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 In addition, the development of minor necrotic and chlorotic lesions on soybean leaves 

inoculated with mutants suggested that Avr4 mutants may produce small amount of cercosporin 

during infection of soybean leaves. To verify this, cercosporin was extracted from detached 

soybean leaves inoculated with C. cf. flagellaris wild type and mutants and analyzed through 

HPLC. Interestingly, no cercosporin was detected in leaves inoculated with ∆avr4 mutants. 

 
 

Figure 3.11. Fungal growth ratings and quantitative real-time PCR analysis showing 

accumulation of C. cf. flagellaris WT and ∆avr4 mutants in soybean leaves. Detached soybean 

leaves were inoculated with mycelia plugs of WT or ∆avr4 mutants and fungal growth was 

determined 14 dpi. Fungal growth was assessed based on the 1 to 5 rating scale (1= minimum 

and 5= maximum growth) and DNA concentrations of the fungus was used to determine fungal 

growth in soybean leaves through real-time PCR. Data are the mean and standard errors of three 

different experiments with three biological replicates (8 leaves) within each fungal isolate. 

Asterisks (**) indicate significant fungal growth difference between the wild type and the 

mutants (P < 0.05). 
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Cercosporin accumulation in soybean leaves inoculated with wild type fungus was 3.9 µg/g of 

leaf tissue.  

 

 

 
 

Figure 3.12. Disease severity scale ratings of detached soybean leaves inoculated with mycelia 

plugs of C. cf. flagellaris WT or ∆avr4 mutants. Disease severity was determined based on the 1 

to 5 rating scale (1= less and 5= more severe, top right) at 14 dpi. Data are the mean and 

standard errors of three different experiments with three biological replicates (8 leaves) within 

each fungal isolate. Asterisks (**) indicate significant disease severity difference between the 

wild type and the mutants (P < 0.05). Symptoms on soybean leaf (bottom right) inoculated with 

agar plugs (without mycelia) from C. cf. flagellaris WT and ∆avr4 mutants PDA plates were 

assessed at 4 dpi. 
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 3.3.5 Chitinase reduced the growth of ∆avr4 mutants and chitinolytic activity is 

inhibited by cercosporin in vitro 

 In order to better understand the function of Avr4, which has been previously reported to 

act as a chitin binding protein to protect the fungal cell wall from degradation by plant chitinases 

(van den Burg et al., 2006), we also examined the effect of chitinases on the growth of Avr4 

disruption mutants compared to the wild type fungus. The fungal growth was reduced in the 

mutants when growing next to wells containing 1 unit of chitinase on CM agar plates (Figure 

3.13 left). Such suppression of growth by chitinase was not observed in the wild type (Figure 

3.13 right), demonstrating that Avr4 does provide the fungus with some level of protection 

against chitinase.  

 In addition, the presence of chitinase stimulated production of some dark pigment under 

the mycelia next to the wells containing the enzyme by the ∆avr4 mutants (Figure 3.13 bottom 

left). Based on the above observation of increased pigmentation in mycelium near chitinase and 

considering that the pigment produced could be cercosporin, a cup plate assay was also 

performed to determine whether cercosporin has any direct effective on chitinolytic activities.  A 

19% and 30% reduction in chitinase activity was observed after 2 and 3 days when the wells 

contained 0.25 U of chitinase, respectively (Figure 3.14).  
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 A slightly less reduction in chitinolytic activity (12% and 16%, respectively) was also 

observed after 2 and 3 days when 0.5 U of chitinase was used. The chitinase lost its activity after 

3 days in the presence of 15 µM of cercosporin whereas the chitinase remained active in the 

control even after 5 days (Figure 3.14 right). The difference among the agarose plates with and 

without cercosporin became very clear after 5 days, when 60% and 70% enzyme activity 

reduction were observed using 0.25 U and 0.5 U of chitinase, respectively (Figure 3.14 right). 

