Low Strain Shear Measurements of Soft Sediments Using Triaxial Vane Device (Triaxial Vane Testing, Soft Clays).

Sibel Pamukcu
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation
https://digitalcommons.lsu.edu/gradschool_disstheses/4253

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note appears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or microfiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department.

UMI Dissertation Information Service

University Microfilms International
A Bell & Howell Information Company
300 N. Zeeb Road, Ann Arbor, Michigan 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Pamukcu, Sibel

LOW STRAIN SHEAR MEASUREMENTS OF SOFT SEDIMENTS USING TRIAXIAL VANE DEVICE

The Louisiana State University and Agricultural and Mechanical Col. PH.D. 1986

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark √.

1. Glossy photographs or pages √
2. Colored illustrations, paper or print
3. Photographs with dark background √
4. Illustrations are poor copy
5. Pages with black marks, not original copy
6. Print shows through as there is text on both sides of page
7. Indistinct, broken or small print on several pages √
8. Print exceeds margin requirements
9. Tightly bound copy with print lost in spine
10. Computer printout pages with indistinct print
11. Page(s) lacking when material received, and not available from school or author.
12. Page(s) seem to be missing in numbering only as text follows.
13. Two pages numbered. Text follows.
14. Curling and wrinkled pages
15. Dissertation contains pages with print at a slant, filmed as received
16. Other

University Microfilms International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
LOW STRAIN SHEAR MEASUREMENTS
OF SOFT SEDIMENTS
USING TRIAXIAL VANE DEVICE

A Dissertation
Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in
The Department of Civil Engineering

by
Sibel Pamukcu
B.S., Bogazici University, Istanbul, Turkey, 1978
M.S., Louisiana State University, 1981
May 1986
ACKNOWLEDGEMENTS

The author wishes to extend her most sincere gratitude to her major professor Dr. Joseph N. Suhayda. His guidance, support and expertise were invaluable and made all the difference during the author's academic studies at Louisiana State University. His professionalism and unbiased attitude are some of the traits this author wishes to be able to acquire some day.

Very special thanks are due to my husband Mr. Derya Pamukcu for all the encouragement, patience and devoted, unselfish assistance throughout my academic studies.

Derya, I could not have done it without you, thanks once again!

The author also wishes to express her sincere thanks to Prof. Mehmet T. Tumay for his support and assistance.
To my father

"For us the experimental method is truly an art—that is, it is based on special skills and not on general rules. As such there are never any guarantees of success and one always remains at the mercy of triviality or poor judgment. No methodological principle can eliminate the risk, for instance, of persisting in a blind alley of inquiry..."

from: "Order out of Chaos"

by Ilya Progogine and Isabelle Stengers
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
FORWARD iii
LIST OF FIGURES vii
LIST OF TABLES xii
LIST OF SYMBOLS xiii
ABSTRACT xvi

Chapter
1. INTRODUCTION 1
2. BACKGROUND 7
 2.1 DYNAMIC TESTING OF SOFT CLAYS 7
 2.2 STATIC SHEAR TESTING OF SOFT CLAYS 10
 2.3 IMPORTANT ASPECTS OF DYNAMIC AND STATIC PARAMETER CORRELATIONS 11
 2.4 VANE SHEAR TESTING 25
 2.4.1 Shear Mechanism of Vane Test 26
 2.4.2 Disturbance Effects Due to Insertion of the Vane 30
 2.4.3 Shear Rate Effects 33
 2.4.4 An Important Utilization Utilization of Vane Shear 34
 2.4.5 Triaxial Vane 35
3. METHODOLOGY

3.1 EQUIPMENT

3.1.1 Consolidation Units

3.1.2 Modified Triaxial Laboratory Vane Device

3.1.2.1 Triaxial Cell and Parts

3.1.2.1.1 Piston

3.1.2.1.2 Top Cap

3.1.2.1.3 Bottom Cap

3.1.2.1.4 Side Rods With Detachable Pins

3.1.2.2 Laboratory Vane Device

3.1.2.2.1 Vane Machine

3.1.2.2.2 Vane and Vane Rod

3.1.2.2.3 Mirror

3.1.3 Resonant Column

3.1.4 Equipment Used in Measuring Low Strains

3.1.4.1 Electronic Autocollimator

3.1.4.2 Optical Position Indicator (OP-EYE)

3.1.4.3 Microcomputer

3.2 SAMPLE PREPARATION

3.2.1 Slurry Preparation

3.2.2 Estimation of Consolidation Time

3.2.3 Specimen Preparation
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Degraded Backbone Curves with Actual γ vs τ Data Points and Fitted Hyperbolic Curve [reproduced from Pamukcu and Suhayda (55)]</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Normalized Dynamic Shear Moduli Corresponding to the 10th Cycle and Various Levels of Strain in the Standard Triaxial (ST), Hollow Cylinder Torsion (HC), and Simple Shear (SS) Test (CF=Constant volume or length, CL=Constant Force or Undrained) [reproduced from Adel Saada (1981)]</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Dependence of G_0/τ_{max}, $G_0/\tau_{1%}$, and γ_1 on the Confining Pressure G_0 (G_0= maximum shear modulus, τ_{max}= maximum shear strength, $\tau_{1%}$= shearing stress at 1% strain, γ_1= τ_{max}/G_0) [reproduced from Athanasopoulos and Richart (5)]</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Dependence of G_0/τ_{max}, $G_0/\tau_{1%}$, and γ_1 on OCR [reproduced from Athanasopoulos and Richart (5)]</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Dynamic Shear Modulus vs Static Strength Variation [reproduced from Chae et al. (18)]</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Cyclic Shear Stress versus Normalized Pore Pressure Variation [reproduced from Dyvik et al. (22)]</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Normalized Modulus versus Normalized Pore Pressure Variation [reproduced from Dyvik et al. (22)]</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Variation in Shear Modulus With Shearing Strain Rate [reproduced from Isenhower and Stokoe II (32)]</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Combined Parameter Effects on Shear Modulus [reproduced from Isenhower and Stokoe II (32)]</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Rapid Cyclic and Slow Monotonic Stress-Strain Curves Obtained From Tests of Drammen Clay [reproduced from Prevost (56)]</td>
<td>20</td>
</tr>
</tbody>
</table>
2.11 A set of Cyclic Stress-strain Curves With Different Number of Cycles [reproduced from Ishihara and Yasuda (33)]

2.12 Cyclic Strengths versus Initial Shear Stress [reproduced from Ishihara and Yasuda (33)]

2.13 Cyclic Strength in Reversing Cyclic Loading as Functions of Plasticity Index of Soils [reproduced from Ishihara and Yasuda (33)]

2.14 Modulus of San Fransisco Bay mud [reproduced from Kavazanjian and Hadj-Hamou (34)]

2.15 Analytical and Experimental Distributions of Excess Pore Water Pressure, Total Stress and Effective Stress Increments on the Vane Shear [reproduced from Matsui and Abe (47)]

2.16 Effect of Local Pore Water Migration on Excess Pore Pressure Distribution on Vane Shear Surface [reproduced from Matsui and Abe (47)]

2.17 Normalized and Linear Distributions of Equivalent Shear Stress Scaled to Give Equal Torque [reproduced from Menzies and Merrifield (49)]

2.18 Variation of Pore Pressure During Vane Insertion and Subsequent Dissipation [reproduced from Kimura and Saitoh (36)]

2.19 Variation in Pore Pressure During Rotation of Váne [reproduced from Kimura and Saitoh (36)]

2.20 Normalized Shear Strength vs Rate of Shear for Kaolinite [reproduced from Sharifounnasab and Ullrich (70)]

3.1 Flow Chart of Testing Procedure

3.2 Large Consolidation Cell Used in Preparation of Samples

3.3 A View of the Triaxial Vane Device

3.4 Schematic Diagram of Triaxial Cell Assembly
3.5 Schematic Diagram of Cell Assembly Parts [Vane, Vane Rod, Piston, Top Cap] 44
3.6 A View of the Vane Mirror and Mount Assembly on the Triaxial Vane machine 50
3.7 Data Acquisition System 55
3.8 Electronic Autocollimator 57
3.9 Operation of Data Acquisition System 59
3.10 General View of the Laboratory Test Set-Up 59A
3.11 Degree of Consolidation as Function of Dimensionless Time Factor For Doubly Drained Layers by Linear Finite Strain Theory [reproduced from Cargill (16)] 62
3.12 OPCALIB - Progression of Calibration Step 1 81
3.13 OPCALIB - Calibration Step 2 82
3.14 OPCALIB - Calibration Step 3 82
3.15 OPCALIB - Acquisition of Data 83
3.16 OPAUX2 - Original Positions of DAT and CAL File Data 84
3.17 OPAUX2 - Final Positions of DAT and CAL File Data 84
3.18 OPAUX3 - Superimposed Torque vs Shear Strain Data for DAT and CAL Files 85
3.19 OPAUX3 - Shear Stress-Strain Curve Corrected for Seal Friction 86
3.20 OPAUX3 - Enlarged View of the Low Strain Range 87
3.21 OPAUX3 - Final Shear Stress-Strain Curve With Bilinear Representation 88
4.1 Adjusted versus measured Gmax-s/Gmax-d ratios 108
4.2 Dynamic and static moduli reduction curves compared [VT-RT11] 109
4.3 Dynamic and static moduli reduction curves compared [VT-RT12] 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>111</td>
</tr>
<tr>
<td>4.5</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>112</td>
</tr>
<tr>
<td>4.6</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>113</td>
</tr>
<tr>
<td>4.7</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>114</td>
</tr>
<tr>
<td>4.8</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>115</td>
</tr>
<tr>
<td>4.9</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>116</td>
</tr>
<tr>
<td>4.10</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>117</td>
</tr>
<tr>
<td>4.11</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>118</td>
</tr>
<tr>
<td>4.12</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>119</td>
</tr>
<tr>
<td>4.13</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>120</td>
</tr>
<tr>
<td>4.14</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>121</td>
</tr>
<tr>
<td>4.15</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>122</td>
</tr>
<tr>
<td>4.16</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>123</td>
</tr>
<tr>
<td>4.17</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>124</td>
</tr>
<tr>
<td>4.18</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>125</td>
</tr>
<tr>
<td>4.19</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>126</td>
</tr>
<tr>
<td>4.20</td>
<td>Dynamic and static moduli reduction curves compared</td>
<td>127</td>
</tr>
</tbody>
</table>
4.21 Dynamic and static moduli reduction curves compared [VT-RT32]

4.22 Dynamic and static moduli reduction curves compared [VT-RT33]

4.23 Dynamic and static moduli reduction curves compared [VT-RT34]

4.24 Dynamic and static moduli reduction curves compared [VT-RT35]

4.25 Variation of Gmax-static/Gmax-dynamic with excess pore water pressure ratio

4.26 Variation of Gmax-static/Su with excess pore water pressure ratio

4.27 Variation of Su/Gmax-dynamic with excess pore water pressure ratio

4.28 Variation of undrained residual shear strength (Ru) with undrained shear strength (Su)

4.29 Variation of Gmax-static/Gmax-dynamic with yield shear strain

4.30 Variation of yield stress with undrained shear strength

4.31 Hypothetical representation of dynamic and static shear stress-strain curves

4.32 Hypothetical representation of the relation between static shear stress strain curve and constant strain hysteresis loop at cycle N=N1
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Index properties of soil specimens</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Statistical analysis of Gmax values for 3 sets of data</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Index properties of static and dynamic test specimens</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>Low strain parameters estimated in triaxial vane tests, and statistical information pertaining to determination of Gmax from OPAUX3</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Maximum shear moduli obtained from dynamic tests and the statistical parameters pertaining to the hyperbolic line fit to the data</td>
<td>106</td>
</tr>
<tr>
<td>4.5</td>
<td>The undrained shear strength (=S_u) and undrained residual shear strength (=R_u) values obtained from triaxial vane tests</td>
<td>107</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Skempton's pore pressure parameter</td>
<td></td>
</tr>
<tr>
<td>C<sub>v</sub></td>
<td>Coefficient of consolidation</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Diameter of vane</td>
<td></td>
</tr>
<tr>
<td>dV/V<sub>0</sub></td>
<td>Volume change</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Void ratio</td>
<td></td>
</tr>
<tr>
<td>e<sub>o</sub></td>
<td>Void ratio at zero effective stress</td>
<td></td>
</tr>
<tr>
<td>e<sub>e</sub></td>
<td>Void ratio at infinite effective stress</td>
<td></td>
</tr>
<tr>
<td>f<sub>n</sub></td>
<td>Natural frequency at resonance</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus</td>
<td></td>
</tr>
<tr>
<td>G<sub>max</sub></td>
<td>Maximum shear modulus</td>
<td></td>
</tr>
<tr>
<td>G<sub>max-d</sub></td>
<td>Maximum dynamic shear modulus</td>
<td></td>
</tr>
<tr>
<td>G<sub>max-s</sub></td>
<td>Maximum static shear modulus</td>
<td></td>
</tr>
<tr>
<td>G<sub>s</sub></td>
<td>Specific gravity</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Height of vane</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Layer thickness of soil deposit</td>
<td></td>
</tr>
<tr>
<td>K<sub>o</sub></td>
<td>At rest earth pressure coefficient</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Finite strain governing equation dimensionless parameter</td>
<td></td>
</tr>
<tr>
<td>OCR</td>
<td>Overconsolidation ratio</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity index</td>
<td></td>
</tr>
<tr>
<td>P<sub>p</sub></td>
<td>Effective preconsolidation pressure</td>
<td></td>
</tr>
<tr>
<td>P<sub>t</sub></td>
<td>Total pressure</td>
<td></td>
</tr>
<tr>
<td>R<sub>u</sub></td>
<td>Undrained residual shear strength</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Shear stress</td>
<td></td>
</tr>
</tbody>
</table>
Su Undrained shear strength
SF Load spring factor
T Torque
Tv Consolidation time factor
U Percent consolidation
ur Pore pressure ratio
ueff Excess pore water pressure
wf Final water content
wi Initial water content
Vo Initial volume
X X position of light beam on detector surface
X1,X2 Signals from sensors on the horizontal axis of detector
Y Y position of light beam on detector surface
Y1,Y2 Signals from sensors on the vertical axis of detector
\beta Experimental constant in resonant column test
\gamma Shear strain
\gamma_c Threshold shear strain
\gamma_d Threshold shear strain
\gamma_s Bulk density of soil
\gamma_w Bulk density of water
\gamma_y Yield shear strain
\gamma_l Reference shear strain
\lambda Linearization constant in finite strain theory
\rho Mass density
\sigma' Effective confining pressure
\[\tau \quad \text{Shear stress} \]
\[\tau_y \quad \text{Yield shear stress} \]
ABSTRACT

A new semi-computer aided testing procedure was designed and implemented to determine low shear strain properties of soft saturated clays. Components of the test set-up were a triaxial vane device, data acquisition units to detect small strain amplitudes, and a microcomputer. Real-time data acquisition and interactive computer graphics were utilized to collect and analyze data. The average range of electronically measured strain amplitude was from 10^{-4} to 1%. Approximately 1500 data points were taken in this range. Testing could be extended to determine undrained shear strength of the specimens, occurring between 10% to 20% of shear strain amplitude, and beyond for residual strength measurements.

Using duplicate specimens, shear moduli reduction curves were obtained through resonant column testing and the new triaxial vane shear testing procedure and they were compared. The dynamically determined low strain shear stress-strain behaviour was found to be substantially influenced due to cyclic degradation for the soft saturated clay specimens. Whereas, static testing using the new procedure resulted in acquisition of better quality and more realistic low shear strain data for these types of soils. For normally consolidated specimens, G_{max}/S_u was found to be 112, and $G_{\text{max}}/G_{\text{max}}$-dynamic was 0.85.
CHAPTER 1
INTRODUCTION

Science of solid materials had already existed a long time when principles of soil mechanics were developed with the need of solving engineering problems. The existing theories regarding failure and deformation were adopted and applied to soils without rigorous analysis of their validity. A major obstacle to confirmation was lack of adequate testing equipment and experimental methods. With the advent of fast computing techniques and development of new elasto-plastic models (21,38,40,57,62,63,65) that are formulated on the grounds of plasticity theory, soil behaviour could be simulated more realistically. However, the experimental methods to estimate soil properties for use in analytic techniques have not reached to the level of sophistication of these models and computational abilities. There exists an accumulation of vast amount of information and data both from laboratory and field investigations. A significant percent of this data lacks consistency, sufficient quality and/or scope (37,73). Uncertainty in the data is the result of various factors, some of which are compliance of equipment, compatibility of testing procedures, ability to simulate in-situ conditions, and the interpretation of behaviour beyond limits of test data. Practical and economical limitations require few laboratory tests yield maximum amount of information. The need for
security when coupled with the already existing uncertainty of laboratory and field data, promotes the use of theoretical models that estimate soil behaviour with some degree of conservatism. This matter brings the investigators back to where they have started from, which is acknowledging the need to understand the mechanics of a particular soil with respect to various factors, and obtain realistic data to use in the model. The study reported here addresses this need in one of the areas of soil mechanics where uncertainty of data is significant. The main objective of the study is to investigate some problems associated with acquiring low strain data of soft saturated clays and propose a new technique to obtain more realistic information about these types of soils.

The variety in the nature of failure for soils makes it imperative first to identify depositional characteristics and state variables in order to learn why the soil behaves in the specific manner it does. Depositional characteristics consist of fabric, mineralogical and pore fluid parameters. State variables are stress, strain, time and temperature. This investigation is basically concerned with the first two state variables, stress and strain.

Soft grounds are no longer strictly avoided for building sites, but taken into consideration as long as proper design procedures are formulated. Problems associated with building on soft deposits and on unstable grounds in offshore environment have already been investigated.
extensively (8,9,45,50,59,61,64,69,75,77,80). Soft clays are highly nonlinear in stress-strain behaviour, and yield over a considerable strain range. From an engineering point of view, failure condition is preferably defined in terms of deformation or be related to deformation. Although actual failure takes place at high strain levels (10% - 20%) for these soft soils, it is becoming increasingly common to evaluate stress-strain relation at much lower strain amplitudes due to the nonlinear nature of the behaviour (78). In order to test and evaluate stress-strain behaviour below a certain strain amplitude, dynamic testing equipment and cyclic loading principles and formulations are to be adopted. Otherwise, analytical estimation procedures (41), or empirical relations (28) must be utilized to assess low strain parameters and model the behaviour. Therefore, the investigator conducts two separate tests and/or uses an analytical procedure to understand the nonlinear stress-strain behaviour of these soft soils over an increased scope of data. This certainly accomplishes expansion of data range however at the expense of introducing new uncertainty to the data with assumptions and/or estimations. In addition, small variations in the estimated values of the parameters or shape of data curves may change computed results in analytical model as much as by factor of 2 (43). This is a serious consequence, because it is the accuracy of the total analysis and not the uncertainty that is of major
This investigation reported here is aimed to focus on improving ability to directly obtain shear stress-strain relation data for soft clay soils at low shear strain amplitudes through static testing. Related areas of investigation are:

1) Expanding scope of data collection from low strains (10^{-4} %) to failure strains (20 %) within same testing,

2) Compare low strain static and dynamic behaviour of soft clays and identify parameters applicable in numerical modeling,

3) Effect of stress-history, and existing excess pore water pressures simulated as in fast deposited soft marine clays,

4) Prediction of a realistic maximum shear modulus, G_{max}, of monotonic soft clay behaviour,

5) Comparison of shear moduli and shape of shear stress-strain curves pertaining to dynamic and monotonic (static) loading,

6) Prediction of a realistic G_{max}/S_u (S_u = undrained shear strength) ratio which is frequently used in soft clay analysis,

7) Gain some insight into laboratory vane shear testing of soft clays with the new testing method.

It is very important for an individual investigator to identify soil state parameters and loading conditions before...
choosing a testing technique or an empirical procedure to predict soil parameters to use in numerical models when working with soft soils. As the nonlinearity of the material increases, small variations in parameters will introduce large deviations of the end design from optimum. In the study reported here, a resonant column device was utilized for dynamic testing and a modified triaxial laboratory vane device was used for static testing. Basic compatibility criteria were satisfied either by inherent operation process of each device (stress-controlled testing, similar strain rate effects), or making the necessary operational modifications (similar strain amplitude ranges, triaxial confinement, drainage and consolidation). Duplicate specimens trimmed from artificially prepared Georgia kaolinite samples were used in each device to obtain comparative data.

The significance and originality of this study lies in the fact that the ability to obtain good quality and repeatable data over a large range of strain amplitude was improved using a new testing method and data acquisition technique. A "semi-computer aided" experiment was designed and implemented. Both the modified testing equipment, namely triaxial vane, and the unique data acquisition technique possess high potential for use in further research in a variety of soil investigations. The current set-up can easily be modified for specific needs of different tests. The results obtained in this study are the results of a
pioneering testing method. In spite of this fact, the scatter and uncertainty in data obtained is certainly not any larger than the results encountered in other laboratory or site-investigation methods. In this sense, the proposed method may not offer improvement, however it does put in perspective certain criteria to watch for when predicting and analyzing soil behaviour and aid to obtain data accordingly.
CHAPTER 2

BACKGROUND

This chapter focuses on two major subject areas of interest to this study. One area is the previous investigations on correlating dynamic and static behaviour of clays, the other area is recent investigations on vane shear testing and in particular on triaxial vane shear tests. Discussions on dynamic and static laboratory testing of soft clays are presented initially.

2.1 DYNAMIC TESTING OF SOFT CLAYS

The common existing laboratory dynamic soil testing equipment are resonant column (using either solid or hollow samples), cyclic torsional shear, cyclic triaxial, cyclic simple shear, and shake table. Typical range of shear strain application vary from one device to the other. Among the equipment cited above, only resonant column and cyclic torsional device are capable of low shear strain applications (<10^-2%).

An earlier study conducted and co-investigated by the author (53,54,55) revealed that degradation of shear moduli is a factor that complicates results significantly in dynamic testing of soft offshore sediments. Degradation increased with increasing number of cycles of loading at high shear strain amplitudes (>10^-2%), and decreasing effective stress state of the soil specimen. Fig. 2.1 shows the actual shear moduli vs shear strain data superimposed on
Fig. 2.1 Degraded Backbone Curves with Actual γ vs τ Data Points and Fitted Hyperbolic Curve [reproduced from Pamukcu and Suhayda (55)]

the analytical curves illustrating the degradation of initial shear stress-strain curve for each measurement. These data were obtained using a resonant column device in which very low amplitudes of strain can be measured. A hyperbolic curve was fit to the data in order to interpolate a maximum value of shear modulus at $10^{-4}\%$ shear strain amplitude at which G is considered to no longer vary with shear strain (28). However, at typically applied low stress levels the specimen would exhibit high strains ($>10^{-2}\%$), promoting degradation and subsequently complicating the estimation of a realistic maximum shear modulus. Degradation problem have long been recognized and investigated for soft clays (30), however the significant effect it has on predicting G_{max} and the shape of backbone curve for the
soft offshore clays has not been documented well. Progressive pore pressure increase (dynamic pore pressure) during dynamic testing becomes more pronounced at high cyclic strain (22), which in turn promotes reduction of shear moduli by decreasing the effective stress. Stress reversal and break down of inherent soil structure during cyclic loading contribute to degradation of shear moduli also (33,67). Considering the factors discussed above, it is imperative to evaluate the dynamic test data of soft offshore clays very carefully in order to predict realistic parameters and stress-strain curve shapes. Dynamic testing procedures are generally used to predict dynamic parameters, Gmax and the damping ratio. The data obtained through these tests are utilized in designs for dynamic loading, such as earthquake, machine vibration, blasting, or wave loading. Maximum shear modulus is assumed to be unique for both dynamic and static shear stress-strain curves because the first cycle dynamic curve (backbone curve) is assumed to coincide with the static (monotonic load) curve up to the value of the cyclic stress applied (28,29). This is a valid assumption for most types of soils. However, when soft soils bearing excess pore pressures are considered, careful examination of this assumption is needed due to the testing and subsequent data interpretation difficulties discussed above. Moreover, the highly nonlinear nature of these soils is a significant factor which makes it more difficult to validate the existence of an elastic region on shear stress-
strain curve, and the assumption that loading rate will have no or minimal effect.

2.2 STATIC SHEAR TESTING OF SOFT CLAYS

The common laboratory soil shear testing equipment are translatory direct shear, torsional direct shear, simple shear, and triaxial using solid, prismatic or hollow specimens. All of these devices operate above strain amplitude of $10^{-2}\%$. In translatory and torsional direct shear, and simple shear, only Ko consolidation can be achieved while in triaxial, isotropic and anisotropic consolidation are possible also. In direct and simple shear tests, normal and shear stresses and strains are obtained from measured or applied axial and tangential forces. In triaxial tests (using solid specimens) only the normal stresses and strains are measured and shear components are calculated based on various assumptions.

