11-8-2017

Development of a Mode and Destination Type Joint Choice Model for Hurricane Evacuation

Ruijie Bian
Louisiana State University and Agricultural and Mechanical College, bianruijie@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations
Part of the Transportation Engineering Commons

Recommended Citation
Bian, Ruijie, "Development of a Mode and Destination Type Joint Choice Model for Hurricane Evacuation" (2017). LSU Doctoral Dissertations. 4142.
https://digitalcommons.lsu.edu/gradschool_dissertations/4142

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.
DEVELOPMENT OF A MODE AND DESTINATION TYPE JOINT CHOICE MODEL FOR HURRICANE EVACUATION

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Civil and Environmental Engineering

by

Ruijie Bian
B.S., Shandong University of Science and Technology, 2010
M.S., Tongji University, 2013
December 2017
ACKNOWLEDGEMENTS

First, I would like to thank my parents who raised me with great love, understanding, and support. Without them, I could never have achieved what I have achieved today and I would never had a chance to join LSU.

To my advisor, Dr. Chester Wilmot, who is the best advisor I have ever had, thankful for his wise and generous counsel.

Then, I want to show appreciation to my committee members for offering solutions to questions I have and providing valuable suggestions on this dissertation.

I also want to express my gratitude to all the instructors I have had courses with. All the course work equipped me with necessary knowledge to do research independently.

For the generosity of sharing essential data that contribute to the success of this enterprise, I would like to thank the following contributors (in the alphabetic order): Dr. Earl J. Baker from Florida State University, Dr. Hugh Gladwin from Florida International University, Dr. Satish Ukkusuri from Purdue University, Federal Emergency Management Agency, National Science Foundation, New York City Emergency Management Department, and U.S. Army Corps of Engineers.

Finally, to my friends and all the people I have met during the course of my studies, your kindness has been a source of encouragement and joy.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

LIST OF TABLES ... v

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS .. vii

ABSTRACT .. x

CHAPTER 1 INTRODUCTION .. 1
 1.1 Background ... 1
 1.2 Objectives .. 4
 1.3 Scope .. 6

CHAPTER 2 LITERATURE REVIEW ... 10
 2.1 Evacuation choice modeling ... 10
 2.2 Evacuation modeling on mode and destination type choice ... 11

CHAPTER 3 METHODOLOGY .. 18
 3.1 Approaches to model choice behavior ... 18
 3.2 Specific structure of the NL model .. 22
 3.3 Statistics used in an NL model .. 24
 3.4 Data at household level ... 27
 3.5 Data at zonal level from ACS .. 34
 3.6 Data at zonal level based on a calculated measure of accessibility .. 38
 3.7 Data at zonal level from other sources ... 43

CHAPTER 4 MODEL ESTIMATION AND DISCUSSION ... 46
 4.1 Model 1: estimation with a single dataset ... 47
 4.2 Model 2 and 3: estimation with different nested structures ... 51
 4.3 Model 4 and 5: estimation without imputed values .. 54
 4.4 Discussion on the best tested model.. 58

CHAPTER 5 MODEL APPLICATION AND ASSESSMENT ... 63
 5.1 Application 1: Gustav (ZCTA) and Application 2: Gustav (County) .. 66
 5.2 Application 3: Sandy II (ZCTA) and Application 4: Sandy II (County) 66
 5.3 Application 5: Georges (County) ... 70
 5.4 Discussion on applications ... 73

CHAPTER 6 CONCLUSIONS .. 75

REFERENCES ... 79
LIST OF TABLES

Table 1. Study area of post-storm surveys .. 9
Table 2. Description of post-storm surveys ... 30
Table 3. Composition of joint choice without imputation .. 32
Table 4. Statistics of household characteristics .. 33
Table 5. Available zonal unit in post-storm surveys ... 35
Table 6. Statistics of zonal characteristics: ACS .. 36
Table 7. Statistics of zonal characteristics: accessibility (Unit: ×10^{-2}) ... 43
Table 8. Quarterly average daily rate of hotels (Unit: $/night) .. 44
Table 9. Monthly average occupancy rate of hotels (2011-2015) (Unit: %) 44
Table 10. Statistics of zonal characteristics: hotel price and occupancy .. 45
Table 11. A summary of tested models ... 46
Table 12. Choice of Households: Irene with imputation .. 48
Table 13. Choice of Households: Irene + Sandy with imputation ... 52
Table 14. Choice of Households: Irene + Sandy without imputation ... 54
Table 15. Choice of Households: Irene + Sandy+Gustav without imputation 56
Table 16. A summary of applications ... 63
Table 17. Accuracy measurements in Application 1 and 2 ... 66
Table 18. Choice of Households: Sandy II without imputation ... 68
Table 19. Accuracy measurements in Application 3 and 4 ... 70
Table 20. Choice of Households: Georges without imputation ... 71
Table 21. Accuracy measurements in Application 5 .. 72
Table 22. Comparisons between applications .. 73
LIST OF FIGURES

Figure 1. Process of evacuation modeling ... 7
Figure 2. Hurricane tracks (source: https://coast.noaa.gov/hurricanes/) 8
Figure 3. Structure of the model ... 24
Figure 4. Study area .. 29
Figure 5. Model 1 with estimated parameters ... 50
Figure 6. Model 3 with estimated parameters ... 53
Figure 7. Model 4 with estimated parameters ... 55
Figure 8. Model 5 with estimated parameters ... 57
Figure 9. Study area in the survey of Hurricane Sandy II (NJ and NY) 67
Figure 10. Study area in the survey of Hurricane Georges (LA and MS) 71
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM</td>
<td>Agent-based Modeling</td>
</tr>
<tr>
<td>accessFR</td>
<td>Accessibility to the home of Friends/Relatives (See Table 7)</td>
</tr>
<tr>
<td>accessHM</td>
<td>Accessibility to Hotels/Motels (See Table 7)</td>
</tr>
<tr>
<td>accessSH</td>
<td>Accessibility to shelters (See Table 7)</td>
</tr>
<tr>
<td>ACS</td>
<td>American Community Survey</td>
</tr>
<tr>
<td>CBP</td>
<td>County Business Pattern</td>
</tr>
<tr>
<td>CNL</td>
<td>Cross-Nested Logit</td>
</tr>
<tr>
<td>ComDensity</td>
<td>Community density (See Table 6)</td>
</tr>
<tr>
<td>CommutebyTransit</td>
<td>Proportion of workers using transit (excluding taxi) for commuting</td>
</tr>
<tr>
<td>DTC</td>
<td>Destination Type Choice</td>
</tr>
<tr>
<td>FR</td>
<td>The home of Friends/Relatives</td>
</tr>
<tr>
<td>GEV</td>
<td>Generalized Extreme Value</td>
</tr>
<tr>
<td>GNL</td>
<td>Generalized Nested Logit</td>
</tr>
<tr>
<td>GOF</td>
<td>Goodness-of-fit</td>
</tr>
<tr>
<td>HEZ</td>
<td>Hurricane Evacuation Zones</td>
</tr>
<tr>
<td>HHDisab</td>
<td>Household disability status (see Table 4)</td>
</tr>
<tr>
<td>HHInc</td>
<td>Household income in $1000 (see Table 4)</td>
</tr>
<tr>
<td>HHIIncome</td>
<td>Household income (an indicator variable)</td>
</tr>
<tr>
<td>HHResYears</td>
<td>Household residential length (see Table 4)</td>
</tr>
<tr>
<td>HHSize</td>
<td>Household size (see Table 4)</td>
</tr>
<tr>
<td>HHVeh</td>
<td>Household vehicle ownership (see Table 4)</td>
</tr>
<tr>
<td>HM</td>
<td>Hotels/Motels</td>
</tr>
</tbody>
</table>
HotelOccupy Hotel occupancy rate in the local area (See Table 10)
HotelPrice Hotel price in the local area (See Table 10)
HURREVAC Hurricane Evacuation
IIA Independence of Irrelevant Alternatives
LA Louisiana
LTRC Louisiana Transportation Research Center
MC Mode Choice
MMNL Mixed Multinomial Logit
MNL Multinomial Logit
MS Mississippi
NAICS North American Industry Classification System
NCES National Center for Education Statistics
NHC National Hurricane Center
NJ New Jersey
NL Nested Logit
NY New York
NYC New York City
OT Other destination types
PropAge Proportion of people who are less than 18 or over 65 (See Table 6)
PropDisab Proportion of people with disability (See Table 6)
PropHighEdu Proportion of people with bachelor’s degree or higher (See Table6)
PropNonCitizen Proportion of people who are not U.S. citizen (See Table 6)
PropNoVeh Proportion of carless households (See Table 6)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMS</td>
<td>Public-Use Micro Data Sample</td>
</tr>
<tr>
<td>ResStab</td>
<td>Residential Stability (See Table 6)</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root-Mean-Square Error</td>
</tr>
<tr>
<td>RP</td>
<td>Revealed Preference</td>
</tr>
<tr>
<td>RtePM or RoutePM</td>
<td>Real Time Evacuation Transportation Planning Model</td>
</tr>
<tr>
<td>SC</td>
<td>Stated Choice</td>
</tr>
<tr>
<td>SCL</td>
<td>Spatially Correlated Logit</td>
</tr>
<tr>
<td>SH</td>
<td>Public shelters</td>
</tr>
<tr>
<td>USPS</td>
<td>United States Postal Service</td>
</tr>
<tr>
<td>ZCTA</td>
<td>Zip Code Tabulation Areas</td>
</tr>
</tbody>
</table>
ABSTRACT

Since Hurricane Katrina, transit evacuation service has been seen to serve critical needs in affected cities and an increasing number of hurricanes have struck the east coast where more people rely on public transportation to evacuate. Thus, it is important to model mode choice in evacuation for a better estimation of evacuation transit demand. In this study, a joint mode and destination type choice model was estimated based on multiple post-storm behavioral surveys from the northeastern seaboard to the Gulf coast. A Nested Logit model specification was used to estimate this joint choice model. The estimated model showed significant linkage between mode and destination type choice, which validated the choice of a nested structure for the model. Selected variables include both household and zonal characteristics, reflecting the attributes of alternatives, the characteristics of households, and the interactions between them. Almost all the selected variables are significant at a confidence level of 95%. The estimated model was then applied in different cases, where study area, study period, or zonal unit is different. Generally, it produced small prediction errors in most cases. To find out which factors (i.e. study area and zonal unit) have the greatest impact on model transferability, prediction errors were compared between cases. Overall, the findings of this study provide insight into the factors affecting mode and destination type choice of residents during hurricane evacuation. It also provides discussion on model transferability in applications with different characteristics.
CHAPTER 1 INTRODUCTION

1.1 Background

In any evacuation, part of the decision-making activity of a person or household involves deciding what type of facility they are going to evacuate to (i.e. destination type choice) and how they are going to get there (i.e. mode choice). From the perspective of an emergency manager, people’s collective choices affect what kind of preparation must be made to accommodate the resulting movement (such as contraflow) and what resources need to be provided (such as public transportation and shelters). Emergency managers’ decisions consequently affect the performance of the whole evacuation system. Thus, understanding evacuation mode choice of households is an important issue and is becoming increasingly so with the increasing frequency of hurricane strikes in areas that have higher population density and less hurricane experience.

Historically, Atlantic hurricanes affect states on the Gulf coast and lower eastern seaboard areas of the U.S., where most of the cities are car-oriented. High vehicle ownership, a low level of public transportation service, long evacuation distances, and the desire to protect their own vehicular property make using your own private vehicle the most preferred mode choice during hurricane evacuation in these areas. In a survey conducted after Hurricane Andrew (1992) in the coastal parishes of Louisiana, about 85% of the respondents used their own vehicles for evacuation and about 8% rode with others in their vehicles. Another survey conducted after Hurricane Floyd (1999) in Florida showed that about 95% of the respondents relied on their own vehicles for evacuation. In both surveys, the percentage of respondents who used public transportation service was less than 1%. Thus, mode choice studies have not received much attention in the past because the private vehicle dominated mode choice in the areas where most hurricanes were making landfall. In addition, the revealed preference surveys that were
typically conducted after each hurricane did not provide enough data to effectively model mode choice where transit was one of the alternatives. Therefore, stated preference surveys using hypothetical cases became the primary data source for modeling evacuation mode choice in past studies (1)/(2).

Within the past five years, however, northern cities like New York have been struck by several deadly hurricanes, such as Hurricane Irene in 2011 and Hurricane Sandy in 2012. Evacuation behavior data collected from a transit-oriented city like New York is likely to capture transit choice during evacuation more fully than data collected from car-oriented cities for two reasons. First, the higher level of public transportation service and lower household vehicle ownership make transit a more likely choice in all circumstances. Second, shorter evacuation distances commonly experienced in large cities may also affect a household’s evacuation mode choice. For example, as shown in the post-Irene survey, 83% of the respondents went to a place within the study area. Over half of the respondents (54%) did not leave their own county. Therefore, inner- or intra-city public transportation systems can serve local evacuation needs more fully in larger cities with better developed transit systems. The consequence from the above-mentioned characteristics in larger cities is a greater proportion of transit users during evacuation. In a post-Irene (2011) survey conducted in New York City and three surrounding counties, 12% of the respondents chose public transportation service (bus, ferry, subway, and taxi) during evacuation. The number of evacuation transit users was 16% in a post-Sandy (2012) survey conducted in New York City only. The value of these surveys is that they capture actual mode choice behavior during an evacuation from a hurricane rather than stated responses to a hypothetical scenario such as in a stated choice survey.
As the number of people in transit-oriented cities that rely on public transit system for evacuation is large, this research is obviously important to these cities. But this research can also benefit car-oriented cities as well. In these locations, there is a portion of the population who has to rely on transit for evacuation. They are usually characterized as people who are carless, disabled, low-income, and have low English proficiency. Cities like New Orleans and Miami have already established evacuation assistance program to help them evacuate. But the estimation of demand is usually based on the local emergency managers’ judgment or experience. Obviously, this research can assist their decisions, such as what demand to expect and where to locate pick-up points.

Even though mode choice during evacuation is of much importance in practice, this subject has received little attention in past academic research. Among the handful of studies that have been conducted on the subject, the focus has been on using the demographic characteristics of each household in explaining mode choice behavior. Several other factors affecting mode choice have typically been overlooked. For example, the level of public transportation service and accessibility to destinations are intuitively expected to play an important role in people’s mode choice and yet they have seldom been included in past studies. Second, social factors have also been neglected in the past. Factors such as a household’s social network size and social interaction level in the community where they live are likely to play a role in the choice of destination type and mode choice. Specifically, these types of factors are likely to influence whether a carless household will ride with neighbors and whether they can find a friend/relative with whom to stay. This study searches potential explanatory variables more thoroughly than past studies.
Models estimated in the past studies have sometimes incorporated variables that are difficult to predict, such as whether the household changed their destination from the originally chosen destination while evacuating, and how much time passed between the decision to evacuate and the actual evacuation. This study aims to develop a model that can operate where such information is not necessary. Therefore, variables that cannot be collected from large open databases are carefully avoided in this study.