 

Figure 3.13. Growth of C. cf. flagellaris wild type and ∆Avr4 mutant in the 

presence of chitinase. One unit of chitinase dissolved in 30 µl of 0.1M 

phosphate buffer was pipetted into wells in 2 weeks old CM plates inoculated 

with C. cf. flagellaris wild type or ∆avr4 mutants. Wells 1 and 2, from mutant 

plate, and wells 5 and 6, from wild type plate, were filled with 0.1M 

phosphate buffer containing 1 unit of chitinase. Wells 3, 4, and 7, were filled 

with 0.1M phosphate buffer only. Plates were sealed and kept at 25 °C. Fungal 

growth was visually assessed two days later. 
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3.4. Discussion 

The interest in studying this particular effector was raised from the study by 

Stergiopoulos et al. (2010), which showed the presence of homologs of Avr4 in different species 

of the Dothideomycetes including Cercospora spp, indicating its possible function as a virulence 

factor on distantly related host plants. Silencing of this gene in C. fulvum resulted in reduction of 

disease symptoms and fungal growth on tomato leaves (van Esse et al., 2007). Avr4 was found to 

be a chitin binding protein (van den Burg et al., 2006) and the presence of Avr4 in the apoplast 

of Arabidopsis and tomato plants has also been shown to enhance the susceptibility of these 

plants to several fungal pathogens (van Esse et al., 2007).    

 

Figure 3.14. Inhibition of chitinase activity by cercosporin. Agarose was dissolved (1.6% 

[w/v]) in 0.05M phosphate buffer and 20 ml was used to prepare plates containing 0.0165 

g of glycol chitin and 30 µl of cercosporin (10 mM). Plates containing no cercosporin were 

used as controls. A cork borer was used to cut 4-mm-diameter wells in the gel which were 

filled with 10 µL of 0.05M phosphate buffer only or buffer containing 0.25 or 0.5 unit of 

chitinase enzyme. Plates were sealed with wax film and incubated at 25ºC. Chitin 

hydrolysis, visualized as clearing zones around the wells, was assessed after 48, 72, and 

120 hours. Area of clear zones was calculated using Progenesis Software. 
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In our study, Avr4 gene was found present in all 150 isolates of C. cf. flagellaris 

collected from several locations throughout Louisiana (data not shown). It is possible that 

Cercospora species conserve AVR4 to target a diverse host range (Crous and Braun, 2003; 

Groenewald et al., 2013). Certainly, AVR4 as a chitin binding protein can be very useful in 

assisting the fungus to enter and colonize different host plants that use chitinases as a defense 

mechanism to combat fungal invasion. Considering all the information described above, we 

hypothesized the presence of this effector in C. cf. flagellaris plays an important role in the 

virulence of this pathogen on soybean. 

In the present study, the 1.6 kb fragment cloned from C. cf. flagellaris was identified as 

Avr4 based on its nucleotide and deduced amino acid sequence homologies between its coding 

region and those sequences of Avr4 from other Dothideomycetes fungi (Cercospora beticola, C. 

nicotianae, C. apii, C. zeina, Mycosphaerella fijiensis, and Cladosporium fulvum). A C. cf. 

flagellaris isolate (MRL 6020 2B), well known for producing cercosporin in vitro and in planta, 

was used to create Avr4 disruption mutants for elucidating the role of AVR4 in C. cf. flagellaris 

fitness and virulence. The first noticeable change in phenotype of the ∆avr4 transformants was 

the reduced production of the dark purple pigmentation on PDA and CM, a characteristic of 

cercosporin.  

It is well known that cercosporin is a virulence factor in C. cf. flagellaris, as mutants 

deficient in cercosporin production are compromised in virulence when inoculated into soybean 

plants (Upchurch et al., 1991). Moreover, the reduced virulence of several Cercospora toxin-

deficient mutants indicates that cercosporin plays a critical role in many plant diseases (Choquer 

et al., 2005; Gunasinghe et al., 2016; Staerkel et al., 2013; Weiland et al., 2010). Therefore, C. 
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cf. flagellaris ∆avr4 mutants with reduced cercosporin production were expected to be less 

virulent on soybean than the wild type C. cf. flagellaris. In fact, our detached soybean leaf assay 

showed that wild type fungus elicited more necrotic and chlorotic lesions compared to those 

caused by the ∆avr4 mutants. Thus, this result is consistent with those obtained using mutants of 

other Cercospora spp. with altered cercosporin production, showing a positive correlation 

between fungal virulence and toxin production (Upchurch et al., 1991). Further investigation 

revealed that reduced cercosporin production was associated with downregulation of Ctb1 and 

Ctb8 gene expression in ∆avr4 mutants (Figure 3.10). This result agreed with earlier studies 

showing that expression of Ctb (Cercosporin Toxin Biosynthesis) genes was correlated to toxin 

production (Chen et al., 2007b).  