An in-situ instrument which is widely used to measure undrained shear strength of saturated soft clay beds is the vane shear device (1,42,46,66). Laboratory vane shear device is also used frequently on soft saturated soil samples without extracting or trimming the samples retrieved. The apparent advantage is avoiding sample disturbance induced by specimen preparation. Over the years, many investigators have focused on analyzing vane shear mechanism based on experimental data, and determining the factors influencing the data (1,4,7,14,17,25,36,42,47,49,60,
Other investigators compared laboratory and field tests \((20,23,35,71,72)\) accumulating a bank of data. Concerns in relation to over prediction of \(S_u\) in soils with high plasticity \((7,12)\), disturbance effects due to insertion of vane \((7,36)\), pore pressure distribution and assessment of effective stress state on vane shear plane \((36,44,66,71,82)\) have been investigated. Studies indicate that there is confirmation between unconfined compression data and laboratory vane shear data, and in case of soft saturated clays there is some confirmation even with undrained triaxial data. Wide use of the equipment over the years resulted in vast amount of data collected both in lab and in-situ which is validated by other test data in general. Meaningful shear strength data for soft saturated clays can be obtained with relative ease and speed using the vane shear device. This favorable characteristic brought about the interest to utilize the equipment for a wider range of applications \((26,76)\). In this study, vane shear device was utilized in an unconventional manner also, that is, predicting and accentuating low strain shear parameters.

2.3 IMPORTANT ASPECTS OF DYNAMIC AND STATIC PARAMETER CORRELATIONS

Determining dynamic properties of soils experimentally can be costly. Laboratory procedures are sophisticated and geophysical methods not readily available. As a result, a number of investigators have worked on correlating static parameters, which are more easily obtained, to dynamic
parameters to establish empirical relations, or mathematical models (5,18,26,27,34,56,58,74,76).

A popular approach to correlation is determining Gmax/Su ratio (3,6,18,19,27,28,39,52,64,68). Both variables of this ratio are functions of void ratio, effective confining pressure, overconsolidation ratio, and both exhibit time dependent variations. However, there is not a high degree of agreement among the results as well as testing methods used. Generally, maximum shear moduli obtained from resonant column tests are normalized by undrained shear strength values from triaxial tests. Some values of the ratio measured using different methods are:

1) Hardin et al. (28) reported ratios ranging from 380 to 1500 with a mean value of 760.
2) Wilson and Dietrich (83) reported ratios ranging from 178 to 550 with a mean value of 390.
3) D'Appolonia et al. (19) reported ratios ranging from 53 to 833 with a mean value of 420.
4) Hara et. al (27) reported ratios ranging from 250 to 1430 with mean value of 548.
5) A previous study conducted by the author (52) revealed ratios ranging from 150 to 500 with mean value 250 using one set of data and ratios ranging from 500 to 2500 with a mean value of 1000 using another set of data.
6) Using a different method of approach, a study
conducted by Schapery et al. (64) revealed a ratio of 32, for marine clays.

7) Chae et al. (18) used mathematical relations between deviatoric stress and shear modulus and found an approximate range for G_{max}/S_u ratio of 260 - 1200.

The scatter in the values reported above may be due to various factors, an important one being differences in testing and data evaluation procedures. This is illustrated in Fig. 2.2, which shows how results vary substantially from one device to the other. Moreover, other investigators report that the scatter is due to the fact that G_{max}/S_u is not a constant value but strongly depends on overconsolidation ratio, void ratio and effective confining

![Fig. 2.2 Normalized Dynamic Shear Moduli Corresponding to the 10th Cycle and Various Levels of Strain in the Standard Triaxial (ST), Hollow Cylinder Torsion (HC), and Simple Shear (SS) Test (CF=Constant volume or length, CL=Constant Force or Undrained)](reproduced from Adel Saada (1981))
Fig. 2.3 Dependence of G_0/τ_{max}, $G_0/\tau_{\text{1%}}$, and γ_r on the Confining Pressure σ_0 (G_0 = maximum shear modulus, τ_{max} = maximum shear strength, $\tau_{\text{1%}}$ = shearing stress at 1% strain, $\gamma_r = \tau_{\text{max}}/G_0$) [reproduced from Athanaspoulos and Richart (5)]

Fig. 2.4 Dependence of G_0/τ_{max}, $G_0/\tau_{\text{1%}}$, and γ_r on OCR [reproduced from Athanaspoulos and Richart (5)]
pressure. Figs. 2.3 and 2.4 illustrate these effects. Fig. 2.5 shows that a straight line relationship between Gmax and deviatoric stress may not be valid for lower stress ranges (<10 psi [~70 KPa]).

Shear modulus is a parameter that has a wide range of use in numerical modelling techniques. Its sensitivity with respect to loading patterns and some state variables of soils has been examined by a number of investigators. It is well established that the shear modulus strongly varies with shear strain, number of cycles of loading and confining pressure. Sensitivity with respect to effective stress, dynamic pore pressures and strain rate effects are more recent areas of research.

A study conducted by Dyvik et al. (22) concludes that pore pressure is a basic indication of the level of
degradation of shear modulus of a soil specimen subjected to cyclic loading. Figs. 2.6 and 2.7 show variation of cyclic shear stress and shear modulus with dynamic pore pressure ratio, from tests conducted on Gulf of Mexico clays using simple shear device modified for cyclic loading (22). Some geotechnical data for the clay used in that study were given as follows:

Water content = 70-105 %, PI = 75, Su = 13 kPa

The consolidated, constant volume (CCV) cyclic laboratory shear test used was a strain-controlled type of test in which strain rates did not affect the results. Pore pressure predictions were made by changing normal stress to keep the height of specimen constant. It was assumed that the change in vertical stress is equal to the change in pore pressures that would have occurred during an undrained test. As seen in Fig. 2.6, dynamic pore pressures increase with increasing cyclic shear strain, and they decrease with increasing cyclic shear stress. Degradation of shear modulus with increasing dynamic pore pressure is clearly illustrated in Fig. 2.7.

In relation to the effects of strain rate on shear moduli measurements of soft clays, a study done by Isenhower and Stokoe II is quite illustrative (32). Figs. 2.8 and 2.9 show the variation of shear moduli with shear strain rate and, comparative results of two different tests illustrating strain rate effect, respectively. As seen from Fig. 2.8, at
Fig. 2.6 Cyclic Shear Stress versus Normalized Pore Pressure Variation [reproduced from Dyvik et al. (22)]

Fig. 2.7 Normalized Modulus versus Normalized Pore Pressure Variation [reproduced from Dyvik et al. (22)]
Fig. 2.8 Variation in Shear Modulus With Shearing Strain Rate [reproduced from Isenhower and Stokoe II (32)]

Fig. 2.9 Combined Parameter Effects on Shear Modulus [reproduced from Isenhower and Stokoe II (32)]
a constant shearing strain amplitude, the shear modulus increases as the logarithm of shear strain increases. In Fig. 2.9, the shear modulus increases with decreasing shear strain amplitude. When shear strain rates are considered, measurement of maximum shear modulus is found not to be affected substantially due to the counterbalancing action of low strain amplitudes. Influence of shearing strain rates becomes more pronounced at strain amplitudes greater than 10^{-2}.

Other methods encountered in the literature that correlate or compare, either experimentally or numerically, static and dynamic behaviour of clay, utilize the initial stress-strain relation at low strains (26,31,33,34).

A general analytical model proposed by Prevost (56) describes the anisotropic, elasto-plastic, path dependent stress-strain-strength properties of saturated clays under undrained cyclic or monotonic loading. The frequency of cyclic loading simulates the conditions of wave loading rather than earthquake type of loading. Loading frequencies used in the model are 0.5 and 0.05 Hertz. The model parameters were determined through slow monotonic (strain rate 4.5 %/hr), and rapid cyclic (frequency 0.1 Hertz) strain-controlled simple shear tests of Drammen clay (OCR=4). Fig. 2.10 shows the experimental test results, slow monotonic and rapid cyclic stress-strain curves and typical hysteresis loops obtained at a constant strain amplitude. Prevost reports that the hysteresis loops develop an S-shape
which becomes even more marked as the number of cycles of loading increases. Also reported is an experimental finding that the gradient of the hysteresis loops at the peak shear stress remains constant and is approximately equal to the gradient of the static curve at the corresponding strain.

Some of the results of a study conducted by Ishihara and Yasuda (33) on alluvial clay are given in Fig. 2.11. The testing method used in this study was cyclic triaxial and the stress-strain curves for various number of cycles of loading (frequency 1 Hertz), and monotonic loading were obtained. Specimens were first consolidated isotropically to a certain effective stress value and then cyclicly loaded in
steps of increasing magnitude to failure. As seen from Fig. 2.11, the degraded stress-strain curves at 10 and 30 cycles of loading fall below static curve. The curve labeled "rapid loading curve" corresponds to first cycle stress-strain curve (backbone curve). An important result of this study are given in Figs. 2.12a and 2.12b which show the variation of the ratio of cyclic strength to static strength versus the ratio of initial shear stress to static strength for the two types of clays tested. In these set of tests, before applying the cyclic load, the specimens were loaded up to a fraction of the static failure stress which was labeled as "initial shear stress". It is already been shown through a number of investigations that strength of cohesive soils under rapid loading conditions is greater than the strength obtained in static loading conditions in which the
Fig. 2.12 Cyclic Strengths versus Initial Shear Stress [reproduced from Ishihara and Yasuda (33)]
application of loading is slow. This is known as the rate effect. However, as seen in Fig. 2.12 the cyclic strength to static strength ratio is less than 1 for zero or small initial shear stress ratios. This is a result known as "strength deterioration" and it is attributed to pore pressure buildup, breakdown of inherent structure in cohesive soil, and/or stress reversal during cyclic loading. This occurrence was observed by other investigators also (52, 67). The effect becomes more pronounced when stress reversal is at the origin or at an initial stress level close to the origin forcing the specimen to experience negative stresses at each cycle. The effect of strength deterioration is correlated with plasticity, and the results are given in Fig. 2.13.

Fig. 2.13 Cyclic Strength in Reversing Cyclic Loading as Functions of Plasticity Index of Soils [reproduced from Ishihara and Yasuda (33)]
Kavazanjian and Hadj-Hamou (34) conducted an investigation in which they correlated and compared dynamic and static behavior using results of resonant column tests and empirical methods. Using existing data and a simple procedure to estimate static modulus through empirical relations they were able to produce comparative curves for San Francisco Bay mud, as shown in Fig. 2.14. They concluded that resolution of most laboratory shear tests prohibits definition of static stress-strain curve below shear strains of $10^{-1\%}-10^{-2\%}$, therefore the maximum static shear modulus is to be estimated using empirical relations (28,41).

\[
\sigma_c' = 40 \text{ psi}
\]

\[
10^{-3} \times G, \text{ psi}
\]

\[
10^{-4} \quad 10^{-3} \quad 10^{-2} \quad 10^{-1}
\]

\[
\gamma, \% \quad 1 \text{ DAY TO 1 WEEK CONFINEMENT}
\]

Fig. 2.14 Modulus of San Francisco Bay mud [reproduced from Kavazanjian and Hadj-Hamou (34)]
2.4 VANE SHEAR TESTING

Vane shear testing is frequently used in estimating undrained shear strength of soft saturated clays in-situ. It is known to perform especially well in soft seabed clays. In-situ vane test results compare well with other in-situ testing methods when used in these types of soils (46), and it is economical and fast. Several investigators have shown that vane testing overestimated Su in highly plastic clays. Bjerrum (12) formulated a correction relating in-situ vane shear to plasticity index through back calculating shear strengths from several embankment failures. Arman et al. (4) showed that Su predicted through vane tests was two times the undrained shear strength of soft Mississippi Delta clays. Azzouz et al. (7) revised field vane correction from past case histories and formulated a new one which they predict to represent results that will compare better with other in-situ (cone penetration) or laboratory test results.

Laboratory vane shear device was generally regarded as a practical tool used to estimate undrained shear strength of retrieved samples with minimum disturbance. Little was known and researched with respect to stress-strain mode, disturbance and strain rate effects. However, with increased number of research on vane shear mechanism, pore pressure, disturbance, shear rate, and vane shape effects, laboratory vane device is slowly being upgraded from a practical tool to a better soil shear testing device. Moreover, with the
introduction of triaxial vane apparatus (35), duplication of
the in-situ stress conditions on specimens could be
achieved. Inherent problems of classical lab-vane testing,
such as upheaving of soil surface during insertion of vane,
drying of soil surface during slow rate-long term tests, and
boundary effects due to size and rigidity of soil container
are eliminated automatically in a triaxial vane device.
Several important investigations related to vane shear
testing which are of interest to this study are discussed
below.

2.4.1 Shear Mechanism of Vane Test

The classical assumptions for shear mechanism of vane
test are: the shear surface is a cylinder of the same
dimensions as the vane; the vane is replaced by a rigid
cylinder onto which the soil adheres; the stress
distribution is uniform across the surface of rupture (15).
It is a stress-controlled test in which the only stress
known is the shear stress on the rupture surface. Circular
shear surface is a valid assumption for soft saturated
clays, however it deviates significantly for sands and silts
(82).

Matsui and Abe (47) tested Ko consolidated clays using
an instrumented vane shear device in which total stresses
and pore water pressures around the vertical shear plane
could be measured. The experimental results were compared
with results obtained from a numerical analysis. The device
Fig. 2.15 Analytical and Experimental Distributions of Excess Pore Water Pressure, Total Stress and Effective Stress Increments on the Vane Shear [reproduced from Matsui and Abe (47)]
was of the rotating type turntable on which the specimen was placed. It could be operated at constant angular velocities ranging from 0.002 degrees/sec to 5.0 degrees/sec. Pore pressure transducers positioned near or on the vane blade, and lateral earth pressure transducers on the wall of the cell were used to measure pore water and total pressures. Figs. 2.15a, 2.15b, and 2.15c show the variations of pore pressure, total stress, and normal effective stress increments with angular rotation both as predicted by numerical analysis and measured in test, respectively. As the vane blade turns, pore pressure and total stress increase in front of the blade and decrease behind the blade by approximately the same amount, therefore the resulting normal effective stress increment remain distributed around

![Effective Stress Distribution](image)

Fig. 2.15 (cont.) [reproduced from Matsui and Abe (47)]
zero, and the normal effective stress itself does not change significantly. Fig. 2.16 shows the analytical results of pore pressure distribution for various cases of local pore pressure migration. The slower the angular rotation the smaller the changes in excess pore water pressure. The case for larger angular rotation rate of 1 degree/sec is very close to that of undrained case. One important conclusion from this investigation was that because of pore pressure gradient distribution around the shear plane, if angular rotation is slow enough, pore pressure migration will take place resulting in consolidation of soil in front of the blade and swelling dilation behind the blade. The undrained condition (no pore pressure migration) for the kaolin clay

![Graph showing effect of local pore water migration on excess pore pressure distribution](image)

Fig. 2.16 Effect of Local Pore Water Migration on Excess Pore Pressure Distribution on Vane Shear Surface [reproduced from Matsui and Abe (47)]
tested was predicted to occur at angular rotation rates of 1.0 degree/sec or higher. In the case of slower angular rotations, it is predicted that soil in front of the vane blade does not reach failure because of consolidation effect, however soil behind the blade reaches failure at a lower stress level because of swelling dilation.

Menzies and Merrifield (49), using an instrumented vane measured the stress distribution on the vertical and horizontal edges of the vane. Figs. 2.17a and 2.17b show these results along with theoretical shear distribution curves. A concentration of shear distortion in a band of shear at the blade edges was observed.

2.4.2 Disturbance Effect Due to Insertion of the Vane

A number of investigators have observed the effect of vane insertion either in terms of pore pressure increase, up to 50% of vertical consolidation pressure in some cases (47), or in terms of the reduction in undrained shear strength (42) partially due to breakdown of clay bonds. Aas (1) conducted a study in which the vane was left in the soil for 24 hrs before starting rotation. Results showed a 40 to 50% increase in the shear strength in comparison to that of a standard test. Torstensson (79) and Shibata (71) made similar conclusions. The time elapsed between vane insertion and beginning of rotation was a critical factor that controlled vane shear strength.
Fig. 2.17 Normalized and Linear Distributions of Equivalent Shear Stress Scaled to Give Equal Torque [reproduced from Menzies and Merrifield (49)]
Fig. 2.18 Variation of Pore Pressure During Vane Insertion and Subsequent Dissipation [reproduced from Kimura and Saitoh (36)]

Fig. 2.19 Variation in Pore Pressure During Rotation of Vane [reproduced from Kimura and Saitoh (36)]
Kimura and Saitoh (36) consolidated two types of clay out of a slurry and tested the effect of vane insertion using a transducer instrumented vane. Pore pressure response was monitored over time during vane insertion, elapsed time to rotation, and during rotation. The angular velocity of vane rotation was 0.1 degrees/sec. Fig. 2.18 shows variation of pore pressure during insertion of the vane and the subsequent dissipation. Fig. 2.19 shows a typical angular rotation versus pore pressure response. High pore pressures developed during insertion of vane, dissipated to an equilibrium level in approximately four hours for both clays with PI values of 50 and 20. Pore pressure changes during vane rotation were small. For short dissipation period tests, pore pressures during rotation were lower than the values immediately before due to the fact that dissipation would continue during rotation also.

2.4.3 Shear Rate Effects

Ordinarily torque is applied at a standard rate of 0.1 degree/sec. Earlier studies have shown that measured shear strengths increase with increasing shear rate in plastic clays (1,51,79). A relatively recent study shows that the shear strength of low plasticity clays will increase with decreasing shear rate (70). This occurrence is shown in Fig. 2.20. For low plasticity clays partial drainage is predicted to take place at low rates of shear. At higher rates less dissipation occurs and ultimately decreases the effective
stress and the shear strength. Shear rate is an important factor in determining completely undrained conditions. Since partial drainage can occur in low plasticity clays, it is imperative to establish a threshold shear rate value for these types of soils to ensure undrained conditions.

2.4.4 An Important Utilization of Vane Shear

Undrained residual strength is an important parameter that is generally referred to as the minimum value of shearing resistance that is reached after large strains occur at constant volume on a shear zone. Vane shear testing is generally chosen to measure this property of cohesive soils because a shear zone develops at the edges of the vane blades and it is capable of producing large strains.
Pyles (60) used a vane shear device, operating at different shear rates (0.025 - 0.3 degrees/sec), to measure undrained shear strength and residual strength of San Francisco Bay mud samples. Results showed that undrained residual strength measured in field and in lab did not differ as in shear strength measurements, and correlation of Ru/Su (Ru = undrained residual strength) with liquidity index revealed a constant value of the ratio over a wide range of water contents.

2.4.5 **Triaxial Vane**

The triaxial vane was first developed in the Norwegian Geotechnical Institute in 1965 by Kenney and Landva (35). Isotropic, anisotropic and Ko stress conditions can be simulated, and isotropic consolidation can be carried in a triaxial vane device. Moreover, it eliminates some problems associated with regular vane testing as explained earlier.

Law (44), modified a triaxial cell and a vane machine to build a triaxial vane set-up. The vane was designed to be detachable from the vane rod, so that friction pertaining to seals and rod could be measured separately and subtracted from vane shear measurements. This new equipment was used to measure effects of lateral and vertical pressures on torque measurements. The basic design of the triaxial vane unit used in the study reported here is very similar to Law's design with some operational differences.
CHAPTER 3

METHODOLOGY

Equipment, preparation of the artificial samples, testing and data acquisition method pertaining to triaxial vane device are described in this chapter. A schematic diagram showing the testing procedure is given in Fig. 3.1.

3.1 EQUIPMENT

3.1.1 Consolidation Units

In order to accomplish the objectives of this study, a number of duplicate test specimens were needed. They were produced in the custom-made consolidation units as shown in Fig. 3.2. These units after being filled with soil slurry were placed in separate buckets and submerged in water. They were loaded with 10 kg weights in steps up to the desired stress of 1 kg/cm². This system proved to be simple and practical. The advantage was that quite a few number of samples could be consolidated within the same period of time. Although time and amount of consolidation could not be measured directly approximate time for 92% consolidation was estimated to be 15 days using linearized finite strain theory (16), soil index properties (see Table 3.1) and formerly obtained consolidation parameters for the same soil.

3.1.2 Modified Triaxial Laboratory Vane Device

The reasons that contributed to the choice of triaxial
vane testing to measure low shear strain properties of soft soils are listed as follows:

1. Vane shear testing is extensively used to determine shear strength properties of soft clays, especially seabed soils,
2. It is a stress-controlled test and is compatible in that aspect with resonant column testing.
3. The new data acquisition system put together to detect minute strain amplitudes was readily adaptable to vane testing in terms of mechanics of operation.
4. Shear stress and strains could directly be measured without the need for evaluation of soil parameters such as Poisson's ratio, or detailed analysis of principles of shear mechanism involved in testing.
5. Some disadvantages in relation to sample disturbance, and interpretation of data, encountered in classical laboratory vane testing was eliminated by modifying and making it a triaxial test.
5.0 CM Ø SPECIMEN TRIMMED WATER CONTENT AND BULK DENSITY MEASURED

VT SERIES
NUMBER OF DUPLICATE SPECIMENS
8
10
5
CONFINING PRESSURE, KPa
100
200
300

SLURRY Kc CONSOLIDATED IN LARGE CELLS AT 100 KPa PRESSURE

KAOLINITE SLURRY MIXED AT 100% WATER CONTENT

3.56 CM Ø SPECIMEN TRIMMED WATER CONTENT AND BULK DENSITY MEASURED

SPECIMEN ISOTROPICALLY CONSOLIDATED IN TRIAXIAL VANE CELL AT 100 KPa FOR 24 HRS., AND TESTED.

SPECIMEN ISOTROPICALLY CONSOLIDATED IN RESONANT COLUMN AT 100 KPa FOR 24 HRS., AND TESTED.

FINAL WATER CONTENT AND BULK DENSITY MEASURED

DATA ANALYSIS

TESTING PROCEDURE

Fig. 3.1 Flow Chart of Testing Procedure
Fig. 3.2 Large Consolidation Cell Used in Preparation of Samples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The apparatus basically consisted of a large triaxial cell, 150 mm nominal diameter, connected to a constant pressure unit, and a laboratory vane machine. Several parts of both the triaxial cell and the laboratory vane machine were either modified or redesigned in order to couple the two separate units. Some of the modifications made were similar to the ones in the triaxial vane apparatus constructed and tested by Law (44) at the Division of Building Research, Geotechnical Section, National Research Council of Canada, Ottawa. The set-up used in this study is shown in Fig. 3.3.
Fig. 3.3 A View of the Triaxial Vane Device
3.1.2.1 Triaxial Cell and Parts

The triaxial cell used was an Engineering Laboratory Equipment Inc. (ELE) cell of model (EL25-406). Confining pressure was applied through an ELE constant pressure apparatus (EL27-432). The schematic diagram of the cell assembly is shown in Fig. 3.4. The modified and new parts of the cell are described below.

3.1.2.1.1 Piston

A stainless steel piston identical to the original ELE loading piston was used to house the vane rod within a narrow duct drilled throughout the length of the piston. A ring shaped, spring loaded teflon seal (Bal-Seal, see Appendix A for specifications) placed in a housing at the top of the piston provided the necessary sealing of the pressure within the cell while allowing the rotation of the vane rod with minimum friction. Schematic details of the piston are given in Fig. 3.5.

3.1.2.1.2 Top Cap

Schematic details of the top cap are shown in Fig. 3.5. The top cap was designed specifically to house a detachable vane. A narrow duct that led into the vane housing was used to fill the housing with distilled water initially, and then to measure the pore water pressure on top of the specimen. The duct connected to a teflon water line which separated into two lines outside the cell, one to the distilled water reservoir and the other to pore pressure transducer. A valve
Fig. 3.4 Schematic Diagram of Triaxial Cell Assembly
DETAILS OF TRIAXIAL VANE TOP CAP AND PISTON

Fig. 3.5 Schematic Diagram of Cell Assembly Parts [Vane, Vane Rod, Piston, Top Cap]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
between the reservoir and the transducer provided the necessary control to use the same water line for both purposes as described above. The housing could be filled with water completely with the aid of an air bleed outlet at the top of the cap which was tightly sealed after filling. Another Bal-Seal, identical to the one in the piston, was placed in a separate housing inside the cap, on top of the vane housing. The purpose of this seal was to block the infiltration of pressurized cell water into the vane housing, therefore be able to correctly measure the pore water pressure changes on top of the specimen during testing. This seal also allowed rotation of the vane rod with minimum friction.

