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Abstract

This work presents a study of copulas, with special focus on the Gaussian copula model

and its behavior under a certain conditioning process. Simulations are carried out to

examine the behavior of the moments on conditional copula model, as measured by the

behavior of Wick identities which hold for multivariate Gaussians.
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Chapter 1

Introduction

In this work we will give an introductory overview of the Gaussian copula model and

then present simulations we have carried out to examine the stability of the model under

conditioning.

A copula is, briefly, the joint distribution function of variables which are individually

uniformly distributed on [0, 1]. The notion has been widely used in modeling phenomena,

especially default events in finance. Copulas, arising from works of Maurice Fréchet, were

first studied in the 1950s by Sklar [16]. His fundamental result, stated briefly, says that if

F is an n-dimensional distribution function with marginal distribution functions F1(x1),

F2(x2),... , Fn(xn), then there is a copula function C which satisfies

F (x1, x2, · · · , xn) = C
(

F1(x1), F2(x2), Fn(xn)
)

.

We will discuss how to prove this important theorem in Chapter 2.

In the last twenty years, with the rapid development of mathematical finance, more

and more attention has been paid to create practical models to improve competitive

performance in finance and insurance world. Copulas form one of the most important

classes of these models in mathematical finance.There are so many works on this field,

like E.W. Frees’s paper[5] on understanding relationships using copulas, P. Embrechts’s

paper [4] on correlation and dependence in risk management. They gained widespread

popularity in the credit derivatives world following the work of Li [10].

The model that gained most popularity after the work of Li is the Gaussian copula

model especially the case using one underlying factor. There are several nice papers which

are related to this topic, like E. Hillebrand, A. N. Sengupta, and J. Y. Xu’s research[8] on

temporal correlation of defaults in subprime securitization and M. Chao, A. N. Sengupta’s
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work[12] on collateralized debt obligations tranche sensitivities in the Gaussian copula

model. Despite the popularity of this model among practicioners, there are theoretical

problems with the model. One problem is that it is not clear that the joint behavior of

some of the variables conditional on certain given behavior of other variables preserves

the Gaussian copula structure. In this work we have examined this stability question

under conditioning. Our findings are not conclusive one way or another but suggest that

the conditioned Gaussian copula has moment behavior close to that of a Gaussian copula

again.

We begin the work in Chapter 2 with an introduction to the theory of copulas. In the

next chapter we describe Gaussian copula models, and specifically factor models. We then

turn to describing how default phenomena are modeled using the Gaussian copula. We

conclude in Chapter 5 discussing our simulation method and observations.

One principle objective is to study the conditional moments and their deviation from

Gaussian moments. For a more careful study of the behavior of the joint distribution

of default time proxies, one should use standard tests for normality, such as kolmogorov

normality test, but this is outside the range of our work.

2



Chapter 2

Copula Theory

In this chapter, we present the basic mathematical theory of copulas, including the

fundamental Sklar Theorem. The proof we present is not widely known and is due to

Rüschendorf [15].

We set up here some notation. As usual, R is the ordinary real line (−∞,∞). Let R
∗ be

the extended real line [−∞,∞]. Let (R∗)2 be the extended real plane R
∗ × R

∗. The unit

square I2 is the product I × I where I = [0, 1]. A 2-place real function H is a function

whose domain, D(H), is a subset of (R∗)2 and whose range, R(H), is a subset of R.

2.1 Subcopulas and Copulas

We also need some preliminary terminology (from [2]):

Definition 2.1. Let S1 and S2 are two non-empty subsets of R
∗. Let s1 be the least

element of S1, and s2 be the least element of S2. A real function f is called grounded if,

for every (u × v) in S1 × S2,

f(s1, u) = 0 = f(v, s2) (2.1)

For any rectangle [u1, u2] × [v1, v2] whose vertices lie in S1 × S2 with u1 6 u2, v1 6 v2, a

real function f : S1 × S2 → R is called 2-increasing if

f(u2, v2) + f(u1, v1) − f(u1, v2) − f(u2, v1) > 0 (2.2)

Using this language we have the notion of a subcopula (Nelsen [14]):

Definition 2.2. Let S1 and S2 be non-empty subsets of I = [0, 1] containing 0 and 1. A

two-dimentional subcopula (or 2-subcopula) is a real function C ′ : S1 × S2 → R with the

following properties:

3



1. C ′ is grounded and 2-increasing;

2. For every (u × v) in S1 × S2,

C ′(u, 1) = u and C ′(1, v) = v. (2.3)

Groundedness for C ′ implies that

C ′(u, 0) = 0 = C ′(0, v) (2.4)

A copula is a multivariate distribution function with uniform marginals on [0, 1]. For-

mally:

Definition 2.3. A two-dimensional subcopula C ′ with domain I2 is called a two-dimensional

copula (or a copula). That is to say that a copula is a real function C ′ : I2 → I with the

following properties:

1. For every (u, v) in I × I,

C(u, 1) = u and C(1, v) = v (2.5)

C(u, 0) = 0 = C(0, v) (2.6)

2. For every u1, u2, v1, v2 in I with u1 6 u2, v1 6 v2,

C(u2, v2) + C(u1, v1) − C(u1, v2) − C(u2, v1) > 0 (2.7)

In order to apply copulas to financial markets, the probabilistic interpretation is needed.

The copula is used to model the joint behavior of variables with known marginal distri-

bution functions. Sklar’s theorem describes this relationship clearly.

2.2 Transforming to Uniform Variables

An extremely useful technique in the application of copulas is the transformation of

random variables to uniformly distributed variables.

4



Proposition 2.4. If the distribution function F of a random variable X is continuous

and strictly increasing then the variable

U = F (X)

is uniformly distributed on [0, 1], and

X = F−1(U).

Proof. For any t ∈ (0, 1) we have

P [U < t] = P [X < F−1(t)]

= F
(

F−1(t)
)

= t.

(2.8)

Thus, U is uniformly distributed on [0, 1].

In the argument above it was essential to have the inverse function F−1, and it is for

this reason that we assumed F to be strictly increasing and continuous. The following

result of Rüschendorf [15] covers the case where F does not have an inverse in the usual

sense.

Proposition 2.5 (Distributional transform). Let F be the distribution function of a real

random variable X, and Y an independent variable with uniform distribution on (0, 1).

Let F (x, α) be the modified distribution function

F (x, α) = P (X < x) + αP (X = x). (2.9)

Then the variable

U
def
= F (X, Y ) (2.10)

has uniform distribution on (0, 1), and

X = F−1(U) almost surely, (2.11)

where the inverse F−1 is defined by

F−1(s) = inf {x ∈ R : F (x) > s}, s ∈ (0, 1). (2.12)

5



Proof. Since F (x, α) = P (X < x) + αP (X = x), then F (x, α) is the same with F (x) on

the condition that F is continuous distribution function.

Since U = F (X, Y ), then we have U = P (X < x) + Y P (X = x).

Let QX(β) be the lower β-quantile which is defined by

QX(β) = sup {x : P (X 6 x) < β}, 0 < β < 1 (2.13)

It is equivalent to define that QX(β) = sup {x : F (X) < β} with 0 < β < 1, since

F (X) = P (X 6 x).

If F (X, Y ) 6 β, then we have (X, Y ) ∈ {(x, α) : P (X < x) + αP (X = x) ≤ β}.

In converse, if (X, Y ) ∈ {(x, α) : P (X < x) + αP (X = x) ≤ β}, then we will have

F (X, Y ) 6 β. These implies the above two equations have equivalent relationship, i.e.

{(x, y) : F (X, Y ) 6 β} = {(x, y) : P (X < x) + yP (X = x) ≤ β}. The left part is

sufficient and necessary for the right part,

Define

γ = P [X = QX(β)]. (2.14)

Define

λ = P [X < QX(β)]. (2.15)

Then we can see that {(x, α) : P (X < x) + αP (X = x) ≤ β} is equivalent to

{X < QX(β)} ∪ {X = QX(β), λ + Y γ 6 β}. (2.16)

Then we have

P [F (X, Y ) 6 β] = P [X < QX(β)] + P [X = QX(β)]P (λ + Y γ 6 β). (2.17)

Suppose γ > 0, then

P [F (X, Y ) 6 β] = P [X < QX(β)]+P [X = QX(β)]P{Y 6
β − P [X < QX(β)]

P [X = QX(β)]
}. (2.18)

6



Since P (U 6 β) = P [F (X, Y ) 6 β], and

β − P [X < QX(β)]

P [X = QX(β)]
=

β − λ

γ
, (2.19)

then we have

P (U 6 β) = λ + γ
β − λ

γ
= β. (2.20)

Suppose γ = 0, then we have

P [F (X, Y ) 6 β] = P [X < QX(β)] = P [X 6 QX(β)] = β. (2.21)

Thus we have U = U(0, 1).