Apart from the alteration in toxin production, fungal growth was also different between 

C. cf. flagellaris ∆avr4 mutants and the wild type. Comparison of the radial growth 

measurements in vitro demonstrated that mutant mycelia grew more rapidly compared to the 

wild type. This finding agrees with previous studies showing a negative correlation between 

fungal growth and cercosporin production (Jenns et al., 1989; Upchurch et al., 1991). However, 

wild type strain grew more abundantly on the surface and inside of soybean leaves compared to 

∆avr4 mutants based on our microscopic assessment (data not shown) and real time PCR 

quantification (Figure 3.11). Moreover, fungal growth was positively correlated with disease 

severity on soybean leaves, as wild type fungus caused more severe symptoms than the ∆avr4 

mutants (Figure 3.12). Interestingly, cercosporin was not detected from disease lesions caused by 

mutants based on our HPLC analysis, indicating that C. cf. flagellaris is able to cause disease 

without relying on cercosporin production alone. Therefore, the reduction in disease 
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development caused by the mutants could be the result of both the altered cercosporin production 

and a lack of protection against host chitinases without a functional AVR4. 

Previous studies showed that AVR4, a small conserved cysteine-rich protein, binds chitin 

and protects Cladosporium fulvum against plant chitinases during infection of tomato and 

protects Trichoderma viride and Fusarium solani f. sp. phaseoli in the presence of chitinase and 

β-1,3 glucanase in vitro (van den Burg et al., 2006). This kind of protection against plant 

chitinases is essential for fungal development and colonization of its host. Recently, AVR4 from 

Cercospora apii and C. beticola has been shown to bind chitin as well (Mesarich et al., 2016).  In 

order to verify whether AVR4 from C. cf. flagellaris has this same function, a chitinase assay 

was performed using CM agar plates with wells containing 1 unit of chitinase (Sigma C8241). 

As expected, ∆avr4 mutants were found more sensitive to chitinase than wild type C. cf. 

flagellaris (Figure 3.13).  

In addition, a noticeable increase in production of a dark cercosporin-like pigment in 

mycelium next to wells containing chitinase was observed. This induced biosynthesis of the dark 

pigment in the presence of chitinase suggests that this compound might function as an inhibitor 

of chitinase. In order to verify if cercosporin could inhibit chitinase activity, a cup plate assay 

was performed and a clear reduction of the chitinolytic activity was observed (Figure 3.14). 

Therefore, the observed reduced colonization of the ∆avr4 mutants on soybean leaves could be 

the combined results of lacking a functional AVR4 effector, which can bind chitin and protect 

fungal mycelium, and the reduced production of cercosporin, which not only can cause 

peroxidation of membrane lipids leading to membrane breakdown and cell death (Daub and 

Briggs, 1983b), but also can directly inhibit chitinolytic activity.  
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Taken together, our studies suggest that this fungal effector protein suppresses host 

defense during infection of soybean by regulating the expression of cercosporin pathway genes 

and the toxin production as well as the previously reported function as a chitin binding protein. 

To the best of our knowledge, this is the first report concerning the roles of an effector homolog 

in Cercospora cf. flagellaris and the first report in linking Avr4 in cercosporin production. 

Further studies will be needed to understand how Avr4 regulates cercosporin production in C. cf. 

flagellaris. 



57 

 

CHAPTER 4: HOST INDUCED GENE SILENCING TARGETING AVR4 GENE FOR 

CONTROL OF CERCOSPORA LEAF BLIGHT OF SOYBEAN 

4.1. Introduction 

 RNA interference (RNAi) is an RNA-dependent gene silencing process which affects 

gene expression in eukaryotic organisms. RNAi is triggered by a double-stranded RNA (dsRNA) 

which is processed into double stranded small (∼20–25 bp nucleotide) interfering RNAs 

(siRNAs) by an RNAse III enzyme called Dicer. Each siRNA is composed of two strands, a 

sense and an antisense strand (also called guide strand), which is incorporated into a RNA-

induced silencing complex (RISC). Complementary mRNA target sequences base-pair with the 

guide strand resulting in cleavage by the Argonaute protein, thus preventing the translation of the 

target transcript (Baulcombe, 2004).  

 One of the most important and well-known functions of plant’s siRNA-mediated RNAi is 

to protect itself against infection by viruses (Lu et al., 2003). This natural mechanism has 

recently been applied to help determining host gene function in functional genomics (Kamthan et 

al., 2015), such as virus induced gene silencing (VIGS). VIGS requires the construction of a 

recombinant virus carrying a fragment of a host target gene that will be down-regulated by the 

RNAi machinery of the plant host (Robertson, 2004). The viral vector can be delivered into 

plants by various techniques such as Agrobacterium-mediated infiltration, mechanical 

inoculation of in-vitro transcribed RNA, or biolistic delivery of infectious plasmid DNA 

(Burch‐Smith et al., 2004). 

