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ABSTRACT

Detection of yield zones using nondestructive testing (NDT) technology for assessing the

structural integrity of the existing steel buildings/bridges is extremely important. The av-

erage energy over the “effective echoes” (in “good” signal quality) is a robust feature for

the yield detection in steel structures. Nevertheless, this average-energy feature extraction

requires rigorous manual data-acquisition and human operation. Therefore, in this thesis,

we make the first-ever attempt to design a totally-blind and automatic steel-structure yield-

detection mechanism, which requires neither the a priori information about the signal nor

the human effort in calibration, operation, or data analysis. This new scheme is built upon a

robust preprocessor, which involves both blind-signature-signal-extraction and zero-crossing-

rate thresholding, to identify the starting and terminal time points of each ultrasonic echo.

Thus, the new computer-aided system can easily estimate the signal-to-noise ratios and au-

tomatically extract the effective echoes to calculate the corresponding average energy. The

performance reflected by the receiver-operating characteristic (ROC) curves of the proposed

method is very close to that of the conventional human-operating technique. Hence one

may save much human effort in the sacrifice of very little detection accuracy by using our

proposed new system.
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1. INTRODUCTION

The motivation, potential applications, and scope of this thesis will be introduced in the

following sections.

1.1 Motivation and Scope

Ultrasonic imaging (UI) is a prevalent nondestructive testing (NDT) technology [1], which

has been widely used for medical imaging [2], temperature sensing [3], structural health

monitoring [4], mechanical quality inspection [5], and defect detection in construction ma-

terials [6], etc. Recently, advanced signal processing techniques for UI have been applied to

characterize mechanical properties, such as strength and elastic modulus [7–10]. However,

the performances of these aforementioned techniques are often hindered by the fact that

most of them require the a priori knowledge about the propagating ultrasonic signals or the

testing material samples and the manual operations to calculate essential parameters. As

more and more high-performance applications of these materials are being developed, people

encounter great challenges in material stress-state detection using UI [11, 12]. As a result,

novel blind and automatic signal processing techniques for structural-material stress-state

detection in the absence of any a priori knowledge or human effort are in high demand [13].

In practice, when ultrasonic signals propagate through the steel materials, there exist multi-

ple signal reflections, attenuations, the interferences between reflected signals and resonances.
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Therefore, how to make full use of these signal information for NDT is a primary research

interest in the literature. The mathematical representation of the ultrasonic signals given

by [13] could be deemed a success since the experimental results have shown that it can lead

to more robust methods than those based on the Gabor (see [14]) and Wavelet (see [15])

transforms, both of which are often used in the existing literature. Especially, when the

mismatch between the actual signal and the chosen Gabor window function in [14] (or the

chosen scaling function in [15]) is apparent, the signal model presented in [13] would be more

“accurate”. In our previous work, a blind signature-signal-extraction based multiridge detec-

tion (BSSEM) method was proposed [13]. This technique is robust over many experimental

data since the extracted crucial feature, or “signature signal”, is “data-dependent”. The

only research problem addressed in [13] was the “blind multiridge detection”. That is, only

the peak location of each ultrasonic echo has been spotted automatically by the computer.

How to extract the “effective echoes” still remains challenging. On the other hand, yield or

yield zone detection is an important NDT application for structural health assessment. It

has been discovered that the average energy over the “effective echoes” (in “good” signal

quality) is a robust feature for yield detection in steel structures [16]. Nevertheless, this av-

erage energy feature requires exhaustive manual data acquisition, which is very inconvenient

to those who perform the NDT for yield detection, especially when prompt reliable decisions

are needed.

This thesis makes the first-ever attempt to design a totally-blind and automatic steel-

structure yield-detection mechanism, which requires neither the a priori information about

the signal nor the human effort in calibration, operation, or data analysis. According to

numerous simulation results, our previously proposed BSSEM technique outperforms the

2



wavelet-based peak detection method for the multiridge detection. Incorporated with the

zero-crossing rate thresholding method, the BSSEM scheme can be adopted as a robust

preprocessor to identify all the echoes in terms of their starting and terminal time points.

With the spotted end-points for each echo, the computer-aided system may easily estimate

the corresponding signal qualities, namely the a priori and a posteriori signal-to-noise ratios

and automatically extract the effective echoes having satisfactory signal qualities. Then, the

average energy can be easily calculated over these effective echoes. Finally, we will com-

pare our proposed computer-aided automatic yield detection method with the conventional

method based on the manual operations. It can be observed that the performance reflected

by receiver-operating characteristic (ROC) curves of our proposed method is very close to

that of the conventional technique based on the manual operations. Hence one may save

much human effort in the sacrifice of very little detection accuracy by using our proposed

new system.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, the mathematical model for the ultrasonic

signals collected by the pulse-echo transducers is introduced. In Chapter 3, the multiridge

detection algorithms using the BSSEM method [13] and the wavelet-based peak detection

scheme are presented. In Chapter 4, a zero-crossing rate thresholder is used to detect the

starting and terminal points of each ultrasonic signal echo. Then, three signal-to-noise ratio

(SNR) measures, namely a priori SNR, a posteriori SNR, and average echo SNR are defined

subject to the spotted starting and terminal time points. Furthermore, the automatic yield
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detection method and the ROC analysis will also be provided in Chapter 4. The procedure

and the system diagram for the complete automatic yield detection method are manifested in

Chapter 5. Simulation results to justify the effectiveness of our proposed new yield detection

method are demonstrated in Chapter 6. Conclusion will be drawn in Chapter ??, finally.

