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ABSTRACT 

 Cocoa powder contains polyphenolic compounds, which can provide potential 

health benefits to humans. The human gastroinestinal tract hosts diverse 

microorganisms which are called the human gut microbiota. These microbes can 

utilize carbohydrates through fermentation resulting in the production of short chain 

fatty acids (SCFAs), which cause a reduction of pH in gastroinestinal tract. The cocoa 

processing can change the composition of the carbohydrates, which can affect the 

fermentation patterns. 

  In this study we established an in vitro model system which simulated gastric 

digestion and colon fermentation. Five different processed cocoa samples (alkalized 

cocoa samples: D-11-B and D-11-S; non-alkalized cocoa samples: natural cocoa, 

Lavado, shell) were digested, then they were fermented by the colonic bacteria from 

mixed pool fecal slurry under anaerobic conditions. The pH, SCFAs, procyanidin 

distribution, and polyphenolic compounds were measured. Then the Lavado was 

fermented with fecal slurries from six individuals. Changes in the pH, polyphenolic 

compounds, and SCFAs were determined. 

 The results of cocoa samples fermented with pooled fecal slurry demonstrated 

that pH of five cocoa samples significantly decreased after 24h of fermentation; 

meanwhile SCFAs concentration increased. Fermentation of the shell sample resulted 

in the highest production of SCFAs and the greatest reduction in pH. Polyphenolic 

compounds release was expressed both as gallic acid equivalent (GAE) and catechin 
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equivalent (CE). Increases in both values were observed in all cocoa samples. The 

final GAE of alkalized cocoa samples were higher than non-alkalized cocoa samples; 

while final CE of the shell sample was the highest among five cocoa samples. The pH 

and SCFAs results indicated that cocoa samples can be fermented by gut microbiota. 

The polyphenolic compounds results showed that polyphenol content of cocoa 

powder increased during fermentation. 

 The pH decrease, polyphenols increase, and SCFAs increase were observed in 

individual fecal fermentation groups. However, the change patterns of pH, 

polyphenols, and SCFAs in each treatment group were different. The cocoa 

fermentation by colonic bacteria led to an increase of phenolic compounds. The 

variations of human gut microbiota among individuals affected fermentation pattern, 

subsequently affected pH change pattern and polyphenols profile during fermentation.
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CHAPTER 1. LITERATURE REVIEW 

1.1 Cocoa and cocoa products 

1.1.1 Cocoa 

 The cocoa tree (Theobroma cacao, L.) originated from the rainforests of Central 

and South America. There are three subspecies, Forastero, which is from Amazon 

area; Criollo, which is from Panama; and Trinitario, which is from Trinidad (Wilson, 

1999). Cocoa was first introduced to Europesince 16th century, then into Asia and 

Africa. Today chocolate and cocoa products have become one of the most popular 

snack foods and confections consumed by children and adults. Cocoa tree is sensitive 

to climatic and environmental conditions, although there are some species which 

adapted and are cultivated under various agronomic conditions other than tropical 

conditions. Currently the main cocoa production areas are located in a narrow band 

referred as Cocoa Belt, which is between 20 degrees north latitudes to 20 degrees 

south latitudes (Crozier, Ashihara, and TomÃ 2011). In general, it takes 4 years for a 

cocoa tree to become productive which it lasts for 25-30 years (Wood and Lass 2008). 

1.1.2 Production of cocoa 

 In 2013/2014, the worldwide cocoa production was 4.373 million tons, 73.1% of 

the production was from Africa, 16.6% was from Central and South America, 10.2% 

was from Asia & Oceania (ICCO 2016). The largest cocoa-producing countries were 

Côte d’Ivoire, Ghana, and Indonesia. Cocoa and cocoa products are consumed 

worldwide, according to the United States Department of Agriculture, the global retail 
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market for chocolate candy is valued at an estimated $107 billion in 2013 and is 

expected to grow to $143 billion by 2017 (USDA 2013). 

1.1.3 Cocoa powder manufacture 

 Cocoa was once served as a divine drink for ancient Central American natives: 

the Olmecs and Mayans (Crozier, Ashihara, and TomÃ 2011). Cocoa is now 

processed through a series of steps that results in the production of cocoa powder and 

cocoa butter. The modern cocoa processing was first developed by Coenraad 

Johannes Van Houten in 1820 (Knight 1999). Van Houten's processing includes 

separation of cocoa butter and cocoa powder, which is still an important step in cocoa 

processing. In general cocoa processing, after harvesting the cocoa beans are 

subjected to fermentation, breaking, sterilization, alkalization, roasting, grinding, and 

pressing, and the final products are cocoa powder and cocoa butter (Garti and Widlak 

2015). Usually, simple fermentation is the first step after cocoa beans are separated 

from broken cocoa pod. This processing step often takes 5 days, during this period 

carbohydrates are hydrolyzed and some are converted to acetic acid; proteins are also 

hydrolyzed, and the precursors of the cocoa flavor are developed (Schwan and Wheals 

2004). After fermentation, the cocoa beans are dried, they then undergo breaking step 

to separate meat of bean (the "nib") from the shell (hull). Then alkalization is 

performed, the nibs are treated with alkaline reagent such as potassium carbonate 

(Miller et al. 2008). The alkaline processing step is to develop required color of cocoa 

powder. The degree of alkalizaton varies for different final products. Roasting is a 
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step which can be performed either before breaking step or after alkalization. The 

main purpose of roasting is improving flavor quality of cocoa powder. Formation of 

dark brown color and development of chocolate aroma occurrs during roasting. 

Depending on the various requirements of final cocoa products, roasting temperature 

and time are adjusted. Ramli et al. (2006) employed 6 increments of roasting 

temperatures ranging from 120°C to 170°C and 4 different roasting times ranging 

from 20 to 50 min. They found that there were significant differences in flavor which 

correlated with different conditions of roasting.  

 After alkalization and roasting, cocoa nibs are reduced to cocoa liquor by 

grinding. Cocoa liquor contains more than 50% fat and it can be directly used in 

chocolate manufacture, but usually the fat is separated from cocoa powder by pressing 

(Venter et al. 2007). This processing step results in cocoa powder and cocoa butter. 

Both cocoa powder and cocoa butter are basic ingredients and widely used in cocoa 

products such as chocolate, candy, ice cream, the manufacture of chocolate drinks 

(Minifie 2012). 

1.1.4 Dietary fiber in cocoa 

 Dietary fibers are class of carbohydrates which are resistant to endogenous 

enzyme in small intestine and are not absorbed by GI tract, however, they can be 

fermented by microorganisms in human gastrointestinal tract. Dietary fibers include 

cellulose, hemicellulose, lignin, pectin, gums, inulin, beta-glucans, and resistant starch 

(Lattimer and Haub 2010). In dietary fiber the complex carbohydrates other than 
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starch or lignin are called non-starch polysaccharide (NSP). NSP can be further 

divided into two groups: soluble NSP and insoluble NSP. Soluble NSP include 

pectins, gums, inulin-type fructans, and some hemicellulose, these polysaccharides 

dissolve in water and be fermented by the human gut microbiota. Insoluble NSP 

include lignin, cellulose, and some hemicellulose. Insoluble NSP cannot dissolve in 

water and they are less fermentable than soluble NSP (Elleuch et al. 2011). Non-

digestible and non- or partially fermentable dietary fiber are known by their laxative 

properties. They contribute to stool bulk, increase bowel movements, and prevent 

occurrence of constipation. Beside of these well-known effects, dietary fibers also 

benefit to human health. FDA (2014) states that dietary fibers may reduce some types 

of cancer, and they can also decrease risk of coronary heart disease. Cocoa is a dietary 

fiber-rich food source. The composition of dietary fiber in cocoa product depends on 

genetic variation and cocoa processing method. Sarriá et al. (2012) analyzed two 

different soluble cocoa products, one type of cocoa product contained 3.13g/100g 

soluble NSP and 15.09g/100g total NSP, polyphenol content was 3.404±0.228 mg 

equivalent gallic acid/100g. The second cocoa powder sample contained 1.68g/100g 

soluble NSP and 22g/100g total NSP, and polyphenol content was 1.575±0.067 mg 

equivalent gallic acid/100g. Lecumberri, Mateos, et al. (2007b) reported that a 

dietary-rich cocoa powder sample contained very high amount of total dietary fiber 

(over 60% dry matter); and dietary fiber mainly consist of insoluble dietary fiber (over 

80% total dietary fiber), the soluble dietary fiber only account for less than 20% of 
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total fiber. The insoluble dietary fiber contained 33% of NSP; while uronic acids were 

the most abundant components in soluble NSP. 

1.1.5 Health benefit of cocoa products 

 Since the early 2000's, research has focused on the potential health benefits of 

cocoa and its products. Buijsse et al. (2006) reported that cocoa intake was associated 

with significantly lower incidence of cardiovascular disease. Grassi et al. (2008) 

found that patients treated with dark chocolate for 15 days showed decreased insulin 

resistance and increased insulin sensitivity. Cocoa consuming patients exhibited 

decreases in systolic and diastolic blood pressure, and decreased total cholesterol level 

compared to the control group. Sies et al. (2005) reported cocoa beverages can 

increase the plasma nitric oxide (NO) concentration in patients with diminished 

endothelial function. Ramiro et al. (2005) studied effects of the cocoa extract on 

inflammation, and found that cocoa extract may reduce the production of nitric oxide 

(NO), tumor necrosis factor α (TNFα), and Interleukin (IL) 1α. Djoussé et al. (2011) 

found that individuals who consumed chocolate twice a week were 32% less likely to 

develop coronary artery calcification, and this risk was further reduced by 57% when 

chocolate consumption occurred over five times per week. Much of the evidence 

indicated that the health benefits of cocoa products are related to polyphenolic 

compounds in cocoa products, this will be discussed in detail in later section. 

However, the comprehensiveness and detail of the mechanism of the cocoa's health 

benefits is still not well understood.   
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1.2 Human gut microbiota 

1.2.1 Composition of human gut microbiota 

 A microbiota is a community of microorganisms, which include bacteria, fungi, 

viruses, and archaea, that are present in the individual environment of the host 

(Biedermann and Rogler 2015). The human gastrointestinal tract (GI tract) hosts 

about 10 trillion microorganisms in the large intestine, and this complex microbial 

community is called the human gut microbiota (Gibson 2009). Microorganisms occur 

from the beginning to the end of human gut, but the density and the composition of 

the of microbial colonization of different sites of human gut is varies significantly. 

These differences depend on specific environmental condition of the individual host, 

the availability of substrates, transit rates, host secretions, and the organization of the 

gut wall (Graf et al. 2015). The sites with extreme pH environments, such as the 

stomach and the small intestine, support fewer microorganisms than the large 

intestine, and the microorganisms found in the stomach and small intestine are more 

tolerant of extreme pH and oxygen exposure. In contrast, the density of 

microorganisms in the large intestine is higher, and most of the microorganisms are 

obligate anaerobic bacteria (Louis and Flint 2009). More detailed composition of the 

microorganisms in the large intestine can be obtained by analysis of human fecal 

samples. With the developments of DNA sequencing technology and the 

improvements of the 16S rRNA database, phylogenetic analysis of the human gut 

microbiota is widely performed ((Kim et al. 2012) (Mardis 2011)). Eckburg et al. 
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(2005) adapted ecological statistical approaches to analyze more than 13 thousand 

human colonic mucosal and fecal samples. They found that there were significant 

differences of microorganism distribution among individual donors. A total of 395 

bacterial phlotypes were identified, and most of microorganisms were members of the 

Bacteroidetes and Firmicutes phyla. Another study about carbohydrate-active 

enzymes in the human gut microbiota also supported this result. Bacteroides spp. 

from Bacteroidetes phylum and Clostridium spp., Eubacterium rectale and Roseburia 

spp. from Firmicutes phylum were identified. These microorganisms exhibited a 

broader carbohydrate substrate range than the other microorganisms (El Kaoutari et 

al. 2013). Walker et al. (2011) detected four most abundant phylotypes (E. rectale, F. 

prausnitzii, C. aerofaciens, and B. vulgatus) in stool samples from 14 male 

volunteers. The number of some bacterial groups in stool samples was increased when 

volunteers were treated with diets of resistant starch over 10 weeks. This result was 

supported by another study, the growth of Ruminococcus bromii was detected in 

human colon of volunteers who were treated with resistant starch (Ze et al. 2012). 

Although previous studies made significant progress toward the identification of 

microorganisms in the human gut and these results have expanded people's 

knowledge about the composition of the human gut microbiota, the understanding of 

the human gut microbiota, the substrate interactions and their impact on health is not 

yet well developed. This situation is because of the extremely complex of the human 
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gut microbiota, the very large diversity of microorganisms found in human 

individuals, and the limitation of anaerobic isolation and cultivation techniques. 

1.2.2 Human gut microbiota and health 

 The human microbiota influences the health of the host, either beneficially or 

deleteriously. Most microorganisms in the GI tract are either harmless or beneficial to 

the host humans. Beneficial bacteria can directly inhibit foodborne pathogens and 

support human immune functions. Another very important role of the microbiota is to 

metabolize indigestible carbohydrates and provide energy and nutrients to the host 

(Clemente et al. 2012). When the equilibrium status between the host and the gut 

microbiota is disrupted, the "bad" microorganisms may cause metabolic disorder, 

obesity, malnutrition, or adverse pro-inflammation (Lozupone et al. 2012). Because 

the human gut microbiota can affect the human health in many aspects, it is necessary 

to further understand the characteristic of the human microbiota. The human gut 

microbiota varies with individuals age, population, culture, and lifestyles. However, 

as mentioned in 1.2.1, the composition and metabolism pattern of the human gut 

microbiota and how factors such as the environment and diet affect the human gut 

microbiota are not comprehensively understood. Italian children's microbiota were 

found to be different than the microbiota of children from rural Africa. Similarly, 

children in the United States, children from Malawi and Venezuela have been shown 

to have widely different microbiota. These differences may attribute to cultural 

effects, especially diet pattern difference (De Filippo et al. 2010). 
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1.2.3 Interaction of human gut microbiota with diet 

 Because diet is an important factor influencing the distribution of organisms in 

the human microbiota, studies of the human gut microbiota not only focused on 

characterization of community composition, but also revalued the interactions 

between microbiota and diet. Ley et al. (2006) reported that 12 obese people who 

consumed a carbohydrate or fat restricted low-calorie diet for year had statistically 

significant changes in the gut microbiota composition. They found that before diet 

treatment, there were fewer Bacteroidetes and more Firmicutes in human gut 

microbiota of obese people than lean controls. After 1-year diet therapy, the relative 

abundance of Bacteroidetes increased and the abundance of Firmicutes decreased in 

human gut microbiota of obese people. Wu et al. (2011) found that people who 

consumed a high fat, low fiber diet for 10 days had a significantly different microbiota 

from those who consumed a low fat, high fiber diet. Flint (2012) reported that the diet 

which has a high content of dietary fibers exhibits potential positive impact on human 

health, such as providing defense against pathogens, enhancement of the immune 

system, and promotes anti-inflammatory and anticarcinogenic effects. These positive 

effects of dietary fibers are attributed to bioactive compounds in dietary fibers, 

especially polyphenolic compounds. The bioavailability and effects of polyphenolic 

compounds rely on their biostransformation by microbiota in the lower GI tract 

(Laparra and Sanz 2010).  
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 Humans do not have the enzymes that can metabolize glycosides, glucuronides, 

sulfates, amides, esters, and dietary fibers in the GI tract. When dietary fibers enter 

the GI tract and reach the large intestine, they are subjected to the microbial 

ecosystem and fermented under an anaerobic environment. The human colon serves 

as an incubator for microbiota, a major function is fermentation of indigestible 

carbohydrates which involves a series of complex reactions. The fermentation process 

produces energy which supports microbial growth. The microbiota produces 

fermentation products which can be utilized by the host. These products consist of a 

large range of low molecular weight metabolites, which include modified polyphenols 

and short chain fatty acids (Parkar, Trower, and Stevenson 2013), metabolism of 

polyphenols and short chain fatty acids will be discussed in section 1.3 and 1.4. 

1.3 Polyphenolic compounds 

1.3.1 Classification of phenolic compounds 

 Phenolic compounds are moderately water-soluble organic compounds with 

molecular weight ranging from 400 to 5000 Da (Haslam and Cai 1994). Phenolic 

compounds possess at least one aromatic ring (6 carbons) and multiple hydroxyl (-

OH) groups, thus they are stable electron acceptors, natural reducing agents, free-

radical terminators, and good antioxidant with strong antioxidation capacity (Tsao, 

2010). Phenolic compounds are widely distributed in plants, they can act as protective 

agents and inhibitors against invading fungal and insects, they can prevent infection of 



11 

 

pathogens of plant, they also contribute to plant pigmentation (Bhattacharya, Sood, 

and Citovsky 2010). 

 Polyphenolic compounds, also known as polyphenols, are usually referred to a 

class of phenolic compounds that with multiple aromatic rings and phenol structure, 

however phenolic acids often included (Figure 1.1) (Ignat, Volf, and Popa 2011). 

Polyphenols are classified as nonflavonoids and flavonoids. Nonflavonoids includes 

stilbenes, lignan, and phenolic acids; while flavonoids include flavonols, flavanols, 

flavones, and anthocyanidins (Etxeberria et al. 2013). 