Four perpendicular slits situated around a circular hole at the bottom of the vane housing allowed the passage of the vane blades when lowering the vane into the specimen. Initially, the vane would rest on recesses inside the housing and turned to meet the slits and pushed through at the appropriate time during testing. A brass porous stone, 1/6 " thick, with a circular hole cut through the middle of it, was placed between the top cap and soil specimen. This helped to eliminate slippage and rotation of the top cap.

3.1.2.1.3 Bottom Cap

The bottom cap was specifically designed to prevent the rotation of the specimen. It was designed to fit tightly on top of the original ELE bottom adaptor with the coinciding
drainage holes. The schematic drawing of the part is shown in Fig. 3.4. The bottom cap housed a 1/4" thick corundum porous stone. A trimmed specimen would be pushed into the housing section until it was firmly set on the porous stone. The extra soil trimmed by the edges of the cap would be removed and sides of the specimen would be leveled with the sides of the cap. In order to ensure the saturation of the porous stone and avoid air be trapped between the specimen and the stone, the housing of the bottom cap would initially be filled with water by opening the drainage valve that led to a graduated burette. Water filling the housing would immerse the porous stone and be allowed to move up to the top edge of the cap; and then while pushing the specimen into the housing, the extra water would move back up into the burette.

3.1.2.1.4 Side Rods With Detachable Pins

Two aluminum rods were utilized to prevent rotation of the top cap. These rods were threaded at the bottom end and they were screwed into the base of the triaxial cell. Detachable pins, free to move vertically on the rods, would be lined up with two vertical narrow slits on opposite sides of the top cap and secured in place by fixing screws. The vertical slits on the top cap were wide enough to accommodate the pins tightly so that they were not free to move horizontally. However, the top cap was free to move vertically as much as the length of the slits to allow for the vertical consolidation of the specimen. A schematic
diagram of the side rods are shown in Fig. 3.4.

Note that positioning the pins against the slits was an important procedural detail to follow before placing and sealing the latex membrane over the specimen and the caps. It was also necessary to preserve the initial positioning as much as possible and not to introduce significant bending or rotation of the top cap when tightening the fixing screws on the pins. Deviation from the perpendicular positioning of the top cap would result in off-setting the vane to vane-rod coupling point thus introduce excessive friction, disturb the specimen, and make it very difficult to line-up the vane blades with the narrow slits at the bottom of the cap.

3.1.2.2 Laboratory Vane Device

3.1.2.2.1 Vane Machine

An ELE laboratory vane machine (model EL28-180) was modified slightly and utilized for testing. The modification consisted of replacing the original torque wheel attached to the rotating handle with one larger in diameter, and replacing the original electric motor by a variable-speed, reversible motor with remote control panel. The diameter increase in the torque wheel was approximately ten times the original one therefore aided in reducing the speed of rotation significantly. The variable-speed motor made it possible to vary and choose an appropriate rotation speed that would ensure low angular rotation rate for the vane, with the assumption that no excessive pore pressures would
develop in front of the vane blade. The reversibility feature was used in conjunction with proper calibration of the data acquisition system. The speed control panel and the reversing switch was wired and placed remotely from the motor which was attached to the vane machine. This set-up provided simultaneous workability with the data acquisition system and it also prevented disturbance to the test set-up by manual interference.

The vane machine was mounted on a stable stand with rubber padding underneath which helped to damp building vibrations. The stand was designed to vertically adjust within the range of 10 cm. The vertical steel rods of the vane machine that carry the motorizing unit, pulley arrangement and the vertical square thread were replaced by longer rods to accommodate the large triaxial cell.

The overall view of the vane machine is shown in Fig. 3.3.

3.1.2.2.2 Vane and Vane Rod

Details of vane and vane rod are shown in Fig. 3.5. The vane was made of 0.25 mm thick stainless steel plate. The diameter to length ratio was 0.5. Two longitudinal slits and two horizontal pins located on the rod provided adequate coupling and decoupling as necessary thus making it possible to detach the vane from the longer portion of the vane rod. The shorter portion of the vane rod extending from the center of the vane and bearing the longitudinal slits at one
end, tapered to a point at the other end at about 1/4 th the height of the vane from the top. The ratio of the diameter of the rod embedded into the vane to the diameter of the vane was 0.32. This ratio is larger than the the desirable ratio of 0.1, which was utilized in a similar design (44). A smaller diameter ratio would introduce less disturbance as the vane is inserted.

3.1.2.2.3 Mirror

As part of data acquisition, the vane machine was equipped with a 51 mm diameter, 13 mm thick, 1/4 wave first surface plane mirror. The mirror was mounted on a miniature mount which allowed position adjustment by rotation about vertical and horizontal axes. The miniature mount was permanently fixed on the knurled knob at the center of the graduated scale of the vane machine such that the mirror was perpendicular to the dial. Rotation of the vane was directly indicated by the rotation of the mirror connected to the vane via shaft that ran through the load spring and attached to the knurled knob on the opposite side. The total mechanism was lubricated and checked for friction spots thoroughly in order to assure correct transmission of vane rotation to the mirror. Fig. 3.6 shows the details of the mirror and mount set-up on the vane machine dial.
Fig. 3.6 A View of the Vane Mirror and Mount Assembly on the Triaxial Vane machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3.1.3 Resonant Column

The resonant column test for determining soil moduli and damping of soils is based on the theory of wave propagation in elastic rods. In a resonant column apparatus soil response is monitored for a range of frequencies of both longitudinal and torsional modes of excitation to determine the resonant frequency of the soil specimen. The modulus is determined from the resonant frequency and the geometric properties of the specimen and the driving apparatus. The following equation was used to determine shear modulus, G, using a torsional vibration mode resonant column:

\[G = \left(\frac{2 \pi f_\text{n} \times l}{\beta} \right)^2 \rho \]

(1)

where, \(\rho \) = mass density, \(f_\text{n} \) = natural frequency measured at resonance, \(l \) = specimen length, \(\beta \) = experimental constant.

A Drnevich resonant column apparatus was used in this study. Theory and procedural details of the testing method are discussed in depth in an earlier study (52). These aspects will not be included within the scope of this study.

3.1.4 Equipment Used in Measuring Low Strains

A general layout of data acquisition system is shown in Fig. 3.7. This system was chosen specifically to sense and
record very small angular displacements of the vane via mirror. Ordinarily, autocollimator and the optical position indicator (OP-EYE) duo is used in automated manufacturing industry to measure spatial location, orientation, surface contour, vibration in conjunction with robot arms, control machine tool operations and other production purposes. Another requirement of the data acquisition system was the capability to collect and file vast amount of numerical data. Interfacing a microcomputer to the detection system was necessary to establish the dedicated data acquisition and analysis unit. Individual parts of this unit are discussed below.

3.1.4.1 Electronic Autocollimator

Fig. 3.8 shows a schematic diagram of the autocollimator used. An autocollimator finds application whenever flatness, angle or parallelism is to be measured to a very high degree of accuracy. Position-sensing photodiode is the feature that differentiates the electronic autocollimator from a classical one in which observer's eye is the sensor. The autocollimator used in this study was United Detector Technology (UDT) model (Model 1000-135). The specifications of this unit are given in Appendix A. As shown in Fig. 3.8, a high power infrared light emitting diode (LED) generates a 15 degrees beam of light which is reflected through a beamsplitter and then collimated by lens. This parallel beam is reflected off the mirror under
test, back through the lens and beam splitter to the detector assembly. A blocking filter is used to prevent ambient light from biasing the detector reading. The detector is a 2 axis position sensor which has electrode connections (photodiodes) at four 90 degree positions around its edge as well as a ground connection. When the return beam from the mirror under test strikes the detector, the signal out of the photodiodes is proportional to the angle of the mirror. The following proximity formulas are used to determine current X and Y positions of the incident light beam on the detector surface:

\[
\begin{align*}
X_{\text{position}} &= \frac{X_1 - X_2}{X_1 + X_2} \\
Y_{\text{position}} &= \frac{Y_1 - Y_2}{Y_1 + Y_2}
\end{align*}
\]

where, \(X_1\) and \(X_2\) are signals from sensors on the horizontal axis, and \(Y_1\) and \(Y_2\) are signals from sensors on the vertical axis (see Fig. 3.9). A sinusoidal response is obtained using the formulas above as the beam of light propagates from one sensor to the other along one axis. The response is most linear in the central region and falls off at the corners of the field of view. For calibration purposes it is imperative either to determine and use this linear portion of the response or correct the nonlinear response within the software that collects and analyzes data. In this study only
the horizontal axis sensor response and the linear portion of this response was utilized both for calibration and data collection. The lens focal length determines the angular coverage and resolution of Model 1000 autocollimator. Focusing is not necessary since only the position of the centroid of the light beam is sensed.

3.1.4.2 Optical Position Indicator (OP-EYE)

UDT OP-EYE is a microcomputer peripheral for IEEE-488 and RS-232C standard buses. The specifications of this unit are also given in Appendix A.

When light falls on the detector surface and causes a current flow in each of the photodiodes proportional to spot proximity, the OP-EYE electronics report to the controlling computer the magnitude of current for any channel selected by the computer. Signals from the photodiodes are amplified and then digitized in an A/D converter. The digital values are then converted to ASCII code for transmission to the computer. Communication between OP-EYE and the computer is done through use of a few operational commands interpreted by OP-EYE. Initially a series of set-up commands are sent to OP-EYE for specific instructions that set channel number, gain, operation mode, scan range and start point, etc. for operation. Then each time an "R" command (short for 'read') is sent, OP-EYE measures and replies with data to the computer.
Fig. 3.7 Data Acquisition System
In this study, OP-EYE Model 4 was utilized due to its 16-bit resolution A/D converter capability which made it possible to obtain higher resolution (1 part in 65,536) thus sense smaller angular displacements. Two assembly language routines were used in conjunction with the main software package written in Fortran 77 to read/write to RS-232C ports. Thus the ASCII values transmitted from OP-EYE could be read by the controlling computer via Fortran program, which were than converted to numbers and stored. Fig. 3.9 summarizes the basic operation of data acquisition system via schematic representation.

3.1.4.3 Microcomputer

A 16 bit microcomputer with 256 Kilobytes main memory and 10 Megabytes disk storage was used. Color graphics display capabilities of the computer were utilized through graphics libraries called from Fortran programs. The microcomputer used was a Zenith Data Systems Model Z-100, which runs MS-DOS operating system for which a number of Fortran compilers were available.

The data acquisition and analysis software were rewritten in Microsoft Fortran-77. The main segments of programs were:
A. Calibration and data collection programs (OPINIT,OPCALIB)

These programs are used to initially position and calibrate the test set-up interactively and then collect and store data. During testing, positional inputs from the optical sensors are displayed graphically in real-time.
LEO- INFRARED LIGHT EMITTING DIODE

■ 1/4 WAVE FIRST SURFACE PLANE MIRROR 135 mm FOCAL LENGTH CAMERA LENS

POWER

VISIBEL LIGHT BLOCKING FILTER

PNPPPIMP INFRARED LIGHT WAVELENGTH: 880 nm

BEAMSPLITTER

SIGNAL

INFRARED LIGHT WAVELENGTH: 880 nm

1/4 WAVE FIRST SURFACE PLANE MIRROR

135 mm FOCAL LENGTH CAMERA LENS

DETAILS OF ELECTRONIC AUTOCOLLIMATOR

Fig. 3.8 Electronic Autocollimator
therefore making it possible to monitor progress of the test.

B. Data smoothing program (OPAUX1)

This program is used to filter excessive noise in data by means of moving averages. The various parameters involved in the method are specified interactively.

C. Data manipulation and analysis programs (OPAUX2, OPAUX3, OPSTR, RESON)

These programs are used to manipulate large amounts of collected data by use of interactive graphical displays. Curve fitting and regression methods are employed and parameters used by these programs can be changed interactively.

The listings of the programs cited above are given in Appendix B. Fig. 3.10 shows the general view of the test set-up and data acquisition equipment used in this study.
DETAILS OF DETECTION AND DATA COLLECTION ASSEMBLY

Fig. 3.9 Operation of Data Acquisition System
Fig. 3.10 General View of the Laboratory Test Set-Up
3.2 SAMPLE PREPARATION

3.2.1 Slurry Preparation

Artificial samples were prepared from Georgia kaolinite, index properties of which are given in Table 3.1. Dry soil was mixed with distilled water to make slurry at about 100% water content. The slurry was prepared in a large scale laboratory mixer and left to stand overnight in a covered container. It was poured into plexiglass consolidation cells (see Fig. 3.2) in layers, shaken to force out pockets of air. The consolidation cells were placed in separate buckets and immersed in water. Loading was done in increments of 10 kg weights at equal intervals up to the desired pressure of 1kg/cm².

3.2.2 Estimation of Consolidation Time

Finite strain theory and a practical procedure based on this theory (16) was utilized in estimating a conservative duration of loading for approximately 92% consolidation of the slurry material at 1 kg/cm² pressure.

Compression curve and Cv values of the same soil mixed at liquid limit were obtained through a standard consolidation test (see Appendix C). Using a relation derived from the governing equation of finite strain theory, a theoretical curve was fit to the compression data (see Appendix C). The theoretical relation is as follows:

\[e = (e_0 - e_\infty) \exp(-\lambda \sigma') + e_\infty \]

(3)
where, \(e = \) void ratio, \(e_0 = \) void ratio at zero effective stress, \(e_0' = \) void ratio at infinite effective stress, \(\lambda = \) linearization constant, and \(\sigma' = \) effective stress.

The best fitting curve to the experimental one was used to estimate a linearization constant value, \(\lambda \). A basic language program with interactive graphics routine was utilized to fit a curve to experimental data and estimate \(\lambda \). The value of \(\lambda \) was then used to determine another constant, \(N \), dimensionless governing equation parameter. The relation between \(N \) and \(\lambda \) is given as follows:

\[
N = \lambda \cdot l \cdot (\gamma_s - \gamma_w)
\]

(4)

where, \(l \) = layer thickness in material coordinates, \(\gamma_s \), \(\gamma_w \) are unit weight of solids and water, respectively, and \(l = h/(1+e_0) \)

(5)

where, \(h \) = layer thickness as deposited.

A family of dimensionless curves of \(U \), percent consolidation versus \(T_v \), time factor (1), derived from finite strain theory, were used to estimate time factor \(T_v \) at 92% consolidation. These curves were functions of factor \(N \), deposition and drainage conditions. Typical curves for normally consolidated, doubly drained and unconsolidated, doubly drained layers of linear finite strain theory are reproduced in Figs. 3.11 and 3.12, respectively. Curves for \(N=0.0 \) correspond to material with essentially no self weight. As \(N \) value increases the thickness of the layer and self weight of the material increase.
(a) Normally Consolidated Case

(b) Unconsolidated Case

Fig. 3.11 Degree of Consolidation as Function of Dimensionless Time Factor For Doubly Drained Layers by Linear Finite Strain Theory [reproduced from Cargill (16)]
For the case of slurry material deposited in the consolidation cells, curves for unconsolidated, doubly drained layers were used. The curve fitting to the compression data (see Appendix C) resulted in \(\lambda \) value of 1.07 and a corresponding \(N \) value of 9.77, which was rounded to 10. Using the \(C_v \) values obtained from consolidation test (see Appendix C) and the time factor estimated from \(U \) vs \(T_v \) curve for \(N=10 \), the 92% consolidation time for the large samples were estimated to be a total of 10 days for final consolidation pressure of 1 kg/cm\(^2\). Using \(N=0 \), that is assuming no self weight for the material, the time was estimated to be 20 days. A value of 15 days was chosen for total loading period.

3.2.3 Specimen Preparation

The consolidated soil sample would be extracted out of the plexiglass cell and cut into two portions. One portion was used to trim a 5 cm diameter specimen for triaxial vane test, and the other was used to trim a 3.56 cm diameter specimen for resonant column test. The water content, weight and dimensions of each specimen were measured and recorded. There were 35 specimens tested. A number of these specimens were tested to establish a well defined testing technique and/or for calibration purposes. Complete data pertaining to 23 of them are used and reported in here. The initial average index properties for these specimens are given in Table 3.1.
Table 3.1 Index Properties of Soil Specimens

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Content (%)</td>
<td>63</td>
</tr>
<tr>
<td>Bulk Density (kN/m³)</td>
<td>15.75</td>
</tr>
<tr>
<td>Void Ratio</td>
<td>1.704</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>64</td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>34</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>30</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>2.65</td>
</tr>
<tr>
<td>% Finer than 2 μm size</td>
<td>90</td>
</tr>
</tbody>
</table>

3.3 TESTING

3.3.1 Resonant Column Testing

Resonant column testing generally followed standard procedures. An earlier study (52) documents the theory and procedure of the LSU/Civil Engineering Drnevich resonant column apparatus used in this investigation also. Therefore, description of resonant column testing will not be included herein.

However, it is imperative to note that, in this investigation the current to the driving coils was attenuated significantly to achieve smaller magnitudes of shear strain amplitude. This way degradation of shear modulus reduction curves for the soft specimens could be eliminated significantly due to lower strain vibrations. Difficulty arise when occasionally calibration limitations of the accelerometer were exceeded due to weak signal, and resonance condition could not be detected accurately. Increasing the magnitude of the driving current slightly
eliminated this condition. Resonant column test specimens were subjected to identical test conditions as triaxial vane test specimens. They were confined and tested under same pressures and drainage conditions. Although size of the specimens were different because of equipment requirements, duration of consolidation confinement was kept approximately the same. Data obtained from the resonant column testing was reduced and plotted using program RESON (Appendix B).

3.2.3 Triaxial Vane Testing

The following procedure was established and followed to prepare and mount a specimen for triaxial vane testing:

1. Trim a specimen of 5 cm diameter and 8.6 cm length.
2. Mount the bottom cap on the bottom adaptor and place the bottom porous stone inside the cap.
3. Let distilled water rise inside the cap by opening the lower drainage valve which is connected to a graduated burette. Lowering and raising the burette several times will help to extract air trapped within the line and connections.
4. Place the specimen on the edges of bottom cap, push gently into the cap housing. Keep the drainage valve open so that the extra water moves back up the burette. Remove the soil trimmed by the edges of the cap and level the boundary area.
5. Place the top porous stone and the top cap containing the vane, on the specimen. Rotate the cap such
that the side slits are lined up with the screw holes at the base of the cell where the side rods bearing the horizontal pins are to be installed. Secure the exact place of the top cap by placing a layer of teflon tape around its lower portion in contact with the porous stone.

6. Place the latex membrane and O-seals about the specimen, making sure to cover all of the bottom cap, and part of the top cap without blocking the side slits.

7. Screw in the side rods with the horizontal pins already inserted into the slits on the sides of the top cap. Secure the pins by tightening the fixing screws. Make sure that the top cap does not tilt or rotate from its original position during this process.

8. Connect the line that leads to pore pressure transducer and distilled water reservoir to the top cap. Open the valve to the water reservoir and let the water fill the vane housing by keeping the air vent channel open. Seal the air vent channel and close the valve to the reservoir after filling process is completed. Do not pressurize the reservoir to fill the housing as this may cause water to seep between the latex membrane and the specimen and complicate subsequent pore water pressure measurements.

9. Mount the plexiglass cylinder and the head of the cell with the piston with the vane rod already in place. When mounting the head piece, extend the vane rod such that the pins on the rod would meet the slits on the shorter
portion of the rod. Push against the vane so that that the tip of the piston will gently lower into the depression at the center of the cap. The piston will not rest on the specimen however will help to push against and straighten it if it has deviated from perpendicular position.

10. Turn the vane rod to meet the slits at the bottom of the top cap, however DO NOT insert the vane at this time. When turning the vane make sure the flat side at the top of the rod coincides with the hole on the rotating socket of the vane machine which is used to couple the vane rod and the central shaft leading to the dial assembly of the machine. The mirror at the other end of the shaft, should have already been aligned with the autocollimator lens at this time. In case alignment of the flat side of the vane rod with the rotating socket hole is not achieved at this stage, positioning can be corrected by rotating the triaxial cell.

11. Connect the tie rods of the cell and tighten them securely. Fill the triaxial cell with the confining liquid (distilled water) and tighten the air vent screw. Adjust the pore water pressure transducer read-out to zero. Adjust the level of water in the drainage burette such that it is approximately aligned with the center of the specimen. (Maintain this level by moving the burette down periodically during the consolidation phase of testing). Record all initial readings; check to make sure valve to the water reservoir is closed, valve to the drainage burette is open,
and the vane rod is properly aligned with the mirror shaft attachment location. Apply the desired cell pressure.

All the specimens were consolidated under 100 kPa (~1 kg/cm²) confining pressure. Consolidation was monitored by observing the pore pressure dissipation at the top of the specimen and drainage rate at the bottom. Typical pore pressure reduction and drainage rate curves are given in Appendix C. The value of B parameter ranged from 0.95 to slightly over 1.0, indicating nearly 100% saturation for all specimens.

Three sets of tests were conducted. The initial set of specimens (8 specimens) were consolidated at 100 kPa and tested at 100 kPa of pressure. The second (10 specimens) and third (5 specimens) sets were also consolidated at 100 kPa, however they were tested at 200 kPa and 300 kPa of pressure, respectively. Data pertaining to 3 different pore pressure ratios (u_{excess}/P_t) were obtained. This procedure made it possible to incorporate excess pore pressure effects into the analysis in a controllable fashion.

Vane was lowered into the specimen after the confining pressure was applied. Insertion of the vane was done manually by a slow, steady push. The vane would reach about to the mid-height of the specimen when approximately 2.5 cm of the top end of the vane rod remain above the piston. Since these distances were pre-designed, it was necessary to have a specimen trimmed to the specified length of 8.6
(+/- 0.1) cm, as indicated in the specimen mounting procedures above. Consolidation would progress with the vane already inserted. Duration for dissipation of initial pore pressure to 10% of the confining pressure (100 kPa) was approximately 24 hrs. This duration of confinement was well above the 4 hrs period of time estimated by other investigators (36) for dissipation of pore water pressures in saturated clays generated by insertion of the vane. A slight increase in pore pressure reading was observed during insertion of the vane, however this increase, measured at the top of the specimen within the vane housing, was due to volume change as the vane rod was pushed through and it did not necessarily show the amount of pore pressure increase around the vane. Since the specimen was allowed to consolidate around the vane, whatever amount of pore water pressure that was generated during insertion was safely assumed to have dissipated to a constant value when excess pore pressure ratio measured at the undrained boundary (top) had decreased to 10% of the confining pressure. Disturbance effects were also assumed to have been eliminated significantly by the same reasoning.

Duration of pore pressure dissipation was rather short despite the length of the specimen. This was due to the fact that these specimens were trimmed from samples already consolidated at the same pressure. This occurrence validated the fact that the estimated time for one dimensional
consolidation of the larger samples using finite strain theory was accurate. Since both the confining time (24 hrs) and the pressure (100 kPa) used were relatively small, matters concerning permeability of the latex membrane and compressibility of the water filling the vane housing were not considered to be significant during testing (11).

Vane shear testing would take place at the completion of the consolidation period, which was determined to be at about 90% dissipation of the excess pore pressure under 100 kPa of confining pressure. During testing drainage valve was kept open. Using the variable speed capability of the vane machine motor, the rate of applied torque could be monitored. After several trials the standard rate of torque applied in all tests was chosen to be 20% of the full rate. This corresponded to approximately the rate of 0.0125 degrees/second torque application. In order to evaluate the correlation between various motor speeds and torque rate, data over long runs of the motor at different speeds were collected manually by observing the free rotation of the torque dial with respect to time. Averaged torque rate data points were than correlated with respective motor speeds. Linear regression analysis was used to fit a line to these data points. Correlation was good as shown in Appendix C. The reasons pertaining to the choice of slow rate of torque application were several. First one was to increase the resolution of small strain data range. The frequency of data sampling by electronic means could not be
altered, and slower rate of rotation resulted in higher number of data points collected within unit time range. The second reason was to achieve low angular rotation speeds of the vane to avoid overestimation of stress values. According to a recent investigation on the shear mechanism of vane test in soft clays (47), it was concluded that undrained loading conditions are satisfied at angular velocities of vane greater than or equal to 1 degree/second. Localized pore water pressure migration could occur at angular velocities below 1 degree/second. The unexpected higher values of shear strength in some tests indicated that there was some amount of localized pore water pressure migration and consolidation around vane due to slow rate of angular rotation. However, this effect was observed only at higher strain ranges and did not influence low strain parameters.

Vane assembly is lowered along the square thread of the vane machine to the desired position such that about 1 cm of the flat-sided end of the vane rod would be inserted into the rotating socket of the assembly. The vane rod is not to be attached to the assembly until a calibration procedure, described in the next section, is completed. At this stage, it is imperative that the socket rotates freely about the vane rod for proper calibration. Frictional interferences will be evident in subsequent calibration data therefore repositioning or slight lubrication of the socket interior may be required. The following procedure is followed to
complete testing:

1. Position the vane assembly over the triaxial cell such that socket rotates freely about the vane rod.

2. Run OPINIT program to detect friction interference for calibration. The real-time signal will deviate from producing sinusoidal image if there is interference. Repeat steps 1-2 as necessary.