Furthermore, we have P (X < x) 6 U 6 P (X 6 x). This implies that for any u in

(P (X < x), P (X 6 x)], we have x = F−1(u). Thus, we have X = F−1(U) a.s.

2.3 Sklar’s Theorem

Here is the fundamental result of copula theory:

Theorem 2.6 (Sklar’s Theorem). Let F be an n-dimensional joint distribution function

which has marginal distribution functions Fi, for i = 1, 2, · · · , n. Then there exists a

copula C on [0, 1]n such that

F (x1, x2, · · · , xn) = C
(

F1(x1), F2(x2), · · · , Fn(xn)
)

(2.22)

for all (x1, ..., xn) ∈ R
n.

The theorem tells that the n-dimensional distribution function F can be understood as

being composed of two parts: C, the copula function, and Fi, the marginal distribution

functions. This implies that F can be transformed to a unique subcopula of marginals.

Then a copula of uniform marginals can be obtained by extending this subcopula.

Now we can use Proposition 2.5 to prove Sklar’s theorem in a short way, following

Rüschendorf[15].

7



Proof. Let X = (X1, X2, · · · , Xn) be a random vector with distribution function F . Let

Y be uniformly distributed on (0, 1), and independent of X. By Propositon 2.5, we know

that the distributional transform of Ui = Fi(Xi, Y ) is uniformly distributed on (0, 1).

Furthermore, we know that Xi = Fi
−1(Ui) a.s. If we let the copula C be the distribution

function of U = (U1, U2, · · · , Un), then we have

F (X) = P (X ≤ x)

= P (F−1
i (Ui) ≤ xi, 1 ≤ i ≤ n)

= P (Ui ≤ Fi(xi), 1 ≤ i ≤ n)

= C(F1(x1), · · · , Fn(xn)).

This implies that C is the copula of F .

The standard proof of Sklar’s theorem can be found in Nelsen’s book [14].

2.4 Monotonicity

Copulas have a fundamental feature of invariance under monotone transformations ([14]):

Theorem 2.7. Let CXY be the copula of continuous random variables X and Y . If µ

and ν are both strictly increasing functions on the range of X and on the range of Y ,

respectively, then

Cµ(X)ν(Y ) = CXY . (2.23)

Proof. Suppose Q1, W1, Q2 and W2 are corresponding distribution functions of X, Y ,

µ(X) and ν(Y ).Since the strictly increasing property of µ and ν, then we have

Q2(x) = P [µ(X) 6 x] = P [X 6 µ−1(x)] = Q1(µ
−1(x)) (2.24)

and

W2(y) = P [ν(Y ) 6 y] = P [Y 6 ν−1(y)] = W1(ν
−1(y)) (2.25)
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Furthermore, we have

Cµ(X)ν(Y )(Q2(x), W2(y)) = P [µ(X) 6 x, ν(Y ) 6 y]

= P [X 6 µ−1(x), Y 6 ν−1(y)]

= CXY (Q1(µ
−1(x)), W1(ν

−1(y)))

= CXY (Q2(x), W2(y)).

(2.26)

Since X, Y are both continuous, then we have

R(Q2) = R(W2) = I. (2.27)

This implies that on I2

Cµ(X)ν(Y ) = CXY . (2.28)

Here is another result on the effect of transformation of variables and the copula:

Theorem 2.8. Let CXY be the copula of continuous random variables X and Y . Suppose

µ and ν are both strictly decreasing on R(X) and R(Y ), then we have

Cµ(X)ν(Y )(Q2(x), W2(y)) = Q2(x) + W2(y) − 1 + CXY (1 − Q2(x), 1 − W2(y)). (2.29)

Proof. Suppose Q1, W1, Q2 and W2 are corresponding distribution functions of X, Y ,

µ(X) and ν(Y ).Since the strictly decreasing property of µ and ν, then we have

Q2(x) = P [µ(X) 6 x] = P [X > µ−1(x)]

= 1 − P [X < µ−1(x)]

= 1 − Q1(µ
−1(x)).

(2.30)

and

W2(y) = P [ν(Y ) 6 y] = P [Y > ν−1(y)]

= 1 − P [Y < ν−1(y)]

= 1 − W1(ν
−1(y)).

(2.31)
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Furthermore, we have

Cµ(X)ν(Y )(Q2(x), W2(y))

= P [µ(X) 6 x, ν(Y ) 6 y]

= P [X > µ−1(x), Y > ν−1(y)]

= 1 − Q1(µ
−1(x)) + 1 − W1(ν

−1(y))−

(1 − P [X 6 1 − µ−1(x), Y 6 1 − ν−1(y)]

= Q2(x) + W2(y) − 1 + CXY (1 − Q2(x), 1 − W2(y)).

(2.32)

Since X, Y are both continuous, then on I2 we have

Cµ(X)ν(Y )(Q2(x), W2(y)) = Q2(x) + W2(y) − 1 + CXY (1 − Q2(x), 1 − W2(y)). (2.33)

We close with another similar property:

Theorem 2.9. Let CXY be the copula of continuous random variables X and Y . Suppose

µ is strictly increasing on R(X) and ν is strictly decreasing on R(Y ), then we have

Cµ(X)ν(Y )(Q2(x), W2(y)) = Q2(x) − CXY (Q2(x), 1 − W2(y)). (2.34)

Proof. Suppose Q1, W1, Q2 and W2 are corresponding distribution functions of X, Y ,

µ(X) and ν(Y ).Since the strictly increasing property of µ, then we have

Q2(x) = P [µ(X) 6 x] = P [X 6 µ−1(x)] = Q1(µ
−1(x)) (2.35)

Since the strictly decreasing property of ν, then we have

W2(y) = P [ν(Y ) 6 y] = P [Y > ν−1(y)]

= 1 − P [Y 6 ν−1(y)]

= 1 − W1(ν
−1(y)).

(2.36)
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Furthermore, we have

Cµ(X)ν(Y )(Q2(x), W2(y))

= P [µ(X) 6 x, ν(Y ) 6 y]

= P [X 6 µ−1(x), Y > ν−1(y)]

= P [X 6 µ−1(x)] − P [X 6 µ−1(x), Y < ν−1(y)]

= Q1(µ
−1(x)) − CXY (Q1(µ

−1(x)), W1(ν
−1(y)))

= Q2(x) − CXY (Q2(x), 1 − W2(y)).

(2.37)

Since X, Y are both continuous, then on I2 we have

Q2(x) = P [µ(X) 6 x] = P [X 6 µ−1(x)] = Q1(µ
−1(x)) (2.38)
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Chapter 3

Gaussian Copula and Correlation

In the financial world, there are several famous families of copulas, such as the Gaussian

copula, Student’s t copula, and the Archimedean copula.

Among these, the Gaussian copula is most widely known and used. Briefly, a Gaus-

sian copula is simply a multivariate Gaussian distribution whose marginals are standard

Gaussian. In order to be consistent with the terminology of copulas used before, one

should require a transformation so as to make the marginals uniform on (0, 1). It is only

in the specifics of application that the significance becomes clear.

In this chapter we will look at the Gaussian copula, focusing on the two-dimensional

case to be specific [2].

3.1 The Two-dimensional Gaussian Copula

Definition 3.1. A two-dimensional Gaussian copula is a copula function of the form

C(ω, ν) = ΦρXY
(Φ−1(ω), Φ−1(ν)) (3.1)

where ΦρXY
denotes the joint distribution of a 2-dimensional standard normal marginal

distributions, with correlation coefficient ρXY ,and Φ is the standard normal distribution

function.