 Phenolic acids are nonflavonoids with an aromatic ring and more than one 

hydroxyl groups. Based on the chemical structure, they can be divided into two 

groups: hydroxybenzoic acids witch C6-C1 structure, such as gallic acid, syringic 

acid, phloroglucinol carboxylic acid, etc.; and hydroxycinnamic acids with C6-C3 

structure, such as caffeic acid, cinnamic acid, ferulic acid, etc. (Figure 1.1). There are 

two forms of phenolic acids naturally existing in plants: the free form and bound form 

which link to the cell wall (Yoshida et al. 2010). They can be found in tea, cocoa 

beans, and soybeans (Scalbert and Williamson 2000). Stilbenes have 2 aromatic rings 

which are connected through ethene double bond, thus there are trans and cis 

stereoisomers. They can be found in grapes, soybeans, and traditional herbal medicine 

(Burns et al. 2002). Lignans consist of two C6-C3 building blocks; they exist in fiber-

rich foods like sesame seed and many grains (Adolphe et al. 2010). 
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Figure 1.1. Classification of polyphenols. (Ignat, Volf, and Popa 2011) 

 Basic chemical structure of flavonoids consists of 3 rings with 15 carbons, 

arranged in a C6-C3-C6 configuration, the ring A and ring B are aromatic rings. At 

least 4000 flavonoids are identified; they are mainly synthesized through acetate/ 

malonate or polyketide pathway in plant and can be found in most of higher plant 
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(Bhattacharya, Sood, and Citovsky 2010). Based on different substitution patterns of 

functional groups on ring C, flavonoids are classified as flavones, flavonols, 

flavanones, flavanonols, isoflavones, flavan-3-ols (flavanols or catechins), and 

anthocyanidins (Figure 1.2). Within each class of flavonoids, different substitution 

patterns of functional groups on ring A and ring B result in various flavonoids 

compounds. Flavones have a double bond between C2 and C3, with a carbonyl group 

(-C=O) on C4. Flavones include apigenin, luteolin, and tangeritin etc., they are most 

commonly found in parsley and citrus fruits (Zhang et al. 2010). Flavonols have 

similar chemical structures to flavones, but they have a hydroxyl group (-OH) on C3, 

they include quercetin, myricetin, and kaempferol etc., and they are present in high 

concentration in apples, cherries and tea (Dilis, Vasilopoulou, and Trichopoulou 

2007). Flavanones also have similar structures to flavones, but they have a saturated 

ring C. Flavanones include naringenin and hesperedin, they only abundantly present 

in citrus fruits (Ignat, Volf, and Popa 2011). Flavanonols are characterized by 

presence of a saturated ring C with hydroxyl group (-OH) on C3 and a carbonyl group 

(-C=O) on C4, which is similar to flavonols. Taxifolin is a typical flavanonol, it can 

be found in conifer cone (Wang et al. 2016). Isoflavones chemical structures are 

different from previous mentioned flavonoids, the ring B connects to ring C at C3 

rather than C2. Isoflavones include genistein and daizein, soybeans are one of the 

famous food sources rich in isoflavones (Xiao 2008).  
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Figure 1.2. Structure of flavonoids. (Kumar and Pandey 2013) 

 Flavan-3-ols or flavanols are commonly called catechins, they have unique 

chemical structure: ring C is saturated, and without carbonyl group on C4. This 

structure results in 2 chiral carbonson C2 and C3 in ring C, and totally 4 

diastereomers exist (Figure 1.3). Taking simplest substitution for an example. When 

R1 and R2 both are hydrogen, the diastereomer with trans configuration is catechin, 

and the one with cis configuration is epicatechin. Catechin and epicatechin both have 

2 stereoisomers, they are (+)-catechin, (-)-catechin, (+)-epicatechin, and (-)-



15 

 

epicatechin. In these 4stereoisomers, only (+)-catechin and (-)-epicatechin are widely 

found in plants, such as cocoa, grape, and tea (Tsao 2010). 

 

Figure 1.3. Flavanols and procyanidins. (Tsao 2010) 

 Procyanidins belong to proanthocyanidins, they are oligomers and polymers of 

flavonoids with catechin and epicatechin as building blocks. Oligomeric procyanidins 

have monomeric building blocks range from 1 to 9, and polymeric procyanidins have 

more than 10 monomeric building blocks. Procyanidins can be divided into two sub-

groups based on the linkage bond between monomeric building blocks (Figure 1.4). 

For type A procyanind, monomers are linked through C2-O-C5 or C2-O-C7 ether 

bond; while in type B procyanidin, monomers are linked through C4-C8 or C4-C6 

bond (Heim, Tagliaferro, and Bobilya 2002). Procyanidins can be found in cocoa 
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beans and a lot of fruits like apple, grape, and blueberry, etc. (Hammerstone et al. 

1999). 

 

Figure 1.4. Typical procyanidin dimers, trimers, and theaflavin. (Tsao 2010) 

 Anthocyanindins are water-soluble natural pigments, they can be found in most of 

plants. Depending on different substitution patterns, there are 6 commonly known 

anthocyanindins exist: cyanidin, delphinidin, pelargonidin, malvidin, peonidin, and 

petunidin (Figure 1.5). Anthocyanindins are basic structures of anthocyanins, which 

consist of anthocyanindins and sugar group on ring B. Anthocyanins are red or pink 

when environmental pH lower than 7, green or blue when pH higher than 7 (Manach 

et al. 2004). 
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Figure 1.5. Major anthocyanidins. (Tsao 2010) 

1.3.2 Polyphenolic compounds in cocoa 

 Cocoa and cocoa product are the good sources of polyphenols, they contain more 

than 3 mg/g polyphenols, which is significantly higher than well- known polyphenol-

rich source such as black tea, green tea, and red wine, etc. (Pérez-Jiménez et al. 2010). 

There are three main groups of polyphenols in cocoa beans: catechins, 

anthocyanidins, and proanthocyanidins (Jalil and Ismail 2008). Catechins in cocoa 

include (−)-epicatechin, (+)-catechin, (+)-gallocatechin, and (−)-epigallocatechin. The 

anthocyanidins include cyanidin-3-α-L-arabinoside andcyanidin-3-β-D-galactoside. 

The procyanidins are composed by dimers, trimers, or oligomers of flavan-3,4-diol 

(Figure 1.2).  

 The composition of these polyphenols varies with different cocoa bean species, 

degree of ripeness, storage, and cocoa processing (Wollgast and Anklam 2000). 

Fermentation of cocoa is considered as one of the important steps that influence the 

polyphenolic content of cocoa powder. Fermentation of cocoa bean is usually 

performed in boxes or baskets, and fermentation lasts from 5 to 7 days (Minifie 2012). 
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The fermentation mass is covered with banana or plantain leaves to maintain 

fermentation temperature at about 45°C to 50°C. During fermentation chocolate 

flavor is produced, pH of cotyledons and pulp rise from 3.5 to 5.0, and color of nibs 

changes to light or dark brown. Albertini et al. (2015) reported that the total 

polyphenol content significantly decreased from 60 mg GAE/ g defatted cocoa to 20 

mg GAE/ g defatted cocoa in the first 2 days of cocoa bean fermentation. Polyphenols 

loss may be attributed to diffusion of soluble polyphenols into fermentation sweating, 

enzymatic oxidation, and nonenzymatic oxidation.  

 The roasting process causes significant changes of the polyphenolic content. 

Bordiga et al. (2015) determined total phenolic content, content of anthocyanins and 

procyanidins in fermented cocoa beans, roasted nibs, cocoa mass, and chocolate from 

different geographic origins (South America and Africa). The largest polyphenols 

losses were observed during roasting. There are several possible factors contribute to 

phenolic compound loss, such as the Maillard reaction, oxidation of phenolic 

compounds, and formation of complex high molecular weight molecules. Variations 

in time and temperature combination during roasting result different flavor of final 

products and stability, chirality, and profile of polyphenolic compounds. Alkalization 

(Dutching) is another step which can alter or reduce the polyphenolic content of 

cocoa. Alkalization refers to treat cocoa mass with alkali solution. Usually the 

duration of the process is about an hour. During alkalization, the cocoa beans, nibs, or 

powder are treated with alkali solutions, potassium or sodium carbonate is usually 
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used, and ammonia carbonate is specially used for cocoa powder. Alkalization is 

usually about 1 h, temperature is 80°C to 100°C, and after alkalization pH of cocoa 

usually ranges from 6.8 to 7.5, some special cocoa like black cocoa can reach pH 8.5 

(Minifie 2012). Alkalization changes cocoa into brown or red color, at the same time 

flavor of cocoa is enhanced. In last two decades, some studies pointed out the 

influence of several cocoa processing steps on polyphenolic compound content. 

Cooper et al. (2007) used ultra-performance liquid chromatography (UPLC) method 

to separate polyphenolic compounds in chocolate and other cocoa-containing 

products. They listed catechin, epicatechin, B2 (epicatechin-4β-8-epicatechin, a 

procyanidin dimer), B5 (epicatechin-4β-6-epicatechin, dimer), C1 (epicatechin-4β-8-

epicatechin-4β-8-epicatechin, trimer), and tetramer D (epicatechin-4β-8-epicatechin-

4β-8-epicatechin-4β-8-epicatechin) as six of the major polyphenols in chocolate and 

cocoa products (Table 1.1). The profile and chirality of polyphenols depended on raw 

material source and manufacturers. The results indicated that some sort of 

polyphenols was affected by manufacturing conditions and cocoa origin.  
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Table 1.1. Results of HPLC-MS. (Cooper et al. 2007) 

analyte Determined mass Theoretical mass 
Content 

(mg/g) 

Epicatechin 290.079038  290.079713  0.071-1.942 

catechin 290.079038  209.078213  0.043-0.519 

dimer B2 578.142427  578.142013  0.041-1.174 

dimer B5 578.142427  578.143713  ND-0.236 

trimer C 866.205815  866.202813  ND-0.905 

tetramer D 1154.269203  1154.270413  ND-0.387 

ND: Not detectable  

 Natsume et al. (2000) reported that the profile of monomers and proanthocaynidin 

in dark chocolate was similar to cocoa liquor, while the ratio of the monomers to the 

total amount of polyphenols varied, different cocoa processing and manufacturing 

processes included alkali treatment, removal of lipids, and milling lead to this 

variation. Gu et al. (2006) analyzed total antioxidant capacity (AOC), catechins, and 

procyanidins (PC) in 19 samples of chocolate and cocoa products. In these samples, 

the natural cocoa powder contained highest AOC and PC, chocolate and cocoa 

products contained less AOC and PC (Table 1.2). Cocoa processing step such as 

alkalization can dramatically reduce PC content. Although there were some 

interesting results from a number of previous studies, it is still far from establishing a 

well understanding about the changes in the profile of polyphenolic compounds 

during the processing of cocoa powder manufacturing. 
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Table 1.2. Catechin and procyanidin contents of cocoa and chocolate croducts. (Gu et al. 2006) 
 catechins (mg/g) procyanidins (mg/g) 

product type no. 
catechin epicatechin sum monomers 2-3 mers 4-6 mers 7-10 

mers 

polymers total 

milk chocolate 1 0.12 0.18 0.3 0.25 0.49 0.38 0.17 0.88 2.16 
 2 0.05 0.18 0.23 0.27 0.57 0.58 0.31 1.11 2.84 
 3 0.08 0.24 0.32 0.3 0.61 0.68 0.41 1.14 3.14 

dark chocolate 1 0.25 0.52 0.77 0.99 1.84 1.8 1.02 2.87 8.52 
 2 0.4 0.64 1.04 1.05 1.68 1.92 1.2 2.86 8.72 
 3 0.12 0.75 0.87 0.89 1.78 2.29 1.41 4.47 10.84 
 4 0.11 1.06 1.17 1.09 2.73 3.83 2.47 6.64 16.76 
 5 0.33 1.25 1.58 1.66 3.74 4.54 2.95 6.67 16.76 

baking chips 1 0.35 0.66 1.01 1.66 3.74 4.54 2.95 6.97 19.85 
 2 0.5 1.01 1.51 0.95 1.63 1.91 1.21 3.01 8.71 
 3 0.26 1.07 1.33 1.51 2.23 2.55 1.52 4.67 12.49 

unsweetened chocolate 1 0.52 2.01 2.53 1.24 2.59 3.6 2.47 5.68 15.57 
 2 1.17 2 3.17 1.83 3.46 4.17 3.18 6.12 18.76 
 3 1.06 1.76 2.82 2.52 4.22 4.16 2.85 6.22 19.97 

 Standard 

reference 

0.23 1.24 1.47 2.82 4.78 5.63 3.66 8.3 25.2 

natrual powder 1 0.61 2.29 2.9 1.51 4.05 5.53 3.95 10.01 25.05 
 2 0.78 1.58 2.36 3.54 7.09 7.36 4.4 9.8 32.19 
 3 0.9 2.58 3.48 3.63 7.87 9.06 5.59 15.49 41.64 

Dutched powder 1 0.23 0.18 0.41 1.08 1.96 1.47 0.85 1.65 7.02 
 2 0.35 0.38 0.73 1.44 2.69 2.39 1.34 2.96 10.82 
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1.3.3 Health benefits of polyphenolic compounds 

 Since the 1990's, there have been an increasing number of studies on the chemical 

properties and health benefits of polyphenolic compounds. Polyphenol compounds are 

important bioactive components in our diet; they have been recognized as health-

beneficial components because of their antioxidant activity and anti-inflammatory 

potential. Studies have found that catechin may protect against heart disease and 

stroke (Ding et al. 2006). Schinella et al. (2010) conducted in vitro experiments and 

they found that polyphenols from cocoa extract exhibited both free radical scavenging 

activity and lipid oxidation inhibiting activity. Mellor et al. (2010) reported that the 

patients with type 2 diabetes had increased HDL-cholesterol and decreased total 

cholesterol/ HDL ratio when they were treated with high polyphenol content dark 

chocolate. Cienfuegos-Jovellanos et al. (2009) conducted a rat study which 

demonstrated that a flavonoid-enriched cocoa powder (50-600mg/kg) exhibited an 

antihypertensive effect on spontaneously hypertensive rats, and did not alter blood 

pressure on control groups. Andújar et al. (2011) demonstrated the anti-inflammatory 

effects of a cocoa polyphenol-enriched extract (500mg/kg) on an experimental model 

of Inflammatory Bowel Disease.  

1.3.4 Metabolism of polyphenolic compounds in human 

 The small intestine plays a key role in polyphenol absorption and metabolism. 

Many dietary polyphenols are absorbed through the small intestine. Then those 

polyphenols are modified in the small intestine and the liver, which is called 
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conjugation process. This process includes glucuronidation, sulfation, and methylation 

(Figure 1.6). Conjugation process can reduce the toxicity of metabolites, and facilitate 

biliary and urinary elimination of polyphenols (D’Archivio et al. 2010) (Figure 1.7).    

Figure 1.6. The potential sites of the conjugation of the polyphenols. (D’Archivio et 

al. 2010) 

 Absorption rate of different polyphenols is varied, and intestinal absorption is 

affected by polyphenol chemical structure and molecular weight. Small molecules 

usually show higher absorption rate, while high molecular weight molecules are less 

or even cannot be absorbed in small intestine. 
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Figure 1.7. Routes for dietary polyphenols and their metabolites in humans. (Scalbert 

et al. 2002) 

By comparing urine recovery rate of commonly known polyphenols, caffeic acid 

showed highest recovery values tea teaflavins showed lowest urine recovery among 

13 polyphenols (Figure 1.8) (Scalbert et al. 2002). Deprez et al. (2001) reported that 

proanthocyanidin dimer and trimers could be absorbed in human intestine, but 

polymers could not be absorbed. Holt et al. (2002) also reported that (-)-epicatechin, 

(+)-catechin, and procyanidin B2 can be detected in human plasma, while polymers 

were not detected. 
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Figure 1.8. Recovery of various dietary polyphenols in urines after dietary intake in 

humans. (Scalbert et al. 2002) 

 High molecular weight polyphenols are not efficiently absorbed, as a result they 

reach the large intestine (Stoupi, Williamson, Viton, et al. 2010a). The gut microbiota 

can modify phenolic skeletons through enzymatic reactions, which allows the 

absorption of a range of lower-weight metabolites (Duda-Chodak et al. 2015). Selam 

et al. (2009) summarized phenolic enzymatic reactions achieved by human intestinal 

microbiota (Table 1.3). In general, microbial enzymes can hydrolyze glycosides, 

glucuronides, sulfates, amides, esters, and lactones and operate ring-cleavage, 

reduction, decarboxylation, and demethylation. After polyphenols are released from 

food matrix, the initial step of biotransformation of polyphenols by the gut microbiota 

is deconjugation. During this step the conjugated glycosyl or glucuronosyl are 

hydrolyzed and removed from ring A or ring B of flavonoids, the products are 



26 

 

phenolic backbone which is called aglycone. Deconjugation is catalyzed by β-

glucosidase, β-glucuronidase, α-rhamnosidase, and esterases etc.. The following step 

is breakdown of phenolic backbone into relatively simple aromatic carboxylic acids. 

In the first step the ring C is broken down at different positions on the ring C, these 

breakdown differences result in a large number of phenolic products (Figure1.9). In 

general, flavonoids (flavonols, flavanones, anthocyanins, flavan-3-ols and 

procyanidins, and isoflavones) are cleaved into 2 parts, the ring A is converted to 

hydroxylated aromatic compounds such as phloroglucinol (Figure 1.9(2)); while 

metabolites from the ring B are phenolic acids, such as 3-(3,4-Dihydroxyphenyl) 

propionic acid, and these metabolites can be further degraded into small molecular 

weight metabolites (Figure 1.9 (1)). Different substitution patterns on the C ring and B 

ring of flavonoids result in formation of various phenolic acids. Depending on 

fermentation duration, the degree of degradation and the metabolites of polyphenols 

are highly diverse. Aura et al. (2002) fermented three phenols (flavonols: rutin, 

isoquercitin, and quercetin glucuronides) with human fecal bacteria. They detected 

3,4-dihydroxyphenylacetic acid in first 2 hours of fermentation, and 3-

hydroxyphenylacetic acid in 8 hours. These hydroxyphenylacetic acids were not 

methylated by colon flora in vitro, and fermentation pattern were not affected by 

fermentation scale, inoculation dose, and pH changes (pH 6.0 - 6.9). For flavanones, 

Rechner et al. (2004) found that 3-(4-hydroxyphenyl)-propionic acid and 3-

phenylpropionic acid were the major phenolic products of naringin in an in vitro 
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human gut microorganism fermentation. They also found that degree of degradation 

was significantly influenced by concentration of the substrate and composition of the 

human gut microbiota. Czank et al. (2013) performed an in vivo study about 

metabolism of anthocyanidin: cyanidin-3-glucoside (C3G) by using isotope tracer 

method. Eight male subjects were fed with 500mg 13C-C3G, and blood, breath, urine, 

and feces samples were collected after 48 hours. Ferulic acid, hippuric acid, 

phenylpropenoic and phenylacetic acids were detected in serum, urine, and feces as 

end products. Tzounis et al. (2008) investigated metabolism of 2 most common 

flavan-3-ols, (-)-epicatechin and (+)-catechin,in human fecal microorganism in vitro 

fermentation system, 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone, 5-phenyl-

gamma-valerolactone and phenylpropionic acid were detected as end products. They 

also found that (+)-catechin can promote the growth of the Clostridium 

coccoides/Eubacterium rectale group, Bifidobacterium spp. and Escherichia coli, 

inhibit the growth of the C. histolyticum group; while (-)-epicatechin can promote the 

growth of the Clostridium coccoides/Eubacterium rectale group. Appeldoorn et al. 

(2009) reported that the major metabolites of procyanidin dimers were 2-(3,4-

dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone in the in 

vitro fermentation system with human gut microbiota. They proposed a hypothesis 

that type B procyanidin dimers were converted to small phenolic acids instead of 

cleavage into flavan-3-ols first. Hur et al. (2002) reported that daidzein was converted 

into O-demethylangolensin (O-Dma) when it was fermented with human fecal slurry 
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for 3 days. Nonflavonoids in this study is mainly focused on phenolic acids, such as 

gallic acids, protocatechuic acid, and vanillic acid. These hydroxybenzoic acids are 

decarboxylated and dehydroxylated by microorganisms, then they are converted into 

benzenetriols, benzenediols, and their derivatives. For example, gallic acid is 

converted into pyrogallol (Figure 1.9(5)), protocatechuic acid is converted to catechol, 

vanillic acid is converted to O-methylcatechol (Aura 2005). It is necessary to carefully 

compare these studies as references, because the experimental conditions of these 

studies were varied, the parameters like fermentation duration time, pH, and condition 

of inoculation were different. It has also been observed that different polyphenols may 

share common metabolites resulting from both in vitro and in vivo fermentation, 

however, there were some methylated phenolic compounds that were only found in 

vivo, because these compounds were reconjugated in the small intestine and the liver. 