Beyond selection of explanatory variables that are most likely to influence a decision and are predictable, it is also possible to change the structure of model for better estimation. Evacuation mode choice and destination type choice have usually been analyzed and modeled separately. However, there is dependence between mode and destination type choices in many cases. For example, to evacuate to the home of friends or relatives living in an area not served by public transportation, a household would either have to have their own vehicle or ride with someone else. During an emergency, public transportation is typically directed at serving public shelters, making a strong link between public transportation and the choice of a public shelter.

1.2 Objectives

Overall, the objective of this study is to develop a joint mode/destination type choice model for hurricane evacuation, and demonstrate its use in New Orleans. To achieve these objectives, the following activities were conducted:

1) Use data from real hurricanes to better capture evacuation behavior that is the consequence of all the factors influencing choices as a hurricane approaches. This is done because it allows the use of detailed information about storm and local conditions that is almost impossible to include in the description of a hypothetical situation.
2) Pool data from several post-storm behavioral surveys. This is done because it allows us to have a dataset with greater diversity and more observations. The underlying assumption is that households with the same characteristics and facing the same conditions will behave the same even though they are from different areas. This assumption is based on the notion that people will respond similarly to similar conditions, irrespective of their location. That is, while human behavior may vary from person to person, if at least the majority of factors that influence behavior are presented to an individual, that person’s assessment of a situation would not be influenced, primarily, by their geographical location but by the clarity and forcefulness with which the influencing factors are described. In this study, an attempt is made to include as comprehensive a set of factors as possible in order to capture as many of the influencing factors as possible.

3) Consider mode and destination type choice as a joint choice. Theory on discrete choice models was thus used in this study. Types of logit models under investigation included Multinomial logit (MNL) model, Nested Logit (NL) model and other types of Generalized Extreme Value (GEV) models. The type of model was selected based on their characteristics and suitability to the subject of this study.

4) Consider a wider variety of variables, such as sociologic and contextual factors, than have typically been considered in the past. In considering a wider range of alternatives as influencing mode and destination choice, the following two hypotheses were tested:

Hypothesis 1: destination type choice=f(characteristics of the household, characteristics of the destination type, characteristics of the transportation system)

Hypothesis 2: mode choice=f(destination type choice, characteristics of the household, characteristics of the transportation system)
5) Estimate parameters and calibrate the model. Models were estimated with choice behavior data from a pooled dataset. The performance of several estimated models were analyzed and compared. The one with the best performance was then selected for application and prediction purpose.

6) Apply the selected model on other post-storm behavioral surveys. These surveys were conducted after different hurricanes or covered different study areas. By doing this, the application performance of the estimated model can be observed more fully.

7) Assess the predicted results. The estimated choices were compared with recorded choices in that survey. Prediction error was calculated for each application to assess the prediction power of the estimated model in different situations.

1.3 Scope

The scope of this study is limited to the development of a joint mode/destination type choice model for hurricane evacuation but its application is meant to be geographically universal. That is, use of the model is based on the premise that evacuation behavior is determined, primarily, by the variables in the model, and the geographic location of its application is not significant beyond those features captured in the variables of the model.

In order to appreciate the role of the joint mode/destination type choice model developed in the whole Louisiana Transportation Research Center (LTRC) evacuation modeling process, its position and function of the whole process are presented first. Following this, the study areas in which the post-storm behavioral surveys that provided the data on which the joint choice model was estimated, are shown. Although they represent only a limited number of areas, they do represent a diverse range of conditions representative of the conditions that could be encountered on the east coast and Gulf coast of the United States.
1.3.1 The scope of the model

The general structure of the entire evacuation modeling process adopted in this study is similar to the four-step travel demand modeling process used in regular urban transportation planning. That is, demand estimation is conducted in a sequence of steps with the output of one step serving as input to the next until at the end, the last step produces estimated travel on the network. However, the number of steps and the nature and the sequence of steps are different in evacuation and urban travel demand modeling. To illustrate, Figure 1 shows both the regular urban transportation planning process and the evacuation demand estimation processes, with dotted lines linking similar activities between the two systems. For example, the trip generation process in regular urban transportation planning is replaced with two activities in evacuation modeling: the decision to evacuate and when to do so. The third step in evacuation demand modeling, is to decide what type of destination to evacuate to and what mode to choose, which is similar to mode choice in regular urban transportation planning. Similarly, route choice in evacuation demand modeling is similar to trip assignment in regular urban transportation planning although the criteria for route choice are more comprehensive in evacuation demand modeling than the sole criterion of travel time used for route choice in urban transportation planning.

![Diagram](image.png)

Figure 1. Process of evacuation modeling
This study is a part of the above-mentioned evacuation modeling process. The author focuses on modeling mode/destination type choice (i.e. To what? and How?). Thus, how many people decide to evacuate and when to evacuate are assumed known in this study and serve as input. The output from this study is the type of destination chosen and the mode used. This information is, in turn, fed into the model of destination choice (“Where?”) where the location of the trip end is identified. The product of the destination choice model, the number of households from origin to destination by mode in each time period, is converted to vehicle trips and input to the route choice process. There vehicles are assigned to routes linking the origins and destinations to produce a time-dependent representation of evacuation traffic flows.

1.3.2 The scope of the study area
Household behavior was extracted from three evacuation behavioral surveys conducted after Hurricane Gustav (Aug 25–Sep 05, 2008), Hurricane Irene (Aug 21–Aug 30, 2011), and Hurricane Sandy (Oct 21–Oct 31, 2012). Hurricane tracks and their categories are shown in Figure 2. The track of Hurricane Georges is also shown in Figure 2 because data from that storm were used in the process of model application.

Figure 2. Hurricane tracks (source: https://coast.noaa.gov/hurricanes/)
As can be observed in Figure 2, Gustav and Georges affected southern states, while Irene and Sandy had significant impacts on northeastern states. Table 1 is a description of the extent of the study area in each survey. The number in each bracket is the year in which hurricane took place.

<table>
<thead>
<tr>
<th>Survey</th>
<th>Study area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georges (1998)</td>
<td>Five coastal parishes in southeastern Louisiana and three coastal counties in Mississippi</td>
</tr>
<tr>
<td>Irene (2011)</td>
<td>New York City, Nassau, Suffolk, and Westchester County</td>
</tr>
<tr>
<td>Sandy (2012) I</td>
<td>New York City</td>
</tr>
<tr>
<td>Sandy (2012) II</td>
<td>New York City and coastal counties of New Jersey</td>
</tr>
</tbody>
</table>
CHAPTER 2 LITERATURE REVIEW

2.1 Evacuation choice modeling

HURREVAC is a decision support tool, which is used nationwide by emergency managers in practice. The most powerful function of HURREVAC is translating text information from National Hurricane Center (NHC) into interactive maps and reports, while assisting users in evaluating inland flooding threats (3). Another key feature of HURREVAC is to report clearance time, which determines the latest possible time to issue an evacuation order but still safely evacuate a community before the arrival of a storm (3). In its calculation, clearance time is based on three categorical variables: storm category, tourist occupancy, and response urgency. Clearly, this package can be updated from several perspectives, because household evacuation behavior has not been fully captured and studied, traffic conditions on the road network are not considered, and statistics other than clearance time are not generated.

The motivation to model household evacuation choice behavior is to better assist emergency managers’ decisions. Efforts have been made accordingly in past academic research. Past research has included, but is not limited to, the following research efforts. Regarding trip generation, different types of models have been estimated by researchers, such as the sequential logit model estimated by Fu and Wilmot (4), a nested logit model estimated by Gudishala and Wilmot (5), and a random-parameter hazard-based model estimated by Hasan, Mesa-Arango, and Ukkusuri (6). In the aspect of trip distribution, Cheng and Wilmot investigated various models, such as static/time-dependent destination discrete choice models and time-dependent gravity models (7)(8). For trip assignment, Akbarzadeh studied evacuation route choice using the structure of a logit model (9); Fu, Liu, and Jiang et. al used fuzzy set theory to incorporate the impact of traffic information and socio-psychological behavior on route choice decisions (10);
Real Time Evacuation Planning Model (i.e. RtePM or RoutePM) uses a detailed road network from Navteq and thus has the benefit being able to call upon all the information in that database in its trip assignment function although its demand estimation relies on participation rates and response curves from earlier evacuation modeling practice (11). Some studies used an agent-based choice model (ABM) to better recreate the whole process of making evacuation decisions, such as Yin et. al (12). An oft-quoted advantage of ABM is that agents (i.e. households in this case) with identical characteristics may make different choices due to random taste variations. Yin et.al incorporated destination type choice and mode choice as a part of the evacuation decision modules (12). A multinomial logit (MNL) model was used to estimate destination type choice. A right-censored Poisson model was used to estimate whether a car-owning household will use their own vehicle for evacuation. A simple probabilistic model was used to assign the remaining households to non-personal vehicle alternatives, i.e. ride with others and public transit. Overall, each decision module in the above ABM needs a general decision rule, which was defined by a discrete choice model.

Studies about evacuation mode choice are discussed in detail in the next section as it is the main focus of this study.

2.2 Evacuation modeling on mode and destination type choice

2.2.1 Choice composition

In evacuation modeling, alternatives of travel mode are often composed of driving your own vehicle, riding with others, taking transit, and using other modes. In order to protect their own property, many households choose to evacuate in their own vehicles so as to remove their vehicles from the possibility of damage. Empirical studies have shown that the number of vehicles taken by evacuating households range between 1.3 to 1.7, which is considerably higher
than the occupancy levels experienced in ordinary urban travel (13). Riding with others is usually a second choice of a household, especially for residents living in car-oriented cities and facing long evacuation distances.

Types of destination typically include the home of Friends/Relatives (FR), the use of Hotels/Motels (HM), public shelters (SH), and other destination types (OT) such as second home and workplace. FR is the most common destination type during hurricane evacuation. Whitehead et al. surveyed residents who have experienced three actual hurricanes. According to the responses, they found that over 65% of the respondents chose FR; about 11% went to shelters; and others went to HM (14). Similar results have been found in other empirical research on different hurricanes (13).

2.2.2 Structure of models

In evacuation modeling studies of mode and destination type, the two choices have usually been analyzed and modeled separately. The following types of models have typically been applied to model them independently: Multinomial Logit (MNL) (1) (12), Nested Logit (NL) (2) (15), logistic regression (16) (17), and decision trees (18). Regarding the specification of nests in NL models, evacuation bus and regular bus have been distinguished from each other within the nest of bus, and public shelters and hotels have been included in a nest of public facilities. They are different from the proposed nest structure in this study. In fact, only one past study linked evacuation mode choice and destination type choice together (2). In that research, destination types were entered as dummy variables in the modeling of mode choice and were found to be significant in that model. This provides evidence to support the assumption that mode choice and destination type choice are related. Clearly, the structure of a MNL model does not apply in this situation where the independence of irrelevant alternatives (IIA) property is not sustained.
There have been studies that simultaneously modeled mode choice with other choices in non-emergency situations. For example, since residential location and travel behavior are not independent of each other, Yang, Zheng, and Zhu treated residential location, travel mode, and departure time as a joint choice (19). They estimated the model with both NL and Cross-Nested Logit (CNL) structures and found CNL outperforms NL in the process of estimation. CNL belongs to the family of GEV models; MNL and NL are special cases of CNL (20). CNL allows alternatives to belong to more than one nest instead of a single nest as in NL model. Therefore, CNL is capable of handling correlations among alternatives in complex situations. In another case, Ding, et. al tested MNL, NL, and CNL in modeling commuter joint choice behavior of travel mode and departure time (21). In their research, NL and CNL were found to perform better than MNL; and CNL was found to perform better than NL. Although the above two studies both found CNL models to have the best performance, whether such a model can be successfully estimated depends largely on the sample size. Both of the above two studies tested CNL structure with over 10,000 observations. With the complexity of a model structure increasing, it generally requires a larger number of observations for model estimation.

Regarding the impact of sample size on model form, another example is the study of Mesa-Arango et. al on modeling of destination type choice during Hurricane Ivan (15). To capture the heterogeneity of household behavior, a Mixed Multinomial Logit (MMNL) model was tested but it was found that the random parameters are not significantly different from zero and thus adopting fixed parameters is reasonable. It is possible that the number of observations (about 1,400) restricted the performance of the MMNL model. Due to the limitation on sample size in the research of hurricane evacuation in this study, the effort to pursue a more complex model than NL may only offer marginal benefits at this stage.
2.2.3 Variable selection

In the utility function of a discrete choice model such as various logit models described earlier, the portion of the utility that can be observed by an analyst (i.e. V_{it}) is generally considered as being composed of three parts: the attributes of the alternatives, the characteristics of the decision maker, and any interaction that may exist between the attributes of alternatives and the characteristics of the decision maker (22).

The mode choice models that were estimated in the past focused mainly on the characteristics of a single household from three aspects: (1) vehicle ownership and other characteristics that could reflect a household’s disadvantaged status, such as language spoken and disability status; (2) characteristics that might pose restrictions on a household’s mode choice, such as the presence of children or people with special needs and presence of animals or pets; and (3) hurricane-related household characteristics such as past experience.

For destination type choice models, variables of the following five types were most often used: (1) economic status of a household, such as vehicle ownership, income level, education level, and home ownership; (2) social status of a household, such as years of residence and marital status; (3) characteristics that might pose restrictions on a household’s destination type choice, which are similar to those listed under modeling mode choice; (4) other demographic characteristics of a household, such as language spoken, household size, and race; and (5) variables that reflect hurricane characteristics, such as hurricane strength and distance from the approaching hurricane to a household.

Beside the household characteristics listed above, zonal level data can reflect the contextual characteristics of the surrounding environment and thus have an effect on a household’s choice, such as level of social interaction within a zone. As often stated in sociology
research, a household’s family context, kin relationship, and level of community involvement must be taken into account in the study of human behavior in disasters (23)(24)(25)(26).