 One of the VIGS vectors that have been widely used to determine the function of 

unknown genes in soybean was developed based on the bean pod mottle virus (BPMV). BPMV 
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Table 4.1: List of primers used in Chapter 4. 

Primer name Oligonucleotide sequence (5’→3’) 

Avr4 HIGS 4B F CGGATCCTTGCTAGGCACAA 

 

Avr4 HIGS 4B R TACGGGATCCCGGTCTCATA 

 

Avr4qPCRWT F CCGGTATCGCGTATGAAAGG 

 

Avr4qPCRWT R GAGAAGAAGTACTGCGACACGGT 

  

Avr4qPCRWT P FAM-ATGCCGTGCTGGTCAATGGTGGA-TAMRA 

 

CKCTB6-2F CACCATGCTAGATGTGACGACA 

 

CKCTB6-2R GGTCCTGGAGGCAGCCA 

 

CKCTB6-PRB FAM-CTCGTCGCACAGTCCCGCTTCG-TAMRA 

 

BPMV F2 ACCTTCTCGGTGGAGGAA 

 

BPMV R2 TAATCATCGCAAGACCGGCA 

 

CKBtub F TCCGGCAACAAGTATGTCCC 

 

CKBtub R  GCCGAAGACGAAGTTGTCTG 

 

 The Avr4 fragment was released from TOPO vector by BamHI digestion and 

subsequently inserted into similarly digested and dephosphorylated pBPMV-PDS-3R (to remove 

the PDS gene) (Zhang et al., 2010) to generate pBPMV-Avr4. Restriction digestion using BamHI 

was performed to confirm the release of the insert with the expected size, 477 bp, from pBPMV-

Avr4 (Figure 4.1C). The vector pBPMV-PDS-3R (Zhang et al., 2010) was used as a positive 

control in which silencing of the phytoene desaturase (PDS) gene shows photo-bleaching of 

soybean leaves, while pBPMV-IA-V2 was used as an empty vector control. 
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 4.2.2 Delivery of BPMV-derived vectors into soybean leaves 

 Two weeks old soybean plants (cultivar Pioneer 94Y82) were placed in the dark 24 h 

prior to plant transformation. Using a Biolistic PDS-1000/He system (Bio-Rad Laboratories, 

Hercules, CA), a DNA-plasmid mix containing pBPMV-IA-R1M (modified RNA1 of BPMV) 

with pBPMV-IA-V2, pBPMV-PDS-3R, or pBPMV-Avr4, was biolistically introduced into the 

soybean primary leaves (vegetative cotyledon stage) (See Appendix for complete protocol). 

Plants were lightly misted with water after bombardment and kept in a moist chamber overnight. 

Subsequently, plants were maintained in the greenhouse at 20°C with a photoperiod of 16 h. In 

general, virus symptoms were observed in successfully inoculated plants at three weeks after 

bombardment.  

 Soybean leaves showing typical virus symptoms were collected and ground in a mortar 

with 50 mM potassium phosphate buffer, pH 7.0 (=mock buffer) to make leaf sap for secondary 

inoculations. Fourteen days old plants were placed in the dark 24 h prior to inoculation, and were 

mechanically inoculated by rubbing the upper surface of soybean primary leaves (vegetative 

cotyledon stage) with the leaf sap , using cheesecloth and carborundum  (Sigma-Aldrich, St 

Louis, MO) as an abrasive. Plants were lightly misted with water after inoculation and 

maintained in the greenhouse at 20°C with a 16 h photoperiod. 

 4.2.3 Cercospora cf. flagellaris inoculation of soybean plants carrying BPMV-derived 

vectors 

 Soybean leaves showing typical virus symptoms at 20 dpi, were collected and inoculated 

with C. cf. flagellaris. C. cf. flagellaris was grown on PDA plates for 3 weeks and 7 mm 

mycelial plugs were used to inoculate healthy soybean leaves (No BPMV) and leaves carrying 

the empty vector, or pBPMV-Avr4 construct. PDA plugs were used to mock inoculate leaves. 
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 Leaves were incubated inside of transparent plastic boxes containing moist paper towels 

under light. Three boxes containing six leaves each were used for each of the BPMV constructs. 

The development of disease symptoms was observed 14 days post inoculation (dpi), leaves were 

photographed and immediately frozen in liquid nitrogen and stored at -80°C. Three boxes 

containing 6 leaves each were used for each treatment. Thus, leaves from individual boxes were 

considered as one sample and individual boxes were considered as replicates. The experiment 

was repeated twice. 

