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ThequantumLangevinequationis usedasthebasis for a discussionof dissipativequantumtunneling. A generalanalysis,
includingstrongcouplingandnon-markovian(memory)effects,is givenfor thecaseoftunnelingthrougha parabolicbarrierat
zerotemperaturein thepresenceof linear passivedissipation.It is shownthat dissipationalwaysdecreasesthetunnelingrate
belowthebarrierandincreasestransmissionabovethebarrier.As a particularapplication,thecaseof theresistivelyshunted
Josephsonjunction is considered.Simpleclosedform expressionsfor thetunnelingrateandfor thenoisepowerspectrumare
obtainedandcomparedwith resultsin theliterature.

Dissipativequantumtunneling,thestudyof which sistsof aninfinite numberof particles,eachcoupled
waspioneeredby CaldeiraandLeggett, hasso far to the givenparticlewith a spring.We also showed
beengenerallytreatedby techniquesinvolving path that many other apparentlydifferent modelsare
integrals[1]. Our purposehereis to showhow the equivalentto this model (or truncatedversionsof
quantumLangevinequationcanbe usedto discuss it). However,aswethereargued,thequantumLan-
theseandrelatedproblemsfor a quantumdissipa- gevinequationisa model-independentmacroscopic
tive system.An advantageof theapproachusingthe descriptionof a quantumparticle (which neednot
quantumLangevinequation,asidefrom its simplic- itself be macroscopic)interactingwith a heatbath.
ity, is that it is easyto incorporatenon-markovian ThequantumLangevinequationhasthe form
(memory)andstrongcouplingeffects.In a fewshort
stepsweobtainanexactandgeneralresult,whichwe~ J di, ~(t—t

1)±(t, )+U’(x)=F(t), (1)
thencomparewith resultsin the literature.

In ourearlierwork in thisarea,weusedthe quan-
tum Langevinequationto treatthe caseof a quan- wherethedotandprimedenote,respectively,thede-
turn oscillatorin ablackbodyradiationheatbath [2]. rivative with respectto t andx. This is the Heisen-
More recently,we describedthe form of this equa- bergequationof motion for the coordinateoperator
tion for anarbitraryexternalpotentialandforanar- x of a particleof massm in a potentialU(x). More
bitrary heatbath [3]. There,too, we showedhow generally,x may beinterpretedasa generalizeddis-
this generalform canbe derivedfrom the indepen- placementoperator,by which wemeanan operator
dentoscillator (10) model, in which the bathcon- suchthat, for any c-numberf( t), a term —xf(t)
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addedto thehamiltonianof the systemof “particle” the boundaryvalue of u(z) on the real axis has
plusheatbathresultsin anadded(generalizedforce) everywherea positiverealpart:
term f(t) on the right-handside of eq. (1).

Re{~2(w+iO~)}~O,—cc<w<oo. (5)
In the quantumLangevinequation(1), the cou-

pling with the heatbath is describedby two terms: This, as we showedin ref. [3], is a consequenceof
an operator-valuedrandom force F(t) with mean the secondlaw of thermodynamics.The third prop-
zero, anda meanforce characterizedby a memory erty is the reality condition: /1(w+iO~) —

function ~t(t). The (symmetric)autocorrelationof p( —w+iO~)*, which follows from thefact thatxis
F(t) is a hermitian operator.Thus ReLu(w+iO~)} is an

even function of w. Such functions of a complex
~<F(t)F(t’ )+F(t’ )F(z)> variable,analytic in the upperhalf-planeand with

realpartapositive,evendistributionon the realaxis,
=! I dwRe{fl (w+iO ±) } aretermedpositivereal functions.Theyform a very

It ~ restrictedclassof functions of a complexvariable,
0 with many remarkableproperties.Importantamong

theseis thegeneralrepresentationin the upperhalf-
xhwcoth(hw/2kT)cos[w(t—t’)] , (2)

plane(the Stieltjesinversion theorem):
andthe nonequal-timecommutatorof F(t) is 2iz Jdw Re{j~(w+iO~)}

2 (6)
[F(t), F(t’)] It

wherec is a positiveconstant.Thus therealpositive
= ~ I dwRe{~(w+iO~)}hw S~fl[w(i—1’)]. distribution Re{fl(w+iO~)} characterizesthe func-

Iti ~)

o tion, exceptfor theconstantc, which in our casecan
(3) be absorbedinto the particle mass(beware,this is

In theseexpressions not massrenormalization).As an illustrative ex-

ample,for the 10 model~2(z) takesthe form [3]:

~(z)= Jdle~(t), Imz>O (4) fl(z) ~ m1w~ ‘~ (7)
o 1

wherem1 is the massandw1 is the naturalfrequency
istheFouriertransformof thememoryfunctionJL(t).
(By convention,the memory function vanishesfor of thejth bathoscillator.