Therefore, at household level, length of residence has been used as a proxy variable to measure a household’s social network in modeling evacuation choices (16). As stated in some sociology studies, communities with strong social ties can improve evacuation performance (27). Sampson investigated which factors affect local friendship ties and community attachment at both household and community levels (28). In the research reported in that paper, length of residence, labor force participation, marital status, age, social class, children in household, and fear of crime were investigated at household level. At community level, urbanization, community density, residential stability, family structure (percent divorced or separated), socioeconomic status (education and income), age composition/life cycle (number of children under 16), and unemployment rate, fear, and victimization rate for serious predatory crime were investigated. In that study, it was found that length of residence at household level and residential stability at community level are more significant than other variables that measure local friendship ties and community attachment.

In past studies, variables related to the attributes of mode and destination type have seldom been considered even though they intuitively would be expected to be influential. Take mode choice of transit as an example. Transit level of service would clearly be expected to affect a households’ choice of transit and yet it has not been used in mode choice in evacuation modeling before. It could be measured directly by the extensiveness of the network, frequency of service, number of operating vehicles, or capacity of the network. It could also be reflected indirectly by the number of commuters who take transit on regular days. For destination type
choice, an example of a factor that could affect the choice of hotel/motel but has not been used before is the average availability of hotel rooms (i.e. hotel occupancy).

In addition, the dependence between alternatives and households have not been considered. Take the destination type choice of hotel/motel as an example. Although household income has been used in the past, the price of hotel accommodation as a proportion to the household income may be a better explanatory variable, especially when different study areas and years are considered at the same time.

Accessibility is another factor that has been neglected in modeling destination type and mode in the past. As pointed out in the report written by Bhat et. al, accessibility is a combined assessment considering both transportation system and land use patterns (29)(30). According to them, accessibility can be measured in terms of three factors: an impedance factor, a destination factor, and a traveler factor. The attributes used to reflect each of the above factors can be fine or coarse in its areal unit, which is generally based on data availability and the problem under study. For example, in measuring the impedance factor, whether there is shade or a bench at a bus stop can reflect impedance (more specifically, comfort) at a fine level, while total travel time can reflect impedance at a coarse level. In measuring the destination factor, whether ADA access is provided can reflect the convenience of a destination at a fine level, while the number of employees in a zone is a coarse measure. In measuring the traveler factor, personal preference is a measure at a fine level and annual household income is a measure at a coarse level. Regarding forms of formulating the measurement using above factors, there are different variants that are based on the Gaussian function, gravity function, or cumulative opportunity function. No matter what is under study or which form of measurement is selected, an accessibility measure should:

1) obey several widespread axioms, which will be specified in greater detail in measuring
accessibility; 2) have a behavioral basis; 3) be technically feasible; and 4) be easy to interpret
(A1)(A2). A few questions that can assist in formulating accessibility measure are what is the
degree and type of disaggregation desired; how are OD defined; how is attraction measured; and
how is impedance measured (A3). The author paid attention to the above questions in formulating
an accessibility measure in this study.
CHAPTER 3 METHODOLOGY

3.1 Approaches to model choice behavior

A choice process can be considered as being composed of four elements: the decision maker, the alternatives, the attributes of alternatives, and the decision rule (22). In this study, the decision maker is each household in the sample when a model is being estimated, and each household in the application sample when the model is being applied. The alternatives are assumed to be the same for all households. That is, it is assumed in this study that each household can choose from the same set of destination types and the same set of modes. Alternatives are described in terms of their attributes, and the attributes can be either generic or alternative specific as discussed in a later section of this chapter. The decision rule and the models that will execute the rule are discussed below.

A decision maker is usually assumed to make rational choices which are consistent and transitive. A common rational decision rule is utility maximization where a decision maker is assumed to always choose the alternative with the greatest utility. According to probabilistic choice theory, the utility function is assumed to be two parts: a portion that is observed to an analyst and a portion that is known to the decision maker but is unknown, or unobserved, to an analyst:

\[U_{in} = V_{in} + \varepsilon_{in} \]

where,

\(U_{in} \) is the utility of alternative \(i \) to decision maker \(n \);

\(V_{in} \) is the portion of the utility that can be observed by an analyst. It can be expressed as \(\beta_i X_{in} \),

where \(X_{in} \) is a vector of independent variables relating to alternative \(i \) for decision maker \(n \),

and \(\beta_i \) is a vector of parameters common among all decision makers;
\(\varepsilon_{in} \) is the portion of the utility that cannot be observed by an analyst. Because an analyst cannot observe it (although a decision maker includes it in the decision making process), the analyst formulates it as a random error term in the utility function. Different assumptions about the distribution of the error term lead to different mathematical forms of a discrete choice model (22). For example, if it is assumed that the error terms are independently and identically Gumbel distributed across alternative and decision makers, it leads to the multinomial logit (MNL) model.

As is well known, the above-mentioned assumption of the MNL model will lead to the wrong results when it is applied to choices that do not have the independence of irrelevant alternatives (IIA) property and the degree of error will depend on the level of dependence among the alternatives (34). One solution to this problem is to use a Nested Logit (NL) model where alternatives that are correlated are nested together. This allows the common attributes of alternatives in each nest to cancel out in a utility comparison among alternatives. The NL model lets unobserved factors have the same correlation for all alternatives within a nest and no correlation for alternatives in different nests. Equation (2) is a general expression of a NL model (35)(36)(37).

\[
P_{in} = \frac{\exp\left(\frac{V_{in}}{\lambda_k}\right)\left(\sum_{j \in D_n^k} \exp\left(\frac{V_{jn}}{\lambda_l}\right)\right)^{\lambda_k - 1}}{\sum_{i=1}^{\kappa} \left(\sum_{j \in D_n^i} \exp\left(\frac{V_{jn}}{\lambda_l}\right)\right)^{\lambda_l}}
\]

where,

- \(P_{in} \) is the choice probability for decision maker \(n \) choosing alternative \(i \), where \(i \) belongs to a nest \(D_n^k \).
- \(V_{in} \) is the utility for decision maker \(n \) choosing alternative \(i \);
\(\lambda_k \) is the nesting coefficient or logsum coefficient.

When \(\lambda_k = 1 \), it means there is no correlation in unobserved utility among the alternatives within nest \(k \). When \(\lambda_k = 1 \) is true for all \(k \), it means all the alternatives in all the nests are not correlated. The model then reverts to the same structure as a MNL model. Thus, \(\lambda_k \) is a measure of the degree of independence in unobserved utility among the alternatives in nest \(k \), while \((1 - \lambda_k) \) is a measure of their correlation.

To illustrate the functioning of a NL model, Equation (2) can be decomposed into the product of two logits. The derivation is shown below (34).

\[
P_{in} = \frac{\exp(V_{in})}{\sum_{j \in D^k_n} \exp(V_{jn})} \left(\sum_{l=1}^{K} \left(\sum_{j \in D^l_n} \exp(V_{jn}) \right)^{\lambda_l} \right)^{-1} \\
= \frac{\exp(V_{in})}{\sum_{j \in D^k_n} \exp(V_{jn})} \left(\sum_{l=1}^{K} \left(\sum_{j \in D^l_n} \exp(V_{jn}) \right)^{\lambda_l} \right)^{-1} \\
= \exp(V_{in}) \cdot \sum_{l=1}^{K} \left(\sum_{j \in D^l_n} \exp(V_{jn}) \right)^{\lambda_l} \\
= \exp(V_{in}) \cdot \exp(V_{in}) \left(\sum_{l=1}^{K} \left(\sum_{j \in D^l_n} \exp(V_{jn}) \right)^{\lambda_l} \right) \\
= \exp(V_{in}) \cdot \exp(V_{in}) \left(\sum_{l=1}^{K} \left(\sum_{j \in D^l_n} \exp(V_{jn}) \right)^{\lambda_l} \right) \\
= P_{in|D^k_n} \cdot P_{D^k_n} \\
\]

where,

\(V_{in} \) is the utility for decision maker \(n \) choosing alternative \(i \);
W^n_k is the mean of V_{in} over all alternatives in nest D^n_k and D^n_k is nest k to which decision maker n belongs;

Y^n_k is the deviation of V_{in} from the mean W^n_k;

$P_{in|D^n_k}$ is the conditional probability of decision maker n choosing alternative i given that the nest D^n_k is chosen by the decision maker n, $i \in D^n_k$;

$P_{D^n_k}$ is the marginal probability of decision maker n choosing an alternative in nest D^n_k;

$I_{D^n_k}$ is called logsum because it is the log of a sum, i.e. $ln \sum_{j \in D^n_k} \exp(Y^n_j)$;

λ_k is the nesting coefficient or logsum coefficient.

The purpose of this derivation is to show that if a set of alternatives can be subdivided into nests in which unobserved utility is correlated among alternatives within a nest and no unobserved utility is correlated between nests, the nested logit model reduces to the product of a marginal probability of a choice among the nest and a conditional probability within each nest. Each probability (marginal and conditional) is a multinomial logit model with IIA properties. The difference is that the marginal probability has the so-called “inclusive value” (or “logsum”) term as an added variable in its utility function. It reflects the influence alternatives in each nest collectively have on the choice of that nest. Thus, influence is carried between subsets of alternatives and the nests they belong to but it is achieved without violating the IIA assumption of the MNL models constituting the nested logit model.

Assume there are two alternatives from two nests, say $i \in D^n_k$ and $m \in D^l_n$. Then, based on the new expression of two logits, the ratio of probabilities between the alternatives for individual n is:
\[
\frac{P_{in}}{P_{mn}} = \frac{P_{in|D^n_k}P_{D^n_k}}{P_{mn|D^n_l}P_{D^n_l}}
\]

Equation (4) becomes \(\frac{P_{in|D^n_k}}{P_{mn|D^n_l}}\), which means that the ratio of probabilities between alternatives \(i\) and \(m\) are independent of any changes in all other alternatives. That is, IIA holds among alternatives within the same nest. However, when \(k \neq l\), that is \(i\) and \(m\) are in different nests, the ratio depends on the attributes of all alternatives within \(D^n_k\) and \(D^n_l\). That is, IIA does not hold among alternatives across nests. In addition, the ratio does not depend on the attributes of alternatives that do not belong to the named two nests.

NL and other GEV models. NL is the most widely used type of Generalized Extreme Value (GEV) model. Typically, GEV relaxes the restrictions present in models such as logit and thus allows any pattern of correlation among alternatives. Beside the NL model, the GEV family includes many other models, such as the Generalized Nested Logit (GNL) model, Cross-Nested Logit (CNL) model, and Spatially Correlated Logit (SCL) models. For a detailed review on GEV models, please refer to the work of Bekhor and Prashker (38). As mentioned in the literature review, GEV models (with the exception of NL) have typically required large datasets (over 10,000 observations) to successfully estimate a model in the past. The number of available observations is much less in this study, which is presented in a following section. Therefore, a NL was selected as the model structure to be used in this study. The specific structure of the NL model used in this study is discussed in detail in the next section.

3.2 Specific structure of the NL model

The nested logit structure shown in Figure 3 was selected for use in this study for the following reasons. First, the assumption of a dependency between destination type and mode makes the use
of a regular multinomial logit model inappropriate in this situation. Thus, NL and other GEV models are potential choices to handle this situation. The assumption of dependence between destination type and mode choice can be tested by observing whether the logsum parameters in the model are significantly different from 1. Second, among all the GEV models, the NL model was selected because of the relatively small sample size available in this study. As discussed in the previous section, those studies using a GEV structure other than NL typically require large samples. In this study, even if observations with missing values are imputed and then pooled across all the surveys, the maximum number of observations available is less than 2,000. Third, the NL model enjoys widespread use, estimation procedures are commonly available, and it is easy to interpret the estimation and application results. In contrast, other GEV models have not been fully exploited in the research area and thus have not been widely applied in practice. Therefore, considering all the above reasons, the NL model appears to be a better choice for the purpose of this research and subsequent applications in practice.

In this study, a potential structure of the NL model is to put destination type on the upper level nest and mode choice on the lower level nest. During model estimation, other potential nesting structures were also tested and are presented in the next chapter. However, other nesting structures did not produce results that were as good as that produced by the structure shown in Figure 3. Specifically, this structure was chosen because it provides satisfying results in consideration of multiple statistical criteria, such as the likelihood ratio index (rho-squared), significance of the parameters, and whether the logsum parameters are within a feasible range (0 to 1). These statistics are explained in the next section.
Figure 3. Structure of the model
(FR: Friends/Relatives; HM: Hotels/Motels; SH: Public shelters; OT: Other destination type; own: driving your own vehicle; ride: riding with others; transit: taking transit; other: other modes)

Under the nest of FR, HM, and SH, there is a full set of mode choice alternatives in the form of using your own private vehicle to evacuate (own), ride with others (ride), use transit (transit), or use any other mode of transportation (other). However, under the nest of “other” destination type (OT), mode choice is only distinguished by whether the household used their own private vehicle to evacuate or not. This is due to the few observations in the OT destination type but where using your own vehicle is still the dominant mode of transport. During evacuations, emergency managers and traffic engineers pay attention to the amount of traffic flow on the road network so that strategies like contraflow can be applied on time. Therefore, a choice of driving your own vehicle can have a significant impact on the number of vehicles on the road network. Even with a rough estimation, it can be helpful for the management of traffic flows.

3.3 Statistics used in an NL model

This section presents statistics that are used to evaluate an estimated NL model.
Test of overall goodness-of-fit (GOF). The goodness of fit of a model to the data on which it is estimated can be described by rho-squared value (ρ^2) or adjusted rho-squared value ($adj\, \rho^2$). Both of them are based on log-likelihood values and measure how well the model fits the data. The difference is that adjusted rho-squared values consider the number of parameters in the model. Rho-squared values vary between zero and one with one indicating a perfect fit of the model to the data, and zero indicating no fit at all.

$$\rho^2 = 1 - \frac{LL(\hat{\beta})}{LL(0)} \quad (5)$$

$$adj\, \rho^2 = 1 - \frac{LL(\hat{\beta}) - K}{LL(0)} \quad (6)$$

where,

$LL(\hat{\beta})$ is the log-likelihood at convergence of the estimated model;

$LL(0)$ is the log-likelihood for a model with all coefficients equal to zero;

K is the number of parameters used in the estimated model

Different from the interpretation of R-squared in regression, a rho-squared value does not indicate the percentage of variation in the dependent variable that has been captured or explained by the estimated model. It only stands for the proportional increase in the log likelihood from its value when all coefficients in the model are set equal zero, to its value when the coefficients have reached their maximum likelihood value at convergence. Therefore, it is not as easily interpreted as R-squared. But there is still something in common between rho-squared and R-squared values: they both range from 0 to 1 with 0 and 1 having the same meanings of no fit and perfect fit, respectively. Because the log likelihood is a non-linear function, rho-squared values cannot be interpreted in linear terms. In maximum likelihood estimation, predicted probabilities on chosen alternatives are maximized, resulting in good model predictions producing likelihood
values approaching 1 on each choice alternative, and a poor model predictions producing likelihood values that approach zero on each choice alternative. However, because the log of these likelihood values is taken, poor fits are exaggerated by the large negative value of the log of a small value, while the reverse is true of the log of a value approaching 1. The result is a poor model fit is exaggerated on the log likelihood scale and a good model fit is under-estimated if a linear interpretation of the log likelihood values is made. Since rho-squared is a statistic compiled from log likelihood values, this deviation from a linear scale is carried through. In general, if a rho-squared value is less than 0.1, it means the estimated model has a poor performance in fitting the data; if it is over 0.2, it means the estimated model is acceptable; if it is over 0.3, it means the estimated model performs well; if it is over 0.4, it means the estimated model is excellent.