Nomenclatures: The sets of all integer, real and complex numbers are denoted by Z, R, and

C, respectively. Note that the symbol j is reserved as j
def
=

√−1 throughout this thesis.
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2. MATHEMATICAL MODEL FOR ULTRASONIC SIGNALS

The basic ultrasonic signal model in this thesis follows [13]. The continuous-time ultrasonic

signal X(t) collected by the pulse-echo transducers can be formulated as

X(t) =
L∑
i=1

�i(t) cos(Ω0t+ θi) + η(t), −∞ < t <∞, (2.1)

where �i(t) is the envelop waveform due to the reflection by the interface of two layers (the

interface of inhomogeneities); Ω0 is the center frequency of the ultrasonic oscillating signal;

θi is the phase offset due to the ith interface, and η(t) is the additive noise. The discrete-time

samples of the ultrasonic signal formulated by Eq. (2.1) are written as

x(n) =
L∑
i=1

wi(n) cos(ω0n+ θi) + ν(n), (2.2)

where t = n/Fs, x(n)
def
= X(n/Fs), ν(n)

def
= η(n/Fs), ω0

def
= Ω0/Fs, wi(n)

def
= �i(n/Fs),

n ∈ Z, and Fs is the sampling frequency. According to the empirical observation in [17],

the discrete-time envelop waveforms wi(n), 1 ≤ i ≤ L, generally have the following charac-

teristics: wi(n), 1 ≤ i ≤ L, are the finite-duration window truncation sequences with unique

peaks. In other words, wi(n) is a monotonically increasing function prior to the occurrence

of the peak and is a monotonically decreasing function successive to the occurrence of the
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peak, ∀i. Besides,

wi(n)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�= 0, pi ≤ n ≤ qi,

= 0, otherwise,

(2.3)

where pi, qi ∈ Z . The discrete-time Fourier transform of wi(n), for i = 1, 2, . . . , L, is given

by

Wi(ω)
def
=

∞∑
−∞

wi(n)e
−jωn, (2.4)

which is a low-pass, narrow-band spectrum such that

∫ ωB,i

−ωB,i
|Wi(ω)|2 dω∫ π

−π
|Wi(ω)|2 dω

≥ ξ, (2.5)

where ξ is the energy-percentage coefficient assumed to be close to 100% and ωB,i 	 ω0.

Hence, the ultrasonic signal formulated by Eq. (2.2) can be described as a finite-duration,

pulse-shaped sinusoid, which is very similar to the modulated digital communication sig-

nals [18]. Once the sinusoidal waveform cos(ω0n+ θi) is given, the pulse function wi(n) can

be extracted by a frequency down-converter and a low-pass filter. However, in this ultra-

sonic signal detection problem, all parameters ω0, θi, pi, qi, ωB,i, L, associated with x(n) and

wi(n), 1 ≤ i ≤ L, are unknown; therefore, the conventional demodulation technique cannot

be applied. Thus, the BSSEM (blind-signature-signal-extraction based multiridge detection)

method in [13] without any need of manual operation is considered here for the arbitrary

material samples and it can automatically estimate the number of the interfaces (the number

of the peaks) L̂ and detect the peak locations as

n̂max,i = argmax
n

{
wi(n) cos(ω0n+ θi)

}
, 1 ≤ i ≤ L̂. (2.6)
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3. MULTIRIDGE DETECTION USING BSSEM- AND WAVELET- BASED
METHODS

In this chapter, two popular multiridge detection methods, namely BSSEM- and wavelet-

based schemes, will be addressed for ultrasonic NDT. The implementation procedures of

these two methods will be presented here. The simulation results for comparison will be

demonstrated in Chapter 6 instead.

3.1 Multiridge Detection Using the BSSEM Method

In our previous work, a blind multiridge detection method in the absence of a priori knowl-

edge about the materials and manual operation was proposed in [13]. The related details

are manifested in the subsequent subsections.

3.1.1 Signature Signal Extraction

The waveforms of ultrasonic signals generated by the transducers would vary a lot over

different material samples. Besides, to obtain the a priori knowledge regarding the precise

frame functions wi(n) and the precise modulation sinusoids cos(ω0n+ θi) for a wide variety

of materials would be unrealistic [14, 15]. Therefore, we previously designed a novel data-

dependent method to blindly extract the signature signal, namely the signal segment ψ(n)
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containing the dominant peak, which is given by

ψ(n)
def
= w1(n) cos(ω0n+ θ1), (3.1)

where w1(nmax,1) ≥ wi(nmax,i), ∀i �= 1.

3.1.2 Energy Features for Signature Signal Spotting

According to [13], the signature signal ψ(n) can be spotted using the framed energy, which

depends on the frame size and can be considered as the transformation from the original

ultrasonic signal sequence, i.e., x(n), n ∈ Z, ΓNf ,Δ−−−−→ ENf ,Δ(k), k ∈ Z . It is defined as:

ENf ,Δ(k) = ΓNf ,Δ[x(n)]
def
=

1

Nf

(k−1)Δ+Nf∑
n=(k−1)Δ+1

x2(n), (3.2)

where Nf is the energy-frame size, Δ is the frame forwarding size, and k is the frame

index. One should note that with a proper Nf , the framed energy sequence would be a

smooth function (monotonically increasing then monotonically decreasing) in the presence

of signature sequence. However, there exists a frame-size dilemma for generating the framed

energy sequence ENf ,Δ(k). This dilemma will be discussed as follows.

