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The quantum Langevin equation is used as the basis for a discussion of dissipative quantum tunneling. A general analysis,
including strong coupling and non-markovian (memory) effects, is given for the case of tunneling through a parabolic barrier at
zero temperature in the presence of linear passive dissipation. It is shown that dissipation always decreases the tunneling rate
below the barrier and increases transmission above the barrier. As a particular application, the case of the resistively shunted
Josephson junction is considered. Simple closed form expressions for the tunneling rate and for the noise power spectrum are

obtained and compared with results in the literature.

Dissipative quantum tunneling, the study of which
was pioneered by Caldeira and Leggett, has so far
been generally treated by techniques involving path
integrals [1]. Our purpose here is to show how the
quantum Langevin equation can be used to discuss
these and related problems for a quantum dissipa-
tive system. An advantage of the approach using the
quantum Langevin equation, aside from its simplic-
ity, is that it is easy to incorporate non-markovian
(memory) and strong coupling effects. In a few short
steps we obtain an exact and general result, which we
then compare with results in the literature.

In our earlier work in this area, we used the quan-
tum Langevin equation to treat the case of a quan-
tum oscillator in a blackbody radiation heat bath [2].
More recently, we described the form of this equa-
tion for an arbitrary external potential and for an ar-
bitrary heat bath [3]. There, too, we showed how
this general form can be derived from the indepen-
dent oscillator (I0) model, in which the bath con-

sists of an infinite number of particles, each coupled
to the given particle with a spring. We also showed
that many other apparently different models are
equivalent to this model (or truncated versions of
it). However, as we there argued, the quantum Lan-
gevin equation is a model-independent macroscopic
description of a quantum particle (which need not
itself be macroscopic) interacting with a heat bath.,
The quantum Langevin equation has the form

{

mx+ j dy u(t—1)x(4))+ U (x)=F(1), (1)

— Q0

where the dot and prime denote, respectively, the de-
rivative with respect to ¢ and x. This is the Heisen-
berg equation of motion for the coordinate operator
x of a particle of mass m in a potential U(x). More
generally, x may be interpreted as a generalized dis-
placement operator, by which we mean an operator
such that, for any c-number f(¢), a term —xf(¢)
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added to the hamiltonian of the system of “particle”
plus heat bath results in an added (generalized force)
term f(z) on the right-hand side of eq. (1).

In the quantum Langevin equation (1), the cou-
pling with the heat bath is described by two terms:
an operator-valued random force F(¢) with mean
zero, and a mean force characterized by a memory
function u(¢). The (symmetric) autocorrelation of
F(t)is

SCF(OF()+F()F()>

al—

deRe{ﬂ(w+iO*)}
0

X hw coth (hw/2kT) cos[w(t—t')], (2)
and the nonequal-time commutator of F(t) is

[F(2), F(1')]

= 3 j dow Re{fi(w+i0* )} Awsin[w(z—1")] .
Y

(3)

In these expressions
f(z)= Jdle”u(l) , Imz>0 (4)
0

is the Fourier transform of the memory function u(¢).
(By convention, the memory function vanishes for
negative times. ) Finally, F(¢) has the gaussian prop-
erty: correlations of an odd number of factors of F
vanish, those of an even number of factors are equal
to the sum of products of pair correlations (auto-
correlations), the sum being over all pairings with
the order of the factors preserved within each pair.

