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Abstract

In this work we begin with a brief survey of the theory of virtual knots, which was
announced in 1996 by L. Kauffman. This leads naturally to the subject of quandles
and quandle homology, which we also briefly introduce.

Chapter 2 contains a proof in terms of Gauss diagrams that the forbidden moves
of [8] unknot virtual knots. This chapter includes material which appeared in the
Journal of Knot Theory and its Ramifications and is reprinted here by permission
of World Scientific Publishing.

In chapter 3 (cowritten with my advisor R. A. Litherland) we confirm a conjec-
ture of J. S. Carter et. al. that the long exact sequence in rack homology is split.
We go on to show that for racks with homogeneous orbits, the lower bounds for
the Betti numbers given in [2] are exact. We end chapter three with some explicit
isomorphisms between Alexander quandles of certain forms and we describe some
calculations of the second and third homology groups for a selection of quandles.

Chapter 4 contains a classification result for the category of finite Alexander
quandles. This result give us easy conditions for comparing finite Alexander quan-
dles as well as a general procedure for listing all Alexander quandles with a given
number of elements. As an application we list the number of distinct Alexander

quandles (and how many of these are connected) with up to 15 elements.
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Chapter 1

Introduction

1.1 Virtual Knots

A knot is an embedding k : S — S of the circle into the 3-sphere. A link is a
disjoint collection of knots. To deal with knots and links combinatorially, we draw
knot diagrams, four-valent graphs with each vertex representing a “crossing”; the
undercrossing strand is indicated in the diagram by drawing the strand broken.

Two embeddings k : S* — S3 and &' : St — S? are ambient isotopic if there is
an isotopy S® — S? carrying k(S') to k'(S'). Equivalently (for knots with a finite
number of crossings, called tame knots) two diagrams are isotopic if one diagram
can be transformed into the other via a finite sequence of planar isotopies and
Reidemeister moves.

In [12], L. Kauffman introduced the notion of wvirtual knots, a generalization
of knot theory which includes classical knot theory as a special case. Virtual knot
theory generalizes classical knot theory in a way similar to how complex arithmetic

generalizes real arithmetic.
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FIGURE 1.1. Reidemeister moves



FIGURE 1.2. A virtual knot diagram

Every classical knot diagram is a planar 4-valent graph with vertices enhanced
with crossing information; it is planar since it is the image of a projection onto
a plane. In virtual knot theory, we consider equivalence classes under the usual
Reidemeister moves of arbitrary 4-valent graphs with finitely many vertices, planar
or not, with crossing information given at each vertex.

In order to draw nonplanar graphs in the plane, one normally introduces cross-
ings; however, since the vertices are already interpreted as crossings, we distinguish
these wvirtual crossings (which are merely artifacts of drawing a nonplanar graph
in the plane) from the classical crossings by drawing them as circled intersections;
neither strand crosses over or under the other in a virtual crossing (since the
“crossing” isn’t really there).

Since we now have a new type of crossing, we must specify how these crossings are
allowed to interact with classical crossings by listing virtual Reidemeister moves.
Since the virtual crossings are “not really there”, we may move a strand with only
virtual crossings anywhere we like. This “detour move” implies three all-virtual
versions of ordinary Reidemeister moves, as well as a variant of the Reidemeister
type III move with two virtual crossings and one classical crossing. See Chapter 1
figure 2.3 for details.

In [8], M. Polyak, M. Goussarov and O. Viro use the theory of virtual knots as
an approach to calculating Vassiliev (or finite-type) invariants of classical knots.

Finite type invariants are actually invariants of singular knots, that is, circles im-



mersed (rather than embedded) in R®. Since every embedding is also an immersion,
invariants of singular knots restrict to invariants of normal (non-singular) knots.

Singular knots may be viewed as equivalence classes of knotted 4-valent graphs
under Reidemeister moves, planar isotopies which fix a neighborhood of each sin-
gular crossing, and a Reidemeister type III move variant where a strand may pass
over or under a singular crossing.

Then a Vassiliev invariant is a function v from the set of singular knot diagrams
to an Abelian group A such that (1) the value of v stays fixed under Reidemeister

moves (this makes v a knot invariant) and (2) v satisfies

: AN\
N,/

meaning that v evaluates on a diagram with a singular crossing to v on the same
diagram with the singular crossing replaced by a positive crossing minus v on the
same diagram with the singular crossing replaced by a negative crossing.

Polyak, Goussarov and Viro noted that one can calculate finite type invariants
from a Gauss diagram of a knot, which is a circle with points representing preimages
of crossing points in usual planar knot diagram connected by chords. These chords
are oriented “in the direction of gravity”, i.e. with the undercrossing point receiving
the arrowhead and the overcrossing point the tail. Each chord is then decorated
with a plus or minus sign according to the sign (local writhe number) of the
crossing.

Once can view a Gauss diagram as the preimage of a knot diagram with arrows

connecting preimages of crossing points decorated with signs.



In representing knots with Gauss diagrams, we run into a potential problem:
while every classical knot diagram has a corresponding Gauss diagram, the con-
verse is not true. There are Gauss diagrams which do not correspond to classical
knots. The insight of .. Kauffman, rediscovered by PGV, was to not worry about
whether or not a given Gauss diagram corresponds to a classical knot and just
consider equivalence classes of Gauss diagrams under the Gauss diagram versions
of the classical Reidemeister moves; that is, to consider Gauss diagrams as defining
“virtual” knots.

in [8], the authors revisit the topic of Reidemeister moves for virtual knots and
discover that there are two Reidemeister-type moves which are not allowed; they
dubbed these the “forbidden moves” since allowing them renders virtual knot the-
ory trivial. They prove this fact in their paper via n-variations, and the proof is
fairly abstract.

While doing some sample computations with virtual knots, I noticed that the
forbidden moves work by sliding an arrowhead past an adjacent arrowhead or tail
past an adjacent tail. I then used these two moves to construct two other move-
sequences which allow us to move an arrowhead past an adjacent tail, thus showing
that the forbidden moves unknot without the use of n-variations. My brief paper
recording this fact appeared in the Journal of Knot Theory and its Ramifications
in July 2001, and here makes up the bulk of chapter 1.

We thus have a generalization of classical knot theory, since every classical knot
is also a virtual knot, and since the equivalence relations of classical knots form a
subset of the equivalence relations of virtual knots, two equivalent classical knots

are likewise equivalent classical knots.



Indeed, more is true; PGV point out that since the virtual moves don’t change
the fundamental quandle, virtually equivalent classical knots are classically equiv-

alent.

1.2 Rack and Quandle Homology

In [9], D. Joyce solved the (classical) knot classification problem by introducing the
fundamental quandle, a complete invariant of nonsplit links in homology 3-spheres.
A quandle is an algebraic object subject to axioms which are essentially the three
Reidemeister moves translated into an algebraic form. Quandles and groups are
closely related, and indeed the fundamental group of a knot is recoverable from
the fundamental quandle via the associated group functor described by Fenn and
Rourke in [5].

Two classical knots are ambient isotopic if and only if their fundamental quandles
are isomorphic. Unfortunately, as with groups, it can be as difficult to tell whether
two quandles are isomorphic as it is to tell whether two knots are ambient isotopic.
We may then use the same strategy for distinguishing racks and quandles that we
use with knots, namely, find invariants.

Thus quandles afford us a new way of thinking of the knot classification problem
— we can find new knot invariants by finding invariants of quandles, which in turn
are automatically invariants of knots.

In [6], R. Fenn, C. Rourke and B. Sanderson define a chain complex associated
to any rack (quandles form a subcategory of the category of racks). The resulting
homology and cohomology groups are thus examples of invariants of quandles
which can be applied to define invariants of knots.

In [1], quandle cohomology is used by J. S. Carter, D. Jelsovsky, S. Kamada,

L. Langford, and M. Saito to define a new family of knot invariants, the CJKLS



state-sum invariants. Calculation of these invariants involves choosing an element
¢ of the second cohomology Hj(X) of a quandle X and a coloring of each arc in
the knot diagram with elements of the quandle so that the following condition is
satisfied at each crossing (note that the orientation of the undercrossing strand

does not matter):

We then take the product over all crossings of ¢(a,b) for positive crossings and
#(a, b)~! for negative crossings, and finally we take the sum over all colorings of the
arcs in the knot diagram to obtain the CJKLS invariant ®,(K) of the knot diagram
K. One can check easily that the value of ®4(K) is unchanged by Reidemeister
moves, so indeed it is an invariant of knots.

Further, cohomologous cocyles define the same invariant, so we have one CJKLS
invariant for each element of the second cohomology of each quandle. Clearly,
calculating the homology and cohomology groups of quandles is the necessary first
step in calculating these new invariants.

In chapter 2 (co-authored with my advisor, R. A. Litherland), we show that
the lower bounds for Betti numbers (the rank of each homology group) given in
[2] are in fact equalities for a class of racks that includes dihedral and Alexander
racks. We confirm a conjecture from the same paper by defining a splitting for the
short exact sequence of quandle chain complexes. We define explicit isomorphisms
between Alexander racks of certain forms, and we also calculate the second and

third homology groups of some dihedral and Alexander quandles.