3.1.3 Frame-Size Dilemma

The optimal multiridge detection can be achieved when the energy sequence ENf ,Δ(k) has a

“least spiky” shape in each individual ridge interval [pi, qi]i=1,2,...,L, which is quite sensitive

to the frame size Nf . According to [13], the discrete-time Fourier transform of ENf ,Δ(k) is

denoted by ΞNf ,Δ(ω), which satisfies

|ΞNf ,Δ(ω)| ≤
1

Nf

L∑
i=1

qi∑
n=pi

w2
i (n) cos

2(ω0n+ θi)|Ψn(ω)|, (3.3)
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where

Ψn(ω)
def
=

sin
(

ω
2

(⌊
Nf−1

Δ

⌋
+ b

))
sin(ω

2
)

× exp

(
−j ω

2

(⌊
n− 1

Δ

⌋
+

⌈
n−Nf

Δ

⌉
+ 2

))
. (3.4)

From the inequality in Eq. (3.3), we know that the sidelobes of
∣∣ΞNf ,Δ(ω)

∣∣ for |ω| ≥

(2π/ �Nf − 1/Δ�+ b) are relatively small compared to the DC frequency component
∣∣ΞNf ,Δ(0)

∣∣.
As a result, its bandwidth can be roughly approximated by (4π/ �Nf − 1/Δ�+ b), which

means that the larger Nf , the smoother the framed energy
∣∣ΞNf ,Δ(ω)

∣∣ since there will exist
fewer high-frequency components. However, if Nf is too large, the bandwidth of

∣∣ΞNf ,Δ(ω)
∣∣

will be very small, i.e., ENf ,Δ(k) appears to be a constant sequence and cannot provide

informative features for reliable ridge detection.

3.1.4 Optimal Frame-Size Determination

From the discussion in previous subsections, the optimal frame-size for a framed-energy

sequence ENf ,Δ(k) can be achieved when it appears to have a both smooth (with a large Nf )

and compact-duration shape (with a small Nf ). An algorithm can be found in [13] to seek

the trade-off between these two goals by a nonlinear program to optimize the frame size Nf

subject to the constraint of a compact-duration ENf ,Δ(k). We adopt the kurtosis function

kur(ENf ,Δ(k)) (see [19]) to construct a new constraint function. Given a frame size Nf and

a frame forwarding size Δ, the constraint function is

kur
(
ENf ,Δ(k)

) def
=

∑
k

Pk [(k − 1)Δ + 1−M ]4

(∑
k

Pk[(k − 1)Δ + 1−M ]2
)2 , (3.5)
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where Pk is the sequence satisfying the probability axioms (see [19]) and it is defined as

Pk
def
=

ENf ,Δ(k)∑
k

ENf ,Δ(k)
, (3.6)

with the mean M given by

M
def
=

∑
k

Pk[(k − 1)Δ + 1]. (3.7)

The kurtosis measure, given by Eq. (3.5), is Δ multiple-shift invariant, i.e., one can start to

collect the signal features at anytime for the mechanical property characterization. Conse-

quently, the optimal frame size N∗
f can be obtained according to the following criterion:

N∗
f = max(Nf )

subject to ∣∣kur(ENf ,Δ(k))− kur(ENf+δN,Δ(k))
∣∣

kur(ENf ,Δ(k))
≤ κth, (3.8)

where κth is the pre-determined upper-bound for the underlying kurtosis sensitivity con-

straint function and δN is the incremental frame size.

3.1.5 Blind Signature Signal Extraction

When the optimal frame-size N∗
f is achieved from Eq. (3.8), one can construct the energy

sequence Ek
def
= EN∗

f ,Δ
(k) with Nf = N∗

f . We assume that the kthp frame in Ek contains the

peak value of the signature signal ψ(n) , where kp = argmax
k

(Ek). Then, the duration [p1, q1]

of the signature signal ψ(n) = w1(n) cos(ω0n+ θ1) can be estimated as

p̂1 = (ks − 1)Δ + 1,

q̂1 = (ke − 1)Δ +N∗
f , (3.9)
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where ks, ke are the first energy frames satisfying Eks < εth and Eke < εth during the count-

down and the count-up, respectively, starting from the frame index kp; is the pre-determined

energy threshold. According to Eq. (3.9), the signature signal can be extracted as

ψ̂(n) =

⎧⎪⎪⎨
⎪⎪⎩

x(n), p̂1 ≤ n ≤ q̂1

0, elsewhere

, (3.10)

and the peak location n̂max,1 in the signature signal can be estimated as

n̂max,1 = argmax
n

[
ψ̂(n)

]
. (3.11)

3.1.6 Blind Multiridge Detection

Since both L and n̂max,i are unknown, we apply the normalized cross-correlation function

γB(m) between x(n) and ψ̂(n−m) to determine L and n̂max,i, i = 2, 3, . . . , L, such that

γB(m)
def
=

rB
xψ̂
(−m)√∑

n ψ̂
2(n)

√∑
n x

2(n)
, m = 0, 1, 2, . . . , (3.12)

where rB
xψ̂
(−m)

def
=

∑
n

x(n)ψ̂(n−m) is the cross-correlation function between the entire signal

x(n) and the estimated signature ψ̂(n). Sort
∣∣γB(m)

∣∣ in a descending order (with the re-

ordered index sequence m1,m2, . . . ,mC , . . .) which satisfies the following inequality:

∣∣γB(ml)
∣∣ < ζth, for l = C + 1, C + 2, C + 3, . . . , (3.13)

where ζth is the absolute cross-correlation coefficient threshold. Seek the subset BB among

the indices (m1,m2, . . . ,mC), which contains no adjacent ridges within the ridge resolution

δnmax such that

BB def
= {l : |ml −ml′ | > δnmax; l, l

′ = 1, 2, . . . , C; l �= l′}. (3.14)
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The size of BB is the number of the ridges to be detected. Thus, each peak location can be

estimated as

n̂max,i = argmaxn∈[mBB(i)
− δnmax

2
+1,m

BB(i)
+ δnmax

2
−1] {x(n)} ,

for i = 1, 2, . . . , L̂,

(3.15)

where BB(i) denotes the ith element of the set BB.

3.1.7 Summarized BSSEM Algorithm

Multiridge detection using the BSSEM method can be briefly summarized as follows.