It is clear from the above description that the cou-
pling to the heat bath is characterized by the func-
tion u(z). Now this function has three important
mathematical properties which follow in turn from
three corresponding general physical principles. The
first of these, as we see from (4), is that u(z) is an-
alytic in the upper half-plane Im z> 0. This is a con-
sequence of causality; the mean force exerted by the
heat bath on the particle depends only upon the past
motion of the particle. The second property is that
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the boundary value of u(z) on the real axis has
everywhere a positive real part:

Re{fi(w+10%)} 20, —co<w<oo. (5)

This, as we showed in ref. [3], is a consequence of
the second law of thermodynamics. The third prop-
erty is the reality condition: u(w+i0*)=
u(—w=+10")* which follows from the fact that x is
a hermitian operator. Thus Re{u(w+i0%)} is an
even function of w. Such functions of a complex
variable, analytic in the upper half-plane and with
real part a positive, even distribution on the real axis,
are termed positive real functions. They form a very
restricted class of functions of a complex variable,
with many remarkable properties. Important among
these 1s the general representation in the upper half-
plane (the Stieltjes inversion theorem ):

2izT Re{i(w+i0*)}
dw—j—_

i(z)=—icz+ — >
az) n *—w?

. (6)

1)

where c is a positive constant. Thus the real positive
distribution Re{fi(w+1i0%)} characterizes the func-
tion, except for the constant ¢, which in our case can
be absorbed into the particle mass (beware, this is
not mass renormalization). As an illustrative ex-
ample, for the 10 model i(z) takes the form [3]:
A(z)= Y mo} ———. (7)
] ZT—wy

where m; is the mass and w; is the natural frequency
of the jth bath oscillator.

As a simple application of this formalism, con-
sider the fluctuations (noise) in the displacement of
a linear oscillator. There the external potential is of
the form

U(x)=jmwix?, (8)

and the quantum Langevin equation takes the form
mx+ Jdt'u(z—z’ )X(1)+mwix=F(1) . (9)
0]

Forming the Fourier transform we can write

Fw)=a(w)F(w), (10)
where
a(w)=[—mw?*+moi—iwi(w)] ™! (11)
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is the susceptibility. With this it is a straightforward
calculation using (2) to show that

b x(Dx()+x()x(1))

= de [x2],, cos[w(t—1')], (12)
0

where [x?],,, the power spectrum of the fluctuations
of x, is given by

[x%]e= %coth(flw/ZkT) Im{a(w)}. (13)

This is, of course, a well-known result [4].

As a rather different type of application, we now
consider the effect of dissipation on quantum tun-
neling at zero temperature through a parabolic bar-
rier. Consider therefore an external potential of the
form

U(x)=—-imQ3x?, (14)

i.e., an inverted oscillator potential. In the absence
of dissipation, we have an exact expression for the
zero-temperature transmission coefficient [5]:

1
= 1+exp(—2nE/AQy)’

D, (15)
where E is the particle energy measured from the top
of the barrier. Thus, E>0 corresponds to transmis-
sion above the barrier and E> 0 corresponds to tun-
neling. This formula applies for energies near the top
of any barrier whose dependence on x near the max-
imum is quadratic [5].

In the presence of dissipation, we can describe the
motion by the quantum Langevin equation (1),
which with the external potential (14) corresponds
to a susceptibility of the form

oa(w)=[-mw*-mQi—ivi(w)]"". (16)

We now use the fact that the heat bath can be rep-
resented by an IO model of coupled oscillators. We
stress that we are not saying that the bath is in fact
an assembly of coupled oscillators. Rather, to the ex-
tent that system can be described by the Langevin
equation, the bath is indistinguishable from an os-
cillator bath.

With the potential (14) we see that the system of
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particle plus oscillator bath is again an assembly of
coupled oscillators with, however, one spring having
a negative spring constant. The normal mode fre-
quencies of this coupled system are the poles of the
susceptibility «(w); the normal mode frequencies of
the bath are the zeros of a(w), i.e., the poles of
fi(z) [2]. The bath mode frequencies are all real.
This is the passivity condition and can be seen clearly
using the explicit form (7) for u(w). For the cou-
pled system, however, there is one isolated imagi-
nary normal mode frequency corresponding to a pole
of the susceptibility (16) at a point z=1Q, 2>0, in
the upper half-plane; all other normal mode fre-
quencies are real. This isolated normal mode can be
interpreted as corresponding to a parabolic barrier
in the coupled system. The corresponding tunneling
rate will be given by (15) with Q replacing £,.
The equation determining £2 is therefore

