in /ja/.

In Trudgill (1990: 55-56), there is mention of the tendency for some dialects of the English language to use the epenthetic /r/ in what would fit into the category of resolution of vowel hiatus. The rule is when the first word ends in a low or mid back vowel and the second word begins in a vowel, the /r/ is inserted between V₁ and V₂. Some examples given in Trudgill are bra-r advert for bra advert, saw-rít for saw it, idea-r of for idea of, and Angela-r Evens for Angela Evens. Although this is not widespread in US, the author states that in English it is found in most dialects.

2.2 Studies on Hiatus Resolution in Mexico City Spanish

The following studies focus on the Spanish spoken in and around the Mexico City geographical region. While most of the investigations mentioned in the previous section were analytical in nature, the ones below were mostly conducted with an empirical outcome in
mind, and involved some form of data collection and quantitative as well as qualitative analysis.

2.2.1 Earlier Studies

In his account of the phonological features of Mexico City Spanish entitled La fonología del español en la ciudad de Méjico, Charles Carroll Marden (1896) focused on the speech of the lower classes from Mexico City, some of which most probably used Spanish as a second language. The data was gathered through the researcher’s personal observations during his time in the area. One of Marden’s principle objectives was to discover phonological variation that could be tracked to its peninsular Spanish origin. He was also interested in the elements of the native Náhuatl language that had made their way into the local Spanish dialect.

Marden focused on a variety of phonological features, among which hiatus resolution was included. His observations reported high glide formation of \(V_1 \) and \(V_2 \) as the most common types of resolution. Although it is mentioned that Marden’s informants were from the lower classes or “clases inferiores,” there is no quantified data that exemplifies quantity or variation between age and gender.

Some fifty-five years later, Joseph Matluck (1951) in La pronunciación en el español del Valle de México investigates the phonological variation in Mexico City Spanish and its surrounding areas. Unlike Marden, Matluck reveals more information about the participants of his research, the structure of which, not only included informants from the lower classes, but from the middle and upper classes as well. The participants were divided into generational groups and responded to a phonological questionnaire based on Navarro Tomás’ cuestionario lingüístico hispanoamericano. In Matluck’s work there is more contextual variation on the types of hiatus resolution, which he describes in six general categories shown in Figure 2.1.

5 Many migrants to Mexico City spoke Nahualtl as a first language.
1. /e/ becomes /j/ before [a, o] – de aquí > d[ja]qui, de otro > d[jo]tro
2. /e/ elides before [e] – de ellos > d[e]llos
3. /o/ becomes /w/ before [a, e] – no hay > n[wa]y, n[we]res
4. /o/ elides before [o] – no oigo > n[o]igo
5. /a/ elides before [a] – la amarro > l[a]marro
6. /a/ sometimes elides before [e] or consumes [e] – la envuelvo > l[e]nvuelvo, l[a]nvuelvo

Figure 2.1 Hiatus resolution in Matluck (1951)

In the case of 2.1.6, Matluck does not mention what variables determine elision, but does imply that there is no particular pattern, “La a se elide ante otra a: lamarró (la amarro); ante e y ante i inacentuada unas veces las absorbe y otras veces es absorbida” (Matluck 1951: 49). Examples such as la envuelvo can be seen as both [lambwélbo] or [lembwélbo].

The exact numbers of the occurrences of the types of hiatus resolution in Matluck and Marden are not reported and there is no indication if any one type as characteristic of one particular group of speakers. Furthermore, there is no reporting of non-high glide formation in any of the examples in either investigation. Given the antiquity of these studies, a valid technological means of analyzing informants’ speech may have played a role in the outcome. It is understood that the data was gathered through the researcher’s perception at the moment of interviewing.

In the article Sequences of Vowels in Spanish, James Harris (1970) sets forth types of hiatus resolution for three different linguistic contexts; 1) stressed V₂ e.g. la época 2) unstressed V₁ and V₂ e.g. paga Evita 3) stressed V₁ e.g. papá omite. In types one and two Harris maintains that V₁ undergoes diphthongization through non-high glide formation if the pairs are a combination of two distinct vowels, e.g. como Éva > cóm[őé]va, paga Evita >
pág[ãe]vita. In the third type, the hiatus remains heterosyllabic and there is no change in pronunciation, e.g. papá evita > pap[ã e]vita. Just as in Marden and Matluck, Harris does not reveal in depth statistical data. It is unclear if the analyzed speech was spontaneous or if informants had read from a prepared list. It is interesting to note, however, that before Harris, there was no reporting of the non-high glide as a major type of hiatus resolution in Mexico City Spanish.

In the tradition of generative phonology (Chomsky and Halle, 1968) Harris formulates a linear rule for the first two cases of hiatus resolution where non-high glide formation of /e/ and /o/ occur. This rule states that a non-stressed word final vowel loses its [+syllabic] quality and becomes a glide (non-high) when occurring in front of a vowel, stressed or unstressed. In Harris’ data, there are no instances of vowel elision of mid/low pairs, nor are identical vowel pairs discussed.

Lope Blanch (1972), in his analysis on vowel weakening in Mexico City Spanish, reports elision of /e/ when preceded by /o/ and /u/ as in no está > n[õ]stá, su esposo > s[õ]sposo. It is also mentioned that /e + e/ becomes the single phoneme /e/ in many cases, que está > qu[ẽ]stá, hay que empezar > hay qu[ẽ]mpezar. Blanch does not supply specific examples of all types of hiatus resolution in his study, but includes that of the weakened vowels in his data, 7.9% appear in the hiatus contexts, including in-word and word boundary varieties.

2.2.2 More Recent Studies

The first study to consider how sociolinguistic factors may affect phonological phenomena in Mexico City Spanish at the quantitative level is that of Perissinotto (1975), where gender, age difference and socioeconomic level serve as variables. Perissinotto analyzes /eə/, /oa/ and /oe/ in the in-word context to calculate how many pairs remain in hiatus and how many undergo resolution. However, Perissinotto makes no distinction between types thereof.
Examples such as [tjatro], [tatro], and [tēatro] are all listed under the single title “sineresis” (in-word hiatus resolution) and examples that remain heterosyllabic, e.g. [te.a tro] > [te.a tro], are classified under “hiato” (hiatus).

In total, Perissinotto discovers that 72.1% of all the informants utilize some form of hiatus resolution to 27.9% who do not. As far as the breakdown of gender, males are reported as using hiatus resolution in 82.7% of all possible cases while females are reported at 65.3%. Perissinotto adds that the results may possibly distinguish hiatus resolution as a phenomenon originating in, and exacerbated by male speakers.

When the results are analyzed in terms of generational group, there is hardly any variation. In terms of hiatus resolution, the 16-32 age group has 74.4%, the 33-54 group has 70.0% and the 55+ age group has 68.8%. The biggest difference is that of the youngest and the oldest groups which varies by 5.6%. This number, Perissinotto adds, is not significant enough to label the phenomenon as specifically characteristic of the youngest speakers.

In the three socioeconomic groups, middle and high indicate relatively equal amounts of syneresis at 75.7% and 77.5%, respectively. In the group with the highest socioeconomic level, there is greater tendency to preserve hiatus. Although the difference is not overwhelmingly different, there is enough variance to draw some curiosity. According to Perissinotto, the difference between the high socioeconomic group and the two lower groups is caused by the high rate of preservation of hiatus that may be a group exclusive phenomenon.

With the goal of documenting the phonological characteristics of Spanish as spoken throughout the Mexican Republic, the first tome of the Atlas Lingüístico de México (Lope Blanch 1990), covers 193 different locations throughout the country and offers a dialectal analysis of modern Mexican Spanish. The study not only takes phonological features into account, but also provides corresponding sociolinguistic information such as sociocultural level, age, and gender. As mentioned by Moreno de Alba (2002: 23) in La Pronuncición del
Español en México, the ALM breaks the traditional mold previously set forth by Chambers and Trudgill (1980: 35) that focuses on “non-mobile, older, rural, males (NORM)”, by involving not only the lower classes of society, but the middle and upper classes as well. Another important distinguishing feature of the ALM, according to Moreno de Alba, is its inclusion of the largely populated metropolitan regions, which had commonly been ignored in previous studies. These cities, unlike their rural counterparts, tend to speak more standardized dialects and at the same time generate dynamic linguistic change (Moreno de Alba 1999: 22-23).

Hiatus in the ALM is analyzed in all cases where unstressed word final /e/ occurs before word initial /a/ or /o/ as in *me alegro, de origen*. The results report that hiatus resolution through high glide formation is rare throughout most of the regions covered, especially in urban areas and in speakers with high sociocultural levels. In Mexico City it reports that merely 10% of the e + V pairs are pronounced as j + V as in *mjalegro*. The ALM also finds that 40% of the e + V pairs are pronounced in heterosyllabification while the remaining 50% undergo some form of shortening of /e/. As was the case in Harris, the results reported in the ALM vary greatly from the observations of Marden and Matluck where high glide formation was reported as the principle type of hiatus resolution in Mexico City Spanish.

As far as providing detailed insight into the patterns of hiatus resolution in Mexico City, the ALM is limited due to the fact that it only analyzes two possible linguistic contexts. It is reported that 40% of these occurrences are pronounced in heterosyllabification, but we do not know what vowel the V₂ represents. Perhaps there is a high frequency of heterosyllabification only when /e/ occurs before /a/ and not /o/. The ALM fails to make this distinction.
CHAPTER 3. METHODS AND PROCEDURES

3.1. Research Questions

As mentioned in the beginning of Chapter 1, there have been several studies on the nature of hiatus resolution in Mexico City Spanish, though the amount of information on the subjects involved in these studies has been limited. It is also unclear as to the definite types of hiatus resolution that can be considered characteristic of Mexico City Spanish. With these concepts in mind, the present study sets forth the following research questions:

(1) What are the principal types of hiatus resolution in Mexico City Spanish?

(2) Do the sociolinguistic variables of age and gender affect the types of hiatus resolution in Mexico City Spanish?

The first question is designed to discover the order in which the types of hiatus resolution occur in Mexico City Spanish. These types include 1) Non-high glide formation of V₁, 2) Non-high glide formation of V₂, 3) Elision of V₁, 4) Elision of V₂, 5) High glide formation of V₁. When the hiatus does not undergo resolution it will considered as heterosyllabification. Although it is not treated as a formal type of hiatus resolution in this study, it is figured into the total results. If 40% hiatus production does not undergo resolution, then it is said to be in heterosyllabification and the other types of resolution will be taken from the remaining 60%.

The second question seeks to uncover how the types of hiatus resolution are affected by sociolinguistic variables, and to discover if there is any variation.

3.2 Interviews

The linguistic data utilized for the present study was collected from the recorded speech of 18 native Spanish speakers from Mexico City. The data was then transcribed representing 19,551 words of spoken discourse. An example of one of the transcripts can be found in Appendix B. There was no great detail executed in transcribing the interviews except
for melodic group pauses, line numbers, hesitations and simultaneous speech. From the basic corpus, hiatus pairs were identified through text search and then analyzed against the recordings. Each participant was asked to give their opinion on two major current affairs; the 2006 Mexican presidential elections and the US war in Iraq. Knowing the majority of the informants were educated and have exposure to mass media on a regular basis, I did not assume the topics would pose an intellectual challenge and it was assumed that each would speak for several minutes on each topic. The questions are not informal enough to solicit totally unprotected speech as would be the case in the quotidian topics used in Lope Blanch (1976) where informants were specifically selected for their lack of formal education. The style of speech aimed for here is between casual and careful, but never extremely formal or unprotected. There is no comparison of contextual variability in this study, as all informants complete the same task. The Labovian argument that language adapts to its situational and social setting is adopted (Labov, 1982).

A questionnaire based on Ramirez (1992: 233) (Appendix A) was issued in order to obtain personal and sociolinguistic details that may influence each informant’s speech. The most important sociolinguistic variables attained from the questionnaire are age and gender. It also solicits place of residence, place of birth of informants, place of birth of informants’ parents, years of residence in Mexico City, profession, each parents’ mother tongue, number of family members, and the level of education of parents and informants.

3.3 Informants

Informants were selected through personal and professional contacts in Mexico City in May of 2005. Based on the methodology realized in Perissinotto (1975) and Lope Blanche (1976) age groups were selected according to the following criteria; AG (age group)1 = 16-32, AG2 = 33-54, AG3 = 55+. The groups consist of an equal number of female and male informants.

6 The oldest informant has no higher education status but is an avid reader of major Mexican newspapers.
informants spanning three different generations whose average ages are 23.5, 38, and 62 respectively. Table 3.1 illustrates the percent of the total Mexico City population that each group represents by age and gender according to the INEGI 2000 census.

Table 3.1 Percentage of Mexico City population by age and gender

<table>
<thead>
<tr>
<th>Age Group</th>
<th>% Male</th>
<th>% Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG1</td>
<td>9.50%</td>
<td>10.30%</td>
<td>19.80%</td>
</tr>
<tr>
<td>AG2</td>
<td>6.60%</td>
<td>7.30%</td>
<td>13.90%</td>
</tr>
<tr>
<td>AG3</td>
<td>4.10%</td>
<td>5.00%</td>
<td>9.10%</td>
</tr>
<tr>
<td>Total</td>
<td>20.20%</td>
<td>22.60%</td>
<td>42.80%</td>
</tr>
</tbody>
</table>

AG = Age group

Table 3.2 describes the informants by age, gender, level of education, place of birth, generation and number of years residing in Mexico City. Generational group is defined here as in Labov (1983: 92-93). One belongs to the 1st generation if they were born outside of Mexico City but have resided within the city for the majority of their lives. One belongs to the 2nd generation if at least one of the two parents was born in Mexico City. If both parents were born in Mexico City, the informant belongs to the 3rd + generation.

Table 3.2 Summary of male and female informant variables

<table>
<thead>
<tr>
<th>Inf.</th>
<th>Age</th>
<th>LED.</th>
<th>Prof.</th>
<th>POB</th>
<th>Gen</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1_1</td>
<td>22</td>
<td>In college</td>
<td>Student</td>
<td>Mexico City</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>M1_2</td>
<td>21</td>
<td>In college</td>
<td>Student</td>
<td>Mexico City</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>M1_3</td>
<td>26</td>
<td>In college</td>
<td>Student</td>
<td>Mexico City</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>M2_1</td>
<td>36</td>
<td>College</td>
<td>Chemist</td>
<td>Mexico City</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>M2_2</td>
<td>42</td>
<td>College</td>
<td>Professor</td>
<td>Mexico City</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>M2_3</td>
<td>36</td>
<td>High school</td>
<td>None stated</td>
<td>Mexico City</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>M3_1</td>
<td>75</td>
<td>Grade school</td>
<td>Security guard</td>
<td>San Bartolo</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>M3_2</td>
<td>56</td>
<td>College</td>
<td>Engineer</td>
<td>Chiapas</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>M3_3</td>
<td>62</td>
<td>College</td>
<td>Engineer</td>
<td>Oaxaca</td>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1_1</td>
<td>28</td>
<td>College</td>
<td>Marketing executive</td>
<td>Mexico City</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>F1_2</td>
<td>22</td>
<td>College</td>
<td>Student/EFL teacher</td>
<td>Mexico City</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>F1_3</td>
<td>22</td>
<td>College</td>
<td>Student</td>
<td>Mexico City</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

(Table cond.)
3.4 Linguistic Contexts

The linguistic contexts of hiatus chosen for this study were based on their frequency throughout the corpus. This approach was chosen in order to have a consistent data set that was measurable in the speech of each informant. Table 3.3 describes the linguistic contexts and some examples of each. The number of occurrences is also provided.