It should be noted that two models that are estimated on different samples or with a different set of alternatives for any sampled decision maker cannot be compared based on their likelihood ratio index values.

Test of individual parameters. The purpose is to find out whether an estimated parameter is significantly different from zero and, therefore, whether the selected variable with which the parameter is associated has a significant impact on household choice behavior. As with other modeling processes, this task can be fulfilled by applying a standard t-test.

\[
t - statistic = \frac{\bar{\beta}_k - \beta_0}{s_k}
\]

where,
\[
\bar{\beta}_k \text{ is the estimated parameter for the } k^{th} \text{ variable;}
\]
\[
\beta_0 \text{ is the hypothesized value for the } k^{th} \text{ parameter;}
\]
\[
s_k \text{ is the standard error of this estimate.}
\]
Tests on each individual logsum coefficient are the same as shown in Equation (7), but β_0 equals one in this situation. This test can also be performed to find out whether a portion of the nesting structure can be eliminated.

Test of the NL structure. As mentioned in a previous section, a NL model is reduced to a MNL model when all the logsum coefficients equals one. Therefore, a likelihood ratio test can be used to identify whether a NL model is a significant improvement on a MNL in a particular case (22). When the following statistic is greater than χ^2_n (where n is the number of logsum parameters), the null hypothesis that a MNL is the correct structure is rejected.

$$-2 \times [LL(MNL) - LL(NL)]$$

where,

$LL(MNL)$ is the log-likelihood of the MNL model, i.e. restricting all logsum coefficients to one;

$LL(NL)$ is the log-likelihood of the NL model, i.e. without restrictions on logsum coefficients.

3.4 Data at household level

As stated earlier, this research used revealed preference (RP) data from several post-storm behavioral surveys. RP data is generally preferred over stated choice (SC) data because it is believed to be more reliable. One example is the choice on shelter: respondents usually overstate their likelihood of using shelter by a factor of two (39). However, the problem of using RP data is that each post-storm behavioral survey only provides a limited number of observations. The consequence is that some of the joint choice alternatives have only a few observations. In order to have sufficient observations and add more diversity, a compromise was made to pool all datasets together. That is to say, the assumption was made that households living in different areas will display the same behavior under similar conditions. As long as the major impact
factors are included in the model and data is available on these factors, we expect that households will make the same decisions no matter where they are. The concern about pooling datasets is similar to that raised in model transferability: do the models capture all the factors dictating behavior? However, if at least the main impacts are successfully captured in a model, the model can reasonably be expected to have good performance when it is transferred and applied in another situation (40).

In this study, household data were collected from three post-storm behavioral surveys. This section presents information of each survey, how the data were processed, and an analysis on household behavior and their socio-demographic characteristics.

3.4.1 Post-storm behavioral surveys used in model estimation

All of the surveys include questions regarding characteristics of a household, as well as details regarding the household’s evacuation behavior during the hurricane. The research reported in this study focused on households who chose to evacuate and their choice behavior on destination type and mode. The study area and population in each survey is shown graphically in Figure 4. Due to the availability of variables related to geographic units in each survey and also to keep consistency, ZIP Code Tabulation Areas (ZCTA) were chosen as the geographic spatial unit.
Table 2 shows the number of respondents (i.e. households in the sample), number of evacuees (i.e. households who chose to evacuate), and the number of evacuees without any missing value on the reported questions and the composition of their choice. Destination type
choice (DTC) is categorized as the home of a friend or relative (FR), a hotel or motel (HM), a public shelter or church (SH), and Other (OT). OT includes a second home, workplace, campground, clubhouse, etc. Mode choice (MC) is categorized as driving your own vehicle (own), riding with others (ride), taking transit (transit), and using other modes (other). Travel modes within transit include bus, ferry, subway, train, and taxi. Other modes include renting a vehicle, taking an airplane, using an ambulance, walking, cycling, and using a motorcycle.

As shown in the table, there are both similarities and differences in choice behavior across surveys. An analysis on the household choice behavior is presented in the following section.

Table 2. Description of post-storm surveys

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of respondents</td>
<td>310</td>
<td>1,600</td>
<td>3,506</td>
</tr>
<tr>
<td>Number of evacuees</td>
<td>233</td>
<td>418</td>
<td>637</td>
</tr>
<tr>
<td>Number of observations without missing value</td>
<td>170</td>
<td>240</td>
<td>429</td>
</tr>
<tr>
<td>Destination Type Choice (DTC):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friends/Relatives (FR)</td>
<td>92 (54%)</td>
<td>198 (83%)</td>
<td>356 (83%)</td>
</tr>
<tr>
<td>Hotels/Motels (HM)</td>
<td>60 (35%)</td>
<td>25 (10%)</td>
<td>28 (7%)</td>
</tr>
<tr>
<td>Shelters (SH)</td>
<td>4 (2%)</td>
<td>2 (1%)</td>
<td>18 (4%)</td>
</tr>
<tr>
<td>Other (OT)</td>
<td>14 (8%)</td>
<td>15 (6%)</td>
<td>27 (6%)</td>
</tr>
<tr>
<td>Mode Choice (MC):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driving own vehicle (own)</td>
<td>165 (97%)</td>
<td>188 (78%)</td>
<td>254 (59%)</td>
</tr>
<tr>
<td>Riding with others (ride)</td>
<td>4 (2%)</td>
<td>18 (8%)</td>
<td>58 (14%)</td>
</tr>
<tr>
<td>Taking transit (transit)</td>
<td>1 (1%)</td>
<td>29 (12%)</td>
<td>69 (16%)</td>
</tr>
<tr>
<td>Other (other)</td>
<td>0 (0%)</td>
<td>5 (2%)</td>
<td>48 (11%)</td>
</tr>
</tbody>
</table>

3.4.2 Household choice behavior

Regarding destination type choice, all the surveys present the following similarities: the majority of the respondents went to FR; SH is the least likely choice among respondents. However, as pointed out before, there are also differences among surveys. First, aggregate destination type choice is similar between Irene and Sandy. An explanation towards this finding lies in the
similarity in study area between the two surveys. Second, it can be seen that respondents to Irene and Sandy are even more likely to go to FR and less likely to choose HM than the respondents in Gustav. This finding may seem surprising given that southern states are generally believed to have stronger family ties than areas in the northeast, and the fact, validated by statistics from tourism and economy sector, that there is less hotel accommodation per capita in the New Orleans area than in New York. As will be discussed in the next section, an explanation was found for this phenomenon.

For mode choice, one significant similarity across all the surveys is that a large proportion of the respondents chose to evacuate by their own vehicle. However, mode choice is more similar between Irene and Sandy than with Gustav. Specifically, within Gustav driving your own vehicle dominates (over 95%) and taking a transit is barely chosen (less than 1%). In contrast, within Irene and Sandy, the proportion of choice on own vehicle decreases to below 80%, while the proportion of taking transit increases to over 10%. Considering the high level of transit service in NY and the fact that NY residents are used to using transit for regular commuting, this reality may encourage some of them to keep using transit during evacuation. A finding that supports this point of view is that respondents to Sandy are more likely to take transit than those in Irene and New York City provides a higher level of transit service than its surrounding counties. Therefore, factors reflecting the level of transit service appear to be important in choosing transit for evacuation.

Four alternatives in each of the four choices formed 16 possible alternatives in total in their joint choice. However, the destination type “other” has only two mode choices due to limited observations in that destination type, resulting in 14 possible alternatives. Table 3 lists
the composition of joint choice in terms of number of respondents in each post-storm behavioral survey.

<table>
<thead>
<tr>
<th>DTC_MC</th>
<th>Gustav</th>
<th>Irene</th>
<th>Sandy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR_own</td>
<td>90</td>
<td>160</td>
<td>214</td>
</tr>
<tr>
<td>FR_ride</td>
<td>2</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>FR_transit</td>
<td>0</td>
<td>21</td>
<td>58</td>
</tr>
<tr>
<td>FR_other</td>
<td>0</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>HM_own</td>
<td>58</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>HM_ride</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HM_transit</td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>HM_other</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>SH_own</td>
<td>3</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>SH_ride</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SH_transit</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SH_other</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>OT_own</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>OT_other</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

As shown in Table 3, there are only a few observations when the choice is transit or shelter. Each single survey cannot provide enough data for model estimation. Therefore, the objective becomes achieving enough observations. Imputation is one of the methods employed to save records that otherwise would not be usable due to missing information on individual items in the survey responses. Another choice is to pool all or a part of the above datasets to add diversity while achieving an adequate number of observations at the same time. Both approaches were tested in this study.

3.4.3 Household socio-demographic characteristics

Table 4 shows the mean, minimum, and maximum of several household characteristics. To observe difference across surveys, statistics are reported for each of them. Although the table only presents five household variables, many more variables were considered in model estimation. All the household variables in common across the three surveys were entered for test
during the model estimation. Those excluded variables are house structure (e.g. detached single family home), house ownership (i.e. own/rent), number of children in a household, whether a household has pets, race or ethnicity, language spoken at home, age of a household head, and education level.

Table 4. Statistics of household characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Household size (HHSize)</td>
<td>Mean</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Indicator variable for household vehicle ownership (1 if a household owns at least one vehicle, 0 otherwise) (HHVeh)</td>
<td>0.97</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indicator variable for presence of disabled people in a household (1 if there is a disabled person in the household, 0 otherwise) (HHDisab)</td>
<td>0.08</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Residential length in years (HHResYears)</td>
<td>17.69</td>
<td>0.25</td>
<td>54</td>
</tr>
<tr>
<td>Household income in $1,000 (HHInc)</td>
<td>64.77</td>
<td>15</td>
<td>150</td>
</tr>
</tbody>
</table>

HHSize. The average household size is similar across surveys, which is about three persons per household.

HHVeh. The proportion of households who own at least one vehicle are significantly different across surveys. Households in the Gustav survey are the most likely to own a vehicle (97%). In contrast, only 81% of the households in the Irene survey own a vehicle. There are even fewer households (74%) who own a vehicle in the Sandy survey. This indicates that residents living in counties around New York City (NYC) have a higher vehicle ownership rate than those who live within NYC.
HHDisab. The proportion of households with disabled household members is only slightly different between Gustav and the other two. Generally, about 10% of the households reported they have disabled household members.

HHResYears. Average length of residence in a local area presents a significant difference across surveys. Households in the Gustav survey reported much shorter residential stays. This may be due to Hurricane Katrina (2005) happening only three years before Hurricane Gustav (2008). As is well known, a large number of households were forced to change residential places due to Hurricane Katrina.

HHInc. Average annual household income does not vary a lot among the Gustav, Irene, and Sandy survey respondents, which is around $65,000. The minimum and maximum value are exactly the same because the original question on household income offers categorical options instead of asking for an exact value.

3.5 Data at zonal level from ACS

The American Community Survey (ACS) provides aggregate data on residents and housing in the U.S. Information on residents includes population, age, disability, education, employment, income, insurance, language, marital & fertility status, citizenship, race or ethnic origin, etc. Topics on housing include the basic count of dwelling units, and their financial, occupancy, and physical characteristic. Depending on the requested variable and year, data is provided at geographical units that range from state to census block.

3.5.1 Zonal unit discussion

Zonal variables are used as contextual factors, which potentially can influence household evacuation behavior. To associate the zonal data with household data, the selected zonal unit
must be available in both the ACS data and all household post-storm surveys. In Table 5, available zonal units in each survey are listed from fine to coarse.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude/Latitude</td>
<td>Zip code</td>
<td>Zip code</td>
<td></td>
</tr>
<tr>
<td>Census tract</td>
<td>County</td>
<td>County</td>
<td></td>
</tr>
<tr>
<td>Zip code</td>
<td>City</td>
<td>City</td>
<td></td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>State</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regarding the specific zonal unit to be used in model estimation, ZIP Code Tabulation Areas (ZCTA) is preferred because it is the finest available in all the above surveys. It is a generalized areal representation of United States Postal Service (USPS) ZIP Code service areas. Another advantage of using ZCTA is that industrial data are usually provided at this zonal level as well. For example, it is useful when data from the hotel industry (NAICS industry code 7211: Traveler accommodation) is required in this study.

3.5.2 Zonal socio-demographic characteristics

Table 6 shows the mean, minimum, and maximum of several zonal characteristics from the ACS data at ZCTA level. If data are not available for the exact year, data from the closest year to that event were collected. The table only presents variables that are found significant in the model estimation. However, all available variables from the ACS were considered and tested in the process of model estimation.