[@(i) ]~ =mQ? - mQ2 + Qi(iQ) =0 . (17)

Using the representation (6), we can write this in
the form

Re{i(w+i0*
RAMLED ) _03. (18)

Q%+ E)Z_ j dw

mn )
With the positivity condition (5) one sees readily
that the left hand side of this equation is a mono-
tonically increasing function of 2, and therefore there
will always be exactly one solution. Moreover, the
solution £ will always be less than £2,, so that the ef-
fect of dissipation is always to reduce the transmis-
sion coefficient for a given (negative) energy below
the barrier and to increase the transmission for an
energy above the barrier.

As an illustration of the ideas we have presented,
we consider here their application to the problem of
macroscopic quantum tunneling in resistively
shunted Josephson junctions [6,7]. There has been
considerable interest in this problem in connection
with theory and experiment [1,8]. Our interest here
is to show how some of the principle theoretical re-
sults follow simply from the quantum Langevin ap-
proach. For an ideal junction the current is given by
the Josephson equation [7]:

I=Icsing, (19)

where ¢ is the phase difference of the supercon-
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ducting wave function across the junction and /- is
the critical current. The voltage across the junction
is

V=—¢, (20)

where #i/2e is the quantum of flux. A real junction
can be viewed as a capacitance C and a shunt resis-
tance R in parallel with an ideal junction [6,7]. The
current is then the sum of the ideal junction current,
given by (19), the current through the capacitor,
Q=CV, and the current through the resistor, I=V/R.
The junction voltage is still given by (20). The basic
equation of motion of the junction can therefore be
written

AV AT IR
<_2—€> C¢+<:2—e) R + ‘2-;IC sin ¢

fi

=—I+F(1). (21)
2e

This is of the form of a quantum Langevin equation

(1) with mass and friction constant

m=(h/2e)’C, (=(h/2e)*/R, (22)

and with potential
h
U(¢>)=—2—e(1¢+1C cos o). (23)

We have written the equation in the form (21)
since only then is ¢ interpretable as a (generalized)
displacement. To verify this we consider the effect of
adding a term —f(¢)¢ to the system hamiltonian or,
equivalently, a term f'(¢)¢ to the system lagrangian.
This then becomes

L=iCV2+.. +f(1)¢
=1me>+. . .+f(1)o, (24)

TSR T

where “...”” represents the unknown or unspecified
part of the lagrangian corresponding to the heat bath
and the many-body effects resulting in the Josephson
current, and where in the second form we have used
(20) and the expression (22) for the mass. In this
second form it is clear that the effect of the added
term would be to add a term f(¢) to the right-hand
side of the basic equation (21). Thus, ¢ is a dis-
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placement in the sense of our discussion following
(1) above.

With this we can immediately adapt the results for
the Langevin equation described above. From (2),
it follows that the correlation of the random force in
(21) is

I F0)+F(O)F(1) )

73 I
= dw w coth(Aw/2kT) cos wt . (25)
=y
4me“R )

Near a local minimum the potential (23) is of the
form

U(¢)z4ﬁe(1?‘:—12)”2A¢2’ (26)

where A¢=¢—arcsin(//I-). This is a linear oscil-
lator potential, so we can apply the result (13) to
obtain the power spectrum of the phase fluctuations:

5

4e- wy
2 —
[Ag* ] = e coth(Aw/2kT) (@l—w?) T’
(27)
where
_ L 2 _ E 2 2y1/2
y= RC’ wo= Ch Ue=12)"-. (28)

The mean square derivation of the phase is therefore

(Ag*>
4e? T wy
=G dw coth(fiw/2kT) (02— rwi?