Step 1. Optimal Frame-Size N∗
f Selection: Vary the frame-size Nf on the dyadic scale,

namely Nf = 21, 22, 23, . . .. For each Nf , compute the kurtosis function kur
(
ENf ,Δ(k)

)
of

the framed-energy sequence ENf ,Δ(k), where Δ is the frame forwarding size, k is the frame

index, and k = 1, 2, . . .. Then determine the optimal frame size N∗
f according to Eq. (3.8).

Step 2. Parameter Estimation for the Signature Signal ψ̂(n): Set Nf = N∗
f ; then estimate

the duration [p̂1, q̂1] and the peak location n̂max,1 of the signature signal ψ̂(n) according to

Eqs. (3.9)-(3.11).

Step 3. Construction of the Normalized Cross-Correlation Function γB(m): Construct the

normalized cross-correlation function γB(m) according to Eq. (3.21), between the ultrasonic

signal x(n) and the estimated signature signal ψ̂(n).

Step 4. Determination of the Number of Ridges L̂: Form the sample index sequence

(m1,m2, ...,mC) according to the sort-and-select procedure in Eqs. (3.23)-(3.26). Remove

the spurious ridges within the ridge resolution and construct a set BB of sample indices

corresponding to the true ridges. Then the number of the ridges L̂ can be determined by

the size of BB, namely
∣∣BB

∣∣.
12



Step 5. Detection of Peak Locations n̂max,i, i = 1, 2, ..., L̂: The peak locations n̂max,i, i =

1, 2, ..., L̂, can be obtained according to the peak location search procedure in Eq. (3.11).

In our previous work in [13], although the BSSEM method performed quite well for blind

multiridge detection in composite materials, it cannot be applied for yield detection at all.

We need to employ the BSSEM technique as the preprocessor and incorporate it with other

sophisticated mechanisms for the purpose of yield detection, such as the new mechanism for

automatically estimating the starting and terminal time points of each ultrasonic signal echo

(in terms of x(n), pi ≤ n ≤ qi). To ensure that the BSSEM based preprocessor is robust over

the multiridge detection system using the popular wavelets, we present the wavelet-based

multiridge detection scheme in the following section for comparison.

3.2 Multiridge Detection Using Wavelets

Other than our previously proposed BSSEM method, commonly-used peak detection meth-

ods include threshold peak detection, curve-fitting-based peak detection and wavelet-based peak

detection [20]. The wavelet-based peak detection method was deemed more robust and ac-

curate than the other two existing methods since it utilizes the inherent multiscale nature

of wavelet analysis [20]. Hence in this thesis, the mainstream wavelet-based peak detection

method will be compared with our proposed BSSEM method.

According to [20], when an appropriate mother wavelet is well selected, the wavelet-based

peak detection method is quite robust against noise. Wavelet transform (WT) specifies the

correlation between a signal and a set of wavelet basis. Usually, a square-integrable mother

wavelet h(t) is picked and a set of sub-wavelets ha,b(t) is engendered from the mother wavelet

13



by a dilation factor a > 0 and a translation factor b ∈ R. So the WT expansion coefficients

WX(a, b) of the continuous-time signal X(t) are given by

WX(a, b)
def
=

∞∫
−∞

X(t) h∗a,b(t)dt = X(t) ⊗ h∗ (t/a)√
a

, (3.16)

where ∗ is the conjugate operator and ⊗ denotes the linear convolution, and ha,b(t) is defined

as

ha,b(t)
def
=

1√
a
h

(
t− b

a

)
. (3.17)

In the frequency domain, Eq. (3.17) yields

Ha,b(f)
def
=

√
a H(af) ej 2πfb, (3.18)

where

H(f)
def
=

∞∫
−∞

h(t) e−j2πft dt, (3.19)

and

Ha,b(f)
def
=

∞∫
−∞

ha,b(t) e
−j2πft dt. (3.20)

Note that ha,b(t) actually represents the impulse response of a band-pass filter. In many

applications, the signal is sampled as x(n) and the dilation factor a as well as the translation

factor b are also discretized as a = am0 , where a0 ≥ 1, and b = nb0a
m
0 . Similarly, the dis-

cretized mother wavelet h(n)
def
= h(n/Fs) and the discretized sub-wavelet ha,b(n)

def
= ha,b(n/Fs)

can also be established, where Fs is the sampling frequency.

The template matching technique has been widely adopted for the signal detection among

a wide variety of applications [21–23]. In principle, one can match the signal to be detected

with a pre-acquired “signal template”. Thus, the more reliable this pre-acquired template,

14



the more accurate the resultant detection rate. The most popular templates (or signal basis

function) are wavelets [24–28]. Although there exist a wide variety of wavelets, not all of

them are appropriate to characterize the ultrasonic signals. It is critical to select a suitable

mother wavelet h(n) so that its sub-wavelet impulse response ha,b(n) can well match the

ultrasonic echoes. Thus, the best performance of the wavelet-based peak detection method

can be attained [24–28].

Once an appropriate sub-wavelet impulse response ha,b(n) is determined, one can apply

the normalized cross-correlation function γW(m) between the discrete-time signal x(n) and

the sub-wavelet ha,b(n − m) to estimate the number of peaks L̂ and the peak locations

n̂max,i, i = 1, 2, . . . , L̂ in an ultrasonic signal expressed by Eq. (2.2), such that

γW(m)
def
=

rxh(−m)√∑
n

|ha,b(n)|2
√∑

n

|x(n)|2
, m = 0, 1, 2, . . . , (3.21)

where rxh(−m)
def
=

∑
n

x(n) ha,b(n−m) is the cross-correlation function between the entire

signal x(n) and the sub-wavelet impulse response ha,b(n). After γW(m) is obtained, the

indices m should be sorted in an order (m1,m2,m3, . . .) such that

∣∣γW(ml)
∣∣ > ∣∣γW(ml + 1)