 4.2.4 Total RNA extraction and quantitative real-time PCR 

 Leaf tissue was ground in liquid nitrogen, and total RNA was extracted using RNeasy 

Plant Mini Kit (Qiagen) according to the manufacture instructions. Reverse transcription was 

conducted with 500 ng of total RNA using Taqman® reverse transcription reagents and guideline 

(Applied Biosystems, Foster City, CA). Reverse transcription (RT)-PCR was performed with 

pBPMV IA-V2 vector-specific pair of primers BPMV F2 and BPMV R2 to examine the integrity 

of the recombinant BPMV RNA2 on the leaves showing viral symptoms. The level of Avr4 

expression in soybean leaves was determined by comparative quantitative real-time polymerase 

chain reaction (qRT-PCR) using C. cf. flagellaris ß-tubulin specific primers, CKBtub F and 

CKBtub R, to normalize RNA amounts. Real-time PCR assays were performed using 7.5 µl 2X 

TaqMan Universal PCR Master Mix (Applied Biosystems), 1 µl of 10 µM each primer (final 

concentration 666 nM each primer), 0.6 µl of 10 µM (final concentration of 400 nM) probe and 1 

µl of cDNA template. An ABI PRISM 7000 Sequence Detection System was used for real-time 

PCR under standard conditions. The primer pair Avr4qPCRWT F / Avr4qPCRWT R and the 

gene specific probe Avr4qPCRWT P (Table 4.1) used to amplify Avr4 were designed to anneal 

outside the region targeted for silencing. Relative Avr4 expression was determined using the 2-
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∆∆Ct method ([Ct (Avr4) – Ct (ß-tubulin)]treatment - [Ct (Avr4) – Ct (ß-tubulin)]empty vector) 

(Pfaffl, 2001). 

 4.2.5 DNA isolation and quantitative real-time PCR assessment of C. cf. flagellaris 

accumulation 

Soybean leaves were ground in liquid nitrogen and DNA was extracted with a 

GenEluteTM Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, St Louis, MO) according to the 

manufacturer’s instructions. Quantitative real-time PCR targeting the C. cf. flagellaris Ctb6 gene 

was performed using primers CKCTB6-2F/CKCTB6-2R and fluorescent probe CKCTB6-PRB 

in the ABI 7000 sequence detection system (Applied Biosystems) under the standard conditions. 

Each reaction contained 7.5 µl 2X TaqMan Universal PCR Master Mix (Applied Biosystems), 1 

µl of 10 µM each primer (final concentration 666 nM each primer), 0.6 µl of 10 µM (final 

concentration of 400 nM) probe and 1 µl of 10 ng template DNA. The DNA quantification of C. 

cf. flagellaris in leaf samples was determined as previously described by Chanda et al. (2014). 

4.3. Results 

 4.3.1 Delivery of BPMV vectors into soybeans 

 In order to investigate whether HIGS can be accomplished against Cercospora cf. 

flagellaris targeting Avr4 gene, we explored a BPMV-based VIGS vector to produce dsRNAs 

that are targeting the fungus Avr4 transcripts. Particle bombardment was used to deliver the 

modified BPMV vector into two week old soybean plants. After approximately 20 days, plants 

inoculated with recombinant pBPMV-IA-V2 mixed with pBPMV-IA-R1M constructs, 

developed typical BPMV symptoms such as crinkled leaves with a mosaic of light and dark 

green regions (Figure 4.2A). As expected, photobleaching was observed in positive control 

plants bombarded with pBPMV-IA-PDS-3R along with pBPMV-IA-R1M (Figure 4.2B).   
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 Considering that the spread of the virus can differ among plants when using biolistic 

inoculation, a second inoculation was performed by rubbing the upper surface of 2 weeks old 

soybean leaves with the leaf sap containing the BPMVconstructs from the leaves collected from 

the bombardment experiment in order to obtain plants with consistent virus infection. As 

expected, more consistent virus symptoms were observed approximately 20 days post 

inoculation (dpi). 