As a simple application of this formalism, con-negativetimes.)Finally,F(t) hasthegaussianprop-
siderthefluctuations (noise)in thedisplacementoferty: correlationsof an odd numberof factorsof F
a linear oscillator.Theretheexternalpotential is ofvanish,thoseof anevennumberof factorsareequal
the form

to the sum of productsof pair correlations (auto-
correlations),the sum being over all pairingswith U(x) = ~mw~x

2, (8)
the order of the factors preservedwithin eachpair.

andthe quantumLangevinequationtakesthe formIt is clearfromthe abovedescriptionthat thecou-
pling to the heatbath is characterizedby the func-
tion ~(z). Now this function hasthree important m~+Jdt’t~(t_t’)±(t’)+mw~x=F(t). (9)
mathematicalpropertieswhich follow in turn from o

threecorrespondinggeneralphysicalprinciples.The
Formingthe Fouriertransformwe canwrite

first of these,as we seefrom (4), is thatu(z) is an-
alytic in the upperhalf-planeIm z>O. Thisis a con- 2(w)=a(w)F(w) , (10)
sequenceof causality;the meanforceexertedby the

where
heatbathon theparticledependsonly upon thepast
motion of the particle.The secondpropertyis that a( w) = [—mw2+ mw~— iwj2( co) ] ‘ (11)
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particleplus oscillator bathis againan assemblyofis the susceptibility.With this it is a straightforward
coupledoscillatorswith, however,onespringhaving

calculationusing(2) to show that
a negativespring constant.The normal mode fre-
quenciesof this coupledsystemare the polesof the
susceptibilitya(co); thenormalmodefrequenciesof
the bath are the zeros of a(co), i.e., the poles of

= Jdcv [x2]~ cos[a)(t—t’)], (12) fl(z) [2]. The bathmode frequenciesare all real.
Thisisthepassivityconditionandcanbeseenclearly
usingthe explicit form (7) for p (cv). For the cou-

where[x2 ]~,thepowerspectrumof thefluctuations pled system, however,thereis one isolated imagi-
of x, is givenby narynormalmodefrequencycorrespondingto a pole

2 of the susceptibility(16) at a point z= iQ, Q>0, in[x I ~. = coth(ilco/2kT) Im{a (cv)}. (13) the upperhalf-plane;all other normal mode fre-

quenciesarereal. Thisisolatednormal modecanbe
Thisis, of course,a well-known result [41. interpretedas correspondingto a parabolicbarrier

As a ratherdifferent type of application,we now in the coupledsystem.Thecorrespondingtunneling
considerthe effect of dissipationon quantumtun- ratewill be givenby (15) with Q replacing£2~.
neling at zerotemperaturethrougha parabolicbar- TheequationdeterminingQ is therefore
rier. Considerthereforean externalpotentialof the
form [a(iQ)]’=mQ2—mQ~ +Qfl(iQ)=0. (17)

U(x)= — ~mQ~x2, (14) Using the representation(6), we canwrite this in
the form

i.e., an invertedoscillatorpotential.In the absence
of dissipation,we havean exactexpressionfor the ~2 + 2Q~ Re{fl(co+ iO + ) }
zero-temperaturetransmissioncoefficient [5]: m~$ dw Q2+w2 ~ . (18)