Table 3.3. Linguistic contexts

<table>
<thead>
<tr>
<th>Context</th>
<th>Number</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. /o + e/</td>
<td>246</td>
<td>yo entré, pero espero</td>
</tr>
<tr>
<td>2. /e + a/</td>
<td>206</td>
<td>de ahí, que hay</td>
</tr>
<tr>
<td>3. /a + e/</td>
<td>160</td>
<td>funciona en, la ecología</td>
</tr>
<tr>
<td>4. /o + a/</td>
<td>155</td>
<td>lo había, cuánto habían</td>
</tr>
</tbody>
</table>

Stressed hiatus pairs such as *habló adan, papá evita, lo habla, la época* (Harris 1970), were excluded from the data due to their low frequency. It was thought to cause inconsistency when the objective was to observe patterns present in all participants. Identical vowel pairs were also excluded due to the almost certain probability of elision. In preliminary counts of the data, there were no cases of high glide formation of V₂, so analysis of this form of hiatus resolution was excluded.

The following section reports the findings of this study by gender and age group. There is also an analysis provided for each individual participant.
CHAPTER 4. FINDINGS

4.1 Differences in Hiatus Resolution among Males

For the present chapter there is a general discussion of each group, male and female, before entering into the details of each sub group, and then onto individual data. The information of results for males is laid out before the female data. In reporting individual results, the number of word production is given per participant along with the proportion of this production to number of hiatus. The most common linguistic contexts are reported as well as examples from the corpus. For the sake of practicality and taking space constraints into consideration, not all examples produced by each individual participant could be supplied. The examples that are given were chosen for their ideal representation whenever possible. Complete phrases are provided for examples that are composed of single grammatical units such as *como a*. In this case I made sure to provide the word or words following the single grammatical unit /a/, which in this case accounts for the V₂ of the hiatus pair.

Table 4.1 on the following page demonstrates the total number of hiatus pairs and the frequency/percentage of each type of hiatus resolution. The number of words produced by each informant is included along with a proportion of hiatus to quantity of words produced in the interview. Table 4.2 illustrates the frequencies of linguistic contexts for each informant. These figures are also divided into raw frequencies and percentages.

In both tables the informants have been grouped by age and are delimited by the horizontal lines. The capital letter ‘M’ stands for Male and the adjacent number 1, 2, or 3 represents the age group to which the participant belongs. The number following the underscore ‘_’ simply assigns a number to the participant. Since each group is comprised of three participants, this number is always between 1 and 3.
Table 4.1 Differences in hiatus resolution among males.

<table>
<thead>
<tr>
<th>Inf.</th>
<th>Age</th>
<th>TW</th>
<th>TH</th>
<th>P</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1_1</td>
<td>22</td>
<td>501</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>30.00</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>M1_2</td>
<td>21</td>
<td>556</td>
<td>21</td>
<td>3.78</td>
<td>4</td>
<td>19.05</td>
<td>0</td>
<td>0.00</td>
<td>6</td>
<td>28.57</td>
</tr>
<tr>
<td>M1_3</td>
<td>26</td>
<td>332</td>
<td>15</td>
<td>4.52</td>
<td>6</td>
<td>40.00</td>
<td>0</td>
<td>0.00</td>
<td>7</td>
<td>46.67</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>1389</td>
<td>46</td>
<td>3.31</td>
<td>13</td>
<td>28.26</td>
<td>0</td>
<td>0.00</td>
<td>14</td>
<td>30.43</td>
</tr>
<tr>
<td>M2_1</td>
<td>36</td>
<td>1111</td>
<td>45</td>
<td>4.05</td>
<td>12</td>
<td>26.67</td>
<td>0</td>
<td>0.00</td>
<td>16</td>
<td>35.56</td>
</tr>
<tr>
<td>M2_2</td>
<td>40</td>
<td>1588</td>
<td>57</td>
<td>3.59</td>
<td>20</td>
<td>35.09</td>
<td>0</td>
<td>0.00</td>
<td>14</td>
<td>24.56</td>
</tr>
<tr>
<td>M2_3</td>
<td>36</td>
<td>750</td>
<td>29</td>
<td>3.87</td>
<td>7</td>
<td>24.14</td>
<td>2</td>
<td>0.00</td>
<td>7</td>
<td>24.14</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>3449</td>
<td>131</td>
<td>3.80</td>
<td>39</td>
<td>29.77</td>
<td>2</td>
<td>1.53</td>
<td>37</td>
<td>28.24</td>
</tr>
<tr>
<td>M3_1</td>
<td>75</td>
<td>1514</td>
<td>58</td>
<td>3.83</td>
<td>32</td>
<td>55.17</td>
<td>1</td>
<td>0.00</td>
<td>16</td>
<td>27.59</td>
</tr>
<tr>
<td>M3_2</td>
<td>56</td>
<td>1468</td>
<td>66</td>
<td>4.5</td>
<td>42</td>
<td>63.64</td>
<td>0</td>
<td>0.00</td>
<td>13</td>
<td>19.70</td>
</tr>
<tr>
<td>M3_3</td>
<td>62</td>
<td>2925</td>
<td>129</td>
<td>4.41</td>
<td>30</td>
<td>23.26</td>
<td>1</td>
<td>0.00</td>
<td>43</td>
<td>33.33</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>5907</td>
<td>253</td>
<td>4.28</td>
<td>104</td>
<td>41.11</td>
<td>2</td>
<td>0.79</td>
<td>72</td>
<td>28.46</td>
</tr>
<tr>
<td>Total</td>
<td>10745</td>
<td>430</td>
<td>156</td>
<td>3.84</td>
<td>156</td>
<td>36.28</td>
<td>4</td>
<td>0.93</td>
<td>123</td>
<td>28.60</td>
</tr>
</tbody>
</table>

Inf. = Informant
TW=Total words produced in interview
TH=Total number of hiatus
P=Proportion of hiatus to total words
T1= Pronounced in hiatus
T2 = High glide V_1
T3 = Non-high glide V_1
T4 = Non-high glide V_2
T5 = Elision of V_1
T6 = Elision of V_2
Table 4.2 Differences in linguistic contexts of hiatus resolution among males

<table>
<thead>
<tr>
<th>Inf.</th>
<th>Age</th>
<th>TW</th>
<th>TH</th>
<th>P</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1_1</td>
<td>22</td>
<td>501</td>
<td>10</td>
<td>2</td>
<td>1.17</td>
<td>3</td>
<td>6.52</td>
<td>1</td>
</tr>
<tr>
<td>M1_2</td>
<td>21</td>
<td>556</td>
<td>21</td>
<td>3.78</td>
<td>6</td>
<td>13.04</td>
<td>3</td>
<td>6.52</td>
</tr>
<tr>
<td>M1_3</td>
<td>26</td>
<td>332</td>
<td>15</td>
<td>4.52</td>
<td>4</td>
<td>8.70</td>
<td>4</td>
<td>8.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>1389</td>
<td>46</td>
<td>3.31</td>
<td>11</td>
<td>23.91</td>
<td>10</td>
<td>21.74</td>
</tr>
</tbody>
</table>

M2_1	36	1111	45	4.05	8	6.11	14	10.69
M2_2	40	1588	57	3.59	15	11.45	15	11.45
M2_3	36	750	29	3.87	2	1.53	9	6.87
Total	37	3449	131	3.80	25	19.08	38	29.01

M3_1	75	1514	58	3.83	5	1.98	21	8.30
M3_2	56	1468	66	4.5	19	7.51	22	8.70
M3_3	62	2925	129	4.41	27	10.67	30	11.86
Total	64	5907	253	4.28	51	20.16	73	28.85

| Total | 10745| 430 | 87 | 20.23| 121 | 28.14| 91 | 21.16|

Note: Percentages are taken from total group production. Age groups are delineated by horizontal lines.

TW=Total words produced in interview
P=Proportion of hiatus to total words
TH=Total number of hiatus
C1 = /a + e/
C2 = /e + a/
C3 = /o + a/
C4 = /o + e/
4.1.1 General Data from the Male Group

The nine informants who made up the male group produced a total of 10,745 words as can be observed in Table 4.1. Within this production there were 430 cases of hiatus, which resulted in a total proportion of 3.84%. The number of cases of unresolved hiatus was 156 which represent 36.38% of all cases. The remaining 63.62% underwent some form of hiatus resolution. Of these types, non-high glide formation of V₁ was the most common with 123 occurrences, which was 28.60%. The third most common form of resolution was non-high glide formation of V₂ with a frequency of 76 or 17.67% of the total. The final three types of resolution were elision of V₂ with 49 occurrences (11.40%), elision of V₁ with 22 occurrences (5.12%) and 4 frequencies of high glide formation of V₁ which resulted in 0.93%.

The most frequent linguistic context for this group, as noted in Table 5, was /o + e/ with 131 samples representing 30.47%. The second most common linguistic context was /e + a/ with 121 occurrences accounting for 28.14%. The /o + a/ context had 91 occurrences which made up 21.16% and /a + e/ had 87, representing 20.23%. Results for frequency and distribution of linguistic context for each individual participant can be found in Appendix C.

Tables 4.3 through 4.6 illustrate the type and frequency of hiatus resolution in each linguistic context.

T₁= Pronounced in hiatus, T₂ = High glide V₁, T₃ = Non-high glide V₁, T₄ = Non-high glide V₂, T₅ = Elision of V₁, T₆ = Elision of V₂

Table 4.3 Frequency and type of hiatus resolution for /o + e/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₄</td>
<td>47</td>
<td>10.93%</td>
</tr>
<tr>
<td>T₁</td>
<td>43</td>
<td>10.00%</td>
</tr>
<tr>
<td>T₆</td>
<td>20</td>
<td>4.65%</td>
</tr>
<tr>
<td>T₃</td>
<td>16</td>
<td>3.72%</td>
</tr>
<tr>
<td>T₅</td>
<td>4</td>
<td>0.93%</td>
</tr>
</tbody>
</table>

(Table cond.)
For the /o + e/ context the most common type is non-high glide formation of V₂ followed by hiatus, then elision of V₂, non-high glide formation of V₁, elision of V₁ and high glide formation.

Table 4.4 Frequency and type of hiatus resolution for /e + a/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>60</td>
<td>13.95%</td>
</tr>
<tr>
<td>T1</td>
<td>46</td>
<td>10.70%</td>
</tr>
<tr>
<td>T5</td>
<td>5</td>
<td>1.16%</td>
</tr>
<tr>
<td>T4</td>
<td>4</td>
<td>0.93%</td>
</tr>
<tr>
<td>T6</td>
<td>4</td>
<td>0.93%</td>
</tr>
<tr>
<td>T2</td>
<td>2</td>
<td>0.47%</td>
</tr>
<tr>
<td>Total</td>
<td>121</td>
<td>28.14%</td>
</tr>
</tbody>
</table>

For the /e + a/ context the most common occurring type of hiatus resolution was non-high glide formation of V₁ followed by hiatus. There is an abrupt reduction in occurrences to elision of V₁ followed by elision of V₂, non-high glide formation of V₂, and high glide formation.

Table 4.5 Frequency and type of hiatus resolution for /a + e/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>24</td>
<td>5.58%</td>
</tr>
<tr>
<td>T1</td>
<td>21</td>
<td>4.88%</td>
</tr>
<tr>
<td>T4</td>
<td>17</td>
<td>3.95%</td>
</tr>
<tr>
<td>T6</td>
<td>14</td>
<td>3.26%</td>
</tr>
<tr>
<td>T5</td>
<td>11</td>
<td>2.56%</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>20.23%</td>
</tr>
</tbody>
</table>
In the /a + e/ context the most common type of hiatus resolution was non-high glide formation of V₁ followed by hiatus, non-high glide formation of V₂, elision of V₂, elision of V₁, and high glide formation which had no occurrences.

Table 4.6 Frequency and type of hiatus resolution for /o + a/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>46</td>
<td>10.70%</td>
</tr>
<tr>
<td>T3</td>
<td>23</td>
<td>5.35%</td>
</tr>
<tr>
<td>T6</td>
<td>11</td>
<td>2.56%</td>
</tr>
<tr>
<td>T4</td>
<td>8</td>
<td>1.86%</td>
</tr>
<tr>
<td>T5</td>
<td>2</td>
<td>0.47%</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>0.23%</td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
<td>21.16%</td>
</tr>
</tbody>
</table>

For /o + a/, the most common type of hiatus resolution was hiatus itself followed by non-high glide formation of V₁, elision of V₂, non-high glide formation of V₂, elision of V₁ and high glide formation.

4.2 Analysis by Participant

The abbreviations in Figure 4.1 are used to indicate the type of hiatus resolution in the analysis of each individual informant.

HT = Remains in hiatus and undergoes no type of resolution
NHGV₁ = Non-high glide formation of V₁
NHGV₂ = Non-high glide formation of V₂
EV₁ = Elision of V₁
EV₂ = Elision of V₂
HGV₁ = High glide formation of V₁

Figure 4.1 Abbreviations for types of hiatus resolution
Before reporting the individual results of each informant, a brief summary is first given for the group to which each belongs.

4.2.1 Male Group 1 (16-32)

The total language production among the three members of this group was 1,389 words, 13% of the total of the three male groups. The proportion of hiatus to word volume in total was 10.70%. For this group there were 46 occurrences of hiatus which was 10.70% of the complete male total. Of these instances, 13 (28.26%) did not undergo any type of resolution. The amount of non-high glide formations came out to 14 (30.43%) for V₁ and 3 (6.52%) for V₂. There were a combined 16 cases for vowel elision, 6 (13.04%) of V₁ and 10 of V₂ (21.74%). There were no cases of high glide formation.

4.2.1.1 Male Informant 1 of Group 1

This informant produced a total of 501 words in his interview which makes up 36% of the speech volume of the three informants. There were a total of 10 hiatus pairs which came out to 2.00% of the total speech production. The most common form of hiatus resolution was elision of V₁. This was the only informant to have EV₁ as the most commonly occurring form of hiatus resolution.

HT

Of the ten hiatus pairs produced by this informant, three (30%) did not undergo any modification. These occurred in the contexts of /a + e/, /o + a/, and /o + e/; forma el, apoyado a, el fuero es.

NHGV₁

There was one (10%) case of non-high glide formation of V₁ which occurred in the /e + a/ context; de andrés > dféa[ndrés].
There was one occurrence (10%) of non-high glide formation of V₂, which took place in the context of /o + e/; caso el > caso [oé]l.