Within the study areas of Gustav, Irene, and Sandy, some of the ZCTAs may not have any respondents. Instead of removing them from the following zonal comparison, the reported statistics incorporate all ZCTAs as long as they have residents and are within the border of the surveyed counties.
Table 6. Statistics of zonal characteristics: ACS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Residential stability (Residential stability) (ResStab)</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Proportion of workers using transit (excluding taxi) for commuting purpose (CommutebyTransit)</td>
<td>0.02</td>
<td>0</td>
<td>0.28</td>
</tr>
<tr>
<td>Proportion of households that do not own any vehicle (PropNoVeh)</td>
<td>0.08</td>
<td>0</td>
<td>0.51</td>
</tr>
<tr>
<td>Proportion of people with bachelor’s degree or higher (PropHighEdu)</td>
<td>0.18</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>Community density (Community density) (ComDensity)</td>
<td>0.15</td>
<td>0</td>
<td>0.86</td>
</tr>
<tr>
<td>Proportion of people who are not U.S. citizen (PropNonCitizen)</td>
<td>0.02</td>
<td>0</td>
<td>0.17</td>
</tr>
<tr>
<td>Proportion of people with disability (PropDisab)</td>
<td>0.16</td>
<td>0</td>
<td>0.41</td>
</tr>
<tr>
<td>Proportion of people who are less than 18 or over 65 (PropAge)</td>
<td>0.38</td>
<td>0.19</td>
<td>0.73</td>
</tr>
</tbody>
</table>

ResStab. Residential stability was considered a potential surrogate for social networking. That is, the longer residents remain in an area, the more social links they are expected to develop. Residential stability was measured by the proportion of households who moved into their current dwelling before 2005. The reason that 2005 was chosen as the cutoff point for this variable is due
to the availability of data. For all three storms, this portion of the data is only available from “2011 ACS 5-year estimates”, which provides the percentage of households who “Moved in 2005 or later”. For the data collected before 2011, this variable is actually not available. For data collected later, in 2012, the categories change to “Moved in 2010 or later” and “Moved in 2000 to 2009”. Both of them are not that suitable for the calculation of residential stability: “Moved in 2010 or later” presents, on average, too short a period in which local friendship ties can develop, while “Moved in 2000 to 2009” presents too long a period to effectively distinguish those forming local friendship ties from those who have not. Therefore, one minus the proportion of household who “Moved in 2005 or later” (2011 ACS) was used for the calculation of residential stability in this study. For Irene and Sandy, residents would have lived in the local area for about seven or eight years before they experienced the need to evacuate. For Gustav, residents would have lived in their local communities for about four years before they evacuated. In both cases, residents have lived in the local area over three years, which is considered long enough to establish local friendship ties. As shown in the table, the average length of stay (reflected in ReStab) for Gustav is less than the others, possibly due to the disruption caused to communities by Hurricane Katrina three years earlier. This fact is also reflected in the household characteristic of duration of residential stay (HHResYears) shown in Table 4.

PropNoVeh. The variable describing the proportion of households having no vehicle, PropNoVeh, equals 0.08 for the ten coastal parishes in Louisiana, while this value is 0.51 for New York City. When the three additional counties that distinguish the Irene survey area from the Sandy survey area are incorporated, the value of PropNoVeh decreases to 0.25, which means vehicle ownership in these counties is much higher than in New York City.
Other zonal characteristics also reflect differences in the three surveys. First, New York generally has a higher level of public transportation use (CommutebyTransit), a greater proportion of the population with a high level of education (PropHighEdu), greater community density (ComDensity), and more non-U.S. citizens (PropNonCitizen). Second, the coastal parishes of Louisiana have more disabled people than the other two study areas (PropDisab). Third, PropAge also shows a slight difference among study areas, reflecting a difference in age distribution, but it is not as significant a difference as with the other variables.

3.6 Data at zonal level based on a calculated measure of accessibility

In this study, the average accessibility of a zone measures how accessible residents living in that zone are to different destination types in all other zones that contain potential destinations. Since accessibility is measured at a zonal level in this study it is assumed all residents in a zone enjoy the same accessibility. In this study, accessibility measures the relative ease with which evacuees can access refuge by destination type. This factor was not given any attention in previous evacuation modeling studies but it was found significant in this study.

According to some leading authors in this subject area, the measurement of accessibility should abide by the following principles: “the order of opportunities should not affect the value of the measure; the measure should not increase with increasing distances or decrease with increasing attractions; and opportunities with zero value should not contribute to the measure” (30). Based on the above principles, the following formulation of an accessibility measure was developed in this study.

Define destinations. Potential destinations are defined as places that over 80% of the survey respondents were found to evacuate to in past evacuation surveys. For Irene and Sandy, potential destinations were found to be New York City and the three surrounding counties (i.e.
Nassau, Suffolk, and Westchester). For Gustav, potential destinations were the inland parishes of Louisiana and seven states that are adjacent to or close to Louisiana. When measuring accessibility where surveys have not been conducted, the analyst can identify destination zones manually based on judgment.

Measure attraction. A safety indicator is used to distinguish between safe and unsafe destination zones for the storm under consideration. If a zone is marked as dangerous, its attraction is reduced to zero no matter how attractive it otherwise would be. For New York, hurricane evacuation zones (HEZs) that received evacuation orders during Irene or Sandy were identified as unsafe destinations for those storms. If an area receiving an evacuation order is over 50% of the area of a ZCTA, the whole ZCTA is considered an unsafe area and thus receives a safety indicator of 0. The mathematical expression of a safety indicator for destination zone j is shown in Equation (9). For Louisiana, all ZCTAs in coastal parishes that received evacuation orders were marked as unsafe destinations and, therefore, were given safety indicator values of zero.

$$safety_j = \begin{cases}
1, & \text{if } \frac{\text{Area receiving an evacuation order in ZCTA } j}{\text{Area of ZCTA } j} < 0.5 \\
0, & \text{otherwise}
\end{cases} \quad (9)$$

If a zone is marked as safe, it is proposed that the attraction of that zone for evacuation is reflected by its capacity to accommodate people. To quantify the capacity to accommodate evacuees at the homes of friends and relatives (FR) in a zone, the population in that zone is used as a proxy. Data were collected from the ACS, as stated before, to provide this information. To reflect the capacity of a zone to accommodate hotel/motel (HM) guests, the number of hotel employees in that zone was selected as a proxy. The underlying assumption is that there is a direct correlation between the number of hotel employees and the number of guests that can be accommodated. This part of the data was collected from the County Business Pattern (CBP) data.
from the U.S. Census Bureau, which offers data at zip code level. For the capacity of shelters (SH) in a zone, shelter capacities were collected from available online resources. For the New York area, established shelters are schools or colleges. Therefore, the number of students in that institution was used as a proxy to for the capacity of shelters on each campus. This portion of data was collected from National Center for Education Statistics (NCES). For Louisiana, the capacity of each shelter was collected directly from the government website (41).

Measure impedance. Travel impedance is typically measured in terms of distance, time, money, or other forms of cost of travel between an origin and destination zone. In this study, distance between zones was picked as the measure of impedance because, unlike travel time, it remains fixed and known. If a zone itself is marked as safe, intra-zonal evacuation is also considered possible. The intra-zonal distance is calculated as a half the distance between this zone and its nearest neighboring zone.

Formulate accessibility. For people living in zone i, their accessibility to zone j with respect to FR is assumed to be directly related to the population in zone j and inversely related to the distance between the two zones. To account for the fact that only safe zones can effectively serve as destinations, accessibility to zone j is formulated as $\frac{\text{Pop}_j \times \text{Safety}_j}{\text{Distance}_{ij}}$. Then the accessibility to FR was summed up for zone i and divided by the number of safe residential zones in the study area. Taking the average instead of using the total accessibility is based on the assumption that a household only stays at one destination during their evacuation. As an example, evaluate accessibility for the following two situations:

Situation 1: there is only one safe zone for a household to evacuate to. That zone has a large population ($4P$) and it is D miles away from that household.
Situation 2: there are four safe zones, each of them have a population of P and all of them are D miles away from the household.

It could be argued that the total accessibility in the two situations is the same; $\frac{4P}{D}$. However, the average accessibility in the two situations is $\frac{4P}{D}$ and $\frac{P}{D}$, respectively. Since a household can only choose one destination, it is obvious that they will have more opportunities in the first situation than the other for two reasons. First, assume a household has a fixed number of friends or relatives. The chance for that household to have a friend or relative in a particular zone increases when the number of zones decreases and the population in each zone increases. That is, if people are more concentrated, there is a larger chance that a household has a friend or relative in one of the zones. Second, a larger zone can offer more opportunity for a household to find more friends or relatives who have enough room in their house to accommodate them. Therefore, accessibility was measured based on an average, which reflects an average opportunity of finding an available FR at one location. The complete expression of accessFR_i is shown in the equation below. It represents the average accessibility in terms of FR from zone i to all the other safe residential zones within the study area.

$$\text{accessFR}_i = \frac{\sum_{j=1}^{J} \frac{\text{Pop}_j \times \text{safety}_j}{\text{Distance}_{ij}}}{\sum_{j=1}^{J} (\text{safety}_j \times \text{Resid}_j)}$$ (10)

where,

accessFR_i is the average accessibility to FR for residents living in zone i;

$safety_j$ is the safety indicator of zone j;

$Resid_j$ is the residential indicator of zone j. It equals 1 if zone j has residents and 0 otherwise;

Pop_j is the number of population in zone j;

$Distance_{ij}$ is the distance between zone i and zone j.
Regarding the calculation of accessibility to HM and SH, the method is similar to that described above. For HM and SH, population in zone j is replaced by the number of hotel employees or the capacity of shelters, respectively. As before, the average accessibility represents an average opportunity that a household can find a hotel room or shelter space at one destination. The expressions for the accessibility to HM and SH destinations are shown in Equations (11) and (12), respectively.

$$access_{HM_i} = \frac{\sum_{j=1}^{J} HotelEmployee_j \times safety_j \times Distance_{ij}}{\sum_{j=1}^{J} (safety_j \times Hotel_j)}$$

(11)

where,

$access_{HM_i}$ is the average accessibility to Hotel/Motel for residents live in zone i;

$Hotel_j$ is the hotel industry indicator of zone j. It equals 1 if zone j has any hotel/motel (NAICS industry code 7211: Traveler accommodation);

$HotelEmployee_j$ is the number of hotel employee in zone j.

$$access_{SH_i} = \frac{\sum_{j=1}^{J} ShelterCapacity_j \times safety_j \times Distance_{ij}}{\sum_{j=1}^{J} (safety_j \times Shelter_j)}$$

(12)

where,

$access_{SH_i}$ is the average accessibility to shelters for residents live in zone i;

$Shelter_j$ is the shelter indicator of zone j. It equals 1 if zone j has any shelter;

$ShelterCapacity_j$ is the capacity of shelters in zone j.

The calculated accessibility for different survey areas and destination types are shown in Table 7. Longer evacuation distance and lower population density makes the average of $access_{FR}$ smaller in Louisiana than in New York. This fact also applies to $access_{HM}$ and $access_{SH}$. Accessibility has a potential to explain households’ choices toward different modes in
the sense that with greater accessibility a household becomes less dependent on autos and has more choice options, such as walking and cycling. Accessibility measures cannot be compared across destination types because they use different variables in their formulation.

Table 7. Statistics of zonal characteristics: accessibility (Unit: \(\times 10^{-2} \))

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average accessibility to Friend/Relative house (accessFR)</td>
<td>1.9</td>
<td>1.8</td>
<td>2</td>
</tr>
<tr>
<td>Average accessibility to Hotel/Motel (accessHM)</td>
<td>0.025</td>
<td>0.022</td>
<td>0.027</td>
</tr>
<tr>
<td>Average accessibility to Shelter (accessSH)</td>
<td>0.19</td>
<td>0.15</td>
<td>0.23</td>
</tr>
</tbody>
</table>

3.7 **Data at zonal level from other sources**

Hotel price (HotelPrice) and occupancy rate (HotelOccupy) can have an impact on the choice of HM by locals depending on the price of a hotel room relative to average local income, and the availability of hotel accommodation when it is sought on short notice. To address this issue, the quarterly average daily rate and monthly occupancy rate of hotels were collected from Statista and NYCEDC (42)(43). Due to the availability of data, it can only be collected at a regional level, i.e. New York City and New Orleans. Average household income was obtained from the ACS database.

Table 8 shows the quarterly average daily rate of hotels, which was based on data from Statista. It is an average across multiple years. As shown, the price of a hotel in NYC is about
twice that of New Orleans and yet their average household income (shown in Table 4) is very similar (approximately $65,000 per year).

| Table 8. Quarterly average daily rate of hotels (Unit: $/night) |
|------------------|----|----|----|----|
| | Q1 | Q2 | Q3 | Q4 |
| NYC (2010-2014) | 261| 332| 316| 364|
| New Orleans (2012-2015) | 175| 163| 140| 171|

Table 9 shows the monthly average occupancy rate of hotels across multiple years. The hotel occupancy rate in New York City was provided by NYCEDC. But such data is not available for New Orleans. Therefore, the statistics for the whole U.S., provided by Statista, was used as a substitution for New Orleans in the model estimation. As shown, NYC has a much higher hotel occupancy rate than the national average.

| Table 9. Monthly average occupancy rate of hotels (2011-2015) (Unit: %) |
|------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Area | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec |
| NYC | 74.4 | 78.2 | 87 | 90.4 | 91.2 | 90.6 | 90.8 | 92.6 | 90.8 | 92 | 88 | 89.4 |
| U.S. | 50.9 | 58.8 | 64.2 | 63.9 | 64.7 | 70.5 | 72.0 | 69.1 | 64.7 | 65.9 | 57.5 | 50.5 |

The above two tables also show seasonal variations. Instead of using the above multiple year average, Table 10 shows the original values of hotel price and occupancy for the year and quarter/month when the hurricane event actually occurred. Hotel prices during Irene and Sandy in NY are about triple of that during Gustav in New Orleans. In addition, HotelPrice during Irene and Sandy are not the same because the time of the events are different in year and seasonal quarter. NY has higher hotel prices and most of the hotels were almost fully occupied during the months of the storms of Irene and Sandy. These conditions would likely decrease the probability of a household choosing HM as a destination type in the NY area. The two factors were not considered in previous modeling studies because they did not get a chance to observe household
evacuation behavior across regions. This illustrates the benefit of using data from multiple study areas.

Table 10. Statistics of zonal characteristics: hotel price and occupancy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotel price in the local area (HotelPrice)</td>
<td>135</td>
<td>323</td>
<td>380</td>
</tr>
<tr>
<td>Hotel occupancy rate in the local area (HotelOccupy)</td>
<td>0.693</td>
<td>0.926</td>
<td>0.920</td>
</tr>
</tbody>
</table>
CHAPTER 4 MODEL ESTIMATION AND DISCUSSION

This chapter presents five nested logit models that were formed to be the most promising in the process of estimation. The development is described, the results of each estimated models are presented, and the performance of the models are discussed.

Two issues are studied in this chapter before proceeding to model estimation. The first issue is the size of data. Generally, there are two solutions to achieve enough observations: imputing data and pooling data from different sources. Both of these strategies were tested in this study. The second issue is the nest structure. That is, which choice should be on the upper level: mode choice or destination type choice? This was tested by formulating a structure with each option.

