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We realized, however, that the rotating models that we were able to build were just
beyond the critical limit for the onset of the secular bar-mode instability, thus the eigen-
frequency of the unstable “backward moving” mode should be very close to zero in the
inertial frame. This fact has two effects. 1) Since its eigenfrequency is very close to zero,
the mode should be almost stationary in inertial space. Therefore, a density perturbation
alone would be closer to the eigenmode than the combination of a density perturbation
and velocity perturbation would be. With this in mind, we decided to only apply a density
perturbation to the initial state of our rotating models and exclude the velocity pertur-
bation. 2) The GRR force is proportional to the fifth power of the eigenfrequency of the
mode and, hence, becomes very weak in these marginally unstable models. It was therefore
necessary to adopt an unusually large value of the factor , in order to see the growth of
the £ = m = 2 f-mode.

Figures 6.2 and 6.3 show the results of a test run, in which we sccessfully triggered the
secular bar-mode in model ROT157 by applying only the density perturbation to the initial
model; the resolution of this test run is 130 x 98 x 128 in the radial, vertical, and azimuthal
directions, respectively. Figure 6.2 shows the time evolution of the quadrupole moment
D35 (top panel), w, and w; (bottom panel). The evolution can be divided into two stages,
stage one is when [0 < t/7pin < 11]; stage two is when [t/ 7pin 2 11], where Topin = 27/ Qpot
is the spin period of the unperturbed rotating neutron star. In stage one, the factor &
was set to 2 x 10°; the magnitude of Dy, doesn’t appear to grow, and the magnitude of
the eigenfrequency (bottom panel of Fig. 6.2) still contains large fluctuations. These all
indicate that our choice of the value of k was too small. Then, in stage two, starting
from around 10.57gpin, we set & to 107. As a result, the amplitude of D, starts to grow
exponentially and continues to grow through the end of the simulation; Simultaneously, the
fluctuation in the magnitude of the measured frequency starts to die out, which indicates
that a pure eigenmode has developed. As the amplitude of the mode grew, it cleaned

itself out from various noises and dominated the entire system. Therefore, we obtained
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Table 6.1: Simulation Results

SPH 1.308 2.00 x 10 —1.56 —0.03 34 —1.19 —1.1x107°
ROT157 1.459 1.0 x 107 +40.12 40.03 32 +0.08 +2.1 x 107°
ROTI181 1.488 1.75 x 10° +0.27 +40.08 12 40.18 +3.1 x 1077

a pretty constant eigenfrequency in the late stage of the evolution. Figure 6.3 shows the
time evolution of the real and imaginary parts of Dy during this same test evolution. The
fact that the real and imaginary parts of Dyy both show a very low frequency oscillation
compared to the spin of the star suggests that this mode is indeed the backward going
mode whose frequency just passes zero. This is also consistent with the slightly positive
value of the measured w,. Notice that w; has a very small positive value, which is consistent
with the very slow exponential growth of the mode. The second row of numbers in Table
6.1 summarizes the results of this simulation, including the measured w,, w;, and 7gg.

At the end of the late stage of this test run, the quadrupole moment was still expo-
nentially growing. In order to study the nonlinear behavior of the secular bar-mode, we
decided to use a more rapidly rotating neutron star, model ROT181, which should have a
shorter growth time and allow us to follow the development of the secular bar-mode into

nonlinear regime.

6.2 Evolution of Model ROT181

6.2.1 Radiation-reaction with x = 1.75 x 10°

Model ROT181, which has the highest spin rate among our initial models, was introduced
into our hydrocode with a nonaxisymmetric perturbation in the density that had the same
structure as the perturbation that was introduced into model SPH. Because we expected
the natural oscillation frequency of the bar-mode to be close to zero (as viewed from an
inertial reference frame), however, we did not perturb the velocity field of the model.

Based on our experiment with model ROT157, we hoped this would give the system an
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Figure 6.2: The time-evolution of |Dy;| (top panel) and w, (bottom: dashed line) and w;
(bottom: solid line) of the ¢ = m = 2 bar-mode from the second test run of model ROT157.
From ¢t = 0 to ¢t = 10.5, k = 2 x 10%; after ¢ = 10.5, & is set to 107. Notice that after
t = 10.5, the quadrupole moment D,y grows exponentially; meanwhile, w, stabilized at a
very small positive value, and w; has a very small positive value, which suggests that the
mode is growing very slowly.
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Figure 6.3: The time evolution of the real part of Dy; (solid line) and the imaginary part
of the Dy (dotted line) during the second test run of model ROT157. The fact that they
both show a very low frequency oscillation compared to the spin of the star, suggests that
this mode is indeed the backward going mode whose frequency is just above zero as viewed
from the inertial reference frame. This is also consistent with the slightly positive value of
the measured w,.
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initial perturbation that was close to its pure eigen-mode. We followed the evolution of
model ROT181 on a cylindrical grid with a resolution of 130 x 128 x 98 zones in @, ¢,
and z, respectively, and with the coefficient of the radiation-reaction force term set to
k = 1.75 x 10° (Since the ROT181 model rotated faster than the ROT157 model, we
expected that the bar-mode of model ROT181 would have a larger eigenfrequency than
that of model ROT157. Because the growth rate is proportional to the eigenfrequency
to the fifth power, we expected a value of k ~ 10° to suffice. Note that fewer vertical
grid zones were required than in model SPH because model ROT181 was significantly
rotationally flattened (see Fig. 4.2), but more radial zones were used than in model SPH in
order to allow room for model ROT181 to expand radially during the nonlinear-amplitude
phase of its evolution.