For example, reported that epicatechin was reconjugated into epicatechin -glucoside 

in rats that treated with 10 mg epicatechin (Piskula and Terao 1998).The delivery 

form of substrates, for example, pure polyphenolic compound vs. natural polyphenolic 

compounds with diet background, should also be considered. Different polyphenols 

are hydrolyzed, biotransformed, and utilized by different microorganisms in the 

human colon, which indicates that dietary modulations with polyphenols may play a 

role in reshaping the gut microbial community and enhancing host microbial 

interactions to provide beneficial effects. It is possible that cocoa polyphenol-based 
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functional foods can provide opportunities to modulate the microbial balance in the 

gut.  
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Table 1.3. Phenolic enzymatic reactions achieved by the human intestinal microbiota. (Selam et al., 2009) 

reaction compound enzyme microbiota containing enzymes refs 

Hydrolysis of 

glucuronides 

 

ellagitannins β-glucuronidase Escherichia coli 

Hydrolysis of 

glycosides 

isoflavones, flavonols, 

flavanones, 

anthocyanins, 

ellagitannins, lignans 

β-glucosidase Streptococcus faecalis, Eubacterium 

rectale,Clostridium sphenoides, Clostridium 

saccharogumia,Clostridium cocleatum, Bacteroides 

ovatus,Bacteroides fragilis, Bacteroides distasonis 

Hydrolysis of 

ester 

 

hydroxycinnamates esterases Escherichia coli, Bifidobacterium lactis, 

Lactobacillus gasseri 

hydrolysis of 

carbonyl 

isoflavones 
 

Bacteroide ovatus spp., Streptococcus intermedius 

spp.,Ruminococcus productus, SNU-Julong 

732,Enterococcus faecium, Lactobacillus 

mucosae,Finegoldia magna, and Veillonella spp. 

Reductions 

 

 

 

isoflavones, 

hydroxycinnamates, 

stilbenes 

hydrogenases 

Dehydroxylation 

 

 

Table cont'd. 

flavonols, flavanones, 

hydroxycinnamates, 

ellagitannins, lignans 

dehydroxylase Clostridium scindens, Eggerthella lenta 
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reaction compound enzyme microbiota containing enzymes refs 

Demethylation 

 

 

 

 

flavonols, flavan-3-ols, 

anthocyanins, lignans 

demethylase Eubacterium limosum, Eubacterium 

callanderi,Streptococcus, Lactobacillus, 

Clostridium, Butyribacterium,methylotrophicum, 

Peptostreptococcus productus 

Decarboxylation 

 

 

 

benzoic 

acids,hydroxycinnamates, 

ellagitannins 

decarboxylase 

Isomerization 

 

flavan-3-ols isomerase 
 

Fission isoflavones,flavonols, flavanones,flavan-3-

ols,anthocyanins,ellagitannins 

Clostridium spp. HGHA136, Eubacterium ramulus, 

Clostridium orbiscindens, Eubacterium 

oxidoreducens, Butyrivibrio spp., Butirivibrio spp. 
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Figure 1.9 Confluence metabolic pathways and common metabolites of dietary 

phenolic compounds. Solid arrows are demonstrated pathways, dashed arrows are 

hypothetical pathways. (Selam et al., 2009) 
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1.4 Short chain fatty acids 

1.4.1 Short chain fatty acids in human colon 

 Short chain fatty acid (SCFA) are organic fatty acids with 1 to 8 carbons, they 

were mainly produced by microbial fermentation of polysaccharides and 

oligosaccharides in the colon. Fermentation of protein and peptides also can 

contribute to SCFAs production. Polysaccharides and oligosaccharides are firstly 

hydrolyzed to their constituent sugars, then they are further fermented anaerobically. 

This anaerobic fermentation provides energy for microorganism. The fermentation 

produces gases (Carbon dioxide, hydrogen, and methane) and organic acids, mainly 

linear SCFAs: acetate, propionate, and butyrate (Wong et al. 2006) which can be 

absorbed and used by human. The general reaction of SCFA fermentation can be 

simplified as: 59 C6H12O6 + 38 H2O→60 CH3COOH +22 CH3CH2COOH +18 

CH3CH2CH2COOH +96 CO2 + 268 H+ + heat (Topping and Clifton 2001). 

 The typical ratio of acetate, propionate, and butyrate is 3:1:1, but this ratio varies 

depending on different substrates. The bacterial pathways of anaerobic SCFAs 

fermentation is shown in Figure 1.10. Sugars are firstly converted to pyruvate. 

Pyruvate is a key component in the SCFAs fermentation, a part of pyruvate is 

converted to acetyl-CoA with hydrogen and carbon dioxide. Then acetyl-CoA was 

hydrolyzed to acetate, and acetate can be also synthesized from CO2, H2, and methyl 

group through Wood-Ljungdahl pathway (Ragsdale and Pierce 2008). Propionate has 

3 pathways of synthesis, the first one is from phosphoenlypyruvate (PEP) to pyruvate, 
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then through acrylate pathway by reducing lactate to propionate. The second one is 

succinate pathway, which starts from PEP to oxaloacetate, then to fumarate, fumarate 

is reduced to succinate, finally it is converted to propionate. The third one is 

propanediol pathway, deoxyhexose sugars are converted to propane-1,2-diol, then 

propionaldehyde, consequently propionate (Reichardt et al. 2014). Butyrate is formed 

through acetyl-CoA to butyrl-CoA, and then it is converted by 

phosphotransbutyrylase and butyrate kinase to butyrate. Another pathway is cross-

feeding (growth of one species relies on metabolites of another species) of acetate-

producing bacteria and butyrate-producing bacteria, in this pathway butyrate-

producing bacterium can be a net user of acetate and acetate is converted to butyrate 

(Duncan et al. 2004). 

 SCFAs in large intestine result in several metabolic effects. SCFAs can affect 

glucose metabolism. den Besten, Lange, et al. (2013b) infused mice with SCFAs 

directly in the cecum, they reported that SCFAs are mild regulators of glucose 

homeostasis, propionate is glucogenic in liver, 62% infused propionate are used to 

produce glucose in mice; while acetate and butyrate are lipogenic in liver, they are 

converted to palmitate and cholesterol. Layden et al. (2012) reported that plasma 

acetate level was negatively associated with visceral adipose tissue, and was also 

negatively associated with plasma insulin levels in the oral glucose tolerance test. 

SCFAs can affect lipid metabolism. The ratio of propionate to acetate may be an 

important factor that influence lipid metabolism. As mentioned above, acetate is 
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lipogenic; while an in vitro study showed that propoinate can inhibit synthesis of fatty 

acids and cholesterol from acetate (Demigné et al. 1995). SCFAs may act as 

regulators of appetite. Psichas et al. (2015) found that propionate can stimulate the 

secretion of the gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-

1), which both can acutely suppress appetite, in isolated rat colonic crypt cultures. 

1.4.2 Short chain fatty acids and human health 

 The microbiota ecosystem in the human large intestine is influenced by diet, the 

pH of the contents of the gut lumen may be one of the important indicators of the 

status of the lumen contents. Different fermentable substrate in diet lead to different 

fermentation patterns, thus the pH and the composition of fermentation products and 

ratios may also be different. Duncan et al. (2009) investigated growth of 33 

representative human colonic bacteria under different pH environment, they reported 

that 8 Bacteroides species and 19 Gram-positive anaerobes grew poorly at pH 5.5, and 

these species thrived at pH 6.7; while Eubacterium rectale, which is butyrate-

producing Gram-positive bacteria, was detected at pH 5.5, but was not detected at pH 

6.7. Walker et al. (2005) reported that SCFA can promote large intestine functions, 

which include modulation of colonic motility, promotion of visceral blood flow, and 

prevention of the overgrowth of potential pathogens in the lumen. Fu, Shi, and Mo 

(2004) reported that SCFAs in the human colon may maintain colonocyte 

differentiation, and may exert a protective effect against carcinogenesis. Acetate is the 

major component of SCFAs in the colon. One study showed that acetate and 



36 

 

propionate may increase blood cholesterol and triglyceride levels (Wolever et al. 

1989). However, another study suggested that substrate-dependent SCFA which 

produced by fermentation can inhibit cholesterol synthesis (Chen, Anderson, and 

Jennings 1984). Hosseini et al. (2011) reviewed propionate's effect on health, and 

stated that propionate has antilipogenic and cholesterol -lowering effects. Propionate 

also has been shown to exhibit antiproliferative effect towards colon cancer. Butyrate 

was reported to maintain a normal colonocyte phenotype, which could contribute to 

lowering the risk of colorectal cancer (McOrist et al. 2011). In general, SCFAs play a 

key role in colonic health and may play a key role in prevention of certain diseases 

((den Besten, van Eunen, et al. 2013a); (Lecumberri, Goya, et al. 2007a)).  

1.4.3 Determination of Short chain fatty acids 

 Measurement of profile of SCFAs can be performed either in vivo or in vitro. In 

general, SCFAs are produced and absorbed in the colon and mainly transported to the 

liver though the portal vein, and partly to the other organs via peripheral vein 

(Bergman 1990). Therefore, determination of concentration of SCFAs in blood is a 

direct method for assessing the degree of SCFA formation. However, it is difficult to 

extract and measure portal vein blood on a large-scale study of humans. Using 

currently available methodology the concentration of SCFAs in peripheral vein are 

below the minimum detectable concentration except acetate. Therefore, the 

application using venous blood for determination of SCFAs is limited. Determination 

of SCFAs in colostomy patient's colonic content has been used (Clausen, Bonnen, and 
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Mortensen 1991), but this in vivo approach also limited by experimental condition. 

Fermentation in the large intestine can be reflected by breath hydrogen gas excretion, 

and this method is a non-invasive test (Oku and Nakamura 2003). Hydrogen gas is 

produced from fermentation of non-digestible carbohydrates by microorganisms in 

large intestine. During fermentation, SCFAs, carbon dioxide, and hydrogen is 

produced simultaneously (Figure 1.10). Hydrogen cannot be metabolized by human 

cells, it diffuses into blood, subsequently it is breathed out of body through the lungs. 

Since colonic fermentation is the only source of hydrogen, determination of breath 

hydrogen can reflect fermentation in the large intestine. However, breath hydrogen 

gas excretion does not reflect the profile of SCFAs. Consequently, in vitro 

measurement is preferred. 
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Figure 1.10. Pathways that are responsible for the biosynthesis of the major microbial 

metabolites that result from carbohydrate fermentation and bacterial cross-feeding. 

(Louis, Hold, and Flint 2014) 

 

1.4.4 Model system 

 Both in vivo or in vitro model system has been used to assess SCFA production in 

previous studies. In animal studies, both rats (Kotani et al. 2009) and pigs (Liu 2015) 

were used as models. These studies showed that SCFAs concentration increased after 

with the inclusion of fermentable carbohydrates. However, the GI tract of rats is 

vastly different from human's, the microflora and metabolism pattern may not 

appropriately reflect those of in human gut. Pigs are considered better models than 

rats, but the pig model system are restricted by availability of resources to conduct 

studies with large numbers of animals. Therefore, pigs are not utilized as widely as 
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rats in model. Compared with in vivo model system, in vitro model system is simpler, 

faster, cheaper, and less resource-consuming, thus it is frequently employed in human 

gut microorganism fermentation studies (Gültekin-Özgüven, Berktaş, and Özçelik 

2016) 

1.5 Objective 

 The carbohydrates in cocoa that are mainly composed of dietary fibers. The cocoa 

fibers may be fermented by microorganisms in the human colon to produce beneficial 

compounds to the host. The variation in the cocoa processing, such as alkalization 

impacts the polyphenols composition (Wollgast and Anklam 2000), thermal treatment 

(roasting) affects dietary fiber composition (Valiente et al. 1994), and then 

consequently affects the fermentation patterns and the composition of the end 

products. However, the detail of these influences and changes, plus structure of 

carbohydrates in cocoa and their possible complexes with polyphenols are not well 

understood. In order to establish a more comprehensive understanding of 

polyphenolic compounds in cocoa and fermentation products changes, a model system 

which simulates colonic fermentation in the lower GI tract was developed, five 

differently treated cocoa samples (Natural cocoa, D-11-S, D-11-B, Lavado, Shell) 

were subjected to the pooled fecal fermentation, and D-11-B was fermented 

individual fecal samples, the pH, polyphenol compounds, and short chain fatty acids 

produced were determined. 
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CHAPTER 2. INTERACTION OF COCOA SAMPLES WITH 

MICROBIOTA FROM POOLED FECAL SAMPLE  

2.1 Materials and methods 

2.1.1 Cocoa sample analysis 

 Five cocoa samples provided by The Hershey company are labeled as Natural 

cocoa, D-11-S, D-11-B, Lavado, and Shell. All the samples were from roasted cacao, 

but underwent different processing. The shell and natural cocoa powder were not 

subjected to alkalization, the D-11-S were lightly alkalized by potassium carbonate to 

pH 7.6, while the D-11-B were heavily alkalized by sodium hydroxide and sodium 

bicarbonate to pH 8.0. To acquire quantified information about the processing 

treatments of each cocoa sample, the cocoa samples were subjected to Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) for plant tissue analysis. Analysis was 

done by Soil Testing & Plant Analysis Lab at Louisianan State University.  

 The sample treatment for ICP-MS was followed as below: Cocoa samples (0.5 g) 

were mixed with 2.2 ml deionized water (DI) water and heated by heat block. When 

temperature was brought to 125°C, 5 mL concentrated nitric acid (HNO3) was added, 

then digested for 2.75 h. Add 3 mL hydrogen peroxide, let mixture cool down to room 

temperature, and filled to a volume of 20 mL with DI water.   

2.1.2 Fecal sample collection 

 The fecal samples were collected from 7 randomly selected volunteer donors, and 

are identified as Volunteer Group 1. The donors had no history of gastrointestinal 

disease, and had not taken antibiotics during the 3 months prior to donation, donors 
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were asked to keep records of his/her regular diet for 3 to 5 days prior to collection on 

the last day. When sample collection was completed, the fecal samples were 

immediately frozen and stored in –80°C in an ultra-low temperature freezer until 

used. 

2.1.3 Cocoa sample predigestion 

 A protocol simulating the human digestion and absorption process in the stomach 

and small intestine was established. Cocoa substrates were pretreated in the model in 

vitro digestive system to simulate the products that would reach the colon microbiota 

for fermentation. The enzymatic digestion consisted of pepsin digestion followed by 

pancreatin, to remove the digestible, non-fibrous contents of the substrate. Pepsin 

degrades protein into mostly water-soluble peptides and the pancreatin which is a 

mixture of amylase, lipase and protease further degrades protein, peptides, starches 

and lipids. The protease works to hydrolyze proteins into oligopeptides; amylase 

hydrolyzes starches into oligosaccharides and the disaccharide maltose; and lipase 

hydrolyzes triglycerides into fatty acids and glycerol. The digestion process was 

conducted as followed: 

 Sixty (60) g of freeze dried cocoa sample was added to 200 mL distilled water. 

Then 2 mol/L hydrochloric acid (HCl) was added to bring the solution to a pH of 2. 

The mixture was incubated for 10 min in a water bath with shaking to bring the 

temperature to 37°C. Next, 0.5 g (3500 U/mg) of pepsin was added to the mixture and 

incubated while shaking for another 3 h. Then the pH of the sample was brought to 
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7.5 with 2 mol/L sodium hydroxide (NaOH) solution, and incubated for 10 min to 

bring the temperature back to 37°C before adding 4.0 g of pancreatin (SIGMA-

ALDRICH) and 1g of bile salts (mixture of sodium cholate and sodium deoxycholate, 

from SIGMA-ALDRICH). The solution was mixed thoroughly for 10 min then 

incubated at 37°C for 2 h. The mixture was microwaved for 3 min to denature the 

enzymes and then filtered to obtain the solids. Those remaining solids from the 

mixture were washed with 75% ethanol and filtered again and freeze dried overnight. 

The dried substrate was later made into a powder and kept frozen in a -80°C freezer 

until utilized for the fermentation step. 

2.1.4 Fecal slurry preparation and Cocoa sample fermentation 

 The anaerobic buffer solution was prepared according to the following steps and 

was used throughout the fermentation process. The anaerobic solution was a mixture 

of two solutions, A and B, at the ratio 9:1 and prepared as follows: Solution A (per 

liter of distilled water) contained 11.76 g of sodium bicarbonate (NaHCO3), 11.1 ml 

of Hemin (0.78 mmol/L of water), 1.1ml of menadione (0.36 mmol/L of water) and 

1.1 ml of resazurin (3.98 mmol/L of water) as a redox indicator. The solution was 

autoclaved at 121°C for 15min after preparation. Solution B (per liter of autoclaved 

distilled water) contained 0.48 mol NaCl, 0.02 mmolK2HPO4 (Dipotassium 

phosphate), and 0.63 mmol L-Cysteine-HCl. 

 The in vitro pooled bacteria inoculums were prepared by blending the feces from 

7 donors (20g feces each) with the anaerobic buffer at the 1:4 ratio (g: mL) in a 
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beaker, then filtered with a filter whirl-pak bag (Nasco). The pooled fecal slurry was 

incubated at 37°C under anaerobic conditions for 1 h. 

 One-liter glass bottles used as fermentation vessels were autoclaved at 121°C for 

15 min prior to usage. To each vessel was added: 175mL of the anaerobic solution 

(solution A+B) and 5 g of the fermentation substrate (control: water). Then an aliquot 

of 25mL of the incubated bacteria fecal solution (slurry) was added to each vessel, the 

vessel was immediately flushed with an anaerobic gas mixture (10% CO2, 80% N2 

and 10% H2) for 10 min. The samples were then incubated at 37°C with stirring using 

magnetic stirring bars. Samples were collected at 0, 6, 12, and 24 h. The 15 mL 

samples were placed in falcon tubes and frozen at -80°C until usage. The fermentation 

in an in vitro digestive model system was repeated twice and 3 samples were 

examined for each separate experiment. The 5 cocoa samples were fermented by the 

pooled fecal slurry that mentioned above. These batch of fermentation was marked as 

Pooled Fermentation. (Table 2.1). 