0

1
= (15) With the positivity condition (5) one seesreadily

1 +exp( — 2ItE/hQ
0)’ that the left hand side of this equationis a mono-

whereE is theparticleenergymeasuredfromthe top tonically increasingfunctionof Q, andthereforethere
of the barrier. Thus,E> 0 correspondsto transmis- will alwaysbe exactly onesolution. Moreover, the
sionabovethe barrierandE> 0 correspondsto tun- solutionQ will alwaysbelessthanQ0, sothat theef-
neling.Thisformulaappliesforenergiesnearthetop fect of dissipationis alwaysto reducethe transmis-
of anybarrierwhosedependenceon x nearthemax- sion coefficientfora given (negative)energybelow
imum is quadratic[5]. the barrierandto increasethe transmissionfor an

In the presenceof dissipation,wecandescribethe energyabovethe barrier.
motion by the quantum Langevin equation(1), As an illustration of the ideaswe havepresented,
which with the externalpotential (14) corresponds we considerheretheir applicationto theproblemof
to a susceptibilityof theform macroscopic quantum tunneling in resistively

shuntedJosephsonjunctions [6,7]. Therehasbeen
a(cv) = [— mw

2— mQ~— icvfl(cv) ] —1 (16) considerableinterestin this problemin connection

We now usethe fact that the heatbathcanbe rep- with theoryandexperiment[1,8]. Our interesthere
resentedby an 10 model of coupledoscillators.We iS to show how someof the principletheoreticalre-
stressthat weare not saying that the bath is in fact saltsfollow simply from thequantumLangevinap-
anassemblyof coupledoscillators.Rather,to theex- proach.Foran idealjunctionthe currentis givenby
tent that systemcanbe describedby the Langevin the Josephsonequation[7]:
equation,the bath is indistinguishablefrom anos- ~ 1 sin~, (19)
cillator bath.

With thepotential (14) weseethat the systemof where 0 is the phasedifferenceof the supercon-
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ducting wave function acrossthe junctionand I~is placementin the senseof our discussionfollowing
the critical current.The voltageacrossthe junction (1) above.
is With this wecanimmediatelyadapttheresultsfor

the Langevinequationdescribedabove.From (2),
— 0, (20) it follows that thecorrelationof the randomforcein
2e (2l)is

whereh/2e is the quantumof flux. A real junction ~<F(t)F(0)+F(o)F(t)>
canbe viewedas a capacitanceC anda shuntresis-
tanceR in parallelwith an idealjunction [6,7]. The
currentis thenthe sumofthe idealjunctioncurrent, = ~ J dcvcvcoth(hw/2kT)cos cot. (25)
given by (19), the current through the capacitor, 4ite R
Q= CV, andthecurrentthroughtheresistor,1= V/R.
Thejunctionvoltageis still givenby (20). Thebasic Neara local minimum the potential (23) is of the
equationof motion of thejunctioncanthereforebe form
written

h 2 h 2. h U(O)~~(I~_I2)hl2AØ2, (26)

~+~IcSiflO e

where AØ=Ø—arcsin(I/I~~).This is a linear oscil-
lator potential,so we can apply the result (13) to

= 1+ F( t) . (21) obtainthepowerspectrumof thephasefluctuations:

4e2 coy
Thisis of the form of a quantumLangevinequation [AØ2]( —~coth(hw/2kT)(2 2\2+ 2 2’

(1) with massandfriction constant °— ~)

m=(h/2e)2C, ~=(~/2e)2/R, (22) (27)

andwith potential where

h 1 2 2e 2 ~I’

U(çb)=— (IØ+I~cosØ) . (23) ‘ ,, (Ic~I) ‘. (28)
We havewritten the equationin the form (21) The meansquarederivationof thephaseistherefore

sinceonly then is 0 interpretableas a (generalized) A 2

displacement.To verify thiswe considertheeffectof < ~ >
addinga term —f(t)Øto thesystemhamiltonianor, 4e2 C coy

= — I dcocoth(hw/2kT)
equivalently,a termf(t)Ø to the systemlagrangian. ItCh j (co~—w2)2+w2y-
Thisthenbecomes °

(29)
L=~CV2+...+f(t)Ø

In thelimit of largeshuntresistance(weakcoupling
=~mØ2+...+f(t)Ø, (24) limit), y<<w