Thus, by substituting Gaussian probability density function into above equation, we

have

ΦρXY
(Φ−1(ω), Φ−1(ν)) =

∫ Φ−1(ω)

−∞

∫ Φ−1(ν)

−∞

1

2π
√

1 − ρ2
XY

exp

(

2rXY st − s2 − t2

2(1 − ρ2
XY )

)

dsdt

(3.2)
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We can also write above equation in an equivalent form:

C(ω, ν) =

∫ ω

0

Φ

(

Φ−1(ν) − ρXY Φ−1(t)
√

1 − ρ2
XY

)

dt (3.3)

Definition 3.2. The density c(ω, ν) associated to a copula C(ω, ν) is

c(ω, ν) =
∂2C(ω, ν)

∂ω∂ν
(3.4)

So, the density of the Gaussian copula is

c(ω, ν) =
1

√

1 − ρ2
XY

exp

(

x2 + y2

2
+

2rXY xy − x2 − y2

2(1 − ρ2
XY )

)

(3.5)

where x = Φ−1(ω), y = Φ−1(ν).

By integrating the density, since the copula is absolutely continuous, the following

equivalent expression for the copula can be obtained:

c(ω, ν) =

∫ ω

0

∫ ν

0

exp

(

x2 + y2

2
+

2rXY xy − x2 − y2

2(1 − ρ2
XY )

)

dsdt (3.6)

where x = Φ−1(s), y = Φ−1(t).

According to Sklar’s theorem, the Gaussian copula generates the joint normal standard

distribution function if and only if the margins are standard normal. That is to say

C(F1(x), F2(y)) =

∫ x

−∞

∫ y

−∞

1

2π
√

1 − ρ2
XY

exp

(

2rXY st − s2 − t2

2(1 − ρ2
XY )

)

dsdt (3.7)

if and only if Φ−1(F1(x)) = x and Φ−1(F2(y)) = y, i.e. if and only if F1 = F2 = Φ. For

any other marginal choice, the Gaussian copula does not give a standard jointly normal

vector.

3.2 Concordance and Discordance

Dependence and association relationship between random variables are widely researched

in probability and statistics field. Copulas are usually used to study this issue. There are so
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many ways to find and measure dependence. In order to make this studies be meaningful,

some assumptions are needed to build some statistical models.

The first concept we need to know about dependence and association is called con-

cordance.Institutively, if we say a pair of random variables are concordant, this means

that large values of each random variables prefer to be tied together, while small values

of each random variables prefer to tied together. In other words, large is with large, and

small is with small.

Definition 3.3. Let (xi, yi) and (xj , yj) be two observations of (X, Y ). Then (xi, yi) and

(xj , yj) are concordant if the following relations hold

xi < xj ⇐⇒ yi < yj (3.8)

or

xi > xj ⇐⇒ yi > yj (3.9)

On the other hand, (xi, yi) and (xj , yj) are disconcordant if the following relations hold

xi < xj ⇐⇒ yi > yj (3.10)

or

xi > xj ⇐⇒ yi < yj (3.11)

It’s clearly that, if (xi, yi) and (xj , yj) are concordant, then (xi − xj)(yi − yj) > 0; if

(xi, yi) and (xj , yj) are discordant, then (xi − xj)(yi − yj) < 0.

One of the most important measure of association is known as Kendall’s tau which is

first mentioned by WH Kruskal in 1958 [9].

Definition 3.4. Suppose X and Y are continuous random variables. Let (xi, yi) (i =

1, . . . , n) be n random observations of (X, Y ). Totally, we know that there are n(n−1)
2

distinct pairs. Let a be the number of pairs which are concordant. Let b be the number of

pairs which are discordant. Kendall’s tau for this sample is defined to be

t =
a − b

a + b
=

2(a − b)

n(n − 1)
(3.12)
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Now let X, Y be random variables. Create independent copies (X1, Y1) and (X2, Y2) of

(X, Y ) (‘copies’ means that (Xj , Yj) has the same distribution as (X, Y )). Then Kendall’s

tau for the pair X, Y is defined by defined as

τX,Y = P [(X1 − X2)(Y1 − Y2) > 0] − P [(X1 − X2)(Y1 − Y2) < 0]. (3.13)

We can see that the Kendall’s tau represents the difference between probability of

concordant pairs and probability of discordant pairs.

The best known correlation measure is Pearson’s correlation coefficient which is defined

as the quotient between covariance and the product of two standard variances [1].

Definition 3.5. The Pearson correlation coefficient between random variables X and Y

is

ρX,Y =
cov(X, Y )

σXσY

=
E[(X − µX)(Y − µY )]

σXσY

. (3.14)

where µ and σ correspond to mean and standard deviation, respectively.

For Gaussian variables, the relation between Kendall’s tau and Pearson’s correlation

coefficient is known to be

τ =
2arcsin(ρ)

π
. (3.15)

3.3 Gaussian Factor Models

The Gaussian copula when used in practice involves not the abstract formulation of

general copula theory but concrete Gaussian factors. Specifically, consider the problem

of using a Gaussian copula to model variables Y1, ..., YN whose marginal distributions

Fi(t) = P [Yi ≤ t]

are known, and are assumed to be continuous and strictly increasing. Form the standard

Gaussians

Zi = Φ−1
(

Fi(Yi)
)

).

15



The Gaussian copula model states that the variables Z1, ..., ZN are jointly Gaussian.

Hence the joint distribution of these variables is completely specified by the correlations

ρjk = E[ZjZk]. (3.16)

These correlations form an N × N symmetric matrix





















1 ρ12 ρ13 · · · ρ1N

ρ21 1 ρ23 · · · ρ2N

...
...

...
...

...

ρN1 ρN2 ρN3 · · · 1





















Instead of specifying this matrix explicitly, often a correlation structure is imposed by ex-

pressing Z1, ..., ZN in terms of some underlying independent standard Gaussian variables

called factors.

For example, for Z1, Z2, Z3, there may be one common factor Z and three variables

ǫ1, ǫ2, ǫ3, and then

Zj = ρjZ + ajǫj (3.17)

where ρ, aj are constants, and Z, ǫ1, ǫ2, ǫ3 are independent standard Gaussians. The cor-

relations between the Zj is then given by

ρjk = E[ZjZk] = ρjρk + ajak

The requirement that Zj is standard Gaussian imposes the restriction that the variance

be 1:

ρ2
j + a2

j = 1.

We will use this type of model again later.

3.4 Other Copulas: A Quick Look

We take a quick look at two other copulas.
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Student’s t copula is essentially a multivariate distribution function having Student’s

t distribution as marginals (suitably transformed to uniform). The bivariate Student’s t

copula can be defined as followed [2]. Suppose tu, a function, satisfies one-dimensional

Student’s t distribution with degree of freedom u. This means the marginal distribution

is Student’s t distribution. Then we have

tu(x) =

∫ x

−inf

Γ((u + 1)/2))√
ΠuΓ(u/2)

(1 +
h2

u
)−

u+1

2 dh (3.18)

where Γ is called Euler function which is defined as Γ(x) =
∏∞

k=1(1 − xk).

Let v ∈ I = [0, 1], then we have two-dimentional Student’s t distribution function as

following

t(v, u)(x, y) =

∫ x

−∞

∫ y

−∞

1

2Π
√

1 − v2
(1 +

h2 + l2 − 2vhl

u(1 − v2)
)−

u+2

2 dhdl. (3.19)

Then the corresponding Student’s t copula is

C(v, u)(u, z) = tv,u(t
−1
u (u), t−1

u (z))

=

∫ t−1
u (u)

−∞

∫ t−1
u (z)

−∞

1

2Π
√

1 − v2
(1 +

h2 + l2 − 2vhl

u(1 − v2)
)−

u+2

2 dhdl.