Table 2.1. Experimental design of pooled fermentation 
 Pooled Fermentation 
 Substrate Inoculums  

Treatment 1 Natural Cocoa Pooled fecal slurry 

Treatment 2 D-11-B Pooled fecal slurry 

Treatment 3 D-11-S Pooled fecal slurry 

Treatment 4 Lavado Pooled fecal slurry 

Treatment 5 Shell Pooled fecal slurry 
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2.1.5 Short chain fatty acid determination 

 For each of the samples, the pH was measured as an indicator of SCFA 

fermentation using a pH meter (pH meter: Seven2Go pro, pH probe: InLab 413 

SG/2m, METTLER TOLEDO). One milliliter (1mL) of the fermentation samples was 

thoroughly mixed with 4mL of distilled water. A 1mL sample of the diluted extract 

was acidified with acid solution (metaphosphoric acid (3.72M) plus 2-ethylbutyrate 

(3.72μM)) and vortexed. The mixture was centrifuged for 10 min at 3000 rpm. The 

supernatant was collected in auto sampling vials for fatty acid analysis by gas 

chromatography (GC) measuring short chain fatty acid (acetate, propionate, and 

butyrate). GC condition: Shimadzu GC2010 equipped with a 15-m EC-1000 column 

that had an internal diameter of 0.53 mm and a film thickness of 1.2 μm (Alltech 

Associates, Inc.; Deerfield, IL). The reagent preparation procedure and temperature 

gradient for volatile short chain fatty acids analysis was adapted from Grigsby et al. 

(1992) and Bateman et al. (2002), respectively. The polyphenol compounds results are 

expressed in gallic acid equivalent (GAE) and catechin equivalent (CE). GAE was 

calculated by the following equation: G= C* V/M. G was the total gallic acid content 

per gram of certain substrate, C was the concentration of gallic acid of certain 

sampling in mg/ml, V was sampling volume in ml, M was the weight of substrate in 

g. CE was calculated by the following equation: Ca= C* V/M. Ca was the total 

catachin content per gram certain substrate, C was the concentration of catachin of 
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certain sampling in mg/ml, V was sampling volume in ml, M was the weight of 

substrate in g. 

2.1.6 Phenolic acids determination 

Fermented samples were diluted with deionized water at ratio of 1:4, then 

centrifuged for 15min at 3000rpm, the aliquot of the supernatant was subjected to 

Waters ACQUITY Class I UPLC system with 50mm phenolic column. The mobile 

phase is acetonitrile and 5% formic acid. Oven temperature is 30°C. Flow rate is listed 

in Table 2.2. 

Table 2.2. UPLC flow rate 

Time (min) Flow (mL/min) 5%formic acid % acetonitrile % 

Initial 0.1 100 0 

2 0.3 100 0 

10 0.3 80 20 

11 0.3 70 30 

12 0.3 70 30 

13 0.3 50 50 

15 0.3 50 50 

16 0.3 100 0 

20 0.3 100 0 

 

2.1.7 Data analysis 

 Data was analyzed by using SAS 9.4. ANOVA with Tukey's adjustment, 

significance value (alpha) was 0.05. The results were expressed as mean± Standard 

deviation. 
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2.2 Results 

2.2.1 Mineral elements of the raw cocoa samples. 

 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was employed to 

qualify and quantify the extent of processing that each cocoa sample underwent, 

especially alkalization processing. Mineral elements data were listed in Table 2.3. 

Although small amount of sodium (2-3mg/100g) and potassium (approximately 

2g/100g) naturally exist in cocoa bean, higher levels were introduced into cocoa 

powder during manufacture through alkalization. Sodium hydroxide, sodium 

bicarbonate, potassium hydroxide, and potassium carbonate were commonly used 

alkali reagents. Thus, content of sodium and potassium in cocoa powder can reflect 

extent of alkalization, the higher of sodium and potassium content, the more severe of 

alkalization treatment. Cocoa sample D-11-S contained higher potassium than other 4 

cocoa samples (P<0.05), no significant difference was observed among content of 

potassium of Lavado, D-11-B, natural cocoa, and shell. While sodium content of 

cocoa sample D-11-B was highest among 5 cocoa samples (P<0.05).      
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Table 2.3. Mineral elements results of five cocoa samples. 

Element Lavado D-11-S D-11-B Natural Cocoa Shell 

Aluminum (Al), ppm 50.17±1.07 31.55±2.42 145.42±1.49 60.51±2.78 161.52±22.67 

Boron (B), ppm 25.94±0.14 24.82±0.55 21.28±0.25 27.81±0.51 33.45±0.74 

Calcium (Ca), % 0.15±0.00 0.14±0.00 0.12±0.00 0.17±0.00 0.19±0.00 

Copper (Cu), ppm 35.52±0.37 45.42±1.28 45.89±0.16 45.81±0.68 36.25±0.39 

Magnesium (Ma), % 0.59±0.01 0.52±0.01 0.58±0.00 0.59±0.01 0.46±0.01 

Manganese (Mn), 

ppm 
25.20±0.28 43.69±1.25 63.34±0.33 43.11±0.45 36.48±0.85 

Phosphorus (P), % 0.76±0.01 0.66±0.02 0.74±0.01 0.79±0.01 0.48±0.01 

Potassium (K), % 1.64±0.01b 5.24±0.14a 1.79±0.01b 1.75±0.02b 1.76±0.02b 

Sodium (Na), ppm 71.44±0.62bc 178.24±8.63b 25155.63±111.21a 37.81±1.97c 65.08±4.09bc 

Sulfur (S), % 0.25±0.00 0.26±0.01 0.25±0.00 0.27±0.00 0.17±0.00 

Zinc (Zn), ppm 83.78±0.91 78.88±2.15 75.44±0.34 79.89±1.08 57.20±1.70 

Results are expressed in Mean ±SD. Significant difference is only compared among cocoa samples within each mineral element. Means that do 

not share a letter are significantly different. D-11-B and D-11-S are alkalized cocoa samples, natural cocoa, Lavado, and shell are non-alkalized 

cocoa sample
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2.2.2 pH changes in the in vitro GI tract model system of Pooled Fermentation. 

 Initially, the pH of 5 cocoa samples in the in vitro model system ranged from 7.44 

to7.63. After 6 hours fermentation in the model system, a significant pH decrease 

(P<0.05) occurred for the Lavado, shell, D-11-S, D-11-B, and Natural cocoa model 

system, while the pH in control did not have a significantly change (P>0.05). After 24 

hours fermentation of the five cocoa powder samples, the pH significantly decreased 

in all of the 5 cocoa sample treatment groups and the control (P<0.05), the final pH of 

those samples was 6.9 to 7.2. From 6 h to the end of fermentation, the pH of D-11-S 

and D-11-B cocoa samples were higher than pH of Lavado and Natural Cocoa 

samples (P<0.05). Among all the 5 samples, the pH of the Shell sample exhibited 

highest reduction in pH, from 7.44±0.06 at 0 hour to 6.69±0.14 at the end of 

fermentation; the D-11-S sample had lowest reduction in pH, from 7.63±0.14 at 0 

hour to 7.20±0.03 at the end of fermentation. 

Table 2.4. The pH change during in the in vitro GI tract model system of cocoa 

samples fermented with pooled fecal slurry over 24h 

Sample 0 Hour 6 Hour 12 Hour 24 Hour 

Natural cocoa 7.56±0.11Ab 7.09±0.02 7.02±0.03 6.95±0.05Bb 

D-11-S 7.63±0.14Ab 7.34±0.03 7.23±0.02 7.20±0.03Bc 

D-11-B 7.61±0.06Ab 7.35±0.04 7.24±0.02 7.11±0.04Bc 

Lavado 7.60±0.02Ab 6.96±0.09 7.00±0.04 6.93±0.08Bb 

Shell 7.44±0.06Abc 6.92±0.13 6.90±0.09 6.69±0.14Ba 

Control 7.85±0.14Aa 7.83±0.08 7.70±0.02 7.59±0.07Bd 

pH results are expressed in Mean ±SD. Means that do not share a letter are 

significantly different, lower-case letters can be only compared within each column, 

and capital letters can be only compared within each row. D-11-B and D-11-S are 

alkalized cocoa samples, natural cocoa, Lavado, and shell are non-alkalized cocoa 

sample. Control was deionized water. 

 

2.2.3 Procyanidin content of raw cocoa and digested cocoa samples. 

 As mentioned in section 1.3, cocoa beans contain oligomeric and polymeric 

procyanidins. In 5 undigested and 5 predigested cocoa samples, caffeine, 

theobromine, and procyanidins from monomer to decamer polymers were determined 
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(Table 2.5). Digested Lavado contained highest total procyanidin among five cocoa 

samples (66.32 mg/g substrate in undigested sample, 118.42 in predigested sample), 

while procyanidins content of D-11-B and D-11-S were much lower than the other 3 

samples. After digestion, total procyanidin content of Shell and Natural cocoa slightly 

increased; on contrast, total procyanidin content of D-11-B and D-11-S decreased. 

Dramatic increase was observed in Lavado after digestion. Content of caffeine, 

theobromine, procyanidin monomer, dimer, and trimer decreased in all cocoa samples 

after digestion. 
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Table 2.5. Phenolic acids and procyanidin (monomer - 10mer) content of raw cocoa and digested cocoa samples.  

Samples Caffeine Theobromine 1mer 2mer 3mer 4mer 5mer 6mer 7mer 8mer 9mer 10mer total 

Shell-raw 0.16% 1.09% 2.04 1.39 1.13 1.49 1.69 2.03 1.55 1.45 2.12 0.54 15.43 

Shell-

digested 

0.08% 0.47% 0.52 0.59 0.75 1.26 1.75 2.43 1.65 2.03 3.64 0.95 15.57 

D11S-raw 0.13% 1.79% 0.53 0.38 0.17 0.16 0.11 0.04 0.08 <0.001 <0.001 <0.001 1.47 

D11S-

digested 

0.06% 1.29% 0.07 0.09 0.06 0.06 0.04 0.02 0.04 0.01 <0.001 <0.001 0.39 

Natural 

cocoa-raw 

0.17% 1.89% 3.69 2.55 1.72 1.58 1.73 1.77 1.22 0.84 1.02 0.32 16.44 

Natural 

cocoa-

digested 

0.11% 1.00% 0.91 1.1 1.32 1.96 2.31 2.96 1.75 1.95 3.16 0.55 17.97 

D11B-raw 0.12% 2.14% 0.11 0.01 0.02 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.14 

D11B-

digested 

0.03% 0.56% 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.01 

Lavado -raw 0.18% 2.18% 10.75 7.25 5.75 5.27 7.44 8.03 6.47 5.46 8.46 1.44 66.32 

Lavado -

digested 

0.12% 1.15% 3.3 3.99 5.47 9.7 15.29 19.05 12.28 15.78 27.8 5.76 118.42 

Caffeine and Theobromine are expressed in wt.%, Procyanidins are expressed in mg/g substrate
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2.2.4 Polyphenolic compounds change of cocoa samples during 24h in Individual 

Fermentation. 

 There was no detectable phenolic acid found in the control group. The initial 

GAE of D-11-S and D-11-B were higher than that of Natural cocoa, Lavado, and 

Shell (P<0.05). After 24 hours, GAE significantly increased in the five fermented 

cocoa samples (P<0.05). There were no significant differences between initial GAE of 

D-11-B and D-11-S, similarly, initial GAE of Natural cocoa and Lavado were not 

significant different (P>0.05). For the final GAE, D-11-B and D-11-S were higher 

than the rest of the three samples (P<0.05). GAE variation in the Shell showed 

different pattern from the other four samples, it increased significantly in the first 6 

hours, while GAE of other samples increased more gradually. 
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Figure 2.1. Chromatogram changes of cocoa sample D-11-B fermented with pooled 

fecal slurry. From top to bottom, fermentation time is 0h, 6h, 12h, and 24h. Peak at 

retention time 4min is Gallic acid, at 6min is catechin. 

 

Table 2.6. Gallic acid equivalent changes of cocoa samples during 24h fermentation 

of cocoa sample with pooled fecal slurry in the in vitro GI tract model system. 
 Natural cocoa D-11-S D-11-B Lavado Shell 

0 

Hour 

0.0783±0.026

4Aa 

0.2018±0.000

0Ba 

0.2064±0.045

0Ba 

0.0376±0.002

2Aa 

0.0458±0.0213
Aa 

6 

Hour 

0.0850±0.024

8 

0.2225±0.032

1 

0.2684±0.017

8 

0.0613±0.004

0 
0.1673±0.0107 

12 

Hour 

0.1016±0.032

4 

0.2357±0.036

2 

0.2700±0.000

7 

0.0972±0.011

3 
0.1786±0.0006 

24 

Hour 

0.1228±0.009

9Ab 

0.3250±0.088

3Cb 

0.2994±0.031

7Cb 

0.1013±0.007

1Ab 

0.1927±0.0079C

ABb 

Results are expressed in mean ±SD in mg/g substrate. Means that do not share a letter 

are significantly different, lower-case letters can be only compared within each 

column, and capital letters can be only compared within each row.  
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 The lowest initial CE was Lavado; D-11-S, D-11-B, and Natural cocoa were not 

significantly different from each other. After 24 hours fermentation, CE in all of 

samples increased (P<0.05). CE in the Shell group drastically increased in first 6 

hours fermentation, and finial CE was much higher than the other four fermented 

cocoa samples (P<0.05). 

Table 2.7. Catechin equivalent changes of cocoa samples during 24h fermentation of 

cocoa samples with pooled fecal slurry in the in vitro GI tract model system  

Results are expressed in mean ±SD in mg/g substrate. Means that do not share a letter 

are significantly different, lower-case letters can be only compared within each 

column, and capital letters can be only compared within each row. D-11-B and D-11-

S are alkalized cocoa samples, natural cocoa, Lavado, and shell are non-alkalized 

cocoa sample. 

 

2.2.5 Short chain fatty acids content changes in the in vitro GI tract model 

system of Pooled Fermentation. 

 Three SCFAs, propionate, acetate, and butyrate, were detected in cocoa samples 

after fermentation. Initial propionate concentration of the five cocoa samples were not 

different from each other, nor initial concentration of acetate and butyrate. Table 2.8 

showed the concentration of propionate in Natural cocoa, D-11-S, D-11-B, and 

control samples, did not significantly change during the 24 h. At the end of cocoa 

samples fermentation, propionate in Lavado and Shell significantly increased 

(P<0.05). Table 2.9 showed acetate in the control group remained at the original 

concentration during 24 h fermentation. Conversely, acetate in the other 5 cocoa 

samples significantly increased (P<0.05). The final concentration of acetate in the 

Fermentat

ion time 

Natural 

cocoa 
D-11-S D-11-B Lavado Shell 

0 Hour 
0.3030± 

0.0870Aa 

0.3298±0.05

21Aa 

0.2474±0.05

02Aa 

0.1584±0.02

66Ba 

0.4976±0.24

02Aa 

6 Hour 
0.4493±0.03

08 

0.4482±0.01

72 

0.3366±0.02

19 

0.4200±0.04

94 

2.2429±0.01

62 

12 Hour 
0.5363±0.05

80 

0.5391±0.02

03 

0.3833±0.05

03 

0.6717±0.15

62 

2.0050±0.17

34 

24 Hour 
0.6356±0.05

85Ab 

0.5938±0.02

51Ab 

0.3978±0.06

09Ab 

1.0141±0.03

45Bb 

1.9670±0.04

27Cb 
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Shell sample was highest among the 5 cocoa samples (P<0.05). This pattern was also 

observed in the changes in butyrate. During 24h fermentation of cocoa samples, only 

butyrate in the shell group exhibited statistically significant increase (P<0.05), there 

were no significant differences among the other 4samples and control group (Table 

2.10). 

Table 2.8. Propionate changes of fecal sample during 24h fermentation of cocoa 

samples fermented with pooled fecal slurry in the in vitro GI tract model system 

 Natural 

cocoa 
D-11-S D-11-B Lavado Shell Control 

0 Hour 0.70±0.07Aa 
0.81±0.14 

Aa 

1.29±0.76 

Aa 

0.84±0.20 

Aa 

1.00±0.09 

Aa 

0.89±0.64 

Aa 

6 Hour 1.17±0.11 1.47±0.60 1.36±0.47 1.3±0.33 1.12±0.28 0.89±0.61 

12 

Hour 
0.94±0.20 1.07±0.16 1.16±0.24 1.22±0.23 1.55±0.65 0.79±0.66 

24 

Hour 
1.56±0.27 Aa 

1.02±0.11 

Aa 

0.67±0.10 

Aa 
3.23±0.3Bb 

6.95±0.35C

b 

0.32±0.14A

c 

Results are expressed in mean ±SD in mmol/L. Means that do not share a letter are 

significantly different, lower-case letters can be only compared within each column, 

and capital letters can be only compared within each row. D-11-B and D-11-S are 

alkalized cocoa samples, natural cocoa, Lavado, and shell are non-alkalized cocoa 

sample. Control was deionized water. 

 

Table 2.9. Acetate changes of fecal sample during 24h fermentation of cocoa samples 

fermented with pooled fecal slurry in the in vitro GI tract model system 

 Natural 

cocoa 

D-11-S D-11-B Lavado Shell Control 

0 Hour 2.15±0.06
Aa 

2.81±0.32 

Aa 

3.14±0.66 

Aa 

3.17±0.19 

Aa 

4.16±0.53 

Aa 

2.94±0.67 

Aa 

6 Hour 8.49±0.47 5.79±0.38 4.75±0.05 8.76±0.08 10.56±0.8

3 

2.96±0.31 

12 Hour 13.25±0.3

8 

11.02±0.7

5 

11.02±0.1

0 

16.89±0.4

4 

25.16±5.6

3 

2.43±0.76 

24 Hour 22.16±0.3

1BCb 

15.94±1.5

5ABb 

12.56±4.1

6Ab 

25.88±1.7

8Cb 

38.10±14.

92Db 

1.28±0.20 

Aa 

Results are expressed in mean ±SD in mmol/L. Means that do not share a letter are 

significantly different, lower-case letters can be only compared within each column, 

and capital letters can be only compared within each row. D-11-B and D-11-S are 

alkalized cocoa samples, natural cocoa, Lavado, and shell are non-alkalized cocoa 

sample. Control was deionized water. 
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Table 2.10. Butyrate changes of fecal sample during 24h fermentation of cocoa 

samples fermented with pooled fecal slurry in the in vitro GI tract model system 

 Natural 

cocoa 

D-11-S D-11-B Lavado Shell Control 

0 Hour 0.40±0.01 0.45±0.12 0.59±0.33 0.44±0.05 0.33±0.01 0.58±0.21 

6 Hour 0.47±0.04 0.35±0.16 0.42±0.10 0.40±0.06 0.37±0.05 0.53±0.20 

12 Hour 0.41±0.08 0.48±0.07 0.43±0.08 0.45±0.05 0.65±0.15 0.30±0.24 

24 Hour 0.51±0.09 0.51±0.06 0.67±0.10 0.5±0.03 1.55±0.10
A 

0.16±0.12 

Results are expressed in mean ±SD in mmol/L. Only value of shell sample at 24h is 

significantly different from other values. D-11-B and D-11-S are alkalized cocoa 

samples, natural cocoa, Lavado, and shell are non-alkalized cocoa sample. Control 

was deionized water. 