1.3 Finite Alexander Quandles

The category of Alexander quandles is a subcategory of the category of quandles.
Any module over the ring A = Z[t*!] of Laurent polynomials in in one variable is
also a Alexander quandle. Alexander quandles are particularly nice to work with
since their quandle structure is determined by their module structure (though the
converse is not true; there are nonisomorphic A-modules which are isomorphic as
Alexander quandles). In particular, finite Alexander quandles are good candidates
to use as coloring quandles in invariants such as CJKLS, since colorings of knot
diagrams with quandle elements are homomorphisms from the knot quandle to the
coloring quandle, and thus if the target is finite, we have a finite sum.

The final chapter of this dissertation contains my classification result for the
category of finite Alexander quandles: two Alexander quandles are isomorphic if
and only if their submodules Im(1 — ¢) are isomorphic as A-modules. This result
thus reduces the problem of comparing Alexander quandles to comparing their
Im(1 — ¢) submodules as A-modules.

This enables us to answer two of the previously open questions in [14], namely,
when are two Alexander quandles of the form Z,[t*]/(t — a) where gcd(n,a) = 1
(which we call linear quandles) isomorphic, and when are two linear quandles dual.
We apply the classification result to obtain simple numeric conditions on a and b
which are necessary and sufficient for A, /(t — a) and A,,/(t — b) to be isomorphic
and to be dual.

We also give an easy condition for an Alexander quandle to be connected, that
is, for the set X® = X for all a € X. In particular, we show that connected finite
Alexander quandles are isomorphic if and only if they are isomorphic as A-modules.
Connected quandles are of special interest since every knot quandle is connected,

and therefore only connected quandles can act as coloring quandles for knots in



invariants such as CJKLS (since a coloring quandle is the homomorphic image of
the fundamental quandle, it must also be connected).

We then apply this classifying result to give a general procedure for classifying
Alexander quandles of any finite order n. Any Z-automorphism of an Abelian group
defines an Alexander module structure on that group, so for a given n we consider
each Abelian group of order n and find its Z-automorphism group, then compare
the submodules Im(1 — ¢) for each element of the automorpishm group.

We show that every Alexander quandle of prime order is linear. In [7], Grana
classifies indecomposable racks of order p? for p prime, and in the case that a rack
X is an Alexander quandle, “indecomposable” means “connected.” We show that
Grana’s result as it applies to Alexander quandles agrees with our classification
theorem.

We show that for n = pipy...p, a product of distinct primes, an Alexander
quandle of order n is a direct sum of Alexander quandles of orders py, po, ..., pPm-

This covers the cases n = 2,3,5,6,7,10,11,12,13,14 and 15. For the cases n =
4 and 9 we apply the classification of modules over PIDs to explicitly list all
Alexander quandles of order 4 and 9. Only for the case n = 8 do we need to apply
the general procedure of calculating Autz(Zs @ Z4) to complete the calculation.

As a final application, we summarize our results in a table by listing the numbers
of distinct Alexander quandles with up to fifteen elements and how many of each

order are connected.



Chapter 2

Unknotting Virtual Knots via Gauss
Diagram Forbidden Moves!

In 1996 Kauffman [12] introduced the theory of virtual knots, extending the topo-
logical concept of “knots” to include general Gauss codes. In 1999 Goussarov,
Polyak and Viro [8] described virtual knots in terms of Gauss diagrams, which
provide a visual way to represent Gauss codes.

Consider a classical knot diagram K C R? as an immersion K : S' — R? of
the circle in the plane with crossing information specified at each double point.
A Gauss diagram for a classical knot diagram is an oriented circle considered as
the preimage of the immersed circle with chords connecting the preimages of each
double point. We specify crossing information on each chord by directing the chord
toward the undercrossing point and decorating each with with signs specifying the

local writhe number.

FIGURE 2.1. A simple knot and its Gauss Diagram

A wvirtual knot is an equivalence class of Gauss diagrams under the relations in
Figure 2, which are the classical Reidemeister moves written in terms of Gauss
diagrams. Note that there are several variations of move III depending on the

orientations of the strands; we only depict two.

IThis chapter incorporates material reprinted with the permisssion of the Journal of Knot Theory and its
Ramifcations, Copyright (©2001 World Scientific Publishing.
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FIGURE 2.2. Moves I, IT and III.

Not every Gauss diagram corresponds to a classical knot. Indeed, a Gauss dia-
gram determines a 4-valent graph with crossing information specified at the ver-
tices; such a graph represents a classical knot or link diagram if it is planar, but, of
course, not every 4-valent graph is planar. To draw non-planar graphs in the plane,
we usually introduce crossings, but these new crossings must be kept distinct from
the vertices, which represent classical crossings specified by the Gauss diagram.
To draw these non-planar graphs as wvirtual knot diagrams, we introduce virtual
crossings to distinguish crossings arising from non-planarity of the graph from real
crossings represented by vertices. Virtual crossings are drawn as an intersection
surrounded by a circle. A virtual crossing has no over- or under-sense and no sign,
and virtual crossings do not appear on Gauss diagrams — they are artifacts of our
representing a non-planar graph in the plane.

A Gauss diagram determines a neighborhood of each real crossing and the order
in which the edges entering and leaving such a neighborhood are connected. Outside

these neighborhoods, we are free to draw the arcs connecting the neighborhoods
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however we want, introducing virtual crossings as necessary. The wirtual moves
in figure 3 allow us to change any virtual knot diagram representing a particular
Gauss diagram into any other virtual knot diagram representing the same Gauss
diagram by allowing the interior of an arc containing only virtual crossings to be
moved arbitrarily around the diagram.

Goussarov, Polyak and Viro [2] observe that there are two potential moves on
virtual knot diagrams which resemble Reidemeister moves that are not allowed —
these “forbidden moves” depicted in figure 4 alter the Gauss diagram, unlike the
other virtual moves. Worse yet, if these two moves are allowed, together they allow
us to unknot any knot, rendering the theory trivial. For this reason, these moves are
called “forbidden”. On Gauss diagrams, the forbidden move F; moves an arrowtail
of either sign past an adjacent arrowtail with either sign without conditions on the
relative positions of the heads of these arrows, and the other forbidden move Fj,
moves an arrowhead past an arrowhead similarly.

The fact that allowing the forbidden moves would render virtual (and hence
classical) knot theory trivial by making every knot unknotted is proven in [8] in

terms of n-variations. In this paper we present a short combinatorial proof in terms
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FIGURE 2.4. The Forbidden moves Fj, and F;.
of Gauss diagrams. The author has subsequently learned that Taizo Kanenobu [11]

has a different combinatorial proof of this result using virtual braid moves.

Theorem 2.1. Any Gauss diagram can be changed into any other Gauss diagram

by a sequence of moves of types I, II, III, F), and F;.

Proof. The forbidden move Fj, allows us to move an arrowhead with either sign
past an adjacent arrowhead with either sign without conditions on the tails of
these respective arrows, and the move F; lets us do the same with arrowtails. If
we could move an arrowhead of either sign past an arrowtail of either sign in the
same manner, we could simply rearrange the arrows in a given diagram at will.

The sequences of moves in figures 5 and 6 show how to move an arrowhead past
an arrowtail of the same sign (move Fj; see Figure 4) or past an arrowtail of the
opposite sign (move F,; see Figure 5) using ordinary Reidemeister moves and both
forbidden moves.

Now, to change one Gauss diagram into another with the same numbers of arrows
of each sign, we simply use the forbidden moves and moves sequences F, and Fj to
rearrange the arrows. If we need more arrows of either sign, we can introduce them
using type I moves and then move them into position with moves the F' moves and

sequences; if we have extra arrows, we can use the F' moves and sequences to move

12



FIGURE 2.6. Move sequence F,.

unwanted arrows into position to be removed by type I moves. In particular, any

virtual knot can be unknotted by this technique. O

Note that the move sequences F; and F, each use both of the forbidden moves.
If we define a new equivalence relation on Gauss diagrams by allowing the usual
Reidemeister moves and one forbidden move but not the other, we arrive at the
welded knots of S. Kamada [10] or the weakly virtual knots of S. Satoh [15]. Neither
of the move sequences Fj or F, can be constructed for welded knots since each move

sequence requires the use of both forbidden moves.

13



As an application, we now demonstrate how the moves F} and and F; may be
used to unknot any virtual knot by explicitly unknotting the trefoil using these
moves.?

We begin with a Gauss diagram of the trefoil. Applying the forbidden move F},
twice lets us uncross the two pairs of arrowheads, and applying the forbidden move
F; twice lets us uncross the tails. Four Reidemeister type I moves later, we have a

unknotted Gauss diagram.

B=Q=070
Fh><2 Ft><2 I><4

Since virtual crossings and hence moves do not appear in Gauss diagrams, the

virtual isotopy sequence is much longer than the Gauss diagram sequence.

e XX
36 PO
R

2This demonstration originally appeared on the author’s mathematics website hosted by the LSU Department
of Mathematics.
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Chapter 3

The Betti Numbers of Some Finite
Racks!