3. Record the initial position of the dial on the vane machine for both angular rotation and torque scales.

4. Run OPCALIB program and follow the interactive instructions to collect and store low strain data. The program instructs the user when and how to retain the vane rod using the fixing screw.

5. As soon as low strain data collection is complete, record the final position of the dial for both angular rotation and torque scales WITHOUT stopping the vane machine.

6. Record the position of the dial periodically until failure condition is observed. At this stage, the speed of the motor can be increased to 50 % of the full speed without violating compatibility and continuity conditions with respect to low strain data. Angular vane speed will still remain below 1 degree/second. Earlier tests run at 80 % of full speed revealed maximum angular velocity of vane about 1 degree/second, close to the peak strength of the specimens.

7. Record dial readings at peak and residual strengths.

8. Lower the vane assembly approximately 0.5 cm (or 1
to 2 revolutions of the upper hand knob), raise it back up the same distance. This will push the vane to a lower level and when the rod is pulled back the vane will detach from the rod. When the rod is free, it will rotate back to the original position with the unwinding action of the load spring. The mirror attached to the vane rod will also be positioned back at its starting location.

9. Uncouple the vane rod from the rotating socket of the vane assembly by removing the fixing screw, and repeat steps 1-4. This is for the purpose of collecting another set of low strain data (CAL.FILE) to correct the vane shear data (DAT.FILE) for friction between the vane rod and the seals located within the piston and the top cap, and also for friction between the vane rod and soil. The friction data file (CAL.FILE) is determined to be unique for each specimen tested. A standard friction correction was not adapted. This was due to the fact that each friction file, like the data files, displayed high sensitivity with respect to factors like the amount of lubrication in the seals, specific positioning of the vane and the vane rod, minute alterations of the positions and tilt of some data acquisition units (autocollimator,mirror). Consequently, each data file was associated with a unique friction correction file. The maximum seal friction measured was about 10% of the undrained shear strength measured. The factors listed above are also valid for the initial
calibration procedure, therefore it was incorporated into the data acquisition method as an inherent part.

3.4 DATA ACQUISITION SOFTWARE

The data acquisition system was specifically put together to measure very small angular displacements. Due to large quantity of data collected and the complexity involved to reduce and interpret the data, it was necessary to write software that would help the user to conduct repeatable and fast analysis. Data collection and analysis software involved real-time process and interactive color graphics. Real-time feature made it possible for the user to observe the data simultaneously and monitor the test. Interactive graphics made it possible to manipulate large quantities of data and guide the user in all phases of the analysis. The triaxial vane testing set-up described herein requires the use of this dedicated software. These programs and their operational features are discussed below:

A. OPCALIB

OPCALIB is the data collection program written in Fortran 77. It instructs the user step by step how to calibrate the image, properly position the mirror, collect and file data. It calls assembly language subroutines to communicate with OP-EYE. A separate routine within the main program converts ASCII characters to numbers. Graphics subroutines and libraries are called to plot the signal value against time. The resolution of time step is 1/100
second. The time routine is an external assembly language program which uses the microcomputer's clock. The frequency of data sampling, including all I/O operations and the frequency with which data is furnished by OP-EYE, is 2 data points per second. A typical data collection session, excluding the time spend for calibration and instructions, is approximately 15 min, which correspond to a total of 1800 data points. A typical session using OPCALIB is as following:

1. Figs 3.12a and 3.12b show the progression of the first step in calibration procedure in which the sinusoidal image traces the rotation of the mirror free of vane. The vertical axis is the magnitude of signal from OP-EYE directly proportional to the angular rotation of the mirror. The peaks of the image represent maximum intensity signals from the left and the right photodiodes respectively, depending on rotation direction. The horizontal axis is time in hundreds of seconds.

2. Fig 3.13 show the second step in calibration in which a straight line is fit through the linear section of the sinusoidal image. The slope of this straight line is used to determine the calibration constant as follows:

\[
\text{Calib. Const.} = \frac{\text{Applied torque rate}}{\text{Slope of straight line}} = \frac{\text{radians/unit signal}}{\text{radians/second}} \cdot \frac{\text{second/unit signal}}{\text{radian/second}}
\]

The typical angular coverage from one peak to the other is
0.02 radians as indicated in Fig. 3.13. The linear portion of the sinusoidal image that is employed in data collection is central 75% of peak to peak distance. Therefore typical usable range traversed by the mirror is 0.015 radians, or in terms of shear strain 1.5%. The fitted line is also useful in indicating the limits of the linear section.

3. Fig 3.14 show tracing of the mirror rotation in reverse direction. This is necessary to establish a starting location within the boundaries of the linear range, at which the vane rod is affixed to the vane assembly. When the desired position of the mirror is reached, the mirror rotation and signal transfer are terminated simultaneously as instructed by the program. When securing the position of the vane, the rotating socket will move slightly as fixing screw meets the flat side of the vane rod within the socket. This will result in rotation of the original position of the mirror and signal will fall out of the linear range. In order to prevent this happening, OPCALIB allows the user correctly locate the mirror position when securing the vane in place by indicating current signal location with a different colored dot on CRT for each trial.

4. Fig 3.15 shows the completed trace of the mirror rotation with the vane connected. This data is stored in a DAT file with a specific number pertaining to the specimen tested. CAL files are obtained in the same manner as described above however with the vane detached from the vane rod.
B. OPAUX1

This program is used to filter mechanical and electrical noise from the data. OPAUX1 is the first step in data analysis and both DAT and CAL files are subject to filtering. Moving averages with variable parameters is used in filtering process. User is instructed to specify the number of changes, and the values of parameters for each trial. Program is terminated and new data is stored under the same file name only when the user consents on the quality of filtering which is displayed after each trial.

C. OPAUX2

This program is used to manipulate the DAT and CAL curves by means of graphics cursor (cross-hair) so that the starting signal positions coincide. It constitutes the second step in data analysis. Figs. 3.16 and 3.17 show a case where calibration curve is lowered to meet the data curve. Since color graphics is used in this program as well as the other programs, the color coding of individual curves can not be observed in the black and white prints. The manipulation is done simply by pointing the initial and final positions of one point on one of the curves using the graphics cursors and especially coded keys that is recognized by OPAUX2. The key coding is as follows:

D - move down, U - move up, L - move left, R - move right
C - move calibration curve, RETURN - move data curve

(These codes are also recognized by OPAUX3).
Manipulation of data terminates only when instructed by the user. Then, both the calibration and data curves are rotated about their own individual axes, (each bearing the slope of the straight line fit through the linear portion of their initial calibration images produced by OPCODE), counterclockwise to a vertical line, and the new position values are stored. This procedure was found to be necessary in order to eliminate the effects of calibration slope differences between the CAL and DAT curves and the artificially introduced strain hardening character to torque versus strain curves which are produced in next step.

OPAUX2 reads in DAT and CAL files, and after manipulation and evaluation, creates a temporary file called an INT file, in which are stored the new DAT and CAL values.

D. OPAUX3

This is the final step in analysis. OPAUX3 reads in the INT file which contains both DAT and CAL files as they were altered by OPAUX2. Program converts signal versus time curves to torque versus shear strain curves by use of calibration and torque rate constants. Fig 3.18a shows the first picture produced by the program which is the superimposed torque vs shear strain curves for CAL and DAT files. Manipulation of these curves are still allowed at this stage if they do not coincide properly. Fig 3.18b illustrates this option. The calibration curve is subtracted from the data curve by means of a subroutine that finds the torque values on each curve at equal (or very close) shear
strain amplitudes and interpolates the rest. This subroutine was necessary for subtraction procedure due to the fact that the signals sent by OP-EYE do not bear constant values. Also the calibration constants, though very close, are not necessarily equal. Therefore shear strain values calculated using the signal values and the calibration constants do not coincide discretely point by point for CAL and DAT files. After subtraction, the resulting torque values are multiplied by the corresponding load spring factor, also interpolated from load versus deflection data of the specific load spring utilized. (Load deflection curves of the two load springs used in this study are given in Appendix C). The resulting load values are then divided by vane shear surface to calculate shear stress values. The following standard equation was used to evaluate shear stress:

\[
S = \frac{SF \cdot T}{\pi \cdot \left[\frac{D^2 \cdot H}{2 \cdot D^3} + \frac{D^3}{2} \right]}
\]

where, \(T \) = torque (degrees), \(SF \) = load spring factor (kN/degrees), \(S \) = shear stress (kPa), \(D, H \) are diameter and height of vane, respectively (m).

Torque data was also corrected with respect to changing angular velocity of vane, however small, since same time base was used to evaluate both torque and shear strain values.
Fig 3.19a show the resulting shear stress-strain diagram. Following the instructions given, the graphics cursor is used to point locations that identify a range of data for scale enlargement to evaluate initial modulus and another range of data through which a straight line is fit by linear regression to evaluate yield modulus, or strain-hardening modulus for bilinear representation of the curve. Figs 3.19a and 3.19b illustrate this process.

Fig 3.20a show the enlarged view of the initial part of shear stress-strain diagram. Once again, upper and lower limits are located within an allowed strain range to fit a linear regression curve, slope of which is defined as the initial or maximum shear modulus. Figs. 3.20a and 3.20b illustrate this process.

Fig 3.21 show the final result of the analysis. Bilinear representation, statistical parameters of the fitted lines, the maximum and strain-hardening shear moduli values, range of shear stress and strain, and resolution of strain values are given in this final picture. This information and the shear stress-strain curve are stored in an OUT file before the program is terminated by the user. If reanalysis is requested, the program moves backward in stages until user specifies where to start the analysis once again.

In all I/O operations of software described above data remains in binary format to save memory space and fasten the I/O processes.
Fig. 3.12 OPCALIB - Progression of Calibration Step 1
Fig. 3.13 OPCALIB - Calibration Step 2

Fig. 3.14 OPCALIB - Calibration Step 3
Fig. 3.15 OPCALIB - Acquisition of Data
Fig. 3.16 OPAUX2 - Original Positions of DAT and CAL File Data

Fig. 3.17 OPAUX2 - Final Positions of DAT and CAL File Data
Fig. 3.18 OPAUX3 - Superimposed Torque vs Shear Strain Data for DAT and CAL Files
(a) Choosing an Upper Limit for Enlarged View of Low Strain Range

(b) Choosing a Lower Limit for Second Portion of Bilinear Representation

Fig. 3.19 OPAUX3 - Shear Stress-Strain Curve Corrected for Seal Friction
(a) Choosing a Lower Limit for Linear Regression Analysis

(b) Choosing an upper limit for Linear Regression Analysis

Fig. 3.20 OPAUX3 - Enlarged View of the Low Strain Range

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 3.21 OPAUX3 - Final Shear Stress-Strain Curve With Bilinear Representation
CHAPTER 4
DISCUSSION OF RESULTS

Analysis of both static and dynamic data was done using computer software for reasons of speed and maintaining consistency. Software included routines that read data from an input file, produce graphics and write results in an output file. Curve fitting procedures, linear regression routines and calculation of statistical parameters constituted several subroutines of the software.

4.1 PRESENTATION OF RESULTS

4.1.1 Specimen Index Data

Identification codes VT## and RT## are abbreviations for 'Vane Testing' and 'Resonant Column Testing', respectively. The first number in the identification code refers to confining pressure (e.g. 1 => 100 kPa), and the second number refers to test number.

The average water content and the average bulk density of all the specimens before testing were 63 %, 15.75 kN/m³, respectively. The values of water content and bulk density for each specimen before and after testing were measured and recorded (Table 4.2). The computed value of dynamic shear modulus is directly proportional to the density of the specimen. Therefore erroneous or inconsistent measurement of the density would complicate moduli determination. In order to establish a consistency between the measured index
properties of both specimens, and compensate for differences in consolidation time and specimen size in two different tests, the following adjustment procedure was adopted. Using the formula:

$$\frac{dV}{V_0} = \frac{w_f - w_i}{(1/Gs) + w_i}$$ \hspace{1cm} (7)

[where, $-dV/V_0 = \text{volume change, } w_f \text{ and } w_i = \text{final and initial water contents, } Gs = \text{specific gravity (2.65)}$], volume change values were estimated for all specimens using initial and final water content values. Then, dV/V_0 was correlated with measured bulk density, for both static and dynamic test specimens. Linear curves were fit to the data resulting in:

Bulk density $\text{static} = 16.24 + 2.86 \times dV/V_0$ \hspace{1cm} (8)

Bulk density $\text{dynamic} = 16.53 + 1.19 \times dV/V_0$ \hspace{1cm} (9)

Using the formulas above, new values of bulk density were derived. Measured values of dynamic and static maximum moduli were normalized with the corresponding density values. Fig. 4.1 illustrates the effect of this adjustment where the measured Gmax-s/Gmax-d is correlated with the adjusted Gmax-s/Gmax-d. The adjusted ratios are slightly higher than the measured, compensating for the effect of slightly higher final bulk density of the resonant column specimens measured after consolidation.
4.1.2 Static and Dynamic Test Results

The maximum static shear moduli values were determined using the data reduction and analysis program OPAUX3, as explained in Chapter 3. Table 4.3 summarizes the data extracted from OPAUX3 and the statistical parameters pertaining to linear regression analysis in determining the maximum moduli. Additional information obtained from OPAUX3 are minimum shear strain amplitude measured, extent of stress-strain data collected, and yield stress and strain values obtained from bilinear representation.

The maximum dynamic shear moduli values were estimated using data reduction program RESON. This program would yield maximum shear moduli estimated at 10^{-4} % or 10^{-5} % (depending on range of data) shear strain amplitude using a hyperbolic curve fitted to the data. Table 4.4 summarizes dynamic test results.

Figs. 4.2 through 4.24 illustrate shear moduli, G versus shear strain, γ variation for dynamic and static tests on duplicate specimens. The shear moduli values are secant moduli except for the estimated maximum value for both curves. Shear strain is represented on logarithmic scale. The data points on static curves were sampled automatically using a computer program that would match nearest shear strain values of static data to dynamic data. The points on the extension of the static curves were sampled at equal intervals. Hyperbolic curves were fit to
both dynamic and static data. These curves did not agree well with data above the shear strain amplitude of approximately 10^{-4}. Therefore curve fitting was terminated at shear strain 10^{-4} and approximate trend of data was followed to construct higher strain range of the curves.

The behaviour of the static and dynamic curves are observed to be very similar to the results of an earlier work done by Kavazanjian and Hadj-Hamou (34) (Fig. 2.14). At low strain amplitudes the dynamic and static stress-strain behavior is quite different for soft clays than the general assumption of coincidence. Due to degradation, the dynamic shear moduli reduces much faster than the static moduli above a certain threshold of shear strain amplitude. Thus the dynamic curve crosses over the static curve and continues reduction with respect to increasing shear strain amplitude with a much higher gradient than the static curve. It is not unrealistic to assume that this reduction would gradually level off and join the static curve at some higher shear strain amplitude. Lack of dynamic data at higher strain ranges (due to equipment limitation), inhibit verification of this assumption in this study. The cross over of the dynamic curve is more evident in normally consolidated specimens [VT-RT11 - VT-RT18]. The threshold shear strain amplitude where the cross over occurs seems to be between 10^{-5} and 10^{-4}.

For specimens tested under higher confining pressures but induced pore pressure ratios of 0.5 and 0.67, the
static curve shifts down significantly, whereas the dynamic curve tends to shift upward. The static moduli are substantially affected by the excess pore water pressures. The dynamic moduli, on the other hand, increase with increasing confining pressure, and are not affected as much by excess pore water pressures. However, the close values of Gmax-dynamic for pore pressure ratios of 0.5 and 0.67 show that at a higher pore pressure ratio the effect of confining stress increment diminish. The average values of Gmax for static and dynamic tests listed in Table 4.1 confirms these observations. For VT2-RT2 and VT3-RT3 series of tests, there is no apparent confirmation to assume that dynamic curve degrades faster than the static curve because static curve starts with significant reduction due to the effect of excess pore pressure. It is important to note that effective confining stress for all of the tests are the same, that is 100 kPa.

4.1.3 Correlation of Various Test Results

Determining the effects of existing excess pore water pressure on shear modulus of soft saturated clays was one of the important tasks of this study. The results from static and dynamic tests differed in this aspect also. Fig. 4.25 shows the variation of Gmax-static / Gmax-dynamic ratio with pore pressure ratio ($u_r = u_{\text{excess}} / P_t$). A hyperbolic curve was fit to the data through the mean points of the vertical moduli ratio ranges at 4 different u_r values ($= 0.1, 0.5,$
0.67, 1.0). Using the hyperbolic variation, \(\frac{G_{\text{max}}-s}{G_{\text{max}}-d} \) for the normally consolidated case \((u_r=0.0)\) is estimated to be 0.85. The equation of the curve is given in the figure (Fig. 4.25). This finding is in agreement with other investigators' findings which show static shear stress-strain curve to lie below the first cycle (backbone) curve of cyclic loading (see Chapter 2).

Refering back to the \(G \) vs \(\gamma \) curves, it is observed that degradation in dynamic testing is evident above shear strain amplitudes of \(10^{-5} \% \). Degradation of shear moduli during cyclic loading is known to result from dynamic pore pressure buildup, softening due to stress reversal, and internal breakup of soil matrix structure. Even at low strain cyclic loading, all of the factors above contribute to the slowly changing character of the soil. The same threshold of strain that determine degradation of stress-strain behaviour seem to apply for the effects of existing pore water pressures also.

An increase in the confining pressure in resonant column testing contributed to the increase in \(G_{\text{max}} \) for 200 and 300 kPa total stress tests. However, the fact that there was essentially no increase from 200 kPa case to 300 kPa case indicated that the higher pore pressure ratio in the second case influenced the measurements. These findings pertaining to resonant column tests show that, the maximum dynamic shear modulus for soft clays is a strong function of
effective stress. [It is important to note that all of the specimens used in this study were consolidated under same effective stress and the excess pore water pressures were induced]. Dynamic moduli are influenced by total stress increase more than pore pressure increase below a threshold of shear strain amplitude, which is identified to be 10^{-5} for the specimens tested. It is only at high pore pressure ratios that measurable influence can be observed. These findings, however do not apply to strain dependent shear moduli due to fast degradation that starts at very low strains for soft clays.

Maximum static modulus, on the other hand, measured through slow monotonic loading is very sensitive to the state of excess pore water pressure for soft saturated clays.

Other parameters obtained from triaxial vane tests were the undrained shear strength, Su, and the undrained residual shear strength, Ru (see Table 4.5). Static maximum modulus values were normalized with the corresponding Su values. These ratios were also correlated with pore pressure ratios, and an hyperbolic curve was fit to data in the same manner as explained above. The data points, fitted curve, and the equation of the curve are given in Fig 4.26. The $G_{\text{max}} - s/Su$ at $u_r = 0.0$ is approximated to be 112. This value is lower than the typical values cited in literature all of which were dynamic maximum shear modulus normalized by Su, a property determined through static tests.
Using the S_u/P_p (P_p = effective preconsolidation pressure) vs PI relation of Skempton for normally consolidated soils, for PI of 30 and P_p value of 100 kPa, S_u was estimated to be 22 kPa. Using another approach given by Anderson and Lukas (85), S_u, approximated for consolidated undrained triaxial compression, was 27 kPa. An average value of 25 kPa was chosen. The average values of S_u obtained from triaxial vane for confining pressures of 100, 200, and 300 kPa are 29, 36 and 36 kPa, respectively. The experimental value for the normally consolidated case ($u_r = 0.0$) is 16 % overestimated with respect to the empirical value of S_u, 25 kPa. This is considered to be a small deviation and therefore the measured value is validated. The other two S_u values displayed similar behaviour as the maximum dynamic shear moduli. They were not particularly influenced by the excess pore water pressures. This occurrence strongly suggests that due to low angular rotation rate of the vane there was some amount of localized pore water migration and partial drainage around the vane shear zone. Nevertheless, increase in S_u was not substantial to suggest basic violation of the undrained conditions of the test. The invariance of S_u with pore pressure ratio is illustrated in Fig. 4.27. It is normalized with $G_{\text{max-d}}$ for comparison with Fig.4.25.

Undrained residual shear strength, R_u was obtained by rotating the vane up to 90 degrees after maximum strength
was reached. Su and Ru are correlated in Fig 4.28. If the intercept parameter of the correlation equation is neglected, than slope of the straight line fitted to the data would directly represent Ru/Su ratio, which is 0.727. This value is higher than the value reported for San Fransisco bay mud of 0.42 (48). Good correlation of the data once again validates the repeatability of the testing procedure.

The yield stress and strain values obtained from the bilinear representation of the static stress-strain curves were used to assess two important correlations. Fig. 4.29 shows the variation of Gmax ratio with yield strain. Yield strain increases with decreasing moduli ratio. This occurrence confirms the highly nonlinear behaviour of soft clays. Variation of G with yield strain provides useful information that can be used in limit analysis and numerical analysis techniques. A theoretical curve was not fit to this data.

Yield stress was correlated with undrained shear strength as shown in Fig. 4.30. Data showed consistent behaviour. This variation is significant in the sense that useful information can be extracted for use in numerical analysis techniques. The scatter of data both in yield strain and yield stress correlations are due to the fact that determination of these factors involves the investigator interactively in program OPAUX3, consequently operator judgement or error becomes an inherent factor.
Nevertheless, larger number of data collection and increased expertise should certainly help to narrow down the band of scatter.

4.2 GENERAL DISCUSSION OF RESULTS

Degradation of soil shear moduli with cyclic loading is an important factor to consider when measuring low stress-strain properties of soft saturated clays using dynamic testing methods. Degradation starts at low shear strain amplitudes and interferes with determination of the "true" backbone curve in these soils. As illustrated in Figs. 4.2 - 4.9, for the normally consolidated duplicate specimens, the dynamic moduli reduction curve crosses over the static curve at a threshold strain amplitude, and continues reduction with a faster gradient. Using this information a schematic diagram illustrating static stress-strain behaviour and degraded dynamic stress-strain behavior with the superimposed hypothetical first cycle dynamic stress-strain curve (backbone curve) are produced in Fig. 4.31. Two shear strain locations γ_d, γ_c are identified on the diagram. Shear strain amplitude γ_d marks the location where the distance between the static curve and the degraded dynamic curve is the longest before crossover point. It is the first threshold shear strain amplitude where deviation of the experimental dynamic curve from the theoretical backbone curve starts. Shear strain amplitude γ_c, is the second threshold value at which the degraded dynamic curve crosses
over and stays below the static curve thereafter. Tests of normally consolidated specimens (VT1-RT1) revealed γ_c value to lie between 10^{-5} and 10^{-4}.

The observations discussed above are important to investigators who are involved in low strain limit design problems in soft soils. In order to develop a comprehensive theory of low stress-strain behaviour of soft saturated clays both under cyclic loading and monotonic loading, one has to undertake an extensive experimentation program collecting a large number of quality data. In the absence of large number of data, modelling techniques work as well provided that realistic parameters are used. One such study conducted by Prevost (56) on soft saturated clays, reveals information (see Chapter 2), which further strengthens the main claim of this study, which is the need to assess low strain static shear stress-strain behaviour of soft clays to be able to define realistic design parameters. A schematic diagram of hypothetical first cycle dynamic curve, static curve and a typical hysteresis loop representing cycle $N=N_1$, at constant shear strain amplitude, γ_1, is shown in Fig 4.32. The experimental and numerical findings of Prevost study show that, the gradient at the tip of the hysteresis loop at any cycle is equal to the gradient (tangent modulus) on the static curve at the particular strain amplitude, γ_1. Therefore, in order to understand hysteresis behaviour of soft clays under controlled loading conditions, using a
low strain static curve would produce more realistic information than a degraded cyclic curve. Since soft saturated clays will exhibit degradation under cyclic loading even at the lowest shear strain amplitudes generally possible to measure, and influence shear stress-strain curve substantially, the best solution seems to utilize an alternative testing method. This study proposes and tests a method which produces good results by eliminating problems in association with cyclic loading.

Another outcome of the method discussed herein is that highly detailed data could be collected. The enlarged view of the initial portion of a typical shear stress-strain curve given in Fig. 3.19a illustrates this effect. The nonlinear nature of the relation is evident even within the low strain range of 10^{-5}. The fine detail in the stress-strain curve shown in Fig. 3.19a indicate micro structure changes occurring within soil matrix even at the low shear strains applied. The perturbation of the stress-strain curve may be attributed to stress relaxation or phase transformations. This observation suggests a new area of research on soil shear behaviour using the testing method proposed in this study.

The significant components of this study which makes it original as well as beneficial can be summarized as follows:

1. A semi-computer aided experiment was designed and implemented utilizing state-of-art instrumentation.
2. Data obtained using the new system showed significant improvement with respect to scope and detail when compared to data obtained through conventional testing methods.