 

2.2.6 Microorganism distribution of cocoa samples in Pooled Fermentation 

 After stringent quality sequence curation, a total of 3799034 sequences were 

parsed and 3309403 were then clustered. 3308382 sequences identified within the 

Bacteria and Archaea domains were utilized for final microbial analysis (Figure 2.2). 

Before fermentation Firmicutes was the most abundant phylum, it accounted for more 

than 70% of total microorganism population in the pooled fecal sample from 

Volunteer Group 1; next was Bacteroidetes phylum, which account for approximate 

20% of total microorganism population; Proteobacteria and Actinobacteria took up 

only 6% of total microorganisms. After 24 hours fermentation, dramatic increases of 

Proteobacteria were observed in the five fermented cocoa samples, Proteobacteria 

became dominant phylum and it took up 40% - 60% of total microorganism 

population after fermentation; meanwhile population of Firmicutes decreased to lower 

than 40%. Increases of Bacteroidetes were observed in D-11-B, Natural cocoa 

powder, and Shell after 24 h fermentation, while it decreased in D-11-S, Lavado, and 
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the control. The highest increase of Bacteroidetes was in shell sample, its population 

account for 40% of total microorganism population, while in the control its population 

decreased to less than 3%. Decreases of Actinobacteria were found in the five 

fermented cocoa samples, its population went down to 1% in D-11-B and the control. 
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Figure 2.2. Relative abundance of Phyla of fecal microorganism in the in vitro GI 

tract model system of cocoa samples fermented with pooled fecal slurry. In this 

figure, "alkalized cocoa mild" means cocoa sample D-11-S, "alkalized strong" means 

D-11-B, " unprocess" means natural cocoa, "normal heat" means Lavado, and "hulls" 

means shell.
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2.2.7 Macronutrients intake of Group 1 

 Macronutrients data was collected and calculated based on nutrition facts label of 

food and USDA Food Composition Databases. The detailed daily food intake records 

of each donor in Volunteer Group 1 was listed in Appendix. In this Macronutrients 

record table, carbohydrates include monosaccharide, disaccharide, oligosaccharide, 

and polysaccharide, sugar only refers to monosaccharide and disaccharide. There was 

no significant difference of average daily intake of calories, protein, and lipid among 

7 donors (P>0.05). Donor G had higher carbohydrates intake than Donor B and Donor 

C (P<0.05); while Donor A and Donor D had higher dietary fiber intake than Donor C 

and Donor G (P<0.05). Sugar intake of Donor C was much less than Donor D 

(P<0.05).    

Table 2.11. Macronutrients average daily intake of 7 donors in Volunteer Group 1 

Dono

r 
Calories/Cal 

Protein/

g 
Lipid/g 

Carbohydrate

s/g 

Dietary 

fiber/g 
Sugar/g 

A 
2083.6±105

3.3 

69.3±15

.9 

58.6±16

.0 
203.2±50.9ab 

14.1±4.0
a 

56±29.6abc 

B 1103±176.1 
24.5±9.

2 

52.3±10

.9 
142.3±29.0b 

11.4±3.8
ab 

53.7±31.9
abc 

C 904.4±359.0 
36.2±16

.4 

43.2±35

.2 
92.5±20.2b 3.9±1.2b 13.2±8.1c 

D 
1438.2±504.

0 

47.1±19

.7 

44.8±19

.6 
223.6±73.5ab 

15.3±6.0
a 

105.4±37.

9a 

E 
1549.8±296.

0 

94.9±64

.7 

63.6±18

.4 
167.8±29.3b 

9.4±3.9a

b 

49.0±9.3ab

c 

F 
1444.7±382.

2 

50.7±28

.8 

43.5±31

.3 
187.7±88.2ab 

9.7±3.3a

b 

85.6±29.6
ab 

G 
1930.7±468.

1 

96.1±11

.7 

28.4±15

.8 
320.0±85.6a 4.6±1.0b 26.0±7.5bc 

Results are expressed in mean ±SD. Significant difference is only compared among 7 

donors within each macronutrient. Means that do not share a letter are significantly 

different. No significant difference of average daily intake of calories, protein, and 

lipid among 7 donors 
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2.3 Discussion 

 This study was carried out to assess the fermentation of cocoa powder with 

human gut microbiota. It was the first study that investigated the fermentation of 

various processed cocoa powder with both pooled and individual fecal samples from 

multiple donors, monitored microorganism activity, short chain fatty acids, and 

polyphenols at the same time. The results found that cocoa powder can be used by 

human gut microorganism during fermentation, and produced polyphenols and 

SCFAs which could possess potential health benefits to the human body.  

2.3.1 Chemical properties of cocoa samples.  

 Total 11 mineral elements were investigated in this study. In general, the most 

abundant mineral element in each cocoa sample was potassium, followed by 

magnesium, phosphorus, sulfur, and calcium. The mineral elements profile of cocoa 

samples was similar to the cocoa bean in study conducted by Afoakwa et al. (2013), 

and content of elements were roughly at the same level.  

 Mineral elements content result of cocoa samples showed that D-11-S and D-11-

B contained significantly higher amount of sodium and potassium than other samples, 

this result proved that sample D-11-B and D-11-S received alkalization treatment. 

This result was also in line with the manufacture information provided by The 

Hershey Company. D-11-S was treated with potassium carbonate to pH 7.6, so 

potassium element was introduced, and finally high amount of potassium was left in 

D-11-S; while D-11-B was treated with sodium hydroxide and sodium bicarbonate to 

pH 8.0, so high amount of sodium was left in D-11-B.  

 Result also demonstrated that there was no significant difference of sodium or 

potassium content among Lavado, natural cocoa, and shell sample. According to 

manufacture information provided by The Hershey company, natural cocoa and shell 



60 

 

had not received alkalization treatment. Therefore, cocoa sample Lavado may receive 

no or very slight alkalization treatment. Other possible explanation of relative low 

content of sodium and potassium in Lavado was that it may receive other special 

processing to remove these 2 elements. Mineral elements other than sodium and 

potassium were affected substantially by the elements in the soil, previous study also 

reported that mineral elements contents of cocoa, including Mn, Fe, Zn, Cu, Cd, and 

Ba, were affected by cropping site rather than genotype (de Araujo et al. 2017). 

 Based on result of mineral elements and manufacture information, five cocoa 

sample can be categorized into two group. D-11-S and D-11-B were alkalized cocoa 

powder, natural cocoa, Lavado, and shell were non-alkalized sample. In detail, D-11-

S was mildly alkalized cocoa powder, and D-11-B was heavily alkalized cocoa 

powder.  

 Total procyanidins content of D-11-B and D-11-S were much lower than the 

other 3 samples (Table 2.4). This suggests that alkalization treatment contributed to 

reduction of polyphenols content in cocoa during manufacture. Previous studies also 

reported phenolic compound loss during alkalization. Li et al. (2014) measured total 

polyphenol content in cocoa powder alkalized by different alkali solution, they found 

that total polyphenol content of each cocoa powder decreased after alkalization 

treatment, and cocoa powder treated with potassium carbonate solution contained 

lower amount of total polyphenol than cocoa powder treated with sodium hydroxide 

solution. Miller et al. (2008) measured total polyphenol content of commercial cocoa 

powder which were lightly alkalized (pH 62.0-7.20), medium alkalized (pH 7.21-

7.60), and heavily alkalized (pH 7.61 and higher). They found that the more severe 

alkalization it received, the lower polyphenol content in the product. The total 

polyphenol content of cocoa powder even showed a linear decrease as pH of cocoa 
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powder increased. Result of these 2 studies also roughly corresponded to relationship 

between alkalization of cocoa sample and polyphenol content. The polyphenol content 

of cocoa powder will be further discussed in 2.3.3. It should be noted that alkalization 

was not the only factor that affected polyphenol content during cocoa powder 

manufacture. Previous studies also reported that cocoa origin and roasting can also 

have affected polyphenol content (Miller et al. 2008); (Ramli et al. 2006)). 

Alkalization is one of the factors contributed to polyphenol loss.  

2.3.2 pH, SCFAs and gut microbiota changes during 24h in Pooled 

Fermentation. 

 The pH is an important parameter in the fermentation because it can reflect the 

growth of microflora. The pH decrease during the fermentation of the cocoa samples 

was mainly due to the production of short chain fatty acid (Maekivuokko et al. 

2007).The substrates for short chain fatty acid production including dietary fibers and 

other carbohydrates (Walker et al. 2005). Previous work in our lab (unpublished data) 

identified acetate, propionate, and butyrate are produced during cocoa fermentation. 

The levels of the short chain fatty acid concentrations vary with the cocoa samples 

and microflora during fermentation. 

 In cocoa powder samples fermented with pooled fecal slurry experiments, the pH 

continuously decreases during cocoa samples fermentation were observed in all of 5 

in vitro model systems. The SCFAs results showed that when fermentation duration 

time increased, more SCFAs were produced. The SCFAs analysis results were in 

accord with pH results. Furthermore, the lowest pH was found in the shell sample 

fermentation in vitro model system, and the shell sample was used to produce the 

highest amount of SCFAs were detected in this model system (Table 2.7 to Table 2.9). 

It was also noted that although both alkali treated and non- alkali treated cocoa 
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samples exhibited pH decrease during cocoa samples fermentation with fecal slurry, 

after 24 h fermentation the final pH of non- alkalized cocoa samples were lower than 

pH of alkalized cocoa samples (P<005). The mildly alkalized cocoa sample D-11-S 

(treated with potassium carbonate) had lowest reduction in pH at the end of 

fermentation. This result indicated that alkalization treatment changed fermentability 

of dietary fiber in cocoa powder.  

 Acetate was the main contributor to the pH decrease of the cocoa samples, the 

acetate content was about 8- 20 times higher than propionate and butyrate content 

(Table 2.7 to Table 2.9). This result indicated that the bacteria species which produce 

acetate were more active than propionate-producing bacteria and butyrate-producing 

bacteria in the cocoa samples fermentation. This result was consistent with previous 

studies, which reported that acetate is the dominant SCFA in the column of human 

and rats ((Ríos-Covián et al. 2016); (Vogt and Wolever 2003);(Campbell, Fahey, and 

Wolf 1997); (Treem et al. 1996)). As mentioned above, pH change was the one of the 

primary indicators of microbial activity, in this study the pH decrease confirmed the 

existence of the human gut microbial activities in the human gut fermentation model 

system. Increases of the SCFAs in model system further confirmed the microbial 

activity. Combination of both the pH and the SCFAs results indicated that human gut 

microorganism from human fecal slurry metabolized carbohydrates in cocoa powder 

samples. The SCFAs were the metabolites of the microorganism activity, and the 

increased SCFAs content in model system subsequently induced pH decreases.  

 The butyrate increase was only observed at the latter period (12 h- 24 h) in the 

Shell sample fermentation, during this time period the pH further decreased and 

finally reached a value lower than 7. The butyrate content change in other 4 groups 

showed that butyrate content in model systems were much lower than content of 
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acetate. Walker et al. (2005) showed that in anaerobic fermentation, the butyrate 

production preferred lower pH environment, sample in the pH 5.5 produced higher 

amount of butyrate than sample in pH 6. In this study the pH in model systems were 

higher than 6, butyrate-producing rate may be relatively low under neutral 

environment, this may be one of the reasons that content of butyrate was much lower 

than content of acetate. On the other hand, some of the butyrate-producing bacteria, 

such as F. Prausnitzii, need an acetate rich environment to grow and consume acetate 

to produce butyrate (Duncan et al. 2002), it is reasonable that butyrate content 

increase was only detected in the model system with highest acetate production. 

 The pH in the control model system decreased after 24 hours incubation (Table 

2.3). Theoretically, since no substrate was added into in vitro fermentation model 

system, human gut microorganism was not able to grow without carbohydrates, 

therefore SCFAs would not be produced, thus the pH in model system would not 

decrease. However, although the pooled fecal sample was filtered, it was still possible 

that a tiny amount of carbohydrates existed in fecal slurry, microorganism could 

ferment these carbohydrates then produce SCFAs. This may be the reason of pH 

decrease in control. The pH reduction extent in the control model system was less 

than other 5 cocoa powder samples fermentation model system. This meant the 

SCFAs content in cocoa samples fermentation model system was higher than in the 

control. This result indicated that during the cocoa powder samples fermentation, even 

if a part of SCFAs was fermented from carbohydrates originally existed in fecal 

slurry, the other part of SCFAs was from cocoa powder samples fermentation. 

 It was noted that increases of Bacteroidetes phylum were observed in D-11-B, 

Natural cocoa powder, and Shell after 24 h fermentation, while it decreased in D-11-

S, Lavado, and the control. Meanwhile the highest increase of Bacteroidetes was in 
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shell sample, its population account for 40% of total microorganism population, while 

in the control its population decreased to less than 3%. These results indicated that 

proliferation of human gut microbes was affected by different cocoa samples. The 

effects of polyphenol -rich food on growth of human gut microorganisms is 

complicated. For example, an in vitro fermentation of grape seed extract study 

conducted by Cueva et al. (2013) showed profile of microbiota change during 

fermentation. They found that grape seed extract promoted growth of 

Lactobacillus/Enterococcus but decrease in the Clostridium histolyticum group during 

fermentation. However, the results shown in grape seed experiment was contrary to a 

study which employed an in vitro fermentation of a red wine extract by human gut 

microbiota (Sánchez-Patán et al. 2012). Microbial activity was observed during 

fermentation, but the profile of main bacterial groups did not significantly change. 

Although the studies focused on fiber-microbiota relationship is increasing in 

numbers, understanding of effect of fiber on microbiota profile changing is still poor 

and conclusion of those studies are controversial.     

 In summary, during 24h fermentation of cocoa samples with human fecal slurry, 

pH decrease was observed in both alkalized and non-alkalized cocoa samples. 

Reduction of pH was caused by production of short chain fatty acids by human gut 

microbiota. At the end of fermentation, pH of non-alkalized cocoa samples were 

lower than pH of alkalized cocoa samples. Alkalization reduced fermentability of 

dietary fiber in cocoa powder. This may be because some of the dietary fiber was 

converted to simple sugars and lost during alkalization.  
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2.3.3 Procyanidin content in raw cocoa samples and Polyphenolic compounds 

change during 24h in Pooled Fermentation. 

2.3.3.1 Procyanidin content in raw cocoa samples 

 Procyanidin distribution in each cocoa sample were very different from each 

other (Table 2.4), this result illustrated that different processing resulted in greatly 

modified polyphenol content. As mentioned in 2.3.1, total procyanidins content of 

alkalized cocoa samples (D-11-B and D-11-S) were much lower than non- alkalized 

cocoa samples (natural cocoa, Lavado, and shell) (Table 2.4). This suggested that 

alkalization treatment contributed to polyphenols compound loss in cocoa during 

manufacture. This is in line with previous studies. Roasting, alkali treatment, milling, 

and removal of lipids can lead to loss of polyphenol content ((Bordiga et al. 2015)  

(Cooper et al. 2007); (Natsume et al. 2000)). A study also reported that cocoa 

processing, such as roasting and Dutching, can significantly reduce the polyphenolic 

compound content (Mazor Jolić et al. 2011). Pre-digestion reduced content of 

caffeine, theobromine, and procyanidin monomer, dimer, trimer. This loss may be 

attributed to washing steps in pre-digestion, these compounds are relatively small and 

low molecular weight molecules, and their solubility in water and ethanol are higher 

than procyanidins with higher degree of polymerization (DP), thus they may be 

washed off during pre-digestion. This is similar to absorption of polyphenols in 

humans. In human body, these low molecular weight compounds are released from 

food matrix, and they are absorbed in the small intestine ((Holt et al. 2002); (Scalbert 

et al. 2002);(Deprez et al. 2001)). Procyanidin polymers cannot be absorbed in the 

small intestine and passed into the large intestine (Stoupi, Williamson, Viton, et al. 

2010a).  
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2.3.3.2 Polyphenolic compounds change during 24h in Pooled Fermentation. 

 The main polyphenol compounds of cocoa are catechin, epicatechin, and catechin 

polymers (Ortega et al. 2008). The polyphenolic content varied greatly due to 

different cocoa species and treatments during processing (Lecumberri, Mateos, et al. 

2007b). Polyphenolic compounds (polymer) accumulated more in shells and skins of 

the cocoa bean (Afoakwa et al. 2013), so it so it accounts for the shell sample 

containing higher initial and final CE content. Shell sample interacted with microbiota 

and had highest polyphenolic compound content at the end of fermentation, it may be 

used as a low-cost phenolic-rich health food ingredient. The other 4 cocoa samples 

also had different final content of GAE and CE. At the end of fermentation, GAE 

content of alkalized cocoa samples (D-11-S and D-11-B) were higher than non-

alkalized cocoa samples (P<0.05), while high or low CE content of each cocoa 

samples did not necessarily correspond to light or heavy alkalization treatment that 

each cocoa sample received. This result implied that alkalization may affect 

availability of polyphenol, however, influence of alkalization varied from one kind of 

polyphenol to another.  

 In this study concentrations of polyphenolic compounds in the cocoa samples 

increased during fermentation. This implied that colonic bacteria may convert 

bounded polyphenols into measurable free polyphenols in cocoa. The polyphenol 

polymers that are larger than dimers are not absorbed, so they can reach the lower GI 

tract and interact with microbiome, then these polymers may be broken down to 

dimer, monomer, or simple phenolic compounds. The results of other studies showed 

that only about10% procyanidin oligomer underwent scission of the interflavan bond 

and release catechins ((Stoupi, Williamson, Drynan, et al. 2010b); (Appeldoorn et al. 

2009). Hein et al. (2008) used a pig intestinal microbiota model system to investigate 
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the microbial degradation ability on flavonol glycosides, they found that flavonols 

were hydrolyzed by the pig intestinal microbiota to simple phenolic compound such 

as phloroglucinol. The source of increased polyphenols in this study suggest phenolic 

compounds are being released from biopolymers by action of the human gut 

microorganisms, phenolics are also produced from degradation of procyanidin 

oligomers and polymers. The details of this chemistry are not clear and need further 

investigation. 

 In summary, alkalization reduced polyphenol content of cocoa powder during 

manufacture. Cocoa powder can be fermented by human gut microorganism, and 

polyphenol content of cocoa powder increased during fermentation regardless 

alkalization treatment of cocoa powder.   
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CHAPTER 3. INTERACTION OF COCOA SAMPLE WITH 

MICROBIOTA FROM INDIVIDUAL FECAL SAMPLES 

3.1 Materials and methods 

3.1.1 Fecal sample collection 

 In Pooled Fermentation, Lavado showed relatively high polyphenol and SCFAs 

content after 24 h fermentation. Based on the results, cocoa sample Lavado was 

selected and subsequently fermented with fecal slurries from 6 donors. These 6 donors 

were called Volunteer Group 2. The requirements of donors and fecal sample 

collection protocol were the same as Pooled Fermentation.  