The most common category of hiatus resolution for M₁₁ was elision of V₁ with four individual occurrences making up 40%. There was one occurrence in /e + a/, and three in /o + e/; que a millones > qu[a]millones, pero en (2) > per[e]n, and eso es > es[e]s.

The one case of elision of V₂ took place in the linguistic context of /e + a/; de alimentos > d[e]limentos.

There were no cases of high glide formation for V₁ or V₂.

4.2.1.2 Male Informant 2 of Group 1

Of the total speech volume produced by the youngest group, 556 words, 40%, were attributed to this informant. There were twenty-one total cases of hiatus which came out to 46%. The most commonly occurring type of hiatus resolution in this informant was elision of V₂ with eight, 38%, total examples.

Of the total of twenty-one occurrences of hiatus for this informant, four (19.05%) remained in heterosyllabification. One occurrence was in the context of /a + e/, one in /o + a/, and two in /o + e/; va entender, todo afectó, candidato elegido, o el.

\[^{7}\text{pero en occurs twice as per[e]n}\]
Non-high glide formation represented the second most frequent type of hiatus resolution for this informant with a total of six occurrences at 28.57%. Two occurred in the /a + e/ context,
va entender > v[aë]ntender, la edad > l[æ]dad, que apoya > q[êa]poya, , que han >
qu[êa]n, algo arreglado > alg[õa]rreglado, convirtiendo en > convirtiend[õ]n

NHGV$_2$

There was one (4.76%) instance of non-high glide formation of V$_2$, which occurred in the /a + e/ context; queda en > qued[a]n from the utterance ‘queda en la presidencia’.

EV$_1$

Two total examples or 9.52% of elision of V$_1$ were recorded for this informant in the context of /e + a/ and /o + a/; fue arreglado > f[w]rreglado, (a todo el) mundo afectó > (a todo el) mund[a]fectó.

EV$_2$

There were eight occurrences out of twenty-one hiatus pairs representing 38.09% of elision of V$_2$. The most common contexts were /a + e/ (2), /o + a/ (4), /o + e/ (2); ya está > yastá,
ayudado a la > ayudado[l]a, combatiendo a países > combatiend[o]países, a Estados Unidos > [a]stados unidos, apoya mucho al país > apoya much[o]l país, poco a poco > poc[o]poco,
todo el > tod[o]lmundo, o el > [o]l.

HGV$_1$

There were no cases of high glide formation of V$_1$ or V$_2$.

4.2.1.3 Male Informant 3 of Group 1

This informant had the least amount of discourse production of the entire male group, producing only 332 words. Of the M1 group however, he did not have the least number of hiatus frequency which was 15, 32.61%.

32
There were 6 cases, 40%, where the hiatus underwent no form of resolution. One of these took place in the /a + e/ context, three in /e + a/, and two in /o + e/; *ya en* (*‘ya’, when pronounced with emphasis, most likely will sustain the hiatus), *de alguna, compitiendo en, le han* (2), *definitivo es*.

NHGV₁

Non-high glide formation of V₁ had seven (46.67%) individual frequencies. Two of these occurred in the /a + e/ context, one in the context of /e + a/, and four in /o + a/; *una encrucijada > un[ãe]ncrucijada, ventaja en > ventaj[ãe]n, puede haber > pued[õa]ber, no hay(2) > n[õa]y, en cuanto a lo > en cuent[õa]lo, cuanto al > cuant[õa]l*.

NHGV₂

There was one single case of non-high glide formation of V₂ that occurred in the /a + e/ context; *la elección > l[aõe]lección*.

EV₁

There were no cases present of elision of V₁.

EV₂

There was one single occurrence (7%) of Elision of V₂ found in the /o + a/ context; *en cuanto a sistema > en cuant[o]sistema*.

HGV₁

There were no cases of high glide formation of V₁ or V₂.

4.2.2 Male Group 2 (32-54)

The total number of words produced in this group was 3,449, which came out to be 32.10% of total production. The proportion of hiatus to was 3.80%. There were 131 individual
occurrences of hiatus which represents 32.79% of all the cases of hiatus for all male informants. Of these 131 instances, 39 (29.77%) did not undergo any type of resolution. The number of non-high glide formations came out to 37 (28.24%) in the case of V₁ and 33 (25.19%) in the case of V₂. There were 8 (6.11%) single cases of elision of V₁ and 12 (9.16%) of elision of V₂. Unlike M₁, which had no occurrences of high glide formation, M₂ had 2 with 1 (0.76%) occurring in V₁ and 1 (0.76%) occurring in V₂.

4.2.2.1 Informant 1 of Male Group 2

A total of 1,111 words were produced by this informant which is 32.21% of the total words produced by the whole male group. The number of hiatus pairs was 45. The proportion of hiatus pairs to male group one’s word volume was 4.05%. The most common type of hiatus resolution in this participant was non-high glide formation of V₁.

HT

Of the 45 cases of hiatus occurring in the speech of M₂₁, twelve (26.67%) did not undergo any form of resolution. There were two in the context of /a + e/, three in /e + a/, three in /o + a/, and four in /o + e/; noventa es, era el, llevarse acabo, entre amigos, que armaron, no hay, no han, hizo así, adecuado en, o el, pero en, algo en. In cases where both words in the pair have grammatical functions such as algo en, pero en and era el it is more common to observe some form of hiatus resolution, but when these pairs are expressed with emphasis from the speaker they tend to lose their fused lexical quality and are pronounced as two separate items.

NHGV₁

There were 16 occurrences of non-high glide formation of V₁ resulting in 35.56% of the total cases of hiatus. Two occurred in the /a + e/ context, ten in /e + a/, one in /o + a/, and three in /o + e/; la eléctrica > l[ãe]léctrica, miseria extrema > miseri[ãe]xtrema, frente a > frent[ãe]l, se

NHGV2

There was a total of nine occurrences (20%) in of non-high glide formation of V2. One was in the context of /a + e/, one in /e + a/, and seven in /o + e/; masiva en > masiv[ae]n, se acabe > s[eã]cabe, todo es > todoês, luego esta > lueg[œ]stã, porciento es > porcient[œ]s, no es > n[œ]s, visto en > vist[œ]n, tampoco entiendo > tampoc[œ]ntiendo, eso es > es[œ]s.

EV1

There were 2 total cases of elision of V1 making up merely 4.44% of the total types of resolution. This figure is quite different from the average 20% of elision of V1 in M1. The two cases produced are found in the context of /a + e/; la estabilidad > l[e]stabilidad, la economía > l[e]conomía.

EV2

In the elision of V2, there were 6 total cases making up 13.33%. There was one cases in the /a + e/ context, one in /o + a/, and four in /o + e/; va estar > v[a]star, pienso ahora > piens[œ]ra, todo el > tod[œ]l in the phrase ‘todo el territorio’ > tod[œ]lterritorio, no están > n[œ]stán, yo he in the phase ‘yo he visto’ > y[œ]visto, eso es in the phrase ‘eso es lo que’ > és[œ]sloque.

HGV1

There were no cases of high glide formation of either V1 or V2.
4.2.2.2 Informant 2 of Male Group 2

The total word volume for this participant was 1,588 which accounts for 46.04% of the whole group. There were 57 hiatus pairs which resulted in 43.51% of group’s total number of hiatus. The proportion of hiatus to word volume was 3.59%. The most common type of hiatus resolution was non-high glide formation of V₂ with a total 15 occurrences.

HT

There were a total of 20 cases, 35.09%, where the hiatus underwent no form of resolution. Two occurred in the /a + e/ context, seven in /e + a/, eight in /o + a/, and three in /o + e/;

ahorita están, da el, dándole a López, que aún, llegue a vislumbrar, llegue así, darle a + (pause), siempre ha sido, de aquel, viejo al, dinero a donde, blanco apolítico, pudo haber, no hay, no ha pasado, lo acompañó, negocio a fin, no están, demostrando es, cuando estaba.

NHGV₁

There were 14 cases, 24.65%, of non-high glide formation of V₁, four of which took place in the /a + e/ context, eight in /e + a/, one in /o + a/, and one in /o + e/; nueva experiencia > nœv[œ]xperiencia, va ejercer > v[œ]jercer, era entonces > er[œ]ntonces, CIA etcétera > ci[œ]tcetera, desde ahorita > desd[œ]hora, se ha sentido > s[œ]sentido, que a lo mejor > qu[œ]lomejor, ponerse a pensar > pners[œ]pensar, se allega > s[œ]llega, de Andrés > d[œ]andrés, me acuerdo > m[œ]acuerdo, que a todos > qu[œ]todos, no ha pasado > n[œ]pasado, com[œ]mpresario.

NHGV₂

This informant had one more instance of non-high glide formation of V₂ than of V₁ with a total of 15, 26.32%, 10 of which occurred in the /o + e/ context, three in /a + e/, and two in /o + a/;

ha estado > h[œ]stado, la estabilidad > l[œ]stabilidad, retrasada en > retrasad[œ]n, tuvo
ahí > tuv[oi], vuelvo a decir > vuelv[oi]decir, crecimiento en > crecimient[oe]n, como el >
com[oe], pensando en > pensand[oe]n, cuando escribía > cuand[oe]scribía,
comprometiendo el > compromotiend[oe], no es > n[oe]s, asunto es > asunt[oe]s, dijo en >
dij[oe]n, como el > com[oe], todo el > tod[oe].

EV₁

There was a total of five cases of elision of V₁ which made up 8.77%, all of which occurred in
the /a + e/ context; piensa en > piens[en], ella era > ell[era], la esquina > l[quina], ella es
> ell[s], la extracción > l[extracción]. The hiatus found in ella era would normally make up
a /a + é/ pair which is not being analyzed in this study. However, the mode in which the
speaker pronounced this utterence was similar to [éjerá] with the stress placed on the first and
final syllables than in the traditional trochaic pattern.

EV₂

There was a total of 3 cases of elision of V₂, accounting for 5.26%. One occurred in the /a + e/
contexts, one in /o + a/, and one in /o + e/; era el > er[a]l as in pues que era el, diciendo
ahorita > diciend[ora], pero es > per[o]s as in ‘pero es como de...’.

HGV₁

There were no instances of high glide formation of V₁ or V₂ recorded for M₂_2.

4.2.2.3 Informant 3 of Male Group 2

This informant produced notably less text than either M₂_1 or M₂_2 with 750 words making
up 21.75%. The total number of hiatus pairs came out to 29, 22.14% of the sum of the group.
The most common form of hiatus resolution for M₂_3 was non-high glide formation of V₂.
Of the total 29 cases of hiatus, seven, 24.14% underwent no resolution. Five cases were in the /o + a/ contexts and 2 in the /o + e/ context; *pero absolutamente, vino a moverme, malo a lo* in the phrase ‘de lo malo a lo peor’, *quito al, robo a mansalva, quito el, no existía.*

NHGV

Just as with HT, there were seven, 24.14%, examples of non-high glide formation of V₁ which took place within the /e + a/ context; *que atacaban > quēatacaban, fue así > fuēasi, compromete a > compromete [ēa], de alguna > d[ēa]lguna, este amigo > est[ēa]migo, de haber > d[ēa]ber, se me hace > se m[ēa]ce.*

NHGV

There were nine cases of non-high glide formation of V₂ which represented 31.03% of the total. This was the most common type of hiatus resolution used by this informant. Of these cases five occurred in the /o + e/ context, three in /o + e/ and one in /a + e/; *forma en > forma [ēn], fuero a alguien > fure[ōa]lguien, poderlo hacer > poder[ōa]cer, refiero al > refer[ōa]l, fuer[ōē]s, no el > n[ōē]l, como en (2) > com[ōē]n, agarro en > agarr[ōē]n.*

EV

There was one case, 3.45%, of elision of V₁ which occurred in the /e + a/ context; *te agarro > t[ēa]garro.*

EV

There were three cases, 10.34%, of elision of V₂, one in the /a + o/ context and 2 in /o + e/; *la escuela > l[ē]scuela, lo está (2) > l[ō]stá.*

HGV

There were 2 occurrences, 6.90%, of high glide formation. One instance occurred in the /e + a/ context and the other in /o + e/; *De alguna > d[ēa]lguna, como es > com[ēwe]s.* This type of
resolution, although quite prominent in the studies of Marden (1896) and Matluck (1951), only had 4 total frequencies in the entire male group, 2 of which were found in M2_3, and 1 in 2 separate speakers from M3.

4.2.3 Male Group 3 (55+)

The total number of words produced by this group was 5,907 which accounts for 54.97% of all the male groups. There were 253 cases of hiatus which resulted in 58.84% of the total number hiatus pairs produced by all male informants. The percent of hiatus to M3’s total word volume was 4.28%. There were a total of 104 hiatus pairs that did not undergo any type of resolution and accounted for 41.11% of the 253 occurrences. The most common form of hiatus resolution was non-high glide formation of V1 which had a frequency of 72, 28.46%. The second most common type was non-high glide formation of V2 with a frequency of 40, 15.81%. There were 27 (10.67%) cases of elision of V2, 8 (3.16%) cases of elision of V1 and 2 cases of high glide formation of V1 (0.79%).

4.2.3.1 Informant 1 of Male Group 3

The total number of words produced for this informant was 1,514, which represents 25.63% of the group total. The number of cases of hiatus resolution was 58, 22.92%.

HT

There were thirty-two cases where the hiatus did not undergo resolution which represents 55.17% of the total cases for this informant. Two occur in the /a + e/ context, thirteen in /e + a/; nine in /o + a/ and eight in /o + e/; busca el, escuda el, de acuerdo, parte a la, que asi, me ampeo, que ha, que han, viene haciendo..., pero hay, no acabamos, puede hacer, yo asi, juzgado asi, no hay (3)..., como es, pasando en, todo el...

NHGV$_1$
There were sixteen cases of non-high glide formation of V₁ representing 27.59%. two occurred in the /a + e/ context, six in /e + a/, six in /o + a/ and two in /o + e/; tercera edad >
tercer[aе]dad, estaba en > estab[ae]n, siempre ha > siempr[э]a, que aquel > qu[э]quel,
llegue allá > llegu[э]llá, sigue actuando > sigu[э]ctuando..., todo aquel > tod[о]quel...,
que han > qu[э]n, qu[э]si, qu[э]quel..., pero ahi > per[о]hi, lo anunciaron >
l[о]nunciaron..., no existiera > n[о]xistiera, todo el > tod[о]l.

NHGV₂
There were six occurrences, 10.34%, of non-high glide formation of V₂. All of these cases took place within the /o + e/ context; eso está > es[oэ]stá, pero en (2) > per[oэ]n, eso es > es[oэ]s, lo estuvieron > l[oэ]stuvieron, eso es > es[oэ]s.

EV₁
There was one case, 1.72%, of elision of V₁ which took place in the /e + a/ context; me
andaban > m[a]ndaban.