0, this becomes

where “...“ representsthe unknown or unspecified 2e
2

partof the lagrangiancorrespondingtothe heatbath <t~02>= ChWOcoth (hco
0/2kT) . (30)

andthemany-bodyeffectsresultingin theJosephson
current,andwherein thesecondform we haveused Thisweak couplinglimit correspondsto the expres-
(20) and the expression(22) for the mass.In this sion for the phasefluctuationsobtainedlongago by
secondform it is clear that the effect of the added Josephson[9]. The powerspectrumof the voltage
term would be to adda termf( t) to the right-hand fluctuations is readily obtained from (27) using
side of the basic equation(21). Thus, 0 is a dis- (20);
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Here we see explicitly that for any fixed (negative)[V2]~ = ~coth(hw/2kT) (w~—co2)2+w2y2~ energyE belowthe barrierthe transmissioncoeffi-

(31) cient is decreased,D~D
0. Indeed,D is a monoton-

ically decreasingfunction of y. On the other hand,
Note that this becomes very small at low frequencies. for energies above thebarrier(positiveE) the trans-

A more interestingquestionconcernsthe quan- mission is increased.
turn tunneling near a local maximumof thepotential In the limit of tunnelingwell below the barrier,
(23), where E << — hQ0, and weak coupling to the heat bath,

h y<< Q0, the transmission coefficient (37) becomes
— (I~—I

2)”2[O+arcsin(J/Ic)—It]2.
4e (2ItE(l+y/2Q

0)\ I itEy
(32) Dn~exp~ hQ0 )=DoexP~,j~ . (38)

From a comparison with (14), it is clear that our Wecanwrite this in anotherway if we introduce the
resistively shunted Josephson junction is reduced, barrierwidth, w, writing
near a local maximum, to a special caseof the par-
abolic barrierproblem,with E= — ~mQ~( ~w)

2. (39)

2e Then (38) becomesQ2 )~2 j2 1/2 (33\
C / D=D

0exp(—~,x~w
2/h), (40)

andcorrespondingto a frequency-independentfric- where~= my is the friction coefficient. This is sim-
tion constant, ilar to a result obtained by Caldeira and Leggettus-

Re{p(w+i0~)}=~=my. (34) ing path integration methods [1]; their WKB
exponent, B say, is larger than our exponentby afac-

The integral in (18) is then elementary and the tor 1.2, which is consistent with the fact that they
equation becomes are calculatingan upperlimit on B. However,there
Q2+ yQ= Q2 (35) is a distinct differencebetweenthe form of the re-

0 suits for the caseof strong coupling. In all cases,

The solution is Caldeira and Leggett express their resultsin theform

Q—(Q2+’y2)~2—~y (36) D=D
0exp(—B),where B depends on the strength— 0 4 of the coupling.By contrast,inourcase,wenotefrom

Thereis also a negativeroot obtainedby changing (37) that this form might not ensuefor y values
the sign of the squareroot. This, however, corre- greaterthanQ0. We shouldperhapsstressthat the
spondsto a point in the “unphysicalsheet”reached result (37) is exactfor all valuesofthe friction con-
by analytically continuing a(z) acrossthe realaxis stant,subjectonly to the assumptionthat the tun-
into the lowerhalf-planeanddoesnot haveimme- neling is elastic.
diatephysical significance.We shouldperhapsalso In summary,wehaveusedthequantumLangevin
remark that there are no imaginary roots corre- equationas thebasisfor a discussionof dissipative
sponding to the infinitely many normal modesaris- quantumtunneling. We feel that the approachis
ing out of the bath.This is becausethesemodesare simpleandphysically appealing.In essence,we use
continuously distributed so that the real axis be- techniqueswell-known in the analysisof non-dissi-
comesa “branchcut” of a(z). pative problems which we supplement with two

If in (15) we replace Q0 by Qas given in (36), we powerful results, obtained from our work on the
find for the transmission coefficient quantum Langevin equation, viz. (a) that the real

— part of the memoryfunction is alwayspositive (see
D= [1+ exp (— 2EE/hQ)] (5)) which led to the very general conclusion (see

=(l+exp{—2~tE[(l+y
2/4Q~)”2 (18)) that, even in the caseof non-markovianin-

+ 2Q ‘hQ — (37\ teractions, the effect of dissipation at zero temper-

Y 0 I 0/ “ / atureisalwaystoreducethetransmissioncoefficient,
33
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