3.1.2 Cocoa sample predigestion 

 The cocoa powder Lavado used in this Individual Fermentation was from the 

same raw cocoa sample that used in the Pooled Fermentation. The digestion condition 

of the protocol was strictly followed, all the enzymes and reagents were purchased 

from the same supplier. 

3.1.3 Fecal slurry preparation and Cocoa sample fermentation 

 The in vitro bacteria inoculums were prepared using 20 g of the feces from a 

donor that was mixed with 80 mL of the anaerobic buffer then filtered with a filter 

whirlpak bag. The anaerobic buffer was prepared by following the same protocol 

mentioned in 2.1.4. The solution was incubated at 37°C under anaerobic conditions 

for 1 h. 

 Cocoa sample Lavado were fermented with 6 different fecal slurries (Table 3.1). 

The inoculation and fermentation steps were described in 2.1.4. Deionized water was 

used as substrate in the control group. The fermentation in an in vitro digestive model 

system was repeated twice and 3 samples were examined for each separate 

experiment. Samples were collected at times 0, 6, 12, and 24, stored in 15 mL falcon 
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tubes and frozen at -80°C until usage. This batch of fermentation was marked as 

Individual Fermentation, the pooled fecal slurry was mixture of fecal sample from all 

6 donors (Table 3.1).   

Table 3.1. Experimental design of Individual Fermentation 
 Individual Fermentation 
 Substrate Inoculums 

Treatment 1 Lavado Donor 1 

Treatment 2 Lavado Donor 2 

Treatment 3 Lavado Donor 3 

Treatment 4 Lavado Donor 4 

Treatment 5 Lavado Donor 5 

Treatment 6 Lavado Donor 6 

Treatment 7 Lavado Pooled fecal slurry 

 

3.1.4 Determination of pH, short chain fatty acid, and phenolic acids. 

 The samples collected from each individual fermentation of cocoa sample Lavado 

were subjected to determination of pH, short chain fatty acids, and phenolic acids of 

cocoa sample Lavado. The instruments and reagents employed in the Individual 

Fermentation were the same as the items which used in Pooled Fermentation.  

3.1.5 Data analysis 

 Data was analyzed by using SAS 9.4. ANOVA with Tukey's adjustment, 

significance value (alpha) was 0.05. The results were expressed as mean± Standard 

deviation. 

3.2 Results 

3.2.1 pH changes in the in vitro GI tract model system of Individual 

Fermentation. 

 In the Pooled Fermentation study, Lavado showed relatively high polyphenol and 

SCFAs content after 24h fermentation. Therefore, the cocoa sample Lavado was 

selected and fermented with fecal slurry from 6 individual donors. Similar as the 

result of Pooled Fermentation experiments (Table 3.2), variation of the initial pH, 
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final pH, and pH changing patterns were observed in six individual donor fecal 

samples and pooled fecal sample fermentation, except the control, which had no pH 

change during 24 hours fermentation. The initial pH of model system ranged from 

7.62±0.04 to 7.12±0.01, the final pH of model system ranged from 7.54±0.02 to 

6.79±0.19. The pH of the control (Table 3.2) exhibited no significant change, as well 

as Donor 6. The pH decreased in Donor 1 to the Donor 5, and the Pooled fecal group 

(P<0.05). The pH of the Donor 4 and the Pooled showed significant reduction after 

the first 6 hours of fermentation(P<0.05); while significant pH decrease of Donor 1 

and Donor 2 occurred after 12 hours. 

Table 3.2. The pH change during in the in vitro GI tract model system of cocoa 

sample Lavado fermented with individual fecal slurries over 24h. 

Fermentation Time 

Inoculums 0 Hour 6 Hour 12 Hour 24 Hour 

Donor 1 7.62±0.04Ac 7.56±0.01 7.09±0.04  7.01±0.04Bb 

Donor 2 7.35±0.02Ab 7.29±0.04 7.06±0.02 6.92±0.02Bb 

Donor 3 7.27±0.02Ab 7.18±0.01 7.16±0.03 7.06±0.04 Bb 

Donor 4 7.36±0.03Ab 7.01±0.20 7.00±0.14 6.79±0.19Ba 

Donor 5 7.12±0.01Aa 7.11±0.02  7.01±0.03  6.86±0.10Ba 

Donor 6 7.59±0.04Ac 7.52±0.03  7.55±0.02 7.54±0.02 Ac 

Pooled 7.60±0.08Ac 7.10±0.12 7.07±0.08 7.02±0.06 Bb 

Control 7.45±0.01Ab 7.45±0.01 7.45±0.02 7.43±0.03Bc 

Result was expressed as mean ±SD. Means that do not share a letter are significantly 

different, lower-case letters can be only compared within each column, and capital 

letters can be only compared within each row. Pooled fecal slurry was prepared from 

mixture of fecal sample from all 6 donors. Control was deionized water. 
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3.2.2 Polyphenols content changes of cocoa sample Lavado during 24h in 

Individual Fermentation. 

The gallic acid changes were measured in cocoa powder sample Lavado 

fermented with 6 individual and 1 pooled fecal slurries. No gallic acid was detected in 

the control. Results showed that except the Donor 4 and the Donor 6, GAE content 

significantly increased in other 5 treatment groups (P<0.05). The initial GAE of each 

treatment were close to 0.03 mg/g substrate. Over 24h fermentation, each treatment 

group exhibited distinctive GAE content increase pattern. At the end of fermentation, 

GAE content in the Pooled reached 0.2185±0.0128mg/g substrate, which was the 

highest among 7 treatments. GAE content in other treatments were much lower than 

the Pooled fecal group (P<0.05), they value ranged from 0.0615±0.0125 mg/g to 

0.1030±0.0097 mg/g substrate. 
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Figure 3.1. Chromatogram changes of cocoa samples Lavado fermented with 

individual fecal sample Donor 3. From top to bottom, fermentation time is 0 h, 6 h, 12 

h, and 24 h. Peak at retention time 4min is Gallic acid, at 6 min is catechin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
U

0.000

0.010

0.020

0.030

Minutes

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50

A
U

0.000

0.010

0.020

0.030

0.040

Minutes

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00

A
U

0.000

0.010

0.020

0.030

0.040

0.050

Minutes

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00

A
U

0.00

0.05

0.10

0.15

Minutes

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00



73 

 

Table 3.3. Gallic acid equivalent changes of cocoa sample Lavado during 24 h 

fermentation of cocoa sample Lavado fermented with individual fecal slurries in the 

in vitro GI tract model system. 

 Fermentation time 

Inoculums 0 Hour 6 Hour 12 Hour 24 Hour 

Donor1 0.0172±0.0067Aa 0.0252±0.0034  0.0565±0.0099 0.0898±0.0179Bb 

Donor2 0.02±0.0028Aa 0.0236±0.003  0.0312±0.0031 0.0651±0.0125Bb 

Donor3 0.0243±0.0055Aa 0.0346±0.001  0.0509±0.0097  0.103±0.0097Bb 

Donor4 0.03±0.0066Aa 0.0305±0.0137  0.0334±0.0047 0.0258±0.0032Aa 

Donor5 0.0267±0.0021Aa 0.0234±0.0073  0.0476±0.002 0.0901±0.0193Bb 

Donor6 0.0108±0.0036Aa 0.0101±0.0018 0.0180±0.0087  0.0194±0.0078Aa 

Pooled 
0.0171±0.0067 

Aa 
0.0709±0.0008  0.0748±0.013 0.2185±0.0128Bc 

Results are expressed in mean ±SD in mg/g substrate. Means that do not share a letter 

are significantly different, lower-case letters can be only compared within each 

column, and capital letters can be only compared within each row. Pooled fecal slurry 

was prepared from mixture of fecal sample from all 6 donors.  
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Table 3.4. Catechins change over 24 h cocoa samples fermented with individual fecal 

slurry in the in vitro GI tract model system. 

 Fermentation time   

Treatment 0 Hour 6 Hour 12 Hour 24 Hour 

Donor1 0.1357±0.0297Aa 0.2766±0.0312 0.5755±0.0032 0.9849±0.0821Bc 

Donor2 0.1139±0.0515Aa 0.2552±0.0251  0.2507±0.0447 0.4733±0.0169Aab 

Donor3 
0.1718±0.0693 

Aa 
0.4329±0.0479 0.5166±0.1043 1.1925±0.133Bc 

Donor4 0.1407±0.021Aa 0.2462±0.0532  0.4054±0.0286  0.6152±0.1309Bb 

Donor5 0.1436±0.0457Aa 0.2788±0.0889  0.342±0.0017 0.7724±0.1572Bb 

Donor6 0.142±0.0601 Aa 0.0867±0.032 0.114±0.0654  0.1489±0.0262Aa 

Pooled 0.151±0.0673 Aa 0.4947±0.007  0.8055±0.0258 1.6182±0.1217Bd 

Result was expressed as mean ±SD in mg/g substrate. Means that do not share a letter 

are significantly different, lower-case letters can be only compared within each 

column, and capital letters can be only compared within each row. Pooled fecal slurry 

was prepared from mixture of fecal sample from all 6 donors.  

 

 Catechin was detected in all of 7 treatment groups, there was no catechin found in 

the control group. The initial CE content in all of 7 treatment groups were close to 0.1 

mg/g substrate. During 24 h fermentation, CE content increase was observed in the 

Donor 1, 3, 4, 5, and the Pooled fecal group (P<0.05). The final CE content in the 

Pooled was 1.6182±0.1217 mg/g substrate, which was the highest value among all of 

7 treatment groups. CE content in the other treatment groups ranged from 

0.4733±0.0169 to 1.1925±0.1330 mg/g substrate.  

 

3.2.3 Short chain fatty acids content changes in the in vitro GI tract model 

system of Individual Fermentation 

 Butyrate content in all of 7 treatments and the control were measured. Butyrate 

content increased significantly after 24 hours fermentation of cocoa sample Lavado 
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with pooled fecal slurry (P<0.05). No significant change of butyrate content was 

observed in the Donor 1 to 6 and the control. The concentration of butyrate in all of 7 

treatments and the control were no more than 2 mmol/L, the highest concentration of 

butyrate was found in the Pooled at the end of fermentation (1.77±0.01 mmol/L), 

which was higher than butyrate concentration of Lavado in the Pooled Fermentation.  

Table 3.5. Butyrate changes of individual fecal samples in individual during 24h 

fermentation of cocoa sample Lavado with individual fecal slurries in the in vitro GI 

tract model system. 

Result was expressed as mean ±SD in mmol/L. Means that do not share a letter are 

significantly different, lower-case letters can be only compared within each column, 

and capital letters can be only compared within each row. Pooled fecal slurry was 

prepared from mixture of fecal sample from all 6 donors. Control was deionized 

water. 

 

 

 

 

 

 

 Fermentation Time   

Inoculums 0 Hour 6 Hour 12 Hour 24 Hour 

Donor 1 1.28±0.54Ad 0.84±0.15 1.14±0.20 0.86±0.03Ab 

Donor 2 1.24±0.28Ad 0.78±0.08 1.03±0.25 0.69±0.22Ab 

Donor 3 0.85±0.07Ac 0.58±0.05 0.54±0.15 0.43±0.09Aab 

Donor 4 0.56±0.30Ab 0.21±0.03  0.41±0.15 0.30±0.04Aa 

Donor 5 0.51±0.20Ab 0.24±0.05 0.39±0.19 0.18±0.02 Aa 

Donor 6 0.16±0.03Aa 0.32±0.03 0.51±0.14 0.46±0.25Aab 

Pooled 0.39±0.17Ab 0.16±0.01  0.46±0.23 1.77±0.01Ac 

Control 0.22±0.00Aa 0.22±0.03 0.59±0.32 0.44±0.22Aab 
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Table 3.6. Acetate changes of individual fecal samples in individual during 24h 

fermentation of cocoa sample Lavado with individual fecal slurries in the in vitro GI 

tract model system. 
 Fermentation Time 

Inoculums 0 Hour 6 Hour 12 Hour 24 Hour 

Donor 1 4.56±1.40 Ab 4.39±0.35  13.42±1.91  21.24±3.53Bd 

Donor 2 5.19±1.33 Ab 6.4±0.34  18±1.73  18.99±3.52Bcd 

Donor 3 4.11±1.06 Ab 5.63±0.28 11.67±0.7  21.3±1.27Bd 

Donor 4 1.88±0.80Aab 2.63±0.27  4.05±0.18  9.14±1.63 Bb 

Donor 5 1.97±0.79Aab 2.73±0.28  5.1±0.12  8.01±0.09 Bb 

Donor 6 1.57±0.64Aab 5.18±0.84  4.77±1.31 9.3±1.91 Bb 

Pooled 1.62±0.67Aab 5.87±0.09  8.54±1.06  17.67±0.93Bc 

Control 0.42±0.090.09Aa 0.88±0.06  0.96±0.23  2.23±0.81 Aa 

Result was expressed as mean ±SD in mmol/L. Means that do not share a letter are 

significantly different, lower-case letters can be only compared within each column, 

and capital letters can be only compared within each row. Pooled fecal slurry was 

prepared from mixture of fecal sample from all 6 donors. Control was deionized 

water. 

 

 After 24h fermentation of cocoa sample Lavado, acetate concentration increased 

for all of 6 individual fecal slurries. However, the amount of acetate produced during 

fermentation varied. The acetate concentration of Donor 1, 2, 3, and the Pooled 

groups at the end of fermentation were around 20 mmol/L, higher than the rest of 

donors (P<0.05). Acetate concentration of Donor 4, 5, 6 at the end of fermentation 

were around 10 mmol/L. The acetate concentration in the control showed limited 

increase and at the end of fermentation the acetate concentration (2.23±0.81 mmol/L) 

was much lower than the rest of treatment groups (P<0.05). 
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Table 3.7. Propionate changes of individual fecal samples in individual during 24h 

fermentation of cocoa sample Lavado with individual fecal slurries in the in vitro GI 

tract model system. 
 Fermentation Time 
Treatment 0 Hour 6 Hour 12 Hour 24 Hour 

Donor 1 2.21±0.68Abc 1.52±0.37 2.57±0.94 1.62±0.21Aa 

Donor 2 2.82±0.72Ac 1.52±0.25 2.34±0.89 8.11±0.36Bc 

Donor 3 1.04±0.27Ab 1.89±0.69 2.77±0.95 2.61±0.19Aa 

Donor 4 1.28±0.80Ab 0.43±0.07 1.13±0.46 1.15±0.7Aa 

Donor 5 0.52±0.13Aa 0.57±0.07 0.90±0.52 1.20±0.45Aa 

Donor 6 0.34±0.02Aa 0.87±0.51 1.35±0.43 1.14±0.62Aa 

Pooled 0.47±0.01Aa 1.08±0.57 1.99±0.58 4.30±0.49Bb 

Control 0.37±0.02Aa 0.40±0.09 0.89±0.17 0.79±0.26Aa 

Result was expressed as mean ±SD in mmol/L. Means that do not share a letter are 

significantly different, lower-case letters can be only compared within each column, 

and capital letters can be only compared within each row. Pooled fecal slurry was 

prepared from mixture of fecal sample from all 6 donors. Control was deionized 

water. 

 

 Propionate content was measured at 6 h intervals up to 24 h fermentation of the 

cocoa sample Lavado with individual fecal slurry. At the end of fermentation, only 

Donor 2 and the Pooled exhibited significant propionate increase (P<0.05), while the 

other 6 treatments showed no significant change for 24 h fermentation. The 

propionate concentration in the Donor 2 reached 8.11±0.36 mmol/L, which was the 

highest among all the 7 treatments. 
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Table 3.8. Macronutrients average daily intake of 6 donors in Volunteer Group 2. 

Don

or 
Calories/kcal Protein/g Lipid/g 

Carbohydrate

s/g 

Dietary 

fiber/g 
Sugar/g 

1 
821.5±504.5
b 

27.6±17.

4c 

34.5±20

.6 
91.0±51.7bc 7.9±0.9b 17.9±5.5b 

2 1622.0±0.0ab 
75.4±0.0b

c 

34.3±0.

0 
259.4±0.0a 

18.4±0.0
ab 

30.7±0.0b 

3 
2052.7±383.

2a 

41.5±9.1b

c 

89.0±39

.5 
274.0±28.7a 

21.9±7.3
a 

59.2±43.1
ab 

4 
1739.7±413.

2ab 

86.5±20.

7b 

67.0±15

.2 
197.3±68.7ab 8.7±4.7b 

43.4±2.9a

b 

5 
1664.5±735.

8ab 

56.0±37.

4bc 

67.5±30

.6 
207.0±81.2ab 

13.5±8.7
ab 

102.7±37.

6a 

6 1102.0±0.0ab 
142.5±0.

0a 

29.7±0.

0 
57.0±0.0c 

18.0±0.0
ab 

16.9±0.0b 

Results are expressed in mean ±SD. Significant difference is only compared among 6 

donors within each macronutrient. Means that do not share a letter are significantly 

different. 

 

Table 3.9. Ratio of macronutrients to dry matter (DM) in diet 

Donor Dry Matter/g 
Protein : 

DM 

Lipid : 

DM 

Carbohydrates : 

DM 
Fiber : DM 

1 153.1±83.7b 0.17±0.05bc 0.22±0.09 0.61±0.13b 0.06±0.02ab 

2 369.2±0.0a 0.20±0.00bc 0.09±0.00 0.70±0.00a 0.05±0.00ab 

3 404.6±46.9a 0.10±0.01c 0.22±0.08 0.68±0.08a 0.06±0.03ab 

4 350.7±94.7ab 0.25±0.02b 0.20±0.05 0.55±0.05a 0.03±0.01b 

5 330.5±143.7ab 0.16±0.08bc 0.21±0.03 0.64±0.05a 0.04±0.01ab 

6 229.2±0.0ab 0.62±0.00a 0.13±0.00 0.25±0.00a 0.08±0.00a 

Results are expressed in mean ±SD. Significant difference is only compared among 6 

donors within each column. Means that do not share a letter are significantly different. 

 

 The detailed daily food intake records of each donor in Volunteer Group 2 was 

listed in Appendix. According to the record of donors, Donor 2 and Donor 6 kept their 

diet the same every day when they participated in this experiment, thus there was no 

fluctuation of macronutrients of these 2 donors. Majority of average Macronutrients 

daily intake data showed significant difference among 6 donors, except average lipid 
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daily intake. Protein to dry matter ratio of Donor 6 was higher than other 5 donors 

(P<0.05), while carbohydrates to dry matter ratio of Donor 6 was lower than other 

donors (P<0.05). No significant difference of lipid to dry matter ratio was observed 

among all 6 donors (P>0.05). 

3.3 Discussions 

3.3.1 pH and SCFAs changes during 24h in Individual Fermentation. 

 The cocoa sample Lavado was fermented by 6 individual donor fecal slurries and 

1 pooled fecal slurry. Six out of 7 treatments exhibited significant pH decrease 

compared to the control at the end of fermentation, and the SCFAs concentration 

increased in all of 7 treatments (Donor 1 to 6, and the control) for 24 h fermentation. 