Figures 6.4 and 6.5 display some of the key results from this ROT181 model evolution.
The bottom frame of Fig. 6.4 shows the time-dependent behavior of the real (dash-dotted
curve) and imaginary (solid curve) components of wqy, in our code’s dimensionless frequency
units; the top frame displays the time-dependent behavior of |Dyy|. Figure 6.5 shows how
the global parameters 7'/|W| (solid curve) and J (dashed curve) evolved with time. The
behavior of the model can be best described in the context of three different evolutionary
phases: Farly [0 < t/7gim < 7]; intermediate [T < t/7pin < 12]; and late [t/7epin 2 12],
where Topin = 27 /Ot = 6.47 in dimensionless code units.

During the model’s early evolution, both components of the frequency wyy oscillate
about well-defined, mean values: (w,) ~ 0.27 = 0.181Q0; (w;) ~ 0.08 = 0.054€);. During
this same phase of the evolution, both J and T/|W| remain fairly constant, but |Das|
increases exponentially with a growth time (obtained from the slope of the displayed curve)
7GR ~ 1.857pin. This growth time is completely consistent with the measured value of {w),
from which we would expect Tgr/Tepin = (wi) ™' (Qrot/27) = 1.93. The third row of numbers

in Table 6.1 summarizes these simulation results.
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Figure 6.4: The time-evolution of the amplitude |Dyz| (top) and the real (bottom: dash-
dotted curve) and imaginary (bottom: solid curve) components of the ¢ = m = 2 bar-mode
frequency from model ROT181. Time is shown in units of the initial rotation period
Tspin = 27 /ot of the model; frequencies are shown in dimensionless code units.
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After approximately seven rotation periods, the amplitude of |Dy;| begins to saturate,
and the model deforms into a clearly visible bar-like configuration with an axis ratio mea-
sured in the equatorial plane of approximately 2:1 (see Fig. 6.6). The bar-like structure is
initially spinning with a frequency given by (w;)/2, as measured during the early phase of
the ROT181 evolution. This pattern frequency of the bar is a factor of 7.2 smaller than the
rotation frequency ), of the model in its initial, axisymmetric state, so it is not surprising
that the bar also exhibits sizeable internal motions — it has a “Dedekind-like” structure.
Figure 6.6 illustrates the structure of the model at this time. Both frames contain the
same set of equatorial-plane, isodensity contours delineating the bar, along with a set of
velocity vectors depicting the fluid flow inside the bar: on the left-hand-side, the velocity
vectors are drawn in a frame corotating with the bar (i.e., rotating at the frequency, (w;)/2)
to illustrate the elliptical streamlines of fluid flow within the “Dedekind-like” bar; on the
right-hand-side, the velocity vectors are drawn in a frame rotating at the frequency (2.
When viewed in this latter frame, one sees a global velocity structure that is very similar
to the flow-field depicted in Fig. 4.4, that is, it resembles the natural eigenfunction of the
{ = m = 2 bar-mode that was derived by perturbation analysis for nonrotating spherical
stars, such as our model SPH. We note that this velocity structure developed spontaneously
in model ROT181, as the initial model contained no velocity perturbation.

During this intermediate phase of the model’s evolution, the bar remains a robust
configuration, but its pattern frequency slows as the system loses approximately 10% of its
angular momentum (through gravitational radiation) and 7'/|W| drops to a value ~ 0.156.
It is particularly interesting to note that, during this phase of the evolution, the GRR
driving term in the equation of motion reaches a maximum, then drops as rapidly as it
initially rose; this is illustrated in Fig. 6.7, where we have plotted the time-dependent
behavior of the product, |waz|’|D2z|. Although the bar maintains a nonlinear structure,
i.€., |Dqa| remains large, during this intermediate phase of the model’s evolution ®g drops

quickly in concert with a decrease in the frequency |was|.
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Figure 6.5: The time-evolution of the angular momentum J and the energy ratio 7'/|W|
from model ROT181; J is in dimensionless code units, time is shown in units of the initial
rotation period of the model. During the intermediate phase of the evolution, both quanti-
ties noticeably drop as angular momentum is lost via the GRR force term in the equation
of motion.
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Figure 6.6: The structure of model ROT181 is shown at time ¢ = 87y, during the in-
termediate phase of its evolution. In both frames, solid curves are isodensity contours
in the equatorial plane while vectors illustrate the equatorial-plane, velocity flow field as
viewed from a frame rotating with a specific frequency as follows: Qgame = (wr)/2 (left);

erame = Qrot (Ylght)



o8

3x107 2L .
2x107°F ]
8 i 1
b i ]
=N ? ]
1102 F ]
Qj\ ! ]

N
O
N
@)

t(r

spin

Figure 6.7: From model ROT181, this curve depicts the time-evolution of the product
wiy|Daa|, which indicates the strength of ®gr in the equation of motion. Time is shown in
units of the initial rotation period.
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During the late phase of the model ROT181 evolution, the Dedekind-like bar began
to lose its coherent structure. Small-scale fluctuations in the density and velocity fields
developed throughout the volume of the bar, and these fluctuations grew in amplitude on a
dynamical time scale. Even vertical oscillations developed throughout the model, disrupt-
ing both the vertically stratified planar flow and reflection symmetry through the equatorial
plane that persisted throughout the early and intermediate phases of the model’s evolu-
tion. After approximately 1574, the model was no longer a recognizable bar, although
it remained decidedly nonaxisymmetric, showing density and velocity structure on a wide
range of scales in all three dimensions. Figure 6.8 provides a snapshot of model ROT181’s
structure at ¢t = 19.9 74 during the late phase of its evolution. (Actually, Fig. 6.8 is drawn
from the late phase of a “revised” evolution of model ROT181, which was evolved further
in time; see §6.2.3 for details.) Isodensity contours reveal a nonaxisymmetric structure that
no longer can be described simply as a bar and, when viewed from a frame rotating at a
frequency o (the right-hand frame), the flow field is seen to be more complex than in
the bar. To briefly illustrate the entire evolution of model ROT181, Figs. 6.9 through 6.12

show 3D images of model ROT181 at different times.