(3.20)

Archimedean copula is copula with form

C(x, y) = ϕ−1(ϕ(x) + ϕ(y)) (3.21)

where ϕ is a generator function with following properties:

ϕ(1) = 0 (3.22)

ϕ′(x) < 0 (3.23)

ϕ′′(x) > 0 (3.24)

More detailed discussions can be found in C.Genest’s paper [7].
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Chapter 4

Default Correlation and Conditioning

Finding and measuring dependencies of related instruments is a necessary skill for risk

managers. With the rapid development of derivatives market, more and more financial

instruments are created. At the same time, the derivatives market is slowly transformed

from over the counter market to standardized, liquid and transparent market. This change

provides enough available financial instruments to meet different investor’s risk-return

expectations in a large range. In order to control risk of derivative, researchers devote a

lot energy to find and modify related models. Modeling and measuring dependencies of

many financial products are focused on correlation.

Default correlation understanding is essential for managers to manage the risk of a

credit portfolio. In order to control the risk, we need to valuate the default correlations

between credit derivatives. In 1995, D.Lucus defined a default correlation in discrete

model [11].

For example, let D1 and D2 be default events of two credit derivatives over 1 year.

The probability for each security to default is defined as p1 = P [D1] and p2 = P [D2]

respectively. The probability for both securities to default within one year is defined as

p1,2 = P [D1 ∩ D2]. Then the default correlation between these two securities may be

defined as

ρ =
p1,2 − p1p2

√

p1p2(1 − p1)(1 − p2)
. (4.1)

This definition seems a good valuation of default correlation. When we check it carefully,

we may find some limitations. From above, we may see that the probability of one security

to default is dependent on the time interval. Then the default correlation is also tied with
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time period. For fixed one year period, some important information about securities may

be missed.

In 2000, David X. Li introduced a new copula model in the credit derivatives mar-

ket [10]. It is called the default time (or survival time) Gaussian copula. This model is

widely used. The Gaussian copula is the joint distribution of variables with marginal

normal distributions. The key point in Li’s default time Gaussian copula is that it is a

model for the joint distribution of default times, rather than the correlations of default

events. The concept of time-until-default is created to characterize the default. The cor-

relation coefficient between survival times of two securities were used to replace their

default correlation.

4.1 Gaussian Copula for Default Times

Consider a portfolio of N defaultable securities. The distribution of the default time τj

of the j-th security is

Fj(t) = P[τj < t] (4.2)

Assume that this is strictly increasing and continuous, and set

Xj = Φ−1
(

Fj(τj)
)

. (4.3)

As seen before, this is standard Gaussian.

The event that the j-th security defaults by time T is

[τj ≤ T ]

and, in terms of Xj , this is

[Xj ≤ cj(T )],

where

cj(T ) = Φ−1
(

Fj(T )
)

. (4.4)
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When we do simulations we check if Xj is below the default threshold and if it is then we

say that the j-th security has defaulted.

The Gaussian copula model for default times posits that X1, ..., XN have joint Gaussian

distribution.

The most basic and widely used Gaussian copula model is the one factor model. In

this we assume that there are independent standard Gaussians

Z, ε1, ..., εN ,

and assume that

Xj =
√

ρZ +
√

1 − ρ εj, (4.5)

for all j ∈ {1, ..., N}, where ρ > 0 is a fixed parameter. Thus Z is a common factor and

εj is an idiosyncratic variable for the j-th security.

It is possible to view this as a simplified proxy to the default model of Merton [13].

It is easy to see that Xi, as specified in the model, does have mean 0 and variance 1:

E[Xi] = E[
√

ρZ +
√

1 − ρεi]

= E[
√

ρZ] + E[
√

1 − ρεi]

= 0 + 0

= 0

(4.6)

and

V ar(Xi) = V ar(
√

ρZ +
√

1 − ρεi)

= V ar(
√

ρZ) + V ar(
√

1 − ρεi)

= ρV ar(Z) + (1 − ρ)V ar(εi)

= ρ + 1 − ρ

= 1

(4.7)
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The key correlation measure between default behavior of the securities is

E[XjXk] =
√

ρ
√

ρ = ρ

for all j 6= k.

4.2 Conditional Defaults

Our objective is to examine the stability of the Gaussian copula model under defaults of

some of the securities.

We will assume that each security has the same default time distribution F , that is,

all Fj are equal to a common F . The consequence of this is that for each time t0, the

corresponding default threshold

c = Φ−1
(

F (t0)
)

.

is the same for all the securities.

For example, what is the distribution of τ3, ..., τN if the first two securities have defaulted

by time t0? This is

P [τ3 ≤ t3, ..., τN ≤ tN | τ1 ≤ t0, τ2 ≤ t0],

for t > t0 > 0.

In particular, we have the conditional marginals

Fj,c(t) = P [τj ≤ t | τ1 ≤ t0, τ1 ≤ t0].

We use this to convert τj to a standard Gaussian:

Xj,c = Φ−1
(

Fj,c(τj)
)

. (4.8)

for j ∈ {3, ..., N}.

The big question is if the variables X3,c, ..., XN,c are jointly Gaussian. Theoretically

this seems unlikely, and so the failure of the Gaussian nature is a negative feature of the

Gaussian copula model.
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4.3 Wick’s Theorem

In this section we discuss an important property of jointly Gaussian distributed variables.

It is what we shall use in simulations to see how close the conditional variables Xj,c are

to being jointly Gaussian.

Wick’s theorem expresses general moments of jointly Gaussian variables in terms of

the second-order moments (covariances) [18].

Theorem 4.1. Suppose (W1, ..., Wm) is Gaussian with mean 0 ∈ R
m. Then

E[W1...Wm] =
∑

P∈Pm

∏

{j,k}∈P

[WjWk] (4.9)

where Pm is the set of all partitionings of {1, 2, ..., m} into pairs of distinct elements.

If f m is odd, P is empty and so the sum in (4.9) gives 0.

For another special case take m = 2n and all the Wi equal to a common variable which

is standard Gaussian. Then

E(W 2n) = |P2n| = (2n − 1)(2n − 3)...3.1. (4.10)

For {1, 2, 3, 4}, there are three pairs of partitions {{1, 2}, {3, 4}}, {{1, 4}, {3, 2}} and

{{1, 3}, {2, 4}}. This implies that

E[W1W2W3W4] = E[W1W2]E[W3W4] + E[W1W4]E[W3W2] + E[W1W3]E[W2W4]. (4.11)
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For {1, 2, 3, 4, 5, 6}, there will have fifteen pairs of partitions

{(1, 2), (3, 4), (5, 6)},

{(1, 2), (3, 5), (4, 6)},{(1, 2), (3, 6), (4, 5)},

{(1, 3), (2, 4), (5, 6)},{(1, 3), (2, 5), (4, 6)},

{(1, 3), (4, 5), (2, 6)},{(1, 4), (2, 3), (5, 6)},

{(1, 4), (3, 6), (2, 5)},{(1, 4), (2, 6), (3, 5)},

{(1, 5), (2, 3), (4, 6)},{(1, 5), (2, 4), (3, 6)},

{(1, 5), (2, 6), (3, 4)},{(1, 6), (2, 3), (4, 5)},

{(1, 6), (2, 4), (3, 5)},{(1, 6), (2, 5), (3, 4)}.

The corresponding Wick formula is:

E[W1W2W3W4W5W6] = E[W1W2]E[W3W4]E[W5W6] + E[W1W2]E[W3W5]E[W4W6]

+ E[W1W2]E[W3W6]E[W5W4] + E[W1W3]E[W2W4]E[W5W6]

+ E[W1W3]E[W2W5]E[W4W6] + E[W1W3]E[W5W4]E[W2W6]

+ E[W1W4]E[W3W2]E[W5W6] + E[W1W4]E[W3W6]E[W5W2]

+ E[W1W4]E[W3W5]E[W2W6] + E[W1W5]E[W3W2]E[W4W6]

+ E[W1W5]E[W2W4]E[W3W6] + E[W1W5]E[W3W4]E[W2W6]

+ E[W1W6]E[W3W2]E[W5W4] + E[W1W6]E[W2W4]E[W5W3]

+ E[W1W6]E[W3W4]E[W5W2].

(4.12)
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Chapter 5

Simulation

In this chapter we describe our simulation method for studying the one-factor Gaussian

copula and its behavior under conditioning. In our simulations we will never involve

the default times τi, and instead will work exclusively with the proxy variables Xi. The

number of securities will be denoted n. The number of simulations will be denoted by N .