3.1 Introduction

We start by recalling some basic definitions. Let X be a non-empty set with a
binary operation, which, following Fenn and Rourke [5], we write as exponentia-
tion: (a,b) — a®. This allows us to dispense with brackets by using the standard
conventions that a** means a(*) and a* means (a®)¢. Then X is a rack if it satisfies

the following two axioms.

(i) For all a,b € X, there is a unique element ¢ of X such that ¢* = b.
(ii) (The rack identity) For all a,b,c € X, a® = a®".
A quandle is a rack satisfying one further axiom.
(iii) (The quandle condition) For all a € X, a* = a.

A rack is trivial if a® = a for all @ and b.

By axiom (i), the function f,: X — X defined by f,(b) = b* is a bijection. For
a,b € X, we set ab = fb_l(a). Here b does not denote an element of X, but we
may identify b with the inverse of b in the free group F(X) on X. This allows
us to define a (right) action of F(X) on X, and by an orbit of X we mean an
orbit under this action. The set of orbits of X will be denoted by Ox, and the
projection from X to Ox by m. We regard Ox as a trivial rack, and then 7 is a
rack homomorphism.

We now define the class of racks that we shall study in §3 of this paper. Let X

be a finite rack, and a,b € X. Let N(a,b) be the number of elements ¢ of X such

LCoauthored with R. A. Litherland; to appear in the Journal of Pure and Applied Algebra
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that a® = b. Of course, N(a,b) = 0if a and b are in different orbits. We say that X
has homogeneous orbits if, for each orbit w and each pair of elements a and b of w,
N(a, b) depends only on w. If this is so, then |w| divides | X| for each w € Oy, since
the total number of actions |X| = >, N(a,b), and we have N(a,b) = |X|/|w|
for all a,b € w; we set N, = | X|/|w].

Let us consider some of the standard examples of racks in the light of this defini-
tion. Clearly (if uninterestingly), any trivial finite rack has homogeneous orbits. So
does any finite conjugation rack conj(G). (Here G is a group, and conj(G) denotes
G with the rack operation g"* = h=1gh.) Fenn and Rourke use the term conjugation
rack in a broader sense, to refer to any union of conjugacy classes in a group. In
general, these do not have homogeneous orbits (consider G — {1}); however, any
dihedral rack R, does. (R, is the set of reflections in the dihedral group of order
2n.) This is easy to verify directly, and also follows from Proposition 1 below. Any
cyclic rack (except the trivial rack of order 1) does not have homogeneous orbits.
(The cyclic rack C,, of order n is the set {0,1,...,n — 1} with the operation
a® = a+1 mod n. Here there is only one orbit, but N(a,b) = n if b = a+1 mod n,
and is 0 otherwise.)

As an example of a non-quandle that does have homogeneous orbits, consider
a four-element set X = {a,b,¢c,d}. We define the operation by specifying the
permutations f, of X: f, = f; is the transposition exchanging ¢ and b, and f. = f;
is the identity. One may check that the rack identity holds, most easily by using the
third form of the identity given in [5]; the quandle condition clearly does not. The
only non-trivial orbit is { a,b }, and N(a,a) = N(a,b) = N(b,a) = N(b,b) = 2.

Next we consider the finite Alexander racks. Let M be any module over the ring
A = Z[t,t™"] of one-variable Laurent polynomials. Then M may be made into a

rack by the operation a’ = ta + (1 — t)b, and a rack obtained this way is called an

17



Alexander rack. For M = Z,[t,t"1]/(t + 1), the Alexander rack is isomorphic to

R,.

Proposition 3.1. Let M be a finite A-module, and let M be the quotient of M by

the submodule (1 — t)M. When M is considered as an Alezander rack:
(a) M has homogeneous orbits; and
(b) O may be identified with M.

Proof. Let p: M — M be the natural map. We have a® = ¥ iff (1 —t)(z —y) = 0,
so for any a,b € M, N(a,b) is either 0 or the order of Ker(1 —t: M — M). The
result will follow once we show that, for a,b € M, the following statements are

equivalent:

(1) a and b are in the same orbit;

(3) N(a,b) # 0.

Now a —a® = (1 —t)(a —b), so p(a) = p(a®), from which it follows that (1) implies
(2). If p(a) = p(b), then b = a + (1 — t)c for some ¢ € M, which gives b = a**.
Thus (2) implies (3), and trivially (3) implies (1). O

In [6], Fenn, Rourke and Sanderson associate to each rack X a O—set (a cubical

set without degeneracies) as follows. The set of n-cubes is X", and the face maps

Of: X™ — X" 1 (1<i<mn,e=0or1) are defined by

8?(:61, ey L) = (T4, ey L1, T 1y -+ 5 L)

0f (T1,y -y n) = (2], o 2T i1y, T

18



We follow Carter, Jelsovsky, Kamada and Saito [2] in denoting the associated
chain complex by CE(X), and calling its homology HE(X) the rack homology of X.
Thus CE(X) is the free abelian group on X", and the boundary map 8: CE(X) —
CE | (X) is defined by & = Y7 | (—1)*(8? — 9} ). Now suppose that X is a quandle,
and define CP(X) to be the subgroup of CE(X) generated by n-tuples (z1, ..., T,)
with x; = z;41 for some 7, 1 < 7 < n. It follows from the quandle condition that
CP(X) is asubcomplex of CE(X). The quotient complex is denoted by C2(X), and
its homology H¥(X) is called the quandle homology of X. The homology HP(X)
of CP(X) is the degeneration homology of X. We shall use the convention that in
an expression such as CV(X), W may be any one of R, Q or D if X is a quandle,
but is always R if not. There are Betti numbers 8}V (X) = rankH)" (X). There
are also homology and cohomology groups with coefficients in any abelian group
G, denoted by HV (X; Q) and H% (X; G). For the applications to knot theory, the
groups of interest are the cohomology groups with coefficients in Z, (the integers
modulo a prime p), but since these are determined by the integral homology groups
we shall concentrate on the latter. The homology groups in dimensions 0 and 1 are
easily computed; see Proposition 3.8 of [2]. When the set of orbits of X is regarded
as a trivial rack, the chain complex CY(Ox) has all its boundary maps zero, so
HWV(Ox) = C¥(X). Thus when X is a finite rack with m orbits, H" (Ox) (n > 1)
is a free abelian group of rank m", m(m —1)" ! or m" —m(m —1)""! for W = R,
Q or D, respectively. In [2], it is shown that in this case 8}V (X) > 8%V (Ox). (It is
not explicitly stated in [2] that the case W = R holds when X is not a quandle,
but this is so by essentially the same proof.) We now state our main result, which

shows that these bounds are exact in many cases.
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Theorem 3.2. Let X be a finite rack with homogeneous orbits. Then B (X) =

BY(Ox), and the torsion subgroup of HY (X) is annihilated by | X|".

Remark 3.3. While this paper was in preparation, we learned that Mochizuki has
proved an almost identical theorem by a different method ([13], Theorem 1.1). The
main difference in the results is that Mochizuki’s theorem applies only to finite

Alexander racks.

The case W = R of Theorem 1.1 is proved directly. For the other cases, we need
to prove conjecture 3.11 of [2]; this is done in §3.2. Theorem 3.2 is proved in §3.3,

and in §3.4 we report on some machine calculations of homology groups.

3.2 Splitting the Difference Between Quandle
and Rack Homology

In this section, X will always denote a quandle. Also, we redefine Cf(X) and
C&(X) to be 0. (CP(X) is already 0.) This loses no information, and allows us to
avoid treating dimension 0 as a special case at various points. Strictly speaking,
we shall be working with the reduced complexes CF(X) and C2(X), but we abuse

notation by leaving off the tildes. From the short exact sequence
0= CP(X)—=CEX)=C?X)—=0 (3.1)
of chain complexes, we have a long exact sequence
o= HP(X) - HE(X) - HO(X) — HP (X) — ...

of homology groups. In [2] it is proved (in Proposition 3.9) that the connecting
homomorphism H?(X) — HP | (X) is the zero map when n = 3, and conjectured
that this is so for all n; in [4] (Theorem 8.2) the case n = 4 is proved. We show

that the conjecture is indeed true; in fact we prove more.
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Theorem 3.4. For any quandle X, the short exact sequence (1) is split.

Remark 3.5. It is easy to see that, for each n, the sequence
0— CP(X)— CHX)—= CX)—0
of abelian groups is split, but the obvious splittings are not compatible with the

boundary maps.

If x = (21,...,7,) € X" and y € X, we set Xx*y = (21,...,T,,y) € X!
and x¥ = (2¥,...,2%) € X" Then, for ¢ € CE(X) we define cxy € CE  (X) and
¥ € CR(X) by linearity in c. Note that d(c*y) = d(c) *xy + (=1)" " (c — ¢¥). Next
we define homomorphisms «,,: CE(X) — CE(X) by induction on n. We take o,

to be the identity map, and for n > 1, x € X" and y € X we set

U1 (X *Y) = ap(x) x y — ap(x) * xp,.