0

(29)
In the limit of large shunt resistance (weak coupling
limit), y << w,, this becomes
2e?
Chw,

(Ap?) = coth (Aw, /2kT) . (30)
This weak coupling limit corresponds to the expres-
sion for the phase fluctuations obtained long ago by
Josephson [9]. The power spectrum of the voltage
fluctuations is readily obtained from (27) using
(20);
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w3y
(w3 —w?)?+w?y?’
(31)

h
21 =
(V31,.= nCcoth(fzw/Zk?)

Note that this becomes very small at low frequencies.

A more interesting question concerns the quan-
tum tunneling near a local maximum of the potential
(23), where

U(g)~ — % (1% —1?)*[p+arcsin(I/Ic) - ]2 .
(32)

From a comparison with (14), it is clear that our
resistively shunted Josephson junction is reduced,
near a local maximum, to a special case of the par-
abolic barrier problem, with

Q3= 2 (121", (33)

and corresponding to a frequency-independent fric-
tion constant,

Re{u(w+i0*)}={=my. (34)

The integral in (18) is then elementary and the
equation becomes

Q14+yR=03% . (35)
The solution is
Q=(Q+1")"*=4y. (36)

There is also a negative root obtained by changing
the sign of the square root. This, however, corre-
sponds to a point in the “unphysical sheet” reached
by analytically continuing «(z) across the real axis
into the lower half-plane and does not have imme-
diate physical significance. We should perhaps also
remark that there are no imaginary roots corre-
sponding to the infinitely many normal modes aris-
ing out of the bath. This is because these modes are
continuously distributed so that the real axis be-
comes a “branch cut” of a(z).

Ifin (15) we replace ©, by £2 as given in (36), we
find for the transmission coefficient

D=[1+exp(-2nE/AQ)]!
= (1+exp{—2nE[(1+7y2/4R23)'/?
+9/2201/82}3) " . (37)
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Here we see explicitly that for any fixed (negative)
energy E below the barrier the transmission coeffi-
cient is decreased, D< D,. Indeed, D is a monoton-
ically decreasing function of y. On the other hand,
for energies above the barrier (positive £) the trans-
mission is increased.

In the limit of tunneling well below the barrier,
E <« —n£,, and weak coupling to the heat bath,
y <K £, the transmission coefficient (37) becomes

2rE(1+y/2Q E
Dzexp(thz/——ﬂl)=Do exp(%) . (38)

We can write this in another way if we introduce the
barrier width, w, writing

E=—-imQ3(iw)?. (39)
Then (38) becomes
D=D, exp(—ini{w?/h), (40)

where {=my is the friction coefficient. This is sim-
ilar to a result obtained by Caldeira and Leggett us-
ing path integration methods [1]; their WKB
exponent, B say, is larger than our exponent by a fac-
tor = 1.2, which is consistent with the fact that they
are calculating an upper limit on B. However, there
is a distinct difference between the form of the re-
sults for the case of strong coupling. In all cases,
Caldeira and Leggett express their results in the form
D=D,exp(—B), where B depends on the strength
of the coupling. By contrast, in our case, we note from
(37) that this form might not ensue for y values
greater than ,. We should perhaps stress that the
result (37) is exact for all values of the friction con-
stant, subject only to the assumption that the tun-
neling is elastic.

In summary, we have used the quantum Langevin
equation as the basis for a discussion of dissipative
quantum tunneling. We feel that the approach is
simple and physically appealing. In essence, we use
techniques well-known in the analysis of non-dissi-
pative problems which we supplement with two
powerful results, obtained from our work on the
quantum Langevin equation, viz. (a) that the real
part of the memory function is always positive (see
(5)) which led to the very general conclusion (see
(18)) that, even in the case of non-markovian in-
teractions, the effect of dissipation at zero temper-
ature is always to reduce the transmission coefficient,
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and (b) that the poles of the susceptibility give the
normal-mode frequencies (see (17)), which lead to
the all-important equation (18) for Q.

This research was partially supported by the U.S.
Office of Naval Research under Contract No.
NO00014-86-K-0002 and by the National Science
Foundation Grant No. INT-8504402.
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