∣∣ , for l = 1, 2, 3, . . . . (3.22)

Then an absolute cross-correlation coefficient threshold ζWth is chosen and a set of indices ml

can be formed as (m1,m2, . . . ,mC), which satisfies

∣∣γW(ml)
∣∣ < ζWth , for l = C + 1, C + 2, C + 3, . . . . (3.23)

We would like to seek the subset BW among the indices (m1,m2, . . . ,mC), which contains

15



no adjacent ridges within a pre-specified ridge resolution δnW
max. The subset BW is given by

BW def
=

{
l : |ml −ml′ | > δnW

max; l, l
′ = 1, 2, . . . , C; l �= l′

}
, (3.24)

and the number of the ridges can be estimated as

L̂ =
∣∣BW

∣∣ , (3.25)

where
∣∣BW

∣∣ denotes the number of the elements in the subset BW. Finally, each peak

location can be estimated as

n̂max,i = argmax
n∈
[
m

BW(i)
− δnW

max
2

+1,m
BW(i)

+
δnW

max
2

−1

] {x(n)} , for i = 1, 2, . . . , L̂, (3.26)

where BW(i) is the ith element of the set BW.

In summary, the performance of the wavelet-based peak detection method is very sensitive

to the selection of an appropriate mother wavelet and the associated parameters a, b. Nev-

ertheless, all of them are highly data-dependent. Therefore, our proposed BSSEM scheme,

which directly extracts the inherent signature from each signal sequence, would often out-

perform the wavelet-based peak detection method. Simulation results to justify this fact will

be presented in Chapter 6.
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4. YIELD DETECTION AND THE ROC ANALYSIS

In this thesis, we focus on an important NDT application, yield or yield zone detection, for

structural health monitoring. For material yield detection, usually the testing specimens

are loaded up to failure at the targeted stress levels at both before and after the yield zone.

However, the relation between the material stress-state and the characteristics of the ultra-

sonic signals remains challenging [16]. During the entire stress loaded experiment procedure,

changes in the amplitude of the ultrasonic signals are empirically observed, especially when

stresses are applied beyond yield. Besides amplitude, we also take some other characteristics

of the ultrasonic signals into consideration, which include both time-domain and frequency-

domain parameters such as average echo-energies, fast Fourier transform (FFT) coefficients,

Chirp-Z transform coefficients, and discrete wavelet transform (DWT) coefficients [16]. Ac-

cording to previous experiments stated in [16], the average echo-energies lead to the best

yield-detection performance. Hence in this thesis, we will focus on the approach based on the

average echo-energy feature. The average energy over the “effective echoes” (in “good” sig-

nal quality) has been reported as a robust feature for yield detection in steel structures [16].

However, to the best of my knowledge, there exists no blind or automatic feature extrac-

tion method for the yield detection. In this chapter, we will present a novel blind feature

extraction (without any need of human operation), which is based on the blind multiridge

detection technique stated in Section 3.1.
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4.1 Detecting Starting and Terminal Points of Ultrasonic Echoes

A typical ultrasonic signal containing several echoes is illustrated by Figure 4.1. Empirically

speaking, the “presence” and “absence” of echoes can be differentiated by the corresponding

zero-crossing rates according to Figure 4.1. The zero-crossing rates can be estimated using

the “short-time windows”. Observing Figure 4.1, one can simply conclude the follows. If

there is a sudden substantial decrement in the zero-crossing rate, the beginning of an echo

can be identified. On the other hand, if there is a sudden substantial increment in the zero-

crossing rate, the end of an echo can be spotted instead. Nevertheless, there still remain some

unanswered questions regarding this intuitive approach. How do we select the appropriate

short-time window size? How do we select the reliable threshold to reflect the “substantial

change” in the zero-crossing rate? If these two problems can be well addressed, then the

starting and terminal time points of the echoes can be identified effectively. To answer these

two questions, we can rely on the detected ridges which result from the methods in the

previous chapter. However, since the BSSEM technique is more robust than the wavelet-

based peak detection method, we will focus on the former scheme here. The appropriate

window size for calculating the zero-crossings has to be related to the signature signal ψ̂(n)

as given by Eq. (3.10). By applying the proposed multiridge detection method in [13], one

can obtain all peak locations n̂max,i, i = 1, 2, . . . , L̂, of an ultrasonic signal x(n). Suppose

that there are λ signal samples in the signature signal ψ̂(n) from its detected peak n̂max,1 to

its first zero-crossing point. Thus, we define the signature period as Λ
def
= 4λ. Therefore, the

corresponding signature zero-crossing rate can be defined as Υ̂
def
= 1/Λ. We propose a novel

algorithm to automatically identify the starting and terminal points of the ultrasonic echoes

18
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Figure 4.1: A typical ultrasonic signal.

using the zero-crossing estimation. The details are stated in Algorithm 1.

Here we denote ρth as the zero-crossing ratio threshold, which is independent of both sampling

rate and material stress-state. Besides, the index set of zero-crossings is denoted by Θ(n)

subject to the window of size Λ, where |Θ(n)| is the number of elements in Θ(n). If |Θ(n)| is

decreasing with respect to n until |Θ(n)| ≤ ρthΥ̂, an ultrasonic echo is assumed to start. On

the other hand, if |Θ(n)| is increasing with respect to n until |Θ(n)| ≥ ρthΥ̂, an ultrasonic

echo is assumed to end. Note that � � is the integer rounding-down operator. For example,

applying Algorithm 1 for the ultrasonic signal shown in Figure 4.1, one can obtain the

starting and terminal time points of each echo as shown in Figure 4.2 (denoted by red ∗).
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Algorithm 1 Starting & Terminal Point Estimation Algorithm