6.2.2 Detectability of Gravitational-wave Radiation

A rapidly spinning neutron star located in our Galaxy (and perhaps anywhere in our
local group of galaxies) that acquires the type of nonlinear-amplitude, bar-like structure
that developed in model ROT181 will produce gravitational radiation at a frequency and
amplitude that should soon be detectable by gravitational-wave detectors such as LIGO
(Abramovici et al., 1992; Abbott et al., 2004), VIRGO (Acernese et al., 2002), GEO600
(Willke et al., 2002; Gossler et al., 2002), or TAMA300 (Tagoshi et al., 2001). As our
simulation shows, however, both the amplitude and pattern frequency of the bar — and,
hence, the strength and observed frequency of the gravitational radiation — will vary with

time. To illustrate this, Fig. 6.13 depicts the evolution of model ROT181 across a “strain-
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Figure 6.8: The neutron star’s structure is shown at time ¢t = 19.9 7, during the late
phase of the “revised” ROT181 model evolution. In both frames, solid curves are isodensity
contours in the equatorial plane while vectors illustrate the equatorial-plane, velocity flow
field as viewed from a frame rotating with a specific frequency as follows: Qgame = 0 (left);

erame = Qrot (Ylght)
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Figure 6.9: 3D images of model ROT181 at ¢ = 0. The top panel is the image of the system
as viewed from the positive z axis, the bottom panel is the image of the system as viewed
from the positive x axis. The four shells correspond to density levels of 0.8 (innermost
shell), 0.4, 0.1, and 0.001 (outermost shell), relative to the maximum density.



Figure 6.10: Same as Fig. 6.9, but at time ¢ = 67pin.
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Figure 6.11: Same as Fig. 6.9, but at time ¢ = 107p.
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Figure 6.12: Same as Fig. 6.9, but at time £ = 19.77,pip.
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Figure 6.13: The solid curve traces the evolution of model ROT181 in a “strain-frequency”
diagram from 67 to 117,. As is schematically illustrated by the vertical dotted line,
initially, the amplitude hyomm of the gravitational wave signal grows at a constant frequency,
f = w/(27) &~ 240 Hz. As energy and angular momentum are radiated from the system,
the frequency drops monotonically, and the strain reaches a maximum amplitude then
steadily declines.
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frequency” diagram, which is often referenced by the experimental relativity community
when discussing detectable sources of gravitational radiation. To obtain the strain values
hporm shown in Fig. 6.13, we have assumed r = 10kpc, and the time-derivative of each
reduced moment of inertia was evaluated numerically using the method recommended by
Finn & Evans (1990). Model ROT181’s evolutionary trajectory in this diagram is strikingly
similar to the trajectory that was predicted by Lai & Shapiro (1995) — see their Fig. 4 —
using a much simpler, approximate model for the development of the secular bar-mode
instability in young neutron stars.

In order to estimate the distance to which a gravitational wave source of this type would
be detectable by a gravitational-wave interferometer, such as LIGO, we could integrate
under the curve in Fig. 6.13, taking into account the amount of time that the source
spends in each frequency band. Because we have artificially amplified the strength of the
GRR force, however, our model evolves through frequency space along the curve shown in
Fig. 6.13 much more rapidly than would be expected for a real neutron star that experiences
this type of instability, hence our model cannot be used directly to estimate the length of
time that such a source would spend near each frequency. However, Owen & Lindblom
(2002) have outlined a method by which the detectability of a source can be estimated
from a knowledge of AJ, the total angular momentum that is radiated away from the
source via gravitational radiation. Specifically, the signal-to-noise ratio S/N that could be

achieved by optimal filtering can be estimated from the expression,

<§)2 o AG |AJ|
NJ 7 smxcdr? £S,(f)

(6.1)

where m is the azimuthal quantum number (m = 2 for the bar-mode), r is the distance to
the source, and Si,(f) is the power spectral density of the detector noise at frequency f.
From our model ROT181 evolution, we find AJ = 1.67 x 10*® g cm? s™!; (Based on results
from model ROT179, which we evolved using grids with various azimuthal resolutions, we

estimate that the uncertainty in this calculated AJ/J is ~ £15%.) and during LIGO’s third



67

(S3) science run in late 2003, the 4 km LHO (LIGO-Hanford Observatory) interferometer
operated with a noise curve! that exhibited /S, ~ 8 x 10_23\/E_1 at f = 220 Hz, which
is the characteristic frequency of the spinning bar in model ROT181. From expression
(6.1), we therefore estimate that a source of the type we are modelling could already be
detected by LIGO with a S/N > 8 out to a distance of 0.7 Mpc. With advanced LIGO
(using sapphire test masses, the projected noise curve? gives \/S;, &~ 1.7 x 10_24@_1&
f = 220Hz) we estimate that this type of source will be detectable with S/N > 8 out to
32 +3 Mpc.

Of course the detectability of gravitational waves generated by the secular bar-mode
instability will also depend on the frequency with which such events occur nearby. To
estimate an event rate we can draw on the discussion of Kokkotas (2004) where an estimate
was made of the event rate of the dynamical bar-mode instability in young neutron stars.
Since the conditions required for the onset of the secular bar-mode instability (7'/|W] >
0.14) are almost as extreme as the conditions required for the onset of the dynamical bar-
mode instability (7/|W]| 2 0.27), it would be very surprising if the two event rates were
not similar. If we assume that only young neutron stars can be rotating rapidly enough
to be susceptible to either bar-mode instability, and if we assume that a neutron star can
form only from the collapse of the core of massive star, then a reasonable upper limit on
the rate of these events will be given by the event rate of Type II supernovae, that is, 1-2
per century per gas-rich galaxy (Cappellaro, Evans, & Turatto, 1999). (Another scenario
is that rapidly rotating neutron stars form from the accretion-induced collapse of white
dwarfs. But according to Liu 2002, the frequency of such events is orders of magnitude
lower than the event rate of Type Il supernovae.) Adopting a local galaxy density of

ng ~ 0.01 Mpc™ (Kalogera et al., 2001), we should expect < 30 Type II supernovae

!Noise curves for the three separate LIGO interferometers during the S3 science run can be obtained
from URL http://www.ligo.caltech.edu/~lazz/distribution/LSC Data /s3.html.