As shown in Table 11, Model 1 only used one dataset with imputation; Model 2 and 3 pooled one additional dataset with imputation; Model 4 used the same dataset as Model 2 and 3, but without imputation; and Model 5 pooled a third dataset without imputation. The results from these models demonstrated the benefit of pooling multiple datasets and illustrated why imputation was the less preferred option of increasing sample size in this study. The issue of nesting structure was specifically discussed through Model 2 and 3, which tested the two structures using the same dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dataset used</th>
<th>Imputation</th>
<th>Utility scaling</th>
<th>Upper nest</th>
<th>Lower nest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Irene</td>
<td>Yes</td>
<td>Yes</td>
<td>DTC</td>
<td>MC</td>
</tr>
<tr>
<td>2</td>
<td>Irene+Sandy</td>
<td>Yes</td>
<td>No</td>
<td>MC</td>
<td>DTC</td>
</tr>
<tr>
<td>3</td>
<td>Irene+Sandy</td>
<td>Yes</td>
<td>No</td>
<td>DTC</td>
<td>MC</td>
</tr>
<tr>
<td>4</td>
<td>Irene+Sandy</td>
<td>No</td>
<td>No</td>
<td>DTC</td>
<td>MC</td>
</tr>
<tr>
<td>5</td>
<td>Irene+Sandy+Gustav</td>
<td>No</td>
<td>No</td>
<td>DTC</td>
<td>MC</td>
</tr>
</tbody>
</table>

In the sections which follow, each model is discussed in greater detail. Most of the selected variables were described and defined in the previous chapter. Any variable that has a
different meaning from the previous description was specified along with each test. Models that were estimated based on the same dataset were compared and selected based on goodness-of-fit (GOF) statistics, signs of the parameters, and their significance. Models that were estimated based on different datasets were compared based on the validity of nested structure, model stability, and prediction ability. In the last section, the sign and value of the parameters for the best estimated model among all of them are interpreted in detail.

4.1 Model 1: estimation with a single dataset

Only Irene data were used for estimation of Model 1. The purpose is to observe the performance of the estimated model so as to confirm the necessity of pooling multiple datasets.

In order to use the household dataset most completely, all records with missing data elements were not discarded, but filled with imputed values using the Hot Deck method of imputation. The hot.deck method in R, a professional statistical analysis software package, was used. The underlying imputation technique performed by this package is non-parametric. The reason for using this package is its ability to impute both categorical and continuous variables. According to the developers, their method works better than parametric multiple imputation in the case where a discrete variable with a small number of categories has missing values (44).

Of the 418 household observations, only 240 of them are without any missing value in all the variables. The following variables are available from the survey and were entered into the above process of imputation. The number in the bracket stands for the frequency of missing value for that variable: mode choice (7), destination type choice (2), vehicle ownership (6), whether there is a disabled household member (3), whether the evacuee had
an evacuation plan (6), house structure (4), age of the respondent (42), length of residence (19), household size (25), number of children (21), whether there is a pet (10), race (34), language spoken at home (13), household income (154), and education level (36). As shown, household income holds the largest number of missing values. All above-mentioned imputed variables were then entered into the process of model estimation as dependent or independent variables.

Households that chose “other” as destination type or mode were removed from the dataset because the number of observations was too low and unable to sustain a category on their own. The final number of usable observations was 383. Table 12 shows the frequency of choices resulting from the data cleaning task. As can be observed from the table, the number of observations for riding with others and taking transit under the nest of HM and SH is also quite low. Therefore, they were merged under the two nests.

<table>
<thead>
<tr>
<th></th>
<th>Own</th>
<th>Ride</th>
<th>Transit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>268 (70%)</td>
<td>32 (8.4%)</td>
<td>41 (10.7%)</td>
<td>341 (89%)</td>
</tr>
<tr>
<td>HM</td>
<td>25 (6.5%)</td>
<td>3 (0.8%)</td>
<td>6 (1.6%)</td>
<td>34 (8.9%)</td>
</tr>
<tr>
<td>SH</td>
<td>3 (0.8%)</td>
<td>2 (0.5%)</td>
<td>3 (0.8%)</td>
<td>8 (2.1%)</td>
</tr>
<tr>
<td>Total</td>
<td>296 (77.3%)</td>
<td>37 (9.7%)</td>
<td>50 (13.1%)</td>
<td>383</td>
</tr>
</tbody>
</table>

The Logit Model Estimation function in TransCAD was used in the estimation of this NL model (45). After a large number of trials with different explanatory variable combinations, the statistics of the best model are presented in Figure 5. Utility scaling was applied and found to generate better estimation than without applying it.

The overall GOF of the estimated model is shown under Figure 5. LL(Zero) stands for the value of log-likelihood function with all parameters equal zero. LL(End) is the log-likelihood with estimated parameters that maximize the log-likelihood function. With the
above two values, rho squared and adjusted rho square are calculated based on the functions specified in the previous chapter.

As shown in the table, the model specification resulted in a model with rho squared values over 0.6. This means the model provided a good fit to the data in this dataset. Such large rho squared values are relatively unusual in logit model estimation, but it is at least partly due to the significantly dominant choice of FR and driving own vehicle.

Household income is an indicator variable in this test. To distinguish it from the previous definition as a continuous variable (i.e. HHInc), it is symbolized here as HHIncome. Specifically, when the reported annual household income is over $50,000, HHIncome is made equal one, otherwise, it equals zero. Therefore, HHIncome is an indicator variable on holding high income.

For Model 1, the major concern is that the small number of observations leads to the deletion or merging of some alternatives. In addition, only eight observations are available under the nest of shelter. The number of observations for each nested alternative becomes even less, e.g. only three observations for SH_own. Household choice behavior is less likely to be fully captured in this situation. With such a limited number of observations, the number of variables that can be used for model estimation is also limited. Thus, potential variables that affect household behavior cannot be fully investigated, so that pooling multiple datasets together to increase the number of observations in each alternative is necessary.
Figure 5. Model 1 with estimated parameters
(Statistics: LL(Zero) = -745.28; LL(End) = -222.11; rho squared = 0.7020; Adjusted rho squared = 0.6765)
4.2 Model 2 and 3: estimation with different nested structures

In this section, data from Irene and Sandy were pooled for model estimation. In addition, the nested structure was tested to validate why DTC on the upper level and MC on the lower level was finally used in this study.

To have enough household observations, hot deck imputation was also conducted in this section. Of the 637 household observations in Sandy, only 429 of them are without any missing value in all the variables. The following variables are available in the post-Sandy survey and were entered into the process of imputation. The number in the bracket still stands for the frequency of missing values for that variable: mode choice (1), destination type choice (1), evacuation destination (8), whether a household has friends or relatives in safe locations (8), vehicle ownership (2), whether evacuate during a previous hurricane (8), house structure (4), whether a house is rented (0), whether carry flood insurance (34), whether there is a pet (5), age of the respondent (42), length of residence (19), household size (17), the number of children in the household (15), the number of elderly in the household (16), race (47), language spoken at home (10), household income (190), and education level (36). As in the Irene imputation, household income holds the largest number of missing values. As shown, there are more variables from Sandy, but only those in common with Irene were entered into the process of model estimation.

Table 13 shows the composition of choices in the two datasets. Households that chose “other” as destination type or mode were removed from the dataset because of the limited number of observations and an intention to keep it to a similar specification as that of Model 1. However, due to the increased number of observations in HM and SH, alternatives of mode choice were not merged under the two nests in this situation.
Table 13. Choice of Households: Irene + Sandy with imputation

<table>
<thead>
<tr>
<th></th>
<th>Own</th>
<th>Ride</th>
<th>Transit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>583 (63.4%)</td>
<td>112 (12.2%)</td>
<td>124 (13.5%)</td>
<td>819 (89%)</td>
</tr>
<tr>
<td>HM</td>
<td>52 (5.7%)</td>
<td>6 (0.7%)</td>
<td>14 (1.5%)</td>
<td>72 (7.8%)</td>
</tr>
<tr>
<td>SH</td>
<td>15 (1.6%)</td>
<td>4 (0.4%)</td>
<td>10 (1.1%)</td>
<td>29 (3.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>650 (70.7%)</td>
<td>122 (13.3%)</td>
<td>148 (16%)</td>
<td>920</td>
</tr>
</tbody>
</table>

Model 2 has MC on the upper level and DTC on the lower level, which is different from the proposed structure. After a large number of trials, no model with satisfying results could be reached. The parameters of many variables were either insignificant or had the wrong sign. The nested structure is not able to be constructed because the logsum coefficients were either not within reasonable range or were not significant.

Model 3 used the proposed structure of DTC on the upper level and MC on the lower level. Utility scaling was not used in this case. The best estimated model is shown in Figure 6. In this case more variables were found to be significant and included in the model. Of the 21 variables in the model, 16 are significant at a confidence level of 95%. As in Model 1, household income is an indicator variable instead of a continuous variable.

The overall GOF of the estimated model is shown under Figure 6. As shown in the table, the model specification resulted in a model with a large rho square (0.5969).

Compared to Model 1, more observations are available for each alternative, providing a better chance that choice behavior is adequately observed. The number of selected variables also increases, so that variables that affect choice behavior also get a better chance to reflect that behavior. However, as with Model 1, a concern is that imputed values may bias the analysis. Another concern is on the significance of the logsum parameter for SH. As shown, it is not significantly different from one at a confidence level of 95%. It means that there is no correlation between the unobserved components of utility for alternatives within SH.
Figure 6. Model 3 with estimated parameters
(Statistics: LL(Zero) = -2021.45; LL(End) = -785.87; Asymptotic rho squared = 0.6112; Adjusted rho squared = 0.5969)
4.3 Model 4 and 5: estimation without imputed values

In this section, imputation was not conducted. Only those records without any missing value were incorporated in model estimation.

Model 4 uses data from Irene and Sandy. Table 14 shows the composition of choices in the combined dataset. Compared to Table 13, the percentages do not change significantly. But using the same specification as Model 3, the logsum coefficient for both HM and SH in the estimated Model 4 are negative, which is out of the its feasible range. This may be caused by the significant decrease on the number of observations from 920 with imputation to 578 without. The estimated model is shown in Figure 7.

<table>
<thead>
<tr>
<th></th>
<th>Own</th>
<th>Ride</th>
<th>Transit</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>374 (64.7%)</td>
<td>66 (11.4%)</td>
<td>79 (13.7%)</td>
<td>519 (89.8%)</td>
</tr>
<tr>
<td>HM</td>
<td>30 (5.2%)</td>
<td>6 (1.0%)</td>
<td>9 (1.6%)</td>
<td>45 (7.8%)</td>
</tr>
<tr>
<td>SH</td>
<td>8 (1.4%)</td>
<td>2 (0.3%)</td>
<td>4 (0.7%)</td>
<td>14 (2.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>412 (71.3%)</td>
<td>74 (12.8%)</td>
<td>92 (15.9%)</td>
<td>578</td>
</tr>
</tbody>
</table>

Table 14. Choice of Households: Irene + Sandy without imputation
Figure 7. Model 4 with estimated parameters
(Statistics: LL(Zero) = -1270.00; LL(End) = -485.12; Asymptotic rho squared = 0.6180; Adjusted rho squared = 0.5952)
To increase the number of observations, data from Gustav were pooled together with Irene and Sandy in Model 5. Records with any missing value were not incorporated in this estimation either. Table 15 shows the composition of choices in the three datasets. The alternative “other” is incorporated here for both mode and destination type choice because the number of observations in those categories increased.

Table 15. Choice of Households: Irene + Sandy+Gustav without imputation

<table>
<thead>
<tr>
<th></th>
<th>Own</th>
<th>Ride</th>
<th>Transit</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>464</td>
<td>68</td>
<td>79</td>
<td>35</td>
<td>646</td>
</tr>
<tr>
<td></td>
<td>(55.3%)</td>
<td>(8.1%)</td>
<td>(9.4%)</td>
<td>(4.2%)</td>
<td>(77%)</td>
</tr>
<tr>
<td>HM</td>
<td>88</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>(10.5%)</td>
<td>(1.0%)</td>
<td>(1.1%)</td>
<td>(1.0%)</td>
<td>(13.5%)</td>
</tr>
<tr>
<td>SH</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(1.3%)</td>
<td>(0.2%)</td>
<td>(0.6%)</td>
<td>(0.7%)</td>
<td>(2.9%)</td>
</tr>
<tr>
<td>OT</td>
<td>44</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>(5.2%)</td>
<td>(0.2%)</td>
<td>(0.6%)</td>
<td>(0.6%)</td>
<td>(6.7%)</td>
</tr>
<tr>
<td>Total</td>
<td>607</td>
<td>80</td>
<td>98</td>
<td>54</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>(72.3%)</td>
<td>(9.5%)</td>
<td>(11.7%)</td>
<td>(6.4%)</td>
<td></td>
</tr>
</tbody>
</table>

Model 5 uses the proposed nested structure, but OT_ride and OT_transit were merged into OT_other because of the small number of observations in each of the named alternatives. Utility scaling was not used in this case. The best estimated model is shown in Figure 8. More variables were added into this model than previous models, and 19 out of the 30 variables in the model are significant at a confidence level of 95% and 4 more variables are significant at a confidence level of 90%. In this model, household income is entered as a continuous variable.
Figure 8. Model 5 with estimated parameters
(Statistics: LL(Zero) = -1765.53; LL(End) = -838.01; Asymptotic rho squared = 0.5253; Adjusted rho squared = 0.5010)
The overall GOF of the estimated model is shown under Figure 8 (0.501). Model 5 is considered as the best model because 1) it only uses records without imputation; 2) it incorporates more alternatives, so that choice behavior can be observed more fully; 3) it covers different study areas, so that a more diverse set of underlying factors that affect choice behavior can be identified.

The interpretation on the parameters of Model 5, the best tested model, is presented in the next section.

4.4 Discussion on the best tested model
Regarding the logsum coefficients, they are significantly different from one because they have t-statistics greater than 1.96. It means the null hypothesis that the logsum coefficients equal one are rejected at a confidence level of 95%. As discussed before, a larger logsum coefficient means greater independence and less correlation. When it equals one, it indicates that no correlation among the error terms of the alternatives within a nest. When all of them equal one, it indicates that the nest structure is not necessary and the model reduces to a MNL. Since they are shown significantly different from one in this model, it can be concluded that the nest structure is reasonable and the assumption of joint choice is validated.

At the upper level of destination type choice, zonal residential stability (ResStab) was found to have a positive effect on the choice of evacuating to FR. That is, households, who live in a zone with high residential stability, are more likely to evacuate to FR than those who live in areas of low residential stability. As defined previously, residential stability is measured by the proportion of households who moved in before 2005. Residents living in zones with high residential stability are more likely to have stronger community attachment and establish more
local friendship ties. Both increase the chance that a household will reach out for help during evacuation. Therefore, a positive sign is reasonable.