Input:
Ultrasonic signal, x(n);
Signal length (of x(n)) N ;
Peak locations of the ultrasonic signal, n̂max,i, i = 1, 2, . . . L̂, resulting from the BSSEM
method in [13];
Signature period, Λ;
Zero-crossing ratio threshold, ρth;
Signature zero-crossing rate, Υ̂;

Output:
Detected starting points for all echoes, p̂i, i = 1, 2, . . . L̂;
Detected terminal points for all echoes, q̂i, i = 1, 2, . . . L̂;

1: Construct the adjacent peak location pairs, (n̂max,i, n̂max,i+1) , i = 1, 2, . . . , L̂− 1;

2: for i = 1; i < L̂; i++ do
3: for n = n̂max,i; n < n̂max,i+1 − Λ; n++ do
4: for μ = 0; μ < Λ; μ++ do
5: c(μ+ 1) = x(n+ μ) x(n+ μ+ 1);
6: end for
7: Θ(n)

def
= {μ | c(μ+ 1) < 0};

8: if |Θ(n)| < ρthΥ̂ then
9: Go to Step 3;
10: else
11: q̂i = n+

⌊
Λ
2

⌋
;

12: Go to Step 15;
13: end if
14: end for
15: for n = n̂max,i+1; n > n̂max,i + Λ; n−− do
16: for μ = 0; μ < Λ; μ++ do
17: c(μ+ 1) = x(n− μ) x(n− μ− 1);
18: end for
19: Θ(n)

def
= {μ | c(μ+ 1) < 0};

20: if |Θ(n)| < ρthΥ̂ then
21: Go to Step 15;
22: else if i < L̂− 1 then
23: p̂i+1 = n− ⌊

Λ
2

⌋
;

24: Go to Step 2;
25: else
26: p̂i+1 = n− ⌊

Λ
2

⌋
;

27: Go to Step 31;
28: end if
29: end for
30: end for
31: Repeat Steps 3-14 for n̂max,i = n̂max,L̂ and n̂max,i+1 = N except that q̂L̂ = n +

⌊
Λ
2

⌋
is

forcefully set;
32: Repeat Steps 15-29 for n̂max,i = 1 and n̂max,i+1 = n̂max,1 except that p̂1 = n − ⌊

Λ
2

⌋
is

forcefully set;
33: return p̂i and q̂i, for i = 1, 2, . . . L̂. 21



4.2 Echo Quality-Average SNR

After estimating the starting and terminal points of each echo using the proposed technique

in Section 4.1, namely p̂i and q̂i, for i = 1, 2, . . . L̂, now we can measure the a priori SNR as

SNRpri,i and the a posteriori SNR as SNRpost,i for each ultrasonic echo accordingly. They

are

SNRpri,i
def
=

n=q̂i∑
n=p̂i

|x(n)|2

n=p̂i∑
n=q̂i−1

|x(n)|2
, i = 2, 3, . . . , L̂,

SNRpost,i
def
=

n=q̂i∑
n=p̂i

|x(n)|2

n=p̂i+1∑
n=q̂i

|x(n)|2
, i = 1, 2, . . . , L̂− 1.

(4.1)

We may further define the average SNR for each ultrasonic echo as SNRi, which is the mean

of the corresponding a priori and a posteriori SNRs, such that

SNRi
def
=

SNRpri,i + SNRpost,i

2
, i = 2, 3, . . . , L̂− 1, (4.2)

while

SNR1
def
= SNRpost,1,

SNRL̂

def
= SNRpri,L̂.

(4.3)

In practice, the average SNR SNRi can be used as the essential feature and compared with

a pre-selected threshold (dependent on individual material properties) to determine which

echoes are “effective”. As a matter of fact, SNRi should be monotonically decreasing with

respect to echo index i due to signal attenuation, i.e., SNRi > SNRj, where 1 ≤ i < j ≤ L̂.

When SNRi is rather small, the signal energy level is very close to the background noise

level and such an echo is useless for yield detection. Consequently, we define SNRth as the
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SNR threshold to pick the m∗ effective (preceding) echoes such that

SNRm∗ ≥ SNRth,

SNRm∗+1 < SNRth,

(4.4)

where 1 ≤ m∗ < L̂.

4.3 Feature Extraction for Yield Detection

According to the technique presented in Section 4.2, we may acquire m∗ effective echoes.

The average energy E for these effective echoes in the ultrasonic signal x(n) can be obtained

as

E
def
=

1

m∗

m∗∑
i=1

q̂i∑
n=p̂i

|x(n)|2, (4.5)

where p̂i and q̂i are the identified starting and terminal time points for the ith echo according

to Algorithm 1. One may perform the yield detection for steel materials using the feature

given by Eq. (4.5). A simple threshold detector was proposed by [16] subject to manual

operation. Nevertheless, we may automatically (blindly) extract this feature according to

the proposed schemes in Sections 3, 4.1, and 4.2 to facilitate a novel and user-friendly pre-

processor for the subsequent detection mechanism. The remaining task for yield detection

is simply to select the appropriate threshold for the feature parameter E. We will present

the threshold determination procedure in the following section.
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4.4 Receiver Operating Characteristics Analysis

Both statistical analysis and experimental results show that there are clear distinctions

between pre- and post-yielding of specimen materials for the average-energy features [16].

As a result, the intense changes in average energies between these two states can be used to

determine the threshold for yield detection, which would lead to the optimum detection [16].

According to [16], the ROC analysis can be employed to determine the optimal threshold

value. ROC analysis is a two-dimensional graphical technique for people to optimize the

classifiers [29], and it has plenty of applications such as medical-diagnosis decision-making

and computer-network filter-performance evaluation [30, 31]. ROC analysis is performed on

both sets of data, namely positives and negatives. Based on these data, an ROC curve

can be delineated as the correct detection rate (CDR) versus the false detection rate (FDR)

subject to the varying threshold [32]. Suppose that CDR and FDR represent CDR and

FDR, respectively. They are

CDR =
Correctly Classified Positives

ΦP

,

FDR =
Incorrectly Classified Negatives

ΦN

,

(4.6)

where ΦP and ΦN denote the total numbers of positives and negatives, respectively.