3. Analysis of the results revealed important findings pertaining to low strain properties of soft saturated clays.

4. The system designed and tested herein can be used to research various concerns in low shear strain range and also with different soils, including cemented clays.

The results presented in this section should be reviewed with the provision that the testing method utilized to obtain these results was a new method in the respective area. Therefore, direct comparison of the low strain results to that of other static tests could not be made. However, correlations were made with respect to dynamic test data.

Low stress-strain behaviour proves to be consistent with the anticipated and widely reported highly-nonlinear behaviour of soft clays. The accuracy of static data obtained using the new method is as satisfactory, if not better than, the accuracy of the dynamic data obtained using an established equipment and method (see Table 4.1). In the light of these observations, the new method of testing can safely be claimed to produce realistic, accurate and repeatable data. Moreover, with the elimination of the effects of cyclic
degradation due to dynamic pore pressure buildup, and stress reversal in all dynamic laboratory tests, this testing method proves to be a valuable research tool in low-strain analysis of soft saturated clays and may as well become one for other types fine grained soils.
<table>
<thead>
<tr>
<th>No. of Duplicate Specimens</th>
<th>Mean Effective Stress, kPa</th>
<th>Mean Total Stress, kPa</th>
<th>Average Gmax, kPa</th>
<th>Standard Deviation</th>
<th>Confidence Interval α=0.02 Gmax, kPa</th>
<th>Standard Deviation</th>
<th>Confidence Interval α=0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>100</td>
<td>100</td>
<td>2533</td>
<td>509</td>
<td>3884</td>
<td>561</td>
<td>3884+396</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>200</td>
<td>1786</td>
<td>306</td>
<td>5210</td>
<td>714</td>
<td>5210+450</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>300</td>
<td>898</td>
<td>213</td>
<td>5156</td>
<td>705</td>
<td>5156+630</td>
</tr>
</tbody>
</table>

Table 4.1 Statistical analysis of Gmax values for three sets of data
<table>
<thead>
<tr>
<th>Test No</th>
<th>Specimens</th>
<th>Water Content</th>
<th>Bulk Density</th>
<th>Water Content</th>
<th>Bulk Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>1-1</td>
<td>1-2</td>
<td>62.73</td>
<td>58.72</td>
<td>66.08</td>
<td>61.15</td>
</tr>
<tr>
<td>1-3</td>
<td>1-4</td>
<td>64.20</td>
<td>60.04</td>
<td>67.17</td>
<td>62.25</td>
</tr>
<tr>
<td>1-5</td>
<td>1-6</td>
<td>64.30</td>
<td>60.41</td>
<td>67.25</td>
<td>62.59</td>
</tr>
<tr>
<td>1-7</td>
<td>1-8</td>
<td>63.70</td>
<td>59.32</td>
<td>66.00</td>
<td>61.00</td>
</tr>
<tr>
<td>1-9</td>
<td>1-10</td>
<td>60.76</td>
<td>57.09</td>
<td>65.80</td>
<td>61.00</td>
</tr>
<tr>
<td>1-11</td>
<td>1-12</td>
<td>60.64</td>
<td>57.33</td>
<td>65.80</td>
<td>61.24</td>
</tr>
<tr>
<td>2-1</td>
<td>2-2</td>
<td>65.40</td>
<td>61.00</td>
<td>67.34</td>
<td>62.58</td>
</tr>
<tr>
<td>2-3</td>
<td>2-4</td>
<td>65.94</td>
<td>62.60</td>
<td>67.37</td>
<td>62.37</td>
</tr>
<tr>
<td>2-5</td>
<td>2-6</td>
<td>64.50</td>
<td>60.90</td>
<td>67.38</td>
<td>62.67</td>
</tr>
<tr>
<td>2-7</td>
<td>2-8</td>
<td>66.40</td>
<td>61.90</td>
<td>67.40</td>
<td>62.70</td>
</tr>
<tr>
<td>2-9</td>
<td>2-10</td>
<td>64.51</td>
<td>60.94</td>
<td>67.42</td>
<td>62.80</td>
</tr>
<tr>
<td>3-1</td>
<td>3-2</td>
<td>65.39</td>
<td>62.95</td>
<td>67.42</td>
<td>62.90</td>
</tr>
<tr>
<td>3-3</td>
<td>3-4</td>
<td>65.40</td>
<td>62.59</td>
<td>67.48</td>
<td>63.10</td>
</tr>
<tr>
<td>3-5</td>
<td>3-6</td>
<td>65.79</td>
<td>62.54</td>
<td>67.50</td>
<td>63.10</td>
</tr>
</tbody>
</table>

Table 4.2 Index Properties of Static and Dynamic Tests
Table 4.3 Low strain parameters estimated in triaxial vane tests, and statistical information pertaining to determination of Gmax from OPAUX3

<table>
<thead>
<tr>
<th>Test No</th>
<th>Gmax (kPa)</th>
<th>Min. Strain Measured (%)</th>
<th>Yield %</th>
<th>Tyield (kPa)</th>
<th>Standard Deviation</th>
<th>Test of Fit (r²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT11</td>
<td>2709</td>
<td>2.7E-4</td>
<td>5.3E-2</td>
<td>1.44</td>
<td>0.0087</td>
<td>0.8440</td>
</tr>
<tr>
<td>VT12</td>
<td>2887</td>
<td>4.7E-4</td>
<td>5.9E-2</td>
<td>1.71</td>
<td>0.0089</td>
<td>0.9270</td>
</tr>
<tr>
<td>VT13</td>
<td>2382</td>
<td>2.8E-4</td>
<td>3.8E-2</td>
<td>0.9</td>
<td>0.0120</td>
<td>0.9410</td>
</tr>
<tr>
<td>VT14</td>
<td>1965</td>
<td>2.7E-4</td>
<td>5.8E-2</td>
<td>1.15</td>
<td>0.0066</td>
<td>0.9035</td>
</tr>
<tr>
<td>VT15</td>
<td>2032</td>
<td>5.9E-4</td>
<td>3.08E-2</td>
<td>0.80</td>
<td>0.0190</td>
<td>0.8469</td>
</tr>
<tr>
<td>VT16</td>
<td>3581</td>
<td>3.8E-4</td>
<td>3.2E-2</td>
<td>1.15</td>
<td>0.0551</td>
<td>0.4990</td>
</tr>
<tr>
<td>VT17</td>
<td>2073</td>
<td>2.8E-4</td>
<td>1.OE-2</td>
<td>2.13</td>
<td>0.0937</td>
<td>0.5154</td>
</tr>
<tr>
<td>VT18</td>
<td>2635</td>
<td>3.5E-4</td>
<td>4.7E-2</td>
<td>1.25</td>
<td>0.0372</td>
<td>0.3865</td>
</tr>
<tr>
<td>VT21</td>
<td>1310</td>
<td>7.06E-4</td>
<td>1.8E-1</td>
<td>2.41</td>
<td>0.0290</td>
<td>0.8740</td>
</tr>
<tr>
<td>VT22</td>
<td>2171</td>
<td>5.1E-4</td>
<td>1.2E-1</td>
<td>2.65</td>
<td>0.0186</td>
<td>0.9138</td>
</tr>
<tr>
<td>VT23</td>
<td>1408</td>
<td>3.8E-4</td>
<td>2.7E-1</td>
<td>3.86</td>
<td>0.0164</td>
<td>0.8641</td>
</tr>
<tr>
<td>VT24</td>
<td>1488</td>
<td>1.1E-4</td>
<td>1.6E-1</td>
<td>2.86</td>
<td>0.0164</td>
<td>0.8641</td>
</tr>
<tr>
<td>VT25</td>
<td>1959</td>
<td>2.4E-4</td>
<td>7.5E-2</td>
<td>1.47</td>
<td>0.0106</td>
<td>0.9591</td>
</tr>
<tr>
<td>VT26</td>
<td>1891</td>
<td>2.9E-4</td>
<td>1.7E-1</td>
<td>3.22</td>
<td>0.0156</td>
<td>0.8857</td>
</tr>
<tr>
<td>VT27</td>
<td>1965</td>
<td>2.8E-4</td>
<td>1.1E-1</td>
<td>2.25</td>
<td>0.0052</td>
<td>0.9879</td>
</tr>
<tr>
<td>VT28</td>
<td>2274</td>
<td>2.7E-4</td>
<td>6.3E-2</td>
<td>1.44</td>
<td>0.0152</td>
<td>0.9259</td>
</tr>
<tr>
<td>VT29</td>
<td>1681</td>
<td>2.5E-4</td>
<td>1.9E-1</td>
<td>3.15</td>
<td>0.0055</td>
<td>0.9856</td>
</tr>
<tr>
<td>VT30</td>
<td>1713</td>
<td>3.5E-4</td>
<td>5.8E-2</td>
<td>1.68</td>
<td>0.0124</td>
<td>0.9595</td>
</tr>
<tr>
<td>VT31</td>
<td>763</td>
<td>3.1E-4</td>
<td>2.0E-1</td>
<td>1.58</td>
<td>0.0078</td>
<td>0.9951</td>
</tr>
<tr>
<td>VT32</td>
<td>800</td>
<td>5.2E-4</td>
<td>4.0E-1</td>
<td>3.30</td>
<td>0.0032</td>
<td>0.9986</td>
</tr>
<tr>
<td>VT33</td>
<td>1268</td>
<td>6.3E-4</td>
<td>1.1E-1</td>
<td>1.36</td>
<td>0.0149</td>
<td>0.9720</td>
</tr>
<tr>
<td>VT34</td>
<td>1146</td>
<td>5.4E-4</td>
<td>5.5E-2</td>
<td>0.67</td>
<td>0.0169</td>
<td>0.9338</td>
</tr>
<tr>
<td>VT35</td>
<td>514</td>
<td>2.5E-4</td>
<td>1.2E-1</td>
<td>0.66</td>
<td>0.0050</td>
<td>0.9787</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4.4 Maximum shear moduli obtained from dynamic tests and the statistical parameters pertaining to the hyperbolic line fit to the data

<table>
<thead>
<tr>
<th>Test No</th>
<th>G<sub>max</sub> (kPa)</th>
<th>Min. Strain (%)</th>
<th>Standard Deviation</th>
<th>Test of Fit (r<sup>2</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT11</td>
<td>3102</td>
<td>6.5 E-4</td>
<td>0.775E-8</td>
<td>0.8896</td>
</tr>
<tr>
<td>RT12</td>
<td>3874</td>
<td>4.5 E-4</td>
<td>0.362E-8</td>
<td>0.1062</td>
</tr>
<tr>
<td>RT13</td>
<td>3998</td>
<td>8.3 E-4</td>
<td>0.205E-7</td>
<td>0.5415</td>
</tr>
<tr>
<td>RT14</td>
<td>3650</td>
<td>7.2 E-4</td>
<td>0.505E-8</td>
<td>0.3680</td>
</tr>
<tr>
<td>RT15</td>
<td>3131</td>
<td>7.6 E-4</td>
<td>0.402E-8</td>
<td>0.0011</td>
</tr>
<tr>
<td>RT16</td>
<td>4337</td>
<td>6.7 E-4</td>
<td>0.232E-8</td>
<td>0.2370</td>
</tr>
<tr>
<td>RT17</td>
<td>4083</td>
<td>5.5 E-4</td>
<td>0.185E-7</td>
<td>0.0052</td>
</tr>
<tr>
<td>RT18</td>
<td>3998</td>
<td>5.5 E-4</td>
<td>0.205E-7</td>
<td>0.5415</td>
</tr>
<tr>
<td>RT21</td>
<td>5928</td>
<td>6.5 E-4</td>
<td>0.476E-8</td>
<td>0.4325</td>
</tr>
<tr>
<td>RT22</td>
<td>5945</td>
<td>4.9 E-4</td>
<td>0.568E-8</td>
<td>0.0073</td>
</tr>
<tr>
<td>RT23</td>
<td>5643</td>
<td>7.2 E-4</td>
<td>0.243E-8</td>
<td>0.1231</td>
</tr>
<tr>
<td>RT24</td>
<td>6264</td>
<td>3.4 E-3</td>
<td>0.341E-8</td>
<td>0.2807</td>
</tr>
<tr>
<td>RT25</td>
<td>4814</td>
<td>6.4 E-4</td>
<td>0.379E-7</td>
<td>0.3350</td>
</tr>
<tr>
<td>RT26</td>
<td>4814</td>
<td>6.4 E-4</td>
<td>0.379E-7</td>
<td>0.3350</td>
</tr>
<tr>
<td>RT27</td>
<td>4758</td>
<td>5.8 E-4</td>
<td>0.547E-8</td>
<td>0.8187</td>
</tr>
<tr>
<td>RT28</td>
<td>4831</td>
<td>5.9 E-4</td>
<td>0.330E-8</td>
<td>0.0045</td>
</tr>
<tr>
<td>RT29</td>
<td>4702</td>
<td>1.6 E-3</td>
<td>0.984E-7</td>
<td>0.2153</td>
</tr>
<tr>
<td>RT30</td>
<td>3812</td>
<td>4.1 E-4</td>
<td>0.238E-7</td>
<td>0.1544</td>
</tr>
<tr>
<td>RT31</td>
<td>5986</td>
<td>3.8 E-4</td>
<td>0.133E-6</td>
<td>0.4328</td>
</tr>
<tr>
<td>RT32</td>
<td>4702</td>
<td>9.7 E-4</td>
<td>0.154E-6</td>
<td>0.4195</td>
</tr>
<tr>
<td>RT33</td>
<td>5960</td>
<td>3.5 E-3</td>
<td>0.179E-7</td>
<td>0.5127</td>
</tr>
<tr>
<td>RT34</td>
<td>4911</td>
<td>4.1 E-4</td>
<td>0.880E-8</td>
<td>0.4380</td>
</tr>
<tr>
<td>RT35</td>
<td>4218</td>
<td>5.6 E-4</td>
<td>0.450E-8</td>
<td>0.4594</td>
</tr>
<tr>
<td>Test No</td>
<td>Su (kPa)</td>
<td>Ru (kPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT11</td>
<td>28.30</td>
<td>24.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT12</td>
<td>25.03</td>
<td>20.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT13</td>
<td>29.75</td>
<td>24.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT14</td>
<td>23.59</td>
<td>19.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT15</td>
<td>31.31</td>
<td>25.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT16</td>
<td>34.02</td>
<td>26.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT17</td>
<td>32.46</td>
<td>25.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT18</td>
<td>28.07</td>
<td>20.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT21</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT22</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT23</td>
<td>42.09</td>
<td>33.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT24</td>
<td>46.27</td>
<td>33.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT25</td>
<td>27.72</td>
<td>20.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT26</td>
<td>24.50</td>
<td>21.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT27</td>
<td>34.69</td>
<td>27.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT28</td>
<td>35.26</td>
<td>25.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT29</td>
<td>36.69</td>
<td>28.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT31</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT32</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT33</td>
<td>30.45</td>
<td>29.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT34</td>
<td>34.56</td>
<td>31.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT35</td>
<td>42.23</td>
<td>34.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4.1 Adjusted versus measured $G_{\text{max-s}}/G_{\text{max-d}}$ ratios
Fig. 4.2 Dynamic and static moduli reduction curves compared VT-RT11
MODULI REDUCTION CURVES
Specimen: VT-RT12

Fig. 4.3 Dynamic and static moduli reduction curves compared
VT-RT12
Fig. 4.4 Dynamic and static moduli reduction curves compared
VT-RT13
Fig. 4.5 Dynamic and static moduli reduction curves compared
VT-RT14
MODULI REDUCTION CURVES

Specimen: VT-RT15

![Graph showing moduli reduction curves]

- **Dynamic Test**
- **Static Test**

Fig. 4.6 Dynamic and static moduli reduction curves compared
VT-RT15
MODULI REDUCTION CURVES
Specimen: VT-RT16

SHEAR MODULUS G (MPa)

$U_r = 0.0$

Fig. 4.7 Dynamic and static moduli reduction curves compared
VT-RT16
Fig. 4.8 Dynamic and static moduli reduction curves compared VT-RT17
Fig. 4.9 Dynamic and static moduli reduction curves compared
VT-RT18
MODULI REDUCTION CURVES
Specimen: VT-RT21

$U_r = 0.5$

Fig. 4.10 Dynamic and static moduli reduction curves compared
VT-RT21
Fig. 4.11 Dynamic and static moduli reduction curves compared
VT-RT22
Fig. 4.12 Dynamic and static moduli reduction curves compared for VT-RT23
MODULI REDUCTION CURVES

Specimen: VT-RT24

$U_f = 0.5$

Fig. 4.13 Dynamic and static moduli reduction curves compared VT-RT24
Fig. 4.14 Dynamic and static moduli reduction curves compared
VT-RT25
Fig. 4.15 Dynamic and static moduli reduction curves compared VT-RT26
Fig. 4.16 Dynamic and static moduli reduction curves compared
VT-RT27

MODULI REDUCTION CURVES
Specimen: VT-RT27

\[U_r = 0.5 \]

Shear Modulus \(G \) (kPa)

Shear Strain

- Dynamic Test
- Static Test

10^{-7} \quad 10^{-5} \quad 10^{-3} \quad 10^{-1}
MODULI REDUCTION CURVES

Specimen: VT-RT28

U_r = 0.5

Fig. 4.17 Dynamic and static moduli reduction curves compared
VT-RT28
Fig. 4.18 Dynamic and static moduli reduction curves compared VT-RT29
MODULI REDUCTION CURVES

Specimen: VT-RT210

\[U_I = 0.5 \]

Fig. 4.19 Dynamic and static moduli reduction curves compared
VT-RT210
Fig. 4.20 Dynamic and static moduli reduction curves compared VT-RT31
Fig. 4.21 Dynamic and static moduli reduction curves compared VT-RT32
MODULI REDUCTION CURVES

Specimen: VT-RT33

$U_r = 0.67$

Fig. 4.22 Dynamic and static moduli reduction curves compared VT-RT33
MODULI REDUCTION CURVES

Specimen: VT-RT34

\[\psi = 0.67 \]

Fig. 4.23 Dynamic and static moduli reduction curves compared

VT-RT34
Fig. 4.24 Dynamic and static moduli reduction curves compared VT-RT35
Fig. 4.25 Variation of Gmax-static/Gmax-dynamic with excess pore water pressure ratio
Gmax-s/Su vs. PWP RATIO

Normalized Variation

\[\frac{G_{\text{max}-s}}{S_u} = 112 - \frac{10^3 \times U_r}{6 + 3 \times U_r} \]

Fig. 4.26 Variation of \(\frac{G_{\text{max}-\text{static}}}{S_u} \) with excess pore water pressure ratio
Fig. 4.27 Variation of $\frac{S_u}{G_{\text{max-dynamic}}}$ with excess pore water pressure ratio.
Fig. 4.28 Variation of undrained residual shear strength (Ru) with undrained shear strength (Su)
Fig. 4.29 Variation of $\frac{G_{\text{max}}{\text{static}}}{G_{\text{max}}{\text{dynamic}}}$ with yield shear strain
Fig. 4.30 Variation of yield stress with undrained shear strength

\[\frac{\tau_y}{P_t} = 0.0016 + 0.0467 \times \frac{S_u}{P_t} \]
Fig. 4.31 Hypothetical representation of dynamic and static shear stress-strain curves

Fig. 4.32 Hypothetical representation of the relation between static shear stress-strain curve and constant strain hysteresis loop at cycle $N = N_1$
CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

A new method was designed and implemented to measure low strain shear properties of soft saturated clays. The method basically consisted of an unconventional use of triaxial vane device and fully computerized data acquisition. The results obtained through this method were compared and correlated with the result obtained through an established dynamic testing method, namely resonant column. Conclusions made pertaining to this study are listed below:

5.1 ABOUT EXPERIMENTAL METHOD

1. A semi-computer aided research tool was developed and implemented. The system is flexible and lends itself to be modified for different applications, e.g. axial or other types of torsional shear loading. Variety of fine grained soil types other than soft clays can be tested. One good example is cemented clays.

2. Scope of obtainable data covers a wide range from 10^{-4} % resolution to 20% (or larger) shear strain amplitudes. Accuracy of data is comparable with the accuracy delivered by more established methods of testing. In comparison with resonant column data, lower standard deviations are observed. Precision is high corresponding to approximately 1500 data points sampled within 1% shear strain range. More realistic low strain shear parameters can be obtained for soft saturated clays.
5.2 ABOUT RESULTS

1. The dynamic and static shear moduli, G versus shear strain, γ variation reveals detailed information at low strain ranges which is valuable for numerical analysis methods, and basic understanding of soft saturated clay behaviour at these strain amplitudes. Degradation of dynamic shear moduli is found to be a major complicating factor in assessing low strain properties of soft clays using dynamic testing methods. The information obtained from the static testing in this study was used to identify important parameters of a theoretical model complying with the findings of other researchers.

2. Effects of total and effective stresses and existing excess pore water pressures on the measurement of dynamic and static maximum moduli are compared. For normally consolidated material the ratio of maximum static modulus to dynamic modulus is estimated to be 0.85 ($= G_{\text{max-s}}/G_{\text{max-d}}$).

3. Effects of total and effective stresses and existing excess pore pressures on the measurement of G_{max}/S_u ratio are investigated. For normally consolidated material G_{max}/S_u ratio was estimated to be 112.

4. Yield parameters (γ_y, τ_y), with respect to bilinear modelling of the low strain range of the stress-strain curve are estimated and some correlations made. It is recommended that further research is needed on this subject area to achieve less scatter in data.

5. The system can successfully be utilized to assess
large strain properties also. An example of which was given
by measuring and correlating the undrained shear strength
and the undrained residual shear strength.

5.3 GENERAL CONCLUSIONS AND RECOMMENDATIONS

1. Dynamic testing of soft saturated clays can produce
misleading results with respect to existing pore pressures
below a certain threshold amplitude of shear strain.
Substantial influence of degradation above a threshold of
shear strain will result in unrealistic prediction of cyclic
stress-strain behaviour. Frequency of loading applied in
most dynamic testing methods will not properly simulate
actual loading conditions in some applications. In order to
eliminate the complicating factors cited above, a new low
shear strain amplitude testing method is proposed.

2. The new method, designed and implemented, proves to
be an improvement over the existing techniques of low strain
shear testing of soft saturated clays.

3. The new method can also be utilized in other areas
of research including vane testing mechanism; detailed
analysis of low strain nonlinearity of soft soils and low
strain properties of less understood materials such as
cemented soils.

4. The data acquisition technique described in this
study is a new tool to obtain better quality data and can
easily be adopted to other testing methods with some
modifications.
REFERENCES

41. Lade, P.V., 'Presentation of Predictions at NSF/NSERC Symposium on Constitutive Equations For Soils,' McGill University, Montreal, 1980.

72. Shibata, T. and Tagawa, S., "Vane Shear Strength of Clays," Annals, Disaster Prevention Research Institute, Kyoto University, No. 11B, pp. 537-548 (in Japanese).

76. Stevenson, H.S., "Vane Shear Determination of the Viscoelastic Shear Modulus of Submarine Sediments," thesis presented to Texas A&M University, in 1973, in partial fulfillment of the requirements for Master of Science degree.