EV₂
Two cases, 3.45%, of elision of V₂ were reported, which both took place in the /a + e/ context;
ya están > y[a]stán, de haberlo > d[e]berlo.

HGV₁
There was 1 case, 1.72%, of high glide formation of V₁ which occurred in the /o + a/ context;
no hay > n[wав]y.

4.2.3.2 Informant 2 of Male Group 3

The total words spoken by this informant was 1,468, representing 24.85% of the total for the group. The number of cases of hiatus was sixty-six which represented 26.09% of the group’s total. The most common type of hiatus resolution for this informant was non-high glide
formation of V_1 which had a frequency of thirteen. However, the amount of cases that did not undergo any change was at 42%.

HT

There were forty-two occurrences where the hiatus did not undergo any type of resolution, accounting for 63.64% of this informant’s total production of hiatus pairs. Nine cases were in the /a + e/ context, fifteen in /e + a/, eight in /o + a/, ten in /o + e/; `va el, la estructura, economía estadounidense..., fuerte aquí, que ahora, de alguna..., lo han, no había, pero ha sido..., no existe, cuando empezó, no está...`

NHGV₁

For non-high glide formation of V_1 there was a total of thirteen frequencies which made up 19.70%. There were six frequencies in the /a + e/ context, five in /e + a/, one in /o + a/, and one in /o + e/ context; `una esquema > un[ã]squema, la esfera > l[ã]sfera, sea enterrándolos > se[ã]nterrándolos, una escaramuza > un[ã]scaramuza, una excursioncita > un[ã]scursioncita, la economía > l[ã]conomía, porque ha sabido > porqu[ẽ]sabido, de afganistán > d[ẽ]fghanistán, que allá > qu[ẽ]llá, de ahí > d[ẽ]hi, que así > qu[ẽ]si, de oposición (3) > d[ẽ]posición, que obtiene > qu[ẽ]btiene, que opino > qu[ẽ]pino, dedo a la > ded[õ]la, siendo heridos > siend[õ]ridos.`

NHGV₂

There were four cases of non-high glide formation of V_2, which accounted for 6.06%. One case was in the /a + e/ context, one in /o + a/ and two in /o + e/; `cayera en > cayer[aẽ]n, carajo afganistán > caraj[õã]ghanistán, como el > com[oẽ]l, todo el > tod[oẽ]l.```
There were four cases, 6.06%, of elision of V1. Two cases occurred in the /a + e/ context, One in /e + a/, and 1 in /o + e/; la esfera > l[e]sfera, para eso > par[e]so, que han > qu[a]n, eso es > es[e]s.

EV2

A total of 3 cases, 4.55%, of elision of V2 occurred in the speech of M3_2, which included 1 in example in the /a + e/ context, 1 in /e + a/ and 1 in /o + e/; ahora es > ahor[a]s, porque ha sabido > porqu[e]sabido, todo el > tod[o]l.

HGV1

There were no occurrences of high glide formation in this informant.

4.2.3.3 Informant 3 of Male Group 3

The total number of words produced by this informant was 2,925 which represented 49.52% of the total amount of words in the male group. There were 129 cases of hiatus which accounted for 50.99% of the total cases of hiatus of the group.

HT

There were 30 cases, 23.26%, where the hiatus underwent no change. 3 of these were in the /a + e/ context, 5 in /e + a/, 11 in /o + a/ and 11 in /o + e/; vista es, nada es, a echarle, echarle así, que ayude, sigue haciendo, investigando algunas, tenido apertura, hecho algunas, como empresario, no es, tengo entendido...

NHGV1

There were 43 cases of non-high glide formation of V1 making up 33.33% of the total hiatus pairs produced for this informant. Of these instances, 6 occurred in the /a + e/ context, 20 in /e + a/, 9 in /o + a/ and 8 in /o + e/; mucha experiencia > much[ãe]xperiencia, nunca entendió > nunc[ãe]ntendió, la economía > l[ãe]conomía, me andaban > m[ẽa]ndaban, que había >
Non-high glide formation of V₂ had a frequency of thirty and represented 23.26% of the total cases of hiatus produced by this informant. There were nine occurrences of /a + e/, three of /e + a/, two of /o + a/ and eight of /o + e/; ya en > y[aē]n, lo que pasa es > lo que pas[aē]s, pobreza extrema > pobrez[aē]xtrema, ayude a los > ayud[eā]los, totalmente a favor > totalment[eā]favor, colonizado al país > colonizad[oā]l país, otro atentado > otro[aē]tentado, incrementado el > incrementad[oē]l, viendo en > viend[oē]l, promedio está > promedi[oē]stá...

EV₁

There were three cases of elision of V₁ making up 2.33%. Two occurred in the /a + e/ context and one in /o + a/; potencia extranjera > potenci[e]xtranjera, atacar a Estados > atacar[e]stados, pero hay > per[a]y. In the first example there is actually high glide formation of the /i/ when /a/ is elided, forming /j/, potenc[je]xtranjera.

EV₂

There were twenty-two cases of elision of V₂ making up 17.05%. This is the highest frequency of cases of elision of V₁ in this group. There were only 5 combined cases for the other 2 informants in the type of hiatus resolution. This informant had a high frequency of /o/ + est lexical pairs such as no estoy, no está, a Estados Unidos..., and the tendency to form nasal nuclei such as [m.pre.sá.río] for [em.pre.sá.río], so an utterance such as [kó.mo.em.pre.sá.ri.o] would result in [kó.mo.m.pre.sá.ri.o].
There was one occurrence, .78%, of high glide formation of V₁ in the /e + a/ context; se han > s[ja]h. The phrase in which this hiatus, ‘y se han ido retirando’, was spoken rapidly and the phrase initial /j/ could have played an important role in spreading its highness feature to /e/ not giving the speaker enough time to pronounce the /e/ as a front mid vowel.

4.2.4 Summary of Male Group

As far as the total amount of speech production is concerned, it is evident that the oldest group of males is also the most loquacious, producing more spoken text than the other groups with 5,907 words. The group with the least amount of words spoken was the youngest at 1,389. The middle group produced 3,449 words. It is also important to note that the same order was followed with the number of hiatus pairs produced which was 46 for G1, 131 for G2, and 253 for G3.

The most frequent use of hiatus is apparent in male group three (41.11%), and can thus be observed as more common in the older generation. High glide formation of V₁ and non-high glide formation of V₁ were consistent throughout all three groups, showing relatively similar frequencies of use. In the formation of non-high glides in the V₂ position there were higher frequencies in male group two (25.19%) than in the other two groups, which were G1 (6.52%) and G3 (15.81%). In fact, this is the principle factor that creates a noticeable contrast for the G2 group. Vowel elision had its highest proportional frequency in the youngest group, male group one, with the highest proportion occurring in the V₂ position (21.74%). Groups two and three also had instances of vowel elision, but not as persistent as in group 1. In the V₂ position they were at 9.16% and 10.67% respectively.
The most significant difference in the type of linguistic context among the three groups was M1’s significantly higher use (28.26%) of the /o + a/ context which was higher than M2 (19.08%) and M3 (20.95%). Another difference to note was the /o + e/ context which was more prevalent in M2 (32.82%) and M3 (30.04%) than in M1 (26.09%). For the most part, the contexts of /a + e/ and /e + a/ had even distribution across the age groups.

4.3 Differences in Hiatus Resolution among Females

Table 4.7 below gives the total number of hiatus pairs as well as the frequency and percentage of each type of hiatus resolution for the female participants. The number of words produced by each informant is included along with the proportion of total number of hiatus. Table 4.8 illustrates the frequencies of linguistic contexts for each informant. These figures are also divided into frequencies and percentages.

4.3.1 General Data for the Female Group

As indicated in Table 4.7, the total lexical production of the female group was 8,693 words within which there were a total number of 337 (3.88%) hiatus pairs. The number of hiatus pairs that did not undergo any form of hiatus resolution was 135 representing 40.06%. The remaining 59.04% were resolved by one of the six types of hiatus resolution. The most common being non-high glides formation of V₁ with 93 (26.41%) frequencies. Non-high glide formation of V₂ had 42 (12.46%) occurrences, elision of V₁ had 41 (12.17%), elision of V₂ had 25 (7.42%) and high glide formation of V₁ had a total of 5 (1.48%).

The most common linguistic contexts in the female group as illustrated in Table 4.9 were /o + e/ with 115 (34.12%) cases followed by /e + a/ with 85 (25.22%), /a + e/ with 73 (21.66%), and /o + a/ with 64 (18.99%). Tables 4.10 – 4.13 indicate the number and percent of the most
Table 4.7 Differences in hiatus resolution among females

<table>
<thead>
<tr>
<th>Inf.</th>
<th>Age</th>
<th>TW</th>
<th>TH</th>
<th>P</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1_1</td>
<td>28</td>
<td>1112</td>
<td>35</td>
<td>3.15</td>
<td>12</td>
<td>34.29</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>34.29</td>
</tr>
<tr>
<td>F1_2</td>
<td>22</td>
<td>461</td>
<td>16</td>
<td>3.47</td>
<td>7</td>
<td>43.7</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>12.50</td>
</tr>
<tr>
<td>F1_3</td>
<td>22</td>
<td>491</td>
<td>15</td>
<td>3.05</td>
<td>4</td>
<td>26.67</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>6.67</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>2064</td>
<td>66</td>
<td>3.20</td>
<td>23</td>
<td>34.85</td>
<td>3</td>
<td>4.55</td>
<td>15</td>
<td>22.73</td>
</tr>
<tr>
<td>F2_1</td>
<td>43</td>
<td>1084</td>
<td>42</td>
<td>3.87</td>
<td>17</td>
<td>40.48</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>16.67</td>
</tr>
<tr>
<td>F2_2</td>
<td>36</td>
<td>1468</td>
<td>55</td>
<td>3.75</td>
<td>18</td>
<td>32.73</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>30.91</td>
</tr>
<tr>
<td>F2_3</td>
<td>34</td>
<td>678</td>
<td>23</td>
<td>3.39</td>
<td>7</td>
<td>30.43</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>21.74</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>3230</td>
<td>120</td>
<td>3.72</td>
<td>42</td>
<td>35.00</td>
<td>2</td>
<td>1.67</td>
<td>29</td>
<td>24.17</td>
</tr>
<tr>
<td>F3_1</td>
<td>56</td>
<td>1738</td>
<td>78</td>
<td>4.49</td>
<td>37</td>
<td>47.44</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>26.92</td>
</tr>
<tr>
<td>F3_2</td>
<td>63</td>
<td>311</td>
<td>8</td>
<td>2.57</td>
<td>5</td>
<td>62.50</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25.00</td>
</tr>
<tr>
<td>F3_3</td>
<td>57</td>
<td>1350</td>
<td>65</td>
<td>4.81</td>
<td>28</td>
<td>43.08</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>33.85</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>3399</td>
<td>151</td>
<td>4.44</td>
<td>70</td>
<td>46.36</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>29.80</td>
</tr>
</tbody>
</table>

Total | 8693 | 337 | 3.88 | 135 | 40.06| 5 | 1.48 | 89 | 26.41| 41 | 12.17| 42 | 12.46| 25 | 7.42 |

Inf. = Informant
TW=Total words produced in interview
TH=Total number of hiatus
P=Proportion of hiatus to total words produced per participant
T1= Pronounced in hiatus
T2 = High glide V₁
T3 = Non-high glide V₁
T4 = Non-high glide V₂
T5 = Elision of V₁
T6 = Elision of V₂
Table 4.8 Differences in linguistic contexts of hiatus resolution among females

<table>
<thead>
<tr>
<th>Inf.</th>
<th>Age</th>
<th>TW</th>
<th>TH</th>
<th>P</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1_1</td>
<td>28</td>
<td>1112</td>
<td>35</td>
<td>3.15</td>
<td>7</td>
<td>10.61</td>
<td>11</td>
<td>16.67</td>
</tr>
<tr>
<td>F1_2</td>
<td>22</td>
<td>461</td>
<td>16</td>
<td>3.47</td>
<td>4</td>
<td>6.06</td>
<td>3</td>
<td>4.55</td>
</tr>
<tr>
<td>F1_3</td>
<td>22</td>
<td>491</td>
<td>15</td>
<td>3.05</td>
<td>4</td>
<td>6.06</td>
<td>2</td>
<td>3.03</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>2064</td>
<td>66</td>
<td>3.20</td>
<td>15</td>
<td>22.73</td>
<td>16</td>
<td>24.24</td>
</tr>
<tr>
<td>F2_1</td>
<td>43</td>
<td>1084</td>
<td>42</td>
<td>3.87</td>
<td>11</td>
<td>9.17</td>
<td>10</td>
<td>8.33</td>
</tr>
<tr>
<td>F2_2</td>
<td>36</td>
<td>1468</td>
<td>55</td>
<td>3.75</td>
<td>15</td>
<td>12.50</td>
<td>10</td>
<td>8.33</td>
</tr>
<tr>
<td>F2_3</td>
<td>34</td>
<td>678</td>
<td>23</td>
<td>3.39</td>
<td>2</td>
<td>1.67</td>
<td>9</td>
<td>7.50</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>3230</td>
<td>120</td>
<td>3.72</td>
<td>28</td>
<td>23.33</td>
<td>29</td>
<td>24.17</td>
</tr>
<tr>
<td>F3_1</td>
<td>56</td>
<td>1738</td>
<td>78</td>
<td>4.49</td>
<td>15</td>
<td>9.93</td>
<td>22</td>
<td>14.57</td>
</tr>
<tr>
<td>F3_2</td>
<td>63</td>
<td>311</td>
<td>8</td>
<td>2.57</td>
<td>3</td>
<td>1.99</td>
<td>1</td>
<td>0.66</td>
</tr>
<tr>
<td>F3_3</td>
<td>57</td>
<td>1350</td>
<td>65</td>
<td>4.81</td>
<td>12</td>
<td>7.95</td>
<td>17</td>
<td>11.26</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>3399</td>
<td>151</td>
<td>4.44</td>
<td>30</td>
<td>19.87</td>
<td>40</td>
<td>26.49</td>
</tr>
<tr>
<td>Total</td>
<td>8693</td>
<td>337</td>
<td>73</td>
<td>21.66</td>
<td>85</td>
<td>25.22</td>
<td>64</td>
<td>18.99</td>
</tr>
</tbody>
</table>

Inf. = Informant
TW=Total words produced in interview
P=Proportion of hiatus to total words
TH=Total number of hiatus
C1 = /a + e/
C2 = /e + a/
C3 = /o + a/
C4 = /o + e/
common type of hiatus resolution by individual linguistic context. The types presented in the following tables are the same as in Table 4.7.

The labels utilized in tables 4.9 through 4.12 are listed below. The number column for each table represents the actual frequency of the item. The percentages are figured by dividing the number of frequencies by the total for the indicated hiatus pair. If there is a total of 115 /o + e/ pairs, then the numbers represented by the percentage column are calculated this figure and not from the total number of hiatus pairs by the group as a whole. The the labels in the extreme left column are represented by T1 through T6 as mentioned above. For the sake of convenience, they have been listed here again.