The performance of a classifier (detector) is measured by how close its ROC curve is to

the upper left corner of the graph or how far its ROC curve is from the x = y line, which

corresponds to the classifiers that are basically nothing better than tossing a coin randomly.

Moreover, another way of measuring the performance of a classifier is calculating the area

under its ROC curve as a scalar parameter (see [33]) and denote this area by AUC. It means

that the classification (detection) performance improves whenAUC becomes closer and closer
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to one. In practise, no practical classifier has an AUC value less than 0.5, which is produced

by the diagonal ROC line x = y [29]. More details about how to determine the optimal

threshold for classifying the stress-states of steel materials using the ROC analysis can be

found in [16]. After obtaining the optimal classification threshold ϑth from the training data

set according to [16], one may classify the stress-states for any specimen material simply by

comparing the average energy E with this threshold such that

E

before yield

>

<

after yield

ϑth (4.7)
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5. SUMMARIZED AUTOMATIC YIELD DETECTION METHOD

Based on the discussions in Sections 3-4, the complete automatic (blind) yield detection

procedure can be summarized as follows:

Step 1. Preprocessing: According to the BSSEM method in [13], seek the peak locations,

namely n̂max,i, i = 1, 2, ..., L̂, of the ultrasonic signal as illustrated in Section 3.1.

Step 2. Echoes’ Starting and Terminal Points Estimation: Given the spotted peak locations

n̂max,i, i = 1, 2, ..., L̂, estimate the starting and terminal time points (p̂i, q̂i), i = 1, 2, . . . , L̂

according to Algorithm 1.

Step 3. Average SNR Calculation: Calculate the a prior and a posteriori SNRs of each echo

according to Eq. (4.1). Then take the average SNR SNRi for each echo i = 1, 2, . . . , L̂,

according to Eq. (4.2) and Eq. (4.3).

Step 4. Determination of Effective Echoes’ Number: Given the SNR threshold SNRth,

determine the number of effective echoes m∗ according to Eq. (4.4) for further feature ex-

traction.

Step 5. Average Energy Computation: Given the number of effective echoes m∗, calculate

the average energy E according to Eq. (4.5).

Step 6. Yield Detection Using the ROC Analysis: Apply the ROC technique to obtain the

optimal classification threshold ϑth from the training data. Compare it with the average
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Figure 5.1: System diagram of the new proposed novel automatic yield de-
tection mechanism.

energy E (feature parameter) and then determine the stress state (before or after yield) of

the material specimen based on Eq. (4.7).

The complete procedure is illustrated by the flowchart depicted in Figure 5.1.
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6. SIMULATION

The complete ultrasonic testing setup for the through-transmission (TT) test mode and the

assembly for the main units of the system are illustrated in Fig. 6.1. In this experiment,

four batches of Grade-36 dog-bone shaped specimens were obtained from cutting four kinds

of steel plates by a hydrocut water-jet machine. The thicknesses of these specimens varied

from 1/8 to 3/8 inches. Other dimensions were the dimensions of the rectangular sheet-type

specimen complying with ASTM Standard E8-04 [34], which are shown in Fig. 6.2.

The specimens were classified into four groups based on the thickness of the plates. Note

that even though these plates were supposed to possess the same material properties as

Grade 36 steel, actually they were different in terms of mechanical properties and chemical

compositions according to the mill test certificates provided by the steel companies. These

crucial parameters are listed in Table 6.1.
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Figure 6.1: The experimental setup and the assembly of the main units.
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Dimension
(in)

W - Width 0.5
R - Radius of fillet 0.5
L - Overall length 8
A - Length of reduced section 3.35
B - Length of grip section 2
C - Width of grip section 0.75

Figure 6.2: Dimensions of the dog-bone shaped specimens.
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The ultrasonic testing system was built to test the specimens with the above-mentioned

material properties. In addition, ultrasonic measurements were taken at the targeted stress

levels by piezoelectric longitudinal and shear wave transducers using the through transmis-

sion and pulse-echo test-modes. The first step of this experiment was cleaning the surfaces

of the specimens where the transducers were going to be placed and sanding the specimens

to improve the contact between the transducers and the specimens. Secondly, different force

values were entered to the Model 793.10 multipurpose testware software to control the MTS

810 testing system (see Fig. 6.3). This system depicted in Fig. 6.3 was used to apply the

desired levels of uniaxial tensile stresses to the test specimens at which ultrasonic measure-

ments were aimed to be taken. All test specimens were subjected to forces corresponding to

a stress resolution of 10 ksi in the elastic range of the materials, while for stress levels close

to and beyond yielding, higher stress-resolution values were applied between 2.5 and 5 ksi.

Totally, twenty-eight groups of ultrasonic tests were conducted on these steel specimens,

where the specimens were loaded up until failure at the targeted stress levels before and

after yielding. Note that in fifteen groups among these tests, ultrasonic signals propagated

through the midsection of the specimens, while the top, middle, and bottom sections were

propagated through by ultrasound for the remaining thirteen groups. Besides, in all the

ultrasonic tests, the transducers were placed so that the signals could propagate through

the specimens in a direction perpendicular to the loading. Therefore, five hundred and

eighty-two ultrasonic signal sequences were collected accordingly. Finally, we performed the

automatic yield detection method summarized in Section 5 for all these signals via computer

simulations.