APPENDIX A

SPECIFICATIONS OF SOME DATA ACQUISITION EQUIPMENT AND BAL-SEAL
ELECTRONIC AUTOCOLLIMATOR
Model 1000-135

Manufacturer: United Detector Technology (UDT)
3939 Landmark Street
Culver City, CA 90230
(213) 204-2250

Specifications

Beam Diameter 45 mm
Overall Length, including lens 180 mm
Angular coverage 0.074 rad
Angular resolution (with OP-EYE 4) 0.5 arc sec.
Linearity in angular coverage
 central 25 % 0.5-5 %
 central 75 % 5-20 %
LED input current, DC 100 mA
LED wavelength 880 nm
Temperature coefficient drift 0.4 arc sec./°F
OP-EYE gain required for optimum operation 200K
Sensitivity falloff with distance 0.7%/inch

OPTICAL POSITION INDICATOR
Model OP-EYE-4

Manufacturer: United Detector Technology (UDT)

Specifications

Programmable gain 1,10,100,500
A/D resolution 16-bit
Frequency response of A/D 2.5 kHz
 (625 Hz for each dual axis detector)
Interface RS-232C (9600 Baud) and IEEE-488 ports on rear panel
BAL-SEAL
Series R304A-(.125) SP-23

Manufacturer: Bal-Seal Eng. Co.
620 W. Warner Ave.
Santa Ana, California 92707
(714) 557 5192

Specifications

<table>
<thead>
<tr>
<th>Material</th>
<th>Teflon</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID (cm)</td>
<td>0.125 +/- 0.005</td>
</tr>
<tr>
<td>OD flange (cm)</td>
<td>0.434 +/- 0.010</td>
</tr>
<tr>
<td>Maximum pressure (kg/cm²)</td>
<td>10</td>
</tr>
<tr>
<td>Maximum clearance (mm)</td>
<td>0.13</td>
</tr>
<tr>
<td>Wire diameter (cm)</td>
<td>0.011</td>
</tr>
</tbody>
</table>
APPENDIX B
COMPUTER PROGRAMS

OPCALIB.FOR
OPAUX1.FOR
OPAUX2.FOR
OPAUX3.FOR
RESON.FOR
C**
C
C OPCALIB.FOR

C THIS IS AN INTERACTIVE FORTRAN GRAPHICS PROGRAM
TO CALIBRATE, COLLECT AND STORE ANGULAR ROTATION DATA VIA AUTOCOLLIMATOR AND OP-EYE

C
By SIBEL PAMUKCU

C
Latest Revision: February 1986

C**
C
COMMON/POSA(3500),Z(3500)
COMMON/GRAPH/IX(3500),IZ(3500)
COMMON KK,NDATA,CR,R
INTEGER*2 IX,IZ,NUM,KK,LL,NDATA,NUMB,I,J,K,ICOL
INTEGER*2 INZEN,N(6),DATA(6),IMIN,IMAX,IFLAG,5BEG,IIZ
INTEGER*2 IST,IFN,RFAC,NI,N3,NTOT,N5,N6,N6P1
INTEGER*2 KEY,INKEY,IX,IM1
CHARACTER*1 CK,CR,R,GAIN
CHARACTER*10 DATF
CALL CLS
WRITE(*,5)
5 FORMAT(' ENTER DATA FILE NAME ==> ',/)
READ(*,'(A10)') DATF
WRITE(*,6)
6 FORMAT(' ENTER MOTOR SPEED REDUCTION (%) ==> ',/)
READ(*,'(14)') RFAC

OPEN(8,FILE=DATF,STATUS='NEW',FORM='BINARY')
WRITE(*,10)
10 FORMAT(' TURN ON OPEYE AND HIT RETURN ',/)
READ(*,'(A1)') CK

NUM=INZEN(NUM)
IF(NUM.NE.42) GO TO 20

C
C INITIALIZE OPEYE (M1,S4,C4)

C
CR=CHAR(13)
R=CHAR(82)
CK=CHAR(77)
CALL OUTZEN(CK)
CK=CHAR(49)
CALL OUTZEN(CK)
CK=CHAR(83)
CALL OUTZEN(CK)
CK=CHAR(52)
CALL OUTZEN(CK)
CK=CHAR(67)
CALL OUTZEN(CR)
30 NUM=INZEN(NUM)
 IF(NUM.NE.42) GO TO 30
 GAIN=CHAR(50)
 CK=CHAR(71)
 CALL OUTZEN(CR)
40 NUM=INZEN(NUM)
 IF(NUM.NE.42) GO TO 40
C
 CALFAC=0.25
 IF(RFAC.GT.50) CALFAC=2.0
 IF(RFAC.LE.50) CALFAC=1.0
 IF(RFAC.LE.40) CALFAC=0.75
 IF(RFAC.LE.30) CALFAC=0.5
 IF(RFAC.LE.20) CALFAC=0.25
 XMAX=0.0
 XMIN=0.0
 IFLAG=1
 NDATA=1
 ICOL=6
 CALL CLS
 CALL LINE(0,112,620,112,3,-1)
 KK=0
 ZDUM=RD_TIME(0)
 CALL ASEM
 X1=ABS(X(NDATA))
 X(NDATA)=X(NDATA)-X1
 IX(1)=112
 IZ(1)=NINT(CALFAC*Z(NDATA))

C
C INITIALIZATION COMPLETE
C
1010 NDATA=NDATA+1
 KK=0
C
C CALL ASEM
C
C STEPS BRANCH FROM HERE
C
 X(NDATA)=X(NDATA)-X1
 IF(IFLAG.EQ.2) GO TO 1050
 IF(IFLAG.EQ.3) GO TO 1500
C
C IFLAG IS 1
C
C IF (X (NDATA) .LT. XMIN) THEN
 XMIN=X (NDATA)
 IMIN=NDATA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ENDIF
IF(X(NDATA).GT.XMAX) THEN
 XMAX=X(NDATA)
 IMAX=NDATA
ENDIF
KEY=INKEY()
IF(KEY.NE.13) GO TO 1500
WRITE(*,201)
READ(*,'(A1)') CK
IST=IMIN+(IMAX-IMIN)/4
IFN=IMIN+3*(IMAX-IMIN)/4
CALL FIT(Z,X,IST,IFN,A,B,RS,SIG)
DO 220 I=IMIN,IMAX
 X(I)=A+B*Z(I),
220 CONTINUE
IMPl=IMIN+1
IX(IMIN)=112-NINT(350*X(IMIN))
DO 225 I=IMPl,IMAX
 IX(I)=112-NINT(350*X(I))
225 CONTINUE
BCAL=(RFAC*1.009997-7.629231)*0.001
RAD=(BCAL*3.141592654)/(B*180.)
WRITE(*,226) XMAX,XMIN,B,RS,SIG*100,RAD
226 FORMAT('XMAX=>',F8.5,'.XMIN=>',F8.5,' B=>',F10.8,
 & RS=>',F6.4,' SIG=>',F6.3,'1',/,
 & CALIBRATION CONSTANT =>',G15.8,' RADIANS/UNIT READING')
CALL COLOR(2,-1)
IZ(NDATA)=NINT(CALFAC*(BASE-ZD))
DO 99 LL=1,10
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
READ(*,'(A1)') CK
KK=0
XBEG=X(NDATA)-X1
IIX=112-NINT(350*XBEG)
CALL PSET(IIZ, IIX, 2)
99 CONTINUE
C
C***/
C
C
NDATA=1
ZBEG=BASE-ZD
X(NDATA)=XBEG
IX(NDATA)=112-NINT(350*XBEG)
IZ(NDATA)=NINT(CALFAC*ZBEG)
IFLAG=3
ICOL=1
WRITE(*,202)
READ(*,'(A1)') CK
ZDUM=RDTIME(0)
Z(NDATA)=ZDUM
GO TO 1010
C
C ******************
C
C
1500 CONTINUE
IX(NDATA)=112-NINT(350*X(NDATA))
IF(IFLAG.EQ.1) THEN
IZ(NDATA)=NINT(CALFAC*Z(NDATA))
IF(NDATA.EQ.1) GO TO 1010
ENDIF
IF(IFLAG.EQ.2) THEN
IZ(NDATA)=NINT(CALFAC*(BASE-Z(NDATA)))
ENDIF
IF(IFLAG.EQ.3) THEN
IF(NDATA.EQ.3250) GO TO 2000
IF(Z(NDATA).LE.Z(NDATA-1)) GO TO 2000
KEY=INKEY()
IF(KEY.EQ.13) GO TO 2000
IZ(NDATA)=NINT(CALFAC*(ZBEG+Z(NDATA)))
IF(IZ(NDATA).GT.620) GO TO 3000
ENDIF
CALL LINE(IZ(NDATA-1), IX(NDATA-1), IZ(NDATA), IX(NDATA), ICOL,-1)
GO TO 1010
3000 CONTINUE
N5=NDATA-1
N6=NDATA
IZ(NDATA)=IZ(NDATA)-620
3100 NDATA=NDATA+1
KEY=INKEY()
IF(KEY.EQ.13) GO TO 2000
KK=0
CALL ASSEM
IF(NDATA.EQ.3250) GO TO 2000
IF(Z(NDATA).LE.Z(NDATA-1)) GO TO 2000
X(NDATA)=X(NDATA)-XI
IX(NDATA)=112-NINT(350*X(NDATA))
IZ(NDATA)=NINT(CALFAC*(ZBEG+Z(NDATA)))-620
CALL LINE(IZ(NDATA-1),IX(NDATA-1),IZ(NDATA),IX(NDATA),ICOL,-1)
GO TO 3100
2000 CONTINUE
WRITE(*,201)
READ(*,'(A1)') CK
NTOT=NDATA-1
C
WRITE(8) RFAC,NTOT
WRITE(8) A,B
WRITE(8) ZBEG,XMAX,XI
WRITE(8) (I,X(I),Z(I),I=1,NTOT)
CALL CLS
CALL LINE(0,112,620,112,3,-1)
N3=NTOT
IF(N5.NE.0) N3=N5
DO 119 I=2,N3
CALL LINE(IZ(I-1),IX(I-1),IZ(I),IX(I),2,-1)
119 CONTINUE
IF(N6.NE.0) THEN
N6P1=N6+1
DO 129 I=N6P1,NTOT
CALL LINE(IZ(I-1),IX(I-1),IZ(I),IX(I),2,-1)
129 CONTINUE
ENDIF
WRITE(*,240)
240 FORMAT(' *** HARD COPY *** '',
READ(*,'(A1)') CK
STOP
END
C
C

C
SUBROUTINE ASSEM
COMMON/POS/X(3500),Z(3500)
COMMON KK,NDATA,CR,R
CHARACTER*1 CR,R
INTEGER*2 NUM,KK,EDATA,INZEN,I,J,K,NUMB
INTEGER*2 N(6),DATA(6)
CALL OUTZEN(R)
CALL OUTZEN(CR)
Z(NDATA)=RDTIME(1)
C
1000 KK=KK+1
DO 50 J=1,12
50 NUM=INZEN(NUM)
60 NUM=INZEN(NUM)
IF(NUM.NE.116) GO TO 60
NUM=INZEN(NUM)
NUM=INZEN(NUM)
C
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I = 1
N(I) = INZEN(NUM) - 48
70 I = I + 1
N(I) = INZEN(NUM) - 48
IF(N(I) .NE. -35) GO TO 70
J = I - 1
NUMB = 0
I = 0
K = 1
80 NUMB = NUMB + N(J - I) * K
I = I + 1
K = K * 10
IF(I .LT. J) GO TO 80
C
C NUMB IS THE NUMBER
C
DATA(KK) = NUMB
IF(KK .EQ. 4) GO TO 90
GO TO 1000
90 CONTINUE
C
C FIND *
C
92 NUM = INZEN(NUM)
IF(NUM .NE. 42) GO TO 92
X1 = DATA(1)
X2 = DATA(2)
X(NDATA) = (X1 - X2) / (X1 + X2 + 0.0001)
RETURN
END
C
SUBROUTINE FIT(XX, ZZ, NB, NE, A, B, RS, SIG)
DIMENSION XX(1), ZZ(1)
INTEGER*2 NB, NE, I, NT
C
A IS THE INTERCEPT, B IS THE SLOPE OF A STRAIGHT LINE FIT
C
XXS = 0.0
ZZS = 0.0
XZS = 0.0
XXS = 0.0
ZZS = 0.0
NT = NE - NB + 1
DO 100 I = NB, NE
XXS = XXS + XX(I)
ZZS = ZZS + ZZ(I)
XZS = XZS + (XX(I) * ZZ(I))
XXS = XXS + (XX(I) * XX(I))
ZZS = ZZS + (ZZ(I) * ZZ(I))
100 CONTINUE
A = ((XZS * XXS) - (ZZS * XXS)) / ((XXS * XXS) - (NT * XXS))
B = ((ZZS * XXS) - (NT * ZZS)) / ((XXS * XXS) - (NT * XXS))
SSIO = ZZS - (ZZ * ZZ) / NT
SSE=0.0

DO 200 I=NB,NE
 ZHAT=A+B*XX(I)
 ZDIF=Z(I)-ZHAT
 SSE=SSE+(ZDIF*ZDIF)
200 CONTINUE
RS=1-(SSE/SSTO)
SIG=SQRT(SSE/(NT-2))
RETURN
END
THIS IS AN INTERACTIVE GRAPHICS PROGRAM TO FILTER DATA AND CAL FILES USING RUNNING MEAN METHOD

By SIBEL PAMUKCU

Latest revision: February 1986

STEP NO 1

COMMON/POS/X(3500),Z(3500)
COMMON/GRAPH/IX(3500),IZ(3500)
COMMON/AUX/XS(3500),IXS(3500)
INTEGER*2 IX,IZ,IXS,NDUM(20),ISM(20)
INTEGER*2 I,J,K,L,LB,M,PL,M
INTEGER*2 RFAC,IFLAG,NLAST
CHARACTER*10 DATIN
CHARACTER*1 CK
CALL CLS
WRITE(*,5)
5 FORMAT(' ENTER INPUT DATA FILE NAME ==> ',/)
READ(*,'(A10)') DATIN
OPEN(8,FILE=DATIN,STATUS='OLD',FORM='BINARY')
IFLAG=1
500 CONTINUE
WRITE(*,10) DATIN
10 FORMAT(' READING ALO,'FILE ... PLEASE WAIT ')
READ(8) RFAC,NLAST
READ(8) A,B
READ(8) ZBEG,XMAX,XL
READ(8) (ND,X(I),Z(I),I=1,NLAST)
CLOSE(8,STATUS='KEEP')

CALL COLOR(2,-1)
WRITE(*,35)
35 FORMAT(' PROCESSING... WAIT ','/)
XNM=X(1)
DO 40 I=1,NLAST
 IF(X(I),LE.XNM) XNM=X(I)
40 CONTINUE
XDIF=X(NLAST)-XNM
ZDIF=Z(NLAST)-Z(1)
DO 45 I=1,NLAST
 IFZ(I)=1+NINT(620*(Z(I)-Z(1))/ZDIF)
 IX(I)=220-NINT(220*(X(I)-XNM)/XDIF)
45 CONTINUE
CALL CLS
DO 55 I=2,NLAST
 CALL LINE(IZ(I-1),IX(I-1),IZ(I),IX(I),4,-1)
55 CONTINUE
DO 56 I=50,NLAST,50
 CALL PSET(IZ(I),IX(I),7)
56 CONTINUE
C
CALL COLOR(7,-1)
WRITE(*,58) NLAST
58 FORMAT(' TOTAL # OF DATA POINTS ARE ==> ',I5)
WRITE(*,59)
59 FORMAT(' DOTS ARE LOCATED AT EVERY 50TH POINT ')
WRITE(*,60)
60 FORMAT(' ENTER NUMBER OF RUNNING MEAN FACTOR CHANGES ==> ',I5)
READ(*,65) NL
65 FORMAT(I5)
IF(NL.EQ.0) STOP
WRITE(*,67)
67 FORMAT(' ENTER RMF AND CORRESPONDING DATA POINT (215)'
I=0
68 I=I+1
WRITE(*,71) I
READ(*,69) ISM(I),NDUM(I)
IF(I.EQ.NL) GO TO 72
GO TO 68
71 FORMAT(I2,\)
69 FORMAT(215)
72 CONTINUE
WRITE(*,35)
C
C SMOOTH DATA USING ISM(I) POINT RUNNING MEAN
C
K=0
70 K=K+1
IF(K.EQ.1) THEN
 NB=1
ELSE
 NB=NDUM(K-1)+1
ENDIF
DO 80 I=NB,NDUM(K)
 XTEMP=0.0
 J=0
 XTEMP=XTEMP+X(I+J)
 J=J+1
IF(((I+J)<=NLAST) ISM(K)=J)
IF(J.LT.ISM(K)) GO TO 75
XS(I)=XTEMP/ISM(K)
80 CONTINUE
IF(K.EQ.NL) THEN
 GO TO 85
ELSE
 GO TO 70
ENDIF
85 CONTINUE
NDP1=NDUM(NL)+1
IF(NDP1.EQ.NLAST) THEN
 XS(NLAST)=X(I)
 GO TO 100
ENDIF
IF(NDP1.GT.NLAST) GO TO 100
DO 90 I=NDP1,NLAST
90 XS(I)=X(I)
100 CONTINUE
C
C DRAW SMOOTH CURVE OVER THE ORIGINAL
C
DO 95 I=1,NLAST
IXS(I)=220-NINT(220*(XS(I)-XMIN)/XDIF)
95 CONTINUE
DO 96 I=2,NLAST
CALL LINE(IZ(1-1),IXS(1-1),IZ(I),IXS(I),1,-1)
96 CONTINUE
WRITE(*,110)
110 FORMAT(' ENTER "Y" TO RETRY ==> ',/)
READ(*,'(A1)') CK
IF(CK.EQ.'Y') GO TO 50
300 CONTINUE
OPEN(8,FILE=DATIN,STATUS='OLD',FORM='BINARY')
WRITE(8) RFAC,NLAST
WRITE(8) A,B
WRITE(8) ZBEG,XMAX,XI
WRITE(8) (I,XS(I),Z(I),I=1,NLAST)
CLOSE(8,STATUS='KEEP')
IF(IFLAG.EQ.1) THEN
 CALL CLS
 WRITE(*,111)
111 FORMAT(' DO YOU WISH TO PROCESS ANOTHER FILE ? (Y/N) ==> ',/)
 READ(*,'(A1)') CK
 IF(CK.EQ.'Y') THEN
 WRITE(*,120)
120 FORMAT(' ENTER NEW FILE NAME ==> ',/)
 READ(*,'(A10)') DATIN
 OPEN(8,FILE=DATIN,STATUS='OLD',FORM='BINARY')
 IFLAG=2
 GO TO 500
 ENDIF
ENDIF
STOP
END
COMMON/POS/X(3500),Y(3500)
COMMON/CAL/XCAL(3500),YCAL(3500)
COMMON/PLT1/JX(3500),JY(3500)
COMMON/PLT2/JXC(3500),JYC(3500)
INTEGER*2 I,J,JX,JY,NM,NX,NY,IJC,JIX,JIY,NXDIF,NYDIF
INTEGER*2 NT1,M,NL3,NT2,RFAC1,RFAC2,JIX,JIY,NXDIF,NYDIF
CHARACTER*10 DATIN,DATCAL,DATOUT
CHARACTER*1 CK

CALL CLS
WRITE(*,10)
10 FORMAT(' ENTER INPUT FILE NAME ==> ',A10)
READ(*,20) DATIN
20 FORMAT(A10)
WRITE(*,30)
30 FORMAT(' ENTER CAL FILE N A M E ==> ' ,
READ(*,20) DATCAL
40 FORMAT(' ENTER OUTPUT FILE N A M E ==> ',A10)
READ(*,20) DATOUT

OPEN (8,FILE=DATIN,STATUS='OLD',FORM='BINARY')
WRITE(*,45) DATIN
45 FORMAT(' READING ',A10,'FILE... PLEASE W A IT ')
READ(8) RFAC1,MT1
READ(8) AL,B1
READ(8) ZBEG,X1,X2
READ(8) (I,X(I),Y(I),I=1,MT1)
CLOSE(8,STATUS='KEEP')
OPEN (8,FILE=DATCAL,STATUS='OLD',FORM='BINARY')
WRITE(*,45) DATCAL
READ(8) RFAC2,NT2
READ(8) A2,B2
READ(8) ZBEG,X1,X2
READ(8) (I,XCAL(I),YCAL(I),I=1,NT2)
CLOSE(8,STATUS='KEEP')
CALL COLOR(2,-1)
WRITE(*,48)
48 FORMAT(' PROCESSING ... WAIT ')
CALL COLOR(7,-1)

C

DO 200 I=2,NT1
Y(I)=Y(I)-((X(I)-X(1))/B1)
IF(Y(I).LT.Y(I-1)) Y(I)=Y(I-1)
200 CONTINUE

DO 210 I=2,NT2
YCAL(I)=YCAL(I)-((XCAL(I)-XCAL(1))/B2)
IF(YCAL(I).LT.YCAL(I-1)) YCAL(I)=YCAL(I-1)
210 CONTINUE

Y1=Y(1)
YC1=YCAL(1)

DO 300 I=1,MT1
Y(I)=Y(I)-Y1
300 CONTINUE

DO 310 I=1,NT2
YCAL(I)=YCAL(I)-YC1
310 CONTINUE

XMIN=X(1)
YMIN=Y(1)
XMAX=X(1)
YMAX=Y(1)

DO 50 I=1,MT1
IF(Y(I).LT.YMIN) YMIN=Y(I)
IF(X(I).LT.XMIN) XMIN=X(I)
IF(Y(I).GT.YMAX) YMAX=Y(I)
IF(X(I).GT.XMAX) XMAX=X(I)
50 CONTINUE

DO 60 I=1,NT2
IF(YCAL(I).LT.YMIN) YMIN=YCAL(I)
IF(XCAL(I).LT.XMIN) XMIN=XCAL(I)
IF(YCAL(I).GT.YMAX) YMAX=YCAL(I)
XG=XMAX-XMIN
YG=YMAX-YMIN
CALL CLS

C

CALL DRAW(Y,X,1,NT1,6,YG,XG,YMIN,XMIN,JX,JY)
CALL DRAW(YCAL,XCAL,1,NT2,7,YG,XG,YMIN,XMIN,IXC,ICY)
IXX=IXC(1)
IYY=ICY(1)
JXX=JX(1)
JYY=JY(1)

C

90 CALL ZLOCOO(NX,NY,NUM)
IF(NUM.EQ.69) GO TO 100
IF (NUM.EQ.85.0R.NUM.EQ.68) THEN
 CALL VSHIFT (NY, NUM, NT1, NT2)
 CALL CLS
 DO 70 I=2, NT2
 CALL LINE (IXC(I-1), IYC(I-1), IXC(I), IYC(I), 7, -1)
 DO 75 I=2, NT1
 CALL LINE (JX(I-1), JY(I-1), JX(I), JY(I), 4, -1)
 CONTINUE
ENDIF
IF (NUM.EQ.76.0R.NUM.EQ.82) THEN
 CALL HSHIFT (NX, NUM, NT1, NT2)
 CALL CLS
 DO 80 I=2, NT2
 CALL LINE (IXC(I-1), IYC(I-1), IXC(I), IYC(I), 7, -1)
 DO 85 I=2, NT1
 CALL LINE (JX(I-1), JY(I-1), JX(I), JY(I), 4, -1)
 CONTINUE
ENDIF
GO TO 90
100 CONTINUE
WRITE (*, 48)
NXDIF= JX(1)-JIX
NYDIF= JY(1)-JIY
YDIF=NXDIF*YG/400.
XDIFF=NYDIF*XG/150.
DO 110 I=1, NT1
 X(I)=X(I)-XDIF
 Y(I)=Y(I)+YDIF
CONTINUE
NXDIF=IXC(1)-II X
NYDIF=IYC(1)-I IY
YDIF=NXDIF*YG/400.
XDIFF=NYDIF*XG/150.
DO 111 I=1, NT2
 XCAL(I)=XCAL(I)-XDIF
 YCAL(I)=YCAL(I)+YDIF
CONTINUE
C
OPEN (8, FILE=DATOUT, STATUS='NEW', FORM='BINARY')
WRITE (8) RFAC1, RFAC2, NT1, NT2
WRITE (8) A1, B1, A2, B2
WRITE (8) (I, X(I), Y(I), I=1, NT1)
WRITE (8) (I, XCAL(I), YCAL(I), I=1, NT2)
CLOSE (8, STATUS='KEEP')
STOP
END
C
C
C
SUBROUTINE DRAW (XX, YY, NB, NE, ICOL, XSL, YSL, XM, YM, JX, JY)
DIMENSION XX(1), YY(1), JX(1), JY(1)
INTEGER*2 I, NB, NE, ICOL, JX, JY, NBPL

167
NBPL=NB+1
JX (NB)=75+NINT (400* (XX (NB)-XM)/XSL)
JY (NB)=200-NINT (150* (YY (NB)-YM)/YSL)
DO 100 I=NBPL,NE
JX (I)=75+NINT (400* (XX (I)-XM)/XSL)
JY (I)=200-NINT (150* (YY (I)-YM)/YSL)
CALL LINE (JX (I-1) , JY (I-1) , JX (I) , JY (I) , ICOL , -1)
100 CONTINUE
RETURN
END

SUBROUTINE VSHIFT (NY, NUM, NT1, NT2)
COMMON/PLOT1/JX (3500) , JY (3500)
COMMON/PLOT2/IXC (3500) , IYC (3500)
INTEGER*2 NUM, NY, NDUM, MX, MY, I, NDIF, NT1, NT2
INTEGER*2 JX, JY, IXC, IYC

CALL ZLOC00 (MX, MY, NDUM)
NDIF=IABS (NY-MY)
IF (NUM.EQ.85) NDIF=-NDIF
IF (NDUM.EQ.67) GO TO 150
DO 100 I=1, NT1
JY (I)=JY (I)+NDIF
100 CONTINUE
GO TO 300
150 CONTINUE
DO 200 I=1, NT2
IYC(I)=IYC(I)+NDIF
200 CONTINUE
300 CONTINUE
RETURN
END

SUBROUTINE HSHIFT (NX, NUM, NT1, NT2)
COMMON/PLOT1/JX (3500) , JY (3500)
COMMON/PLOT2/IXC (3500) , IYC (3500)
INTEGER*2 NUM, NX, NDUM, MX, MY, I, NDIF, NT1, NT2
INTEGER*2 JX, JY, IXC, IYC