2Projected noise curves for the advanced LIGO design using either sapphire or silica test masses can be
obtained from URL http://www .ligo.caltech.edu/advLIGO.
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each year out to 32 Mpc. Now not all Type II supernovae will produce neutron stars
(Kokkotas 2004 estimates, for example that 5-40% of supernova events produce black holes
instead), and only a fraction fior of neutron stars will be formed with sufficient rotational
energy to be susceptible to a bar-mode instability, so the predicted event rate should be
reduced accordingly. A naive estimation based on angular momentum conservation during
core collapse suggests that virtually all newly born neutron stars will be formed rapidly
rotating and, therefore, fior ~ 1; this is the direction Kokkotas (2004) leans. But models
of axisymmetric core collapse (Tohline, 1984; Dimmelmeier, Font, & Miiller, 2002a,b; Ott
et al., 2004) indicate that the ratio of energies T'/|W| in a newly formed neutron star is
quite sensitive to the equation of state of the core during its collapse and it is easy to
imagine physical scenarios in which appropriately rapidly rotating neutron stars will rarely
be formed; therefore, fios < 1. At the present time it is not clear which picture is more
correct, but adopting the more optimistic view it should be possible for LIGO to detect on

the order of ten such events each year.

6.2.3 Late Evolution with «x =0

In an effort to determine whether the Dedekind-like bar structure was destroyed during the
late phase of the ROT181 model evolution as a result of physically realistic, hydrodynamical
processes, or by a radiation-reaction force that was artificially too large, we set k = 0
then re-ran the last segment of the simulation, starting from ¢ = 117g,,. This “revised”
evolution produced results that were qualitatively identical to the late phase of the GRR-
driven evolution. That is, the bar was destroyed by the dynamical development of velocity
and density structure on a wide range of scales in all three dimensions. In an effort to
quantitatively describe this relatively complex structure, Fig. 6.14 shows a representation
of the azimuthal Fourier-mode amplitudes of the model’s density distribution at two points
in time: ¢ = 1074pin, when the bar was well-developed; and ¢ = 2074y, after the higher-order

nonaxisymmetric structure was well-developed. (Note that the late phase of this “revised”
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Figure 6.14: A spectrum of the Fourier-mode amplitude of the azimuthal density distribu-
tion is shown at time ¢ = 107 (filled circles), when the bar was well-developed, and at
time ¢ = 207, (open circles), after the higher-order modes destroyed the coherent bar in
the “revised” evolution of model ROT181. To guide the eye, amplitudes determined for
various modes at the same time are connected by straight line segments.

evolution was followed somewhat farther in time than the original model ROT181 evolution
described in §6.2.1.) At the earlier time, only the m = 2 amplitude contained a significant
amount of power, and all odd amplitudes were smaller than their even neighbors. At the

later time the Fourier-mode amplitudes appear to be related to one another by a simple

power law, indicating that power has been spread smoothly over all resolvable length scales.

6.2.4 Analysis of the Dedekind-like Bar Structure

Contrary to the simulations of dynamical bar-mode instability (Cazes & Tohline, 2000),
which produced very stable bar-like configurations that existed for many dynamical times,

the Dedekind-like bar configuration that formed from our simulation only survived for a
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few spin periods of the initial rotating neutron star. Its coherent bar-structure was then
destroyed by high order turbulence that developed on small length scales. In order to
understand the stability discrepancy between these two bar-like configurations, we have
analyzed the internal structures of these bars in much more details. Although we have
been unable to completely answer the question of why the Dedekind-like bar configuration
is dynamically unstable, these additional analyses do help us to gain a better understanding
of the properties of a GRR-driven Dedekind-like bar.

Figure 6.15 shows the contours of constant Mach numbers throughout the equatorial
plane of the Dedekind-like bar at ¢ = 137, where the Mach number is the ratio between
the fluid velocity in the inertial frame and local sound speed. Contours are plotted for four
different mach numbers: 0.2, 1.0, 2.0, and 5.0. Most of the outer region of the bar is in
supersonic motion (with Mach numbers greater than 1); the inner regions are in subsonic
motion (with Mach numbers less than 1). This is a very surprising observation. For this
system, which has a pretty stiff EOS (n = 0.5), a large portion of mass in the outer shells is
moving supersonically; However, the bar studied by Cazes & Tohline (2000) was centrally
condensed and had a softer EOS (n = 3/2), but it had only a very tiny portion of mass
moving supersonically in the outermost region.

On the other hand, shocks might develop between these supersonic and subsonic regions
and affect the adjoining flows. In order to locate where shocks might form in the Dedekind-
like bar, Fig. 6.16 shows the divergence of the velocity field in the equatorial plane of model
ROT181 at ¢t = 1574pin. The blue regions are where the velocity divergence is positive, and
the red regions are where the velocity divergence is negative, which should be regions that
are undergoing compression and may give birth to shocks. There is a very clear quadrupole
feature which is similar to that of the initial velocity perturbation we have applied to our
SPH model.