The pH change and the SCFAs results implied that human gut microorganism from 

various donors metabolized carbohydrates in cocoa sample Lavado. 

 The results of Individual Fermentation showed similar tendency, such as decrease 

of pH, increase of polyphenolic compounds, and production of SCFAs, in most of 

treatments. However, each treatment showed unique variation patterns of pH, 

polyphenolic content, and concentration of SCFAs. Firstly, the pH and SCFAs results 

of the cocoa sample Lavado fermented with pooled fecal slurry in Individual 

Fermentation showed similar inclination of change as the that of results of the same 

cocoa sample fermented with pooled fecal sample slurry in Pooled Fermentation. This 

similarity reflected that the experimental operations in this study, included substrate 

preparation, digestion, fermentation, sampling, and measurements, were stable and 

consistent. Secondly, the pH decreases and the SCFAs increase was observed in the 

most of treatment, this suggested that despite there was huge variation of the 

composition of human gut microbiota among different fecal sample from various 
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donors (Ursell et al. 2012), the SCFAs-producing microorganisms that are known to 

existed in human gut (De Filippo et al. 2010), these microorganisms can utilize the 

fibers in cocoa samples and produce the SCFAs. Thirdly, the initial pH and pH 

change pattern of each of treatment exhibited some differences, and the SCFAs 

content change of each treatment were varied, these variations may reflect the 

composition of the human gut microbiota.  

 In this study, the pH decreases were observed both in Pooled fermentation and 

Individual fermentation, and the results suggested that fermentation of cocoa powder 

which made through different manufacture process may alter human large intestine to 

a neutral or acidic environment. The gut pH environmental change was induced by the 

metabolism of human gut microbiota in various individuals (Conlon and Bird 2014). 

SCFAs can modify pH environment in human gut, human gut pH environment can 

affect the composition of the human gut microbiota in return, and finally change the 

SCFAs production (den Besten, van Eunen, et al. 2013a). A low pH environment in 

human gut can prevent growth of certain pathogenic bacteria, like Clostridium 

difficile (Gupta et al. 2016), and promote bacteria species with health benefits, such as 

Lactobacillus spp. and Bifidobacterium spp. (Holzapfel et al. 1998). In this study, the 

pH changes and SCFAs production indicated that carbohydrates in cocoa powder can 

be utilized by human gut microorganisms as prebiotics. 

 Again, butyrate increase was only observed in the Pooled fecal slurry, which also 

showed large pH reduction and significant acetate increase. Previous study reported 

that some butyrate-producing bacteria preferred lower pH environment and acetate 

was needed for their proliferation (Duncan et al. 2004), thus the Pooled fecal slurry 

may provide an environment for growth of this bacteria. However, although the 

Donor 1 also showed significant pH decrease and acetate increase, it did not show 
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significant butyrate content increase during fermentation, butyrate was not produced 

in Donor 1 probably due to insufficient proliferation of butyrate-producing bacteria, 

or absence of those bacteria in Donor 1. The difference between fecal sample Donor 1 

and Pooled revealed diversity of human gut microorganism between different 

individual. Microbiota in fecal sample Donor 1 may be less diverse. Individual 

variations were also found in previous SCFA study. McOrist et al. (2011) measured 

fecal SCFAs of 46 healthy adult volunteers before they received resistant starch 

fortified diet, they reported that fecal butyrate levels varied widely among individual, 

butyrate concentrations ranged 3.5 to 32.6 mmol/kg body weight, butyrate excretions 

ranged from 0.3 to 18.2mmol/48 h. 

 In summary, result of pH and SCFA change in Individual Fermentation further 

proved that carbohydrates in cocoa powder can be utilized by human gut 

microorganisms as prebiotics, and microorganism produced SCFA that lead to pH 

decrease. Pattern and extent of pH and SCFA change was largely affected by human 

gut microbiota.  

3.3.2 Polyphenolic compounds change during 24h in Individual Fermentation. 

 Polyphenols increase was observed in Donor 1, 2, 3, 5 and Pooled during the 24h 

fermentation. There was no significant difference among the initial GAE content in 

each treatment group, neither initial CE content did. This result showed stability of 

experimental operation. Despite the possible variations of the composition of human 

gut microbiota of each donor (Lozupone et al. 2012), and the variation of polyphenol 

increase pattern, polyphenol increase indicated that the polyphenol metabolism 

reaction existed in human large intestinal fermentation of Donor 1, 2, 3, and 5 used in 

the study. It was in line with previous studies which reported that polyphenols from 

various sources was metabolized by microorganism. Gross et al. (1996) reported that 
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quercetin derivatives was found in human urine; Meng et al. (2002) detected (-)-

Epigallocatechin gallate from green tea in human urine. Aura et al. (2008) reported 

that metabolites from catechin was detected human gut microbiota in vitro model 

system. However, well understanding of microorganism that played roles in the 

polyphenol metabolism is still not established yet. Further microorganism 

identification by quantitative PCR is needed to confirm whether the bacteria that 

hydrolyze polyphenol polymers into monomers was ubiquitous in human gut 

microbiota of various individuals. 

 The change of gallic acid and catechins in each fermentation showed distinctive 

pattern. This reflected variation of the composition of human gut microbiota. The 

GAE and CE content in the Donor 6 did not significantly change during 24 h 

fermentation, and we also noticed that the pH of Donor 6 did not significantly change, 

and the final acetate content was lower than others. It implied that the composition of 

human gut microbiota of Donor 6 differs with that of other donors, or it was possible 

that activity of certain kind of bacteria was suppressed under current experimental 

environment. The GAE and CE content within each treatment did not correspondingly 

change, the GAE content in the Donor 4 group did not change, but the CE content 

significantly increased after 24h fermentation. This may also due to variations among 

individual human microbiota. 

 Diversity of diet and ratio of macronutrients was a possible explanation of the 

difference of polyphenol content change among donors. Protein to dry matter ratio of 

Donor 1 to Donor 5 were lower than 0.3:1, while this ratio of donor 6 was 0.62:1 

(Table 3.9). Carbohydrate to dry matter ratio of donor 1 to donor 5 were above 0.5:1, 

while the ratio of donor 6 was only 0.25:1. In contrast to normal diet of donor 1 to 

donor 5, the diet of donor 6 was a low-carbohydrate high-protein diet. Beside of 
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different macronutrients ratio, the diet of donor 6 was less diverse than diet of other 5 

donors, it mainly comprised of fine protein powder and supplements, and this diet was 

strictly kept on a daily basis. Previous studies reported that ratio, rather than amount, 

of macronutrients can impact composition of human gut microbiota. Kim, Kim, and 

Park (2016) employed animal study and used mouse as model system, they fed mice 

either a normal protein/carbohydrate diet (ND) or a high protein/low-carbohydrate 

diet (HPLCD) for 2 weeks. Microbiota in mice fed with HPLCD was less diverse than 

mice fed with ND, and composition of microbiota in HPLCD mice was also altered. 

HPLCD finally led to a deleterious luminal environment and may be healthy harmful 

to people who consume this kind of diet. In this study, a low-carbohydrate high-

protein diet may bring relative low diverse microbiota to donor 6, and fermentation of 

cocoa sample Lavado with low diverse microbiota induced insignificant change of 

pH, polyphenol, and SCFAs.     

 This study suggested that the polyphenol metabolism was related to SCFAs 

production, and this relationship was possibly due to metabolism of certain 

microorganism species. However, results of previous studies have been controversial. 

Parkar, Trower, and Stevenson (2013) reported that polyphenols, including rutin, 

quercetin, chlorogenic acid, and caffeic acid, can stimulate proliferation of certain 

bacteria, like bifidobacteria, and can also stimulate bacteria metabolism, made 

bacteria produce more SCFAs. Duda-Chodak (2012) reported that rutin and catechin 

had no impact on bacteria metabolism, and some metabolites from those polyphenols 

can even inhibit growth of bacteria. It was noticeable that both two studies were in 

vitro experiment, Parkar et al. employed fecal slurry in model system, while Duda-

Chodak used culture that was mixed of 6 species bacteria in their experiment. This 

may partially explain the difference between their results. Both of them used pure 
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polyphenolic compound but not natural dietary fiber, thus their result may be different 

from fermentation of food mass in human gut. In general, diversity of human gut 

microbiota was an important factor that influenced many aspects of human gut 

fermentation. 

 In summary, content of polyphenolic compounds increased during cocoa sample 

Lavado fermented with various fecal slurries. Diversity and composition of human gut 

microbiota affected fermentation pattern and composition of final polyphenolic 

compounds.  
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CHAPTER 4. CONCLUSION AND FUTURE STUDIES 

 In this study, five different treated cocoa samples were subjected to ICP/MS 

analysis, a human gastrointestinal digestion and fermentation model system was 

established, five cocoa samples were subjected to digestion, then fermented with 

pooled fecal slurry in the in vitro model system for 24h. The mineral elements, pH, 

short chain fatty acids, procyanidin distribution, and polyphenolic compounds were 

measured. Based on mineral elements results, D-11-S and D-11-B were alkalized 

cocoa powder; while natural cocoa, Lavado, and shell were non-alkalized cocoa 

sample. Over 24h fermentation, the pH in all of 5 cocoa samples significantly 

decreased, and SCFAs increased at the same time. The polyphenolic compounds also 

increased during cocoa fermentation. The pH and SCFAs results indicated that cocoa 

samples can be fermented by human gut microbiota. Procyanidin distribution result 

indicated that alkalization reduced polyphenol content of cocoa powder during 

manufacture. The polyphenolic compounds results showed that polyphenol content of 

cocoa powder increased during fermentation regardless alkalization treatment of 

cocoa powder. 

 The cocoa sample Lavado was fermented with 6 individual fecal slurries in the in 

vitro GI tract model system. The pH decrease, polyphenol increase, and SCFAs 

increase were observed in majority of individual fecal fermentation groups, the results 

indicated that cocoa sample Lavado can be metabolized by human gut microbiota 

with various composition, and then SCFAs were produced, which lead to pH 

decrease. Catechins and gallic acid were also produced. The change patterns of pH, 

SCFAs, and polyphenols in each treatment group were distinctive, the results reflected 

diversity of human gut microorganism among individual donors. Diversity and 
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composition of human gut microbiota affected cocoa sample fermentation pattern and 

composition of final polyphenolic compounds. 

 Well understanding of microorganism that played roles in the polyphenol 

metabolism is still not fully established, and the microorganism species that involved 

in polyphenol metabolism and SCFAs production are not clear, the form of 

polyphenols exist in carbohydrates complexes is unknown. Future exploration could 

be conducted as fellow. Microbiota composition varied not only upon fermentation 

duration but also at site of large intestine, it is worth to set up a real time monitored 

human gut microbiota in vitro system which can continuously perform sampling and 

analyze data about concentration of various substrates and products during 

fermentation. Identification of human gut microorganism on large scale and 

comparison human gut microbiota composition before and after fermentation with 

cocoa samples by big data technology will help building up a solid and 

comprehensive understanding on interaction between cocoa powder and human 

microbiota, and also find out key genus and species of microorganisms which play 

role in polyphenol metabolism. An in vitro fermentation of cocoa with pure culture of 

identified species can figure out mechanism of polyphenolic compound metabolism in 

human gastrointestinal tract. The form of polyphenols exist in carbohydrates 

complexes could be investigated by combination of MALDI and NMR.   
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APPENDIX: SUPPLEMENTAL DATA AND FIGURES 

Detailed daily food intake records of Volunteer Group 1 

Donor A: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 Half banana 59 53 0.64 0.19 13.48 1.5 7.22 
 corn flake with fruits 30 110 2 0 26 1 2 

 shredded chicken 

sandwiches 
177 241 16.99 16 6 1 2.99 

 trail mix 57 280 10 20 22 4 14 
 frozen yogurt 144 229 5.76 8.06 34.85 0 34.56 
 cookies 20 94 1.03 3.51 14.45 0.4 6.53 
 mixed fruit cheese 128 250 7 13 25 2.9 2 
 cinnamon tea 2 5 0 0 1 0 0 

2 scrambles egg 72 153 9.96 11.65 1.5 0 1.18 
 corn tortillas 51.6 160 4 2 32 2 0 
 coffee 473 43 0.47 0.85 8 0 0 
 Spaghetti 257 131 3.62 3.8 20.71 4.6 14.13 
 coke 614 240 0 0 65 0 65 
 rum 350 808 0 0 0 0 0 
 pizza 400 1120 46.92 50.24 119.72 6.8 12.84 
 beer 712 306 3.28 0 25.28 0 0 
 rum 350 808 0 0 0 0 0 

3 chocolate donut 60 250 2.7 11.94 34.44 1.3 19.15 
 tea 2 0 0 0 0 0 0 
 corn flake with fruits 30 110 2 0 26 1 2 
 Grilled pork loin 326 441 26.99 13.99 41.99 4.9 10.01 
 grilled beef/pork sausage 56 203 9.77 17.04 1.86 0 0.48 
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 BBQ pork ribs 184 460 20.99 20 46.99 2.9 16.01 
 salad 184 180 6.99 13.01 6.99 2 3 
 cookies 10 47 0.52 1.75 7.22 0.2 3.26 
 beer 1780 765 8.19 0 63.19 0 0 

4 cookies 10 47 0.52 1.75 7.22 0.2 3.26 
 corn flake with fruits 30 110 2 0 26 1 2 
 cookies 20 94 1.03 3.51 14.45 0.4 6.53 
 rice 120 420 14 4 80 10 0 
 lean meat 192.5 481 49.92 29.66 0 0 0 
 cookies 50 234 2.58 8.78 36.12 0.9 16.32 
 coffee 473 43 0.47 0.85 8 0 0 
 orange juice 249 134 0.5 0 33.39 0.5 23.31 

5 cookies 10 47 0.52 1.75 7.22 0.2 3.26 
 corn flake with fruits 30 110 2 0 26 1 2 
 rice 180 630 21.01 5.99 120.1 14.9 0 
 lean meat 192.5 481 49.92 29.66 0 0 0 
 greek yogurt 150 100 12 0 13.99 5 7 

 

Donor B: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 walnuts 28.35 185 4.32 18.49 3.89 1.9 0.74 
 fries mc 117 378 3.99 18.1 49.82 4.6 0.25 
 coke 614.4 240 0 0 65 0 65 
 avocado 139 227 2.67 20.96 11.75 9.2 0.41 
 frozen yogurt 72 114 2.88 4.03 17.42 0 17.28 

2 banana 118 105 1.29 0.39 26.95 3.1 14.43 
 Sausage burrito 109 302 12.1 17.04 25.04 1.3 2.8 
 coffee 473 43 0.47 0.85 8 0 0 
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 hashbrown 31 130 2 5 21 1 2 
 chicken taquitos whole food 128 330 15 17 30 4 1 

3 banana 118 105 1.29 0.39 26.95 3.1 14.43 
 pancake 231 524 14.78 22.41 65.37 0 0 
 margarine 28.2 205 0.09 22.65 0.22 0 0 
 chicken enchiladas 225 283 12.49 9.44 37.99 5.9 5.1 
 coke 355 138 0 0 37.56 0 37.56 

 

Donor C: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 Groud beef 225 702 36.16 60.28 0 0 0 

 French bread with mayonaise & 

cheese 
125 420 14 22 41 2 1 

 chicken tomato lettuce salad 269 401 13.99 22 29.99 1.1 1.99 

2 Chex corn cereal 31 115 1.98 0.74 26.35 1.5 3.44 

 French bread with mayonaise & 

cheese 
125 420 14 22 41 2 1 

 milk 240 120 7.99 4.99 12 0 10.99 
 roasted chicken 84 160 4.99 2.99 28.93 2 2.99 

3 Fried chicken 85 230 17 15 8 1 0 
 biscuit 25 130 1 7 16 0.6 7 
 rice 68 244 7.09 0.93 51.89 0.8 1.04 
 chex corn cereal 31 115 1.98 0.74 26.35 1.5 3.44 
 milk 240 120 7.99 4.99 12 0 10.99 

4 Bean 240 113 4.32 7.68 6.72 0.2 0 
 cheeseburger 155 437 24.02 24.94 29.12 1.2 6.56 
 French fries 153 203 3.35 5.19 35.97 2.9 0.31 

5 Bean 240 113 4.32 7.68 6.72 0.2 0 
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 rice 68 244 7.09 0.93 51.89 0.8 1.04 
 Chex corn cereal 31 115 1.98 0.74 26.35 1.5 3.44 
 milk 240 120 7.99 4.99 12 0 10.99 

 

Donor D: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 rice krispybar 28 128 1.96 5.71 18.09 1 0 
 2% milk 240 120 7.99 4.99 12 0 10.99 
 blackberries 72 31 1 0.35 6.92 3.8 3.51 
 coke 355 138 0 0 37.56 0 37.56 
 personal pepperon pizza 174 458 19.51 23.99 39.74 2.3 3.76 
 ham swiss sandwich 227 449 30.01 13.01 65.99 2 14.01 
 wheat bread 57 146 0.01 1.08 25.99 4.3 2.51 
 green snickers 47 220 4 10 29 1 24 
 fun size snickers 15 73 1.03 3.66 9.43 0.3 6.98 
 reeses heart 100 25 2 0 5 2 0 

2 2% milk 240 120 7.99 4.99 12 0 10.99 
 lucky charm cereal 18 68 1.38 0.9 14.56 0.9 6.5 
 pulled porn sandwich 68 150 7.5 4.5 20 1 4.5 
 sweet potato baked fries 12 47.5 0.43 3 6.86 0.4 1.29 
 hot dog 56 151 6.93 2.45 25.16 3.4 3.32 
 doritos nacho cheese 28 150 2 8 16 1 1 
 Pepsi cola 355 149 0 0 41 0 41 
 reeses heart 100 25 2 0 5 2 0 

3 rice krispybar 28 128 1.96 5.71 18.09 1 0 
 green grapes 160 520 4 0 124 8 116 
 keebler peanut butter crackers 39 191 4.13 9.28 23.48 1.2 4.52 
 ham swiss sandwich 227 449 30.01 13.01 65.99 2 14.01 
 blackberries 36 15 0.5 0.18 3.46 1.9 1.76 
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 waffle fries 84 150 2 7 20 2 1 
 fun size snickers 15 73 1.03 3.66 9.43 0.3 6.98 
 popcorn 33 140 2 9 16 4 0 

 

Donor E: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g 
Carbohydrates/

g 

Dietary 

fiber/g 
Sugar/g 

1 breakfast cereal 38 2.17 4.41 1.03 27.25 2.8 9.84 
 coffee 473 43 0.47 0.85 8 0 0 
 shrimp alfredo 297 490 22.01 16.99 62.01 3 9 
 tea 2 0 0 0 0 0 0 
 Roast beef 609 1114 162.3 51.52 0 0 0 
 orange juice 249 134 0.5 0 33.39 0.5 23.31 