We also define homomorphisms 8, : CE(X) — CE (X) by Bu(x) = an(x) * .

Then, for any ¢ € CF(X) and y € X we have

ant1(cxy) = an(c) ¥y — Ba(c).

Lemma 3.6. The homomorphisms ay,: CE(X) — CE(X) form a chain map

a: CR(X) = CE(X).

Proof. Note first that for x € X™ and y € X we have a,(x¥) = a,(x)Y. We
prove that da, = a,,_10 by induction on n > 2. For n = 2 we have ay(z,y) =

(z,y) — (z,z), so since (z,z) is a cycle, Oas(z,y) = 0(z,y) = a10(x,y). Suppose
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then that the result is true for some n > 2, and let x € X™ and y € X. We compute

Oty 1(x * y) = O (x) * y) — O (x) * z,)
= Oan(x) * y + (=1)"" (an(x) — an(x)")
o) 70— (1) {on) — o)

= 0y_10(X) * Y — Qp_10(X) * Ty, + (—1)"an(x¥) — (—1)"p (x*)
and

and(x * ) = oy (O(x) %y + (=1)" " (x — x¥))

= 0y—10(X) * Y — Bn_10(x) — (—1)"an(x) + (1) (xY).
Hence O,y 1(x % y) = a, 0(x * y) iff
Q- 10(X) * T, + (—1)"n (x7) = Br-10(%x) + (—1)" ", (x). (2)

Now, for 1 <7 < nand € =0 or 1, f(x) is an element of X"~! with last entry z,,

S0 0105 (X) * z,, = B,_10{(x). Further,

U 109(X) * Ty — Bro109(x) = 0t (90 (x) * ) = 0 (x)

and 10, (X) % Ty, — Bn10, (%) = a4 (9} (%) * ) = an(x™).
(The last step here uses the quandle condition.) It follows that
p10(X) * T, — B_10(x) = (—1)"(an(x) — an(xw")),
proving equation (2), and with it the lemma. a

Proof of Theorem 3.4. We show that the chain map C®(X) — CE(X) sending c to
¢ — a(c) is a projection onto the subcomplex C'P(X). We must prove the following

two statements.
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(a) If c € CP(X) then ay,(c) = 0.
(b) If ¢ € CE(X) then ¢ — ay(c) € CP(X).

Forn =1, CP(X) =0, so (a) is true in this case. Let x € X" (n > 1) and y € X,
and suppose that x xy € CP;(X). Then either x € CP(X) or z,, = y, and it
follows that a4 1(x*y) = 0 (using induction in the first case). Thus (a) is proved.
As for (b), this is clear for n = 1, so suppose that it holds for some n > 1 and take

x € X" and y € X. Then

X*Y — Qpy1(X*Y) —X kT, = (X—an(x))*y—(x—an(x))*xn

€ Cr(X).

Since x * z,, is in C2, | (X) by the inductive hypothesis, s0 is X * y — p41(x * y),

and (b) follows. O

We shall denote the free abelian group on a set A by Z[A]. (This is consistent
with the usage Z[G] for a group ring.) It is shown in Proposition 3.9 of [2] that
HP(X) =2 Z[Ox]. Combining this with Theorem 3.4 gives the first assertion of the

next theorem; for the second we need some lemmas.

Theorem 3.7. For any quandle X, we have

H'(X) 2 Hy (X) @ Z[Ox]

and  HE(X) = H2(X)® HY(X) @ Z[0O%].

Let CL(X) be the subgroup of CP(X) generated by n-tuples (1, ...,x,) with
x; = x;41 for some i, 2 < ¢ < n. (We use the letter L because the degeneracy

occurs late in these n-tuples.) Note that CF(X) = 0 for n < 3.
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Lemma 3.8. The subgroups CL(X) form a subcomplez of CP(X).

Proof. Let x = (x1,...,x,) have z; = z;;1 for some i with 2 < i < n. Since

Of(x) = 0,1 (x) for e =0 or 1 (and, as for any x € X", 99(x) = 9] (x)), we have

[y

i— n

a(x) =Y (1 (9 (x) = 9;(x) + Y (~1/ (3 (x) 9} (x))- (3)

J Jj=i+2

||
N

Fix j and ¢, and set y = (y1,-..,Yn—1) = 05(x). If i = 2, the first sum in (3) is
empty. If i >2and 2<j<i—1,y 1=y, s0y € CL (X). Fori+2 < j <n,

Yi = Yit1, S0 again y € CL | (X), and it follows that 9(x) € CZ | (X). O

Lemma 3.9. There is an isomorphism of chain compleres CP(X) = C?_l(X) o
CH(X).
Proof. We let i: CP(X) — CE(X) and j: CX(X) — CP(X) be the inclusions.
Define r: C® (X) — CP(X) by

Tn(®1, Xy .o Tpo1) = (T1, 21, T2y .- ., Tpo1)

for n > 2. (For n < 1 the groups involved are 0.) A straightforward computation
shows that 7 is a chain map. Since r(CP (X)) < CL(X), r induces s: CP [ (X) —
CL(X).

Now r is injective, C”(X) is generated by Im(r) and C*(X), and Im(r) N

CE(X) =TIm(r o4) = Im(j o s). Hence there is a short exact sequence
0 C2,(X) % CF (X)) @ CF(X) % CP(X) — 0,

where ¢(c) = (i(c), —s(c)) and ¥(d,e) = r(d) + j(e). By Theorem 1, there is an
isomorphism of chain complexes x: CF | (X) — C¥ ,(X)®CP ,(X) such that, for

c e CP (X)), xi(c) = (0,c). Then CP(X) is isomorphic to the cokernel of
(x@id)o¢: C2,(X) = O, (X) @ C2, (X) © CF(X).
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But, for ¢ € CP (X)), (x @ id)(¢(c)) = (0, ¢, —s(c)), so this cokernel is isomorphic

as a chain complex to C¢ | (X) @ C*(X), and we are done. O

We denote the homology of CX(X) by HE(X).

Lemma 3.10. For any quandle X, H¥(X) = Z[0%].

Proof. A basis for C¥(X) consists of all elements of X3 of the form (z,y,y), and
these are all cycles. The group C}(X) is generated by all elements of X* of one of

the forms (z,y,y, 2z) and (z, z,y,y), and we have

a(xayayaz) = (xayay) - (:L‘zayzayz)

and a(xazay:y) = (xayay) - (xzayay)

It follows that HI(X) is free abelian, with a basis consisting of the equivalence

classes of triples (z,y,y) under the equivalence relation ~ generated by

(z,y,y) ~ (2%, y,y) ~ (2%, y%,y")  forallz,yzeX.

Given z,y,z € X, let w be the element of X such that w?* = z. Then (w,y,y) ~
(w?,9,9) = (z,9,9) and (w,y,y) ~ (0", y*,y*) = (2,9%,¥%),50 (2,9, 9) ~ (z,9%,y°).
It follows that (z,y,y) ~ (z', v, ¢) iff 7(x) = w(2') and 7 (y) = 7(y’), so the set of

equivalence classes of ~ may be identified with O%. O

The second assertion of Theorem 3.7 follows immediately from Theorem 3.4 and

Lemmas 3.9 and 3.10.
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3.3 Proof of Theorem 3.2

In this section, X is a rack with homogeneous orbits, and x = (z1,...,z,) is an

element of X" (n >=0). Define ¢! : CE(X) — CE(X) by

x for j =0
) = 5 sl gy sm) Tor1<j<n
| X [77mgm (x) for j >n

and DJ : CE(X) — CE (X)) by

. Z E){j(x‘?l/l,...,xgj:llyxj,yj,xj_yl,...,$n) for 1 S_] S n
y
l)J(X)

n

0 for 7 > n.

Note that D) =" (21,9, Ta, - - -, Tn).

We have homomorphisms of graded groups ¢/ = (¢7)%,: CE(X) — CE(X) for
j>0and D/ = (D?)%2,: CE(X) — CE,(X) for j > 1. We will show through a
series of lemmas that D7 is a chain homotopy carrying ¢/ to |X|¢’~!, and hence
each ¢’ is chain homotopic to | X|’ times the identity. Note that this also implies

@’ is a chain map.

Lemma 3.11. Let G be an abelian group. Then if g: X — G is a function we

have

Y o9 =) g(a")

yeXx yeX

for any word w € F(X) in the free group on X.

Proof. As y runs over X, z¥ runs over 7(z), taking on each value Ny, times. Thus

Zg(my) = Nw(w) Z g(z).
yeX zen(x)

The automorphism f, : X — X given by f,(x) = 2% is in particular a bijection

and carries 7(z) to itself, so the restriction f |(5) is also a bijection. Hence the
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sum

D 9@ = g(ful@*) = Nawy Y 9(2) =D g(a?).

yeX yex z€n(z) yeX

O

Lemma 3.12. Let G be an abelian group. Then if g: X — G is a function we

have

Y gl =) g(=")

yeX yeX

for any word w € F(X) in the free group on X.