5.1 Simulation of Correlated Gaussians

MatLab or other software can be used to simulate standard Gaussian variables. In this

way we generate (simulate) iid standard Gaussians

Z, ǫ1, ..., ǫn.

Then we form the variables

Xj =
√

ρ Z +
√

1 − ρ ǫj

for j ∈ {1, ..., n}, with a fixed choice of the correlation parameter ρ > 0.

This produces Gaussian variables X1, ..., Xn which have the correlation structure

E[XjXk] = ρ, for j 6= k.

We also fix a threshold c. If a simulated value of Xj is ≤ c then we interpret that to

mean that in that simulation the j-th security defaults within a given time horizon t0.

5.2 Conditioning

For the sake of describing the idea we consider the task of conditioning to default of the

last two securities within a given time horizon t0. Thus, we want to understand the joint

behavior of X1, ..., Xn−2 conditional on only Xn−1, ..., Xn being ≤ c.
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We generate the Z and ǫj as above, and compute the Xj. Now drop from the simulations

those for which only Xn−1, ..., Xn are below c. Retaining the others we determine the

empirical distribution functions

Hj,c(x) = P [Xj ≤ t |X1 > c, ..., Xn−2 > c, Xn−1 ≤ c, Xn ≤ c]

for suitable values of t, in fact just those values of Xj which have been generated for

j ∈ {1, ..., n− 2}. Thus, for each simulated value of Xj = x we compute the proportion y

of values, among the retained simulations, which are ≤ x. We replace the entry x by the

value y. This process generates/simulates values of the variable

Wj = Φ−1
(

Hj,c(Xj)
)

.

Note that this is standard Gaussian. Our task is to study the departure from Gaussian of

the joint distribution of the variables W1, ..., Wn−2. We do this be comparing the predicted

value of, say, E[W1, ..., Wn−2] with that predicted by Wick’s formula.

5.3 Simulation Code

The main program codes can be found in the Appendices.

5.4 Simulation Discussion

The general algorithm steps are as follows. We denote by N the number of simulations.

1. By formula Xi =
√

ρZ+
√

1 − ρεi, let i = 1, · · · , n, n names Xi are generated, where

Z is generated as one standard normal random variable, and εi are generated as

independent n size standard normal random variables. We may repeat to generate

Xi as many groups as we want.

2. We set up the condition to pick up the data groups which satisfy the limitation

that only the first 3 names don’t default, which means only X1, X2, X3 are greater

than the threshold. Then we may get N groups of data. We just keep the first three
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FIGURE 5.1. Conditional Expectations of Product W1W2W3 with n = 4, N = 100, c = −1,
ρ = [0 : 0.003 : 0.99]

values for each group data and form a matrix Y with size (N, 3). The first column

data are all about X1. The second column data are all about X1, and so is the third

column.

3. Then for each column, we calculate cumulative probability values for each data. By

using inverse standard normal distribution function, we transform these cumulative

probability data to corresponding standard normal values. Then we get a data

matrix ZZ with size (N, 3).

4. We notice that, there are several inf (infinity) terms in ZZ. In order to calculate

expectation, we delete the whole rows where inf terms are. Then we look each

column of ZZ as data with individual distribution. Finally, we calculate the ex-

pectation for these 3 joint distributions. W is used to represent ZZ in simulation

figures and following discussion.

First, let’s see the simulation results of conditional test for three names.

For Figure5.1, conditioning on only X4 < −1, we calculate expectations of W1W2W3

for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The data size

for each Xi is 100. The total number of points is 331. The mean of expectation is 0.01085.
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FIGURE 5.2. Conditional Expectations of Product W1W2W3 with n = 4, N = 100, c = 0,
ρ = [0 : 0.003 : 0.99]

For Figure5.2, conditioning on only X4 < 0, we calculate expectations of W1W2W3 for

different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The data size for

each Xi is 100. The total number of points is 331. The mean of expectation is 0.01848.

For Figure5.3, conditioning on only X4 < 1, we calculate expectations of W1W2W3 for

different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The data size for

each Xi is 100. The total number of points is 331. The mean of expectation is 0.009889.

For Figure5.4, conditioning on only X4 < −1 and X5 < −1, we calculate expectations of

W1W2W3 for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The

data size for each Xi is 100. The total number of points is 331. The mean of expectation

is 0.00591.

For Figure5.5, conditioning on only X4 < 0 and X5 < 0, we calculate expectations of

W1W2W3 for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The

data size for each Xi is 100. The total number of points is 331. The mean of expectation

is 0.01123.

For Figure5.6, conditioning on only X4 < 1 and X5 < 1, we calculate expectations of

W1W2W3 for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The
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FIGURE 5.3. Conditional Expectations of Product W1W2W3 with n = 4, N = 100, c = 1,
ρ = [0 : 0.003 : 0.99]
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FIGURE 5.4. Conditional Expectations of Product W1W2W3 with n = 5, N = 100, c = −1,
ρ = [0 : 0.003 : 0.99]
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FIGURE 5.5. Conditional Expectations of Product W1W2W3 with n = 5, N = 100, c = 0,
ρ = [0 : 0.003 : 0.99]
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FIGURE 5.6. Conditional Expectations of Product W1W2W3 with n = 5, N = 100, c = 1,
ρ = [0 : 0.003 : 0.99]
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FIGURE 5.7. Conditional Expectations of Product W1W2W3 with n = 6, N = 100, c = −1,
ρ = [0 : 0.003 : 0.99]

data size for each Xi is 100. The total number of points is 331. The mean of expectation

is -0.0003618.

For Figure5.7, conditioning on only X4 < −1, X5 < −1 and X6 < −1, we calculate

expectations of W1W2W3 for different ρ on [0, 0.99] whose total number is 331 with

increment 0.003. The data size for each Xi is 100. The total number of points is 331. The

mean of expectation is 0.005266.

For Figure5.8, conditioning on only X4 < 0, X5 < 0 and X6 < 0, we calculate expec-

tations of W1W2W3 for different ρ on [0, 0.99] whose total number is 331 with increment

0.003. The data size for each Xi is 100. The total number of points is 331. The mean of

expectation is -0.009402.

For Figure5.9, conditioning on only X4 < 1, X5 < 1 and X6 < 1, we calculate expec-

tations of W1W2W3 for different ρ on [0, 0.99] whose total number is 331 with increment

0.003. The data size for each Xi is 100. The total number of points is 331. The mean of

expectation is -0.0003505.

In summary of above figures of conditional expectation of W1W2W3, we have Table5.1

which displays the relationship among mean of conditional expectations of W1W2W3,
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FIGURE 5.8. Conditional Expectations of Product W1W2W3 with n = 6, N = 100, c = 0,
ρ = [0 : 0.003 : 0.99]
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FIGURE 5.9. Conditional Expectations of Product W1W2W3 with n = 6, N = 100, c = 1,
ρ = [0 : 0.003 : 0.99]

TABLE 5.1. Mean of Conditional Expectations of W1W2W3. For more explanation see text

Total Names Mean of Conditional Expectations of W1W2W3 with Different c
c = -1 c = 0 c = 1

4 0.01085 0.01848 0.009889
5 0.00591 0.01123 -0.0003618

6 0.005266 -0.009402 -0.0003505
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FIGURE 5.10. Conditional Expectations of Product W1W2W3W4 with n = 5, N = 100, c = −1,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.

total names of portfolio, and threshold c. According to this table, we can see that, fixing

threshold as -1, 0, and 1, the mean of conditional expectation of W1W2W3 is closing to 0

as increasing of total names. Fixing total names, the means for threshold c = 1 are more

less than the other two.

Basing on these data, the means are close to 0 which implies that the conditional

variables W1W2W3 are ‘approximately’ Gaussian as far as moments go, but it does not

appear that they are exactly Gaussian.

Second, let’s see the simulation results of conditional test for four names.

For Figure5.10, conditioning on only X5 < −1, we calculate expectations, deviations

and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total number

is 331 with increment 0.003. The data size for each Xi is 100. The total number of points

for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.05213. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.05183. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.0002998.
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FIGURE 5.11. Conditional Expectations of Product W1W2W3W4 with n = 5, N = 100, c = 0,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.

For Figure5.11, conditioning on only X5 < 0, we calculate expectations, deviations and

Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total number is

331 with increment 0.003. The data size for each Xi is 100. The total number of points

for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.03611. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.03168. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.004434.