2 egg 100 140 12 9 2 0 0 
 buttermilk biscuit  64 151 4.1 1.79 30.12 1 2.85 
 orange juice 249 134 0.5 0 33.39 0.5 23.31 
 Chicken and sausage jambalaya 340 360 14.99 12 46.99 3.1 2.01 
 berry tea 2 5 0 0 1 0 1 
 chicken and shrimp alfredo 213 100 8.01 9.01 18 0 1 
 Whole milk 266 237 8.7 8.43 31.57 1 30.83 

3 egg and sausage fast food 162 505 18.03 33.65 34.1 0.3 1.54 
 turkey and mozzarella cheese sandwich 269 541 34 29 51 5.1 6.99 
 Chicken nuggets 88 238 13.79 11.35 20.12 1.9 0.43 
 cheese pizza 130 303 15.7 9.76 38.05 4.9 8.79 
 orange juice 249 134 0.5 0 33.39 0.5 23.31 

4 egg and sausage fast food 162 505 18.03 33.65 34.1 0.3 1.54 
 buttermilk biscuit  64 151 4.1 1.79 30.12 1 2.85 
 orange juice 249 134 0.5 0 33.39 0.5 23.31 
 cheese pizza 130 303 15.7 9.76 38.05 4.9 8.79 
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 peanut butter and jelly sandwich 57 220 7 12 22 1 8 
 spaghetti and meat sauce 283 255 14.29 2.86 43.13 5.1 7.36 

 

Donor F: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 Coffee 120 5 0 0 1.5 0 0 
 Cheez-its 56.7 281 4.87 13.83 35.06 1.2 0.73 
 Trader joes south west salad 255 408 12.75 30.6 22.95 5.1 7.65 
 Peanut butter monster trail mix 35 180 4 11 18 1 13 
 Gooey butter cake 28.3 146 0.91 8.22 16.43 0 15.52 
 tilapia fish filets 232 223 46.59 3.94 0 0 0 
 Spaghetti 85 43 1.2 1.26 6.85 1.5 4.67 
 Peach soda 118 68 0 0 16.99 0 16.32 

2 Coffee 180 7 0 0 2.25 0 0 
 Milk chocolate Jell-o pudding cup 56.7 223 0 0 50.63 2 36.45 
 Applejack cereal w/ 2% milk 354 160 5 5 24.7 3 12.24 
 chili's chipotle fresh mex bowl 170 185 10.51 3.5 28 2 2.5 
 Dr. Pepper 40 100 2 0 26 0 17 
 Jack Daniels whiskey 88.2 145 0.09 0.02 13.98 0 13.94 
 Corona beers 710 296 0 0 13 0 0 

3 Ginger Ale 122 41 0 0 10.69 0 10.86 
 Crackers 56.7 246 8.08 7.57 36.49 2.2 1.33 
 Coffee 180 7 0 0 2.25 0 0 
 chicken nugget 211.2 570 33.1 27.24 48.28 4.6 1.03 
 fries 153 203 3.35 5.19 35.97 2.9 0.31 
 lemonade 627 220 0 0 58 0 55 
 Sour fruit slice 50 175 0 0 42.5 0 35 
 Chicken Salad meal 56.5 115 11.5 5.5 5.5 1.5 1 
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 Crackers 56.7 246 8.08 7.57 36.49 2.2 1.33 
 Ginger Ale 122 41 0 0 10.69 0 10.86 

 

Donor G: 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 bread 58 154 5.13 1.93 28.66 1.6 3.29 
 milk 240 120 7.99 4.99 12 0 10.99 
 rice 200 680 12 0 156 0 0 
 chicken breast 112 110 23 2.5 0 0 0 
 green bell pepper 125 60 2 0.5 7 2 4 
 celery 50 8 0.34 0.09 1.49 0.8 0.67 
 egg 50 70 6 4.5 1 0 0 
 sausage 85 272 10.2 24.42 2.06 0 0 
 rice 200 680 12 0 156 0 0 
 chicken breast 112 110 23 2.5 0 0 0 
 milk 240 120 7.99 4.99 12 0 10.99 

2 bread 58 154 5.13 1.93 28.66 1.6 3.29 
 milk 240 120 7.99 4.99 12 0 10.99 
 rice 200 680 12 0 156 0 0 
 chicken breast 112 110 23 2.5 0 0 0 
 celery 50 8 0.34 0.09 1.49 0.8 0.67 
 carrots 50 20 0.47 0.12 4.79 1.4 2.37 
 egg 50 70 6 4.5 1 0 0 
 rice 200 680 12 0 156 0 0 
 chicken breast 112 110 23 2.5 0 0 0 
 Coffee 180 7 0 0 2.25 0 0 

3 bread 58 154 5.13 1.93 28.66 1.6 3.29 
 milk 240 120 7.99 4.99 12 0 10.99 
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 rice 200 680 12 0 156 0 0 
 chicken breast 112 110 23 2.5 0 0 0 
 green bell pepper 125 60 2 0.5 7 2 4 
 celery 50 8 0.34 0.09 1.49 0.8 0.67 
 egg 50 70 6 4.5 1 0 0 
 chicken breast 112 110 23 2.5 0 0 0 
 milk 240 120 7.99 4.99 12 0 10.99 
 broccoli 50 17 1.41 0.18 3.32 1.3 0.85 

 

Detailed daily food intake records of Volunteer Group 2 

Donor 1 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 walnuts 20 131 3.05 13.04 2.74 1.3 0.52 
 chicken nuggets 113 305 17.71 14.58 25.83 2.5 0.55 
  fries 56 175 1.92 8.25 23.21 2.1 0.17 
 diet coke 239.5 0 0 0 0 0 0 
 Strawberry salad 170 280 12 14.01 25.99 3.1 21 

2 sushi crab roll 226 330 6.86 9.14 50.28 2.3 3.44 
 Eggplant 170 60 1.41 0.39 14.84 4.2 5.44 
 spaghetti sauce 28 11 0.45 0 2.48 0.2 1.58 

3 rice crispies treat 23 90 1 2 17 0 7 
 miso soup 226 35 3 1 4 0 0 
 green salad 170 362 14.72 22.76 30.79 8 14.72 

4 egg 113 174 11.94 13.18 0.72 0 0.35 
 Bacon 56 234 7.07 22.23 0.72 0 0.56 
 Biscuit 51 205 3.06 12.09 20.88 1.9 1.76 
 seafood pasta 56 59 2.96 2.72 7.65 0.5 0.74 
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 wine 242 201 0.87 0 9.21 0 9.21 
 pasta 6 634 22.3 2.58 127.69 5.5 4.57 

 

Donor 2 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 Noosa yogurt 113 150 6 6.99 18 0.5 16 
 rice 185 370 6.81 0.55 81.68 2.8 0 
 large bell pepper 76 16 0.71 0.14 3.8 1.4 1.97 
 jumbo egg 63 90 7.91 5.99 0.45 0 0.23 

 frozen green 

peas 
67 52 3.5 0.27 9.13 3 3.35 

 broccoli 150 51 4.23 0.55 9.96 3.9 2.55 
 chicken breast 112 110 23 2.5 0 0 0 
 ginger root 5 4 0.09 0.04 0.89 0.1 0.09 
 garlic 9 13 0.57 0.04 2.98 0.2 0.09 
 oliver oil 15 120 0 14 0 0 0 
 thin spaghetti 181 646 22.62 3.24 132.51 6.5 6.46 

2 Noosa yogurt 113 150 6 6.99 18 0.5 16 
 rice 185 370 6.81 0.55 81.68 2.8 0 
 large bell pepper 76 16 0.71 0.14 3.8 1.4 1.97 
 jumbo egg 63 90 7.91 5.99 0.45 0 0.23 

 frozen green 

peas 
67 52 3.5 0.27 9.13 3 3.35 

 broccoli 150 51 4.23 0.55 9.96 3.9 2.55 
 chicken breast 112 110 23 2.5 0 0 0 
 ginger root 5 4 0.09 0.04 0.89 0.1 0.09 
 garlic 9 13 0.57 0.04 2.98 0.2 0.09 
 oliver oil 15 120 0 14 0 0 0 



108 

 

 thin spaghetti 181 646 22.62 3.24 132.51 6.5 6.46 

3 Noosa yogurt 113 150 6 6.99 18 0.5 16 
 rice 185 370 6.81 0.55 81.68 2.8 0 
 large bell pepper 76 16 0.71 0.14 3.8 1.4 1.97 
 jumbo egg 63 90 7.91 5.99 0.45 0 0.23 

 frozen green 

peas 
67 52 3.5 0.27 9.13 3 3.35 

 broccoli 150 51 4.23 0.55 9.96 3.9 2.55 
 chicken breast 112 110 23 2.5 0 0 0 
 ginger root 5 4 0.09 0.04 0.89 0.1 0.09 
 garlic 9 13 0.57 0.04 2.98 0.2 0.09 
 oliver oil 15 120 0 14 0 0 0 
 thin spaghetti 181 646 22.62 3.24 132.51 6.5 6.46 

 

Donor 3 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 
Toasted hamburger 

bun 
50 142 0.01 1.89 25.5 0.9 3.93 

 peanut butter 16 95 3.5 7.5 4 1 1.5 
 fig preserves 34 100 0 0 26 0 24 
 large coffee 600 24 0 0 7.5 0 0 
 coffee creamer 15 35 0 1.5 6 0 6 
 Nachos 454 1589 19.61 97.61 158.49 14.5 9.85 
 mixed nuts 28.35 172 5.53 15.17 6.36 1.8 1.42 
 burger patty  112 180 21 9 0 0 0 
 steak sauce 15 10 0 0 2 0 1 

 Toasted hamburger 

bun 
50 142 0.01 1.89 25.5 0.9 3.93 
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2 butter 14.1 103 0.04 11.33 0.11 0 0 
 fruit jelly 28 30 0 0 6 0 2 
 orange juice 480 221 3.98 0 54 0 48 
 crunchy granola bar 63 285 7.5 10.5 42 3 16.5 
 large coffee 600 24 0 0 7.5 0 0 
 coffee creamer 15 35 0 1.5 6 0 6 
 pretzels and hummus 99 280 7 14 52 3 8 
 Nutella Berry Crepes  240 390 13 15 52 4 20 
 tea 480 0 0 0 0 0 0 
 crackers  38.1 165 5.43 5.09 24.52 1.4 0.9 
 red beans 157 223 6.22 5.43 37.27 4.1 0.24 

 Toasted hamburger 

bun 
50 142 0.01 1.89 25.5 0.9 3.93 

3 butter 14.1 103 0.04 11.33 0.11 0 0 
 strawberry jam 20 50 0 0 13 0 10 
 peanut butter 16 95 3.5 7.5 4 1 1.5 
 large coffee 600 24 0 0 7.5 0 0 
 coffee creamer 15 35 0 1.5 6 0 6 
 baked potato 278 1193 19.85 29.77 198.58 19.7 0 
 butter 14.1 103 0.04 11.33 0.11 0 0 
 mushrooms 59 30 0.75 1.61 3.25 0.2 0 
 sour cream 12 22 0.84 1.69 0.84 0 0.04 
 broccoli 91 31 2.57 0.34 6.04 2.4 1.55 
 artichoke 128 60 4.19 0.19 13.45 6.9 1.27 
 black olives 16 25 0 2.5 1 0 0 

 

 

 

Donor 4 
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Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 milk 367.5 206 14.52 7.28 20.18 0 20.18 
 chocolate cereal 28 111 1.96 3.11 21.31 2.8 10 
 special pastry cresp bar 30 150 2 6 19 1 6 
 Bean Burrito 185 387 13.6 11.19 57.78 7.8 3.2 
 chicken breast tenders 226.7 572 37.11 29.26 39.86 0 0 
 macaroni and cheese 227 440 14.73 26.67 35.43 2.5 6.42 

2 milk 367.5 206 14.52 7.28 20.18 0 20.18 
 chocolate cereal 28 111 1.96 3.11 21.31 2.8 10 
 special pastry cresp bar 30 150 2 6 19 1 6 
 pepper omie pizza 135 279 14 10 32.99 2 4 
 Jimmy John's The J.J. Gargantuan  249 532 34.7 27.16 37.05 0 0 

3 milk 367.5 206 14.52 7.28 20.18 0 20.18 
 chocolate cereal 28 111 1.96 3.11 21.31 2.8 10 
 special pastry cresp bar 30 150 2 6 19 1 6 
 Jimmy John's The J.J. Gargantuan  249 532 34.7 27.16 37.05 0 0 
 pork chops 227 347 42.72 18.7 2.68 0 0 
 rice 200 680 12 0 156 0 0 
 granny smith 85 49 0.37 1.6 11.57 2.4 8.15 

 

Donor 5 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 Sour patch kids candy 80 300 0 0 74 0 52 
 Strawberry nutrigrain bar 37 120 1.74 3.55 24.83 2.6 11.58 
 coffee 224 7 0.2 0 1.68 0 0 
 cream 105 201 3.11 20.06 2.96 0 3.85 
 sugar 1.5 6 0 0 1.47 0 1.46 
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 cheese 30 90 3 7 4 0 3 
 egg white 99 51 10.79 0.17 0.72 0 0.7 
 spniach 10 2 0.29 0.04 0.36 0.2 0.04 
 ham 81 77 4.2 2.83 9.04 3.7 0 
 onion 40 16 0.44 0.04 3.74 0.7 1.7 
 Bacon 350 10.6 33.34 1.08 0 0 0.84 
 Plain Cheesecake 80 280 6 15 31 0.3 18 
 Champagne 226 200 0.16 0 6.4 0 1.84 
 orange juice 93.3 44 0.63 0.14 10.27 0.3 8.17 

2 Champagne 113 100 0.08 0 3.2 0 0.92 
 Jack Daniels whiskey 29.4 48 0.03 0.01 4.66 0 4.65 
 ginger ale 90 34 0 0 8.62 0 8.62 
 Strawberry nutrigrain bar 37 120 1.74 3.55 24.83 2.6 11.58 
 coffee 224 7 0.2 0 1.68 0 0 
 cream 105 201 3.11 20.06 2.96 0 3.85 
 sugar 1.5 6 0 0 1.47 0 1.46 
 pancakes  100 265 0 0.1 69.6 0 16 
 egg 50 72 6.28 4.75 0.36 0 0.18 
 syrup 56 146 0.02 0.03 37.54 0 33.86 
 Strawberry 110.5 39 0.48 0.12 10.09 2.3 5.04 
 blueberry 74 42 0.55 0.24 10.72 1.8 7.37 
 Strawberry nutrigrain bar 37 120 1.74 3.55 24.83 2.6 11.58 
 Kung pao Chicken 604 779 58.95 42.16 41.49 9.1 18.3 
 Vegetable crackers 62 268 6.2 10.34 41.34 2 4.14 
 Peanuts 36.5 207 9.42 17.97 5.89 3.1 1.72 
 Ginger ale 122 41 0 0 10.69 0 10.86 

3 Lemonade 185.25 83 0.13 0 20.6 1.1 19.27 
 Fried chicken sandwich 152 175 5.85 7.45 21.26 2.1 2.66 
 Fries 88 133 2.19 3.39 23.51 1.9 0.2 
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 Fruit snacks 44 143 1.1 0 34.1 0 19.8 
 White chocolate pecan candy 330 3 31 15 1 11 
 Cranberry orange biscuits (Belvita) 50 230 3 8 36 3 12 

 

Donor 6 

Day Diet Amount/g Calories/cal Protein/g Lipid/g Carbohydrates/g 
Dietary 

fiber/g 
Sugar/g 

1 Protein drink mix 60 220 30 6 10 0 2 
 Formula 1 Herbalife 53 210 24 4.5 17 9 6 
 Raspberry Tea herbalife  1.7 5 0 0 1 0 0 
 eggwhites 132 69 14.39 0.22 0.96 0 0.94 
 Tuna in water 85 109 20.08 2.52 0 0 0 
 Mayonnaise reduced fat 15 54 0.06 6 0 0 0 
 Protein drink mix 60 220 30 6 10 0 2 
 Formula 1 Herbalife 53 210 24 4.5 17 9 6 
 Raspberry Tea herbalife  1.7 5 0 0 1 0 0 

2 Protein drink mix 60 220 30 6 10 0 2 
 Formula 1 Herbalife 53 210 24 4.5 17 9 6 
 Raspberry Tea herbalife  1.7 5 0 0 1 0 0 
 eggwhites 132 69 14.39 0.22 0.96 0 0.94 
 Tuna in water 85 109 20.08 2.52 0 0 0 
 Mayonnaise reduced fat 15 54 0.06 6 0 0 0 
 Protein drink mix 60 220 30 6 10 0 2 
 Formula 1 Herbalife 53 210 24 4.5 17 9 6 
 Raspberry Tea herbalife  1.7 5 0 0 1 0 0 

3 Protein drink mix 60 220 30 6 10 0 2 
 Formula 1 Herbalife 53 210 24 4.5 17 9 6 
 Raspberry Tea herbalife  1.7 5 0 0 1 0 0 
 eggwhites 132 69 14.39 0.22 0.96 0 0.94 
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 Tuna in water 85 109 20.08 2.52 0 0 0 
 Mayonnaise reduced fat 15 54 0.06 6 0 0 0 
 Protein drink mix 60 220 30 6 10 0 2 
 Formula 1 Herbalife 53 210 24 4.5 17 9 6 
 Raspberry Tea herbalife  1.7 5 0 0 1 0 0 
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Figure A.1. The pH change of cocoa samples when fermented with pooled fecal slurry 

in an in vitro digestive model system. 
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Figure A.2. Gallic acid changes over 24 hour cocoa samples fermentation in the in 

vitro GI tract model system. 
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Figure A.3. Catechin changes over 24 hour cocoa samples fermentation in the in vitro 

GI tract model system. 
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Figure A.4. Propionate changes over 24 hour cocoa samples fermentation in the 

invitro GI tract model system. 
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Figure A.5. Acetate changes over 24 hour cocoa samples fermentation in the in vitro 

GI tract model system. 
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Figure A.6. Butyrate changes of fecal slurry over 24 hour fermentation of different 

cocoa samples  in the in vitro GI tract model system. 
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Figure A.7. The pH change of cocoa sample Lavado fermented with individual fecal 

slurry in an in vitro digestive model system 
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Figure A.8. Gallic acid changes over 24 hour cocoa samples fermented with 

individual fecal slurry in the in vitro GI tract model system. 
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Figure A.9. Catechins change over 24 hour cocoa samples fermented with individual 

fecal slurry in the in vitro GI tract model system. 
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Figure A.10. Butyrate changes in individual fecal slurry over 24 hour of fermentation 

of cocoa sample Lavado in the in vitro GI tract model system. 
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Figure A.11. Acetate changes in individual fecal slurry over 24 hour of fermentation 

of cocoa sample Lavado in the in vitro GI tract model system. 
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Figure A.12. Propionate changes in individual fecal slurry over 24 hour of 

fermentation of cocoa sample Lavado in the in vitro GI tract model system. 
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