Proof. Since 7(z*) = w(x), we have

D 9@) =Ny | D 9(2) | = Nagwoy | D 9(2) | =D _9(a™).

yeX z€m(z) z€m(TW) yeX

Lemma 3.13. For 1 < i< j <n, °Di(x) = 0} Di (x).

Proof. For 1 < j, we have

0 j 00 Y1 Yj—1
0; D) (x) = 0, E (21 T T Y Ty -5 Tn)
YEXI

— Y1 Yi—1 Yi+1 Yj—1 ) .
= E (15wl T Y Tn)
yeXi

and

1nJ _ 9l Y1 Yji—1
0; D! (x) = 0, E (@t T T, Y T - Tn)
yEXI

Yi Yi
_ Y1z, Yi—1%; Yit1 Yj—1
= E (T m T T Yy T

yeEXI

For 7 = j we have

D) = Y (@t )

yeXi
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and

91 Di(x) =
Applying Lemma 3.11 7 — 1 times, the sums agree as required.

Lemma 3.14. For 1 <i< j<n, D} ,8(x) = D]_,0}(x).

Proof. For 1 <1< j,

sz—laz(')(x) = sz—l(l"la

= Z (=1,

yEXI

and

Di_lail (x) = Di_l(x’{l, .

LN

yEXJ

Applying Lemma 3.12 7 — 1 times, the sums agree as required.

Yi1xj Yj—1%j
Z(ﬂ?l ’...,.7/‘]'_1 ,yj,...

yEXI

ey L1, Tig1s e - - T
Yi—1 Yi
C X T
Yi—1
T Tty e ey T)
TiYi—1 Yi

..,Z‘iil ,.Z‘Z_H,

Yj—1
& Ti+1,Ygy T2, - - -

Yj—1
'7$j y Lj+1, Yjy Tj+25 - - -

Lemma 3.15. For 1 < j <n, 8%, ,Di(x) = | X|¢) " (x).

Proof.

0 j 0 Y1 Yj—1
9;1Di(x) = 0; 4 E (€ P R I 1T ) TR T

_ y1 Yj-1
= E (C PP IR I ) P

yEXI

Jj+1

yEXJ

=) 9 '®

yi€X

— X|6} ().

Lemma 3.16. For1 < j <n, 8}+1D%(X) = ¢h(x).
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Proof.

1 J _nl Y1 Yj—1
aj—HDn(x) = 8]'-1—1 E (z, ... v L1 Ty Yjy Tt - - - , Tn)

yEXJ

_ y1y; Vi1 Y

= E (@ T, -, T)
yEXI

— Y1 Yj—1 Yj

= E (', T, T)
yeEXI

—

- ¢n(x)

by j — 1 applications of Lemma 3.11.

Lemma 3.17. For 1 < j <i<mn, D}_,8%(x) = 3%, D (x).

Proof.
J 0 Y]
Dn_laz- (X) = Dn—l(xl’ ey L1 Ljg 1y - - ,.Tn)
— Y1 Yj—1
= E (@ T Y Tty - T 1y Tigls -+ -5 T)
yeEXI
and
0 J _ a0 E Y1 Yji—1
az'—HDn(x) - aH—l (xl g axj—l a:rja yj7 $j+1a DRI .’En)
yeXI
— E Y1 Yj—1
= ($1 PP "rj—l ,xj,yj,:ij, cee s Lim1y Ljt1y - -+ s Il?n)
yEXI

Lemma 3.18. For 1 < j <i<n, D}_,9}(x) = 9}, ,Di(x).

Proof.
J 1 _nJ T; T;
D] ,0;(x)=D] (27", ..., 27 |, ®it1,- .-, Tp)

— iyl TiYj—1 Zq Z; T;

= E (21w Y, T T, T)
yeEXI

_ Y1 Yj—1 z; T; Z;

= E (s T Y, T, T Tty - Tn)
yEXI
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and

1 j _ Al 1 Yj
az‘+1DZl(x) =0in E (z{ a---a%] 1 s Yjis Tjt1s - -5 Tn)

yEXI
— Y1 Yj—1%Zq T T; .
= E (T w Y w  T Tig, - W),
yEXI
— Y1 Yi- z x; )
= E (', Y i, T T, T)
yeEXI

by j — 1 applications of Lemmas 3.11 and 3.12. But these sums agree as the set

{yi" | y; € X'} is the image of {y; | y; € X } under the bijection fy,. O

Putting all this together, we have

Proposition 3.19. For j > 1, D’ : CF(X) — CE (X) is a chain homotopy from

& to | X|¢1 .
Proof. We need to show that
On+1 D5 (%) + D;,_18,(x) = £(9,(x) — | X657 ().
For j > n, we have DJ = Df;le = 0, while
¢ (x) = [X1"h(x) = [ X[(|X]Y9 D "¢ (x)) = [ X[ ()

as required.

For j =n, WehaveDn 1 =0 and

n+1

On1 D} (x) = Z(— )' (0 Dy (x) = 8; Dy} (x))
= Z )'(0; Dy (x) — 9; Dy (x))
i<n
+(=1)""(0h 11 D7y (%) — Oy D ().
By Lemma 3.13, the first sum adds to zero, and by Lemmas 3.15 and 3.16 we have

Ons1 D} (x) = (=1)" (X6} (x) — 4 (x)),
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as required.

For 7 < n,

n+1

On41D3 (x )—Z(— )'(9; D}, (x) — 9; D;,(x))
= Z ){(8° DI (x) — 8} DI (x))

i<n

+(= 1) (80, D] (x) — 6L, D (x))
n+1

+ 3 (<) (0 Dj(x) + 0! D) ()
1=5+2

which, by Lemmas 3.13, 3.15 and 3.16 as above yields

n+1

1D} (x) = (171X ¢ (%) — 03(x)) + D (—0)'(8) D) (%) + 9; D} (x))

i=j+2

Now,
D}_10(x) = Y _(—1)"(D5,_10} (x) — Dj_,3} (%))
= (— ) (D}_10) (x) = D5,_1 0} (x))

+ Z (x) = D} _19; (x)).

The first sum is zero by Lemma 3.14, and applying Lemmas 3.17 and 3.18 we get

n

Di_lan(X)= Z( )(8+1D (x) — 8+1D ( )-

i=j+1

Reindexing this sum by replacing i + 1 with ', we have

n+1
Di_da(x) = 3 (~1)"+ (@) Di(x) - 9} Di(x)),
i'=j+2
so that
On 11 D5, (%) + D} _18(x) = (1) (| X |65 (%) — ¢4 (x))
as required. O

31



Proof of Theorem 3.2. We deal first with the case W = R. There is a chain map
2. C,(X) — C,(Ox) induced by the projection of X onto its orbit rack. In
Lemma 4.2 of [2], it is proved that for w = (wy,...,w,) € O%, the element
D siews ity (Pl - -5 Zn) OF CE(X) is a cycle. Since the boundary maps in C,(Ox)
are all zero, this means that we can define a chain map v: CE(Ox) — CE(X) by

setting

%(w):(lﬂ%) S ).

2j€w;,j=1,...,n

This is almost the same as the chain map used in the proof of Theorem 4.1 of [2].)
Then, for x € X7,

wf(x):(ﬁm(m) S ()

zj€m(x;),j=1,...,m

=3 (@, ... )

yeEX™

= ¢p(%)-

Hence, by Proposition 3.19, the induced map ¥,7%: HE(X) — HE(X) is mul-
tiplication by |X|". It follows, since HF(Ox) is free abelian, that the torsion
subgroup of HE(X) is equal to Kern® and is annihilated by |X|", and that
BE(X) < BE(Ox). Since the reverse inequality was proved in [2], the proof in
the case of rack homology is complete.

When X is a quandle, the other two cases follow from the case just proved,

Theorem 3.4, and Theorem 4.1 of [2]. O

3.4 Computations
In [3] (Table 1), the cohomology groups Hg(X;Z,) of some Alexander racks are
given for n = 2 or 3 and the first few primes p. These racks are of the form

A, /(h), and the number m of orbits is easily computed from Proposition 3.1(b).
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For X = A3/(t* +t+ 1), m = 3, so according to Theorem 3.2, the dimension of
H{(X; Zy) should be 6 for p # 3, while the value in [3] is 3 in these cases. This
led Dr. Litherland to write a C program to check the computations. Apart from
A3/(t? +t + 1), where the recomputation gave the same values as for Ag/(t — 4),
the results agreed with one exception, for X = A3/(t> — ¢t + 1). Here [3] has
dim H,(X; Zs) = 0, while the recomputation yields dim H3 (X Zs) = 1. The value
1 is in agreement with Corollary 2.4 of [13]. It turns out that the disagreement is
due to typographical errors in [3], and the values just given are the ones computed
by Carter et al.