 
 

Figure 4.2. A) Soybean leaf inoculated with empty BPMV constructs (pBPMV-IA-V2 

mixed to pBPMV-IA-R1M) showing typical viral symptoms, such as crinkled leaves 

with a mosaic of light and dark green regions as a negative control. B) Soybean leaf 

inoculated with pBPMV-IA-PDS-3R mixed to pBPMV-IA-R1M showing photo-

bleaching as a positive control for successful viral expression. Pictures were taken 20 

days after bombardment inoculation. 
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 4.3.2 Inoculation of soybean plants carrying HIGS constructs with Cercospora cf. 

flagellaris 

 To verify if soybean plants carrying the BPMV-Avr4 construct respond differently to C. 

cf. flagellaris infection, plants carrying the Avr4 gene construct, vector control construct with no 

fungal genes, and healthy plants were challenged with C. cf. flagellaris at 20 days after BPMV 

treatment. Plants were inspected for CLB disease symptoms two weeks post inoculation. At 14 

days post inoculation (dpi), healthy (No BPMV) and vector control plants developed more severe 

disease symptoms compared to plants carrying the pBPMV-Avr4 construct which showed fewer 

necrotic and chlorotic lesions (Figure 4.3A). This result demonstrated that successful delivery of 

BPMV derived VIGS vector carrying the Avr4 sequence, contribute to reduction of CLB disease 

on soybean leaves. 

 4.3.3 Expression of Avr4 transcripts and Cercospora cf. flagellaris accumulation in 

soybean leaves carrying the BPMV HIGS vectors 

 In order to determine whether C. cf. flagellaris Avr4 was silenced in plants inoculated 

with soybean leaf sap containing pBPMV-Avr4 vector, the level of Avr4 expression in virus 

inoculated plants was compared with empty vector control and healthy plants carrying no BPMV 

construct.  At 14 dpi, we detected a significant lower level of Avr4 transcript in soybean plants 

carrying the Avr4 gene HIGS construct compared to vector control and healthy plants (Figure 

4.3B). To confirm whether the reduced cercospora leaf blight symptoms were positively 

correlated with reduced fungal growth, quantitative real time PCR analysis was performed using 

the pair of primers and probe described by Chanda et al. (2014) and DNA samples isolated from 

C. cf. flagellaris inoculated soybean plants carrying HIGS constructs.  At 14 dpi, C. cf. 

flagellaris biomass also significantly decreased in BPMV-Avr4 plants compared to empty vector 

control and healthy plants (Figure 4.3C).  
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 To ensure that systemic leaves with viral symptoms still contained the BPMV RNA2 

carrying the Avr4 insert, reverse transcription (RT)-PCR was performed with pBPMVIA-V2 

vector-specific pair of primers BPMV F2 and BPMV R2 to examine the integrity of the 

recombinant BPMV RNA2. A product size of 758 bp was obtained from leaves of plants 

inoculated with BPMV empty vector, corresponding to the size of PCR products between the 

 
 

Figure 4.3: A) Symptoms of soybean leaves carrying recombinant HIGS vectors 14 days after 

Cercospora cf. flagellaris inoculation. No BPMV (1 and 2) and empty vector control (3 and 4) 

leaves showed more necrotic and chlorotic lesions compared to BPMV-Avr4 treated leaves (5 

and 6) which showed fewer necrotic lesions. B) Quantitative real-time PCR analysis showing C. 

cf. flagellaris Avr4 transcript levels 14 dpi in soybean leaves carrying recombinant HIGS 

vectors. The quantification of the relative transcript levels of Avr4 gene was normalized to the 

control gene ß-tubulin and relative expression was calculated using the 2-∆∆Ct method. C) 

Quantitative real-time PCR analysis showing differential accumulation of C. cf. flagellaris at 14 

dpi in soybeans carrying recombinant HIGS vectors. C. cf. flagellaris accumulation on soybean 

leaves was determined according to Chanda et al. (2014). Data are the means of 18 leaves (3 

replicates containing 6 leaves each) from each treatment and error bars indicate standard error of 

the mean. Asterisks (**) indicate significant difference between control plants (No BPMV and 

Empty Vector) and the leaves containing the BPMV-Avr4 construct (P < 0.05). 
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two primers in the absence of insert. A larger PCR product of 1.2 Kb was amplified in samples 

of BPMV-Avr4 inoculated plants, thus, confirming the presence of the 477 bp Avr4 insert within 

BPMV RNA2 in the soybean leaves. 

4.4. Discussion 

 

 In our previous study (Chapter 3), ∆avr4 disruption mutants produced significantly less 

cercosporin compared to wild type and also were less virulent on soybeans. Based on this as well 

as the importance of Avr4 in host-pathogen interactions from earlier studies, Avr4 gene was 

selected in the present study as a potential target for silencing through HIGS to determine 

whether this novel approach can be used to control soybean CLB disease.  