T1 = Pronounced in hiatus
T2 = High glide V₁
T3 = Non-high glide V₁
T4 = Non-high glide V₂
T5 = Elision of V₁
T6 = Elision of V₂

Table 4.9 Frequency and type of hiatus resolution for /o + e/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>50</td>
<td>14.84%</td>
</tr>
<tr>
<td>T4</td>
<td>27</td>
<td>8.01%</td>
</tr>
<tr>
<td>T3</td>
<td>20</td>
<td>5.93%</td>
</tr>
<tr>
<td>T5</td>
<td>9</td>
<td>2.67%</td>
</tr>
<tr>
<td>T6</td>
<td>9</td>
<td>2.67%</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Total</td>
<td>115</td>
<td>34.12%</td>
</tr>
</tbody>
</table>
For the /o + e/ context, the most recurring form of hiatus resolution was heterosyllabification, followed by non-high glide formation of V₂, non-high glide formation of V₁, elision of V₁, and elision of V₂. There were no cases of high glide formation with this hiatus pair.

Table 4.10 Frequency and type of hiatus resolution for /e + a/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>38</td>
<td>11.28%</td>
</tr>
<tr>
<td>T1</td>
<td>33</td>
<td>9.79%</td>
</tr>
<tr>
<td>T5</td>
<td>6</td>
<td>1.78%</td>
</tr>
<tr>
<td>T4</td>
<td>5</td>
<td>1.48%</td>
</tr>
<tr>
<td>T6</td>
<td>2</td>
<td>0.59%</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>0.30%</td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
<td>25.22%</td>
</tr>
</tbody>
</table>

The most common type of hiatus resolution in the /e + a/ was non-high glide formation of V₁. The second most common type was hiatus formation, followed by elision of V₁, non-high glide formation of V₂, elision of V₂, and heterosyllabification.

Table 4.11 Frequency and type of hiatus resolution for /a + e/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td>26</td>
<td>7.72%</td>
</tr>
<tr>
<td>T3</td>
<td>20</td>
<td>5.93%</td>
</tr>
<tr>
<td>T1</td>
<td>17</td>
<td>5.04%</td>
</tr>
<tr>
<td>T6</td>
<td>7</td>
<td>2.08%</td>
</tr>
<tr>
<td>T4</td>
<td>3</td>
<td>0.89%</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>21.66%</td>
</tr>
</tbody>
</table>

The most common type of hiatus resolution for the /a + e/ context was elimination of V₁ as indicated in Table 14. This is followed by non-high glide formation of V₁, hiatus formation, elision of V₂, non-high glide formation of V₂, and hiatus formation.
Table 4.12 Frequency and type of hiatus resolution for /o + a/

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>35</td>
<td>10.39%</td>
</tr>
<tr>
<td>T3</td>
<td>11</td>
<td>3.26%</td>
</tr>
<tr>
<td>T6</td>
<td>7</td>
<td>2.08%</td>
</tr>
<tr>
<td>T4</td>
<td>6</td>
<td>1.78%</td>
</tr>
<tr>
<td>T2</td>
<td>4</td>
<td>1.19%</td>
</tr>
<tr>
<td>T5</td>
<td>1</td>
<td>0.30%</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>18.99%</td>
</tr>
</tbody>
</table>

The most common form of hiatus resolution for the /o + a/ context was hiatus formation, followed by non-high glide formation of V₁, elision of V₂, non-high glide formation of V₂, high glide formation, and elision of V₁. This was the only linguistic context where high glide formation of V₁ did not result in the least utilized type of hiatus resolution. It is not uncommon that it should happen before the /a/ which represents the strongest vowel in the Spanish language, as opposed to happening before /e/. In Table 1.10 there is single case of high glide formation of /e/ which also occurs before /a/.

4.4 Analysis by Participant

4.4.1 F1 - Female Group 1 (16-32)

The total number of words produced by this group was 2,064 which represented 23.74% of all three female groups. The total number of cases of hiatus came out to sixty-six, representing 19.58% of total cases of hiatus produced by all female informants. Of the sixty-six total cases of hiatus, twenty-three (34.85%) remained in hiatus, 15 (22.73%) underwent non-high glide formation of V₁, 10 (15.15%) were resolved through elision of V₁, 8 (12.12%) were resolved through elision of V₂, 7 (10.61%) through non-high glide formation of V₂, and 3 (4.55%) underwent high glide formation of V₁. Of the total five cases of high glide formation of V₁, three occurred in this group.
4.4.1.1 Participant 1 of Female Group 1

This participant had a total of 1,112 words representing 53.88% of the total words produced. There were thirty-five cases of hiatus which made up 53.03% of the total. The proportion of hiatus production to verbal production was 3.15%.

HT

There were twelve cases where the hiatus remained hetero-syllabic, accounting for 34.29%. Four of these occurred in the /a + e/ context, four in the /e + a/ context, two in /o + a/, and two in /o + e/;

una elección, llevaba encañonada, fuera en, ya es, comprándole a su, que a ver(2), que hay, yo al lado, eso hay, yo estaba, pero es.

NHGV1

There were twelve cases of non-high glide formation of V1 making up 34.29%. Five of these occurred in the /e + a/ context, three in /o + a/, and four in /o + e/;

NHGV2

The total for non-high glide formation of V2 was three occurrences accounting for 8.57% of the total. One was in the /e + a/ context, and two in the /o + a/ context;

me acuerdo > m[eā]cuerdo, deseo a nadie > dese[oā]nadie, cuidando a los > cuedand[oā]los.

EV1

There was a total of four (11.43%) occurrences for elision of V1 which took place three times in the /a + e/ context and once in /e + a/;

traía en > trai[e]n, decía en > deci[e]n, para explicártele > par[e]xplicártele, me acuerdo > m[a]cuerdo.
EV$_2$

Just as in EV$_1$ there were a total of four hiatus pairs that underwent EV$_2$. Two of which occurred in the /o + a/ context and two in the /o + e/ context; *como ahorita > com[o]rita*, *vuelvo a lo mismo > vuelvo[l]omism*, *yo estoy (2) > y[o]stoy*.

HGV$_1$

There were no cases of high glide formation in this participant.

4.4.1.2 Participant 2 of Female Group 1

This participant had a total verbal production of 461 (22.34%), words which was the least out of the three participants in this group. The total number of hiatus was 16 resulting in 24.24%. The proportion of hiatus to total words produced was 3.47%. The most common form of hiatus resolution for this informant was non-high glide formation of V$_2$.

HT

Of the total sixteen hiatus pairs produced, 7 remained unresolved. This accounted for 43.75% of the total. There was one occurrence in the /a + e/ context, two in /e + a/, one in /o + a/ and three in /o + e/; *va existir, que hay, que hacer, confío así, no existe (2), desperdiciando el*.

NHGV$_1$

Non-high glide formation of V$_1$ accounted for a total of 12.50% with two occurrences in the /a + e/ context; *pasa es > pas[a]es, va existir > v[a]existir*.

NHGV$_2$

There were three occurrences of non-high glide formation of V$_2$ which made up 18.75%. These three cases were exclusive to the /e + o/ context; *dinero en > diner[o]n, todo está > tod[o]stá, todo es > tod[o]s*.
Elision of V1 accounted for 12.50% with a frequency of two total occurrences. One of the cases took place in the /e + a/ context and the other in /o + e/; *ese aspecto > es[a]specto, pero es > per[e]s.*

EV2

There was a total of one (6.25%) instance of elision of V2 which occurred in the /a + e/ context; *a Estados > [a]stados.* This utterance happened after a brief pause in the phase initial position.

HGV1

High glide formation of V1 had one total occurrence which made up the remaining 6.25%. The context in which it occurred was /o + a/; *tango así > teng[w]a/si.*

4.4.1.3 Participant 3 of Female Group 1

The total words produced by this informant were 491 which made up 23.79% of the total words produced by this group. Of these 491 words there was a total of 15 hiatus pairs which was the least amount produced of the three participants. The proportion of hiatus to verbal production was 3.05%. Elision of V1 was the most common type of hiatus resolution for this participant.

HT

Four cases of hiatus remained unresolved which accounts for 26.67% of the group. One of these occurred in the /a + e/ context, one in the /e + a/ context, one in /o + a/, and one in /o + e/; *a elegir, de ayudar, tengo algún, pero es.*

NHGV1

There was one (6.67%) occurrence of non-high glide formation of V1 that took place in the /o + a/ context; *como así > com[őa]sí.*

NHGV2
Non-high glide formation of V_2 had one (6.67%) frequency, which like in the case of non-high glide formation of V_1, occurred in the /o + a/ context; *affectando a nosotros* > *afectando* [oǎ] *nosotros*.

EV$_1$

There was a total of four (26.67%) cases of elision of V_1 which took place once in the /a + e/ context, once in /e + a/, and twice in /o + e/; *vista está > vist[e]stá, se ha hecho > s[a]hecho, pero es > per[e]s, cuando Estados > cuand[e]stados.*

EV$_2$

In the case of elision of V_2, there were a total of three occurrences accounting for 20% of the total. There were two in the /a + e/ context and one in /o + a/; *nunca he votado (2) > nuncavotado, tanto aquí > tant[o]quí.*

HGV$_1$

Two total instances of high glide formation of V_1 accounted for 13.33%. They both took place in the /o + a/ context; *tengo así > teng[wa]si, algo a > alg[wa].* The second case was phrase final.

4.4.2 Female Group 2 (33-54)

Total word production for this group was 3,230 which accounted for 37.16% of the 8,693 words produced by the entire female group. As far as hiatus is concerned, there were 120 total occurrences accounting for 35.61% of the female total. The proportion of hiatus to total word production of the group was 3.72%. Forty-two (35.00%) cases of hiatus remained in heterosyllabification. The most common type of hiatus resolution was non-high glide formation of V_1 with a frequency of twenty-nine, which made up 24.17%. There were twenty-three (19.17%) cases of elision of V_1, twelve (10%) cases of non-high glide formation of V_2, twelve (10.00%) of elision of V_2, and two (1.67%) of high glide formation of V_1.

54
4.4.2.1 Participant 1 of Female Group 2

This informant had a total verbal production of 1,084 words that represented 33.56% of the total words produced by group 2. The forty-two cases of hiatus made up 35% of the total number of hiatus. The proportion of hiatus to word production was 3.87% and the most common type of hiatus resolution was non-high glide formation of V₁.

HT

There were seventeen (40.48%) cases of hiatus that did not experience any form of resolution. Two occurred in the /a + e/ context, four in /e + a/, two in /o + a/ and nine in /o + e/; pensaba en, historia en, vote absolutamente, totalmente afinadas, fuese así, todo aquel, vuelto a votar, partido en, refiero es, no están.

NHGV₁

Seven (16.67%) cases of hiatus were resolved through non-high glide formation of V₁. This particular type had two occurrences in the /a + e/ context, four in /e + a/, and one in /o + e/; nunca el > nunc[ã]l, ya en > y[ã]n, de habitantes > d[ê]bitantes (2), se ha dado > s[ê]ado, interesante a nivel > interesant[ê]nivel, esto es > est[õ]s.

NHGV₂

There were four cases of non-high glide formation of V₂ accounting for 9.52% of cases of hiatus of this informant. One case occurred in the /e + a/ context, one in /o + a/ and two in /o + e/; que aquí > qu[eã]qui, no abandonan > n[oã]bانون, no es > n[oê]s, no en > n[oê]n.

EV₁

As far as elision of V₁ was concerned, there were a total of seven (16.67%) total frequencies. Six of which occurred in the /a + e/ context and one in /o + e/; nueva estructura > nuev[e]structura, la estructura > l[ê]structura, estructura establecida > estructur[e]stablecida, una espectativa > un[e]spectativa, ya en > y[e]n, una explotación >
In the odd-sounding case of ‘ya en’ the two words of the hiatus took place in the phrase *hicieron ya en el congreso* which upon the first several listenings actually sounded like *yeño congreso*. However, *yeño congreso* lacks meaning and it was then deduced that the participant was actually saying *ya en* with the total elision of /e/. In the spectrographic analysis there were no formants indicating the presence of /a/ but an extended /e/ maintaining a frequency of 2000 KH growing slightly higher towards /n/. It is uncommon, at least in the data in this study, to see vowel elision in temporal adverbs such as *ya* due to the emphatic functions they serve. However, in this particular speaker there was variation.

EV₂

There were five cases of elision of V₂ which accounted for 11.90%. There was one case in the /a + e/ context, one in /o + a/, and three cases in /o + e/; *ya estás > y[a]stás, otro aspecto > otr[a]specto, eso es (2) > es[o]s* as in ‘*y eso es lo que yo creo’ and ‘eso es parte del proceso’, *básico en > básic[o]n* as in the phrase ‘*básico en esa’.*

HGV₁

High glide formation of V₁ had a total of 2 occurrences; one in the /e + a/ context and one in /o + a/; *que a lo mejor > qu[ja]lomejor, voto aquí > vot[wa]qui.*

4.4.2.2 Participant 2 of Female Group 2

This participant produced a total of 1468 words which represents 45.45% of the total words produced in the group. There were fifty-five cases of hiatus which resulted in 45.83% of the total cases of hiatus for the group. The proportion of hiatus to the total amount of words produced was 3.75%. The most common form of hiatus resolution was non-high glide formation of V₁.

HT
Of the fifty-five cases of hiatus produced by this informant, 18 (32.73%) were unresolved. Four occurred in the /e + a/ context, seven in /o + a/, and seven in /o + e/; se autodestapó, que amolar, frente a la, mucho al, refiriendo a que, no hay, como explicar, voto en, poco enérgico.

NHGV₁

In the non-high glide formation of V₁ there was a total of 17 frequencies accounting for 30.91%. There were three instances in the /a + e/ context, five in /e + a/, three in /o + a/, and six in /o + e/; cada estado > cad[ã]estado, ganaba el > ganab[ã]l, la economía > l[ã]conomía, de acuerdo > d[ã]cuuerdo, de haber > d[ã]ber, estragicamente hablando > estragicament[ã]blando, acuerdo a la > acuerd[ã]la, no hay > n[õ]y, acabando al > acaband[õ]l, recuerdo el > recuerd[õ]l, sucediendo en > sucediend[õ]n, asunto económica > asunt[õ]conómico.

NHGV₂

Non-high glide formation of V₂ had three (5.45%) total occurrences. There was one case in the /a + e/ context, and two in /o + e/; gana es > gan[ã]s, conocido en > conocid[õ]n, sustento económico > sustent[õ]conómico.