For Figure5.12, conditioning on only X5 < 1, we calculate expectations, deviations and

Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total number is

331 with increment 0.003. The data size for each Xi is 100. The total number of points

for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.03022. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.008838. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.02138.

For Figure5.13, conditioning on only X5 < −1 and X6 < −1, we calculate expectations,

deviations and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total
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FIGURE 5.12. Conditional Expectations of Product W1W2W3W4 with n = 5, N = 100, c = 1,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.13. Conditional Expectations of Product W1W2W3W4 with n = 6, N = 100, c = −1,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.14. Conditional Expectations of Product W1W2W3W4 with n = 6, N = 100, c = 0,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.

number is 331 with increment 0.003. The data size for each Xi is 100. The total number

of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.01433. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.01948. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is -0.005145.

For Figure5.14, conditioning on only X5 < 0 and X6 < 0, we calculate expectations,

deviations and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose

total number is 331 with increment 0.003. The data size for each Xi is 100. The total

number of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.01662. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.01491. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.001704.

For Figure5.15, conditioning on only X5 < 1 and X6 < 1, we calculate expectations,

deviations and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose

total number is 331 with increment 0.003. The data size for each Xi is 100. The total

number of points for each term is 331.
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FIGURE 5.15. Conditional Expectations of Product W1W2W3W4 with n = 6, N = 100, c = 1,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.

Data 1 (green +) display the conditional expectations. The mean is 0.01189. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.01035. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.001541.

For Figure5.16, conditioning on only X5 < −1, X6 < −1 and X7 < −1, we calculate

expectations, deviations and Wick’s formula values of W1W2W3W4 for different ρ on

[0, 0.99] whose total number is 331 with increment 0.003. The data size for each Xi is

100. The total number of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.02245. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.01141. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.01104.

For Figure5.17, conditioning on only X5 < 0, X6 < 0 and X7 < 0, we calculate

expectations, deviations and Wick’s formula values of W1W2W3W4 for different ρ on

[0, 0.99] whose total number is 331 with increment 0.003. The data size for each Xi is

100. The total number of points for each term is 331.
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FIGURE 5.16. Conditional Expectations of Product W1W2W3W4 with n = 7, N = 100, c = −1,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.17. Conditional Expectations of Product W1W2W3W4 with n = 7, N = 100, c = 0,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.

37



0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Default Correlation ρ

E
xp

ec
ta

tio
n,

 D
ev

ia
tio

n 
an

d 
W

ic
k¡

¯s
 fo

rm
ul

a 
va

lu
e 

of
 W

1W
2W

3 W
4

data1
data2
data3

FIGURE 5.18. Conditional Expectations of Product W1W2W3W4 with n = 7, N = 100, c = 1,
ρ = [0 : 0.003 : 0.99]. For more explanation see text.

TABLE 5.2. Deviation of Conditional Expectations of W1W2W3W4. For more explanation see
text.

Total Names Deviation of Conditional Expectations of W1W2W3W4 with Different c
c = -1 c = 0 c = 1

5 0.0002998 0.004434 0.02138

6 -0.005145 0.001704 0.001541
7 0.01104 0.003794 0.003218

Data 1 (green +) display the conditional expectations. The mean is 0.01028. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.006484. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.003794.

For Figure5.18, conditioning on only X5 < 1, X6 < 1 and X7 < 1, we calculate

expectations, deviations and Wick’s formula values of W1W2W3W4 for different ρ on

[0, 0.99] whose total number is 331 with increment 0.003. The data size for each Xi is

100. The total number of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.01053. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.007309. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.003218.
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FIGURE 5.19. Conditional Expectations of Product W1W2W3W4W5 with n = 6, N = 100,
c = −1, ρ = [0 : 0.003 : 0.99]

In summary of above figures of conditional expectation of W1W2W3W4, we have Table5.2

which displays the relationship among deviation of conditional expectations of W1W2W3W4,

total names of portfolio, and threshold c. According to this table, we can see that, fixing

threshold as -1, the deviation of conditional expectation of W1W2W3W4 is increasing as

increasing of total names. Fixing total names, like 6 and 7, the absolute deviation seems

decreasing with increasing of threshold. But for total names 5, the absolute deviation

seems increasing with increasing of threshold.

Basing on these data, the deviations are close to 0 which implies that the conditional

variables W1W2W3W4 are ‘approximately’ Gaussian as far as moments go, but it does

not appear that they are exactly Gaussian.

Thirdly, let’s see the simulation results of conditional test for five names.

For Figure5.19, conditioning on only X6 < −1, we calculate expectations of W1W2W3W4W5

for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The data size

for each Xi is 100. The total number of points is 331. The mean of expectation is 0.03555.
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FIGURE 5.20. Conditional Expectations of Product W1W2W3W4W5 with n = 6, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]

For Figure5.20, conditioning on only X6 < 0, we calculate expectations of W1W2W3W4W5

for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The data size

for each Xi is 100. The total number of points is 331. The mean of expectation is 0.03239.

For Figure5.21, conditioning on only X6 < 1, we calculate expectations of W1W2W3W4W5

for different ρ on [0, 0.99] whose total number is 331 with increment 0.003. The data size

for each Xi is 100. The total number of points is 331. The mean of expectation is 0.0545.

For Figure5.22, conditioning on only X6 < −1 and X7 < −1, we calculate expectations

of W1W2W3W4W5 for different ρ on [0, 0.99] whose total number is 331 with increment

0.003. The data size for each Xi is 100. The total number of points is 331. The mean of

expectation is 0.005199.

For Figure5.23, conditioning on only X6 < 0 and X7 < 0, we calculate expectations

of W1W2W3W4W5 for different ρ on [0, 0.99] whose total number is 331 with increment

0.003. The data size for each Xi is 100. The total number of points is 331. The mean of

expectation is 0.01062.

For Figure5.24, conditioning on only X6 < 1 and X7 < 1, we calculate expectations

of W1W2W3W4W5 for different ρ on [0, 0.99] whose total number is 331 with increment
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FIGURE 5.21. Conditional Expectations of Product W1W2W3W4W5 with n = 6, N = 100,
c = 1, ρ = [0 : 0.003 : 0.99]
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FIGURE 5.22. Conditional Expectations of Product W1W2W3W4W5 with n = 7, N = 100,
c = −1, ρ = [0 : 0.003 : 0.99]
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FIGURE 5.23. Conditional Expectations of Product W1W2W3W4W5 with n = 7, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]
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FIGURE 5.24. Conditional Expectations of Product W1W2W3W4W5 with n = 7, N = 100,
c = 1, ρ = [0 : 0.003 : 0.99]
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FIGURE 5.25. Conditional Expectations of Product W1W2W3W4W5 with n = 8, N = 100,
c = −1, ρ = [0 : 0.003 : 0.99]

0.003. The data size for each Xi is 100. The total number of points is 331. The mean of

expectation is 0.02374.

For Figure5.25, conditioning on only X6 < −1, X7 < −1 and X8 < −1, we calculate

expectations of W1W2W3W4W5 for different ρ on [0, 0.99] whose total number is 331 with

increment 0.003. The data size for each Xi is 100. The total number of points is 331. The

mean of expectation is 0.01782.

For Figure5.26, conditioning on only X6 < 0, X7 < 0 and X8 < 0, we calculate

expectations of W1W2W3W4W5 for different ρ on [0, 0.99] whose total number is 331 with

increment 0.003. The data size for each Xi is 100. The total number of points is 331. The

mean of expectation is 0.003146.

For Figure5.27, conditioning on only X6 < 1, X7 < 1 and X8 < 1, we calculate

expectations of W1W2W3W4W5 for different ρ on [0, 0.99] whose total number is 331 with

increment 0.003. The data size for each Xi is 100. The total number of points is 331. The

mean of expectation is 0.009398.

In summary of above figures of conditional expectation of W1W2W3W4W5, we have

Table5.3 which displays the relationship among mean of conditional expectations of
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FIGURE 5.26. Conditional Expectations of Product W1W2W3W4W5 with n = 8, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]
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FIGURE 5.27. Conditional Expectations of Product W1W2W3W4W5 with n = 8, N = 100,
c = 1, ρ = [0 : 0.003 : 0.99]

TABLE 5.3. Mean of Conditional Expectations of W1W2W3W4W5. For more explanation see
text.