 In this study, protection of soybean against C. cf. flagellaris by HIGS was demonstrated 

using a transient Avr4 gene silencing in soybeans through a BPMV-based vector. Upon 

successful inoculation of soybeans with C. cf. flagellaris, BPMV constructs carrying Avr4 gene 

target sequence reduced the expression of Avr4 gene from C. cf. flagellaris in planta by 80% in 

pBPMV-Avr4 plants compared to empty vector control and plants carrying no BPMV construct 

at 14 dpi (Figure 4.3B). In addition, these HIGS plants carrying the pBPMV-Avr4 construct 

showed less disease symptoms than control plants carrying the empty vector construct at 14 days 

after inoculation with C. cf. flagellaris. In contrast, healthy and vector control plants developed 

more necrotic and chlorotic lesions compared to pBPMV-Avr4 plants (Figure 4.3A). In addition, 

the reduction of CLB symptoms was positively correlated with reduction in fungal growth in 

soybean plants carrying the pBPMV-Avr4 construct compared to the control plants (Figure 

4.3C).  
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 Evidences from the present study and other HIGS studies in plant disease control, reveal 

that HIGS is not restricted to controlling biotrophic pathogens which have close interactions with 

host, but can also be used as an important tool to control hemibiotrophic or necrotrophic 

pathogens (Andrade et al., 2015; Chen et al., 2016; Cheng et al., 2015; Ghag et al., 2014a; Hu et 

al., 2015; Koch et al., 2013; Nowara et al., 2010; Nunes and Dean, 2012; Panwar et al., 2013; 

Pliego et al., 2013; Song and Thomma, 2016; Tinoco et al., 2010; Yin et al., 2015; Yin et al., 

2011; Zhang et al., 2012b; Zhou et al., 2016). The genes targeted in these studies include not 

only pathogenicity genes, but also genes encoding biosynthetic enzymes of chitin and ergosterol, 

or enzymes involved in developmental regulations as well as secondary metabolism of plant 

pathogens.  

 Although the present study demonstrated that a virus vector based HIGS approach has the 

great potential in controlling plant fungal diseases and that suppression of Avr4 significantly 

reduced the target gene expression in this hemibiotrophic pathogen and resulted in reducing CLB 

disease symptom development in soybean plants, the virus vector based siRNA delivery system 

is transient and not inheritable in nature. In fact, the HIGS construct containing plants still show 

visible CLB symptom. Future efforts may need to focus on developing stable transgenic plants to 

express the siRNA constructs to achieve the long-lasting suppression effects. In addition, other 

genes from C. cf. flagellaris, such as genes involved in the biosynthesis of cercosporin, a known 

virulence factor of the pathogen, and combinations of them should be examined to achieve a 

better suppression of the CLB disease development in soybean. 
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CHAPTER 5: GENERAL CONCLUSIONS AND PROSPECTS FOR FUTURE 

RESEARCH 

  

 The results presented in this study suggest that AVR4 contributes to the virulence of C. 

cf. flagellaris (previously known as C. kikuchii) on soybean through protecting fungal hyphae 

and regulating cercosporin biosynthesis. Growth of the fungus in the presence of chitinase in 

vitro, showed that chitinase inhibited mycelial growth of ∆avr4 mutants whereas the wild type 

fungus was not affected by the enzyme. Moreover, growth of ∆avr4 mutants was clearly 

compromised in infecting soybean leaves suggesting that mutants were more vulnerable to the 

deleterious effects of soybean host chitinases. Taken together, these results indicate that AVR4 

in C. cf. flagellaris may have the same biological function as the AVR4 present in Cladosporium 

fulvum in which this effector is a chitin binding protein involved in fungal protection against host 

chitinolytic enzymes.  

  Cercosporin had been shown to be an important virulence factor in several Cercospora 

plant pathogens. Cercosporin production was drastically reduced in ∆avr4 mutants compared to 

the wild type fungus in our in vitro and in planta assays. However, there is no literature reporting 

a direct involvement of Avr4 in cercosporin biosynthesis even though the genes and the enzymes 

involved in cercosporin biosynthesis have been extensively studied. According to the data 

presented in our study, Avr4 seems to play an important role in regulating the toxin biosynthesis. 

Therefore, future studies to elucidate how Avr4 is involved in cercosporin production can be 

extremely helpful to reveal the complete toxin pathway which can contribute to development of 

new methods to control this soybean pathogen. 
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 In the present study, C. cf. flagellaris virulence was also compromised when Avr4 

expression was reduced through host induced gene silenced (HIGS). The successful delivery of a 

BPMV based VIGS vector carrying a selected region of the Avr4 gene into soybean plants, 

followed by inoculation with C. cf. flagellaris resulted in significant reduction of the target gene 

expression, fungal growth and CLB disease development. Although our study demonstrated that 

the HIGS approach has the great potential in controlling this important disease of soybeans, 

future efforts may need to focus on developing a stable transgenic plant targeting fungal Avr4 

and other important fungal genes, such as genes involved in the biosynthesis of cercosporin to 

achieve a better disease suppression. Other than HIGS, direct application of in vitro synthesized 

double strand RNAs targeting Avr4 may also offer a more effective way of managing this 

disease based on recent success in direct dsRNA applications to control Fusarium graminearum 

and other fungal pathogens in barley (Koch et al., 2016). 