The parameter for the household size (HHSize) variable is negative but is not significantly different to zero at the 95 percent level of significance. Thus, it provides an insignificant, yet clear, indication of the negative impact of household size on evacuating to the homes of friends and relatives. It is retained in this model because, intuitively, large households are difficult to accommodate in a private home due to space limitation.

Regarding choice on HM, households with higher income relative to local hotel price (HHInc/HotelPrice) are more likely to stay in HM. In the past research, a simple indicator variable of high household income was often used to explain a household’s choice on HM (15). The impact of hotel price was not taken into consideration. This is because past research were usually conducted for a single local area at a specific time, where a single average hotel price prevails. When multiple areas and different years are under investigation, average hotel price can vary considerably and a variable like HHInc/HotelPrice can better explain a household’s choice. The significant positive sign of the parameter for HHInc/HotelPrice variable confirms that affordability plays significant role in the choice of a hotel or motel as a destination type.

HotelOccupy*accessHM stands for the spatial distribution of hotel resources where a high value indicates nearby hotels are fully occupied and available hotels are far away. Conversely, nearby hotels with low occupancy produce low values of the variable. Thus, a negative sign for the parameter of the variable indicates that a combination of unavailability and inaccessibility to hotels makes it is less likely for a household to choose HM as the destination type.
The parameters for CommutebyTransit and PropNoVeh are more significant than the previous two variables in choosing HM as the destination type. The fact is that carless households evacuating to HM are more likely to take a taxi than to use other forms of transit. Therefore, a zone with higher proportion of carless households but, at the same time, with lower proportion of commuting trips by public transportation (except taxi) is likely to have more HM users. A good example from the survey is Manhattan, where household vehicle ownership is low and taxi trips are quite frequent. In the post-Irene survey, 21% of the respondents living in Manhattan evacuated to HM while this proportion was much lower elsewhere (9% overall).

Thus, the negative sign for the parameter of CommutebyTransit and positive sign for the parameter of PropNoVeh are logically correct in choosing HM as a destination type.

PropHighEdu is added into the model even though it is not as significant as the other variables. Level of education has been incorporated in the past modeling studies: an indicator variable of less than high school education was found to have positive effect on SH choice in the research of Deka and Carnegie (1); education measured in years of school completed was found to have a positive effect on HM choice and negative effect on FR and SH in the research of Smith and McCarty (16). In this study, a higher level of education is found to have positive effect on HM choice, which does not conflict with the above findings.

With respect to SH choice, the proportion of non-citizens in an area (PropNonCitizen) and the proportion of disabled in an area (PropDisab) are found to have a positive effect on the choice of public shelter. This portion of the population includes those who have special needs and require special transit vehicles during evacuation as well as those who have difficulty evacuating on their own.
The positive signs of HHVeh for choice of own vehicle under FR, HM, SH, and OT show that a household is more likely to use their own vehicle during evacuation if they own at least one vehicle. This finding is consistent with other empirical and modeling studies. The coefficients indicate that vehicle ownership is even more important in being able to access hotel or motel than other destination types.

For choice of riding with others, explanatory variables are different in each nest of destination type. First, HHVeh has a positive effect on FR_ride, but a negative effect on HM_ride, although the parameter is not significantly different to zero in each case. This can be understood as riding with others to FR is more likely to occur because of family connections, whereas evacuating to HM is more likely to be an independent choice of a household. Additionally, availability of multiple hotel rooms may also make collaborative actions less likely.

Other variables that have a significant effect on FR_ride include HHResYears, ResStab, and CommutebyTransit. HHResYears and ResStab indicate that, as expected, social networking plays an important role in the FR_ride choice. The positive parameter value for the variable CommutebyTransit for riding with others to FR indicates that transit commuters are more likely to ride with others when evacuating to FR.

For HM_ride, HHSize has a positive effect. That is, given that HM has been chosen as the destination type and the effect of vehicle ownership has been taken into account, the larger the household the more likely they are to ride with others. The model is suggesting that, all else being equal, larger households are more likely to need at least some of their members to ride with other households than smaller households would.
For SH_ride, PropAge has a positive effect. This suggests that this portion of shelter users (those under 18 or over 65 years of age) may have difficulties on driving alone/using transit or are not accessible to any vehicular resources, thus they are more likely to be dependent on receiving a ride with someone else. Zones with school dorms or many retirement homes are examples for this situation. However, the small t-statistic of this variable also show that it has a large variance in its estimated value.

For the choice of using transit, CommutebyTransit and accessFR have a positive effect on FR_transit, which means a higher level of public transportation service and an easily reached friend or relative home will increase the possibility for a household to choose transit. This can be supported by the fact that there is a larger proportion of respondents who chose FR_transit in New York than in Louisiana. For HM_transit and SH_transit, PropNoVeh has significantly positive effect for both of them. The sign is correct in the sense that carless residents are more likely to depend on transit during evacuation.

For other mode choices, accessibility and community density have a significant effect on them. Because other mode choices are mainly composed of walking, bicycling, and motorcycling, which generally serve short distance trips, higher accessibility is expected to be a good explanatory variable. This is shown to be the case for FR_other and SH_other in Figure 8. However for HM_other, community density is a better explanatory variable than accessibility. Collectively this suggests that as community density and accessibility increases, other modes (walking, cycling, motor cycle, etc.) becomes a more attractive means of evacuation to hotels and motels.
CHAPTER 5 MODEL APPLICATION AND ASSESSMENT

The model specification of Model 5 was selected for application in five different cases with different zonal units, time of event, and study area. Details of the applications are defined in Table 16.

Table 16. A summary of applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Dataset used</th>
<th>Imputation</th>
<th>Zonal unit</th>
<th>Year</th>
<th>Study area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gustav</td>
<td>No</td>
<td>ZCTA</td>
<td>2008</td>
<td></td>
<td>Ten coastal parishes in southeastern Louisiana</td>
</tr>
<tr>
<td>2 Gustav</td>
<td>No</td>
<td>County</td>
<td>2008</td>
<td></td>
<td>Ten coastal parishes in southeastern Louisiana</td>
</tr>
<tr>
<td>3 Sandy II</td>
<td>Yes</td>
<td>ZCTA</td>
<td>2012</td>
<td></td>
<td>New York and New Jersey</td>
</tr>
<tr>
<td>4 Sandy II</td>
<td>Yes</td>
<td>County</td>
<td>2012</td>
<td></td>
<td>New York and New Jersey</td>
</tr>
<tr>
<td>5 Georges</td>
<td>No</td>
<td>County</td>
<td>1998</td>
<td></td>
<td>Five coastal parishes in southeastern Louisiana and three coastal counties in Mississippi</td>
</tr>
</tbody>
</table>

Although the model selected operates at a disaggregate level, assessment of the models’ performance is typically made at the aggregate level (22). Therefore, the disaggregate prediction table with household ID on each row and different alternatives on each column was transformed to predictions at an aggregate level. More specifically, for each alternative, the predicted household choice probability was aggregated by the zonal ID associated with each household. After this process, a zonal prediction table was produced with each row representing different zonal IDs (such as ZCTA ID or County ID) and each column representing different alternatives (from FR_own to OT_other).

The survey also recorded the real decision made by each household. The observed household choice table was aggregated in a similar manner to the above-mentioned process to produce a zonal observed table. The zonal prediction table was then compared with the zonal observed table through three statistics to measure the accuracy of prediction: correlation
coefficient, and two types of the percentage Root-Mean-Square Error (%RMSE). A correlation coefficient of over 0.7 is usually considered as an indication of a strong correlation and, hence, a high level of accuracy. In contrast, a small value of %RMSE means a better prediction since it reflects the difference between the two tables. A value less than 30% is generally considered acceptable. The following equation shows the calculation of %RMSE in a general form.

\begin{equation}
%RMSE = \sqrt{\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{y_{ij} - \hat{y}_{ij}}{y_{ij}}\right)^2} \times 100\%
\end{equation}

where,

- y_{ij} is the observed number of households who choose alternative j in zone i;
- \hat{y}_{ij} is the predicted number of households who choose alternative j in zone i.

However, %RMSE is infinite when the denominator (i.e. y_{ij}) equals zero. It is exactly the case in this study, because the distribution of the joint choice is extremely skewed resulting in many cases of zero observations in sparsely populated alternatives. Therefore, the calculation of %RMSE was adjusted to overcome this disadvantage and produce a statistic that is a more reasonable measure of accuracy. First, the adjustment adds 1 to the denominator. This solves the problem of reaching infinity when y_{ij} equals zero. Second, the adjustment assigns larger weights to cells with a larger number of observations. This reduces the weight assigned to observations when y_{ij} is close to zero.

Two different ways of assigning weights were considered. First, each zone was considered equally important. The adjusted %RMSE was calculated for each zone i. Then the average of above calculated zonal %RMSE was used to stand for the average prediction error for the whole study area. It is called the first adjusted %RMSE in the following text.
\[\text{adjusted \%RMSE}_i = \sqrt{\sum_{j=1}^{n} \left(\frac{y_{ij} - \hat{y}_{ij}}{y_{ij} + 1} \right)^2 \times w_{ij} } \times 100\% \quad (14)\]

\[w_{ij} = \frac{y_{ij + 1}}{\sum_{j=1}^{n} (y_{ij} + 1)} \quad (15)\]

\[\sum_{j=1}^{n} w_{ij} = 1 \quad (16)\]

\[\text{average adjusted \%RMSE} = \frac{1}{m} \sum_{i=1}^{m} \text{adjusted \%RMSE}_i \quad (17)\]

Second, zones with more observations/evacuees were considered more important. This version of calculation considered the weight of each zone. It is called the second adjusted \%RMSE in the following text.

\[\text{adjusted \%RMSE} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{y_{ij} - \hat{y}_{ij}}{y_{ij} + 1} \right)^2 \times w_{ij} } \times 100\% \quad (18)\]

\[w_{ij} = \frac{y_{ij + 1}}{\sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij} + 1)} \quad (19)\]

\[\sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} = 1 \quad (20)\]

As shown, the sum of the weight equals one, which follows the basic rules of weighting. When observations are equally distributed across cells, above weights reduce to \(w_{ij} = \frac{1}{n}\) or \(\frac{1}{mn}\).

The second adjusted \%RMSE is the same as the general form of calculation for \%RMSE in this situation, except the change on the denominator (i.e. \(y_{ij}\) in Equation (13) and \((y_{ij} + 1)\) in Equation (18)).
5.1 Application 1: Gustav (ZCTA) and Application 2: Gustav (County)

Application 1 used a part of the dataset that was used in the model estimation, and where the zonal unit was the ZCTA. The purpose is to provide a baseline to investigate the effect brought by a change of study area and/or a change of zonal unit in the following applications.

Application 2 used the same household data as Application 1, but zonal data at county level was used instead of at ZCTA level. The purpose of this application is to investigate the effect brought about by changing the zonal unit.

When the zonal unit changes into county in Application 2, the calculated accessibility needs to be adjusted to the same level as for each ZCTA. The reason is that accessibility is not unit-free. The adjustment from a spatial aggregation of county to that of ZCTA is to keep using the number of safe ZCTAs instead of the number of safe counties in the denominators of Equations (10)-(12).

The results of Application 1 and Application 2 are shown in Table 17.

<table>
<thead>
<tr>
<th></th>
<th>Correlation</th>
<th>The first adjusted %RMSE</th>
<th>The second adjusted %RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application 1</td>
<td>0.817</td>
<td>22.2%</td>
<td>27.0%</td>
</tr>
<tr>
<td>Application 2</td>
<td>0.970</td>
<td>26.4%</td>
<td>28.5%</td>
</tr>
</tbody>
</table>

The correlation coefficients are over 0.8 in both applications. It means the predicted results are highly correlated with the observed results. The two types of %RMSE are both less than 30% in the two applications. It means the prediction error is within a general acceptable range.

5.2 Application 3: Sandy II (ZCTA) and Application 4: Sandy II (County)

To distinguish it from the previous Sandy data that were used for model estimation (called “Sandy I” in the following text), this dataset is from another post-storm behavioral survey of
Hurricane Sandy (2012) covering the area of NYC, Long Island, and New Jersey while Sandy I covered NYC only.

Figure 9. Study area in the survey of Hurricane Sandy II (NJ and NY)

Of the 1101 observations, 300 households chose to evacuate. The composition of household choice on mode and destination type is shown in Table 18. As five of the households did not report one of the choices, the total number of observations decreased to 295. Compared to other post-storm behavioral surveys in the area, the distribution of choice during Sandy II looks similar to that of Irene. However, it also has its own characteristics. On DTC, there are relatively few households evacuating to their friend or relative’s home and more to shelter. On MC, there are less transit users and more driving their own vehicles.
Table 18. Choice of Households: Sandy II without imputation

<table>
<thead>
<tr>
<th></th>
<th>Own</th>
<th>Ride</th>
<th>Transit</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>190 (64.4%)</td>
<td>19 (6.4%)</td>
<td>8 (2.7%)</td>
<td>6 (2.0%)</td>
<td>223 (75.6%)</td>
</tr>
<tr>
<td>HM</td>
<td>25 (8.5%)</td>
<td>4 (1.4%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>29 (9.8%)</td>
</tr>
<tr>
<td>SH</td>
<td>6 (2.0%)</td>
<td>1 (0.3%)</td>
<td>0 (0%)</td>
<td>3 (1.0%)</td>
<td>10 (3.4%)</td>
</tr>
<tr>
<td>OT</td>
<td>28 (9.5%)</td>
<td>0 (0%)</td>
<td>1 (0.3%)</td>
<td>4 (1.4%)</td>
<td>33 (11.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>249 (84.4%)</td>
<td>24 (8.1%)</td>
<td>9 (3.1%)</td>
<td>13 (4.4%)</td>
<td>295</td>
</tr>
</tbody>
</table>

Processing household data. Although choices were not imputed, other household data with missing values were imputed using the hot deck imputation method. As there is no question related to household disability, this dataset was pooled with records without any missing values from the Sandy I dataset for imputation purposes. Variables entering into the process of imputation included: vehicle ownership (52), whether there is a disabled household member (295), whether their house is rented (10), residential length (17), household size (17), whether there is an elderly household member (13), household income (90), and education level (15). As in previous cases, the number in brackets is the frequency of missing values for each variable. Except the situation that no question about disability was included in this survey, household income still holds the largest number of missing values.

Collecting zonal data from ACS. This process is the same as what has been done for model estimation. The data were collected for each ZCTA in Application 3, but they were collected for each county in Application 4.