According to linear theory, gravitational radiation tends to drain angular momentum

from the system while conserving the fluid circulation. Figure 6.17 shows the circulation
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Figure 6.15: From model ROT181 with x = 1.75 x 10°, the contours identify the local
Mach numbers throughout the equatorial plane of the model at ¢ = 137,;,. The four mach
number levels are 0.2, 1.0, 2.0, 5.0 from the innermost region to the outermost region.
Regions with a Mach number greater than 1 are in supersonic motion, whereas, regions
with Mach number less than 1 are in subsonic motion.

in the equatorial plane at each cylindrical radius of the system at ¢ = 0 and ¢ = 107pip.
Since the initial configuration in the equatorial plane is circular, yet the late configuration
in the equatorial plane is elliptical, it is unclear whether that the circulation should be
conserved within a circle or an ellipse. However, in order to get a qualitative estimate,
we chose to compute circulation at each cylindrical radius by integrating along a circle
in the equatorial plane with the same radius both for the initial and late configurations.
The sequence denoted by a series of unfilled squares shows the circulation as a function
of cylindrical radius at ¢ = 0; the sequence denoted by a series of asterisks shows the

circulation as a function of cylindrical radius at ¢ = 107,. These two sequences lie very

close to each other.
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Figure 6.16: From model ROT181 with x = 1.75 x 10°, this plot shows the divergence of
velocity field throughout the equatorial plane at ¢ = 1574,,. The blue regions are where
the velocity divergence is positive and the red regions are where the velocity divergence is
negative. A quadrupole structure is obvious.
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Figure 6.17: From model ROT181 with x = 1.75 x 10°. The sequence denoted by a series of
unfilled squares shows the fluid circulation as a function of cylindrical radius at ¢ = 0; the
sequence denoted by a series of asterisks shows the circulation as a function of cylindrical
radius at ¢ = 107pin.
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6.3 Evolution of Model ROT179

Our evolution of model ROT181 produced two particularly important results: (1) the linear
growth of the bar-mode agrees well with the predictions of linear analysis and its nonlinear
development also confirms the previous simplified estimation (Lai & Shapiro, 1995) of
the character and strength of gravitational waves that come from the secular bar-mode
instability in rotating neutron stars. (2) the fact that the Dedekind flow is destroyed in
the late evolution of the bar-mode instability suggests that Dedekind-like ellipsoids tend to
be short-lived and that the chance for a Dedekind configuration to exist in our universe is
very rare. However, so far we have only followed the development of the secular bar-mode
of one model (ROT181) into the nonlinear regime. In order to test if the breakdown of the
Dedekind flow in the late evolution is robust, we have made two convergence tests.

Our first convergence test was performed by evolving model ROT179 on a computational
grid of resolution 66 x 66 x 64 in the radial, vertical, and azimuthal directions, respectively.
(Notice that this grid has roughly a factor of two poorer resolution in each of the three
spatial dimensions.) This model had a slightly different value of 3 from model ROT18I,
because the HSCF technique did not permit us to construct precisely the same initial state
as model ROT181 on the coarser computational grid. We introduced a nonaxisymmetric
density perturbation that produced approximately the same initial mass quadrupole mo-
ment amplitude | Dyy| as in model ROT181; and throughout the evolution the coefficient of
the radiation-reaction force term was set to k = 1.75 x 10° as in the ROT181 run. Because
model ROT179 had a lower § value, it had a smaller spin frequency and correspondingly
a lower bar-mode frequency. Therefore, we expected the growth rate of the bar-mode in
model ROT179 to be slightly slower than it was in the ROT181 simulation. Figures 6.18,
6.19, 6.20, and 6.21 show some key results from this convergence test. For comparison
with the results of the ROT181 run, we also show quantities from model ROT181 on the

same plots. Figure 6.18 shows the time-evolution of the quadrupole moment amplitude and
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the bar-mode frequency. The amplitude of Dy, grows exponentially to a lower nonlinear
amplitude than that of model ROT181, then levels off. One important fact is that it grows
slightly slower than it did in the ROT181 model, as expected. The turbulent behavior
that destroys the Dedekind flow sets in at a much later time than it did in model ROT181
(This is indicated by the large oscillation of the mode frequency at late times). The delay
in development of the smaller scale structure was almost certainly due, in part, to our
inability to resolve structure on the smallest scales in model ROT179. But the delay may
also have occurred, in part, because the bar itself was never as pronounced as in model
ROTI181. Similar behavior has been observed in simulations that have analyzed the long-
term stability of r-mode oscillations in young neutron stars (Gressman et al. 2002). In
Fig. 6.19, the time-evolution of = T/|W| and J show a time-decreasing behavior that is
qualitatively similar to model ROT181, but on a much longer time scale. Figure 6.20 shows
the time-evolution of the strength of GRR potential, ~ w3,|Daz|, from both model ROT179
and model ROT181. The peak of this function also lags by about two spin periods than
that of ROT181 model. In Fig. 6.21, the spectrum of the Fourier modes at two different
times (when the bar mode is dominant and when the turbulence is fully developed) is also
similar to that of model ROT181.

In our second convergence test, we evolved the same model ROT179 on a computational
grid of resolution 66 x 66 x 128 in the radial, vertical, and azimuthal directions, respectively.
That is, the azimuthal grid resolution matched the grid resolution of our model ROT181
evolution. The key results of this run are shown in Figs. 6.22, 6.23, and 6.24. Figure 6.22
shows the time-evolution of Dy; and the real and imaginary parts of the mode frequency
way, figure 6.23 shows the product of |Dyy| and |wyy|® as a function of time; and Fig. 6.24
shows the spectrum of the Fourier-mode amplitude at two different times (when the bar
mode is dominant and when the turbulence is fully developed). The results from the early
and intermediate phases of this simulation, when the bar-like structure grows exponentially

to the nonlinear regime and levels off, agree completely with that of the lower resolution
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ROTI179 run. A more interesting thing is that the late break down of the Dedekind flow
sets in at a much earlier time compared to the lower resolution run for model ROT179.
This makes sense because the angular resolution is doubled, so the interactions between
azimuthal modes on small scales are resolved to a much higher degree, which helps the
turbulence to grow faster in the higher resolution run of model ROT179. In fact, the
turbulent behavior of the system becomes noticeable after ¢ = 1674, exactly as it does in
the ROT181 run. This suggests that the turbulent behavior depends largely on the energy
cascade among azimuthal modes.