A variant of this program computes the integral homology of racks; we present in
Table 1 the results of some calculations. In view of Theorem 3.7, we give only the
quandle homology, though the program has been run to compute rack homology
with the results expected from Theorem 3.7. As in [3], the racks considered are non-
trivial, of order at most 9, and of the form A, /(h) where h is a monic polynomial
whose constant term is a unit in Z,. The list of racks is different from that in [3] in
two ways. First, we have included A3/(t? — ¢t —1) and Ay/(t3 +t? +¢+1). Second,
it turns out that Ry ~ Ay/(t* + 1), Ag/(t —4) =~ Ag/(t —7) =~ A3/(t* +t + 1), and
Rg ~ Ag/(t — 3) (where ~ denotes rack-isomorphism), and we have omitted all
but the first of each isomorphism class. That Ry ~ Ay/(t* + 1) and Ag/(t — 4) =~
Ag/(t — 7) was noted in [3]. The other isomorphisms were discovered by a brute-
force computation. The existence of all these isomorphisms follows from the next

two propositions.

Proposition 3.20. If k is coprime to n then Ay2/(t — (kn+ 1)) ~ A, /((t — 1)?).

33



TABLE 3.1. Some quandle homology groups.
X HY(X) Hy (X)
R3 0 Z3
R, 7’ ® 72 VARV
R5 0 Z5
R z? 7’ ® 72
R; 0 Zr
Ry Z*®Z1; ZL*SZid®Z3
Ry 0 ZLy
As/(t—2) 0 0
As/(t —3) 0 0
A7/t —2) 0 0
A7/(t —3) 0 0
A7/(t—4) 0 0
A7/(t—5) 0 0
Ag/(t —5) 78 T¥ o7
Ag/(t —2) 0 Zs
Ag/(t —4) 7873 72 @ 7.2
Ao/(t —5) 0 Zs
Ao/ +t+1) Zy Zy® Ly
As/(t* +1) Zs Z}
A3/ (2 = 1) YA V2 o 73
As/(B2—t+1) Z3 Z3 & 7y
As/(B2+t—1) 0 0
As/(t> —t—1) 0 0
Ao/ (8 +1) 72973 7*®7Se 72
Ao/ (83 + 124+ 1) 0 Zos
A/ +t+1) 0 Zo
A/ (B +124+t+1) | 2?0 Zs 7’75072
Proof. We identify A,2/(t — (kn + 1)) with Z,> under the operation a® = (kn +
1)a — knb. There is a short exact sequence of abelian groups
0= Zn —5 Lo -5 7, — 0,
where (1) = n and B(1) = 1. Note that for a € Z,2, a *(na) = B(a). Let

v: Zyn — Zy2 be a function such that 5y = id, and define 6: Z,2 — Z, by 6(a) =
a~(a — yB(a)). The function Z,> — Z2 sending a to (S(a),d(a)) is a bijection.

Now define f: Z,: — A,/((t — 1)?) by f(a) = kB(a) + (t — 1)§(a); because k is
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coprime to n, f is also a bijection. We have, for a,b € Z,2, 5(a’) = 8(a) and

6(@”) = a *((kn+1)a— knb— v5(a))
= o '(kna) — o~ (knb) + o' (a — yB(a))

= kB(a) — kB(b) + d(a).

Hence

fa’) = kB(a)+ (t = 1)(kB(a) — kB(b) + d(a))

= ktB(a)+ (t —1)6(a) + k(1 —t)B(b)
On the other hand,

F@'® = t(kp(a) + (¢t = 1)8(a)) + (1 = ) (kB() + (¢ — 1)5(b))

= ktB(a)+ (t —1)d(a) + k(1 —t)5(b),
so f is the desired isomorphism. O
Proposition 3.21. If n is divisible by 4 then Ry, ~ Aoy /(t — (n — 1)).

Proof. Here the underlying sets of both racks are naturally identified with Z,,,. We
use a® for the rack operation in Ry,, and al for that in Ag,/(t — (n — 1)). Thus,

for a,b € Zo,,

a = 2b—a
and  d” = (n—1)a+(2-n)b
Define functions € and f from Z,, to itself by

0, fa=0o0r1l (mod4);
e(a) =

n, ifa=2o0r3 (mod4);
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and f(a) = a + €(a). Since f(a) = a (mod 4), f is an involution. Since a® = a

(mod 2), we have that ¢(a’) = €(a) iff a® = a (mod 4), which in turn is equivalent
to a = b (mod 2). Since € only takes on the values 0 and n, this implies that

€(a®) = e(a) + n(a — b). Hence

f(@) = 2b—a+e(a)+n(a—>b)

= (n—1)a+e€(a) + (2 —n)b.
On the other hand,

F@PO = (n—1)(a+e(a) + (2 —n)(b+e(b))

= (n=Da+e(a) +(2-n)b,

so f is the desired isomorphism. O
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Chapter 4

Classification of Finite Alexander
Quandles

4.1 Introduction
Recall that a quandle is a set X with a binary operation written as exponentiation
satisfying

(i) For every a,b € X there exists a unique ¢ € X such that a = ¢,

(i) For every a,b,c € X we have a* = a, and

(iii) For every a € X we have a® = a.

Any module over A = Z[t*!] is a quandle under the operation a® = ta+ (1 —t)b.
Quandles of this form are called Alexander quandles. To obtain finite Alexander
quandles, we typically consider A,/(h) where A, = Z,[t*'] and h is a monic
polynomial in ¢. In an earlier version of [14], the open questions list included
when two Alexander quandles of the form A,/(t — a) with ged(n,a) = 1 (we
call Alexander quandles of this form linear) are isomorphic and when two linear
quandles are dual.

To answer these questions, we first consider the general case of when two arbi-
trary Alexander quandles of finite cardinality are isomorphic. We obtain a result
which reduces the problem of comparing Alexander quandles to comparing certain
A-submodules. We then apply this result to obtain a pair of simple conditions
on ¢ and b which are necessary and sufficient for two linear Alexander quandles

A, /(t —a) and A, /(t — b) to be isomorphic.
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In the course of answering the question of classifying linear quandles, we also
answer the question of when linear quandles are dual and we obtain results on

when Alexander quandles are connected.

4.2 Alexander Quandles and A-Modules

Since the quandle structure of an Alexander quandle is determined by its A-module
structure, any isomorphism of A-modules is also an isomorphism of Alexander
quandles. The converse is not true, however: Ag/(t — 4) is isomorphic to Ag/(t —7)
as an Alexander quandle but not as a A-module.

Nonetheless, an isomorphism of Alexander quandles is in a sense almost an iso-
morphism of A-modules; in fact, (after applying a shift if necessary) its restriction
to the submodule (1 — ¢)M is a A-module isomorphism onto its image. Theorem
4.1 says that we can determine whether two Alexander quandles of the same finite
cardinality are isomorphic simply by comparing these A-submodules. This reduces
the problem of classifying finite Alexander quandles to classifying A-modules of

the form (1 —¢)M.

Theorem 4.1. Two finite Alexander quandles M and N of the same cardinality

are isomorphic iff there is an isomorphism h: (1 —t)M — (1 —t)N of A-modules.

Proof. Let f: M — N be an isomorphism of Alexander quandles. We may assume
without loss of generality that f(0) = 0 since f' : M — N defined by f'(z) =

f(z) + ¢ is also an isomorphism of Alexander quandles for any ¢ € N. Then

[tz + (1 =t)y) =tf(z) + (1 —1)f(y) implies
fltz) = fltz + (1 —8)0) =tf(z) + (1 — 1) f(0) = tf(2)

and
f(A=0y) = f0+ (1 —t)y) =tf(0)+ (1 —-1)f(y) = (1 —1)f(y)
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so that

[z + (1 =t)y) = f(tz) + f(1—t)y) (4.1)

Denote M’ = (1—t)M and N’ = (1—t)N. Since t~! € A, every element of M is tx
for some z € M, and since f(0) = 0, f takes the coset 0+ M’ of M’ in M = M /M’
to the coset 0 + N’ of N' in N = N/N', so we have that h = f|y : M' — N’ is
a homomorphism of A-modules. Since f is injective, its restriction h is a bijection
onto its image 0 + N’ = N’, and hence h is an isomorphism of A-modules.

Conversely, suppose h : M' — N’ is an isomorphism of finite A-modules with
|M| = |N|. Let A C M be a set of representatives of cosets of M’ in M. Then
every m € M has the form m = o + w for a unique o € A and w € M'. We will
show that there exists a bijection £k : A — B onto a set B of representatives of

cosets of N' in N such that the map f : M — N defined by

fla+w) =k(a) + h(w)

is an isomorphism of Alexander quandles (though typically not of A-modules).

Note that for any a; € M we have ta; = a3 — (1 — t)ay, so that

ft(ar +wi) + (1 — 1) (o2 + w2))
= flog+tw + (1 —t) (g — a1 + wy))
= k(on) + h(tw, + (1 — ) (02 — o + ws))
= k(o) +th(wi) + h((1 = t)aw)

—h((1 —t)ay) + (1 — t)h(ws).
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On the other hand,

tflar+wi) + (1 —8)f(az +ws)
= t(k(ay) + h(t(w1))) + (1 — ) (k(a2) + h(wa))

= tk(oq) +th(wi) + (1 —t)k(a2) + (1 — t)h(ws)
so for f to be a homomorphism of quandles we must have that
(1—=t)k(aq) = h((1 —t)ay) = (1 — t)k(a2) — A((1 — t)a) (4.2)

for all ay,as € A. We will show that given a set of coset representatives A C M
we can choose a set B C N of coset representatives and a bijection £ : A — B
so that (1 — t)k(a) = h((1 — t)a) for all & € A, which satisfies (4.2) and thus
yields a homomorphism f : M — N of Alexander quandles. Since this f is setwise
the Cartesian product k& x h of the bijections k : A — B and h : M' — N', f is
bijective and hence an isomorphism of quandles.