CALL ZLOC00 (MX, MY, NDUM)
NDIF=IABS (NX-MX)
IF (NUM.EQ.76) NDIF=-NDIF
IF (NDUM.EQ.67) GO TO 150
DO 100 I=1, NT1
JX (I)=JX (I)+NDIF
100 CONTINUE
GO TO 300
150 CONTINUE
DO 200 I=1, NT2
IXC(I)=IXC(I)+NDIF
200 CONTINUE
300 CONTINUE
RETURN
END
C THIS IS AN INTERACTIVE GRAPHICS PROGRAM TO ANALYZE ANGULAR ROTATION DATA AND FIND FINAL STRESS-STRAIN CURVE

By SIBEL PAMUKCU

Latest revision: February 1986

STEP NO 3 ******************

COMMON/POS/X(3500),Z(3500)
COMMON/CAL/XCAL(1500),ZCAL(1500)
COMMON/NEW/XNEW(3000),ZNEW(3000)
COMMON/GRAPH/IX(3500),IZ(3500)
COMMON/AUX1/ANG(20),TOR(20),INFIN(200),NP(3,10)
COMMON/AUX2/KK(1200),NN(1200)
INTEGER*2 IX,IZ,KK,J,K,L,N,ICR; INS,NL,NLP,NF
INTEGER*2 N1,N2,N3,N4,N5,NS,IP11,IP12,IP21,IP22
INTEGER*2 NDUM,N1D1,N2D2,N2C2,NW,NFIN,NN,LC,NSET,NP
INTEGER*2 RFAC1,RFAC2,NT21,NUM,NAR,NAC,IMIN,NC1
INTEGER*2 NXDIF,NZDIF,JIZ,JIX,N1L,N1FLAG,NP1,NP2,NP3
CHARACTER*10 DATIN,DATOUT,DATSP
CHARACTER*1 CK
DATA PI,SHEAR/3.141592654,96.163/

READ IN USER SUPPLIED DATA

CALL CLS
WRITE(*,5)
5 FORMAT('ENTER INPUT DATA FILE NAME ==> ',A)
READ(*,'(A10)') DATIN
WRITE(*,10)
10 FORMAT('ENTER OUTPUT DATA FILE NAME ==> ',A)
READ(*,'(A10)') DATOUT
WRITE(*,20)
20 FORMAT(' ENTER SPRING CAL FILE NAME => ',")
READ(*,'(A10)') DATSP
OPEN(8,FILE=DATIN,STATUS='OLD',FORM='BINARY')
C
C READ IN FILTERED DATA AND CALIBRATION
C
WRITE(*,30) DATIN
30 FORMAT(' READING ',A10,'FILE ... PLEASE WAIT ')
READ(8) RFAC1,RFAC2,NT1,NT2
READ(8) A1,B1,A2,B2
READ(8) (I,X(I),Z(I),I=1,NT1)
READ(8) (I,XCAL(I),ZCAL(I),I=1,NT2)
CLOSE(8,STATUS='KEEP')
OPEN(9,FILE=DATSP,STATUS='OLD')
READ(9,40) DATSP,INS
40 FORMAT(A10,15)
50 FORMAT(2F10.4)
CLOSE(9,STATUS='KEEP')
CALL COLOR(2,-1)
WRITE(*,55)
55 FORMAT(' PROCESSING... WAIT...')
C
C USING VANE ROTATION SPEED DATA, AND DATA COLLECTION SPEED
C DATA CALCULATE UNPROCESSED STRESS-STRAIN CURVES FOR THE SAMPLE
C AND FOR THE SEALS
C
X1=X(1)
XC1=XCAL(1)
Z1=Z(1)
ZC1=ZCAL(1)
BCAL1=(RFAC1*1.009997-7.629231)*0.001
BCAL2=(RFAC2*1.009997-7.629231)*0.001
RAD1=(BCAL1*PI)/(B1*180.)
RAD2=(BCAL2*PI)/(B2*180.)
RAD IS RADIANS OF ROTATION PER UNIT DATA

DRAW CALIBRATION CURVE AND SAMPLE CURVE AND DETERMINE

CUT-OFF POINTS FOR FRICTION ELIMINATION FROM THE SAMPLE DATA

XCM=0.0
XNM=0.0
ZZ=ZCl
XX=XCl
ONERAD=180./PI
IF(Zl.LT.ZCl) ZZ=Zl
IF(Xl.LT.XCl) XX=Xl
X (1) = (X(1) -XX) *RAD1
Z (1) = BCAL1 * (Z(1) -ZZ) - (X(1) *ONERAD)
DO 60 I=2,NTl
X(I) = (X(I) -XX) *RAD1
Z(I) = BCAL1 * (Z(I) -ZZ) - (X(I) *ONERAD)
IF(Z(I).LT.Z(I-1)) Z(I)=Z(I-1)
IF(X(I).LT.XNM) XNM=X(I)
60 CONTINUE
XCAL(1) = (XCAL(1) -XX) *RAD2
ZCAL(1) = BCAL2 * (ZCAL(1) -ZZ) - (XCAL(1) *ONERAD)
DO 70 I=2,NT2
XCAL(I) = (XCAL(I) -XX) *RAD2
ZCAL(I) = BCAL2 * (ZCAL(I) -ZZ) - (XCAL(I) *ONERAD)
IF(ZCAL(I).LT.ZCAL(I-1)) ZCAL(I)=ZCAL(I-1)
IF(XCAL(I).LT.XCM) XCM=XCAL(I)
70 CONTINUE
ZNM=Z(1)
IF (ZCAL(I) .LT. ZNM) ZN4 = ZCAL(I)
DO 72 I = 1, NT1
Z(I) = Z(I) - ZNM
72 CONTINUE
DO 73 I = 1, NT2
ZCAL(I) = ZCAL(I) - ZNM
73 CONTINUE
XMIN = XNM
IF (XCM .LT. XNM) XMIN = XCM
XMAX = X(NT1)
IF (XCAL(NT2) .GT. X(NT1)) XMAX = XCAL(NT2)
XG = XMAX - XMIN
ZG = Z(NT1) - ZNM

READJUST EITHER CURVE FOR COINCIDENCE

90 CALL CLS
CALL DRAW(XCAL, ZCAL, 1, NT2, 7, XG, ZG)
CALL DRAW(X, Z, 1, NT1, 6, XG, ZG)

91 NFLAG = 0
CALL COLOR(7, -1)
WRITE(*, 92)
92 FORMAT(' DO YOU WISH TO READJUST ? (Y/N) ==> ' , A)
READ(*, '(A1)') CK
IF (CK .EQ. 'Y') THEN
 NFLAG = 1
 JIX = IX(1)
 JIZ = IZ(1)
94 CALL ZLOCOO(NX, NY, IASC)
 IF (IASC .EQ. 69) GO TO 99
 IF (IASC .EQ. 85 .OR. IASC .EQ. 68) THEN
 DO 95 I = 1, NT1
 CALL PRESET(IX(I), IZ(I), -1)
 CONTINUE
 CALL VSHIFT(NY, IASC, NT1)
 DO 96 I = 2, NT1
 CALL LINE(IX(I-1), IZ(I-1), IX(I), IZ(I), 4, -1)
 CONTINUE
 ENDIF
 IF (IASC .EQ. 76 .OR. IASC .EQ. 82) THEN
 DO 97 I = 1, NT1
 CALL PRESET(IX(I), IZ(I), -1)
 CONTINUE
 CALL HSHIFT(NX, IASC, NT1)
 DO 98 I = 2, NT1
 CALL LINE(IX(I-1), IZ(I-1), IX(I), IZ(I), 4, -1)
 CONTINUE
 ENDIF
99 GO TO 94
WRITE(*,55)
NXDIF=IX(I)-JIX
NZDIF=IZ(I)-JIZ
ZDIF=NZDIF*ZG/180.
XDIF=NXDIF*XG/520.
ZM=0.0
XM=0.0
DO 102 I=1,NT1
X(I)=X(I)+XDIF
Z(I)=Z(I)-ZDIF
IF(X(I).LT.XM) XM=X(I)
IF(Z(I).LT.ZM) ZM=Z(I)
102 CONTINUE
IF(ZM.LT.0.0) THEN
DO 105 I=1,MT1
Z(I)=Z(I)-ZM
105 CONTINUE
DO 106 I=1,NT2
ZCAL(I)=ZCAL(I)-ZM
106 CONTINUE
ENDIF
IF(XM.LT.0.0) THEN
DO 107 I=1,NT1
X(I)=X(I)-XM
107 CONTINUE
DO 108 I=1,NT2
XCAL(I)=XCAL(I)-XM
108 CONTINUE
ENDIF
CALL CLS
CALL ADJUST(NT1,MT1)
CALL DRAW(XCAL,ZCAL,1,NT2,7,XG,ZG)
CALL DRAW(X,Z,1,NT1,6,XG,ZG)
GO TO 91
ENDIF
C

C

C

IF(NFLAG.EQ.0) THEN
CALL ADJUST(NT1,MT2)
ENDIF
WRITE(*,100)
100 FORMAT(' ENTER LOWER AND UPPER CUT-OFF POINTS')
CALL ZLOCV(NF)
ND1=NF
CALL ZLOCV(NF)
ND2=NF
WRITE(*,80)
80 FORMAT(' MORE PROCESSING... PLEASE WAIT...')
ZDIR=Z(ND1)
CALL FINDER(ZCAL,ZDIR,ND1,1,MT2,NC1)
ZDIR=Z(ND2)
CALL FINDER(ZCAL,ZDIR,ND2,1,MT2,NC2)
CALCULATE CALIBRATION CURVE ADJUSTMENT NUMBER OF POINTS
CALCULATE THE ACTUAL STRESS-STRAIN CURVE OF THE SAMPLE
BY ELIMINATING FRICTION EFFECTS

I = ND1 - 1
J = NC1 - 1
K = 0

I = I + 1
J = J + 1
K = K + 1
XNEW(K) = X(I)
IF (I .EQ. ND2) GO TO 140
GO TO 130

CONTINUE

NW = K

I = ND2 + 1
J = NC2
L = 1
LC = 1
KK(L) = NW
NN(LC) = NC2
ICR = ND1 - 1

J = J + 1
IF (J .GT. NT2) GO TO 160
CALL SUB (I, J, L, LC, KK, NN, ICR, NT1, ND2, NT2)
GO TO 150

CONTINUE

NAR = L
NAC = LC
NFIN = KK(NAR)
CALL CLS
WRITE (*, 55)
CALL CONNECT (KK, NN, NC2, NT2, ND2, NW)
DO 165 I = 1, NFIN
ZDUM = ZNEW(I)
CALL TORQ(ZDUM, TFAC)
ZNEW(I) = SHEAR * TFAC / PI

CONTINUE

ISOLATE THE STRESS-STRAIN DIAGRAM

ZMIN = ZNEW(1)
DO 190 I = 1, NFIN
IF (ZNEW(I) .LE. ZMIN) THEN
ZMIN = ZNEW(I)
XMIN = XNEW(I)
IMIN = I
ENDIF

CONTINUE

XMIN = ABS (XMIN)
I = 0
DO 200 J=IMIN,NFIN
 I=I+1
 ZNEW(I)=ZNEW(J)-ZMIN
 XNEW(I)=XNEW(J)-XMIN
200 CONTINUE
 NFIN=I
210 CONTINUE
 XG=XNEW(NFIN)-XNEW(1)
 ZG=ZNEW(NFIN)-ZNEW(1)
 CALL CLS
 CALL DRAW(XNEW,ZNEW,1,NFIN,6,XG,ZG)
 NL33=0
 NLP=0
 WRITE(*,220)
220 FORMAT(' BEGINING ADJUSTMENT ? (Y/N) ==> ',/)
 READ(*,'(A1)') CK
 IF(CK.EQ.'Y') NL33=1
 WRITE(*,222)
222 FORMAT(' INTERMEDIATE ADJUSTMENT ? (Y/N) ==> ',/)
 READ(*,'(A1)') CK
 IF(CK.EQ.,'Y') NLP=1
C
C BEGINNING ADJUSTMENT
C
 IF(NL33.EQ.1) THEN
 WRITE(*,230)
230 FORMAT(' ENTER BEGINING ADJ. LIMIT ')
 CALL ZLOCHV(NF)
 NL33=NF
 NDIV=NL33/20
 CALL SLOP(XNEW,ZNEW,NL33,INFN,NDIV,0.0001,NL33)
 XGT=XNEW(NL33)-XNEW(1)
 ZGT=ZNEW(NL33)-ZNEW(1)
 CALL CLS
 CALL DRAW(XNEW,ZNEW,1,NL33,3,XGT,ZGT)
 CALL RENK(NL33,INFN,N3)
 WRITE(*,55)
 XMIN=ABS(XNEW(N3))
 ZMIN=ZNEW(N3)
 I=0
 DO 250 J=N3,NFIN
 I=I+1
 ZNEW(I)=ZNEW(J)-ZMIN
 XNEW(I)=XNEW(J)-XMIN
250 CONTINUE
 NFIN=I
 XG=XNEW(NFIN)-XNEW(1)
 ZG=ZNEW(NFIN)-ZNEW(1)
 ENDIF
INTERMEDIATE ADJUSTMENT

IF(NL33.NE.0) THEN
 CALL CLS
 CALL DRAW(XNEW,ZNEW,1,NFIN,6,XG,ZG)
ENDIF

IF(NLP.EQ.1) THEN
 WRITE(*,252)
 FORMAT(' ENTER NO OF PAIRS OF ADJ. LIMITS ==> ',\)
 READ(*,'(12)') NLP
 K=0
 K=K+1
 CALL ZLOCHV(NF)
 NP(1,K)=NP
 CALL ZLOCHV(NF)
 NP(2,K)=NP
 NP1=NP(1,K)-10
 NP2=NP(2,K)+10
 NP3=NP(1,K)+1
 IF(NP1.LT.2) NP1=2
 IF(NP2.GT.NFIN) NP2=NFIN
 DO 257 I=NP1,NP2
 CALL LINE(IX(I-1),IZ(I-1),IX(I),IZ(I),6,-1)
 CONTINUE
257 CONTINUE
 DO 253 I=NP3,NP(2,K)
 CALL LINE(IX(I-1),IZ(I-1),IX(I),IZ(I),4,-1)
 CONTINUE
 IF(K.LT.NLP) GO TO 254
 WRITE(*,255)
 FORMAT(' RETRY ? (Y/N) ==> ',\)
 READ(*,'(A1)') CK
 IF(CK.EQ.'Y') GO TO 251
 WRITE(*,55)
 K=0
 NTEMP=0
 K=K+1
 IF(K.GT.NLP) GO TO 262
 NP(1,K)=NP(1,K)-NTEMP
 NP(2,K)=NP(2,K)-NTEMP
 NTEMP=NP(2,K)-NP(1,K)
 NFIN=NFIN-NTEMP
 XTEMP=XNEW(NP(2,K))-XNEW(NP(1,K))
 ZTEMP=ZNEW(NP(2,K))-ZNEW(NP(1,K))
 DO 258 I=1,NFIN
 IF(I.LT.NP(1,K)) THEN
 TEMPK=0.0
 TEMPZ=0.0
 J=I
 ELSE
 TEMPK=XTEMP
 TEMPZ=ZTEMP
 J=J+1
 ENDIF
 CONTINUE
 WRITE(*,55)
 K=0
 IF(K.GT.NLP) GO TO 262
 DO 253 I=NP(2,K),NP(1,K)
 CALL LINE(IX(I-1),IZ(I-1),IX(I),IZ(I),5,-1)
 CONTINUE
258 CONTINUE
 DO 253 I=NP3,NP(2,K)
 CALL LINE(IX(I-1),IZ(I-1),IX(I),IZ(I),3,-1)
 CONTINUE
253 CONTINUE
 IF(K.LT.NLP) GO TO 254
 WRITE(*,255)
 FORMAT(' RETRY ? (Y/N) ==> ',\)
 READ(*,'(A1)') CK
 IF(CK.EQ.'Y') GO TO 251
 WRITE(*,55)
END IF
XNEW(I) = XNEW(J) - TEMPX
ZNEW(I) = ZNEW(J) - TEMPZ
258 CONTINUE
GO TO 256
262 CALL CLS
XG = XNEW(NFIN) - XNEW(1)
ZG = ZNEW(NFIN) - ZNEW(1)
CALL DRAW(XNEW, ZNEW, 1, NFIN, 6, XG, ZG)
END IF
C END ADJUSTMENT
C WRITE(*, 259)
259 FORMAT (' END ADJUSTMENT ? (Y/N) ==> ', *)
READ(*, ' (A1)') CK
IF (CK.EQ. 'Y') THEN
WRITE(*, 260)
260 FORMAT (' ENTER END ADJUSTMENT LIMIT ', *)
CALL ZLOCHV(NF)
NFIN = NF
XG = XNEW(NFIN) - XNEW(1)
ZG = ZNEW(NFIN) - ZNEW(1)
CALL CLS
CALL DRAW(XNEW, ZNEW, 1, NFIN, 6, XG, ZG)
END IF
C DRAW CARTESIAN COORDINATES
IX(1) = 75
IZ(1) = 200.
IX(NFIN) = 75 + NINT (520 * XNEW(NFIN) / XG)
IZ(NFIN) = 200 - NINT (180 * ZNEW(NFIN) / ZG)
CALL LINE(IX(1), IZ(NFIN), IX(1), IZ(1), 3, -1)
CALL LINE(IX(1), IZ(1), IX(NFIN), IZ(1), 3, -1)
C FIND STRAIGHT LINE CONSTANTS BY LEAST SQUARES METHOD
C WRITE(*, 280)
280 FORMAT (' 1. LOCATE UPPER LIMIT FOR ENLARGEMENT ')
WRITE(*, 332)
332 FORMAT (' 2. LOCATE LOWER LIMIT FOR G2 ')
CALL ZLOCV(NF)
NL = NF
CALL ZLOCV(NF)
N2 = NF
291 CALL CLS
XG = XNEW(NL) - XNEW(1)
ZG = ZNEW(NL) - ZNEW(1)
CALL DRAW(XNEW, ZNEW, 1, NL, 4, XG, ZG)
WRITE(*, 292)
292 FORMAT (' ENTER LIMITS FOR REGRESSION ANALYSIS ')
CALL ZLOCHV(NF)
N11=NF
CALL ZLOCHV(NF)
N1=NF
WRITE(*,55)
N1=N1-N11+1
N2=N2-N11+1
NL=NL-N11+1
NS=N1
EPS=0.00001
I=0
XMIN=XNEW(N11)
ZMIN=ZNEW(N11)
DO 302 J=N11,NFIN
I=I+1
XNEW(I)=XNEW(J)-XMIN
ZNEW(I)=ZNEW(J)-ZMIN
302 CONTINUE
NFIN=I
I=0
310 I=I+1
IF(XNEW(I).LE.EPS) GO TO 310
IF((I-1).LT.N1) THEN
N1=N1-N1/3
IF(N1.LE.50) THEN
N1=NS
EPS=0.00001+EPS
IF(EPS.GT.0.0001) THEN
CALL CLS
CALL DRAW(XNEW,ZNEW,1,NL,4,XG,ZG)
DO 312 I=10,NL,10
CALL PSET(IX(I),IZ(I),2)
312 CONTINUE
WRITE(*,320)
320 FORMAT('EXCEEDED 10-2 % STRAIN,
&ENTER NEW LOWER LIMIT (DOTS ARE AT EVERY 10TH POINT) ==> ',
READ(*,'(15)') N1
WRITE(*,55)
GO TO 330
ENDIF
ENDIF
I=0
GO TO 310
ENDIF
330 CONTINUE
EPS=XNEW(N1)
CALL FIT(XNEW,ZNEW,1,N1,A1,B1,RS1,SIG1)
CALL FIT(XNEW,ZNEW,N2,NFIN,A2,B2,RS2,SIG2)
XG=XNEW(NFIN)-XNEW(1)
ZG=ZNEW(NFIN)-ZNEW(1)
C C PREPARE FOR PLOTTING
C
NSET=NFIN-N1
340 NSET=NSET-1
N4=N1+NSET
P12=A1+B1*XNEW(N4)
IP12=200-NINT(180*P12/ZG)
IF(IP12.LE.0) GO TO 340
N5=N4/5
P11=A1+B1*XNEW(1)
IP11=200-NINT(180*P11/ZG)
P21=A2+B2*XNEW(N5)
IP21=200-NINT(180*P21/ZG)
P22=A2+B2*XNEW(NFIN)
IP22=200-NINT(180*P22/ZG)
C
CALL CLS
CALL DRAW(XNEW,ZNEW,1,NFIN,1,XG,ZG)
CALL LINE(IX(1),IZ(NFIN),IX(1),IZ(1),3,-1)
CALL LINE(IX(1),IZ(1),IX(NFIN),IZ(1),3,-1)
CALL LINE(IX(1),IP11,IX(N4),IP12,2,-1)
CALL LINE(IX(N5),IP21,IX(NFIN),IP22,2,-1)
C
WRITE(*,350) B1,RS1,100*SIG1
350 FORMAT(' G1 ==> ',F9.3,'/'RS1 ==> ',F6.4,'/SIG1 ==> ','
&F6.3,'%')
WRITE(*,360) B2,RS2,100*SIG2
360 FORMAT(' G2 ==> ',F9.3,'/'RS2 ==> ',F6.4,'/SIG2 ==> ','
&F6.3,'%')
WRITE(*,370) EPS*100
370 FORMAT(' EPS ==> ',G15.8,'%')
WRITE(*,380)
380 FORMAT(' RETRY ? (Y/N) ==> ',\)
READ(*,'(A1)') CK
IF(CK.EQ.'Y') THEN
CALL CLS
WRITE(*,272)
272 FORMAT(' FURTHER ADJUSTMENT (Y/N) ==> ',\)
READ(*,'(A1)') CK
IF(CK.EQ.'Y') GO TO 210
IF(CK.NE.'Y') GO TO 291
ENDIF
C
FIGURE THE INTERSECTION POINT AND INITIAL STRAIN RESOLUTION
C
XINT=(A1-A2)/(B2-B1)
ZINT=A1+B1*XINT
ETOT=0.0
DO 410 I=1,10
EDIF=ABS(XNEW(I+1)-XNEW(I))
ETOT=ETOT+EDIF
410 CONTINUE
XMNIN=ETOT/10
WRITE(*,400) XINT*X100,ZINT,XMIN*X100
400 FORMAT(' XINT ==> ',G15.8,'%',' ZINT ==> ',F8.4,'/','
& XMIN ==> ',G15.8,'%')
WRITE(*,420) XNEW(NFIN)*100,ZNEW(NFIN)

420 FORMAT(' STR RANGE ==> ',G15.8,' & STR RANGE ==> ',F8.4,' KPA')

OPEN (9,FILE=DATOUT,STATUS='NEW',FORM='BINARY')
WRITE (9) NFIN,A1,B1,A2,B2
WRITE (9) EPS,XINT,ZINT
WRITE (9) RS1,SIG1,RS2,SIG2
WRITE (9) (K,XNEW(K),ZNEW(K),K=1,WIN)
CLOSE (9,STATUS='KEEP')
STOP
END

C **
C CC CALCULATE SLOPE CHANGES ON SAMPLE DATA
CC C
SUBROUTINE SLOP(XX,ZZ,NT,INF,M,EPS,NL3)
DIMENSION XX(1),ZZ(1)
INTEGER*2 M,INF, I, K, L, NT, NL3
DIMENSION SLOPE(3), INF(50)
K=0
I=1
SLOPE(1) = (XX(M)-XX(1))/(ZZ(M)-ZZ(1))
300 I=I+1
L=M*I
IF (L.GE.(NT-M)) GO TO 310
IF (L.GT.NL3) EPS=10*EPS
SLOPE(2) = (XX(L)-XX(L-M))/(ZZ(L)-ZZ(L-M))
SSD=ABS(SLOPE(2)-SLOPE(1))
IF (SSD.GT.EPS) THEN
K=K+1
INF(K)=L-M
ENDIF
SLOPE(1) = SLOPE(2)
GO TO 300
310 CONTINUE
SLOPE(2) = (XX(L)-XX(L-M))/(ZZ(L)-ZZ(L-M))
SSD=ABS(SLOPE(2)-SLOPE(1))
IF (SSD.GT.EPS) THEN
K=K+1
INF(K)=L-M
ENDIF
SLOPE(1) = SLOPE(2)
SLOPE(2) = (XX(NT)-XX(L))/(ZZ(NT)-ZZ(L))
SSD=ABS(SLOPE(2)-SLOPE(1))
IF (SSD.GT.EPS) THEN
K=K+1
INF(K)=L
ENDIF
RETURN
END
SUBROUTINE DRAW(XX,ZZ,NB,NE,ICOL,XG,ZG)
DIMENSION XX(1),ZZ(1)
COMMON/GRAPH/IX(3500),IZ(3500)
INTEGER*2 NB,NE,ICOL,IX,IZ
IX(NB)=75+NINT(520*XX(NB)/XG)
IZ(NB)=200-NINT(180*ZZ(NB)/ZG)
NE=NB+1
DO 100 I=NB+1,NE
IX(I)=75+NINT(520*XX(I)/XG)
IZ(I)=200-NINT(180*ZZ(I)/ZG)
CALL LINE(IX(I-1),IZ(I-1),IX(I),IZ(I),ICOL,-1)
100 CONTINUE
RETURN
END