The results of our two convergence tests on model ROT179 confirm the results of our
model ROT181 evolution and give us confidence that the break down of the Dedekind flow

in the late evolution is a very robust, physical phenomenon.
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Figure 6.18: The time-evolution of |Dys| (top: dotted line) and the real (bottom: dotted
curve) and imaginary (bottom: dashed curve) components of the { = m = 2 bar-mode
frequency from model ROT179 on a grid of resolution 66 x 66 x 64. Time is shown in
units of the initial rotation period 7ypm = 27/t of the model; frequencies are shown in
dimensionless code units. Curves from Fig. 6.4 are also drawn in order to provide points of
comparison with the model ROT181 evolution. It is very clear that Dy, of model ROT179
grows more slowly and to a lower amplitude. The higher order instability in model ROT179
also happens at a later time than it does in model ROT181.
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Figure 6.19: The time-evolution of the angular momentum J (dotted curve) and the energy
ratio 1'/|W| (dashed-dotted line) from model ROT179 on a grid of resolution 66 x 66 x 64;
J is in dimensionless code units, time is shown in units of the initial rotation period of
the model. Curves from Fig. 6.5 are also shown in order to provide points of comparison
with the higher resolution , model ROT181 evolution. Both quantities show similar time-
decreasing behavior in both of the two models except that the characteristic decaying times
are different.
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in the equation of motion. Time is shown in units of the initial rotation period. As a
comparison, the solid curve (taken from Fig. 6.7) shows the same quantity from model
ROT181 evolution. These two curves peak at different times and have a very obvious time
shifting feature.
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Figure 6.21: A spectrum of the Fourier-mode amplitude of the azimuthal density distribu-
tion is shown at time ¢ = 117, (filled circles), when the bar was well-developed, and at
time ¢ = 367, (open circles), after the higher-order modes destroyed the coherent bar in
the evolution of model ROT179 on a grid of resolution 66 x 66 x 64. To guide the eye,
amplitudes determined for various modes at the same time are connected by straight line
segments.
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resolution 66 x 66 x 128. It is very interesting that the turbulence instability in model
ROT179 happens roughly at the same time as it did in in model ROT181.



82

(@)

>

(@)

\
O (@)
W\\

Figure 6.23: Same as Fig. 6.7, but from model ROT179 on a grid of resolution 66 x 66 x 128.



83

10.0000

1.0000

0.1000

T \\HH‘
-

T
~

0.0100

Fourier Amplitude
T
[ 3
[ 3

0.0010

1
H\J\H\HH
BAREAN
M
L

i
f
\HH

\HHH‘
o
e

il
|

0.0001 | | aad

1 10 100
Fourier Mode Number

Figure 6.24: Same as Fig. 6.14, but from model ROT179 on a grid with resolution 66 x
66 x 128. The filled circles are from when the bar was well-developed, and the open circles
are after the higher-order modes destroyed the coherent bar.



7. Summary and Conclusions

Using nonrelativistic, numerical hydrodyamical techniques coupled with a post-Newtonian
treatment of GRR forces, we have simulated the nonlinear development of the secular bar-
mode instability in rapidly rotating neutron stars (approximated by n = 0.5 polytropes).
In each simulation we have artificially enhanced the strength of the GRR force term in the
equation of motion (by selecting values of the parameter £ > 1) in order to be able to follow
the secular development of the bar with a reasonable amount of computing resources. In
each case, however, k was set to a small enough value that the amplitude of the mass-
quadrupole moment changed slowly, compared to the dynamical time scale of the system,
thus ensuring that the system as a whole remained in dynamical equilibrium.

We first tested our simulation technique by studying the evolution of the { = m = 2
bar-mode in a nonrotating neutron star model (model SPH) on a cylindrical grid having a
resolution with 66 x 130 x 128 in the radial, vertical, and azimuthal directions, respectively.
According to linear theory, the bar-mode in this model is stable and should die out over
time. In order to excite the { = m = 2 bar-mode, we applied to the initial neutron
star model density and velocity perturbations, which closely mimicked the eigenfunctions
of the bar-mode as described by linear theory. The results from our evolution of this
model were in very close agreement with predictions: the developing bar-mode exhibited
an azimuthal oscillation frequency within 3% of the frequency predicted by linear theory,
and the amplitude of the bar-mode damped at a rate that was within 15% of the rate
predicted by linear theory.

Next, we evolved a rapidly rotating model (ROT181), which was predicted by linear
theory to be secularly unstable toward the growth of the bar-mode driven by gravitational
radiation. The resolution of this simulation was 130 x 98 x 128 in the radial, vertical, and
azimuthal directions, respectively. From the early “linear-amplitude” phase of this model’s

evolution, we measured the bar-mode’s azimuthal oscillation frequency and its exponential
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growth rate; the values are summarized in Table 6.1, together with those of model SPH. The
oscillation frequency (w;)/Q was almost an order of magnitude smaller than in model SPH,
and (w;)/(Qok) was four orders of magnitude smaller than (and had the opposite sign of)
the value measured in model SPH. Both of these frequency values reflect the fact that model
ROTI181 was rotating only slightly faster than the marginally unstable model (predicted
to have T/|W| ~ 0.14), in which both components of wyy should be precisely zero. We
watched the unstable bar-mode grow up to and saturate at a sufficiently large, nonlinear
amplitude that the bar-like distortion was clearly visible in two- and three-dimensional
plots of isodensity surfaces. The nonlinear bar that formed from this GRR-driven secular
instability had a Dedekind-like ellispoidal structure; that is, it had a very large internal
rotation yet maintained a very low pattern frequency compared to the initial spin rate of
the star.