 Taken together, our results suggest that Avr4 is an important gene in C. cf. flagellaris as 

it is involved in production of cercosporin, one of the most conserved virulence factors among 

Cercospora species. Therefore, studies accessing the roles played by AVR4 in C. cf. flagellaris 

can reveal important aspects related to fungal virulence and also host pathogen interactions 

which may lead to the development of new approaches to control cercospora leaf blight in 

soybeans.  
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APPENDIX: LIQUID COMPLETE MEDIA, CERCOSPORIN STANDARD CURVE FOR 

HPLC ANALYSIS, AND DELIVERY OF BPMV CONSTRUCTS TO SOYBEANS 

 

A. Liquid Complete Media (Jenns et al. 1989) 

 

Ingredients per liter: 

- 10 g of glucose;  

- 1 g of yeast extract;  

- 1 g of casein hydrolysate;  

- 1 g of Ca(NO3)2.4H2O;  

- 10 ml of a solution containing: 2 g of KH2PO4, 2.5 g of MgSO4.7H2O, and 1.5 g of NaCl 

in 100 ml of H2O,  

- Adjust to pH 5.3 in a 500 ml Erlenmeyer flask. 

 

 

B. Cercosporin standard curve for HPLC analysis 

  

 

C. Delivery of BPMV constructs to soybeans 

C1. Preparation of gold particles 

1. Transfer 30 mg gold particles (Bio-Rad Cat # 165-2263) to a 1.5 ml  low retention 

microcentrifuge tube (Phenix Research Products Cat # MAX-815S ), and vortex 

vigorously in 0.5 ml of 100% (v/v) ethanol 
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2. Incubate at room temperature for 10 min 

3. Pellet the gold particle by centrifugation @ 15,000 RPM for 2 min, decent the ethanol 

4. Wash three times with 0.5 ml of sterile distilled water (SDW) each time 

Resuspend gold particles in 500 µl of SDW and store as aliquots of 25 µl in 1.5 ml tubes 

at -20°C until further use. 

C2. Coating of gold particles with Plasmid DNA and particle bombardment 

1. To a 25 µl aliquot of prepared gold particles in 1.5 ml tube, add the following while 

vigorously vortexing after adding each component (very important to ensure uniform 

coating) 

a. 2.5 µl of pBPMV-IA-RIM DNA (1 µg/µl) – RNA1 

b. 2.5 µl of pBPMV-IA-V2 DNA (1 µg/µl) – RNA2 or pBPMV-IA-V2 carrying 

gene of interest 

c. 50 µl of 50% glycerol 

d. 25 µlof 2.5 M CaCl2  

e. 10 µl of 0.1 M freshly prepared spermidine (Sigma, Cat # S-0266) 

 

2. Centrifuge at 14,000 RPM and discard the supernatant 

3. Wash particles with 70 µl of 70% isopropanol 

4. Wash particles with 70 µl of 100% isopropanol 

5. Resuspend the particles in 25 µl of 100% isopropanol 

6. Wash macrocarrier discs (Bio-Rad, Cat # 165-2335) with 100% isopropanol and air dry 

7. Load 6 µl of prepared gold particles onto center of the macrocarrier and spread uniformly 

using a yellow pipet tip 

8. Load rupture disc (Bio-Rad Cat # 165-2329), prepared macrocarrier, and stopping screen 

(Bio-Rad Cat # 165-2336) into sample holder 
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9. Place 14 days old soybean seedlings in the bottom chamber with primary leaves spread 

out directly under the macrocarrier 

10. Press the vacuum switch 

11. Press the fire switch and hold it until you hear the shooting sound 

12. Remove the plants from chamber, lightly mist with water 

13. Transfer the plant to a growth chamber that maintains 22°C and 16 h of light period 

14. After 1 week, transfer the plants to big pots in the greenhouse and add fertilizer 

15. Observe the development of viral symptoms in 2 weeks on newly developing trifoliates 

 

(This protocol is adapted from Dr.  Chunquan Zhang, Alcorn State University) 
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