Denote M" = (1 — t)2M, M = M'/M" and similarly for N. The isomorphism
h : M' — N' induces an isomorphism A : M — N. There are surjective maps
¢ : M — Mand ¢ : N — N induced by multiplication by (1—t). Then |M'| = |N'|
and |[M| = |N| imply that |M| = |N|, and in turn M| = |N|. Hence |~ ()| =
[M : M] =[N : N] = |¢~L(h(y))| for all y € M since ¢¥(y) and ¢~*(h(y)) are
cosets of isomorphic submodules in M and N. Thus there is a bijection of sets

g: M — N such that the diagram

M 2
!

< 2 [

(2

=i

s

commutes.
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Let B be a set of coset representatives for V. Then there is a unique bijection

k: A — B such that
LN

<
== =+ o
l
+— 2+« 3

i;.
>

commutes. In particular, we have
R((1=ta+ (1 =1)°M) = hp(a) = dk(a) = (1 — t)k(a) + (1 —t)°N.  (4.3)

Define y: M' — M and e : N' — N by y((1—t)m) = (1—t)m+(1—t)2M € M
and €((1 —t)n) = (1 —t)n + (1 — t)2N € N, the classes of (1 —¢)m and (1 — t)n

in M and N respectively. We then have commutative diagrams

RV B 4
I Loy oand Loe
MY M N % N

Equation (4.3) then says that outside rectangle of the diagram

A £ B

commutes. The bottom square commutes by definition of A, and thus we have

e(h((1 - t)a)) = e((1 — t)k(a)), that is,
h((1 = ta) + (1 — £)2N = (1 — t)k(a) + (1 — £)2N.
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In particular, there is a £ € N so that

h((1=t)a) = (1 = k(a) + (1 - )% = (1 = t)(k(e) + (1 = t)§).

Then for each o € A with & # 0 we may replace k(«) with the coset representative
K'(a) = k(a) + (1 — t)€ to obtain a new set B’ of coset representatives for N and
a bijection k' : A — B’ with (1 — t)k'(a) = h((1 — t)«) so that (4.2) is satisfied.
Then f: M — N by f(a+ w) = k'(a) + h(w) for all @ € A is an isomorphism of

Alexander quandles, as required. O

As a consequence, we obtain corollary 4.2, which gives specific conditions on a
and b for A,,/(t —a) = A,/(t — b) when a and b are coprime to n. Note that the
case where a and b are not coprime to n reduces to this case.

Denote n, = for any a € Z,.

__n_
ged(n,1—a)

Corollary 4.2. Let a and b be coprime to n. Then the Alexander quandles A,/ (t—

a) and A, /(t —b) are isomorphic iff n, = ny and a = b(mod n,).

Proof. By theorem 4.1,

Anf(t=a) 2 An/(E=b) = (1=1)[A/(t = a)] = (1 = 1)[An/(t = D)]

where the isomorphism on the left is an isomorphism of Alexander quandles and
the one on the right is of A-modules. As a Z-module, (1—t)[A,/(t—a)] is (1—a)Z,
and (1 —t)[A,/(t —b)] is (1 — b)Z,, with the action of ¢ given by multiplication by

ain (1 —a)Z, and by b in (1 — b)Z,.
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The Z-module (1 — a)Z, is isomorphic to Z,/Ann(1 — a), so as Z-modules

AyJ(t—a) =2 A,/(t—b) <= Z,/Ann(l —a)=Z,/Ann(l—b)

<= Ann(l—a) = Ann(1 - b)
<= Ordz,(1—a)=0rdz,(1-10)
— n = n

ged(n,1 —a)  ged(n,1—b)
— Ng = Ny.

Denote n' = n, = np. Then (1 —1)[A,/(t—a)] is Z, with ¢ acting by multiplication
by a, and if n, = n, = n' then (1—t)[A,/(t—b)] is Z,y with t acting by multiplication
by b.

Multiplication by a agrees with multiplication by b on Z, iff a = b(mod n’'), so

the A-module structures on Z,, determined by a and b agree iff « = b(mod n'). O

An Alexander quandle is said to be connected if it has only one orbit, that is, if
M =M.
Corollary 4.3. Two finite connected Alexander modules are isomorphic iff they

are isomorphic as A-modules.

Proof. This follows from the proof of theorem 4.1. Specifically, if M and N are
connected and f: M — N is an isomorphism of quandles with f(0) = 0, then f is

an isomorphism of A-modules. O

Corollary 4.4. A linear Alexander quandle A, /(t — a) is connected iff ged(n, 1 —

a) = 1.

Proof. An Alexander quandle is connected iff M = (1—t)M. Since (1—t)[A,/(t—a)]
is Z,, with t acting by multiplication by a, we have A,/(t — a) is connected iff

n, = n, that is, iff ged(n,1 — a) = 1. a
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Corollary 4.5. No linear Alezander quandle A,/(t — a) with n even is connected.

Proof. For A, /(t — a) to be a linear quandle with n elements, we must have
ged(n,a) = 1, so if n is even, a must be odd. But then 1 — a is even and

ged(n,1 —a) # 1, and A, /(t — a) is not connected. O

For each y € X we can define a map of sets f, : X — X by f,(z) = z¥. Quandle
axiom (i) then says that f, is a bijection for each y € X. We may then define a

new quandle structure on X by z¥ = f~ !(z); this is the dual quandle of X.

Lemma 4.6. The dual of an Alexander quandle X 1is the set X with quandle

operation given by 27 =t 'z + (1 —t 1)y.

Proof. 1If f,(z) = c =taz+(1—t)y thent e =z+ (' =1)y = z =t te+ (1t 1)y;

thus f'(z) =tz 4+ (1 —t71)y. O

Corollary 4.7. Let a,b be coprime to n. Then A, /(t — a) is dual to A, /(t —b) iff
na = npy and ab = 1(mod n,). In particular, a linear Alexander quandle A, /(t — a)

1s self-dual iff a is a square mod n,.

Proof. If n and a are coprime, then a is invertible in Z,, and the dual of A,,/(t — a)
is given by A,/(t — a™!) by lemma 4.6. Then corollary 4.2 says that A,/(t —b) is
isomorphic to A,/(t — a™') iff ny = ng,—1 and b= a~'(mod ny).

Since ged(n, a) = 1 we have ged(n, 1—a) = ged(n, —a(l1—a™")) = ged(n, 1—a™")

so that n, = n,-1 as required. O

4.3 7Z-Automorphisms and Computations
Let X be a finite Alexander quandle and let X 4 denote X regarded as an Abelian
group. The map ¢ : X4 — X4 defined by ¢(z) = tz is a homomorphism of Z-

modules. Since t7! € A, the map 9 : X4 — X4 by ¢(z) = t7'z is a two-sided
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inverse for ¢ as ¥(¢(z)) = t 'tx = r and ¢(¢(x)) = tt 'z = z, and ¢ is in fact a
Z-automorphism.

Conversely, if A is a finite Abelian group and ¢ : A — A is a Z-module automor-
phism, we can give A the structure of an Alexander quandle by defining tx = ¢(z).
This yields a general strategy for listing all finite Alexander quandles of a given size
n: first, list all Abelian groups A of order n; then, for each element of Auty(A) find
(1 —t)A = Im(1 — ¢) and compare these as A-modules. In practice, for low order
(i.e., |A| <15) Alexander quandles this procedure in its full generality is necessary
only for one case, namely Alexander quandles with underlying Abelian group iso-
morphic to Z4 ® Zs. We shall see that Alexander quandles with X4 = Z, & Z, are
isomorphic to linear Alexander quandles (in six cases) or to Alexander quandles
with underlying group (Z3)? (in two cases).

We first obtain a few simplifying results:

Lemma 4.8. If the underlying Abelian group X4 of X is cyclic, then X is linear.

Proof. Suppose X4 = Z,. Then for any x € Z, and any ¢ € Autz(Z,), we must
have ¢(z) = ¢(x - 1) = x¢(1), so the action of ¢ agrees with multiplication by
a = ¢(1) on Z,. Further, we must have gcd(n,a) = 1 since ¢ is surjective. Hence

X is Z,, with t acting by multiplication by a, that is, X = A, /(t — a). O

Remark 4.9. Lemma 4.8 was also noted in [1/].

Corollary 4.10. For any prime p, there are exactly p—1 distinct Alexander quan-
dles with p elements, namely A,/(t—a) fora=1,...,p—1. Further, every Alezan-
der quandle of prime order is either trivial (A,/(t — 1) =2 T, the trivial quandle of

p elements) or connected.
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Proof. If p is prime, n, = m = 1foreacha €1,...,p— 1. Then by corollary
4.2, these are all distinct. By lemma 4.8, every quandle of order p is linear, so these
are all of the Alexander quandles of order p.