EV₁

There were fifteen (27.27%) frequencies of elision of V₁ making this the second most common form of hiatus resolution for this informant. Ten of the fifteen cases occurred in the /a + e/ context, one in /e + a/, one in /o + a/, and three in /o + e/; va estar > v[e]star, para el > par[e]l, la elección > l[e]lección, pedía el > pedi[e]l, convertía en > converti[e]n, que ahorita > qu[a]orita, no había > n[a]bía, yo estoy > y[e]stoy, momento en > moment[e]n, sustento económico > sustent[e]conómico. In the case of yo estoy it is rare to find the elision taking place in yo since the inclusion of the pronoun is used in the context for emphatic purposes. However, given the speed in which the informant uttered the phrase ‘Yo estoy
completamente segura’ in a rather humorous tone, the elision of /o/ did not compromise its functional purpose or meaning. Two other rather unexpected cases like this one emerged in no había and momento en, but there was no compromising of meaning in either case. Another interesting case is that of the /a + e/ hiatus in va estar resolving as [bes.tár]. This contradicts historical observations that predict elision of V2 as in the more commonly found va ‘star.

EV₂

There were two (3.64%) cases of non-high glide formation of V₂ in F2_2’s production, which took place in the /a + e/ and the /o + e/ contexts; nisiquiera es > nisiquier[a]s, no está > n[o]stá.

4.4.2.3 Participant 3 of Female Group 2

Of the three informants that comprised group 2, participant 3 had the least verbal production with 678 words representing 20.99% of the total. As far as hiatus production was concerned, there were twenty-three cases making up 19.17%. The proportion of hiatus to total words produced was 3.39% and the most commonly used type of hiatus resolution was distributed evenly between non-high glide formation of V₁, non-high glide formation of V₂, and elision of V₂.

HT

Seven (30.43%) cases of hiatus did not undergo any type of hiatus resolution. There were three occurrences in /e + a/, three in /o + a/, and one in /o + e/; aunque hay, que absurdo, que hay, pero a lo, pero así, no odio a Bush, manipulado está.

NHGV₁

There were five (21.74%) frequencies of non-high glide formation of V₁. In the /a + e/ context there was one occurrence, and the remaining four were in the context of /e + a/; hasta el >
hastá, que ahorita > qu[ēa]horita, que ahora > qu[ēa]hora, que ha aplicado > qu[ēa]plicado, que hay > qu[ēa]y.

NHGV$_2$

Non-high glide formation of V$_2$ also had five occurrences accounting for another 21.74% of the data for the group. The contexts were one in /o + a/, and four in /o + e/; pero así > pero [oā]si, caído en > caído[ō]n, creo en > creo[ō]n, sano es > san[oē]s, haciendo en > haciendo[ō]n.

EV$_1$

There was only one (4.35%) occurrence of elision of V$_1$ which took place in the /e + a/ context; que han > qu[a]n.

EV$_2$

There were five total cases of elision of V$_2$ accounting for 21.74% of the remaining cases of hiatus for this informant. The linguistic contexts included one frequency in /a + e/, one in /e + a/, one in /o + a/ and two in /o + e/; la escuela > [a]escuela, que han > qu[e]n, hecho atrocidades > hech[o] atrocidades, voto el > vot[e]l, estado en > estad[o]n.

HGV$_1$

There were no cases of high glide formation in this participant.

4.4.3 Female Group 3 (55 +)

This group had a total verbal production of 3,399 words which represented 39.10% of the total words produced by the three groups of females. The total number of hiatus was 151, representing 44.81% of the total female group. The probability of hiatus to total words produced was 3.96%. There were a total of 70 (46.36%) hiatus pairs in heterosyllabification. The most common type of hiatus resolution was non-high glide formation of V$_1$, followed by non-high glide formation of V$_2$, elision of V$_1$ and finally, elision of V$_2$.

59
4.4.3.1 Participant 1 of Female Group 3

The total word production of this informant, 1,738, made up 51.13% of the total production of the group. The number of hiatus pairs was 78 (51.66%), and the proportion of hiatus to verbal production was 4.49%. Non-high glide formation of V₁ was the most highly used type of resolution.

HT

The great majority of hiatus pairs did not undergo resolution. The total number was 37 which accounted for 44.58%. There were five cases in the /a + e/ context, eight in /e + a/, nine in /o + a/, and fifteen on /o + e/; vaya en, piensa en, llegaba el, que ahorita, dije aquí, de acuerdo, puedo hacer, cosado al, como aquí, cuando en, no está, no entendían.

NHGV₁

There were a total of twenty-one (25.30%) cases of non-high glide formation. Six of these occurred in the /a + e/ context, nine in /e + a/, three in /o + a/, and three in /o + e/; vaya en > vay[aẽ]n, piensa en > piens[ãe]n, era el > er[ãe]l, se ha privatizado > s[ẽa]privatizado, se acaba > s[ẽa]caba, de acuerdo > d[ẽa]cuerdo, sino a nivel > sin[õa]nivel, todo a nivel > tod[õa]nivel, dañando a nosotros > dañand[õo]nosotros, cuando en > cuand[õe]n, no en > n[õe]n, todo el > tod[õe]l.

NHGV₂

There were a total of eleven (13.25%) cases of non-high glide formation of V₂. In the /e + a/ context there were three occurrences, one in /o + a/, and seven in /o + e/; dice aquí > dic[eẽ]qui, de acuerdo > d[eẽ]cuerdo, porque a nivel > porqu[eẽ]nivel, claro hay > clar[õo]y, pueblo está > puebl[õe]stá, uno en > un[õe]stá, no entienden > n[õe]ntienden.
There were of five cases of elision of V_1 (6.02%). Three of these were in the /a + e/ context, one in /e + a/, one in /o + e/; \textit{la experiencia} > l[e]xperiencia, \textit{existía} en > existí[e]n, \textit{aplaudía en} > aplaudi[e]n, \textit{porque ahora} > porqu[a]hora, pero es > per[e]s.

\textit{EV}_2

For elision of V_2 there were four (4.82%) total occurrences, of which there was one single occurrence in all four linguistic contexts; \textit{ya estoy} > y[a]stoy, \textit{porque a nivel} > porqu[e]nivel, \textit{yo acuso} > y[o]cuso, \textit{yo estoy} > y[o]stoy.

\textit{HGV}_1

There were no cases of high glide formation of this participant.

\textbf{4.4.3.2 Participant 2 of Female Group 3}

This informant had the lowest verbal production of the group 3 with only 311 words total accounting for 9.15\% of the total verbal production. One possible reason for this disparity could be owed to the fact that the interview was done in the informant’s workplace, whereas the other two informants of this group were interviewed in casual settings. The total amount of cases of hiatus was eight (5.30\%), which had a proportion of 2.57\% of total word production. The most common form of hiatus resolution was non-high glide formation of V_1.

\textit{HT}

Of the eight total cases of hiatus, five (62.50\%) did not show any type of resolution. There was one case in the /a + e/ context, three in /o + a/, one in /o + e/; \textit{campaña empezó}, \textit{no hay}, \textit{esto ha sido}, \textit{incluyendo a los}, \textit{lado es}.

\textit{NHGV}_1

There were two (25\%) frequencies of non-high glide formation, one of which occurred in the /a + e/ context and one in /e + a/; \textit{democracia está} > \textit{democrac[jã]stá}, \textit{se ha desatada} > s[êa]desatado.
NHGV$_2$

There were no cases of non-high glide formation of V$_2$.

EV$_1$

There was one (12.50%) case of elision of V$_1$ which occurred in the /a + e/ context; *venía en veni[e]n*.

EV$_2$

There were no cases of elision of V$_2$

HGV$_1$

There were no cases of high glide formation.

4.4.3.3 Participant 3 of Female Group 3

The total lexical production for female participant three was 1,350 words, which made up 39.72% of the group. There were 65 cases of hiatus resulting in 43.05%. The proportion of hiatus frequency to total speech was 4.81%, which was the highest of all three participants. The most common type of hiatus resolution employed was non-high glide formation of V$_1$.

HT

The total number of unresolved hiatus pairs came resulted in twenty-eight occurrences representing 43.08%. There were three cases of hiatus in the /a + e/ context, seven in /o + a/, and eleven in /o + e/; *para el, funciona en, agua en, bastante ambiciosa, porque han, se aprovecharon, ido agravando, subido al, cuanto habían, no estoy, yo espero, mundo están*.

NHGV$_1$

Non-high glide formation of V$_1$ had 22 (33.85%) occurrences. There were five cases in the /a + e/ context, ten in /e + a/, one in /o + a/, and six in /o + e/; *nada en > nad[ā]n, tristeza en > tristez[ā]n, ninguna empresa > ningun[ā]mpresa, que actualmente > qu[ēa]ctualmente, que*

NHGV₂

There were eleven (16.92%) occurrences of non-high glide formation of V₂. Two of which were in the /a + e/ context with the remaining nine in /o + e/; cultura en > cultur[aë]n, bomba estalle > bomb[aë]stalle, no es > n[öe]s, todo el > tod[öe]l, esto es > est[öe]s, acabando el > acaband[oë]l.

EV₁

There was a total of three (4.62%) frequencies for elision of V₁, two of which occurred in the /a + e/ context and one in /o + e/; una etapa > un[e]tapa, la ecología > l[e]cologia, pero está > per[e]stá.

EV₂

There was one (1.54%) single occurrence of elision of V₂ which took place in the /o + a/ context; como automovilista > cóm[o]útomobilista.

4.4.4 Summary of Female Group

Just as with the male group, the oldest generation females had the highest volume of speech with 3,399 words. However, the difference between the oldest group and the middle group, which had 3,230 words, was slight. The least amount of word production was in the youngest group, with a total of 2,064. As far as frequencies of hiatus pairs, the females also followed the same pattern as the males with the highest number belonging to G3, 151, followed G2, 120, and G1 with 66.

The group that had the most cases of unresolved hiatus pairs was the oldest, 46.36%, while there was relatively even distribution between the group 1, 34.85%, and group 2, 35.00%. The highest number of cases of high glide formation of V₁ belonged to group 1, 3 (4.55%),
followed group 2, 2 (1.67%). There were no cases of this type of hiatus resolution present in group 3. Percentage-wise, all three groups favored non-high glide formation of V₁ as the most common form of resolution. There was relatively even distribution amongst the groups with a gradual increase from the youngest to the oldest group. There was little variation in non-high glide formation of V₂, contrary to what was reported in the male group. We do see a significant difference, however, in the case of elision of V₁ where group 1 (15.15%) and group 2 (19.17%) had higher percentages than F3 (5.96%). This is also true in the case of elision of V₂.

The only significant difference in linguistic contexts is in the case of female group 1 where there is almost 10% more occurrences of /o + a/ than the other two groups. This can be owed to the extensive use of high frequency pairs such as pero a, no hay, como así, como ahí... throughout the speech of each informant.

The following section discusses the findings of this study by answering the research questions set forth in Chapter 3.
CHAPTER 5. DISCUSSION OF FINDINGS

5.1 Research Question I: What Are the Principal Types of Hiatus Resolution in Mexico City Spanish?

From the results observed in this study, it can be concluded that the majority of vowels in hiatus in the contexts of /a + e/, /e + a/, /o + a/ and /o + e/ remain in heterosyllabification. This finding is consistent with the *Atlas Lingüístico de México* (Lope Blanch et. al 1990, Map 13) which had nearly identical rates of frequency. When hiatus resolution does occur in these contexts, they are found in the following order; 1) non-high glide formation of V₁, 2) non-high glide formation of V₂, 3) elision of V₁, 4) elision of V₂, 5) high glide formation of V₁. These results are also similar to Harris (1970) in that non-high glide formation of V₁ is the most commonly encountered type of hiatus resolution in Mexico City Spanish. On the other hand, the results differ from the observations of Marden (1896), Matluck (1951) and Blanch (1972), in that there were few cases of high glide formation of V₁ or V₂. The reason for this distinction could be the difference in sociolinguistic variables of the participants in each investigation. However, it is difficult to make an accurate comparison since the works mentioned do not relate specific details about their participants in relation to specific outcomes.

Being that previous studies have not typically listed the non-high glide formation of V₂ as a common feature of Mexico City Spanish, the overall results in the present study attest that this characteristic is not only present in this dialect, but pervasive in free conversational speech. Non-high glide formation of V₂, which is characteristic of peninsular Spanish in the falling sonority context (Hualde 1994), had not been reported as common in standard Mexican Spanish in general, much less when occurring in sonority plateau /o + e/. One logical reason for this appears to be rooted in the tendency of the /e/ phoneme to occur word-initially.

8 As cited in Morris (1998).
before a nasal, which causes vowel weakening (Quilis 1981: 186). This phonological change
provokes non-high glide formation in high frequency lexical pairs such as pero en, como en, momento en, ya en. Another contributing factor can be found at the intonational/meaning level, as
many words beginning with /e/ such as estar, en, es, estamos are considered functional words and usually undergo weakening in connected speech given their weak of semantic load.

Elision of V₂ was common in the context of /o/ + /a/ or /e/ where phoneme /o/ held
dominance in high frequency pairs such as yo’stoy, lo’stà. Since vowels weaken in Mexico City Spanish when they are in contact with /s/ (Lope Blanch 1972), the preference for
maintaining the /o/ phoneme is the expected outcome.

Elision of V₁, the forth most common type of hiatus resolution, displayed a very
interesting trend in the context of /a + e/ where /a/ loses sonority ranking to /e/ and undergoes
elision. This is uncommon given the ‘strength’ of the /a/ vowel that does not elide in standard
dialects, but at most undergoes non-high glide formation. It is interesting to note, however,
that Hutchinson (1974) and Reyes (1976) report elision in Chicano Spanish of /a/ in the
context of /a/ + /e/. The absence of this type of resolution in previous studies of Mexico City
Spanish suggests evolutionary change in the emergence of this feature today.

High glide formation of V₁ had been reported as the most common type of hiatus
resolution of Mexico City Spanish in the earliest investigations. However, it is evident from
the results gathered here that high glide formation in word boundary hiatus has waned
considerably as this feature resulted as the least common type of resolution.

9 Quilis asserts that nasalization occurs word initially + [+nasal] and between nasals in Spanish
10 Ser and estar considered functional as apposed to more meaning-bearing verbs like correr, comer, buscar etc.
5.2 Research Question II: Do the Sociolinguistic Variables of Age and Gender Affect the Types of Hiatus Resolution in Mexico City Spanish?

5.2.1 Gender Differences

The major difference found in types of hiatus resolution across gender is that of the preference of female speakers to elide \(V_1 \), which had a significantly higher proportion than male speakers. However, it was more common in male speakers to elide \(V_2 \). Contrastively, female speakers have less usage of non-high glide formation of \(V_2 \). Besides these observations, there was little variation among the other types of hiatus resolution between genders. Where variation did exist however, was in the type of resolution utilized per linguistic context. The most notable of these cases was the elision of \(V_1 \) in the \(/a + e/ \) context, where females tended to elide \(/a/ \). Figure 5.1 illustrates \(V_1 \) elision in *feature geometry* where the dorsal place of articulation of \(/a/ \) is substituted by the features [-high], [-low] and [-back] of the \(/e/ \) phoneme’s place of articulation, causing retroactive assimilation and then elision\(^{11}\).