Calculating accessibility. Two major issues in this process are defining the study area and the safety indicator. The two issues were solved separately for New York (NY) and New Jersey (NJ), but the solution was based on similar criteria discussed before.

As found from the survey, over 80% of the respondents from NY evacuated to a location within New York City and three surrounding counties (i.e. Nassau, Suffolk, and Westchester). Therefore, the study area was restricted to those counties, which is the same as the case of Sandy
I. Regarding the safety indicator, it was defined using the same equation as in the case of Sandy I, which is Equation (9). Thus the calculated accessibility for Sandy I was used directly in Application 3 because both cases used the same storm, study area, and geographic unit. In Application 4, the procedure is similar to that described above but the associated data were collected for each county instead of each ZCTA and an adjustment from county to ZCTA was made in the last step as described in Application 2.

For those respondents from NJ, over 74% of them evacuated to places within NJ. Therefore, the study area for NJ was restricted to itself. The population, hotel employees, and shelter capacity were thus collected for all ZCTAs within NJ in Application 3 and for all counties within NJ in Application 4. Regarding the definition of a safety indicator, the barrier islands from Sandy Hook to Cape May received mandatory evacuation order at that time. Therefore, ZCTAs that cover those barrier islands were marked as dangerous zones and received a safety indicator equaling zero. The calculation of accessibility was conducted in a similar manner to that shown in Equations (10)-(12), except the adjustment from county to ZCTA was also made for Application 4.

Collecting other zonal data. For NY, the hotel price and occupancy rates are the same as those used in Sandy I. For NJ, the assumption is that hotel price and occupancy rate are the same as NY, because of the similar economic status in the two states in the areas covered by the surveys.

The accuracy of prediction obtained by applying Model 5 to Sandy II data is shown in Table 19. The accuracy of prediction in Application 3 is satisfying because the correlation coefficient is over 0.8 and the values of the two types of %RMSE are less than 30%. Compared to Application 3, the coefficient of correlation increases in Application 4 which is at least
partially due to fewer cells being compared because of fewer number of zones. The values of the two types of %RMSE are over 30%, which seems less desirable. However, the calculation of %RMSE was adjusted as shown in Equations (14)-(20) in this study and more weights were assigned to cells with larger number of observations. Therefore the critical value of 30% used in general cases may not apply well enough in this situation. A comparison between applications to find out the relative changes on the adjusted %RMSE is more proper. The comparisons between applications will be discussed in the last section of this chapter.

<table>
<thead>
<tr>
<th>Application</th>
<th>Correlation</th>
<th>The first adjusted %RMSE</th>
<th>The second adjusted %RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application 3</td>
<td>0.865</td>
<td>21.4%</td>
<td>27.3%</td>
</tr>
<tr>
<td>Application 4</td>
<td>0.974</td>
<td>35.1%</td>
<td>40.3%</td>
</tr>
</tbody>
</table>

A few reasons why the estimated model can predict the joint choice for Sandy II at the level of ZCTA (i.e. Application 3) quite well are as follows. First, Sandy II is a post-storm behavioral survey of the same hurricane as the subject storm for the Sandy I survey. The similarity on the event’s year and study area may make the household behavior more similar in the two datasets. Second, Sandy I household data were used in the imputation process of Sandy II household data. This operation may reinforce the relationship between the two datasets. Third, the geographic unit keeps the same as the model was estimated with.

5.3 Application 5: Georges (County)

Hurricane Georges (Sep 15–Oct 01, 1998) affected several southern states. The post-storm behavioral survey used in this research covers five coastal parishes in Louisiana and three coastal counties in Mississippi as shown in Figure 10. Of the 1624 respondents, 606 chose to evacuate.
The composition of household choice is shown in the following table. The choice during Georges is similar to those made during Gustav although, in Georges, there are more shelter users.

Table 20. Choice of Households: Georges without imputation

<table>
<thead>
<tr>
<th></th>
<th>Own</th>
<th>Ride</th>
<th>Transit</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>179 (53.8%)</td>
<td>5 (1.5%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>184 (55.3%)</td>
</tr>
<tr>
<td>HM</td>
<td>86 (25.8%)</td>
<td>1 (0.3%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>87 (26.1%)</td>
</tr>
<tr>
<td>SH</td>
<td>25 (7.5%)</td>
<td>2 (0.6%)</td>
<td>0 (0%)</td>
<td>0 (1.0%)</td>
<td>27 (8.1%)</td>
</tr>
<tr>
<td>OT</td>
<td>32 (9.6%)</td>
<td>2 (0%)</td>
<td>0 (0%)</td>
<td>1 (1.4%)</td>
<td>35 (11%)</td>
</tr>
<tr>
<td>Total</td>
<td>322 (96.7%)</td>
<td>10 (3%)</td>
<td>0 (0%)</td>
<td>1 (0.3%)</td>
<td>333</td>
</tr>
</tbody>
</table>

Processing household data. Imputation was not conducted in this case even though 273 of the 606 households who evacuated had missing data on at least one of the variables needed in model 5. The application was conducted with the 333 records without any missing values.

Collecting zonal data from ACS. The process employed was similar to that used in model estimation. But the geographic unit was a county instead of ZCTA due to data only being
available at county level. In addition, ACS does not provide data for 1998. Therefore, data from the closest year (i.e. 2000) to the event was collected.

Calculating accessibility. The two major issues in this process are defining the study area and the safety indicator. Potential destinations were all parishes of Louisiana, all counties of Mississippi, and six states that are adjacent to or close to the two states. Overall, potential destinations are similar to those defined in the case of Hurricane Gustav. Due to the required adjustment from county to ZCTA in the calculation, safe ZCTAs were considered as those out of coastal parishes/counties and, therefore, were given safety indicator values of zero. Then population and the number of hotel employees were collected from ACS. However, the list of open shelters during the storm was not available. Therefore, the list of shelters used in Hurricane Gustav was used as a substitute. The calculation of accessibility was also based on Equations (10)-(12) with the adjustment described in Application 2 on their denominators.

Collecting other zonal data. Data about hotel price and hotel occupancy are not available for the year of the event (1998). As a substitute, they were assumed to be the same as the data used in Hurricane Gustav, because both cases generally cover similar areas.

Applying Model 5 on this dataset, the accuracy of prediction is shown in Table 21. The correlation coefficient is over 0.9 in this application. The values of the two types of adjusted %RMSE are about 37%.

<table>
<thead>
<tr>
<th>Application</th>
<th>Correlation</th>
<th>The first adjusted %RMSE</th>
<th>The second adjusted %RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application 5</td>
<td>0.974</td>
<td>37.2%</td>
<td>37.6%</td>
</tr>
</tbody>
</table>

The predicted error is relatively larger than in previous applications. It is partly due to the reason that zonal data were collected from ACS 2000 instead of 1998 exactly. After a major hurricane, local areas may experience significant changes which makes data from 2000 not fully
reflecting the situation in 1998. Another potential source of error can originate from the fact that the survey was conducted in 2001, three years after the hurricane, and this increases the possibility that some households may not have reported their choices accurately.

5.4 Discussion on applications

To compare the accuracy of prediction in different applications, the difference on the two types of adjusted %RMSE between an application and the baseline application (i.e. Application 1) was calculated and shown in Table 22.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Comparison</th>
<th>Baseline</th>
<th>The first adjusted %RMSE</th>
<th>The second adjusted %RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>App 1 vs App 2</td>
<td>App 1</td>
<td>4.2%</td>
<td>1.5%</td>
</tr>
<tr>
<td>2</td>
<td>App 1 vs App 3</td>
<td>App 1</td>
<td>-0.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>3</td>
<td>App 1 vs App 4</td>
<td>App 1</td>
<td>12.9%</td>
<td>13.3%</td>
</tr>
<tr>
<td>4</td>
<td>App 1 vs App 5</td>
<td>App 1</td>
<td>15%</td>
<td>10.5%</td>
</tr>
</tbody>
</table>

The comparison between Application 1 and 3 focuses on the change of study area at ZCTA level. Applying the estimated model in a different study area resulted in similar prediction accuracy as the baseline case. It means the estimated model still keeps good transferability in a situation of changing study area when the zonal unit does not change.

The other three comparisons focus on the issue of changing zonal unit. Overall, the effect of changing zonal unit is larger than of changing the study area. Application 2 shares the same study area as Application 1 and thus has relatively small changes on prediction errors. Applications 4 and 5 are based on different study areas from Application 1 and thus have larger changes on prediction errors. If we assume the estimated model best predicts the data used in its estimation (i.e. Application 1) area, the largest change of prediction error does not exceed 15% based on applications discussed in this study.
Of course, the above analysis also depend on the two surveys (i.e. Sandy II and Georges) used in the applications and their similarity to the pooled dataset used for model estimation. Since Georges covers a more rural setting than either of other data sets, it may reflect the impact of lower residential density in addition to the size of the study area. More data sets need to be included in the analysis before a clear understanding can be obtained of the effect of zonal unit and extent of the study area on prediction accuracy.
CHAPTER 6 CONCLUSIONS

The diversity of household behavior has been increased in this research by using datasets from different storms (i.e. Hurricanes Gustav, Irene, and Sandy) and study areas (i.e. Louisiana and New York) in the U.S. The variation in behavior provides an opportunity to capture the impact of factors that influence evacuation but are often stable in individual data sets. Examples of such variables are the level of transit service in a study area, average hotel/motel prices, and general levels of private vehicle ownership. As a result of this data diversity, factors affecting household behavior are expected to have been identified more fully than in previous research. This expectation appears to be supported by the fact that the estimated model predicted mode and destination type choice in two post-storm behavioral surveys (i.e. Hurricanes Georges and Sandy) covering different study areas (i.e. Louisiana and Mississippi; New York and New Jersey) with an error ranging between 21% and 40% relative to observed behavior.

The first contribution of this work is modeling mode and destination type choice jointly. The nested logit model was chosen because it provided the flexibility to test the linkage between the two choices through the significance of the logsum coefficients. It was proved in this study that they were two linked choices. This finding is consistent with a prior research which indicates the relation between them through adding destination type choices as a dummy variable to explain mode choices. This result is also consistent with the experience that shelter users are more likely to be transit-dependents.

The second contribution is the selection of variables. Some variables have seldom been considered in previous mode or destination type choice modeling studies. The first example of this is neglecting to include social interactions as a factor in past studies. Residential stability was used as a surrogate measure of social interaction as it reflects the level of community
interaction and the likelihood of collaborative evacuation behavior. The second example of incomplete variable selection in the past, is the failure to consider at least most of the attributes of alternatives. Transit level of service is an example of omission of important variable in the past. It clearly reflects how attractive public transit is for evacuees and is relevant to mode choice. The third example of the failure of past studies to include relevant variables in their model formulations is to take into account the characteristics of the study area. One of the most interesting illustrations of this is the case of choice of hotels/motels. Only 10% of the respondents living in New York chose hotels/motels as their destination, while the ratio was much higher in Louisiana (35%). Louisiana is generally believed to have stronger family ties than New York in most people’s impressions so respondents from Louisiana were expected to be more inclined than New Yorkers to evacuate to friends or relatives’ houses instead of going to hotels or motels. As found in this study, this likely resulted from the low availability and high price of hotels in New York which discouraged households from choosing them during evacuation.

Estimating models on multiple data sets from different locations increases the likelihood that application of the models could be used to predict joint choice behavior in the scenario of hurricane evacuation in the U.S. This would improve current practice because the demand on transit vehicles has not been well understood, the location choice on pickup points and shelters can be better optimized, and a more precise prediction on traffic flow on the network can be expected.

The developed joint choice model would be easy to apply elsewhere because data are generally available for all the selected variables. Synthetic households can be generated by common transportation planning tools (such as TransCAD). The inputs to create synthetic
households come from two sources. The first part is a household database, which provides rich information on household and personal characteristics. The Public-Use Micro Data Sample (PUMS) from the U.S. Census is a common choice. The second part is a zonal database, which contains aggregate marginal household statistics. Zonal level data can be easily collected from American Community Survey (ACS) and other named open data sources in this study.

If household post-storm behavioral data are available in a local area, it is wise to update the model for better transferability. Although updating was not attempted in this study, depending on the nature and extent of the data available in the local area, one or more of the following factors can be estimated for updates: alternative specific constants, a scale factor to all the parameters, a scale factor for subsets of the parameters, or a separate scale factor for each parameter. An update becomes more necessary when the model is intended to be used in scenarios that are more different from the discussed cases. For example, cities in developing countries usually have more transit-dependents or more people relying on other modes (such as walking) for evacuation. The composition of choice changes in this situation and requires an update on the estimated model to achieve better forecast results.

Future researchers will be able to build upon this work by incorporating additional variables or alternatives to explain new emerging choice behavior. An area of particular significance is the emergence of ride-sharing programs. Commercial ride-sharing programs (such as Uber and Lyft) have become more popular in recent years and compete with taxis in some areas. The choice behavior on them can be understood based on the choice of taxis at this stage, because both of them provide door-to-door service and pick-up activities are both for profit. In addition, some areas consider designing non-profit ride-sharing programs for evacuation. This type of ride-sharing program differs from the regular “riding with others” in the sense that it is
not based on collaborative efforts and requires less community attachment from the rider. The choice behavior on such programs can be understood based on the choice of evacuation transit service at this stage. When enough data on this choice alternative is accumulated in the future, adding a new alternative to the current model structure will update the model to reflect the new emerging behavior.

There is a portion of the population who are barely captured in current surveys, such as the disabled who use paratransit service, tourists, and temporary residents. At this stage, changing the survey instrument to collect a sufficient sample of these people to know their choice behavior may be too ambitious and not be that helpful considering the traffic these groups generate is likely to have only a limited effect on the road network since they are likely to evacuate before local residents. Accumulating data across different surveys through time may be a better solution. Besides, when enough data can be accumulated in the future, other types of GEV model, MMNL, or a dynamic model can be estimated and compared with the current estimated model.

Overall, additional data can help this research to generate more insight on household’s joint choice behavior, update the model to fit the ongoing changes of household behavior, and draw more meaningful conclusions for the benefit of emergency managers.
REFERENCES

11. RtePM. RtePM - Real time evacuation Planning Model. rtepm.v masc.odu.edu/.

VITA

Ruijie Bian was born in 1988 in Shandong Province, People’s Republic of China. She graduated with a Bachelor of Science in engineering in 2010 from Shandong University of Science and Technology, China. She received her Master of Science in engineering in 2013 from Tongji University, China. She anticipates to receive her Doctor of Philosophy degree in civil engineering in December 2017 from Louisiana State University.