Total Names Mean of Conditional Expectations of W1W2W3W4W5 with Different c
c = -1 c = 0 c = 1

6 0.03555 0.03239 0.0545

7 0.005199 0.01062 0.02374

8 0.01782 0.003146 0.009398
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FIGURE 5.28. Conditional Expectations of Product W1W2W3W4W5W6 with n = 7, N = 100,
c = −1, ρ = [0 : 0.003 : 0.99]. For more explanation see text.

W1W2W3W4W5, total names of portfolio, and threshold c. According to this table, we

can see that, fixing threshold as -1, 0, and 1, the mean of conditional expectation of

W1W2W3W4W5 is closing to 0 as increasing of total names.

Basing on these data, the means are close to 0 which implies that the conditional

variables W1W2W3W4W5 are ‘approximately’ Gaussian as far as moments go, but it does

not appear that they are exactly Gaussian.

Finally, let’s see the simulation results of conditional test for six names.

For Figure5.28, conditioning on only X7 < −1, we calculate expectations, errors and

Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total number is

331 with increment 0.003. The data size for each Xi is 100. The total number of points

for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.003814. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.001961. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.001853.
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FIGURE 5.29. Conditional Expectations of Product W1W2W3W4W5W6 with n = 7, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]. For more explanation see text.

For Figure5.29, conditioning on only X7 < 0, we calculate expectations, errors and

Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total number is

331 with increment 0.003. The data size for each Xi is 100. The total number of points

for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is -0.001071. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.002165. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is -0.003236.

For Figure5.30, conditioning on only X7 < 1, we calculate expectations, errors and

Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total number is

331 with increment 0.003. The data size for each Xi is 100. The total number of points

for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.008645. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.001645. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.007.

For Figure5.31, conditioning on only X7 < −1 and X8 < −1, we calculate expectations,

errors and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total
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FIGURE 5.30. Conditional Expectations of Product W1W2W3W4W5W6 with n = 7, N = 100,
c = 1, ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.31. Conditional Expectations of Product W1W2W3W4W5W6 with n = 8, N = 100,
c = −1, ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.32. Conditional Expectations of Product W1W2W3W4W5W6 with n = 8, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]. For more explanation see text.

number is 331 with increment 0.003. The data size for each Xi is 100. The total number

of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is -0.00409. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.001526. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is -0.005616.

For Figure5.32, conditioning on only X7 < 0 and X8 < 0, we calculate expectations,

errors and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total

number is 331 with increment 0.003. The data size for each Xi is 100. The total number

of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.001137. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.0005197. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.000617.

For Figure5.33, conditioning on only X7 < 1 and X8 < 1, we calculate expectations,

errors and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99] whose total

number is 331 with increment 0.003. The data size for each Xi is 100. The total number

of points for each term is 331.
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FIGURE 5.33. Conditional Expectations of Product W1W2W3W4W5W6 with n = 8, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]. For more explanation see text.

Data 1 (green +) display the conditional expectations. The mean is -0.00006741. Data

3 (red *) display the value predicted by the Wick formula. The mean is 0.000838. Data

2 (blue +) display the deviation Data 1 minus Data 3. The mean is -0.0009054.

For Figure5.34, conditioning on only X7 < −1, X8 < −1 and X9 < −1, we calculate

expectations, errors and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99]

whose total number is 331 with increment 0.003. The data size for each Xi is 100. The

total number of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.006231. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.0008065. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is 0.005424.

For Figure5.35, conditioning on only X7 < 0, X8 < 0 and X9 < 0, we calculate

expectations, errors and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99]

whose total number is 331 with increment 0.003. The data size for each Xi is 100. The

total number of points for each term is 331.
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FIGURE 5.34. Conditional Expectations of Product W1W2W3W4W5W6 with n = 9, N = 100,
c = −1, ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.35. Conditional Expectations of Product W1W2W3W4W5W6 with n = 9, N = 100,
c = 0, ρ = [0 : 0.003 : 0.99]. For more explanation see text.
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FIGURE 5.36. Conditional Expectations of Product W1W2W3W4W5W6 with n = 9, N = 100,
c = 1, ρ = [0 : 0.003 : 0.99]. For more explanation see text.

TABLE 5.4. Deviation of Conditional Expectations of W1W2W3W4W5W6. For more explanation
see text.

Total Names Deviation of Conditional Expectations of W1W2W3W4W5W6 with Different c
c = -1 c = 0 c = 1

7 0.0002998 0.004434 0.02138
8 -0.005145 0.001704 0.001541

9 0.01104 0.003794 0.003218

Data 1 (green +) display the conditional expectations. The mean is -0.007677. Data 3

(red *) display the value predicted by the Wick formula. The mean is 0.0005521. Data 2

(blue +) display the deviation Data 1 minus Data 3. The mean is -0.008229.

For Figure5.36, conditioning on only X7 < 1, X8 < 1 and X9 < 1, we calculate

expectations, errors and Wick’s formula values of W1W2W3W4 for different ρ on [0, 0.99]

whose total number is 331 with increment 0.003. The data size for each Xi is 100. The

total number of points for each term is 331.

Data 1 (green +) display the conditional expectations. The mean is 0.00008357. Data

3 (red *) display the value predicted by the Wick formula. The mean is 0.0006319. Data

2 (blue +) display the deviation Data 1 minus Data 3. The mean is -0.0005483.
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In summary of above figures of conditional expectation of W1W2W3W4W5W6, we have

Table5.4 which displays the relationship among deviation of conditional expectations

of W1W2W3W4W5W6, total names of portfolio, and threshold c. According to this ta-

ble, we can see that, fixing threshold as -1, the deviation of conditional expectation of

W1W2W3W4W5W6 is closing to 0 as increasing of total names. Fixing total names, like 7,

the absolute deviation seems increasing with increasing of threshold.

Basing on these data, the deviations are close to 0 which implies that the conditional

variables W1W2W3W4W5W6 are ‘approximately’ Gaussian as far as moments go, but it

does not appear that they are exactly Gaussian.

5.5 Observations

Above all, extensive simulations for several values of the threshold c as well as the cor-

relation ρ show that the conditional variables Wj are ‘approximately’ Gaussian as far as

moments go, but it does not appear that they are exactly Gaussian.

For a more careful study of the behavior of the joint distribution of default time proxies,

one should use standard tests for normality, such as kolmogorov normality test, but this

is outside the range of our work.
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Appendix A: CopulaConditionalTest03.m

The following is a code in Matlab.

function CopulaConditionalTest03(n, p, N, c)

global EEEE

for i=1:N

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X=sqrt(p)*Z + sqrt(1-p)*E;

while min(X(1:3))<=c | norm(X(4:n))>c

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X = sqrt(p)*Z + sqrt(1-p)*E

end

Y(i,1:3)=X(1:3);

end

Y; for i = 1:N

Y_1(i)=(sum(Y(:,1)<=Y(i,1)))/N;

Y_2(i)=(sum(Y(:,2)<=Y(i,2)))/N;

Y_3(i)=(sum(Y(:,3)<=Y(i,3)))/N;

end

MU = zeros(N,1);

SIGMA = ones(N,1);

Z_1 = norminv(Y_1’, MU, SIGMA);

Z_2 = norminv(Y_2’, MU, SIGMA);

Z_3 = norminv(Y_3’, MU, SIGMA);

ZZ = [Z_1,Z_2,Z_3]

[D,F]=find(ZZ==inf);

ZZ(D,:)=[];

ZZ;
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[B,C] = size(ZZ);

for i = 1:B

E(i) = prod(ZZ(i,:));

end

EEEE = (sum(E))/B;
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Appendix B: CopulaConditionalTest04.m

The following is a code in Matlab.

function CopulaConditionalTest04(n, p, N, c)

global Error

global Wick

global EEEE

for i=1:N

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X=sqrt(p)*Z+sqrt(1-p)*E;

while min(X(1:4))<=c | max(X(5:n))>c

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X = sqrt(p)*Z + sqrt(1-p)*E;

end

Y(i,1:4)=X(1:4);

end

Y;

for i = 1:N

Y_1(i) = (sum(Y(:,1)<=Y(i,1)))/N;