![Feature geometry of elision of \(V_1 \)](image)

Figure 5.1 Feature geometry of elision of \(V_1 \) \([\text{la.es.kwé.la}] > [\text{les.kwe.la}]\)

Figure 5.2 illustrates the opposite of Figure 5.1 where \(V_2 \) assimilates to \(V_1 \) and is then elided. In the data for this study, elision of \(V_2 \) is not as common.

\(^{11}\) The second process is known as degemination after vowels have gone through assimilation (see Morris 1998).
Figure 5.2 Feature geometry of elision of V$_2$ [la.es.kwé.la] > [las.kwé.la]

Although the observations in Figures 5.1 and 5.2 provide some insight at the segmental level, there is still investigation to be done at the supra-segmental level where metrical patterns and sentence function ultimately play a role. However, such an analysis is beyond the scope of the present study.

5.2.2 Age Differences

One major difference among the three age groups was that older speakers produced significantly more cases of hiatus than their younger counterparts. The reason being may be rooted in adherence to a stricter more orthographic pronunciation style owed to more traditional educational ideologies. Another point that contributes to this hypothesis is the lack of vowel elision in older participants, which is widespread in the youngest group.

Age group 2 was more like age group 3 in their patterns of hiatus resolution. The only major difference was the slightly higher percentage of non-high glide formation of V$_2$. This can be attributed to the high volume of /o + e/ hiatus pairs in this group such as *como en, como el, todo está, visto en* where V$_2$ weakened due to sentence-level phenomena.

5.3 Conclusion

In this study one can conclude that the types of hiatus resolution in Mexico City Spanish are complex and difficult to categorize under the definition of one or two specific
linguistic rules. Since language is indeed a living organism, evolution is inevitable; yet by taking the complexity of its speakers into account, it is possible to gain some understanding of these dynamic changes. This study has shown that the variables of age and gender affect not only the type of hiatus resolution utilized, but also the manner in which these types behave in four linguistic contexts in the Spanish spoken by eighteen participants from Mexico City.

5.4 Limitations of the Study

One of the major limitations of this study was the fact that it focused on one sector of the population of Mexico City as far as socioeconomic variables are concerned. This may have implications on the findings given that earlier works including the speech of the inferior socioeconomic classes brought forth different results. Furthermore, the very nature of conversational topics selected may have influenced participants to produce more formal language as political topics can be considered formal by nature. Topics such as local culture, daily routines or sports surely would have demanded less reliance on worldly knowledge and less self-awareness. Another limitation was the fact that some of the recordings were carried out in settings where background noises such as horns blowing, dogs barking, and background voices sometimes became an issue. As a result, some analyses of hiatus had to be discarded. However, these did not represent the majority.

Since the objective of this study was to discover the how and not the why of hiatus resolution in Mexico City Spanish, there is no phonological rule or set of rules set forth that neatly clarify the issue. Perhaps an analysis of phrase level phenomena such as metric patterns would offer an insightful explanation as to what influences the choices speakers make when it comes to resolving word boundary vowel hiatus.
BIBLIOGRAPHY

APPENDIX A: QUESTIONNAIRE: CUESTIONARIO LINGÜÍSTICO

I. Datos Personales
Conteste las siguientes preguntas

Nombre/s ____________________ Apellidos ____________________
Sexo __________ Edad _________
Lugar de residencia _______________ Lugar de nacimiento _______________
Escuela _______________ Grado _______________

Años de residencia en la Ciudad de México _______________
Profesión _______________
Lengua materna de su madre _______________
Lengua materna de su padre _______________
Lugar de nacimiento de su madre _______________
Lugar de nacimiento de su padre _______________
Número de integrantes en su familia _______________

Marque con (X) (Sólo una opción)

<table>
<thead>
<tr>
<th>Nivel académico de su padre</th>
<th>Primaria</th>
<th>Secundaria/ Técnica</th>
<th>Preparatoria/ Técnica</th>
<th>Licenciatura/ Pasante</th>
<th>Posgrado</th>
<th>Otro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nivel académico de su madre</th>
<th>Primaria</th>
<th>Secundaria/ Técnica</th>
<th>Preparatoria/ Técnica</th>
<th>Licenciatura/ Pasante</th>
<th>Posgrado</th>
<th>Otro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>
APPENDIX B: SAMPLE TRANSCRIPT FOR INFORMANT 1 OF FEMALE GROUP 1

Sex: Feminine, Age: 28, Place of residence: Mexico City, Place of birth: Mexico City, Educational level: College, Years of residence in Mexico City: 26 años, Profession: Project leader, Mother’s native language: Spanish, Father’s native language: Spanish, Mother’s place of birth: Mexico City, Father’s place of birth: Mexico City

Interviewer 1 –este...
¿Qué opinas de las elecciones en México...
que vienen?

Informant – Pues
yo digo que son muy malas
porque cada vez estamos peor.
Entonces
yo la verdad ni voto.

Interviewer 1 - ¿Y, y las...
cómo que están...este..?

Informant – Si
en cuestión de
el gobierno
¿no?
Eee...
yo veo que en lugar de...
de que sea un país que salga adelante
vamos cada vez...
hacia abajo.
Entonces yo siento que...
que...
ser una elección...
no nos lleva nada bueno
porque...
puedes opinar por équis partido...
y al final de cuentas
te das...
te das cuenta
que en realidad no...
no es lo que tu creías o lo que tú esperabas.

Interviewer 1 – Por ejemplo
con el cambio...
del...
del...
del PRI al PAN...
¿Tú crees que no hubo nada de...?

Informant – No.
Yo digo que estuvieron peor.
Porque...
porque Fox...
en realidad no ha hecho nada.
Al contrario o sea...
hay más delincuencia
hay más secuestros
hay más este...
crimen...
organizado.
Yo siento que no.
Por lo menos cuando estaba este...
Zedillo y este Salinas de Gortari...
o sea...
quizá a lo mejor si había cosas así o cuestiones así
pero no se...
no se dio a notar tanto como ahorita que está...
que está este Fox.
Y...
y no hace nada
o sea él se la vive comprándole a
su mujer este...
sábanas y...
no sé que tantas cosas
de un precio superalto.
Se va
ella con todos sus...
el
ella
y todos sus hijos
que a ver al Papa
que a ver al presidente de no sé donde.
Entonces es
mucho dinero el que se está perdiendo ahí
que se puede utilizar en otras cosas
¿no?
Simplemente en los policías.
¿Cuánto ganan?
Ellos empiezan a decir...
“¿Sabes que?
este...
Tal policía...
ee... le encontramos robando.”
Pues, es obvio.
Con el sueldo que ganan se exponen.

Interviewer 2 – (incomprensible)

Informant – Ajá.
O sea...
en cuestiones así.
Yo digo que estamos peor.
Es mi opinión.

Interviewer 1 – Y...
aquí en la Ciudad de Mexico tú piesas que hay más...
crimen...
más...?

Informant – Ay no si aquí en la Ciudad de Mexico [está horrible.]

Interviewer 2 – [¿Te ha pasado algo?]

Informant – Sí a mí me acaban de asaltar en enero.

Interviewer 2 – ¿En dónde?

Informant – Aquí en la colonia Doctores.
Me asaltaron.
Fue un...
Un...
[se...]

Interviewer 1 – [¿Nos puedes decir...?]

Informant Un secuestro.
Este...
[sí.]

Interviewer 2 – [¿Un secuestro?]

Informant – Se subieron a mi carro.
Me trajeron como cuarenta minutos mas o menos... dando vueltas...
este...
se robaron mi computadora
mi celular...
pero bueno...
dentro de todo los males
el menor
porque...
el que me asaltó...
fue una persona que se portó bien...
no me...
no me tocó
no me
este...
dijo
ninguna grosería.
No me maltrató.
Nada mas me llevaba...
me llevaba encañonada con una pistola aquí en el cuello.
y...
y...
me fue a dejar hasta...
la Monctezuma por donde están unas vías.

Interviewer 2 – ¿Te bajó del carro?

Informant – Me bajó
pero me dio cien pesos para que me fuera en un taxi [a mi casa.]

Interviewer 1 – [¿Y qué hicieron con el carro?]

Informant – Este
no sé.
Perdón se lo llevó.

Interviewer 1 – A sí.

Informant – Sí
al otro día
ya estaba a las cinco de la mañana ya me estaban hablando.
Pero...

Interviewer 2 – ¿Dónde?
[No puede ser...]

Informant – [Es una impotencia.]
Eran cuarto para las ocho.
Interviewer 2 – ¿De la noche?

Informant – Sí.

Pero acabo de ver un asalto hace como quince o veinte días... atrás del carro de donde yo estaba. Dos le llegaron con... con una pistola. Y cada vez voy viendo cosas. O sea no sé si... si... si sea por los nervios que los atraigo o que yo ya nada mas estoy a las vivas de que a ver en que momento me pasa algo. Pero sí...

Interviewer 2 - ¿Tu carro es... era llamativo?

Informant – Es un Chevy Pop. O sea

no trae ya ni los vidrios polarizados ni un estereo que tu dijeras “llama la atención”. Mi bolsa la traía abajo. Mi computadora la traía en la cajuala. O sea no... no podía llamar la atención.

Interviewer 1 – Pero andabas por la Colonia...

Interviewer 2 – [Doctores.]

Informant – [Este]...

en realidad la calle no me acuerdo. Pero era una... un... esa calle me saca a la avenida del taller. Era una... un semáforo antes de...

Eje Central.
Era un niño que tenía no... ni dieciocho años.

Interviewer 1 - ¿Nada mas una persona?

Informant – Era uno nada mas.

Interviewer 2 - ¿Y no le viste la cara?

Informant – Sí. Sí pero este... [Vuelvo a lo mismo. O sea al gobierno...]

Interviewer 1 – [¿Y te sacaron dinero?]

Informant – No. No afortunadamente no me sacaron nada de dinero de...

Interviewer 2 – Era primerizo entonces...

Informant – Pues no sé pero... yo me imagino que él estaba dando vueltas por ahí porque me trajo por ahí por la Doctores... a... él andaba yo... me imagino que dando vueltas para buscar a alguien que se fuera con nosotros para poder pasar a los cajeros porque me pidió mis números de NIP. Entonces este... todas las cancelaron. Todas mis tarjetas que llevaba las cancelaron. Hasta las que estaban en mi casa porque mi mamá de los nervios... se puso a cancelar todas. Pero es lo que te digo... [o sea...]

Interviewer 1 – [¿Traía tu licencia y todo?]
Informant – Mi licencia yo la acababa de sacar.

Tenía dos días que la acababa de sacar la permanente.

Entonces todo...

todo
todo
todo

se llevó.
Todo se llevó.

Y es una impresión muy fuerte, ¿no?

Que...

hasta ahorita ya pasaron

cuatro meses y yo sigo

mal de los nervios en realidad...
yo estoy...
yo estoy muy mal de los nervios.

Interviewer 2 – ¡Santo Dios!

Informant – Entonces sí...

Interviewer 2 – Sobre todo dices

“en cuanto no me tocaron.”

[¡Pero el miedo!]

Informant – [Sí.]

Interviewer 2 – […] de lo que estabas viviendo en este momento.]

Informant – [Y es que yo siento]...
todavía hasta la fecha yo siento cosas aquí en el cuello

pero es de lo mismo de que la pistola la traía aquí.

Yo decía en cualquier momento

se le va salir

un balazo

¿no?

Porque con una mano iba manejando

y metiendo velocidades...

Interviewer 1 – ¿El iba?

Informe – Sí

él solo.

O sea yo al lado.

Y que me decía

“sabes que,
no te muevas y agáchate.”
Y al ver una patrulla así al lado de nosotros
y...
y...
con la impotencia de no poder ni voltear porque decía “pues aquí me mata.”
Entonces
yo siento que
es algo...

Interviewer 1 – Horrible.

Informant – Horr...

no...
fue horrible
pero yo siento que el gobierno no no...
no hace nada...
o sea...
nada.
Se ponen a gastar el dinero que...
que en el nuevo
periférico...
que en el nuevo distribuidor.
Siento que ese dinero lo pueden ocupar en empleos...
este...
en pagarles más a los policías.
No sé...
cuestiones así, ¿no?

Interviewer 2 – Sí es muy fuerte lo que nos cuentas.

Informant – Sí.

no
sí.
no...
Es algo que se lo deseo a nadie.
Ni a mi peor enemigo.
Porque es algo
horrible
de verdad
horrible...

Interviewer 2 - ¿Y levantaste acta?

Informant – Sí.
Sí
este...
de hecho...
Fui a levantar el acta.
Fui hacer el...
este famoso...
dibujo...

Interviewer 2 – ¿Hablado?

Informant – El retrato hablado
ese.
Pero no...
cada que
agarran a uno...
te citan...
y te citan y te citan y te citan
¿para qué?
Porque no los agarran.
O sea finalmente no los agarran.
Entonces ya es la corrupción tan grande que hay...
de que hasta los mismos policías andan cuidando a los rateros.
Yo digo que no.

cambiando de tema.
Este...
¿qué, qué opinas de la...
del...
conflicto en Irak?

Interviewer 2 – De la guerra.

Informant – No.

Es algo
igual ¿no?
Es algo
que...
no,
no...
no tengo ni palabras para explicártelo.
Simplemente con el hecho de ver a los niños
como sufren
como se mueren
no
es algo horrible.

Interviewer 2 - ¿Tú crees que es justo?
Informant – No.