Simulation results are presented here to demonstrate the performance of the proposed auto-
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Figure 6.3: MTS 810 hydraulic materials testing system.

matic yield detection scheme. E1 is the energy for the first frame of ultrasonic signal and Ekp

is the maximum frame energy (see [13] for details). The threshold parameters are chosen

as follows: κth = 0.01, εth = 0.1Ekp + 0.9E1, ζ
B
th = 0.2, δnB

max = (q̂1 − p̂1/6), ζ
W
th = 0.1,

δnW
max = (q̃1 − p̃1/6), ρth = 10, SNRth = 15, 20, 25, 30 dB, respectively, where p̃1 and q̃1

are the starting and terminal points of the subwavelet template ha,b(n). Please refer to [13]

for further clarification. A typical example of ultrasonic signal can be visualized in Fig. 4.1.

First, we would like to compare the proposed BSSEM method with the prevalent wavelet-

based peak detection method. According to the discussion in Section 3.2, the wavelet-based

peak detection method would perform well only if the mother wavelet is chosen appropriately.
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In other words, the mother wavelet should resemble the signal signature. Thus, we have

tested a variety of mother wavelets from different wavelet families and have found that in the

Biorthogonal wavelet family [35], the wavelet function Ψ(n) of bior1.5 (see [36]) leads to the

best performance in terms of the highest peak detection rate. This mother wavelet function

Ψ(n) is depicted in Fig. 6.4. The comparative study of these two peak detection methods

can be reflected by the ROC curve in Fig. 6.5, which results from the entire ultrasonic signal

data set as previously stated. It is obvious that our proposed BSSEM greatly outperforms

the wavelet-based method. The detection performance (correct detection rate) margin is

around 5% across almost all false detection rates. Thus, we choose the BSSEM method to

identify the peak locations of the ultrasonic echoes due to its superiority.

After the peak locations are identified, we carry out Algorithm 1 and the SNR threshold to

determine the starting and terminal time points of the effective echoes in the ultrasound.

Then we can extract the average energy E for each ultrasonic signal. Note that the average

energy E needs to be “normalized” with respect to the average energy of the same specimen

at zero stress level. Then the normalized average energy of the ultrasonic signal is compared

to the optimal classification threshold which results from the training data according to

the procedure stated in [16]. Then, the appropriate stress state (before or after yield) for

the testing specimen can be determined. To determine the optimal classification threshold,

ROC analysis is employed according to [16]. The threshold is gradually changed from zero

to the maximum average energy among all training data. Thus, the measures CDR, FDR,

and AUC can be obtained for each threshold. Table 6.2 lists these measures for different

thresholds. For example, if we restrict FDR ≤ 20% and CDR ≥ 94%, then the optimal

classification threshold ϑth = 1 should be selected.
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Figure 6.4: Biorthogonal wavelet: bior1.5.

After the measures of CDR and FDR are obtained, we may establish the ROC curves.

We vary the SNR threshold (SNRth=15, 20, 25, and 30 dB) to collect different numbers

of effective echoes for dynamically extracting the average energy features. Thus, different

ROC curves can be engendered with respect to different SNRth values. On the other hand,

we also choose the first echo only (m∗ = 1) so as to establish another ROC curve. Finally,

we generate the ROC curve using the average energy features resulting from the effective

echoes subject to SNRth=30 dB, where all the starting and terminal time points are marked

manually (they can be considered as the ground truth). The results from the entire database

are depicted in Fig. 6.6. According to Fig. 6.6, one can discover that the yield detector
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Figure 6.5: Receiver-operating-characteristic curves for comparison of multi-
ridge detection schemes.

based on the “ground truth” (labeled as “Manual operation” in the figure) leads to the best

detection performance. For the yield detector based on the dynamical echo selection subject

to different SNR thresholds, the larger SNR threshold, the better detection performance can

be obtained. Moreover, the detector based on the “best” echo (the first echo) is outperformed

by the detector based on the dynamical echo selection with SNRth=30 dB. Consequently,

the new proposed novel automatic yield detection scheme can reach very close to the optimal

detection performance but save a lot of human efforts. Hence, the new proposed technique

is very practical and useful for the future ultrasonic NDT instrumentation.
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Table 6.2: CDR, FDR, and AUC Measures for ROC Analysis

Threshold CDR FDR Threshold CDR FDR
0.00 0.0000 0.0000 1.10 0.9820 0.3704
0.10 0.2973 0.0000 1.20 1.0000 0.5802
0.20 0.6486 0.0000 1.30 1.0000 0.8025
0.30 0.7748 0.0000 1.40 1.0000 0.8889
0.40 0.8018 0.0000 1.50 1.0000 0.9259
0.50 0.8378 0.0000 1.60 1.0000 0.9753
0.60 0.8468 0.0000 1.70 1.0000 0.9753
0.70 0.8739 0.0000 1.80 1.0000 0.9877
0.80 0.9189 0.0000 1.90 1.0000 1.0000
0.90 0.9369 0.0247 2.00 1.0000 1.0000
1.00 0.9459 0.1852

AUC = 0.9803
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Figure 6.6: Receiver-operating-characteristic curves for different kinds of
yield-detection schemes.
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7. CONCLUSION

In this thesis, we compare the previously proposed blind-signature-signal-extraction based

multiridge-detection (BSSEM) method with the wavelet-based peak detection scheme. It

is found that the former detection method is superior to the latter scheme. Based on the

BSSEM technique, we design a novel automatic yield detection technology, which can blindly

and dynamically extract effective echoes based on a preset signal-to-noise ratio threshold.

Then the normalized average energy over the effective echoes can be used for the yield detec-

tion in steel structures. The receiver-operating-characteristic curves resulting from the col-

lected large database demonstrate that the novel proposed automatic yield detection scheme

can approach the optimal detection performance (resulting from the manual operation) while

the manual operation is not necessary thereupon. This proposed new scheme would be very

beneficial to the future development of easy-to-use yield-detection nondestructive testing

(NDT) tools.
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