Since ged(p, 1 —a) =1fora =2,...,p—1, corollary 4.4 gives us that A,/(t —a)

is connected. U

Corollary 4.11. Let n = p{'p3>...p* be a product of powers of distinct primes.
Then there are exactly Ny, Ny, ... Ny, distinct Alexander quandles of order n, where

N,, s the number of distinct Alezander quandles of order p;*.

Proof. Since any Z-automorphism must respect order, every Alexander quandle
structure on a direct sum of Abelian groups Ap‘;l D - -@Apzk with order p$*,. .., pi*
must respect this direct sum structure. Hence we may obtain a complete list of
Alexander quandles of order n by listing all direct sums of Alexander quandles of

orders pi', ..., pek. O

Corollary 4.12. If the order of an Alezander quandle n = 2(mod 4), the quandle

18 not connected.

Proof. If n = 2(mod 4), then the underlying Abelian group of the quandle has a
summand of Z,. Hence the quandle has a summand isomorphic to Ay/(t+1) = T,

and therefore is not connected. O

In light of corollary 4.11, to classify finite Alexander quandles it is sufficient
to consider Alexander quandles of prime power order. Alexander quandles with
prime order are cyclic as Abelian groups and hence are linear quandles, and so are
classified by corollary 4.10. Alexander quandles with order a product of distinct

primes are classified by corollary 4.11.
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If the underlying Abelian group of X is (Z,)", then X is not only a A-module but
also a Ajp-module, so we may use the classification theorem for finitely generated
modules over a PID. Thus any Alexander quandle X with X4 = (Z,)" must be of
the form A,/(h1) @ -+ - ® Ap/(hg) with hy|he| ... |k, h; € Ay and ) deg(h;) = n.
We may further assume without loss of generality that each h; € Z,[t], is monic,

and has nonzero constant term.

Proposition 4.13. M = A/(h) is connected iff (1 —t) fh.

Proof. Since M is finite, (1 —t)M = M iff (1—t) : M — M is bijective. If (1—1)|h
then h = (1 — t)g for some nonzero g € M, and hence ker(1 —¢) # {0}, so (1 —¢t)
fails to be injective.

Conversely, (1 — t) is prime in A, so (1 — t) coprime to h implies that every
l € Ais a(1 —t) + bh for some a,b € A. Hence every m € M is a(l — t) for some

a € M. ]
Proposition 4.14. A,/ (t” +3 aztz) is connected iff ZZ 0 &i =

Proof. By 4.13, Apn/(t" + 37 a;t?) is connected iff t — 1[t" + 7' a;t’. That is,

Apn /(" + 300 " a;t') is connected iff there are b; € A,, 0 < i < n — 2 such that

n—2 n—1
t—1) (t"‘l + Zbiti) ="+ ) ait'.
=0 =0

Comparing coefficients, we must have that a,, | +b, o = —1, b; = a; + b;_; for all

1<i<n-—2, and by = ag. Thenzoa,— —1. O

Proposition 4.15. There are 2p* — 3p — 1 connected Alezander quandles of order
p? where p is prime.t

1 This agrees with the result of Grafia in [7].
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Proof. Every Alexander quandle of order p* has Abelian group Z,2 or Z, & Z,. A
linear quandle Ay2/(t — a) of order p? is connected iff ged(1 — a,p) = 1, and there
are p(p — 2) such quandles.

An Alexander quandle M with underlying Abelian group Z,®Z, is a module over
the PID A,, so we have either M = A,/(t—a)® A,/ (t—a) or M = A,/ (t* +at+b)
where b # 0. There are p — 2 connected quandles of the first type and (p — 1)? of
the second type, so in total there are 2p?> — 3p — 1 connected Alexander quandles

of order p?. O

For arbitrary values of n and p we may classify Alexander quandles with under-
lying abelian group (Z,)" by listing all possible A-modules with underlying group
(Z,)™ and comparing the submodules Im(1 — ?).

The results of applying this procedure to Alexander quandles with underlying
Abelian group (Zs)?, (Z9)* and (Zy)? are collected in table 1. As we expect, these
results agree with proposition 4.15.

Note that by theorem 4.1 and corollary 4.2, the results in table 1 show that
Ao/ (B2 +1) =2 Ay/(t —3) and (Ao/(t+1))* =2 Ay/(t — 1) = Ty, the trivial quandle
of order 4, while Ay/(¢?> +t + 1) is the only connected Alexander quandle of order
4.

Alexander quandles with underlying Abelian group (Z,)? include Ay /(t + 1) &
Ao/(t* +1) = Ag/(t — 5) and (Ao/(t + 1))® = Ts. Also, theorem 4.1 yields an
isomorphism Ag/(t — 3) = Ag/(t — 7); otherwise, the order eight quandles listed
are all distinct. Of these, only Ay/(¢* + % + 1) and Ay/(t> + ¢ + 1) are connected.
Note that none of the linear Alexander quandles of order eight are connected.

For Alexander quandles with Abelian group (Z3)?, we have Ag/(t—4) = Ag/(t —

7) = Ag/(t? +t + 1) (the first isomorphism was noted by J.S. Carter et. al. in [3]
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TABLE 4.1. Computations of Im(1 — t) for (Z3)?, (Z2)® and (Z3)?.

X4 | Module Im(1 —t)
(Ao/(t+1))? 0

(Z2)* | Ao/ (1> + 1) Ay/(t+1)
Ao/ +1t+1) Ao/(B+t+1)
(Ao/(t+ 1)) 0
AJ(t+ 1)@ A/ (P +1) | Ao/(t+ 1)

(Zy)® | Ag/ (P +1) Ao/ +1+1)
Ao/ +1+1) A/ +t+1)
Ao/ +12+1) Ao/(B + 12 +1)
Ao/(B+12+t+1) Ao/t + 1)
(As/(t+2))? 0
(As/(t+1))? (As/(t+1))?
As/ (8 +2) As/(t+1)

(Z3)? | As/(t*+1) As/(t2 +1)
A3/ (t? + 2t + 2) A3/ (t? + 2t + 2)
As/(+2t+1) As/(+2t+1)
As/(t? +t+2) As/(2+1+2)
A/t +t+1) As/(t+2)

and the second follows from proposition 4.1 of chapter 2, and otherwise the linear
quandles of order nine and the quandles listed in table 1 are all distinct. Note that
five of the eight listed quandles of order nine are connected; of the linear quandles
of order nine, Ag/(t — 2), Ag/(t — 5) and Ag/(t — 8) are connected.

To count distinct Alexander quandles whose underlying Abelian group is neither

cyclic nor a direct sum of n copies of Z,, the following observation is useful.

Lemma 4.16. The number of conjugacy classes in Auty(Xa) is an upper bound

on the number of distinct Alexander quandles X with underlying Abelian group

Xa.

Proof. Let ¢1, ¢y € AutzX 4. Then if ¢, = ¢1(1) and t, = ¢3(1), we have ¢ ' ¢1¢,
acting by multiplication by ¢; 't1ta = t, since multiplication in A is commuta-
tive. Thus any two conjugate automorphisms define the same Alexander quandle

structure. O
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To complete the classification of Alexander quandles with up to fifteen elements,

we now only need to consider the case X4 = Z4 & Zo.

Proposition 4.17. There are three distinct Alexander quandles with underlying
Abelian group Z4 @ Zo, defined by Z-automorphisms ¢; = id, ¢ ((1,0)) = (1,1),
¢2((0,1)) = (0,1), ¢3((1,0)) = (1,1) and ¢3((0,1)) = (2,1). Further, these
quandles are isomorphic to previously listed quandles, namely (Zy ® Zs, ¢1) = Ts,

(Z4@Z2,¢2) = AQ/(t+ 1) @AQ/(tZ + 1), and (Z4@Z2,(b3) = AQ/(t3 +t2 +t+ ].)

Proof. Direct calculation shows that Auty(Z, @ Zs) = Dg, the dihedral group of
order eight, so by lemma 4.16 there are at most five Alexander quandle structures
on Zy @ Zs. Of the eight Z-automorphisms of Z, @ Zs, one is the identity, yielding
the trivial quandle structure; five have Im(1 — ¢) = Ay/(¢t + 1) (including ¢5) and
hence yield quandles isomorphic to Ay/(t+1)®As/(t*+1), and two have Im(1—¢) &

Ay /(t? +1) (including ¢3), yielding quandles isomorphic to Ay /(3 +#2+t+1). O

We now have enough information to determine all Alexander quandles with up
to fifteen elements. In light of corollaries 4.10 and 4.11, we list in table 2 only the

numbers of distinct and connected Alexander quandles of each order.
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TABLE 4.2. The number of Alexander quandles and connected Alexander quandles of
size n < 15.

# of Alexander | #
n | quandles connected
21 0
3|2 1
413 1
5|4 3
6|2 0
716 5
8|7 2
9|11 8
10 | 4 0
11| 10 9
12| 6 1
13| 12 11
14 | 6 0
15| 8 3
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