Y_2(i) = (sum(Y(:,2)<=Y(i,2)))/N;

Y_3(i) = (sum(Y(:,3)<=Y(i,3)))/N;

Y_4(i) = (sum(Y(:,4)<=Y(i,4)))/N;

end

[m,n] = size(Y_1);

MU = zeros(N,1);

SIGMA = ones(N,1);

Z_1 = norminv(Y_1’, MU, SIGMA);
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Z_2 = norminv(Y_2’, MU, SIGMA);

Z_3 = norminv(Y_3’, MU, SIGMA);

Z_4 = norminv(Y_4’, MU, SIGMA);

ZZ = [Z_1,Z_2,Z_3,Z_4];

[D,F]=find(ZZ==inf);

ZZ(D,:)=[];

ZZ;

[B,C]=size(ZZ);

for i = 1:B

E(i) = prod(ZZ(i,:));

end

EEEE = (sum(E))/B

%We want to test if E(Z_1Z_2Z_3Z_4) = E(Z_1Z_2)E(Z_3Z_4)+

%E(Z_1Z_3)E(Z_2Z_4)+ E(Z_1Z_4)E(Z_2Z_3)

EE12 = (ZZ(:,1)’* ZZ(:,2))/B; %E(Z_1Z_2)

EE34 = (ZZ(:,3)’* ZZ(:,4))/B; %E(Z_3Z_4)

EE13 = (ZZ(:,1)’* ZZ(:,3))/B; %E(Z_1Z_3)

EE24 = (ZZ(:,2)’* ZZ(:,4))/B; %E(Z_2Z_4)

EE14 = (ZZ(:,1)’* ZZ(:,4))/B; %E(Z_1Z_4)

EE23 = (ZZ(:,2)’* ZZ(:,3))/B; %E(Z_2Z_3)

Wick = EE12*EE34 + EE13*EE24 + EE14*EE23;

Error = EEEE - (EE12*EE34 + EE13*EE24 + EE14*EE23) %value of difference
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Appendix C: CopulaConditionalTest05.m

The following is a code in Matlab.

function CopulaConditionalTest05(n, p, N, c)

global EEEE

for i=1:N %

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X = sqrt(p)*Z+sqrt(1-p)*E;

while min(X(1:5))<=c | norm(X(6:n))>c

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X = sqrt(p)*Z + sqrt(1-p)*E

end

Y(i,1:5)=X(1:5);

end

Y; for i = 1:N

Y_1(i)=(sum(Y(:,1)<=Y(i,1)))/N;

Y_2(i)=(sum(Y(:,2)<=Y(i,2)))/N;

Y_3(i)=(sum(Y(:,3)<=Y(i,3)))/N;

Y_4(i)=(sum(Y(:,3)<=Y(i,3)))/N;

Y_5(i)=(sum(Y(:,3)<=Y(i,3)))/N;

end

MU = zeros(N,1);

SIGMA = ones(N,1);

Z_1 = norminv(Y_1’, MU, SIGMA);

Z_2 = norminv(Y_2’, MU, SIGMA);

Z_3 = norminv(Y_3’, MU, SIGMA);

Z_4 = norminv(Y_4’, MU, SIGMA);
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Z_5 = norminv(Y_5’, MU, SIGMA);

ZZ = [Z_1,Z_2,Z_3,Z_4,Z_5];

[D,F]=find(ZZ==inf);

ZZ(D,:)=[]; ZZ;

[B,C] = size(ZZ);

for i = 1:B

E(i) = prod(ZZ(i,:));

end

EEEE = (sum(E))/B;
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Appendix D: CopulaConditionalTest06.m

The following is a code in Matlab.

function CopulaConditionalTest06(n, p, N, c)

global Error;

global Wick;

global EEEE;

for i=1:N %

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X=sqrt(p)*Z+sqrt(1-p)*E;

while min(X(1:3))<=c | norm(X(4:n))>c

A = randn(1,1);

Z = repmat(A, 1, n);

E = randn(1, n);

X = sqrt(p)*Z + sqrt(1-p)*E

end

Y(i,1:6)=X(1:6);

end

Y; for i = 1:N

Y_1(i)=(sum(Y(:,1)<=Y(i,1)))/N;

Y_2(i)=(sum(Y(:,2)<=Y(i,2)))/N;

Y_3(i)=(sum(Y(:,3)<=Y(i,3)))/N;

Y_4(i)=(sum(Y(:,4)<=Y(i,4)))/N;

Y_5(i)=(sum(Y(:,5)<=Y(i,5)))/N;

Y_6(i)=(sum(Y(:,6)<=Y(i,6)))/N;

end

[m,n] = size(Y_1);

MU = zeros(N,1);

SIGMA = ones(N,1);

Z_1=norminv(Y_1’, MU, SIGMA);

Z_2=norminv(Y_2’, MU, SIGMA);

Z_3=norminv(Y_3’, MU, SIGMA);

Z_4=norminv(Y_4’, MU, SIGMA);
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Z_5=norminv(Y_5’, MU, SIGMA);

Z_6=norminv(Y_6’, MU, SIGMA);

ZZ = [Z_1,Z_2,Z_3,Z_4,Z_5,Z_6];

[D,F]=find(ZZ==inf);

ZZ(D,:)=[];

ZZ;

[B,C]=size(ZZ);

for i = 1:B

E(i) = prod(ZZ(i,:));

end

EEEE=sum(E)/B

EE12 = (ZZ(1:B,1)’* ZZ(1:B,2))/B; %E(X_1X_2)

EE34 = (ZZ(1:B,3)’* ZZ(1:B,4))/B; %E(X_3X_4)

EE56 = (ZZ(1:B,5)’* ZZ(1:B,6))/B; %E(X_5X_6)

EE35 = (ZZ(1:B,3)’* ZZ(1:B,5))/B; %E(X_3X_5)

EE46 = (ZZ(1:B,4)’* ZZ(1:B,6))/B; %E(X_4X_6)

EE36 = (ZZ(1:B,3)’* ZZ(1:B,6))/B; %E(X_3X_6)

EE45 = (ZZ(1:B,4)’* ZZ(1:B,5))/B; %E(X_4X_5)

EE13 = (ZZ(1:B,1)’* ZZ(1:B,3))/B; %E(X_1X_3)

EE24 = (ZZ(1:B,2)’* ZZ(1:B,4))/B; %E(X_2X_4)

EE25 = (ZZ(1:B,2)’* ZZ(1:B,5))/B; %E(X_2X_5)

EE26 = (ZZ(1:B,2)’* ZZ(1:B,6))/B; %E(X_2X_6)

EE14 = (ZZ(1:B,1)’* ZZ(1:B,4))/B; %E(X_1X_4)

EE23 = (ZZ(1:B,2)’* ZZ(1:B,3))/B; %E(X_2X_3)

EE15 = (ZZ(1:B,1)’* ZZ(1:B,5))/B; %E(X_1X_5)

EE16 = (ZZ(1:B,1)’* ZZ(1:B,6))/B; %E(X_1X_6)

Wick = EE12*EE34*EE56 + EE12*EE35*EE46 + EE12*EE36*EE45 +

EE13*EE24*EE56 + EE13*EE25*EE46 + EE13*EE26*EE45 + EE14*EE23*EE56 +

EE14*EE25*EE36 + EE14*EE26*EE35 + EE15*EE23*EE46 + EE15*EE24*EE36 +

EE15*EE26*EE34 + EE16*EE23*EE45 + EE16*EE24*EE35 + EE16*EE25*EE34

Error = EEEE - (EE12*EE34*EE56 + EE12*EE35*EE46 + EE12*EE36*EE45 +

EE13*EE24*EE56 + EE13*EE25*EE46 + EE13*EE26*EE45 + EE14*EE23*EE56 +

EE14*EE25*EE36 + EE14*EE26*EE35 + EE15*EE23*EE46 + EE15*EE24*EE36 +

EE15*EE26*EE34 + EE16*EE23*EE45 + EE16*EE24*EE35 + EE16*EE25*EE34)
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