This nonlinear Dedekind-like bar structure persisted for several rotation periods. During
this intermediate phase of the ROT181 model evolution, we tracked the frequency and
amplitude of the gravitational-wave radiation that should be emitted from the configuration
due to its time-varying mass-quadrupole moment. Our model’s evolution in a “strain-
frequency” diagram closely matched the evolutionary trajectory predicted by Lai & Shapiro
(1995), lending additional credibility to their relatively simple (and inexpensive) way of
predicting the evolution of such systems as well as to our first attempt to model such an
evolution using nonlinear hydrodynamical techniques.

During the late phase of our model ROT181 evolution, the bar lost its coherent structure
and the system evolved to a much more complex nonaxisymmetric configuration with high
order modes growing to a significant amplitude. The general features of this late phase
of the evolution were reproduced even when the GRR forces were turned off and when
a very similar model (ROT179) was evolved on a computational grid that had a coarser
resolution. So while the size and shape of the intermediate phase “Dedekind-like” structure

of our model may well have been influenced strongly by the excessive strength of the GRR
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force used in our simulation, it appears as though the final complex “turbulent” phase of
the evolution was governed by purely hydrodynamical phenomena.

It is not clear what physical mechanism was responsible for the development of the
small-scale structure and subsequent destruction of the bar during the late phase of the
evolution of model ROT181. Because the bar’s structure was “Dedekind-like” — that is,
fluid inside the bar was moving along elliptical streamlines with a mean frequency that
was significantly higher than the bar pattern frequency — it is tempting to suggest that the
small-scale structure arose due to differential shear. But, according to Hawley, Balbus &
Winters (1999), coriolis forces are able to stabilize differentially rotating, astrophysical flows
against shearing instabilities even in accretion disks where the shear is much stronger than
in our “Dedekind-like” bar. (See, however, Longaretti 2002 for an opposing argument.)
Furthermore, other models of differentially rotating astrophysical bars (Cazes & Tohline,
2000; New, Centrella & Tohline, 2000) do not appear to be susceptible to the dynamical
instability that destroyed the bar in our ROT181 model evolution. We suspect, instead,
that the late-time behavior of model ROT181 results either from nonlinear coupling of
various oscillatory modes within the star, or from an “elliptic flow” instability similar to
the one identified in laboratory fluids that are forced to flow along elliptical streamlines.
The dissipative effect of mode-mode (actually, three-mode) coupling has been examined in
depth by Schenk et al. (2002) and Arras et al. (2003) in the context of the r-mode instability
in young neutron stars, but the effect has not yet been studied to the same degree in relation
to the { = m = 2 f-mode. Lifschitz & Lebovitz (1993), Lebovitz & Lifschitz (1996), and
Lebovitz & Saldanha (1999) have demonstrated that the “elliptic flow” instability seen
in laboratory fluids is likely to arise in self-gravitating ellipsoidal figures of equilibrium,
especially if they have “Dedekind-like” internal flows. Additional analysis and, very likely,
additional nonlinear simulations will be required before we are able to determine which (if
either) of these mechanisms was responsible for the destruction of the bar in our ROT181

model evolution.
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Our nonlinear simulation of model ROT181 demonstrates that when a rapidly rotating
neutron star becomes unstable to the secular bar-mode instability, the bar-like distortion
may grow to nonlinear amplitude and thereby become a strong source of gravitational
radiation. However, it will not be a long-lived continuous-wave source, as one might op-
timistically have expected; in our simulation, the nonlinear-amplitude bar survived fewer
than ten rotation periods. In a real neutron star the GRR forces will be much weaker than
those of our simulation, so we expect the bar mode to grow and persist for many more
rotation periods. However, we also expect the amplitude of the bar mode to saturate at
a much lower amplitude in a real neutron star. Nevertheless, we expect the bar mode to
persist in rapidly rotating neutron stars long enough to allow gravitational radiation to
remove sufficient angular momentum for them to relax into a secularly stable equilibrium
state. Thus the amount of angular momentum radiated away in real neutron stars should
be comparable to that in our simulation. While such astrophysical systems may not be
the easiest sources to detect with broadband, gravitational-wave detectors such as LIGO
because the frequency of the emitted radiation will change steadily with time, our estimates
suggest that gravitational waves arising from the excited secular bar-mode instability in
rapidly rotating neutron stars could well be detectable in the not too distant future from
neutron stars as far away as 32 £ 3 Mpc. This includes galaxies in the Virgo cluster.

Our results have cast some light on the long-believed evolutionary path of a secularly
unstable rotating stars: According to the classical theory, such a configuration would evolve
along a sequence of Dedekind-like ellipsoids under the influence of gravitational radiation
and end up as a bar-like configuration that is stationary in the inertial frame yet maintains
large internal rotational flows. Our results show that the bar-like structure that forms as a
result of this GRR instability becomes dynamically unstable to high order turbulence while
evolving toward the “stationary” figure. Hence, it is very unlikely that rotating neutron

stars that become secularly unstable to the bar-mode instability end up as Dedekind-like
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ellipsoidal configurations under the influence of gravitational radiation. This also suggests
that it is very unlikely that Dedekind-like ellipsoids exist anywhere in our universe.