Claro que no.
Yo digo que si hay problemas entre diversos países...
creo que por eso hay un gobierno, ¿no?
En el que lo tienen que ellos solucionar
y no llegar a matar tanta gente que...
no tiene ni...
la culpa de tantos problemas que hay.
APPENDIX C: LINGUISTIC CONTEXTS AND TYPE OF HIATUS RESOLUTION PER INDIVIDUAL PARTICIPANT

T1 = Remained in hiatus, T2 = High glide formation of V₁, T3 = Non-high glide formation of V₁, T4 = Non-high glide formation of V₂, T5 = Elision of V₁, T6 = Elision of V₂

1. Female participants

1.1 Female group 1 (18 – 32)

1.1.1 Participant 1 of female group 1

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>4</td>
<td>11.43</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>3</td>
</tr>
<tr>
<td>ea</td>
<td>4</td>
<td>11.43</td>
<td>0</td>
<td>0.00</td>
<td>5</td>
<td>14.29</td>
<td>1</td>
</tr>
<tr>
<td>oa</td>
<td>2</td>
<td>5.71</td>
<td>0</td>
<td>0.00</td>
<td>3</td>
<td>8.57</td>
<td>2</td>
</tr>
<tr>
<td>oe</td>
<td>2</td>
<td>5.71</td>
<td>0</td>
<td>0.00</td>
<td>4</td>
<td>11.43</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>34.29</td>
<td>0</td>
<td>0.00</td>
<td>12</td>
<td>34.29</td>
<td>3</td>
</tr>
</tbody>
</table>

1.1.2 Participant 2 of female group 1

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>1</td>
<td>6.25</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>12.50</td>
<td>0</td>
</tr>
<tr>
<td>oa</td>
<td>2</td>
<td>12.50</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>oe</td>
<td>3</td>
<td>18.75</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>43.75</td>
<td>1</td>
<td>6.25</td>
<td>2</td>
<td>12.50</td>
<td>3</td>
</tr>
</tbody>
</table>

1.1.3 Participant 3 of female group 1

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>1</td>
<td>6.67</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>ea</td>
<td>1</td>
<td>6.67</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>oe</td>
<td>1</td>
<td>6.67</td>
<td>2</td>
<td>13.33</td>
<td>1</td>
<td>6.67</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>26.67</td>
<td>2</td>
<td>13.33</td>
<td>1</td>
<td>6.67</td>
<td>4</td>
</tr>
</tbody>
</table>

1.2 Female group 2 (33 – 53)

1.2.1 Participant 1 of female group 2

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>2</td>
<td>4.76</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>4.76</td>
<td>0</td>
</tr>
<tr>
<td>ea</td>
<td>4</td>
<td>9.52</td>
<td>1</td>
<td>2.38</td>
<td>4</td>
<td>9.52</td>
<td>1</td>
</tr>
<tr>
<td>oe</td>
<td>2</td>
<td>4.76</td>
<td>1</td>
<td>2.38</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>40.48</td>
<td>2</td>
<td>4.76</td>
<td>7</td>
<td>16.67</td>
<td>4</td>
</tr>
</tbody>
</table>
1.2.2 Participant 2 of female group 2

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>5.45</td>
<td>1.82</td>
<td>1.82</td>
<td>27.27</td>
</tr>
<tr>
<td>ea</td>
<td>7.27</td>
<td>0.00</td>
<td>9.09</td>
<td>0.00</td>
<td>1.82</td>
<td>0.00</td>
<td>18.18</td>
</tr>
<tr>
<td>oa</td>
<td>12.73</td>
<td>0.00</td>
<td>5.45</td>
<td>0.00</td>
<td>1.82</td>
<td>0.00</td>
<td>20.00</td>
</tr>
<tr>
<td>oe</td>
<td>12.73</td>
<td>0.00</td>
<td>10.91</td>
<td>3.64</td>
<td>5.45</td>
<td>1.82</td>
<td>34.55</td>
</tr>
<tr>
<td>Total</td>
<td>18.00</td>
<td>32.73</td>
<td>30.91</td>
<td>5.45</td>
<td>15.27</td>
<td>2.36</td>
<td>55.00</td>
</tr>
</tbody>
</table>

1.2.3 Participant 3 of female group 2

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>4.35</td>
<td>0.00</td>
<td>4.35</td>
<td>8.70</td>
</tr>
<tr>
<td>ea</td>
<td>13.04</td>
<td>0.00</td>
<td>17.39</td>
<td>0.00</td>
<td>4.35</td>
<td>9.09</td>
<td>39.13</td>
</tr>
<tr>
<td>oa</td>
<td>13.04</td>
<td>0.00</td>
<td>0.00</td>
<td>1.43</td>
<td>0.00</td>
<td>4.35</td>
<td>21.74</td>
</tr>
<tr>
<td>oe</td>
<td>4.35</td>
<td>0.00</td>
<td>17.39</td>
<td>0.00</td>
<td>2.00</td>
<td>8.70</td>
<td>30.43</td>
</tr>
<tr>
<td>Total</td>
<td>7.00</td>
<td>30.43</td>
<td>5.21</td>
<td>5.21</td>
<td>1.43</td>
<td>5.21</td>
<td>23.00</td>
</tr>
</tbody>
</table>

1.3 Female group 3 (54+)

1.3.1 Participant 1 of female group 3

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>5.61</td>
<td>0.00</td>
<td>6.79</td>
<td>0.00</td>
<td>3.85</td>
<td>1.28</td>
<td>19.23</td>
</tr>
<tr>
<td>ea</td>
<td>10.26</td>
<td>0.00</td>
<td>11.54</td>
<td>3.85</td>
<td>1.28</td>
<td>1.28</td>
<td>28.21</td>
</tr>
<tr>
<td>oa</td>
<td>11.54</td>
<td>0.00</td>
<td>3.85</td>
<td>1.28</td>
<td>0.00</td>
<td>1.28</td>
<td>17.95</td>
</tr>
<tr>
<td>oe</td>
<td>19.23</td>
<td>0.00</td>
<td>3.85</td>
<td>7.87</td>
<td>1.28</td>
<td>1.28</td>
<td>27.42</td>
</tr>
<tr>
<td>Total</td>
<td>37.44</td>
<td>0.00</td>
<td>21.62</td>
<td>11.40</td>
<td>5.61</td>
<td>4.13</td>
<td>78.00</td>
</tr>
</tbody>
</table>

1.3.2 Participant 2 of female group 3

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>1.25</td>
<td>0.00</td>
<td>12.50</td>
<td>0.00</td>
<td>1.25</td>
<td>0.00</td>
<td>3.75</td>
</tr>
<tr>
<td>ea</td>
<td>0.00</td>
<td>0.00</td>
<td>12.50</td>
<td>0.00</td>
<td>0.00</td>
<td>1.25</td>
<td>12.50</td>
</tr>
<tr>
<td>oa</td>
<td>37.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.75</td>
<td>37.50</td>
</tr>
<tr>
<td>oe</td>
<td>12.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>12.50</td>
</tr>
<tr>
<td>Total</td>
<td>5.00</td>
<td>62.50</td>
<td>25.00</td>
<td>2.00</td>
<td>12.50</td>
<td>0.00</td>
<td>80.00</td>
</tr>
</tbody>
</table>

1.3.3 Participant 3 of female group 3

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>3.62</td>
<td>0.00</td>
<td>5.76</td>
<td>2.08</td>
<td>3.08</td>
<td>0.00</td>
<td>12.46</td>
</tr>
<tr>
<td>ea</td>
<td>10.77</td>
<td>0.00</td>
<td>15.38</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>26.15</td>
</tr>
<tr>
<td>oa</td>
<td>10.77</td>
<td>0.00</td>
<td>1.54</td>
<td>0.00</td>
<td>0.00</td>
<td>1.54</td>
<td>13.85</td>
</tr>
<tr>
<td>oe</td>
<td>16.92</td>
<td>0.00</td>
<td>9.23</td>
<td>9.83</td>
<td>1.54</td>
<td>0.00</td>
<td>41.54</td>
</tr>
<tr>
<td>Total</td>
<td>28.00</td>
<td>43.08</td>
<td>33.85</td>
<td>11.62</td>
<td>3.62</td>
<td>1.54</td>
<td>65.00</td>
</tr>
</tbody>
</table>
2. Male participants

2.1 Male group 1 (18-32)

2.1.1 Participant 1 of male group 1

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>1</td>
<td>10.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>ea</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>10.00</td>
<td>0</td>
<td>1</td>
<td>30.00</td>
</tr>
<tr>
<td>oa</td>
<td>1</td>
<td>10.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>oe</td>
<td>1</td>
<td>10.00</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>50.00</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>30.00</td>
<td>1</td>
<td>10.00</td>
<td>1</td>
<td>1</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2.1.2 Participant 2 of male group 1

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>4.76</td>
<td>0</td>
<td>2</td>
<td>9.52</td>
<td>1</td>
<td>4.76</td>
<td>28.57</td>
</tr>
<tr>
<td>ea</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>9.52</td>
<td>0</td>
<td>1</td>
<td>14.29</td>
</tr>
<tr>
<td>oa</td>
<td>4.76</td>
<td>0</td>
<td>1</td>
<td>4.76</td>
<td>0</td>
<td>1</td>
<td>33.33</td>
</tr>
<tr>
<td>oe</td>
<td>9.52</td>
<td>0</td>
<td>1</td>
<td>4.76</td>
<td>0</td>
<td>2</td>
<td>23.81</td>
</tr>
<tr>
<td>Total</td>
<td>19.05</td>
<td>0</td>
<td>6</td>
<td>28.57</td>
<td>1</td>
<td>9.52</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2.1.3 Participant 3 of male group 1

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>6.67</td>
<td>0</td>
<td>2</td>
<td>13.33</td>
<td>1</td>
<td>6.67</td>
<td>26.67</td>
</tr>
<tr>
<td>ea</td>
<td>3</td>
<td>20.00</td>
<td>0</td>
<td>6.67</td>
<td>0</td>
<td>4</td>
<td>31.11</td>
</tr>
<tr>
<td>oa</td>
<td>0</td>
<td>0.00</td>
<td>4</td>
<td>26.67</td>
<td>0</td>
<td>1</td>
<td>33.33</td>
</tr>
<tr>
<td>oe</td>
<td>13.33</td>
<td>0</td>
<td>4</td>
<td>26.67</td>
<td>0</td>
<td>1</td>
<td>13.33</td>
</tr>
<tr>
<td>Total</td>
<td>40.00</td>
<td>0</td>
<td>7</td>
<td>46.67</td>
<td>1</td>
<td>6.67</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2.2 Male group 2 (33-53)

2.2.1 Participant 1 of male group 2

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>2</td>
<td>4.44</td>
<td>2</td>
<td>4.44</td>
<td>1</td>
<td>2.22</td>
<td>17.78</td>
</tr>
<tr>
<td>ea</td>
<td>3</td>
<td>6.67</td>
<td>10</td>
<td>22.22</td>
<td>1</td>
<td>2.22</td>
<td>31.11</td>
</tr>
<tr>
<td>oa</td>
<td>3</td>
<td>6.67</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>2.22</td>
<td>11.11</td>
</tr>
<tr>
<td>oe</td>
<td>4</td>
<td>8.89</td>
<td>3</td>
<td>6.67</td>
<td>7</td>
<td>15.56</td>
<td>40.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>26.67</td>
<td>16</td>
<td>35.56</td>
<td>9</td>
<td>20.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2.2.2 Participant 2 of male group 2

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>2</td>
<td>3.51</td>
<td>4</td>
<td>7.02</td>
<td>3</td>
<td>5.26</td>
<td>26.32</td>
</tr>
<tr>
<td>ea</td>
<td>7</td>
<td>12.28</td>
<td>8</td>
<td>14.04</td>
<td>0</td>
<td>0.00</td>
<td>26.32</td>
</tr>
<tr>
<td>oa</td>
<td>8</td>
<td>14.04</td>
<td>0</td>
<td>1.75</td>
<td>2</td>
<td>3.51</td>
<td>21.05</td>
</tr>
<tr>
<td>oe</td>
<td>3</td>
<td>5.26</td>
<td>1</td>
<td>1.75</td>
<td>10</td>
<td>17.54</td>
<td>26.32</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>35.09</td>
<td>14</td>
<td>24.56</td>
<td>15</td>
<td>26.32</td>
<td>100.00</td>
</tr>
</tbody>
</table>
2.2.3 Participant 3 of male group 2

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.45</td>
<td>0.00</td>
<td>6.90</td>
</tr>
<tr>
<td>ea</td>
<td>0</td>
<td>3.45</td>
<td>24.14</td>
<td>0</td>
<td>3.45</td>
<td>0.00</td>
<td>31.03</td>
</tr>
<tr>
<td>oa</td>
<td>5</td>
<td>17.24</td>
<td>0</td>
<td>10.34</td>
<td>0.00</td>
<td>8</td>
<td>27.59</td>
</tr>
<tr>
<td>oe</td>
<td>2</td>
<td>6.90</td>
<td>5</td>
<td>17.24</td>
<td>0.00</td>
<td>10</td>
<td>34.48</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>24.14</td>
<td>7</td>
<td>24.14</td>
<td>9</td>
<td>31.03</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2.3 Male group 3 (54+)

2.3.1 Participant 1 of male group 3

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>2</td>
<td>3.45</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>3.45</td>
<td>8.62</td>
</tr>
<tr>
<td>ea</td>
<td>13</td>
<td>22.41</td>
<td>0</td>
<td>1.72</td>
<td>1</td>
<td>1.72</td>
<td>36.21</td>
</tr>
<tr>
<td>oa</td>
<td>9</td>
<td>15.52</td>
<td>1</td>
<td>1.72</td>
<td>6</td>
<td>6.90</td>
<td>27.59</td>
</tr>
<tr>
<td>oe</td>
<td>8</td>
<td>13.79</td>
<td>0</td>
<td>1.72</td>
<td>6</td>
<td>10.34</td>
<td>27.59</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>55.17</td>
<td>1</td>
<td>1.72</td>
<td>16</td>
<td>19.70</td>
<td>100.00</td>
</tr>
</tbody>
</table>

2.3.2 Participant 2 of male group 3

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>9</td>
<td>13.64</td>
<td>0</td>
<td>1.52</td>
<td>1</td>
<td>3.03</td>
<td>28.79</td>
</tr>
<tr>
<td>ea</td>
<td>15</td>
<td>22.73</td>
<td>0</td>
<td>0.00</td>
<td>1</td>
<td>1.52</td>
<td>22</td>
</tr>
<tr>
<td>oa</td>
<td>8</td>
<td>12.12</td>
<td>0</td>
<td>1.52</td>
<td>1</td>
<td>0.00</td>
<td>15.15</td>
</tr>
<tr>
<td>oe</td>
<td>10</td>
<td>15.15</td>
<td>0</td>
<td>1.52</td>
<td>2</td>
<td>1.52</td>
<td>22.73</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>63.64</td>
<td>0</td>
<td>4</td>
<td>13</td>
<td>4.55</td>
<td>66</td>
</tr>
</tbody>
</table>

2.3.3 Participant 3 of male group 3

<table>
<thead>
<tr>
<th>Type</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ae</td>
<td>3</td>
<td>2.33</td>
<td>0</td>
<td>4.65</td>
<td>9</td>
<td>1.55</td>
<td>27</td>
</tr>
<tr>
<td>ea</td>
<td>5</td>
<td>3.88</td>
<td>1</td>
<td>0.78</td>
<td>20</td>
<td>3</td>
<td>5.43</td>
</tr>
<tr>
<td>oa</td>
<td>11</td>
<td>8.53</td>
<td>9</td>
<td>6.98</td>
<td>1.55</td>
<td>0.78</td>
<td>30</td>
</tr>
<tr>
<td>oe</td>
<td>11</td>
<td>8.53</td>
<td>8</td>
<td>6.20</td>
<td>1.55</td>
<td>7.75</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>23.26</td>
<td>0.78</td>
<td>33.33</td>
<td>23.26</td>
<td>2.33</td>
<td>129</td>
</tr>
</tbody>
</table>

86
VITA

Matthew Anthony Vuskovich was born in 1972 in New Orleans, Louisiana. In 1994 he began his undergraduate studies in Spanish language and literatures at Southeastern Louisiana University after having lived and worked in Las Palmas de Gran Canaria, Spain and Tampico, Mexico. After his undergraduate studies, Matthew worked as an English instructor in Mexico City for 8 years both in academic and corporate contexts. In 2004 he decided to earn his master’s degree in Spanish with a concentration in linguistics at Louisiana State University. He expects to receive his degree in May 2006.