C
C DRAW CURVE WITH SLOPE CHANGE AREAS IN DIFFERENT COLOR
C
SUBROUTINE RENK(NT,INF,N1)
COMMON/GRAPH/IX(3500),IZ(3500)
INTEGER*2 NT,INF(50),N1,IX,IZ
INTEGER*2 I,L,IFLAG,ICOL
CHARACTER*1 CK
I=1
ICOL=0
IFLAG=0
L=0
380 L=L+1
ICOL=ICOL+1
IF(ICOL.GT.7) THEN
IFLAG=IFLAG+1
ICOL=L-IFLAG*7
ENDIF
390 I=I+1
CALL LINE(IX(I-1),IZ(I-1),IX(I),IZ(I),ICOL,-1)
IF(I.EQ.INF(L)) THEN
CALL COLOR(ICOL,-1)
WRITE(*,60) INF(L)
READ(*,'(A1)') CK
GO TO 380
ENDIF
IF(I.EQ.NT) GO TO 400
GO TO 390
400 CONTINUE
CALL COLOR(ICOL,-1)
WRITE(*,60) NT
READ(*,'(A1)') CK
CALL COLOR(7,-1)
WRITE(*,70)
70 FORMAT(' ENTER LOWER CUT-OFF POINT == ',A1)
READ(*,40) N1
40 FORMAT(I5)
DO 45 I=1,N1
45 CONTINUE
INF(I) = 0
CONTINUE
RETURN
END

C
C FIND THE BEGINING AND END POINTS FOR INITIAL CORRESPONDENCE

SUBROUTINE FINDER(ZZ,ZDIR,NST,NB,NE,NFIN)
DIMENSION ZZ(1)
INTEGER NB,NE,NFIN,I,NST
I = NST
IF(ZZ(I).GT.ZDIR) GO TO 100
IF(ZZ(I).LT.ZDIR) GO TO 200
IF(ZZ(I).EQ.ZDIR) GO TO 500
100 I = I - 1
IF(I.EQ.NB) GO TO 500
GO TO 500
200 I = I + 1
IF(I.EQ.NE) GO TO 500
500 CONTINUE
NFIN = I
RETURN
END

C
C FIGURE OUT THE CORRESPONDING POINTS ON DATA CURVE TO
C SUBTRACT THE CAL CURVE FROM

SUBROUTINE SUB(I, J, L, LC, KK, NN, IC, KK, NT1, ND2, NT2)
COMMON/POS/X(3500), Z(3500)
COMMON/CAL/XCAL(1500), ZCAL(1500)
COMMON/New/XNEW(3000), ZNEW(3000)
DIMENSION KK(1), NN(1)
INTEGER I, J, L, LC, JJ, KK, NN, IC, IC+1, IC, NT2
XFIN = X(I) - XCAL(J)
IF(XFIN.EQ.0.0) GO TO 300
LL = NINT(XFIN/ABS(XFIN))
IF(LL.LT.0.AND.J.EQ.NT2.AND.I.EQ.NT1) THEN
ZDIF = Z(NT1) - Z(NT1-1)
XDIF = X(NT1) - X(NT1-1)
ZINC = ZDIF/XDIF
NT1 = NT1 + 1
X(NT1) = XCAL(NT2)
XDIF = X(NT1) - X(NT1-1)
Z(NT1) = Z(NT1-1) + (XDIF*ZINC)
L = L + 1
LC = LC + 1
NN(LC) = NT2
KK(L) = NT1 - IC
XNEW(KK(L)) = X(NT1)
ZNEW(KK(L)) = Z(NT1) - ZCAL(NT2)
GO TO 400
ENDIF
100 I=I-LL
 IF(I.LE.ND2) GO TO 400
 XFY=X(I)-XCAL(J)
 IF(XFY.EQ.0.0) THEN
 JJ=0
 ELSE
 JJ=NINT(XFY/ABS(XFY))
 ENDIF
 IF(JJ.EQ.LL) GO TO 100
 IF(JJ.GT.0) NM=I-1
 IF(JJ.LE.0) NM=I
 QDIF=XCAL(J)-X(NM)
 PDIF=X(NM+1)-XCAL(J)
 IF(PDIF.GT.QDIF) THEN
 IF((NM-ICR).LE.KK(L)) GO TO 400
 ELSE
 IF((NM+1)-ICR).LE.KK(L)) GO TO 400
 ENDIF
 L=L+1
 LC=LC+1
 NN(LC)=J
 ZDIF=Z(NM+1)-Z(NM)
 XDIF=X(NM+1)-X(NM)
 ZINC=QDIF*ZDIF/XDIF
 ZINT=Z(NM)+ZINC
 IF(PDIF.GT.QDIF) THEN
 KK(L)=(NM)-ICR
 XNEW(KK(L))=X(NM)+QDIF
 X(NM)=X(NM)+QDIF
 Z(NM)=ZINT
 ELSE
 KK(L)=(NM+1)-ICR
 XNEW(KK(L))=X(NM+1)-PDIF
 X(NM+1)=X(NM+1)-PDIF
 Z(NM+1)=ZINT
 ENDIF
300 IF(XFIN.EQ.0.0) THEN
 IF((I-ICR).LE.KK(L)) GO TO 400
 L=L+1
 LC=LC+1
 NN(LC)=J
 KK(L)=I-ICR
 XNEW(KK(L))=X(I)
 ZINT=Z(I)
 ENDIF
 ZNEW(KK(L))=ZINT-ZCAL(J)
400 CONTINUE
RETURN
END
ADJUST THE LENGTH OF THE CALIBRATION CURVE

SUBROUTINE ADJUST(NT1,NT2)
COMMON/POS/X(3500),Z(3500)
COMMON/CAL/XCAL(1500),ZCAL(1500)
INTEGER*2 I,NN,NT2,NT1
XCOR=XCAL(NT2)-X(NT1)
IF(XCOR.EQ.0.0) GO TO 300
COR=ABS(XCOR)
XP=XCAL(NT2)
I=NT2
100 I=I-1
XTEMP=ABS(XP-XCAL(I))
IF(COR.GT.XTEMP) GO TO 100
XINC=XTEMP-COR
ZINC=(ZCAL(I+1)-ZCAL(I))/(XCAL(I+1)-XCAL(I))
ZINT=ZINC*XINC
ZCOR=ZCAL(I)+ZINT
IF(XCOR.GT.0.0) THEN
NT2=I+1
XCAL(NT2)=XCAL(I)+XINC
ZCAL(NT2)=ZCAL(I)+ZINT
ENDIF
IF(XCOR.LT.0.0) THEN
NN=NT2-I
ZINC=(ZCAL(NT2)-ZCOR)/NN
XINC=COR/NN
I=0
200 I=I+1
IF(I.GT.NN) GO TO 250
XCAL(NT2+I)=XCAL(NT2)+I*XINC
ZCAL(NT2+I)=ZCAL(NT2)+I*ZINC
GO TO 200
250 NT2=NT2+NN
ENDIF
300 CONTINUE
RETURN
END

FIGURE OUT THE POSITION OF REMAINING POINTS ON SAMPLE CURVE
BY EXTRAPOLATION BETWEEN KK(L) POINTS

SUBROUTINE CONNECT(KK,NN,NC2,NT2,ND2,NW)
COMMON/POS/X(3500),Z(3500)
COMMON/CAL/XCAL(1500),ZCAL(1500)
COMMON/NEW/XNEW(3000),ZNEW(3000)
INTEGER*2 KK,NC2,NT2,J,K,L,N,ND2,NW,LC,NN
DIMENSION KK(L),NN(N)
L=0
LC=0
J=ND2
K=NW
500 LC=LC+1
 IF(NN(LC).EQ.NT) GO TO 498
 L=L+1
 ZDIF=ZCAL(NN(LC+1))-ZCAL(NN(LC))
 NUM=KK(L+1)-KK(L)
 IF(NUM.EQ.1) GO TO 495
 IF(NUM.LE.0) THEN
 GO TO 500
 ENDIF
 ZINC=ZDIF/NUM
 N=1
 490 J=J+1
 K=K+1
 XNEW(K)=X(J)
 ZNEW(K)=Z(J)-(ZCAL(NN(LC))-N*ZINC)
 IF(N.EQ.NUM) GO TO 500
 N=N+1
 GO TO 490
 495 CONTINUE
 K=K+1
 J=J+1
 XNEW(K)=X(J)
 ZNEW(K)=Z(J)-ZCAL(NN(LC+1))
 GO TO 500
 498 CONTINUE
 RETURN
END

C
C LEAST SQUARES FOR LINEAR FIT
C
SUBROUTINE FIT(XX,ZZ,NB,NE,A,B,RS,SIG)
DIMENSION XX(1), ZZ(1)
INTEGER NB, NE, I, NT

A IS THE INTERCEPT, B IS THE SLOPE OF A STRAIGHT LINE FIT

XS=0.0
ZS=0.0
XXS=0.0
ZZS=0.0
MT=NE-NB+1
DO 100 I=NB, NE
 XX=XX+XX(I)
 ZZ=ZZ+ZZ(I)
 XZS=XZS+XX(I)*ZZ(I)
 XSS=XSS+XX(I)*XX(I)
 ZZS=ZZS+ZZ(I)*ZZ(I)
100 CONTINUE
A=((XZS*XS)-(ZS*XXS))/((XS*XS)-(NT*XXS))
B=((ZZS*XS)-(NT*ZZS))/((XS*XS)-(NT*XXS))
SST0=ZZS-(ZS*ZS)/NT
SSE=0.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DO 200 I=NB,NE
ZHAT=A+B*XX(I)
ZDIF=Z(I)-ZHAT
SSE=SSE+(ZDIF*ZDIF)
200 CONTINUE
RS=1-(SSE/SSTO)
SIG=SQRT(SSE/(NT-2))
RETURN
END

C
C FIND SPRING CONSTANT FOR STRESS
C
SUBROUTINE TORQ(ZDUM,TFAC)
COMMON/AUX1/ANG(20),TOR(20),INFN(200),NP(3,10)
INTEGER*2 J,INFN,NP
J=0
10 J=J+1
IF(ZDUM.GT.ANG(J)) GO TO 10
IF(J.EQ.1) I=2
ADIF=ANG(J)-ANG(J-1)
TDIF=TOR(J)-TOR(J-1)
TDUM=(ZDUM-ANG(J-1))*TDIF/ADIF
TFAC=TOR(J-1)+TDUM
RETURN
END

C
C SHIFT DATA HORIZONTALLY
C
SUBROUTINE HSHIFT(NX,IASC,NT)
COMMON/GRAPH/IX(3500),IZ(3500)
INTEGER*2 IX,IZ,IASC,NX,MX,MY,I,NDIF,NT,NDUM
CALL ZLCOOO(MX,MY,NDUM)
NDIF=IABS(NX-MX)
IF(IASC.EQ.76) NDIF=-NDIF
DO 100 I=1,NT
IX(I)=IX(I)+NDIF
100 CONTINUE
RETURN
END

C
C SHIFT DATA VERTICALLY
C
SUBROUTINE VSHIFT(NY,IASC,NT)
COMMON/GRAPH/IX(3500),IZ(3500)
INTEGER*2 IX,IZ,IASC,NY,MX,MY,I,NDIF,NT,NDUM
CALL ZLCOOO(MX,MY,NDUM)
NDIF=IABS(NY-MY)
IF(IASC.EQ.85) NDIF=-NDIF
DO 100 I=1,NT
IZ(I)=IZ(I)+NDIF
100 CONTINUE
SUBROUTINE ZLOCHV(NF)
INTEGER*2 NX,NY,NF,I,IZ,IX,IASC
COMMON/GRAPH/IX(3500),IZ(3500)
CALL ZLOCOO(NX,NY,IASC)
I=0
240 I=I+1
IF(IZ(I).GE.NY) GO TO 240
IF(IX(I).LE.NX) GO TO 240
NF=I-1
RETURN
END

SUBROUTINE ZLOCV(NF)
INTEGER*2 NX,NY,NF,I,IZ,IX,IASC
COMMON/GRAPH/IX(3500),IZ(3500)
CALL ZLOCOO(NX,NY,IASC)
I=0
240 I=I+1
IF(IZ(I).GE.NY) GO TO 240
NF=I-1
RETURN
END
RESON.FOR

THIS IS A FORTRAN PROGRAM TO REDUCE AND PLOT RESONANT COLUMN DATA

By SIBEL PAMUKCU

Latest revision: February 1986

COMMON/OUT/G(50),STA(50),DAMP(50),STAD(50),P(50)

COMMON/DAT/T(50),TD(50),Al(50),AID(50),AMP(50,50)

COMMON/GRAPH/IX(1000),IY(1000),ISTA(50),IG(50),ID(50)

COMMON/FITT/XL(50),YL(50),X(1000),Y(1000)

REAL LEN,JO,JL,JS

INTEGER*2 I,J,JLAST(50),NDAMP,NLAST,KFLAG

INTEGER*2 MIS,NML1,IX,IY,ISTA,IG,ID,N

CHARACTER*10 DATIN,DATOUT

COMMON/GRAPH/IX(1000),IY(1000),ISTA,IG,ID,N

CHARACTER*10 DATIN,DATOUT

DATA PI,GO,JO,ACF/3.141592,980.66,28.44,28./

GO IS ACCELERATION OF GRAVITY IN CM/SEC2

JO IS POLAR MOMENT OF INERTIA OF THE DRIVING END IN CM-SEC2

(FOR 3.57 CM DIAM SPECIMEN, CHANGE JO TO 29.97 FOR 7.11 CM DIAM)

ACF IS ACCELERATION CALIBRATION FACTOR IN PK-MV/PK-G

READ IN USER SUPPLIED DATA

CALL CLS

WRITE(*,10)

10 FORMAT(' ENTER INPUT DATA FILE NAME ==> ',\)

READ(*,'(A10)') DATIN

WRITE(*,15)

15 FORMAT(' ENTER OUTPUT DATA FILE NAME ==> ',\)

READ(*,'(A10)') DATOUT

OPEN(9,FILE=DATIN,STATUS='OLD')

READ(9,25) DATIN

25 FORMAT(A10)

READ(9,20) NLAST,DIAM,LEN,WM,WC,DEN

20 FORMAT(15,5F10.5)

READ(9,22) NDAMP

22 FORMAT(15)

READ(9,30) (I,T(I),Al(I),I=1,NLAST)

30 FORMAT(15,2F10.5)

IF(NDAMP.EQ.0) GO TO 70

I=0

50 I=I+1
READ (9,55) I,TD(I),A1D(I),JLAST(I)
READ (9,65) (AMP(I,J),J=1,JLAST(I))
IF(I.EQ.NDAMP) GO TO 70
GO TO 50
70 CONTINUE
55 FORMAT (I5,2F10.5,I5)
65 FORMAT (5F5.2)
CLOSE (9, STATUS='KEEP')
C
WC=WC/100
VOL=PI*DIAM*DIAM*LEN/4
J1= (W*DIAM*DIAM)/(8.*GO)
JS=J1/JO
B=SQRT(JS)
I=0
80 I=I+1
A=JS-B*TAN(B)
B=B+A
IF (ABS(A).LT.0.000001) GO TO 90
GO TO 80
90 CONTINUE
C2=DEN*((2*PI*LEN/B)**2)
S2=3.68714*(DIAM/LEN)/ACF
C
DO 100 I=1,NLAST
F(I)=1000/T(I)
IF (F(I).LE.5.0) A1(I)=A1(I)*2.828
G(I)=C2*F(I)*F(I)/98066.
STA(I)=S2*A1(I)/(F(I)*F(I))
100 CONTINUE
GMIN=G(NLAST)
STM=STA(NLAST)
STAM=STA(1)
DO 101 I=1,NLAST
IF (G(I).LT.GMIN) GMIN=G(I)
IF (STA(I).GT.STM) STM=STA(I)
IF (STA(I).LT.STAM) STAM=STA(I)
101 CONTINUE
IF (NDAMP.EQ.0) GO TO 118
C
DO 110 I=1,NDAMP
FD=1000/TD(I)
STAD(I)=S2*A1D(I)/(FD*FD)
AMPO=AMP(I,1)
DAMP(I)=0.0
MIS=0
DO 120 J=2,JLAST(I)
IF (AMP(I,J).EQ.0.0) THEN
 MIS=MIS+1
 GO TO 115
ENDIF
DUM=(ALOG(AMPO/AMP(I,J)))/(2*PI*(J-1))
DAMP(I)=DAMP(I)+DUM
115 CONTINUE
118 CONTINUE
CONTINUE
DAMP(I) = (DAMP(I) / (JLAST(I) - (1 + MIS))) * 100
CONTINUE
CONTINUE
CONTINUE
CURVE FITTING AND ESTIMATION OF GMAX

DO 150 I = 2, NLAST
 Y1(I-1) = (STA(I) - STA(1)) / (G(I) - G(1))
 XI(I-1) = STA(I)
150 CONTINUE

NLM1 = NLAST - 1
CALL FIT(X1, Y1, 1, NLM1, AAL, BB1, RS1, SIG1)
AF1 = (AAL * AAL) / (AAL + BB1 * STA(1))
BF1 = (AAL * BB1) / (AAL + BB1 * STA(1))
GMAX1 = G(1) - (STA(1) / (AF1 + BF1 * STA(1)))
GG = GMAX1
DO 152 I = 1, NLAST
 IF (G(I) .GT. GG) GG = G(I)
152 CONTINUE

XINC = 0.000001
I = 1
X(1) = 0.000001
IF (STAM .LT. X(1)) THEN
 X(1) = X(1) + XINC
 XINC = X(1)
 IF (STAM .LT. X(1)) GO TO 155
ENDIF
KFLAG = 0
Y(1) = GMAX1 + (X(1) / (AF1 + BF1 * X(1)))
I = I + 1
X(I) = X(I - 1) + XINC
Y(I) = GMAX1 + (X(I) / (AF1 + BF1 * X(I)))
IF (Y(I) .LT. 0.0) THEN
 I = I - 1
 KFLAG = 1
 GO TO 162
ENDIF
IF (X(I) .EQ. (10. * XINC)) XINC = XINC * 10.
IF (Y(I) .LE. (0.85 * GMIN) .OR. X(I) .GE. (2.0 * STM)) GO TO 162
GO TO 160
162 CONTINUE
N = I
DO 164 I = 1, N
 X(I) = ALOG10(X(I))
164 CONTINUE
XDIF = X(N) - X(1)
YDIF = Y(1) - Y(N)
IF (KFLAG .EQ. 1) THEN
 XDIF = ALOG10(STM) - ALOG10(STAM) + 0.5
 YDIF = GG - 0.85 * GMIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ENDIF
CALL CLS
CALL LINE(50,215,620,215,3,-1)
CALL LINE(50,30,50,215,3,-1)
CALL DRAW(X,Y,1,N,1,XDIF,YDIF)
DO 170 I=1,NLAST
DUM=ALOG10(STA(I))
ISTA(I)=50+NINT(550*(DUM-X(1))/XDIF)
IG(I)=40+NINT(175*(Y(1)-G(I))/YDIF)
CALL PSET(ISTA(I),IG(I),2)
CALL CIRCLE(ISTA(I),IG(I),5,4,-1,-1,-1,-1,-1)
170 CONTINUE
XP=X(1)
I=0
172 I=I+1
DUM=ABS(X(I)-XP)
IF(DUM.LE.0.000001.OR.X(I).EQ.XP) THEN
CALL LINE(IX(I),208,IX(I),212,4,-1)
XP=XP+1.
ENDIF
IF(I.EQ.N) GO TO 173
GO TO 172
173 CONTINUE
XDUM1=100*(10**X(1))
XDUM2=100*(10**X(N))
WRITE(*,174) GMAX1,Y(N)
174 FORMAT('GMAX ==> ',F10.3,2X,'GLAST ==> ',F10.3)
WRITE(*,175) XDUM1,XDUM2
175 FORMAT('ST1 ==> ',GL15.7,' & ','STN ==> ',GL15.7,' & ')
C
READ(*,'(A1)') CK
OPEN(9,FILE=DATOUT,STATUS='NEW')
WRITE(9,122) DATOUT
122 FORMAT(A10)
WRITE(9,124)
WRITE(9,130) (I,STA(I),G(I),I=1,NLAST)
130 FORMAT(I5,G15.7,F15.3)
WRITE(9,140)
IF(NDAMP.EQ.0) GO TO 136
WRITE(9,132)
WRITE(9,133) (I,STAD(I),DAMP(I),I=1,NDAMP)
136 CONTINUE
WRITE(9,135) GMAX1,RS1,100*SIG1
135 FORMAT(/,'GMAX ==> ',F10.3,' RS ==> ',F10.6,/,
& 'DEVIATION ==> ',GL15.7,' & ')
124 FORMAT(/,' STRAIN G (KPA) ')
132 FORMAT(/,' STRAIN',4X,' DAMPING RATIO %')
133 FORMAT(I5,G15.8,4X,G15.8)
140 FORMAT(/, '**')
STOP
END
SUBROUTINE FIT(XX, ZZ, NE, A, B, RS, SIG)
DIMENSION XX(1), ZZ(1)
INTEGER*2 NE, NT, I
XS=0.0
ZS=0.0
XZS=0.0
XXS=0.0
ZZS=0.0
NT=NE-NB+1
DO 100 I=NB, NE
XS=XS+XX(I)
ZS=ZS+ZZ(I)
XZS=XZS+(XX(I)*ZZ(I))
ZZS=ZZS+(ZZ(I)*ZZ(I))
XXS=XXS+(XX(I)*XX(I))
100 CONTINUE
A=((XZS*XS)-(ZS*XXS))/((XS*XS)-(NT*XXS))
B=((ZS*XS)-(NT*XZS))/((XS*XS)-(NT*XXS))
SSTO=ZZS-(ZS*ZS)/NT
SSE=0.0
DO 200 I=NB, NE
ZHAT=A+B*XX(I)
ZDIF=ZZ(I)-ZHAT
SSE=SSE+(ZDIF*ZDIF)
200 CONTINUE
RS=1.-(SSE/SSTO)
SIG=SQRT(SSE/(NT-2))
RETURN
END

SUBROUTINE DRAW(XX, ZZ, IB, NE, XG, ZG)
DIMENSION XX(1), ZZ(1)
COMMON/GRAPH/IX(1000), IY(1000), Ista(50), IG(50), ID(50)
INTEGER*2 NB, NE, ICOL, NBPL, IX, IY, I, Ista, IG, ID
NBPL=NB+1
DO 100 I=NB, NE
IX(I)=50+NINT(550*(XX(I)-XX(1))/XG)
IY(I)=40+NINT(175*(ZZ(I)-ZZ(1))/ZG)
100 CONTINUE
DO 200 I=NBPL, NE
CALL LINE(IX(I-1), IY(I-1), IX(I), IY(I), ICOL, -1)
200 CONTINUE
RETURN
END
APPENDIX C

EXPERIMENTAL CURVES

CONSOLIDATION DATA AND FITTED MODEL

Cv DATA

TYPICAL PORE WATER PRESSURE DISSIPATION CURVES

TYPICAL VOLUME CHANGE CURVES

MOTOR SPEED VERSUS ANGULAR ROTATION VARIATION

LOAD–SPRING CALIBRATION CURVES
VARIATION OF CONSOLIDATION COEFFICIENT

LFS METHOD and COMPRESSION DATA

CV (cm²/min)

PRESSURE: kN/cm²

LFS N = 10

Compression Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
VITA

Date of Birth : February 10, 1956 Artvin, Turkey

1974 - 1978 : BS Civil Engineering
Bogazici University, Istanbul, Turkey

1979 - 1981 : MS Civil Engineering (Geotechnical)
Louisiana State University, Baton Rouge, LA

The author worked as a Graduate Research and Teaching Assistant in the Civil Engineering Department of Louisiana State University during 1979 - 1986.
Candidate: Sibel Pamukcu

Major Field: Civil Engineering (Geotechnical)

Title of Dissertation: Low Strain Shear Measurements of Soft Sediments Using Triaxial vane Device

Approved:

[Signature]
Major Professor and Chairman

Date of Examination: April 25, 1986