After submitting our results for publication (Ou, Tohline, & Lindblom, 2004), we be-
came aware that Shibata & Karino (2004) have just completed an investigation similar to
the one presented here in which they have utilized post-Newtonian simulations to study
the nonlinear development of the secular bar-mode instability in rapidly rotating neutron
stars. Their initial models were differentially rotating, n = 1 (I' = 2) polytropes with
0.2 < T/|W| < 0.26. The early and intermediate phases of their model evolutions agree
well with the results of our model ROT181 evolution, that is, the bar-mode grew expo-
nentially at rates consistent with the predictions of linear theory and reached a nonlinear
amplitude, producing an ellipsoidal star of moderately large ellipticity. The strength of the
GRR force used in our simulations was considerably larger than theirs. This may explain
why the bar mode grows to a larger amplitude and why, in turn, there is a more significant
decrease in the pattern frequency of the bar as it evolves toward a Dedekind-like configura-
tion in our simulation. This may also explain why the bar mode structure was ultimately
destroyed by short wavelength disturbances in our evolutions while such turbulence had

not yet developed in theirs.
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APPENDIX A: Determination of the Speed
of Light in Hydrocode Units

As long as the evolution of a self-gravitating, polytropic gas is modelled using a New-
tonian gravitational field, each simulation can be performed in dimensionless units (we
typically employ “hydrocode” units for which ¢ = r4i4 = pmax = 1), then be scaled later
to systems having a variety of masses and radii (Williams & Tohline 1978). Once rela-
tivistic effects are taken into account, however, the speed of light enters the problem as a
fundamental parameter and dimensionless “hydrocode” units are no longer especially use-
ful. We discuss here how the value of the speed of light is determined in hydrocode units
for a specific neutron star simulation.

First, we specify the mass and radius of the neutron star under investigation, which in

turn defines the relevant free-fall velocity of the system. For example, using the mass and
equatorial radius specified in Table 1 (M = 1.4Mg = 2.8 x 10% g, req = 12.5 km),

O = TeqQo = Teqy/TGpo = 1.059 x 10° km s™* . (A.1)
From this, we determine the ratio of vg to the speed of light ¢ in this selected neutron star,
a = vg/c = 0.3527. (A.2)

Now, in hydrocode units, our selected model (properties listed in Table 1) exhibits the
following characteristic free-fall velocity:

Ut |code = Teqflo = 1.102. (A.3)

Enforcing the proper ratio a of the free-tall velocity to the speed of light therefore demands
that in the hydrocode, the speed of light,

U |C0de

=3.122. (A.4)

Ccode = a

This is the value listed in column 3 of Table 1.
Hence, in the hydrocode the coefficient N, in the expression for the radiation reaction
force was assigned the value,

Ny = (87G)/(75c”) = 9.188 x 107°. (A.5)
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APPENDIX B: Numerical Results of Rigidly
Rotating Models

For incompressible rotating stars, i.e. n = 0 Maclaurin spheroid, it is possible to build
uniformly rotating models ranging from § = 0 to f = 0.5 as the stars spins faster and
faster. However, this is not true for uniformly rotating stars with a compressible equation
of state. As the star spins up, the centrifugal force at the equator of the star would finally
exceed gravity and cause mass to be shed from the star’s equator. Therefore, for gas or fluid
with different compressibility (or different values of n), there exists a certain critical limit
varying with n, beyond which a uniformly rotating star will break up. James (1969) has
shown that for n > 0.808, it is impossible to build a uniformly rotating stellar model with
B above the critical limit for the secular bar-mode instability, e.g. # = 0.14. Figure B.1
shows our results of different sequences of uniformly rotating models for n = 0.5,1.0,1.5
that are built by our HSCF code. Along each sequence, the equatorial radius is fixed, then
the polar radius is reduced in order to get uniformly rotating models that spin faster and
faster. The vertical axis denotes the  value; the horizontal axis denotes the eccentricity
of the object. As shown in the figure, there exists a maximum [ value for each sequence.
Only the maximum 3 of the n = 0.5 sequence has passed beyond the critical limit 0.14.
Thus, in order to study the nonlinear development of the secular bar-mode instability, we
have chosen n = 0.5, which denotes a pretty stiff equation of state for neutron stars.
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Figure B.1: The g = |T/W| value versus the eccentricity e of uniformly rotating polytropes.
The solid line denotes the sequence of n = 0.5; the dashed line denotes the sequence of
n = 1.0; the dotted line denotes the sequence of n = 1.5. Among all three sequences,
only the n = 0.5 sequence goes above the critical limit of secular bar-mode instability, i.e.

B =0.14.



APPENDIX C: The Perturbations Applied
to Initial Models

From Eq. (12) of Ipser & Lindblom (1990), the velocity perturbation is
6v® = iQ*V,oU, (C.1)

where 8U is the perturbed potential and the tensor Q° is defined in their equation (13).
In the nonrotating case, the angular velocity of the star = 0, thus Q*® reduces to,

ab

Q=" (C.2)

where w is the eigenfrequency of each mode, and ¢*® is the three metric related to the
coordinate system. In cylindrical coordinate system, ¢?° takes the form,

911 = 91_11 =1, (CS)
922 = 92_21 = w27 (0-4)
97 =95 =1 (C.5)

all the other matrix elements vanish; and we obtain,

§v7 = V68U, (C.6)
w.

vt = ——V,46U, (C.7)
(.gw

§v* = —V.6U. (C.8)
w

Here, we use w for cylindrical radius and r for spherical radius. We can write the
perturbed potential as the product of a pure spherical radial function U(r) and Y3,, which

yields,
VU = Vu(U(r)Yz) (C.9)
15 2ip : 2
= 1/ =—=—V(U(r)e**? sin” 0). (C.10)
327

In the cylindrical coordinate system, we have

w2

w? 4 22

Veosin?l = Val

) (C.11)

2w v
= — C.12
w? —|—22 (wZ _I_ZQ)Z ( )
_ 251n9_25in39 (C.13)

r r
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2sin 6 cos? 0

= — (C.14)
2
. w
Vz SlH29 == vz(m) (015)
2w’z
— _ C.16
(w2 + 22)2 ( )
_ _QSiHZGCOSH‘ (C.17)
r

After some manipulation of the above equations and taking the real part of the equations
of velocity perturbations, we obtain the following expressions for the three components of
velocity perturbations:

15 1 in 6
¥ = — 3_—5—Sin2¢(awU(T)Sin29+U(T)2C082981n

T W r

[ 15 1 2U(r) cos 2¢sin* @
Sv? = _ — 1
v 327 w w ’ (C.19)
15 1 2 in? 0 0
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